Datasets:
AI4M
/

text
stringlengths
0
3.34M
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of rose trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Data.Tree.Rose.Properties where open import Level using (Level) open import Size open import Data.List.Base as List using (List) open import Data.List.Extrema.Nat import Data.List.Properties as Listₚ open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Tree.Rose open import Function.Base open import Relation.Binary.PropositionalEquality open ≡-Reasoning private variable a b c : Level A : Set a B : Set b C : Set c i : Size ------------------------------------------------------------------------ -- map properties map-compose : (f : A → B) (g : B → C) → map {i = i} (g ∘′ f) ≗ map {i = i} g ∘′ map {i = i} f map-compose f g (node a ts) = cong (node (g (f a))) $ begin List.map (map (g ∘′ f)) ts ≡⟨ Listₚ.map-cong (map-compose f g) ts ⟩ List.map (map g ∘ map f) ts ≡⟨ Listₚ.map-compose ts ⟩ List.map (map g) (List.map (map f) ts) ∎ depth-map : (f : A → B) (t : Rose A i) → depth {i = i} (map {i = i} f t) ≡ depth {i = i} t depth-map f (node a ts) = cong (suc ∘′ max 0) $ begin List.map depth (List.map (map f) ts) ≡˘⟨ Listₚ.map-compose ts ⟩ List.map (depth ∘′ map f) ts ≡⟨ Listₚ.map-cong (depth-map f) ts ⟩ List.map depth ts ∎ ------------------------------------------------------------------------ -- foldr properties foldr-map : (f : A → B) (n : B → List C → C) (ts : Rose A i) → foldr {i = i} n (map {i = i} f ts) ≡ foldr {i = i} (n ∘′ f) ts foldr-map f n (node a ts) = cong (n (f a)) $ begin List.map (foldr n) (List.map (map f) ts) ≡˘⟨ Listₚ.map-compose ts ⟩ List.map (foldr n ∘′ map f) ts ≡⟨ Listₚ.map-cong (foldr-map f n) ts ⟩ List.map (foldr (n ∘′ f)) ts ∎
Formal statement is: lemma compact_insert [simp]: assumes "compact s" shows "compact (insert x s)" Informal statement is: If $s$ is a compact set, then $s \cup \{x\}$ is compact.
## Configurações ## Função para conferir se um pacote já está instalado; se estiver, carregá-lo, se não, instalar e depois carregar lock.and.load <- function(list.of.packages){ new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] if(length(new.packages)) { install.packages(new.packages) } for(i in 1:length(list.of.packages)){ library(list.of.packages[1], character.only=T) } } ## Instalar e carregar pacotes necessários abaixo lock.and.load('dplyr') lock.and.load('tidyr') lock.and.load('plumber') #* Geolocalizar endereço #* @param address endereço #* @param code_ibge código ibge onde o endereço tem que estar localizado #* @post /geo function(address="", code_ibge="", libpostal="False"){ # testar que address é string # testar que libpostal é booleano # se code_ibge for inválido, não aplicar teste data <- list( address = address , code_ibge = code_ibge ) %>% createInput() result <- data %>% {if(as.logical(libpostal)){generateAlternatives(.)} else {.}} %>% geocode() %>% checkIbge() return(result) }
[STATEMENT] lemma prod_mset_prime_factorization_weak: assumes "x \<noteq> 0" shows "normalize (prod_mset (prime_factorization x)) = normalize x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: x \<noteq> (0::'a) goal (1 subgoal): 1. normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x [PROOF STEP] proof (induction x rule: prime_divisors_induct) [PROOF STATE] proof (state) goal (3 subgoals): 1. (0::'a) \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (0::'a))) = normalize (0::'a) 2. \<And>x. \<lbrakk>is_unit x; x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x 3. \<And>p x. \<lbrakk>prime p; x \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x; p * x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) [PROOF STEP] case (factor p x) [PROOF STATE] proof (state) this: prime p x \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x p * x \<noteq> (0::'a) goal (3 subgoals): 1. (0::'a) \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (0::'a))) = normalize (0::'a) 2. \<And>x. \<lbrakk>is_unit x; x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x 3. \<And>p x. \<lbrakk>prime p; x \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x; p * x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) [PROOF STEP] have "normalize (prod_mset (prime_factorization (p * x))) = normalize (p * normalize (prod_mset (prime_factorization x)))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * normalize (\<Prod>\<^sub># (prime_factorization x))) [PROOF STEP] using factor.prems factor.hyps [PROOF STATE] proof (prove) using this: p * x \<noteq> (0::'a) prime p goal (1 subgoal): 1. normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * normalize (\<Prod>\<^sub># (prime_factorization x))) [PROOF STEP] by (simp add: prime_factorization_times_prime) [PROOF STATE] proof (state) this: normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * normalize (\<Prod>\<^sub># (prime_factorization x))) goal (3 subgoals): 1. (0::'a) \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (0::'a))) = normalize (0::'a) 2. \<And>x. \<lbrakk>is_unit x; x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x 3. \<And>p x. \<lbrakk>prime p; x \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x; p * x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) [PROOF STEP] also [PROOF STATE] proof (state) this: normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * normalize (\<Prod>\<^sub># (prime_factorization x))) goal (3 subgoals): 1. (0::'a) \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (0::'a))) = normalize (0::'a) 2. \<And>x. \<lbrakk>is_unit x; x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x 3. \<And>p x. \<lbrakk>prime p; x \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x; p * x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) [PROOF STEP] have "normalize (prod_mset (prime_factorization x)) = normalize x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x [PROOF STEP] by (rule factor.IH) (use factor in auto) [PROOF STATE] proof (state) this: normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x goal (3 subgoals): 1. (0::'a) \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (0::'a))) = normalize (0::'a) 2. \<And>x. \<lbrakk>is_unit x; x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x 3. \<And>p x. \<lbrakk>prime p; x \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x; p * x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * normalize x) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * normalize x) goal (1 subgoal): 1. normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) [PROOF STEP] by simp [PROOF STATE] proof (state) this: normalize (\<Prod>\<^sub># (prime_factorization (p * x))) = normalize (p * x) goal (2 subgoals): 1. (0::'a) \<noteq> (0::'a) \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization (0::'a))) = normalize (0::'a) 2. \<And>x. \<lbrakk>is_unit x; x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> normalize (\<Prod>\<^sub># (prime_factorization x)) = normalize x [PROOF STEP] qed (auto simp: prime_factorization_unit is_unit_normalize)
module Server.InigoServer.KVOps import Inigo.Async.Promise import Data.List import Data.Maybe import Data.SortedSet as Set import Extra.String import Fmt import Inigo.Account.Account as Account import Inigo.Async.Base import Inigo.Async.CloudFlare.KV import Inigo.Async.SubtleCrypto.SubtleCrypto import Inigo.Package.Package import Inigo.Package.PackageDeps import Inigo.Package.PackageIndex import SemVar.Data import Server.InigoServer.Util ||| TODO: Should package technically be a list of strings? ||| TODO: We should be able to rebuild if any of the redundant stores becomes corrupted sessionTTL : Int sessionTTL = 60 * 60 * 24 * 10 -- 10 days packageIndexKey : (String, String) packageIndexKey = ("index", "index") packageKey : String -> String -> Version -> (String, String) packageKey ns package version = ("packages", fmt "%s.%s@%s" ns package (show version)) readmeKey : String -> String -> Version -> (String, String) readmeKey ns package version = ("readme", fmt "%s.%s@%s" ns package (show version)) archiveKey : String -> String -> Version -> (String, String) archiveKey ns package version = ("archives", fmt "%s.%s@%s" ns package (show version)) packageDepKey : String -> String -> (String, String) packageDepKey ns package = ("deps", fmt "%s.%s" ns package) accountKey : String -> (String, String) accountKey ns = ("accounts", ns) sessionKey : String -> (String, String) sessionKey session = ("sessions", session) pkgVerKey : Package -> (String -> String -> Version -> a) -> a pkgVerKey pkg f = f (ns pkg) (package pkg) (version pkg) pkgKey : Package -> (String -> String -> a) -> a pkgKey pkg f = f (ns pkg) (package pkg) read : (String, String) -> Promise (Maybe String) read key = do res <- (uncurry KV.read key) if res == "" then pure $ Nothing else pure $ Just res write : (String, String) -> String -> Promise () write key val = (uncurry KV.write key) val writeTTL : (String, String) -> String -> Int -> Promise () writeTTL key val ttl = (uncurry KV.writeTTL key) val ttl export readIndex : Promise PackageIndex readIndex = do indexRes <- read packageIndexKey log ("Package Index: " ++ show indexRes) expectResult $ fromMaybe (Right []) $ map parsePackageIndex indexRes export writeIndex : PackageIndex -> Promise () writeIndex index = write packageIndexKey (encodePackageIndex index) export readArchive : String -> String -> Version -> Promise (Maybe String) readArchive packageNS packageName version = read (archiveKey packageNS packageName version) export writeArchive : String -> String -> Version -> String -> Promise () writeArchive packageNS packageName version body = write (archiveKey packageNS packageName version) body export readReadme : String -> String -> Version -> Promise (Maybe String) readReadme packageNS packageName version = read (readmeKey packageNS packageName version) export writeReadme : String -> String -> Version -> String -> Promise () writeReadme packageNS packageName version body = write (readmeKey packageNS packageName version) body -- TODO: This logic is a little complex to be here export readAllDeps : String -> String -> Promise (List (List String, PackageDeps)) readAllDeps packageNS packageName = readAllDeps_ Set.empty [packageNS, packageName] where readDep : List String -> Promise PackageDeps readDep [packageNS, packageName] = do depsRes <- read (packageDepKey packageNS packageName) log ("Package Deps: " ++ show depsRes) expectResult $ fromMaybe (Right []) $ map parsePackageDeps depsRes readDep els = reject ("Invalid package name: " ++ show els) readAllDeps_ : SortedSet (List String) -> List String -> Promise (List (List String, PackageDeps)) readAllDeps_ curr q = do packageDeps <- readDep q let allDeps = concat $ map (\(_, packageDep) => deps packageDep ++ dev packageDep) packageDeps let subDeps = foldl (\acc, (pkgName, _) => Set.insert pkgName acc) (the (SortedSet (List String)) Set.empty) allDeps let newDeps = difference subDeps curr let nextSet = Set.insert q curr res <- all $ map (readAllDeps_ (union nextSet newDeps)) (Set.toList newDeps) pure $ (q, packageDeps) :: (concat res) export readDeps : Package -> Promise PackageDeps readDeps pkg = do depsRes <- read (pkgKey pkg packageDepKey) log ("Package Deps: " ++ show depsRes) expectResult $ fromMaybe (Right []) $ map parsePackageDeps depsRes export writeDeps : Package -> PackageDeps -> Promise () writeDeps pkg packageDeps = write (pkgKey pkg packageDepKey) (encodePackageDeps packageDeps) export writePackage : Package -> Promise () writePackage pkg = write (pkgVerKey pkg packageKey) (encodePackage pkg) export readPackage : String -> String -> Version -> Promise (Either String Package) readPackage packageNS packageName version = do Just contents <- read (packageKey packageNS packageName version) | Nothing => pure $ Left "package not found" pure $ parsePackage contents export readVersions : String -> String -> Promise (List Version) readVersions packageNS packageName = do depsRes <- read (packageDepKey packageNS packageName) deps <- expectResult $ fromMaybe (Right []) $ map parsePackageDeps depsRes pure $ map fst deps export latestVersion : String -> String -> Promise (Maybe Version) latestVersion packageNS packageName = do versions <- readVersions packageNS packageName pure $ head' $ reverse $ sort $ versions --' -- Note: there could be race conditions, and since this -- is EV, it would be difficult to prevent overall -- TODO: Validate account details on server-side export newAccount : Account -> Promise (Maybe (Int, String)) newAccount account = do Nothing <- read (accountKey (ns account)) | Just _ => pure $ Just (400, "account already exists") write (accountKey (ns account)) (encode account) pure Nothing export readAccountHash : String -> Promise (Maybe (Algorithm, String)) readAccountHash ns = do Just accountToml <- read (accountKey ns) | Nothing => pure Nothing let Just account = Account.decode accountToml | Nothing => pure Nothing pure (Just $ (kdf account, hash account)) export readSession : String -> Promise (Maybe String) readSession session = read (sessionKey session) ||| TODO: write session should have an expiration export writeSession : String -> String -> Promise () writeSession session ns = writeTTL (sessionKey session) ns sessionTTL
= = = Manifestations and combinations = = =
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Medium Length Graduate Curriculum Vitae % LaTeX Template % Version 1.1 (9/12/12) % % This template has been downloaded from: % http://www.LaTeXTemplates.com % % Original author: % Rensselaer Polytechnic Institute (http://www.rpi.edu/dept/arc/training/latex/resumes/) % % Important note: % This template requires the res.cls file to be in the same directory as the % .tex file. The res.cls file provides the resume style used for structuring the % document. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---------------------------------------------------------------------------------------- % PACKAGES AND OTHER DOCUMENT CONFIGURATIONS %---------------------------------------------------------------------------------------- \documentclass[margin, 10pt]{res} % Use the res.cls style, the font size can be changed to 11pt or 12pt here \usepackage{fontawesome} \usepackage{helvet} % Default font is the helvetica postscript font \usepackage[shortlabels]{enumitem} %\usepackage{newcent} % To change the default font to the new century schoolbook postscript font uncomment this line and comment the one above \usepackage{url} \usepackage{color,hyperref} \definecolor{darkblue}{rgb}{0.0,0.0,0.55} \hypersetup{colorlinks,breaklinks, linkcolor=darkblue,urlcolor=darkblue, anchorcolor=darkblue,citecolor=darkblue} \setlength{\textwidth}{6in} % Text width of the document \newlist{innerlist}{itemize}{3} \setlist[innerlist]{label=\enskip\textbullet,leftmargin=*,parsep=0pt,itemsep=0pt,topsep=0pt,partopsep=0pt} \begin{document} %---------------------------------------------------------------------------------------- % NAME AND ADDRESS SECTION %---------------------------------------------------------------------------------------- \moveleft0.7\hoffset\centerline{\Huge\bf Ali Gholami} % Your name at the top \moveleft0.7\hoffset\vbox{\hrule width 6in height 1.5pt}\smallskip % Horizontal line after name; adjust line thickness by changing the '1pt' \moveleft0.7\hoffset\centerline{\textsc{Computer Engineering \& Information Technology Department}} % Your address \moveleft0.7\hoffset\centerline{\textsc{Amirkabir University of Technology}} \moveleft0.7\hoffset\centerline{\url{https://aligholamee.github.io}} \moveleft0.7\hoffset\centerline{\url{[email protected]}} \vspace{0.1cm} \moveleft0.7\hoffset\centerline{\href{https://stackoverflow.com/users/4723938/aligholamee}{\UrlFont\color{darkblue}\small{[\ \faCodeFork}\ ]}\href{https://www.linkedin.com/in/ali-gholami-987136b5/}{\UrlFont\color{darkblue}\small{[\ \faLinkedin}\ ]}\href{https://github.com/aligholamee}{\UrlFont\color{darkblue}\small{[\ \faGithubAlt}\ ]}} \moveleft0.7\hoffset\centerline{\tiny\textsc{\underline{Updated on July 4, 2018}}} %---------------------------------------------------------------------------------------- \begin{resume} %---------------------------------------------------------------------------------------- % EDUCATION SECTION %---------------------------------------------------------------------------------------- \section{EDUCATION} \textbf{B.S. Computer Engineering} \textsc{@} \href{http://aut.ac.ir/aut/}{\textsc{Amirkabir University of Technology}}\\ {\UrlFont[ 1'st Industrial University in Iran ]}\hfill {\UrlFont{\underline{GPA: 3.6/4}}}\\ \vspace{0.1cm} \textbf{Mathematics \& Physics Diploma} \textsc{@} \href{http://www.kamal.sch.ir/}{\textsc{Kamal Highschool}}\hfill {\UrlFont{\underline{GPA: 19/20}}} \section{RESEARCH \\ INTERESTS} \vspace{0.6cm} \begin{innerlist} \begin{minipage}{0.4\linewidth} \item Visual Question Answering \item Image Captioning \item Image Segmentation \end{minipage} \begin{minipage}{0.4\linewidth} \item High Performance Computing \item Heterogeneous Programming \item Applied Deep Learning \end{minipage} \end{innerlist} \vspace{0.2cm} \section{RELATED \\ COURSES} \textbf{Machine Learning} \textsc{@} \textsc{Amirkabir University of Technology}\\ \textbf{Computer Vision} \textsc{@} \textsc{Udacity}\\ \textbf{Deep Learning} \textsc{@} \textsc{Udacity}\\ \textbf{cs231n} \textsc{@} \textsc{Stanford University}\\ \textbf{OpenMP} \textsc{@} \textsc{Intel}\\ %---------------------------------------------------------------------------------------- % Technology SKILLS SECTION %---------------------------------------------------------------------------------------- \section{RESEARCH \\ EXPERIENCE} \textbf{Machine Learning Lab} \textsc{@} \textsc{Amirkabir University of Technology} \hfill {July 2018 -- Present}\\ \textit{Computer Vision | Pattern Recognition} \vspace{0.15cm} \begin{innerlist} \item Generative Adversarial Models for Style Transfer in Images \item Analysis of Formal Representation of Deep Learning Models \item One-shot Imitation Learning \end{innerlist} \textbf{CEIT} \textsc{@} \textsc{Amirkabir University of Technology} \hfill {Dec 2017 -- Present}\\ \textit{Computer Vision | Pattern Recognition} \vspace{0.15cm} \begin{innerlist} \item Implementation of \textit{AlexNet CNN} architecture using \textit{Tensorflow} \href{https://github.com/aligholamee/AlexNet-Tensorflow}{\hfill{\UrlFont[code]}} \item Implementation of a \textit{DCGAN} to draw \textit{MNIST} using \textit{Tensorflow} \href{https://github.com/aligholamee/MNIST-Drawer-DCGAN}{\hfill{\UrlFont[code]}} \item Implementation of a \textit{Variational Autoencoder} using \textit{Tensorflow} \href{https://github.com/aligholamee/MNIST-Drawer-VAE}{\hfill{\UrlFont[code]}} \item Implementation of various \textit{Deep Learning} techniques using \textit{Tensorflow} \href{https://github.com/aligholamee/notMNIST}{\hfill{\UrlFont[code]}} \end{innerlist} %---------------------------------------------------------------------------------------- % PAPERS AND TECHNICAL REPORTS SECTION %---------------------------------------------------------------------------------------- \section{TECHNICAL REPORTS} \textbf{Statistical Pattern Recognition}\\ \textit{Advisor: Prof. Mohammad Rahmati} \begin{innerlist} \item \textit{Introduction to Linear Algebra -- Statistics -- Probabilities} \href{https://github.com/aligholamee/Patterns/raw/master/docs/assignment-1/SPR_9531504_HW1.pdf}{\hfill\UrlFont[docs]} \item \textit{Bayesian Decision Boundaries -- Bayes Error Bounds -- Risk Minimization} \href{https://github.com/aligholamee/Patterns/raw/master/docs/assignment-2/SPR_9531504_HW2.pdf}{\hfill\UrlFont[docs]} \item \textit{Maximum Likelihood \& Bayesian Parameter Estimation} \href{https://github.com/aligholamee/Patterns/raw/master/docs/assignment-3/SPR_9531504_HW3.pdf}{\hfill\UrlFont[docs]} \item \textit{Kernel Density Estimation -- KNN Density Estimation} \href{https://github.com/aligholamee/Patterns/raw/master/docs/assignment-4/SPR_9531504_HW4.pdf}{\hfill\UrlFont[docs]} \item \textit{PCA -- FLDA -- Feature Subset Selection} \href{https://github.com/aligholamee/Patterns/raw/master/docs/assignment-5/SPR_9531504_HW5.pdf}{\hfill\UrlFont[docs]} \item \textit{LDF -- SVM -- Clustering} \href{https://github.com/aligholamee/Patterns/raw/master/docs/assignment-6/SPR_9531504_HW6.pdf}{\hfill\UrlFont[docs]} \end{innerlist} \textbf{Foundations of Data Mining}\\ \textit{Advisor: Prof. Ehsan Nazerfard} \begin{innerlist} \item \textit{Association Rule Mining -- Feature Engineering} \href{https://github.com/aligholamee/Datadigger/raw/master/docs/assignment-1/report/DM_9531504_HW1.pdf}{\hfill\UrlFont[docs]} \item \textit{Decision Tree Classifier -- Data Cleaning} \href{https://github.com/aligholamee/Datadigger/raw/master/docs/assignment-2/report/DM_9531504_HW2.pdf}{\hfill\UrlFont[docs]} \item \textit{Naive Bayes Classifier -- Spam Filtering -- Text Processing} \href{https://github.com/aligholamee/Datadigger/raw/master/docs/assignment-3/report/DM_9531504_HW3.pdf}{\hfill\UrlFont[docs]} \item \textit{Data Preprocessing \& Model Building with \textit{RapidMiner}} \href{https://github.com/aligholamee/Datadigger/raw/master/docs/assignment-4/report/DM_9531504_HW4.pdf}{\hfill\UrlFont[docs]} \end{innerlist} \textbf{Design \& Implementation of Programming Languages}\\ \textit{Advisor: Prof. Mehran S. Fallah} \begin{innerlist} \item \textit{Induction \& Denotational Semantics -- Lambda Calculus} \href{https://github.com/aligholamee/HALFLIFE/raw/master/reports/PL29531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Lisp \& Garbage Collection -- Higher-order Functions} \href{https://github.com/aligholamee/HALFLIFE/raw/master/reports/PL39531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Algol \& Meta Language -- ML Data Types \& Patterns} \href{https://github.com/aligholamee/HALFLIFE/raw/master/reports/PL49531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Type Safety \& Type Inference -- Polymorphism} \href{https://github.com/aligholamee/HALFLIFE/raw/master/reports/PL49531504.pdf}{\hfill\UrlFont[docs]} \end{innerlist} \textbf{Computer Networks}\\ \textit{Advisor: Prof. Siavash Khorsandi} \begin{innerlist} \item \textit{Introduction to Computer Networks} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-1/compnet_assignment_1_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Packet Transmission Approaches -- Congestion Control} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-2/compnet_assignment_2_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Queuing \& Delay Analysis \& Network Protocol Stack 1} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-3/compnet_assignment_3_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Queuing \& Delay Analysis \& Network Protocol Stack 2} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-4/compnet_assignment_4_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Multiplexing \& Multiple Access Medium -- IETF} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-5/compnet_assignment_5_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Application Layer Protocols; HTTP -- FTP -- SMTP -- CDN -- DNS} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-6/compnet_assignment_6_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Reliable Data Transfer; Stop \& Wait Protocol} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-8/compnet_assignment_8_9531504.pdf}{\hfill\UrlFont[docs]} \item \textit{Reliable Data Transfer; Go-Back-N \& Selective Retransmit Protocols} \href{https://github.com/aligholamee/Compnets/raw/master/docs/assignment-9/compnet_assignment_9_9531504.pdf}{\hfill\UrlFont[docs]} \end{innerlist} \textbf{Multi-core Programming}\\ \textit{Advisor: Prof. Mahmoud Momtazpour} \begin{innerlist} \item \textit{Parallel Architectures -- Speedup Metrics} \href{https://github.com/aligholamee/Parallax/raw/master/docs/assignment-1/MCP_9531504_HW1.pdf}{\hfill\UrlFont[docs]} \item \textit{OpenMP -- Parallelization of Matrix Computations} \href{https://github.com/aligholamee/Parallax/raw/master/docs/assignment-2/MCP_9531504_HW2.pdf}{\hfill\UrlFont[docs]} \item \textit{OpenMP -- Parallelization of Sort Algorithms} \href{https://github.com/aligholamee/Parallax/raw/master/docs/assignment-3/MCP_9531504_HW3.pdf}{\hfill\UrlFont[docs]} \item \textit{Nvidia GPUs Architecture -- Memory Types -- GPU Characteristics} \href{https://github.com/aligholamee/Parallax/raw/master/docs/assignment-4/MCP_9531504_HW4.pdf}{\hfill\UrlFont[docs]} \item \textit{Parallel Scan -- Reduction Strategies on CUDA} \href{https://github.com/aligholamee/Parallax/raw/master/docs/assignment-5/MCP_9531504_HW5.pdf}{\hfill\UrlFont[docs]} \item \textit{Reduction Tuning -- Bank Conflicts -- Loop Unrolling} \href{https://github.com/aligholamee/Parallax/raw/master/docs/assignment-6/MCP_9531504_HW6.pdf}{\hfill\UrlFont[docs]} \end{innerlist} \textbf{Engineering Ethics}\\ \textit{Advisor: Prof. Ali Dizani} \begin{innerlist} \item \textit{A Deep Analysis of Ethical Dilemmas in Computer Engineering.} \href{https://www.dropbox.com/s/hysshvi811nqwm4/Release_1_0_0.pdf?dl=0}{\hfill\UrlFont[docs]} \end{innerlist} %---------------------------------------------------------------------------------------- % WORK EXPERIENCE %---------------------------------------------------------------------------------------- \section{WORK \\ EXPERIENCE} \textbf{Internship} \textsc{@} \href{https://www.arvancloud.com/}{\textsc{Arvan Cloud}} \hfill {Jun -- Sep 2017}\\ \textit{Web Application Development} \begin{innerlist} \item \textit{HTML, CSS, PHP, Laravel, Javascript, ECMAScript, Node.js, Vue.js, React.js} \end{innerlist} \textbf{Internship} \textsc{@} \href{http://www.fandogh.org/}{\textsc{Fandogh}} \hfill {Jun -- Aug 2017}\\ \textit{Mobile Application Development} \begin{innerlist} \item \textit{Java, React Native} \end{innerlist} %---------------------------------------------------------------------------------------- % TEACHING EXPERIENCE %---------------------------------------------------------------------------------------- \section{TEACHING \\ EXPERIENCE} \textbf{T.A.} \textsc{@} \textsc{CEIT} \textsc{@} \textsc{Amirkabir University of Technology} \hfill {Sep -- Dec 2017}\\ \textit{Microprocessors \& Assembly Programming}\\ \textit{Advisor: Prof. Mahdi Homayounpour} \href{https://github.com/aligholamee/Microprocessors}{\hfill\UrlFont[Resources]} \textbf{T.A.} \textsc{@} \textsc{ENG} \textsc{@} \textsc{Kharazmi University of Tehran} \hfill {Sep -- Dec 2015}\\ \textit{Foundations of Programming in C++}\\ \textit{Advisor: Dr. Azadeh Mansouri} \href{https://github.com/aligholamee/Foundations-of-Programming}{\hfill\UrlFont[Resources]} %---------------------------------------------------------------------------------------- % HONORS %---------------------------------------------------------------------------------------- \section{HONORS} \textbf{Ranked top 3} among most active \textbf{GitHub} developers in Iran. \hfill {June 2018} \textbf{Admitted} to \textbf{Amirkabir University of Technology} among all\hfill {Aug 2018}\\ bachelor students at Computer Engineering Department,\\ Kharazmi University of Tehran. \textbf{Member of Executive Team} at the 17'th \href{https://icpc.baylor.edu/regionals/finder/tehran-2017}{International Collegiate} \hfill {Nov 2017}\\ \href{https://icpc.baylor.edu/regionals/finder/tehran-2017}{Programming Contest} held at the \href{http://ceit.aut.ac.ir}{Amirkabir University of Technology}. \textbf{Participated} in the 4'th national programming contest contest held \hfill {Sep 2017}\\at the \href{http://sharif.ir}{Sharif University of Technology} as a member of \textit{Morph} team. \textbf{Ranked top 3} among all bachelor students at Computer Engieering \hfill {July 2016}\\ Department, \href{http://khu.ac.ir}{Kharazmi University of Tehran}. \textbf{Participated} in the \href{http://avatech.ir}{Avatech}'s Educational Startup Weekend held \hfill {Jun 2015}\\at the \href{http://ut.ac.ir}{University of Tehran}, as a member of \textit{3-mim} team. \textbf{Ranked top 0.006} in the Nationwide University Entrance Exam \hfill {July 2014}\\ among all students in Mathemathics and physics (approximately 250,000). \textbf{ٍElected} as the \textbf{tidiest} student at the campus of international \hfill {Aug 2011}\\ summer school, \textit{\href{https://www.monterosa.ch/}{Institute Monte Rosa}}, Montreux, Switzerland. \end{resume} %---------------------------------------------------------------------------------------- % TALKS %---------------------------------------------------------------------------------------- \section{TALKS} \textbf{Automatic Image Captioning with Attention Mechanism} \hfill {June 2018} \vspace{0.15cm} \begin{innerlist} \item Based on the paper \textit{Show and tell: A neural image caption generator}\\ by \href{http://www.jmlr.org/proceedings/papers/v37/xuc15.pdf}{Vinyals, O., Toshev, A., Bengio, S. and Erhan, D}. \end{innerlist} \textbf{Visual Question Answering with CNNs and RNNs} \hfill {May 2018} \vspace{0.15cm} \begin{innerlist} \item Based on the paper \textit{Visual question answering: Datasets, algorithms,\\ and future challenges} by \href{https://www.sciencedirect.com/science/article/pii/S1077314217301170}{K. Kafle and C. Kanan}. \end{innerlist} \textbf{Machine Learning at Scale} \hfill {Oct 2017} \vspace{0.15cm} \begin{innerlist} \item Based on the paper \textit{Rules of Machine Learning} by \href{http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf}{Dr. Martin Zinkevich}. \end{innerlist} \textbf{Energy Awareness} \hfill {July 2017} \vspace{0.15cm} \begin{innerlist} \item Based on the paper \textit{Energy-aware adaptation for mobile applications} by \href{http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/Web/People/odyssey/docdir/s17.pdf5}{Dr. Jason Flinn}. \end{innerlist} \textbf{Metasploit Framework} \hfill {May 2017} \vspace{0.15cm} \begin{innerlist} \item Introduction to \textit{Metasploit Framework} \& \textit{Social Engineering} techniques. \end{innerlist} %---------------------------------------------------------------------------------------- % COMPETENCES %---------------------------------------------------------------------------------------- \section{SKILLS} \textbf{Languages } Persian (\emph{native}), English (\emph{advanced working proficiency}) \textbf{Data Science} \textit{Python, Scikit-learn, Numpy, Pandas, Matplotlib, RapidMiner, Weka.} \textbf{Computer Vision \& Deep Learning} \textit{Tensorflow, OpenCV.} \textbf{Parallel Processing Frameworks} \textit{C/C++ @ OpenMP, Intel VTune Amplifier, Intel Inspector, C/C++ @ CUDA, Nsight Monitor.} \textbf{Functional Programming} \textit{Racket, ML, Scheme.} \textbf{Hardware Design} \textit{VHDL, Verilog, HLS, AVR, ARM, Arduino, Xillinx Vivado, ModelSim, Atmel Studio, Proteus, Cadence PSpice, Keil.} \textbf{Networking} \textit{GNS3, Wireshark, Packet Tracer, Boson NetSim.} \textbf{Mobile Application Development} \textit{Java, React Native, Android Studio.} \textbf{Web Application Development} \textit{HTML/CSS, Javascript, Node.js, React, PHP, Laravel.} \textbf{Databases} \textit{PostgreSQL, MySQL, MongoDB.} %---------------------------------------------------------------------------------------- % PROJECTS %---------------------------------------------------------------------------------------- \section{NOTABLE \\ PROJECTS} \textbf{KDEPlot}, \textit{Density Estimation} \begin{innerlist} \item Implementation of 1-D and 2-D Kernel Density Estimation Methods in Python using Numpy and Matplotlib Only. \hfill{\UrlFont\href{https://github.com/aligholamee/KDEPlot}{[code]}} \end{innerlist} \textbf{KNNCC}, \textit{Image Classification} \begin{innerlist} \item Implementation of a K-Nearest Neighbour \textit{CIFAR-10} Classifier in Python. \hfill{\UrlFont\href{https://github.com/aligholamee/KNNCC}{[code]}} \end{innerlist} \textbf{Paralab}, \textit{Parallel Processing} \begin{innerlist} \item Implementation of frequent parallel problems using OpenMP and Intel Parallel Studio in C.\\ \phantom{km} \hfill{\UrlFont\href{https://github.com/aligholamee/ParaLab/tree/master}{[code]}} \end{innerlist} \textbf{Annealing}, \textit{Data Cleaning \& Preprocessing} \begin{innerlist} \item Preprocessing and training the dataset of annealing. Reached 98\% accuracy with a decision tree classifier.\\ \phantom{km} \hfill{\UrlFont{\href{https://github.com/aligholamee/Datadigger/raw/master/docs/assignment-2/report/DM_9531504_HW2.pdf}{[docs]}\href{https://github.com/aligholamee/Datadigger/tree/master/docs/assignment-2/src}{[code]}}} \end{innerlist} \textbf{Titanic}, \textit{Data Science \& Feature Engineering} \begin{innerlist} \item Prediction of Titanic survivals as a part of Kaggle competition. Reached an\\ Accuracy of 83\% and Recall of 76\%. \href{https://github.com/aligholamee/Titanic}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{MNIST-Drawer}, \textit{Variational Autoencoder} \begin{innerlist} \item Implementation of a \textit{Variational Autoencoder} to draw \textit{MNIST} dataset characters\\ using \textit{Tensorflow}. \href{https://github.com/aligholamee/MNIST-Drawer}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{notMNIST}, {\textit{Convolutional Neural Network} \begin{innerlist} \item Implementation of multiple machine learning classifiers and regularization techniques\\ on the \textit{notMNIST} dataset using \textit{Tensorflow}. \href{https://github.com/aligholamee/notMNIST}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Freeman}, {\textit{Hardware Programming \& Co-design} \begin{innerlist} \item Implementation of a \textit{Parking Controller} \& \textit{Security Controller} using \textit{VHDL}.\\ \ \href{https://github.com/aligholamee/Freeman}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Numex}, \textit{Functional Programming} \begin{innerlist} \item Implementation of an \textit{Advanced Functional Interpreter} using \textit{Racket}. \href{https://github.com/aligholamee/NUMEX}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Hornburg}, \textit{Deep Learning Basics} \begin{innerlist} \item Implementation of \textit{Principal Machine Learning Algorithms} using \textit{Python}. \href{https://github.com/aligholamee/Hornburg}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Iris}, \textit{Multi-nomial classification} \begin{innerlist} \item Multi-nomial classification of \textit{Iris} dataset using \textit{scikit-learn}. \href{https://github.com/aligholamee/IRIS}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{ARMHE}, \textit{Advanced RISC Machine Programming} \begin{innerlist} \item Implementation of the \textit{Histogram Equalization} algorithm on the \textit{STMF32F407VGT6}\\ with \textit{ARMv4T} architecture using \textit{ARM Assembly}. \href{https://github.com/aligholamee/ARMHE}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Cinder}, {\textit{Low Level Programming} \begin{innerlist} \item Implementation of a basic \textit{Operating System} with \textit{C}. \href{https://github.com/aligholamee/CinderOS}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Chronicle}, {\textit{Compiler Design} \begin{innerlist} \item Implementation of a \textit{lexical analyzer}, \textit{syntax analyzer} and a \textit{partial code generator} using \textit{Lex \& Yacc} in \textit{Java}. \href{https://github.com/aligholamee/Chronicle}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Sockets}, \textit{Socket Programming} \begin{innerlist} \item Implementation of various types of \textit{Sockets} in \textit{Interprocess Communication} \& \textit{TCP/IP\\ Protocol} with \textit{C}. \href{https://github.com/aligholamee/Socket-Programming-Package}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Toofan}, \textit{Android Application Development} \begin{innerlist} \item Implementation of a \textit{Weather Forecast Application} on the \textit{Android} platform using\\ \textit{Java} \& \textit{Android Studio}. \href{https://github.com/aligholamee/Toofan}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Huffman}, \textit{Huffman Coding} \begin{innerlist} \item Implementation of the \textit{Huffman Text Compression Algorithm} using \textit{Java}. \href{https://github.com/aligholamee/Java-Huffman-Zipper}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{2048}, \textit{C++ Programming} \begin{innerlist} \item Implementation of the \textit{2048 Puzzle Game} with various gameplay tweaks using \textit{C++}. \href{https://github.com/aligholamee/2048-Console-Game}{\hfill{\UrlFont[code]}} \end{innerlist} \textbf{Manobase}, \textit{VHDL Programming} \begin{innerlist} \item Implementation of the \textit{Morris Mano's Base Computer} using \textit{VHDL}. \href{https://github.com/aligholamee/Mano-Basic-Computer-Design}{\hfill{\UrlFont[code]}} \end{innerlist} \end{document}
Formal statement is: lemma supp_sum_empty[simp]: "supp_sum f {} = 0" Informal statement is: The support of the sum of the empty set is zero.
function read_bv % read_bv - read data from an eeg-File % % SYNOPSIS % data = read_bv(file, HDR, OPT); % % ARGUMENTS % file - Name of EEG file (.eeg) is appended) % HDR - Information about the file (read from the *.vhdr header file) % .fs - Sampling rate % .nChans - Number of channels % .nPoints - Number of data points in the file (optional) % .scale - Scaling factors for each channel % .endian - Byte ordering: 'l' little or 'b' big % OPT - Struct with following fields % .chanidx - Indices of the channels that are to be read % .fs - Down sample to this sampling rate % .filt_b - Filter coefficients of IIR filter % applied to raw data (b part) % (optional) % .filt_a - Filter coefficients of IIR filter % applied to raw data (a part) % (optional) % .filt_subsample - Filter coefficients of FIR filter % used for sub sampling (optional) % .data - A matrix where the data is stored % (optional) % .dataPos - The position in the matrix % [dataStart dataEnd fileStart % fileEnd](optional) % % The filter parts of the OPT structure are optional fields. % The default for the filt_subsample is a filter which takes the last % value of filtered block e.g. [0 ... 0 1] % % With opt.data and opt.dataPos read_bv can write directly to a % matrix. dataPos is an optional value for opt.data where you can set % the position of the read data. dataStart is the position in data % where the first read datasample is stored. % % Please note, that the fields chanidx and dataPos used as c indices % starting at 0. % RETURNS % data: [nChans, len] the actual data % % DESCRIPTION % Open a file and read the eeg data. The data is filtered with an IIR % filter and an FIR filter. % % For the eeg file we assume that it was written with the following % settings: DataFormat = BINARY % DataOrientation = MULTIPLEXED % BinaryFormat = INT_16 % % COMPILE WITH % mex read_bv.c % % AUTHOR % Max Sagebaum % % 2008/04/15 - Max Sagebaum % - file created % (c) 2005 Fraunhofer FIRST
Formal statement is: lemma pdivmod_via_pseudo_divmod: "(f div g, f mod g) = (if g = 0 then (0, f) else let ilc = inverse (coeff g (degree g)); h = smult ilc g; (q,r) = pseudo_divmod f h in (smult ilc q, r))" (is "?l = ?r") Informal statement is: The quotient and remainder of the division of two polynomials $f$ and $g$ can be computed by dividing $f$ by $g$ using the pseudo-division algorithm.
module Limit where -- Statement that the limit of the function f at point l exists (and its value is L) -- This is expressed by converting the standard (ε,δ)-limit definition to Skolem normal form (TODO: ...I think? Is this correct? record Lim (f : ℝ → ℝ) (p : ℝ) (L : ℝ) : Stmt where field δ : ℝ₊ → ℝ₊ -- The delta function that is able to depend on epsilon satisfaction : ∀{ε : ℝ} → ⦃ ε > 𝟎 ⦄ → ∀{x : ℝ} → (𝟎 < ‖ x − p ‖ < δ(ε)) → (‖ f(x) − L ‖ < ε) -- Limit value function f (if the limit exists) lim : (f : ℝ → ℝ) → (p : ℝ) → ⦃ _ : ∃(Lim f(p)) ⦄ → ℝ lim _ _ ⦃ l ⦄ = Lim.L(l) module Proofs where postulate [+]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) + g(x))(p) postulate [−]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) − g(x))(p) postulate [⋅]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) ⋅ g(x))(p) postulate [/]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) / g(x))(p) postulate [+]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) + g(x))(p) ≡ lim f(p) + lim g(p)) postulate [−]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) − g(x))(p) ≡ lim f(p) − lim g(p)) postulate [⋅]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) ⋅ g(x))(p) ≡ lim f(p) ⋅ lim g(p)) postulate [/]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) / g(x))(p) ≡ lim f(p) / lim g(p))
\PassOptionsToPackage{unicode=true}{hyperref} % options for packages loaded elsewhere \PassOptionsToPackage{hyphens}{url} \PassOptionsToPackage{dvipsnames,svgnames*,x11names*}{xcolor} % \documentclass[ignorenonframetext,aspectratio=169]{beamer} \usepackage{pgfpages} \setbeamertemplate{caption}[numbered] \setbeamertemplate{caption label separator}{: } \setbeamercolor{caption name}{fg=normal text.fg} \beamertemplatenavigationsymbolsempty % Prevent slide breaks in the middle of a paragraph: \widowpenalties 1 10000 \raggedbottom \setbeamertemplate{part page}{ \centering \begin{beamercolorbox}[sep=16pt,center]{part title} \usebeamerfont{part title}\insertpart\par \end{beamercolorbox} } \setbeamertemplate{section page}{ \centering \begin{beamercolorbox}[sep=12pt,center]{part title} \usebeamerfont{section title}\insertsection\par \end{beamercolorbox} } \setbeamertemplate{subsection page}{ \centering \begin{beamercolorbox}[sep=8pt,center]{part title} \usebeamerfont{subsection title}\insertsubsection\par \end{beamercolorbox} } \AtBeginPart{ \frame{\partpage} } \AtBeginSection{ \ifbibliography \else \frame{\sectionpage} \fi } \AtBeginSubsection{ \frame{\subsectionpage} } \usepackage{lmodern} \usepackage{amssymb,amsmath} \usepackage{ifxetex,ifluatex} \usepackage{fixltx2e} % provides \textsubscript \ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{textcomp} % provides euro and other symbols \else % if luatex or xelatex \usepackage{unicode-math} \defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase} \fi \usetheme[]{Frankfurt} \usecolortheme{beaver} \usefonttheme{structuresmallcapsserif} % use upquote if available, for straight quotes in verbatim environments \IfFileExists{upquote.sty}{\usepackage{upquote}}{} % use microtype if available \IfFileExists{microtype.sty}{% \usepackage[]{microtype} \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts }{} \IfFileExists{parskip.sty}{% \usepackage{parskip} }{% else \setlength{\parindent}{0pt} \setlength{\parskip}{6pt plus 2pt minus 1pt} } \usepackage{xcolor} \usepackage{hyperref} \hypersetup{ pdftitle={Overview of Biotechnology}, pdfauthor={Deependra Dhakal}, colorlinks=true, linkcolor=red, filecolor=Maroon, citecolor=blue, urlcolor=red, breaklinks=true} \urlstyle{same} % don't use monospace font for urls \newif\ifbibliography \setlength{\emergencystretch}{3em} % prevent overfull lines \providecommand{\tightlist}{% \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} \setcounter{secnumdepth}{0} % set default figure placement to htbp \makeatletter \def\fps@figure{htbp} \makeatother \usepackage{booktabs} \usepackage{longtable} \usepackage{array} \usepackage{multirow} \usepackage{wrapfig} \usepackage{float} \usepackage{colortbl} \usepackage{pdflscape} \usepackage{tabu} \usepackage{threeparttable} \usepackage{threeparttablex} \usepackage[normalem]{ulem} \usepackage{makecell} \usepackage{xcolor} % % set background image if you will % \usebackgroundtemplate% % {% % \includegraphics[width=\paperwidth,height=\paperheight]{02-dna_modification_background_dna_helix.jpg}% % } % % set background in a TikZ node for modifications % % set background in a TikZ node for modifications \usepackage{tikz} \usepackage[absolute,overlay]{textpos} \setbeamertemplate{title page}{ \tikz\node[opacity=0.8] {\includegraphics[width=0.8\paperwidth]{./01-overview_mutation_cover.png}}; % \tikz\node[opacity=0.8] {\includegraphics[width=5cm,ext=.1-overview_mutation_cover.png,type=png,read=.1-overview_mutation_cover.png]{1}} % if name shall contain dots, suppose filename = 01.1-overview_mutation_cover.png \begin{textblock}{15}(1.5,2.8)\usebeamerfont{title} % 1.5 is x position in page {\color{white}\raggedright\par\inserttitle} \end{textblock} \begin{textblock}{7.5}(1.5,7) % 1.5 is x position in page {\color{white}\raggedright{\insertauthor}\mbox{}\\[0.2cm] \insertdate} \end{textblock}} % dd_rookie modified, figure is top aligned % % set caption font size % % note that beamer presentation native captions have their own configs % \usepackage{caption} % \captionsetup{font=footnotesize} % this font option is amenable for beamer \setbeamerfont{caption}{size=\tiny} % some beamer themes naturally might not support navigation symbols % \setbeamertemplate{navigation symbols}{} % remove navigation symbols \setbeamertemplate{footline}[page number] % insert page number in footline % \setbeamertemplate{navigation symbols}{slide} % insert slide indication in navigation % \setbeamertemplate{navigation symbols}{frame} % insert frame indication in navigation % \setbeamertemplate{navigation symbols}{section} % insert section indication in navigation % \setbeamertemplate{navigation symbols}{subsection} % insert subsection indication in navigation % \AtBeginSubsection{} % supress subsection display \title{Overview of Biotechnology} \providecommand{\subtitle}[1]{} \subtitle{History process and product} \author{Deependra Dhakal} \providecommand{\institute}[1]{} \institute{GAASC, Baitadi \and Tribhuwan University} \date{Academic year 2019-2020} \begin{document} \frame{\titlepage} \begin{frame} \tableofcontents[hideallsubsections] \end{frame} \hypertarget{background}{% \section{Background}\label{background}} \begin{frame}{Overview} \protect\hypertarget{overview}{} \begin{block}{The U.S. Department of Agriculture (USDA)'s classical interpretation} Agricultural biotechnology is a collection of scientific techniques, including genetic engineering, that are used to create, improve, or modify plants, animals, and microorganisms... \end{block} \begin{itemize} \tightlist \item Agricultural Research Service (ARS), the in-house research agency of USDA, classifies biotechnology research into six components: \begin{itemize} \tightlist \item basic engineering of recombinant DNA; \item DNA sequencing; \item genomic mapping with molecular markers; \item monoclonal antibodies; \item cell fusion and chromosome transfer; \item biologically-based processing \end{itemize} \end{itemize} \end{frame} \begin{frame}{Overview} \protect\hypertarget{overview-1}{} \begin{itemize} \tightlist \item Humans have continually improved crop plants and animals by selective breeding, mostly by trial and error. \item However, the field of genetics is quickly transitting into a highly advanced scientic practice, wherein there is now not much place for trial and error studies. \item The modern biotechnology of interest centers upon the newfound ability to remove DNA from cells of an organism, modify it, and reinsert it into cells where it will be functional. \item This process is sometimes called ``genetic engineering,'' and products therefrom have often been ingenuously termed ``genetically modified organisms'' (GMOs), even though all crop plants are genetically modified in one way or another. \item The traditional breeder's available gene pool is predominantly limited to those genes in sexually-compatible organisms, whereas modern biotechnology enables some new, wider-ranging, choices. \end{itemize} \end{frame} \begin{frame}{Classical plant breeding} \protect\hypertarget{classical-plant-breeding}{} \begin{itemize} \tightlist \item Practicing classical plant breeding means many thousands of plants must be cross-pollinated to find the one offspring with higher yield. \item In crossing plants, \begin{itemize} \tightlist \item Pollen must be taken from one plant and manually placed on another. \item The possibility of finding improved traits is limited by the amount of genetic diversity already present in the plants. \item Consequently, if the two plants that are crossed share many of the same genes, the amount of possible improvement is limited. \end{itemize} \item Therefore, scientists have searched for better ways to improve plants. \end{itemize} \end{frame} \begin{frame}{Mutation breeding} \protect\hypertarget{mutation-breeding}{} \begin{itemize} \tightlist \item In the 1920s, scientists realized that \emph{mutations} could be induced in seeds by using chemical mutagens or by exposure to X-rays or gamma rays. \item Outcome of such treatments is even less predictable than traditional breeding methods. \item Successful in world of flowers; new colors and more petals have been expressed in flowers such as tulips, snapdragons, roses, chrysanthemums, and many others. \item Mutation breeding has also been tried on vegetables, fruits, and crops. For instance, peppermint plants that are resistant to fungus were generated this way. \end{itemize} \end{frame} \begin{frame}{Modern breeding} \protect\hypertarget{modern-breeding}{} \begin{itemize} \tightlist \item Introduction of molecular breeding-- more predictable way to enhance crops. \item Movement of genes from foreign sources into a specific plant, resulting in a \emph{transgenic} plant. \item The foreign gene, or transgene, may confer specific resistance to an insect, protect the plant against a specific herbicide, or enhance the vitamin content of the crop. \item With something so powerful as genetic engineering, one mistake could have profound and wide-ranging effects. We must impose tough controls on the genetics supply industry and work to make sure that the new techniques are in the service of the global community \end{itemize} \end{frame} \hypertarget{history}{% \section{History}\label{history}} \begin{itemize} \tightlist \item The science of genetics was transformed by the discovery of DNA (deoxyribonucleic acid) \item Francis Crick and James Watson along with Rosalind Franklin, in 1953, discovered that the DNA structure was a double helix: two strands twisted around each other like a spiral staircase with bars across like rings \item The structure, function, and composition of DNA are virtually identical in all living organisms---from a blade of grass to an elephant \item Difference only in precise ordering of chemical base that make up DNA \item This formed idea that changing this ordering will lead to modification of lifeforms \item Marshall Nirenberg and H. Gobind Khorana carried out the deciphering of the genetic code in 1961 \end{itemize} \begin{frame}{History} \protect\hypertarget{history-1}{} \begin{itemize} \tightlist \item While some were seeking to alter the genetic make-up of living things by transferring specific genes from one organism to another, they now had tools to alter exactly the hereditary material at the molecular level. \item Walter Gilbert carried out the first recombinant DNA experiments in 1973 \item First hybridomas created in 1975 \item The production of monoclonal antibodies for diagnostics was carried out in 1982, \item The first recombinant human therapeutic protein, insulin (humulin), was produced in 1982. \item In 1976, the U.S. company Genentech became the first biotech company to develop technologies to rearrange DNA. \item 1980 ruling of the U.S. Supreme Court allowed genetically-engineered microorganisms to be patented. This means that virtually any lifeform on this planet can theoretically become the private property of the company or person who ``creates'' it. \end{itemize} \end{frame} \begin{frame}{History} \protect\hypertarget{history-2}{} \begin{itemize} \tightlist \item Clues to understanding fermentation emerged in the seventeenth century when Dutch experimentalist Anton Van Leeuwenhoek discovered microorganisms using his microscope. \item He unraveled the chemical basis of the process of fermentation using analytical techniques for the estimation of carbon dioxide. \item Two centuries later, in 1857, a French scientist Louis Pasteur published his first report on lactic acid formation from sugar by fermentation. He proved that fermentation is the consequence of anaerobic life and identified three of its types: \begin{itemize} \tightlist \item Fermentation, which generates gas; \item Fermentation that results in alcohol; and \item Fermentation, which results in acids. \end{itemize} \end{itemize} \end{frame} \begin{frame}{History} \protect\hypertarget{history-3}{} \begin{itemize} \tightlist \item At the end of the nineteenth century, Eduard Buchner observed the formation of ethanol and carbon dioxide when cell-free extract of yeast was added to an aqueous solution of sugars. Thus, he proved that cells are not essential for the fermentation process and the components responsible for the process are dissolved in the extract. He named that substance ``Zymase''. \item During World war I, \begin{itemize} \tightlist \item Germany produced glycerine for making the explosive nitroglycerine \item Bacteria that converts corn or molasses into acetone for making the explosive cordite. \item Sir Alexander Fleming's discovery of penicillin, the first antibiotic, proved highly successful in treating wounded soldiers. \end{itemize} \end{itemize} \end{frame} \begin{frame}{Transgenic technology vs traditional breeding} \protect\hypertarget{transgenic-technology-vs-traditional-breeding}{} \begin{itemize} \tightlist \item A plant can be transformed with a gene from any source, including animals, bacteria, or viruses as well as other plants, whereas traditional cross-breeding methods move genes only between members of a particular genus of plants. \item Furthermore, transgenes can be placed in precise locations within the genome and have known functions that have been evaluated extensively before being inserted into the plant. \item In traditional breeding, on the other hand, the identity of genes responsible for improving the crop is rarely known. \end{itemize} \end{frame} \begin{frame}[allowframebreaks]{Timeline} \protect\hypertarget{timeline}{} \begin{table}[t] \caption{\label{tab:biotechnology-history1}History of biotechnology} \centering \fontsize{5}{7}\selectfont \begin{tabular}{>{\bfseries}l>{\raggedright\arraybackslash}p{40em}} \toprule Date & Event\\ \midrule \rowcolor{gray!6} 5000 BC & Indus and Indo-Aryan civilizations practiced biotechnology to produce fermented foods and medicines and to keep the environment clean.\\ 4000 BC & Egyptians used yeasts to make wine and bread.\\ \rowcolor{gray!6} 1750 BC & The Sumerians brewed beer.\\ 250 BC & The Greeks used crop rotation to maximize crop fertility.\\ \rowcolor{gray!6} 1500 AD & The Aztecs made cake from spirulina.\\ \addlinespace 1663 AD & Robert Hook first described cells.\\ \rowcolor{gray!6} 1675 AD & Microbes were first described by Anton Van Leeuwenhock.\\ 1859 AD & Darwin published his theory of evolution in ‘The Origin of Species.’\\ \rowcolor{gray!6} 1866 AD & Gregor John Mendel published the basic laws of genetics.\\ 1869 AD & DNA was isolated by Friederich Miescher.\\ \addlinespace \rowcolor{gray!6} 1910 AD & Genes were discovered to be present in chromosomes.\\ 1917 AD & The term ‘biotechnology’ was used to describe fermentation technology.\\ \rowcolor{gray!6} 1928 AD & The first antibiotic, penicillin, was discovered by Alexander Flemming.\\ 1941 AD & The term ‘genetic engineering’ was first used.\\ \rowcolor{gray!6} 1944 AD & Hereditary material was identified as DNA.\\ \addlinespace 1953 AD & Watson and Crick proposed the double helix structure of DNA.\\ \bottomrule \end{tabular} \end{table} \end{frame} \begin{frame}{Timeline} \protect\hypertarget{timeline-1}{} \begin{table}[t] \caption{\label{tab:biotechnology-history2}History of biotechnology (...continued)} \centering \fontsize{5}{7}\selectfont \begin{tabular}{>{\bfseries}l>{\raggedright\arraybackslash}p{40em}} \toprule Date & Event\\ \midrule \rowcolor{gray!6} 1961 AD & Deciphering of genetic code by M.Nirenberg and H.G. Khorana.\\ 1969 AD & The first gene was isolated.\\ \rowcolor{gray!6} 1973 AD & The first genetic engineering experiment was carried out by Walter Gilbert.\\ 1975 AD & Creation of the first hybridomas.\\ \rowcolor{gray!6} 1976 AD & The first biotech company.\\ \addlinespace 1978 AD & World’s first ‘test-tube baby,’ Louise Brown, was born through in vitro fertilization.\\ \rowcolor{gray!6} 1981 AD & The first gene was synthesized. The first DNA synthesizer was developed.\\ 1982 AD & The first genetically engineered drug, human insulin, produced by bacteria, was manufactured and marketed by a U.S. company. Production of the first monoclonal antibodies for diagnostics.\\ \rowcolor{gray!6} 1983 AD & The first transgenic plant was created—a petunia plant was genetically engineered to be resistant to kanamycin, an antibiotic.\\ 1983 AD & The chromosomal location of the gene responsible for the genetic disorder, Huntington’s disease, was discovered leading to the development of genetic screening test.\\ \addlinespace \rowcolor{gray!6} 1985 AD & DNA fingerprinting was first used in a criminal investigation.\\ 1986 AD & The first field tests of genetically-engineered plants (tobacco) were conducted.\\ \rowcolor{gray!6} 1990 AD & Chymosin, an enzyme used in cheese making, became the first product of genetic engineering to be introduced into the food supply\\ 1990 AD & Human genome project was launched.\\ \rowcolor{gray!6} 1990 AD & The first human gene therapy trial was performed on a four-year-old girl with an immune disorder.\\ \addlinespace 1991 AD & The gene implicated in the inherited form of breast cancer was discovered\\ \bottomrule \end{tabular} \end{table} \end{frame} \begin{frame}{Timeline} \protect\hypertarget{timeline-2}{} \begin{table}[t] \caption{\label{tab:biotechnology-history3}History of biotechnology (...continued)} \centering \fontsize{5}{7}\selectfont \begin{tabular}{>{\bfseries}l>{\raggedright\arraybackslash}p{40em}} \toprule Date & Event\\ \midrule \rowcolor{gray!6} 1992 AD & Techniques for testing embryos for inherited diseases were developed\\ 1994 AD & First commercial approval for transgenic plant by the U.S. government.\\ \rowcolor{gray!6} 1995 AD & First successful xenotransplantation trial was conducted, transplanting a heart from a genetically-engineered pig into a baboon.\\ 1996 AD & First commercial introduction of a ‘gene chip’ designed to rapidly detect variances in the HIV virus and select the best drug treatment for patients.\\ \rowcolor{gray!6} 1996 AD & Dolly, the sheep was cloned from a cell of an adult sheep.\\ \addlinespace 1998 AD & Embryonic stem cells were grown successfully, opening new doors to cell- or tissue-based therapies.\\ \rowcolor{gray!6} 1999 AD & A U.S. company announced the successful cloning of human embryonic cells from an adult skin cell.\\ 1999 AD & Chinese scientists cloned a giant panda embryo.\\ \rowcolor{gray!6} 1999 AD & Indian scientists and companies started producing recombinant vaccines, hormones, and other drugs.\\ 1999 AD & The draft of human genome sequence was published.\\ \bottomrule \end{tabular} \end{table} \end{frame} \begin{frame}{Major cellular techniques in biology} \protect\hypertarget{major-cellular-techniques-in-biology}{} \begin{itemize} \tightlist \item Microscopy \item Cell sorting \item Cell fractionation \item Cell-growth determination \end{itemize} \end{frame} \begin{frame}{Major genetic techniques} \protect\hypertarget{major-genetic-techniques}{} \begin{itemize} \tightlist \item Chromosomal techniques \item Mutagenic technique \item Recombination in bacteria (Recombination DNA technology) \begin{itemize} \tightlist \item Tools \item Making Recombinant DNA \item DNA library \item Transgenics (Introduction of Recombinant DNA into host cells) \item Identification of recombinants \item Polymerase chain reaction \item DNA probes \item Hybridization techniques \item DNA sequencing \item Site-directed mutagenesis \end{itemize} \item Pedigree analysis in humans \item DNA isolation and purification techniques \item Molecular markers, TILLING and ZFN technology in plants \end{itemize} \end{frame} \begin{frame}{Major applications of biotechnology} \protect\hypertarget{major-applications-of-biotechnology}{} \begin{itemize} \tightlist \item Biological fuel generation \item Single-cell protein \item Sewage treatment \item Environmental biotechnology \item Medical biotechnology \item Agriculture and forest biotechnology \item Food and beverage biotechnology \item Safety in biotechnology \end{itemize} \end{frame} \begin{frame}{Biotechnology process} \protect\hypertarget{biotechnology-process}{} \begin{itemize} \tightlist \item In previous century, industries linked to the fermentation technology had grown tremendously because of the high demand for various chemicals such as ethanol, butanol, glycerine, acetone, etc. \item The advancement in fermentation process by its interaction with chemical engineering has given rise to a new area -- the bioprocess technology. \item Large-scale production of proteins and enzymes can be carried out by applying bioprocess technology in fermentation. \item Processes to create large quantities of chemicals, antibiotics, proteins, and enzymes in an economical manner. \item Bioprocess technology includes media and buffer preparation, upstream processing and downstream processing. \end{itemize} \end{frame} \begin{frame}{Biotechnology process: Upstream processing} \protect\hypertarget{biotechnology-process-upstream-processing}{} \begin{itemize} \tightlist \item Includes: \begin{itemize} \tightlist \item microorganism media (development of processes for aseptic treatment of substrates or raw materials with the microorganism or the biocatalyst) \item substrate, and the correct chemical environment to carry out the required biochemical reactions to produce the product. \end{itemize} \item Unit operations involved in upstream processing are: Milling, Mixing, Media preparation, Sterilization, Cooling, Heating. \end{itemize} \end{frame} \begin{frame}{Biotechnology process: Bioreactor} \protect\hypertarget{biotechnology-process-bioreactor}{} \begin{itemize} \tightlist \item Initial step: designing of the appropriate type of bioreactor or fermentor. \item Bioreactors are vessels in which raw materials are biologically converted into specific products, using microorganisms, plants, animals, or human cells or individual enzymes. \item Bioreactor supports the natural process of cells by trying to maintain their environment to provide optimum growth conditions by providing appropriate temperature, pH, substrates, salts, vitamins, and oxygen. \item In most of the bioreaction processes the substrate of the biotransformation and the carbon source of the organisms will be the same. \end{itemize} \end{frame} \begin{frame}{Biotechnology process: Bioreactor} \protect\hypertarget{biotechnology-process-bioreactor-1}{} \begin{itemize} \tightlist \item Unit operations involved in bioreactions are: Mixing, Handling of microorganisms, plant or animal cells, Inoculation of the cells, Heating and cooling. \item Bioreactors can be classified according to the type of biocatalysts and the type of bioreaction. \item The first classification is based on the type of biological agent used: \begin{itemize} \tightlist \item microbial fermentors or \item enzyme (cell-free) reactors \end{itemize} \item Further classification is possible based on biochemical reactions and process requirements. \end{itemize} \end{frame} \begin{frame}{Biotechnology process: Downstream processing} \protect\hypertarget{biotechnology-process-downstream-processing}{} \begin{itemize} \tightlist \item recovery and purification of the required product from the growth medium through a set of separation and purification techniques. \item each stage in the overall separation procedure is strongly dependent on the history and quality of the biological production process. \item maximization of production can lead to great difficulties in downstreaming and recently more attention is being paid to overall process optimization. \item includes techniques such as filtration, centrifugation, sedimentation, various types of chromatographic techniques, electrophoresis, etc. \end{itemize} \end{frame} \begin{frame}{Biotechnology process} \protect\hypertarget{biotechnology-process-1}{} \begin{figure} \includegraphics[width=0.4\linewidth]{../images/bioprocess_flow_chart} \caption{A typical biotechnology flow process}\label{fig:biotechnology-process} \end{figure} \end{frame} \begin{frame}{Industrial biotechnology} \protect\hypertarget{industrial-biotechnology}{} \begin{itemize} \tightlist \item Recombinant microorganisms, plant cells, and animal cells can be cultivated and used for large-scale production of industrially-important enzymes and chemicals. A list of such enzymes is given in Table \ref{tab:industrial-chemicals} \end{itemize} \begin{table}[t] \caption{\label{tab:industrial-chemicals}Some major industrial enzymes and their sources and uses.} \centering \fontsize{5}{7}\selectfont \begin{tabular}{>{\raggedright\arraybackslash}p{8em}>{\raggedright\arraybackslash}p{26em}>{\raggedright\arraybackslash}p{30em}} \toprule Enzymes & Sources & Uses\\ \midrule \rowcolor{gray!6} Amylases & Aspergillus niger, A. oryzae, B. licheniformis, B. subtilis, germinating cereals germinating barley & Hydrolyze starch to glucose, detergents, baked goods, milk cheese, fruit juice, digestive medicines, dental care\\ Invertases & Saccharomyces cerevisiae & Production of invert sugar, confectionery\\ \rowcolor{gray!6} Glucose isomerase & Arthrobacter globiformis, Actomoplanes missouriensis, Streptomyces solivaceus and E. coli & Conversion of glucose to fructose production of high fructose syrup, other beverages, and food\\ $\alpha$ D-Galactosidase & Mortierella vinacease & Raffinose hydrolysis\\ \rowcolor{gray!6} $\beta$ D-Galactosidase & Aspergillus niger & Lactose hydrolysis\\ \addlinespace Papain & Papaya & Meat, beer, leather, textiles, pharmaceuticals, meat industry, digestive aid, dental hygiene, etc.\\ \rowcolor{gray!6} Proteases & Bacillus subtilis, B. licheniformis & Detergents, meat tenderizers, beer, cheese, flavor production\\ Pepsin & Hog (pig) stomachs & Cereals, pharmaceuticals\\ \rowcolor{gray!6} Trypsin & Hog and calf pancreases & Meat, pharmaceuticals\\ 11-$\beta$-Hydroxylase & Curvularia lunata & Steroid conversion, bioconversion of organic chemicals\\ \addlinespace \rowcolor{gray!6} Ficin & Figs & Leather, meat, pharmaceuticals\\ Bromelain & Pineapple & Meat, beer, pharmaceuticals\\ \bottomrule \end{tabular} \end{table} \end{frame} \begin{frame}{Biotechnology product} \protect\hypertarget{biotechnology-product}{} \begin{itemize} \tightlist \item Traditional biotechnology products also include biologically-processed items like bread, cheese, and wine. \item Other modern biotechnologies, such as monoclonal antibodies or molecular markers as aids for traditional breeding and selection, are not relevant to genetic engineering but they constitute biotechnology products. \end{itemize} \end{frame} \hypertarget{fermentation}{% \section{Fermentation}\label{fermentation}} \begin{frame}{Introduction} \protect\hypertarget{introduction}{} \begin{itemize} \tightlist \item Decomposition of foodstuffs generally accompanied by the evolution of gas. \item The best-known example is alcoholic fermentation, in which sugar is converted into alcohol and carbon dioxide. \item This conversion, described by the equation below, was established by J. L. Gay-Lussac in 1815. \end{itemize} \[ \begin{aligned} &C_6 H_{12} O_6 &\rightarrow &2CO_2 + &2C_2H_5OH \\ &\textrm{Sugar} &&\textrm{Carbon dioxide} &\textrm{Alcohol} \end{aligned} \] \end{frame} \begin{frame}{History} \protect\hypertarget{history-4}{} \begin{itemize} \tightlist \item Before 1800 the association of yeast or leaven with fermentation had been noted, but the nature of these agents was not understood. \item Experiments of C. Cagniard-Latour, of F. T. Kutzing, and of T Schwann in 1837 indicated that yeast is a living organism and is the cause of fermentation. \item This view was opposed by such leading chemists as J. von Liebig and F. Wohler, who sought a chemical rather than a biological explanation of the process. \item The biological concept became generally accepted following the work of Louis Pasteur, who concluded that fermentation is a physiological counterpart of oxidation, and permits organisms to live and grow in the absence of air (anaerobically). \end{itemize} \end{frame} \begin{frame}{History} \protect\hypertarget{history-5}{} \begin{itemize} \tightlist \item This linked fermentation and putrefaction as comparable processes; both represent decompositions of organic matter brought about by microorganisms in the absence of air. \item The difference is determined by the nature of the decomposable material; \begin{itemize} \tightlist \item sugary substances generally yield products with pleasant odor and taste (fermentation), \item proteins give rise to evil-smelling products (putrefaction). \end{itemize} \item Pasteur also discovered the lactic acid and butyric acid fermentations, and from his experiments concluded that each kind of fermentation was caused by a specific microbe. \item Later work supported this idea to a large extent, and considerably increased the number of specific fermentations. \end{itemize} \end{frame} \begin{frame}{Process} \protect\hypertarget{process}{} During fermentation organic matter is decomposed in the absence of air (oxygen); hence, there is always an accumulation of reduction products, or incomplete oxidation products. Some of these products (for example, alcohol and lactic acid) are of importance to society, and fermentation has therefore been used for their manufacture on an industrial scale. With regard to historic roots of the process, Converting dry grains and other seeds into something more appetizing than a gruel must have made agriculture more attractive and valuable. Alcohol, despite its dangers, provided (and still provides), in reasonable moderation, a basis for social interaction. There are also many microbiological processes that go on in the presence of air while yielding incomplete oxidation products. Good examples are the formation of acetic acid (vinegar) from alcohol by vinegar bacteria, and of citric acid from ugar by certain molds (for example, \emph{Aspergillus niger}). These microbial processes, too, have gained industrial importance, and are often referred to as fermentations, even though they do not conform to Pasteur's concept of fermentation as a decomposition in the absence of air. \end{frame} \begin{frame}{Fermentation technology: Milk fermentation} \protect\hypertarget{fermentation-technology-milk-fermentation}{} \begin{figure} \includegraphics[width=0.55\linewidth]{../images/milk_fermentation} \caption{Basic steps in manufacture of fermented milks. From International Dairy Federation (1988) Fermented Milks-Science and Technology. International Dairy Federation Bulletin No. 227.}\label{fig:milk-fermentation-steps} \end{figure} \end{frame} \hypertarget{bibliography}{% \section{Bibliography}\label{bibliography}} \begin{frame}{Further study} \protect\hypertarget{further-study}{} Also see: Nair (\protect\hyperlink{ref-nair2008introduction}{2008}) \end{frame} \begin{frame}{References} \protect\hypertarget{references}{} \hypertarget{refs}{} \leavevmode\hypertarget{ref-nair2008introduction}{}% Nair, A Jayakumaran. 2008. \emph{Introduction to Biotechnology and Genetic Engineering}. Laxmi Publications, Ltd. \end{frame} \end{document}
[GOAL] J✝ : Type inst✝⁴ : SmallCategory J✝ inst✝³ : FinCategory J✝ k : Type v inst✝² : Field k J : Type inst✝¹ : Fintype J Z : J → ModuleCat k inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j) ⊢ FiniteDimensional k ↑(ModuleCat.of k ((j : J) → ↑(Z j))) [PROOFSTEP] unfold ModuleCat.of [GOAL] J✝ : Type inst✝⁴ : SmallCategory J✝ inst✝³ : FinCategory J✝ k : Type v inst✝² : Field k J : Type inst✝¹ : Fintype J Z : J → ModuleCat k inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j) ⊢ FiniteDimensional k ↑(ModuleCat.mk ((j : J) → ↑(Z j))) [PROOFSTEP] infer_instance [GOAL] J✝ : Type inst✝⁴ : SmallCategory J✝ inst✝³ : FinCategory J✝ k : Type v inst✝² : Field k J : Type inst✝¹ : Fintype J Z : J → ModuleCat k inst✝ : ∀ (j : J), FiniteDimensional k ↑(Z j) this : FiniteDimensional k ↑(ModuleCat.of k ((j : J) → ↑(Z j))) ⊢ Mono (ModuleCat.piIsoPi fun j => Z j).hom [PROOFSTEP] infer_instance [GOAL] J : Type inst✝² : SmallCategory J inst✝¹ : FinCategory J k : Type v inst✝ : Field k F : J ⥤ FGModuleCat k ⊢ ∀ (j : J), FiniteDimensional k ↑((F ⋙ forget₂ (FGModuleCat k) (ModuleCat k)).obj j) [PROOFSTEP] intro j [GOAL] J : Type inst✝² : SmallCategory J inst✝¹ : FinCategory J k : Type v inst✝ : Field k F : J ⥤ FGModuleCat k j : J ⊢ FiniteDimensional k ↑((F ⋙ forget₂ (FGModuleCat k) (ModuleCat k)).obj j) [PROOFSTEP] change FiniteDimensional k (F.obj j) [GOAL] J : Type inst✝² : SmallCategory J inst✝¹ : FinCategory J k : Type v inst✝ : Field k F : J ⥤ FGModuleCat k j : J ⊢ FiniteDimensional k ↑(F.obj j) [PROOFSTEP] infer_instance
Summer is the time that many of us have a lot more free time than we usually do, and this is a great thing! This means that you have time to do all of the fun things that you can’t seem to make room for when you’re always working or studying. Perhaps you already have a bucket list in your mind, or you have no idea where to start. It doesn’t matter because after reading this you will know exactly what you still want to do this summer. So let’s get to the fun part of this blog! If you always buy the same kind of clothes and you’ve been rocking the same old hairstyle for three years then it is time to try something different. Not only will all of this be a lot of fun, you may also develop a new style that you are totally in love with. Festival season is happening right now, and why wouldn’t you want to participate? It doesn’t matter if you visit three festivals all-weekend or one free festival for a day, as long as you have fun. Festivals are a great way to enjoy music, the good weather and playing dress-up with all that fringe and glitter. I know that I always love visiting a festival. Yes, this is a generic tip, which is why you can choose to do what this tip what you want. You can take some cooking lessons and impress your upcoming dates, you can learn how to write an amazing novel or you could even follow a workshop in Burlesque! Fulfil your craziest dreams and learn something that you always wanted to be able to do, or know. Now is your time to develop yourself. Of course, it’s important that you’re safe when doing this, so don’t drink too much and make sure someone knows where you are at all times. If you’ve got that figured out then it can be incredibly exciting, but also a little scary, to go out by yourself. If you’re the kind of girl who likes a hook-up now and then, then you’ll love all the attention that you get as a girl in a club or bar all by yourself. Or perhaps you don’t like it at all, you can always go home, it’s definitely something to experience. Nothing screams summer like a good ol’ BBQ, so I had to include it in this list. You can keep it simple, or you can go all out for once. Get the best meat from an actual butcher and search the internet for some delicious salad recipes. If you want to upgrade your BBQ party even further then you can make sure that you have some kind of pool in your garden, whether that is a deep built-in pool or small inflatable pool. I don’t know about you, but I usually feel guilty when I watch too much Netflix while I should actually be doing work, so a marathon is just not going to work. Summer is a completely different time though, a lot more time mostly. This is the perfect period for that all-day Netflix marathon where you don’t even get dressed and eat a lot of take-out food. You are allowed to treat yourself now and then. Even if you stayed in all summer watching movies and eating ice cream, your followers are allowed to think that you went on all these crazy adventures. So take one day, put together a lot of outfits, gather your girlfriends, and travel all across town to take some of your best pictures. You will have a lot of fun and enough Instagram photo’s for the coming months. Don’t forget to share this post if you liked it and follow me on my social media to always be updated and see much more of my work!
{- Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Product where import Data.Product open Data.Product using (_×_; proj₁; proj₂; _,_; _,′_; curry; uncurry; uncurry′) public module Product where
\<^marker>\<open>creator "Kevin Kappelmann"\<close> subsubsection \<open>Order Equivalence\<close> theory Transport_Natural_Functors_Order_Equivalence imports Transport_Natural_Functors_Base begin lemma inflationary_on_in_dom_FrelI: assumes "inflationary_on (in_dom R1) R1 f1" and "inflationary_on (in_dom R2) R2 f2" and "inflationary_on (in_dom R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "inflationary_on (in_dom R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (rule inflationary_onI) apply (subst (asm) in_dom_Frel_eq_Fpred_in_dom) apply (erule FpredE) apply (subst Frel_Fmap_eq2) apply (rule Frel_refl_strong) apply (rule inflationary_onD[where ?R=R1] inflationary_onD[where ?R=R2] inflationary_onD[where ?R=R3], rule assms, assumption+)+ done lemma inflationary_on_in_codom_FrelI: assumes "inflationary_on (in_codom R1) R1 f1" and "inflationary_on (in_codom R2) R2 f2" and "inflationary_on (in_codom R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "inflationary_on (in_codom R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (rule inflationary_onI) apply (subst (asm) in_codom_Frel_eq_Fpred_in_codom) apply (erule FpredE) apply (subst Frel_Fmap_eq2) apply (rule Frel_refl_strong) apply (rule inflationary_onD[where ?R=R1] inflationary_onD[where ?R=R2] inflationary_onD[where ?R=R3], rule assms, assumption+)+ done lemma inflationary_on_in_field_FrelI: assumes "inflationary_on (in_field R1) R1 f1" and "inflationary_on (in_field R2) R2 f2" and "inflationary_on (in_field R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "inflationary_on (in_field R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (subst in_field_eq_in_dom_sup_in_codom) apply (subst inflationary_on_sup_eq) apply (unfold inf_apply) apply (subst inf_bool_def) apply (rule conjI; rule inflationary_on_in_dom_FrelI inflationary_on_in_codom_FrelI; rule inflationary_on_if_le_pred_if_inflationary_on, rule assms, rule le_predI, rule in_field_if_in_dom in_field_if_in_codom, assumption) done lemma deflationary_on_in_dom_FrelI: assumes "deflationary_on (in_dom R1) R1 f1" and "deflationary_on (in_dom R2) R2 f2" and "deflationary_on (in_dom R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "deflationary_on (in_dom R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (subst deflationary_on_eq_inflationary_on_rel_inv) apply (subst in_codom_rel_inv_eq_in_dom[symmetric]) apply (unfold Frel_rel_inv_eq_rel_inv_Frel[symmetric]) apply (rule inflationary_on_in_codom_FrelI; subst deflationary_on_eq_inflationary_on_rel_inv[symmetric], subst in_codom_rel_inv_eq_in_dom, rule assms) done lemma deflationary_on_in_codom_FrelI: assumes "deflationary_on (in_codom R1) R1 f1" and "deflationary_on (in_codom R2) R2 f2" and "deflationary_on (in_codom R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "deflationary_on (in_codom R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (subst deflationary_on_eq_inflationary_on_rel_inv) apply (subst in_dom_rel_inv_eq_in_codom[symmetric]) apply (unfold Frel_rel_inv_eq_rel_inv_Frel[symmetric]) apply (rule inflationary_on_in_dom_FrelI; subst deflationary_on_eq_inflationary_on_rel_inv[symmetric], subst in_dom_rel_inv_eq_in_codom, rule assms) done lemma deflationary_on_in_field_FrelI: assumes "deflationary_on (in_field R1) R1 f1" and "deflationary_on (in_field R2) R2 f2" and "deflationary_on (in_field R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "deflationary_on (in_field R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (subst deflationary_on_eq_inflationary_on_rel_inv) apply (subst in_field_rel_inv_eq[symmetric]) apply (unfold Frel_rel_inv_eq_rel_inv_Frel[symmetric]) apply (rule inflationary_on_in_field_FrelI; subst deflationary_on_eq_inflationary_on_rel_inv[symmetric], subst in_field_rel_inv_eq, rule assms) done lemma rel_equivalence_on_in_field_FrelI: assumes "rel_equivalence_on (in_field R1) R1 f1" and "rel_equivalence_on (in_field R2) R2 f2" and "rel_equivalence_on (in_field R3) R3 f3" defines "R \<equiv> Frel R1 R2 R3" shows "rel_equivalence_on (in_field R) R (Fmap f1 f2 f3)" apply (unfold R_def) apply (subst rel_equivalence_on_eq) apply (unfold inf_apply) apply (subst inf_bool_def) apply (insert assms) apply (elim rel_equivalence_onE) apply (rule conjI; rule inflationary_on_in_field_FrelI deflationary_on_in_field_FrelI; assumption) done context transport_natural_functor begin lemmas inflationary_on_in_field_unitI = inflationary_on_in_field_FrelI [of L1 "\<eta>\<^sub>1" L2 "\<eta>\<^sub>2" L3 "\<eta>\<^sub>3", folded transport_defs unit_eq_Fmap] lemmas deflationary_on_in_field_unitI = deflationary_on_in_field_FrelI [of L1 "\<eta>\<^sub>1" L2 "\<eta>\<^sub>2" L3 "\<eta>\<^sub>3", folded transport_defs unit_eq_Fmap] lemmas rel_equivalence_on_in_field_unitI = rel_equivalence_on_in_field_FrelI [of L1 "\<eta>\<^sub>1" L2 "\<eta>\<^sub>2" L3 "\<eta>\<^sub>3", folded transport_defs unit_eq_Fmap] interpretation flip : transport_natural_functor R1 L1 r1 l1 R2 L2 r2 l2 R3 L3 r3 l3 rewrites "flip.unit \<equiv> \<epsilon>" and "flip.t1.unit \<equiv> \<epsilon>\<^sub>1" and "flip.t2.unit \<equiv> \<epsilon>\<^sub>2" and "flip.t3.unit \<equiv> \<epsilon>\<^sub>3" by (simp_all only: order_functors.flip_counit_eq_unit) lemma order_equivalenceI: assumes "((\<le>\<^bsub>L1\<^esub>) \<equiv>\<^sub>o (\<le>\<^bsub>R1\<^esub>)) l1 r1" and "((\<le>\<^bsub>L2\<^esub>) \<equiv>\<^sub>o (\<le>\<^bsub>R2\<^esub>)) l2 r2" and "((\<le>\<^bsub>L3\<^esub>) \<equiv>\<^sub>o (\<le>\<^bsub>R3\<^esub>)) l3 r3" shows "((\<le>\<^bsub>L\<^esub>) \<equiv>\<^sub>o (\<le>\<^bsub>R\<^esub>)) l r" apply (insert assms) apply (elim order_functors.order_equivalenceE) apply (rule order_equivalenceI; rule mono_wrt_rel_leftI flip.mono_wrt_rel_leftI rel_equivalence_on_in_field_unitI flip.rel_equivalence_on_in_field_unitI; assumption) done end end
import evaluation import backends.bfs.baseline import all open baseline example {p q : Prop} (h₁ : p) (h₂ : q) : p ∧ q := begin tidy end universe u example {α : Type u} (p : α → Prop) [decidable_pred p] (l : list α) : list.partition p l = (list.filter p l, list.filter (not ∘ p) l) := begin simp at * end -- example : ∀ (b : bool) (n : ℕ), (nat.bit b n).bodd = b := -- begin -- -- simp at * -- tidy_bfs_proof_search 25 tt 1 -- end
# This file is part of IntegerSequences. # Copyright Peter Luschny. License is MIT. (@__DIR__) ∉ LOAD_PATH && push!(LOAD_PATH, (@__DIR__)) module Kolakoski using Nemo export ModuleKolakoski export KolakoskiList, C000002, I000002, L000002 """ * KolakoskiList, C000002, I000002, L000002 """ const ModuleKolakoski = "" """ Generate the Kolakoski sequence which is the unique sequence over the alphabet ``{1, 2}`` starting with ``1`` and having the sequence of run lengths identical with itself. """ C000002() = Channel(csize = 10) do c x = y = Int(-1) while true put!(c, [2, 1][(x&1)+1]) f = y & ~(y + 1) x = xor(x, f) y = (y + 1) | (f & (x >> 1)) end end struct KolakoskiSeq count::Int ch::Channel KolakoskiSeq(count) = new(count, C000002()) end function Base.iterate(I::KolakoskiSeq) if I.count == 0 close(I.ch) return nothing end (take!(I.ch), (0)) end function Base.iterate(I::KolakoskiSeq, S) j = S[1] + 1 if I.count == j close(I.ch) return nothing end (take!(I.ch), (j)) end Base.length(I::KolakoskiSeq) = I.count Base.eltype(I::KolakoskiSeq) = Int """ Iterate over the first ``n`` Kolakoski numbers. """ I000002(n::Int) = KolakoskiSeq(n) """ Return the list of the first ``n`` terms of the Kolakoski sequence. """ function KolakoskiList(len::Int) len ≤ 0 && return [] generator = C000002() L = [take!(generator) for _ ∈ 1:len] close(generator) return L end """ Return the list of the first ``n`` terms of the Kolakoski sequence. """ L000002(n::Int) = KolakoskiList(n) #START-TEST-######################################################## using Test function test() @testset "Kolakoski" begin K = KolakoskiList(100) @test K[1] == 1 @test K[33] == 2 @test K[72] == 2 generator = C000002() for n ∈ [1, 33, 72] k = take!(generator) @test K[n] == k end close(generator) end end function demo() println(KolakoskiList(20)) generator = C000002() o = e = 0 for n ∈ 1:80 take!(generator) == 1 ? o += 1 : e += 1 print(o - e, " ") end println() close(generator) for f ∈ I000002(20) print(f, ", ") end println() print(L000002(20)) println() end """ I000002(100000) :: 0.000035 seconds (31 allocations: 2.969 KiB) KolakoskiList(10000) :: 0.086202 seconds (120.03 k allocations: 10.226 MiB, 17.61% gc time) """ function perf() @time I000002(100000) @time KolakoskiList(100000) end function main() test() demo() perf() end main() end # module #= [1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1] 1 0 -1 0 1 0 1 0 -1 0 -1 -2 -1 0 -1 0 1 0 -1 0 -1 0 1 0 1 0 -1 0 1 0 1 2 1 2 1 0 1 0-1 0 1 0 1 0 -1 0 -1 0 1 0 1 2 1 0 1 0 -1 0 1 0 1 0 -1 0 -1 -2 -1 0 -1 0 1 0 1 0 -1 0 -1 0 1 0 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, [1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1] 0.000035 seconds (31 allocations: 2.969 KiB) 0.086202 seconds (120.03 k allocations: 10.226 MiB, 17.61% gc time) =#
module accumulate_flow_mod use flow_accumulation_algorithm_mod use coords_mod implicit none contains subroutine accumulate_flow_icon_single_index(cell_neighbors, & input_river_directions, & output_cumulative_flow) integer, dimension(:), pointer, intent(inout) :: input_river_directions integer, dimension(:), pointer, intent(out) :: output_cumulative_flow class(*), dimension(:), pointer :: input_river_directions_ptr class(*), dimension(:), pointer :: output_cumulative_flow_ptr integer, dimension(:,:), pointer, intent(in) :: cell_neighbors integer, dimension(:,:), pointer :: secondary_neighbors type(icon_icosohedral_grid), pointer :: coarse_grid type(generic_1d_section_coords) :: coarse_grid_shape type(icon_single_index_flow_accumulation_algorithm) :: flow_acc_alg where (input_river_directions == 0 .or. & input_river_directions == -1 .or. & input_river_directions == -2 .or. & input_river_directions == -5) input_river_directions = -3 end where input_river_directions_ptr => input_river_directions output_cumulative_flow_ptr => output_cumulative_flow coarse_grid => icon_icosohedral_grid(cell_neighbors) call coarse_grid%calculate_secondary_neighbors() secondary_neighbors => coarse_grid%get_cell_secondary_neighbors() coarse_grid_shape = generic_1d_section_coords(cell_neighbors, & secondary_neighbors) flow_acc_alg = & icon_single_index_flow_accumulation_algorithm(coarse_grid_shape, & input_river_directions_ptr, & output_cumulative_flow_ptr) call flow_acc_alg%generate_cumulative_flow(.false.) call flow_acc_alg%icon_single_index_destructor() call coarse_grid_shape%generic_1d_section_coords_destructor() deallocate(coarse_grid) deallocate(secondary_neighbors) end subroutine accumulate_flow_icon_single_index end module accumulate_flow_mod
/- Copyright (c) 2022 Michael Stoll. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Stoll -/ import number_theory.legendre_symbol.jacobi_symbol /-! # A `norm_num` extension for Jacobi and Legendre symbols We extend the `tactic.interactive.norm_num` tactic so that it can be used to provably compute the value of the Jacobi symbol `J(a | b)` or the Legendre symbol `legendre_sym p a` when the arguments are numerals. ## Implementation notes We use the Law of Quadratic Reciprocity for the Jacobi symbol to compute the value of `J(a | b)` efficiently, roughly comparable in effort with the euclidean algorithm for the computation of the gcd of `a` and `b`. More precisely, the computation is done in the following steps. * Use `J(a | 0) = 1` (an artifact of the definition) and `J(a | 1) = 1` to deal with corner cases. * Use `J(a | b) = J(a % b | b)` to reduce to the case that `a` is a natural number. We define a version of the Jacobi symbol restricted to natural numbers for use in the following steps; see `norm_num.jacobi_sym_nat`. (But we'll continue to write `J(a | b)` in this description.) * Remove powers of two from `b`. This is done via `J(2a | 2b) = 0` and `J(2a+1 | 2b) = J(2a+1 | b)` (another artifact of the definition). * Now `0 ≤ a < b` and `b` is odd. If `b = 1`, then the value is `1`. If `a = 0` (and `b > 1`), then the value is `0`. Otherwise, we remove powers of two from `a` via `J(4a | b) = J(a | b)` and `J(2a | b) = ±J(a | b)`, where the sign is determined by the residue class of `b` mod 8, to reduce to `a` odd. * Once `a` is odd, we use Quadratic Reciprocity (QR) in the form `J(a | b) = ±J(b % a | a)`, where the sign is determined by the residue classes of `a` and `b` mod 4. We are then back in the previous case. We provide customized versions of these results for the various reduction steps, where we encode the residue classes mod 2, mod 4, or mod 8 by using terms like `bit1 (bit0 a)`. In this way, the only divisions we have to compute and prove are the ones occurring in the use of QR above. -/ section lemmas namespace norm_num /-- The Jacobi symbol restricted to natural numbers in both arguments. -/ def jacobi_sym_nat (a b : ℕ) : ℤ := jacobi_sym a b /-! ### API Lemmas We repeat part of the API for `jacobi_sym` with `norm_num.jacobi_sym_nat` and without implicit arguments, in a form that is suitable for constructing proofs in `norm_num`. -/ /-- Base cases: `b = 0`, `b = 1`, `a = 0`, `a = 1`. -/ lemma jacobi_sym_nat.zero_right (a : ℕ) : jacobi_sym_nat a 0 = 1 := by rwa [jacobi_sym_nat, jacobi_sym.zero_right] lemma jacobi_sym_nat.one_right (a : ℕ) : jacobi_sym_nat a 1 = 1 := by rwa [jacobi_sym_nat, jacobi_sym.one_right] lemma jacobi_sym_nat.zero_left_even (b : ℕ) (hb : b ≠ 0) : jacobi_sym_nat 0 (bit0 b) = 0 := by rw [jacobi_sym_nat, nat.cast_zero, jacobi_sym.zero_left (nat.one_lt_bit0 hb)] lemma jacobi_sym_nat.zero_left_odd (b : ℕ) (hb : b ≠ 0) : jacobi_sym_nat 0 (bit1 b) = 0 := by rw [jacobi_sym_nat, nat.cast_zero, jacobi_sym.zero_left (nat.one_lt_bit1 hb)] lemma jacobi_sym_nat.one_left_even (b : ℕ) : jacobi_sym_nat 1 (bit0 b) = 1 := by rw [jacobi_sym_nat, nat.cast_one, jacobi_sym.one_left] lemma jacobi_sym_nat.one_left_odd (b : ℕ) : jacobi_sym_nat 1 (bit1 b) = 1 := by rw [jacobi_sym_nat, nat.cast_one, jacobi_sym.one_left] /-- Turn a Legendre symbol into a Jacobi symbol. -/ lemma legendre_sym.to_jacobi_sym (p : ℕ) (pp : fact (p.prime)) (a r : ℤ) (hr : jacobi_sym a p = r) : legendre_sym p a = r := by rwa [@legendre_sym.to_jacobi_sym p pp a] /-- The value depends only on the residue class of `a` mod `b`. -/ lemma jacobi_sym.mod_left (a : ℤ) (b ab' : ℕ) (ab r b' : ℤ) (hb' : (b : ℤ) = b') (hab : a % b' = ab) (h : (ab' : ℤ) = ab) (hr : jacobi_sym_nat ab' b = r) : jacobi_sym a b = r := by rw [← hr, jacobi_sym_nat, jacobi_sym.mod_left, hb', hab, ← h] lemma jacobi_sym_nat.mod_left (a b ab : ℕ) (r : ℤ) (hab : a % b = ab) (hr : jacobi_sym_nat ab b = r) : jacobi_sym_nat a b = r := by { rw [← hr, jacobi_sym_nat, jacobi_sym_nat, _root_.jacobi_sym.mod_left a b, ← hab], refl, } /-- The symbol vanishes when both entries are even (and `b ≠ 0`). -/ lemma jacobi_sym_nat.even_even (a b : ℕ) (hb₀ : b ≠ 0) : jacobi_sym_nat (bit0 a) (bit0 b) = 0 := begin refine jacobi_sym.eq_zero_iff.mpr ⟨nat.bit0_ne_zero hb₀, λ hf, _⟩, have h : 2 ∣ (bit0 a).gcd (bit0 b) := nat.dvd_gcd two_dvd_bit0 two_dvd_bit0, change 2 ∣ (bit0 a : ℤ).gcd (bit0 b) at h, rw [← nat.cast_bit0, ← nat.cast_bit0, hf, ← even_iff_two_dvd] at h, exact nat.not_even_one h, end /-- When `a` is odd and `b` is even, we can replace `b` by `b / 2`. -/ lemma jacobi_sym_nat.odd_even (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat (bit1 a) b = r) : jacobi_sym_nat (bit1 a) (bit0 b) = r := begin have ha : legendre_sym 2 (bit1 a) = 1 := by simp only [legendre_sym, quadratic_char_apply, quadratic_char_fun_one, int.cast_bit1, char_two.bit1_eq_one, pi.one_apply], cases eq_or_ne b 0 with hb hb, { rw [← hr, hb, jacobi_sym_nat.zero_right], }, { haveI : ne_zero b := ⟨hb⟩, -- for `jacobi_sym.mul_right` rwa [bit0_eq_two_mul b, jacobi_sym_nat, jacobi_sym.mul_right, ← _root_.legendre_sym.to_jacobi_sym, nat.cast_bit1, ha, one_mul], } end /-- If `a` is divisible by `4` and `b` is odd, then we can remove the factor `4` from `a`. -/ lemma jacobi_sym_nat.double_even (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat a (bit1 b) = r) : jacobi_sym_nat (bit0 (bit0 a)) (bit1 b) = r := begin have : ((2 : ℕ) : ℤ).gcd ((bit1 b) : ℕ) = 1, { rw [int.coe_nat_gcd, nat.bit1_eq_succ_bit0, bit0_eq_two_mul b, nat.succ_eq_add_one, nat.gcd_mul_left_add_right, nat.gcd_one_right], }, rwa [bit0_eq_two_mul a, bit0_eq_two_mul (2 * a), ← mul_assoc, ← pow_two, jacobi_sym_nat, nat.cast_mul, nat.cast_pow, jacobi_sym.mul_left, jacobi_sym.sq_one' this, one_mul], end /-- If `a` is even and `b` is odd, then we can remove a factor `2` from `a`, but we may have to change the sign, depending on `b % 8`. We give one version for each of the four odd residue classes mod `8`. -/ lemma jacobi_sym_nat.even_odd₁ (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat a (bit1 (bit0 (bit0 b))) = r) : jacobi_sym_nat (bit0 a) (bit1 (bit0 (bit0 b))) = r := begin have hb : (bit1 (bit0 (bit0 b))) % 8 = 1, { rw [nat.bit1_mod_bit0, nat.bit0_mod_bit0, nat.bit0_mod_two], }, rw [jacobi_sym_nat, bit0_eq_two_mul a, nat.cast_mul, jacobi_sym.mul_left, nat.cast_two, jacobi_sym.at_two (odd_bit1 _), zmod.χ₈_nat_mod_eight, hb], norm_num, exact hr, end lemma jacobi_sym_nat.even_odd₇ (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat a (bit1 (bit1 (bit1 b))) = r) : jacobi_sym_nat (bit0 a) (bit1 (bit1 (bit1 b))) = r := begin have hb : (bit1 (bit1 (bit1 b))) % 8 = 7, { rw [nat.bit1_mod_bit0, nat.bit1_mod_bit0, nat.bit1_mod_two], }, rw [jacobi_sym_nat, bit0_eq_two_mul a, nat.cast_mul, jacobi_sym.mul_left, nat.cast_two, jacobi_sym.at_two (odd_bit1 _), zmod.χ₈_nat_mod_eight, hb], norm_num, exact hr, end lemma jacobi_sym_nat.even_odd₃ (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat a (bit1 (bit1 (bit0 b))) = r) : jacobi_sym_nat (bit0 a) (bit1 (bit1 (bit0 b))) = -r := begin have hb : (bit1 (bit1 (bit0 b))) % 8 = 3, { rw [nat.bit1_mod_bit0, nat.bit1_mod_bit0, nat.bit0_mod_two], }, rw [jacobi_sym_nat, bit0_eq_two_mul a, nat.cast_mul, jacobi_sym.mul_left, nat.cast_two, jacobi_sym.at_two (odd_bit1 _), zmod.χ₈_nat_mod_eight, hb], norm_num, exact hr, end lemma jacobi_sym_nat.even_odd₅ (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat a (bit1 (bit0 (bit1 b))) = r) : jacobi_sym_nat (bit0 a) (bit1 (bit0 (bit1 b))) = -r := begin have hb : (bit1 (bit0 (bit1 b))) % 8 = 5, { rw [nat.bit1_mod_bit0, nat.bit0_mod_bit0, nat.bit1_mod_two], }, rw [jacobi_sym_nat, bit0_eq_two_mul a, nat.cast_mul, jacobi_sym.mul_left, nat.cast_two, jacobi_sym.at_two (odd_bit1 _), zmod.χ₈_nat_mod_eight, hb], norm_num, exact hr, end /-- Use quadratic reciproity to reduce to smaller `b`. -/ lemma jacobi_sym_nat.qr₁ (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat (bit1 b) (bit1 (bit0 a)) = r) : jacobi_sym_nat (bit1 (bit0 a)) (bit1 b) = r := begin have ha : (bit1 (bit0 a)) % 4 = 1, { rw [nat.bit1_mod_bit0, nat.bit0_mod_two], }, have hb := nat.bit1_mod_two, rwa [jacobi_sym_nat, jacobi_sym.quadratic_reciprocity_one_mod_four ha (nat.odd_iff.mpr hb)], end lemma jacobi_sym_nat.qr₁_mod (a b ab : ℕ) (r : ℤ) (hab : (bit1 b) % (bit1 (bit0 a)) = ab) (hr : jacobi_sym_nat ab (bit1 (bit0 a)) = r) : jacobi_sym_nat (bit1 (bit0 a)) (bit1 b) = r := jacobi_sym_nat.qr₁ _ _ _ $ jacobi_sym_nat.mod_left _ _ ab r hab hr lemma jacobi_sym_nat.qr₁' (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat (bit1 (bit0 b)) (bit1 a) = r) : jacobi_sym_nat (bit1 a) (bit1 (bit0 b)) = r := begin have hb : (bit1 (bit0 b)) % 4 = 1, { rw [nat.bit1_mod_bit0, nat.bit0_mod_two], }, have ha := nat.bit1_mod_two, rwa [jacobi_sym_nat, ← jacobi_sym.quadratic_reciprocity_one_mod_four hb (nat.odd_iff.mpr ha)] end lemma jacobi_sym_nat.qr₁'_mod (a b ab : ℕ) (r : ℤ) (hab : (bit1 (bit0 b)) % (bit1 a) = ab) (hr : jacobi_sym_nat ab (bit1 a) = r) : jacobi_sym_nat (bit1 a) (bit1 (bit0 b)) = r := jacobi_sym_nat.qr₁' _ _ _ $ jacobi_sym_nat.mod_left _ _ ab r hab hr lemma jacobi_sym_nat.qr₃ (a b : ℕ) (r : ℤ) (hr : jacobi_sym_nat (bit1 (bit1 b)) (bit1 (bit1 a)) = r) : jacobi_sym_nat (bit1 (bit1 a)) (bit1 (bit1 b)) = -r := begin have hb : (bit1 (bit1 b)) % 4 = 3, { rw [nat.bit1_mod_bit0, nat.bit1_mod_two], }, have ha : (bit1 (bit1 a)) % 4 = 3, { rw [nat.bit1_mod_bit0, nat.bit1_mod_two], }, rwa [jacobi_sym_nat, jacobi_sym.quadratic_reciprocity_three_mod_four ha hb, neg_inj] end lemma jacobi_sym_nat.qr₃_mod (a b ab : ℕ) (r : ℤ) (hab : (bit1 (bit1 b)) % (bit1 (bit1 a)) = ab) (hr : jacobi_sym_nat ab (bit1 (bit1 a)) = r) : jacobi_sym_nat (bit1 (bit1 a)) (bit1 (bit1 b)) = -r := jacobi_sym_nat.qr₃ _ _ _ $ jacobi_sym_nat.mod_left _ _ ab r hab hr end norm_num end lemmas section evaluation /-! ### Certified evaluation of the Jacobi symbol The following functions recursively evaluate a Jacobi symbol and construct the corresponding proof term. -/ namespace norm_num open tactic /-- This evaluates `r := jacobi_sym_nat a b` recursively using quadratic reciprocity and produces a proof term for the equality, assuming that `a < b` and `b` is odd. -/ meta def prove_jacobi_sym_odd : instance_cache → instance_cache → expr → expr → tactic (instance_cache × instance_cache × expr × expr) | zc nc ea eb := do match match_numeral eb with | match_numeral_result.one := -- `b = 1`, result is `1` pure (zc, nc, `(1 : ℤ), `(jacobi_sym_nat.one_right).mk_app [ea]) | match_numeral_result.bit1 eb₁ := do -- `b > 1` (recall that `b` is odd) match match_numeral ea with | match_numeral_result.zero := do -- `a = 0`, result is `0` b ← eb₁.to_nat, (nc, phb₀) ← prove_ne nc eb₁ `(0 : ℕ) b 0, -- proof of `b ≠ 0` pure (zc, nc, `(0 : ℤ), `(jacobi_sym_nat.zero_left_odd).mk_app [eb₁, phb₀]) | match_numeral_result.one := do -- `a = 1`, result is `1` pure (zc, nc, `(1 : ℤ), `(jacobi_sym_nat.one_left_odd).mk_app [eb₁]) | match_numeral_result.bit0 ea₁ := do -- `a` is even; check if divisible by `4` match match_numeral ea₁ with | match_numeral_result.bit0 ea₂ := do (zc, nc, er, p) ← prove_jacobi_sym_odd zc nc ea₂ eb, -- compute `jacobi_sym_nat (a / 4) b` pure (zc, nc, er, `(jacobi_sym_nat.double_even).mk_app [ea₂, eb₁, er, p]) | _ := do -- reduce to `a / 2`; need to consider `b % 8` (zc, nc, er, p) ← prove_jacobi_sym_odd zc nc ea₁ eb, -- compute `jacobi_sym_nat (a / 2) b` match match_numeral eb₁ with -- | match_numeral_result.zero := -- `b = 1`, not reached | match_numeral_result.one := do -- `b = 3` r ← er.to_int, (zc, er') ← zc.of_int (- r), pure (zc, nc, er', `(jacobi_sym_nat.even_odd₃).mk_app [ea₁, `(0 : ℕ), er, p]) | match_numeral_result.bit0 eb₂ := do -- `b % 4 = 1` match match_numeral eb₂ with -- | match_numeral_result.zero := -- not reached | match_numeral_result.one := do -- `b = 5` r ← er.to_int, (zc, er') ← zc.of_int (- r), pure (zc, nc, er', `(jacobi_sym_nat.even_odd₅).mk_app [ea₁, `(0 : ℕ), er, p]) | match_numeral_result.bit0 eb₃ := do -- `b % 8 = 1` pure (zc, nc, er, `(jacobi_sym_nat.even_odd₁).mk_app [ea₁, eb₃, er, p]) | match_numeral_result.bit1 eb₃ := do -- `b % 8 = 5` r ← er.to_int, (zc, er') ← zc.of_int (- r), pure (zc, nc, er', `(jacobi_sym_nat.even_odd₅).mk_app [ea₁, eb₃, er, p]) | _ := failed end | match_numeral_result.bit1 eb₂ := do -- `b % 4 = 3` match match_numeral eb₂ with -- | match_numeral_result.zero := -- not reached | match_numeral_result.one := do -- `b = 7` pure (zc, nc, er, `(jacobi_sym_nat.even_odd₇).mk_app [ea₁, `(0 : ℕ), er, p]) | match_numeral_result.bit0 eb₃ := do -- `b % 8 = 3` r ← er.to_int, (zc, er') ← zc.of_int (- r), pure (zc, nc, er', `(jacobi_sym_nat.even_odd₃).mk_app [ea₁, eb₃, er, p]) | match_numeral_result.bit1 eb₃ := do -- `b % 8 = 7` pure (zc, nc, er, `(jacobi_sym_nat.even_odd₇).mk_app [ea₁, eb₃, er, p]) | _ := failed end | _ := failed end end | match_numeral_result.bit1 ea₁ := do -- `a` is odd -- use Quadratic Reciprocity; look at `a` and `b` mod `4` (nc, bma, phab) ← prove_div_mod nc eb ea tt, -- compute `b % a` (zc, nc, er, p) ← prove_jacobi_sym_odd zc nc bma ea, -- compute `jacobi_sym_nat (b % a) a` match match_numeral ea₁ with -- | match_numeral_result.zero := -- `a = 1`, not reached | match_numeral_result.one := do -- `a = 3`; need to consider `b` match match_numeral eb₁ with -- | match_numeral_result.zero := -- `b = 1`, not reached -- | match_numeral_result.one := -- `b = 3`, not reached, since `a < b` | match_numeral_result.bit0 eb₂ := do -- `b % 4 = 1` pure (zc, nc, er, `(jacobi_sym_nat.qr₁'_mod).mk_app [ea₁, eb₂, bma, er, phab, p]) | match_numeral_result.bit1 eb₂ := do -- `b % 4 = 3` r ← er.to_int, (zc, er') ← zc.of_int (- r), pure (zc, nc, er', `(jacobi_sym_nat.qr₃_mod).mk_app [`(0 : ℕ), eb₂, bma, er, phab, p]) | _ := failed end | match_numeral_result.bit0 ea₂ := do -- `a % 4 = 1` pure (zc, nc, er, `(jacobi_sym_nat.qr₁_mod).mk_app [ea₂, eb₁, bma, er, phab, p]) | match_numeral_result.bit1 ea₂ := do -- `a % 4 = 3`; need to consider `b` match match_numeral eb₁ with -- | match_numeral_result.zero := do -- `b = 1`, not reached -- | match_numeral_result.one := do -- `b = 3`, not reached, since `a < b` | match_numeral_result.bit0 eb₂ := do -- `b % 4 = 1` pure (zc, nc, er, `(jacobi_sym_nat.qr₁'_mod).mk_app [ea₁, eb₂, bma, er, phab, p]) | match_numeral_result.bit1 eb₂ := do -- `b % 4 = 3` r ← er.to_int, (zc, er') ← zc.of_int (- r), pure (zc, nc, er', `(jacobi_sym_nat.qr₃_mod).mk_app [ea₂, eb₂, bma, er, phab, p]) | _ := failed end | _ := failed end | _ := failed end | _ := failed end /-- This evaluates `r := jacobi_sym_nat a b` and produces a proof term for the equality by removing powers of `2` from `b` and then calling `prove_jacobi_sym_odd`. -/ meta def prove_jacobi_sym_nat : instance_cache → instance_cache → expr → expr → tactic (instance_cache × instance_cache × expr × expr) | zc nc ea eb := do match match_numeral eb with | match_numeral_result.zero := -- `b = 0`, result is `1` pure (zc, nc, `(1 : ℤ), `(jacobi_sym_nat.zero_right).mk_app [ea]) | match_numeral_result.one := -- `b = 1`, result is `1` pure (zc, nc, `(1 : ℤ), `(jacobi_sym_nat.one_right).mk_app [ea]) | match_numeral_result.bit0 eb₁ := -- `b` is even and nonzero match match_numeral ea with | match_numeral_result.zero := do -- `a = 0`, result is `0` b ← eb₁.to_nat, (nc, phb₀) ← prove_ne nc eb₁ `(0 : ℕ) b 0, -- proof of `b ≠ 0` pure (zc, nc, `(0 : ℤ), `(jacobi_sym_nat.zero_left_even).mk_app [eb₁, phb₀]) | match_numeral_result.one := do -- `a = 1`, result is `1` pure (zc, nc, `(1 : ℤ), `(jacobi_sym_nat.one_left_even).mk_app [eb₁]) | match_numeral_result.bit0 ea₁ := do -- `a` is even, result is `0` b ← eb₁.to_nat, (nc, phb₀) ← prove_ne nc eb₁ `(0 : ℕ) b 0, -- proof of `b ≠ 0` let er : expr := `(0 : ℤ), pure (zc, nc, er, `(jacobi_sym_nat.even_even).mk_app [ea₁, eb₁, phb₀]) | match_numeral_result.bit1 ea₁ := do -- `a` is odd, reduce to `b / 2` (zc, nc, er, p) ← prove_jacobi_sym_nat zc nc ea eb₁, pure (zc, nc, er, `(jacobi_sym_nat.odd_even).mk_app [ea₁, eb₁, er, p]) | _ := failed end | match_numeral_result.bit1 eb₁ := do -- `b` is odd a ← ea.to_nat, b ← eb.to_nat, if b ≤ a then do -- reduce to `jacobi_sym_nat (a % b) b` (nc, amb, phab) ← prove_div_mod nc ea eb tt, -- compute `a % b` (zc, nc, er, p) ← prove_jacobi_sym_odd zc nc amb eb, -- compute `jacobi_sym_nat (a % b) b` pure (zc, nc, er, `(jacobi_sym_nat.mod_left).mk_app [ea, eb, amb, er, phab, p]) else prove_jacobi_sym_odd zc nc ea eb | _ := failed end /-- This evaluates `r := jacobi_sym a b` and produces a proof term for the equality. This is done by reducing to `r := jacobi_sym_nat (a % b) b`. -/ meta def prove_jacobi_sym : instance_cache → instance_cache → expr → expr → tactic (instance_cache × instance_cache × expr × expr) | zc nc ea eb := do match match_numeral eb with -- deal with simple cases right away | match_numeral_result.zero := pure (zc, nc, `(1 : ℤ), `(jacobi_sym.zero_right).mk_app [ea]) | match_numeral_result.one := pure (zc, nc, `(1 : ℤ), `(jacobi_sym.one_right).mk_app [ea]) | _ := do -- Now `1 < b`. Compute `jacobi_sym_nat (a % b) b` instead. b ← eb.to_nat, (zc, eb') ← zc.of_int (b : ℤ), -- Get the proof that `(b : ℤ) = b'` (where `eb'` is the numeral representing `b'`). -- This is important to avoid inefficient matching between the two. (zc, nc, eb₁, pb') ← prove_nat_uncast zc nc eb', (zc, amb, phab) ← prove_div_mod zc ea eb' tt, -- compute `a % b` (zc, nc, amb', phab') ← prove_nat_uncast zc nc amb, -- `a % b` as a natural number (zc, nc, er, p) ← prove_jacobi_sym_nat zc nc amb' eb₁, -- compute `jacobi_sym_nat (a % b) b` pure (zc, nc, er, `(jacobi_sym.mod_left).mk_app [ea, eb₁, amb', amb, er, eb', pb', phab, phab', p]) end end norm_num end evaluation section tactic /-! ### The `norm_num` plug-in -/ namespace tactic namespace norm_num /-- This is the `norm_num` plug-in that evaluates Jacobi and Legendre symbols. -/ @[norm_num] meta def eval_jacobi_sym : expr → tactic (expr × expr) | `(jacobi_sym %%ea %%eb) := do -- Jacobi symbol zc ← mk_instance_cache `(ℤ), nc ← mk_instance_cache `(ℕ), (prod.snd ∘ prod.snd) <$> norm_num.prove_jacobi_sym zc nc ea eb | `(norm_num.jacobi_sym_nat %%ea %%eb) := do -- Jacobi symbol on natural numbers zc ← mk_instance_cache `(ℤ), nc ← mk_instance_cache `(ℕ), (prod.snd ∘ prod.snd) <$> norm_num.prove_jacobi_sym_nat zc nc ea eb | `(@legendre_sym %%ep %%inst %%ea) := do -- Legendre symbol zc ← mk_instance_cache `(ℤ), nc ← mk_instance_cache `(ℕ), (zc, nc, er, pf) ← norm_num.prove_jacobi_sym zc nc ea ep, pure (er, `(norm_num.legendre_sym.to_jacobi_sym).mk_app [ep, inst, ea, er, pf]) | _ := failed end norm_num end tactic end tactic
# # This file is part of the Actors.jl Julia package, # MIT license, part of https://github.com/JuliaActors # # # remote node failure detection (RNFD) actor # ---------------------------------------------- # if an actor on a (relative) remote node is added to a # supervisor an actor is started scanning the remote link # in regular intervals. If a ProcessExitedException is # detected, it notifies the supervisor about it. # const scan_interval = 1.0 struct RNFD{L,S,T} sv::L # supervisor link lks::S # links to remote actors pids::T # supervised pids end struct Add{L} lk::L end struct Remove{L} lk::L end struct Scan end # # RNFD behavior # function (rfd::RNFD)(msg::Add) if msg.lk ∉ rfd.lks push!(rfd.lks, msg.lk) msg.lk.pid ∈ rfd.pids || push!(rfd.pids, msg.lk.pid) end end function (rfd::RNFD)(msg::Remove) if msg.lk ∈ rfd.lks filter!(≠(msg.lk), rfd.lks) pids = (lk.pid for lk ∈ rfd.lks) filter!(∈(pids), rfd.pids) end end function (rfd::RNFD)(::Scan) isempty(rfd.lks) && return nothing excs = Int[] for lk in rfd.lks try isready(lk.chn) catch exc filter!(≠(lk), rfd.lks) exc isa ProcessExitedException && push!(excs, exc.worker_id) end end if !isempty(excs) filter!(lk->lk.pid ∉ excs, rfd.lks) filter!(p->p ∉ excs, rfd.pids) send(rfd.sv, NodeFailure(unique(excs))) end end # # Supervisor behavior for NodeFailure # # # remove temporary childs from both s and fchilds # function remove_temporary!(s, fchilds) act = task_local_storage("_ACT") filter!(fchilds) do child if child.info.restart == :temporary log_warn("temporary actor $(isnothing(child.name) ? :noname : child.name) failed, $(ProcessExitedException(child.lk.pid))") filter!(c->c.lk!=child.lk, act.conn) filter!(c->c.lk!=child.lk, s.childs) return false else return true end end end function restart_child!(c::Child, pid::Int) log_warn("supervisor: restarting child $(isnothing(c.name) ? :noname : c.name) on pid $pid") if c.lk isa Link lk = !isnothing(c.start) ? c.start(pid) : spawn(c.init; pid) c.lk.chn = lk.chn c.lk.pid = lk.pid isnothing(c.name) || update!(lk, c.name, s=:name) end end function restart!(s::Supervisor, cs::Vector{Child}, pids::Vector{Int}) if s.option[:strategy] == :one_for_one for (i, c) in enumerate(cs) restart_child!(c, pids[i]) rnfd_add(s, c.lk) end elseif s.option[:strategy] == :one_for_all log_warn("supervisor: restarting all") for child in s.childs child ∈ cs ? begin restart_child!(child, pids[findfirst(==(child),cs)]) rnfd_add(s, child.lk) end : child.lk.mode ≠ :rnfd && shutdown_restart_child!(child) end else log_warn("supervisor: restarting rest") ix = findfirst(c->c ∈ cs, s.childs) for child in s.childs[ix:end] child ∈ cs ? begin restart_child!(child, pids[findfirst(==(child),cs)]) rnfd_add(s, child.lk) end : child.lk.mode ≠ :rnfd && shutdown_restart_child!(child) end end end # # return spare pids for failed childs cs and delete them from # the s.option[:spares] dict entry # function spare_pids!(s::Supervisor, cs) spares = if haskey(s.option, :spares) && !isempty(s.option[:spares]) s.option[:spares] else used = unique(map(c->c.lk.pid, s.childs)) filter(p->p ∉ used, reverse(procs())) end filter!(p->p ∈ procs(), spares) pids = map(c->c.lk.pid, cs) p_old = sort(unique(pids)) if length(p_old) ≤ length(spares) p_new = spares[1:length(p_old)] rp = [p_old[i]=>p_new[i] for i ∈ 1:length(p_old)] replace!(pids, rp...) elseif !isempty(spares) pids = rand(spares, length(pids)) else pids = rand(procs(), length(pids)) end haskey(s.option, :spares) && filter!(p->p ∉ pids, s.option[:spares]) return pids end function (s::Supervisor)(msg::NodeFailure) foreach(msg.pids) do pid log_warn("supervisor: Process $pid exited!") end failed_childs = filter(c->c.lk.pid ∈ msg.pids, s.childs) remove_temporary!(s, failed_childs) if !isempty(failed_childs) if restart_limit!(s) log_warn("supervisor: restart limit $(s.option[:max_restarts]) exceeded!") send(self(), Exit(:shutdown, fill(nothing, 3)...)) else restart!(s, failed_childs, spare_pids!(s, failed_childs)) end end end # # RNFD API # """ rnfd_start(sv::Link;; interval=1, kwargs...) Start a RNFD actor and return a link to it. # Arguments - `sv::Link`: supervisor to the actor, - `interval=1`: interval in seconds for checking remote nodes. """ function rnfd_start(sv::Link; interval=1, kwargs...) lk = spawn(RNFD(sv, Link[], Int[]); mode = :rnfd, kwargs...) exec(lk, supervise, sv) timer = Timer(interval; interval) do t send(lk, Scan()) end term!(lk, (exp)->close(timer)) return lk end # # get a link to the RNFD actor, create it if it doesn't exist. # function rnfd(s::Supervisor) i = findfirst(c->c.lk.mode == :rnfd, s.childs) return !isnothing(i) ? s.childs[i].lk : rnfd_start(self()) end rnfd_exists(s::Supervisor) = !isnothing(findfirst(c->c.lk.mode == :rnfd, s.childs)) # # add a remote child to an RNFD actor, # create it first if it doesn't exist. # rnfd_add(s::Supervisor, child::Link) = send(rnfd(s), Add(child))
/- Copyright (c) 2022 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash ! This file was ported from Lean 3 source module algebra.module.bimodule ! leanprover-community/mathlib commit 58cef51f7a819e7227224461e392dee423302f2d ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.RingTheory.TensorProduct /-! # Bimodules One frequently encounters situations in which several sets of scalars act on a single space, subject to compatibility condition(s). A distinguished instance of this is the theory of bimodules: one has two rings `R`, `S` acting on an additive group `M`, with `R` acting covariantly ("on the left") and `S` acting contravariantly ("on the right"). The compatibility condition is just: `(r • m) • s = r • (m • s)` for all `r : R`, `s : S`, `m : M`. This situation can be set up in Mathlib as: ```lean variables (R S M : Type*) [ring R] [ring S] variables [add_comm_group M] [module R M] [module Sᵐᵒᵖ M] [smul_comm_class R Sᵐᵒᵖ M] ``` The key fact is: ```lean example : module (R ⊗[ℕ] Sᵐᵒᵖ) M := tensor_product.algebra.module ``` Note that the corresponding result holds for the canonically isomorphic ring `R ⊗[ℤ] Sᵐᵒᵖ` but it is preferable to use the `R ⊗[ℕ] Sᵐᵒᵖ` instance since it works without additive inverses. Bimodules are thus just a special case of `module`s and most of their properties follow from the theory of `module`s`. In particular a two-sided submodule of a bimodule is simply a term of type `submodule (R ⊗[ℕ] Sᵐᵒᵖ) M`. This file is a place to collect results which are specific to bimodules. ## Main definitions * `subbimodule.mk` * `subbimodule.smul_mem` * `subbimodule.smul_mem'` * `subbimodule.to_submodule` * `subbimodule.to_submodule'` ## Implementation details For many definitions and lemmas it is preferable to set things up without opposites, i.e., as: `[module S M] [smul_comm_class R S M]` rather than `[module Sᵐᵒᵖ M] [smul_comm_class R Sᵐᵒᵖ M]`. The corresponding results for opposites then follow automatically and do not require taking advantage of the fact that `(Sᵐᵒᵖ)ᵐᵒᵖ` is defeq to `S`. ## TODO Develop the theory of two-sided ideals, which have type `submodule (R ⊗[ℕ] Rᵐᵒᵖ) R`. -/ open TensorProduct attribute [local instance] TensorProduct.Algebra.module namespace Subbimodule section Algebra variable {R A B M : Type _} variable [CommSemiring R] [AddCommMonoid M] [Module R M] variable [Semiring A] [Semiring B] [Module A M] [Module B M] variable [Algebra R A] [Algebra R B] variable [IsScalarTower R A M] [IsScalarTower R B M] variable [SMulCommClass A B M] /-- A constructor for a subbimodule which demands closure under the two sets of scalars individually, rather than jointly via their tensor product. Note that `R` plays no role but it is convenient to make this generalisation to support the cases `R = ℕ` and `R = ℤ` which both show up naturally. See also `base_change`. -/ @[simps] def mk (p : AddSubmonoid M) (hA : ∀ (a : A) {m : M}, m ∈ p → a • m ∈ p) (hB : ∀ (b : B) {m : M}, m ∈ p → b • m ∈ p) : Submodule (A ⊗[R] B) M := { p with carrier := p smul_mem' := fun ab m => TensorProduct.induction_on ab (fun hm => by simpa only [zero_smul] using p.zero_mem) (fun a b hm => by simpa only [TensorProduct.Algebra.smul_def] using hA a (hB b hm)) fun z w hz hw hm => by simpa only [add_smul] using p.add_mem (hz hm) (hw hm) } #align subbimodule.mk Subbimodule.mk theorem smul_mem (p : Submodule (A ⊗[R] B) M) (a : A) {m : M} (hm : m ∈ p) : a • m ∈ p := by suffices a • m = a ⊗ₜ[R] (1 : B) • m by exact this.symm ▸ p.smul_mem _ hm simp [TensorProduct.Algebra.smul_def] #align subbimodule.smul_mem Subbimodule.smul_mem theorem smul_mem' (p : Submodule (A ⊗[R] B) M) (b : B) {m : M} (hm : m ∈ p) : b • m ∈ p := by suffices b • m = (1 : A) ⊗ₜ[R] b • m by exact this.symm ▸ p.smul_mem _ hm simp [TensorProduct.Algebra.smul_def] #align subbimodule.smul_mem' Subbimodule.smul_mem' /-- If `A` and `B` are also `algebra`s over yet another set of scalars `S` then we may "base change" from `R` to `S`. -/ @[simps] def baseChange (S : Type _) [CommSemiring S] [Module S M] [Algebra S A] [Algebra S B] [IsScalarTower S A M] [IsScalarTower S B M] (p : Submodule (A ⊗[R] B) M) : Submodule (A ⊗[S] B) M := mk p.toAddSubmonoid (smul_mem p) (smul_mem' p) #align subbimodule.base_change Subbimodule.baseChange /-- Forgetting the `B` action, a `submodule` over `A ⊗[R] B` is just a `submodule` over `A`. -/ @[simps] def toSubmodule (p : Submodule (A ⊗[R] B) M) : Submodule A M := { p with carrier := p smul_mem' := smul_mem p } #align subbimodule.to_submodule Subbimodule.toSubmodule /-- Forgetting the `A` action, a `submodule` over `A ⊗[R] B` is just a `submodule` over `B`. -/ @[simps] def toSubmodule' (p : Submodule (A ⊗[R] B) M) : Submodule B M := { p with carrier := p smul_mem' := smul_mem' p } #align subbimodule.to_submodule' Subbimodule.toSubmodule' end Algebra section Ring variable (R S M : Type _) [Ring R] [Ring S] variable [AddCommGroup M] [Module R M] [Module S M] [SMulCommClass R S M] /-- A `submodule` over `R ⊗[ℕ] S` is naturally also a `submodule` over the canonically-isomorphic ring `R ⊗[ℤ] S`. -/ @[simps] def toSubbimoduleInt (p : Submodule (R ⊗[ℕ] S) M) : Submodule (R ⊗[ℤ] S) M := baseChange ℤ p #align subbimodule.to_subbimodule_int Subbimodule.toSubbimoduleInt /-- A `submodule` over `R ⊗[ℤ] S` is naturally also a `submodule` over the canonically-isomorphic ring `R ⊗[ℕ] S`. -/ @[simps] def toSubbimoduleNat (p : Submodule (R ⊗[ℤ] S) M) : Submodule (R ⊗[ℕ] S) M := baseChange ℕ p #align subbimodule.to_subbimodule_nat Subbimodule.toSubbimoduleNat end Ring end Subbimodule
include("../benchmark/bench_van_der_pol.jl") @time lc_solver = pre_solve!(make_van_der_pol_lc_solver()) @time sweep!(lc_solver) @time lc_solver = pre_solve!(make_van_der_pol_lc_solver()) Profile.clear() @profile sweep!(lc_solver)
You may remember, dear reader, that I have called a bear market for equities. How am I doing so far? Well, the S&P 500 is up 13% from its February 11th intra-day low (1812). That sure doesn’t look good, does it? But I’m still convinced I’m right. I haven’t shorted the market yet, and won’t until the S&Ps break that February low. So this rally hasn’t hurt me, it’s just annoying to have to wait.Maybe Wall Street still has inventory to unload, as David Stockman says. The signs of an impending flush are now everywhere. The March 15 release of business sales for January, for example, showed another down month. The critical inventory-to-sales ratio for the entire economy is now at 1.40—–a ratio last recorded in May 2009. Once upon a time, when I was a young lad, investors used to watch the real economy, not the latest Fed head jabbering on CNBC. One of the things we paid keen attention to was the inventory-to-sales ratio because we knew that’s where recessions came from, and recessions were not good for the stock market. When sales slow down, inventories build up. The build in inventories actually continues to boost GDP because the supply chain hasn’t got the message yet. When they do, they stop producing as much, inventories fall faster than sales and the GDP falls, giving us an official recession…ALWAYS after the fact. Those who watch GDP, like most economists, totally miss the boat. They never call the recession before it starts because they follow their models and not the real economy. Only highly intelligent and educated people can be this stupid, as I am fond of saying. Business sales as reported on March 15 were down by 5.1% from their July 2014 peak. Declines of this magnitude have occurred only twice since 1992 and both times they signalled a recession. Here is the chart of total business sales for all levels of the economy. Is this hard to understand? The shaded areas mark recessions. If you haven’t sold your stocks yet, the gods of the markets are giving you another chance, just an eyelash below the all-time highs. Accept the gift, dear reader, accept the gift. Next Next post: Is China Dodging Its Debt Bomb?
theory prop_10 imports Main "$HIPSTER_HOME/IsaHipster" begin datatype 'a list = Nil2 | Cons2 "'a" "'a list" fun append :: "'a list => 'a list => 'a list" where "append (Nil2) y = y" | "append (Cons2 z xs) y = Cons2 z (append xs y)" fun rev :: "'a list => 'a list" where "rev (Nil2) = Nil2" | "rev (Cons2 y xs) = append (rev xs) (Cons2 y (Nil2))" (*hipster append rev *) (*hipster rev*) lemma lemma_a [thy_expl]: "append x2 Nil2 = x2" by (hipster_induct_schemes rev.simps) lemma lemma_aa [thy_expl]: "append (append x2 y2) z2 = append x2 (append y2 z2)" by (hipster_induct_schemes rev.simps) lemma lemma_ab [thy_expl]: "append (rev x5) (rev y5) = rev (append y5 x5)" by (hipster_induct_schemes rev.simps) lemma unknown [thy_expl]: "rev (rev x) = x" oops theorem x0 : "(rev (rev x)) = x" by(hipster_induct_schemes rev.simps append.simps) (* by (tactic {* Subgoal.FOCUS_PARAMS (K (Tactic_Data.hard_tac @{context})) @{context} 1 *})*) end
/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see <http://www.gnu.org/licenses/>. */ #include <test/libyul/YulInterpreterTest.h> #include <test/tools/yulInterpreter/Interpreter.h> #include <test/Common.h> #include <libyul/backends/evm/EVMDialect.h> #include <libyul/AsmParser.h> #include <libyul/AssemblyStack.h> #include <libyul/AsmAnalysisInfo.h> #include <liblangutil/ErrorReporter.h> #include <liblangutil/SourceReferenceFormatter.h> #include <libsolutil/AnsiColorized.h> #include <boost/test/unit_test.hpp> #include <boost/algorithm/string.hpp> #include <fstream> using namespace solidity; using namespace solidity::util; using namespace solidity::langutil; using namespace solidity::yul; using namespace solidity::yul::test; using namespace solidity::frontend; using namespace solidity::frontend::test; using namespace std; YulInterpreterTest::YulInterpreterTest(string const& _filename): EVMVersionRestrictedTestCase(_filename) { m_source = m_reader.source(); m_expectation = m_reader.simpleExpectations(); } TestCase::TestResult YulInterpreterTest::run(ostream& _stream, string const& _linePrefix, bool const _formatted) { if (!parse(_stream, _linePrefix, _formatted)) return TestResult::FatalError; m_obtainedResult = interpret(); if (m_expectation != m_obtainedResult) { string nextIndentLevel = _linePrefix + " "; AnsiColorized(_stream, _formatted, {formatting::BOLD, formatting::CYAN}) << _linePrefix << "Expected result:" << endl; // TODO could compute a simple diff with highlighted lines printIndented(_stream, m_expectation, nextIndentLevel); AnsiColorized(_stream, _formatted, {formatting::BOLD, formatting::CYAN}) << _linePrefix << "Obtained result:" << endl; printIndented(_stream, m_obtainedResult, nextIndentLevel); return TestResult::Failure; } return TestResult::Success; } void YulInterpreterTest::printSource(ostream& _stream, string const& _linePrefix, bool const) const { printIndented(_stream, m_source, _linePrefix); } void YulInterpreterTest::printUpdatedExpectations(ostream& _stream, string const& _linePrefix) const { printIndented(_stream, m_obtainedResult, _linePrefix); } void YulInterpreterTest::printIndented(ostream& _stream, string const& _output, string const& _linePrefix) const { stringstream output(_output); string line; while (getline(output, line)) _stream << _linePrefix << line << endl; } bool YulInterpreterTest::parse(ostream& _stream, string const& _linePrefix, bool const _formatted) { AssemblyStack stack( solidity::test::CommonOptions::get().evmVersion(), AssemblyStack::Language::StrictAssembly, solidity::frontend::OptimiserSettings::none() ); if (stack.parseAndAnalyze("", m_source)) { m_ast = stack.parserResult()->code; m_analysisInfo = stack.parserResult()->analysisInfo; return true; } else { AnsiColorized(_stream, _formatted, {formatting::BOLD, formatting::RED}) << _linePrefix << "Error parsing source." << endl; printErrors(_stream, stack.errors()); return false; } } string YulInterpreterTest::interpret() { InterpreterState state; state.maxTraceSize = 10000; state.maxSteps = 10000; Interpreter interpreter(state, EVMDialect::strictAssemblyForEVMObjects(langutil::EVMVersion{})); try { interpreter(*m_ast); } catch (InterpreterTerminatedGeneric const&) { } stringstream result; state.dumpTraceAndState(result); return result.str(); } void YulInterpreterTest::printErrors(ostream& _stream, ErrorList const& _errors) { SourceReferenceFormatter formatter(_stream); for (auto const& error: _errors) formatter.printErrorInformation(*error); }
/* Copyright 2014 Glen Joseph Fernandes ([email protected]) Distributed under the Boost Software License, Version 1.0. (http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_ALIGN_IS_ALIGNED_HPP #define BOOST_ALIGN_IS_ALIGNED_HPP #include <boost/align/detail/is_aligned.hpp> #include <boost/align/detail/not_pointer.hpp> namespace boost { namespace alignment { template<class T> BOOST_CONSTEXPR inline typename detail::not_pointer<T, bool>::type is_aligned(T value, std::size_t alignment) BOOST_NOEXCEPT { return (value & (T(alignment) - 1)) == 0; } } /* alignment */ } /* boost */ #endif
#include <Python.h> #include <boost/python.hpp> #include "FabMapVocabluary.h" #include "ChowLiuTree.h" #include "openFABMAPPython.h" BOOST_PYTHON_MODULE(openFABMAP) { boost::python::class_<pyof2::FabMapVocabluary, std::shared_ptr<pyof2::FabMapVocabluary>>( "Vocabluary", boost::python::no_init); boost::python::class_<pyof2::FabMapVocabluaryBuilder, std::shared_ptr<pyof2::FabMapVocabluaryBuilder>>( "VocabluaryBuilder", boost::python::init<boost::python::dict>()) .def("add_training_image", &pyof2::FabMapVocabluaryBuilder::addTrainingImage) .def("build_vocabluary", &pyof2::FabMapVocabluaryBuilder::buildVocabluary); boost::python::class_<pyof2::ChowLiuTree, std::shared_ptr<pyof2::ChowLiuTree>>( "ChowLiuTree", boost::python::init<std::shared_ptr<pyof2::FabMapVocabluary>, boost::python::dict>()) .def("add_training_image", &pyof2::ChowLiuTree::addTrainingImage) .def("build_chow_liu_tree", &pyof2::ChowLiuTree::buildChowLiuTree) .def("save", &pyof2::ChowLiuTree::save) .def("load", &pyof2::ChowLiuTree::load) .staticmethod("load"); boost::python::class_<pyof2::OpenFABMAPPython, std::shared_ptr<pyof2::OpenFABMAPPython>>( "OpenFABMAP", boost::python::init< std::shared_ptr<pyof2::ChowLiuTree>, boost::python::dict>()) .def("load_and_process_image", &pyof2::OpenFABMAPPython::loadAndProcessImage) .def("get_last_match", &pyof2::OpenFABMAPPython::getLastMatch) .def("get_all_loop_closures", &pyof2::OpenFABMAPPython::getAllLoopClosures); }
function showmesh3(node,elem,expr,varargin) %% SHOWMESH3 displays a tetrahedron mesh in 3-D. % % showmesh3(node,elem) displays a 3-dimensional tetrahderon mesh given % by node and elem matrices; see <a href="matlab:ifem('meshdoc')">meshdoc</a> for the data structure: % node and elem. % % showmesh3(node,elem,expr) displays parts of the mesh specificed by the % expression. For example, showmesh3(node,elem,'~(x>=0 & y>=0)') only % shows the tetrahedron not in the first quadrant. % % showmesh3(node,elem,expr,'param','value','param','value'...) allows % additional patch param/value pairs to be used when displaying the % mesh. For example, the default transparency parameter is set to 0.5. % You can overwrite this value by using the param pair ('FaceAlpha', % value). The value has to be a number between 0 and 1. Other parameters % include: 'Facecolor', 'Edgecolor' etc. % % For meshes with large data, the 3-D graphics is very slow. You may use % <a href="matlab:help showboundary3">showboundary3</a> to display the boundary surface mesh only. % % Example: % % A mesh for a cube % node = [-1,-1,-1; 1,-1,-1; 1,1,-1; -1,1,-1; -1,-1,1; 1,-1,1; 1,1,1; -1,1,1]; % elem = [1,2,3,7; 1,6,2,7; 1,5,6,7; 1,8,5,7; 1,4,8,7; 1,3,4,7]; % [node,elem] = uniformbisect3(node,elem); % subplot(1,2,1); % showmesh3(node,elem); pause(1) % subplot(1,2,2); % showmesh3(node,elem,'~(x>=0 & y>=0 & z>=0)','FaceAlpha',0.25); % axis on; view([59,20]) % % See also showboundary3, showsolution3, showmesh. % % Copyright (C) Long Chen. See COPYRIGHT.txt for details. if (nargin >= 3) && (any(expr)) x = node(:,1); y = node(:,2); z = node(:,3); %#ok<NASGU> incl = find(eval(expr)); elem = elem(any(ismember(elem,incl),2),:); end h = tetramesh(elem(:,1:4),node,ones(size(elem,1),1)); set(h,'facecolor',[0.5 0.9 0.45],'edgecolor','k'); if nargin > 3 set(h,varargin{1:end}) else % default display properties set(h,'FaceAlpha',0.4); end view(3); axis off; axis equal; axis tight
## Exercise 1 (4 points): Idea of Maximal Margin (SVM) [Pen and Paper] With the help of support vector machines, we can find a separation line which maximize the margin between two classes. In this exercise, we use a two-class example and approach to such a line in a geometric way. Figure 1 shows the two-dimensional data we are using throughout this exercise. Each point 𝑥 ∈ ℝ<sup>2</sup> belongs either to the positive 𝜔<sub>1</sub> (blue, circles) or negative class 𝜔<sub>−1</sub> (orange, squares). 1. To find the separation line, the convex hull of a dataset is helpful. Start by drawing the convex hull for each class in Figure 1. 2. The line with the maximal margin is defined by the two points from the convex hulls of the two classes with minimal distance to each other. Find these two points on the convex hulls you have just drawn and label them with 𝑐<sub>1</sub> and 𝑐<sub>-1</sub> (for the class 𝜔<sub>1</sub> and 𝜔<sub>-1</sub>, respectively). Note that every point on a convex hull is a possible candidate and they do not necessarily need to correspond with the data points. 3. Connect the points 𝑐<sub>1</sub> and 𝑐<sub>-1</sub> with a line. 4. The separation line goes through the centre of the line you have just drawn and is orthogonal to it, i.e. the two lines enclose a 90° angle. Draw the separation line 𝑠, the line 𝑙<sub>1</sub> which passes through the support vectors of 𝜔<sub>1</sub> and the line 𝑙<sub>-1</sub> which passes through the support vectors of 𝜔<sub>-1</sub>. 5. Add two arbitrary points from each class, i.e. x<sub>1</sub>, 𝑥<sub>2</sub> ∈ $\omega$𝜔<sub>1</sub> and 𝑥<sub>3</sub>, 𝑥<sub>4</sub> ∈ 𝜔<sub>-1</sub>, to the feature space so that the separation line 𝑠 found previously does not change. 6. Start fresh with Figure 2 and add a new data point 𝑥<sub>5</sub> which belongs to a class of your choice to the feature space so that the new margin between the two classes equals 1. As before, sketch the three lines $\tilde{l}$<sub>1</sub> , $\tilde{l}$<sub>-1</sub> and $\tilde{s}$ based on the points $\tilde{c}$<sub>1</sub> and $\tilde{l}$<sub>-1</sub> on the convex hull. 7. In general, what is the difference between a line obtained via SVM and a line obtained via the perceptron learning algorithm? ## Exercise 2 (6 points): SVM [Pen and Paper] From the previous exercise, we know which kind of separation line we can expect when using support vector machines and how to find it graphically. Determining the separation line analytically, however, is very hard; even for the simple problem of Exercise 1. The number of variables and conditions make this task impractical for a “Pen and Paper” exercise. But, to still get a basic idea of the SVM algorithm, we consider here an even simpler problem where we have only two points $x_i \in \mathbb{R}^{2}$ which belong to their own class each. The first point is from the set of positive samples $\omega_1 = \{x_i | T_i = 1\}$ and the second from the set of negative samples $\omega_{-1} = \{x_i | T_i = −1\}$. The two points are defined as $$ x_1 = \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \in \omega_1 \hspace{0.5cm}and\hspace{0.5cm} \begin{pmatrix} 2\\ 3\\ \end{pmatrix} \in \omega_{-1} $$ Obviously, both points are also support vectors since they are the only representatives from their classes and hence must lie on the margin. Our goal is to find the parameters of a separation line with maximal margin, i.e. we search for 𝑤 and 𝑤<sub>0</sub>. In order to find our parameters, we need to optimize the Lagrange function \begin{equation} L(w, w_0, \alpha_1, \alpha_2) = L(\alpha_1, \alpha_2) = \sum_{i=1}^2 \alpha_i - \frac{1}{2}\sum_{i=1}^2\sum_{j=1}^2\alpha_i\alpha_jT_iT_jx_i^Tx_j \end{equation} subject to the constraint $$\sum_{i=1}^2\alpha_iT_i=0$$ Technically, we also need the constraints $\alpha_i \geq 0$. But to keep things simple, we are assuming them satisfied here. 1. Set up the Lagrange function (Equation 1) as well as the constraint (Equation 2) of our problem set, i.e. plug in the values and simplify. 2. To optimize Equation 1 under the constraint of Equation 2, we need an additional Lagrange function with the Lagrange multiplier 𝜆 \begin{equation} \Lambda(\alpha_1, \alpha_2, \lambda) = L(\alpha_1, \alpha_2) + \lambda\left(\sum_{i=1}^2\alpha_iT_i\right) \end{equation} Optimize this function and show that the optimal values are given as $$\alpha_1^* = \frac{2}{5} \hspace{0.5cm} and \hspace{0.5cm} \alpha_2^* = \frac{2}{5} $$ It is sufficient to calculate only the extrema values. You do not need to show that they belong to a minimum/maximum (and not a saddle point) of $L(\alpha_1, \alpha_2)$. You can use Figure 3 to convince yourself that this is indeed the case here.<br/> 3. Based on the previous results, calculate the line parameters 𝑤 and 𝑤<sub>0</sub>.<br/> 4. Draw the resulting separation line into Figure 4.<br/> 5. Suppose you want to classify the new point 𝑥3 = (2, 2). Assign this point the correct label a) graphically based on the line you have just drawn into Figure 4. b) analytically by using the decision function 𝑓(𝑥) (script page 102).<br/> <br/> 6. Some general questions to conclude this exercise (no calculations required): a) How would Equation 1 change if we had more than three points? b) How can we infer from the coefficient 𝛼∗ 𝑖 whether the corresponding point 𝑥𝑖 contributes to the separation line (i.e. whether 𝑥𝑖 is a support vector)?
A set $S$ is connected if and only if it is not the union of two nonempty open sets that are disjoint.
(*<*) theory SPRView imports KBPsAuto begin (*>*) subsection{* The Synchronous Perfect-Recall View *} text{* \label{sec:kbps-theory-pr-view} The synchronous perfect-recall (SPR) view records all observations the agent has made on a given trace. This is the canonical full-information synchronous view; all others are functions of this one. Intuitively it maintains a list of all observations made on the trace, with the length of the list recording the time: *} definition (in Environment) spr_jview :: "('a, 's, 'obs Trace) JointView" where "spr_jview a = tMap (envObs a)" (*<*) context Environment begin lemma spr_jview_length_eq: "tLength (spr_jview a t) = tLength t" by (simp add: spr_jview_def) lemma spr_jview_tInit_inv[simp]: "spr_jview a t = tInit obs \<longleftrightarrow> (\<exists>s. t = tInit s \<and> envObs a s = obs)" by (cases t) (simp_all add: spr_jview_def) lemma spr_jview_tStep_eq_inv: "spr_jview a t' = spr_jview a (t \<leadsto> s) \<Longrightarrow> \<exists>t'' s'. t' = t'' \<leadsto> s'" by (cases t') (simp_all add: spr_jview_def) lemma spr_jview_prefix_closed[dest]: "spr_jview a (t \<leadsto> s) = spr_jview a (t' \<leadsto> s') \<Longrightarrow> spr_jview a t = spr_jview a t'" by (simp add: spr_jview_def) end (*>*) text{* The corresponding incremental view appends a new observation to the existing ones: *} definition (in Environment) spr_jviewInit :: "'a \<Rightarrow> 'obs \<Rightarrow> 'obs Trace" where "spr_jviewInit \<equiv> \<lambda>a obs. tInit obs" definition (in Environment) spr_jviewIncr :: "'a \<Rightarrow> 'obs \<Rightarrow> 'obs Trace \<Rightarrow> 'obs Trace" where "spr_jviewIncr \<equiv> \<lambda>a obs' tobs. tobs \<leadsto> obs'" sublocale Environment < SPR!: IncrEnvironment jkbp envInit envAction envTrans envVal spr_jview envObs spr_jviewInit spr_jviewIncr (*<*) proof { fix a t t' assume "spr_jview a t = spr_jview a t'" hence "tLength t = tLength t'" using spr_jview_length_eq[where a=a, symmetric] by simp } thus "\<forall>a t t'. spr_jview a t = spr_jview a t' \<longrightarrow> tLength t = tLength t'" by blast next show "\<forall>a s. spr_jviewInit a (envObs a s) = spr_jview a (tInit s)" unfolding spr_jviewInit_def by (simp add: spr_jview_def) next show "\<forall>a t s. spr_jview a (t \<leadsto> s) = spr_jviewIncr a (envObs a s) (spr_jview a t)" unfolding spr_jviewIncr_def by (simp add: spr_jview_def) qed (* These need to follow the locale instantiation as we appeal to sync. *) lemma (in Environment) spr_tFirst[dest]: assumes v: "spr_jview a t = spr_jview a t'" shows "envObs a (tFirst t) = envObs a (tFirst t')" using SPR.sync[rule_format, OF v] v apply (induct rule: trace_induct2) apply (simp_all add: spr_jview_def) done lemma (in Environment) spr_tLast[dest]: assumes v: "spr_jview a t = spr_jview a t'" shows "envObs a (tLast t) = envObs a (tLast t')" using SPR.sync[rule_format, OF v] v apply (induct rule: trace_induct2) apply (simp_all add: spr_jview_def) done (*>*) text{* \citet[Theorem~5]{Ron:1996} showed that it is not the case that finite-state implementations always exist with respect to the SPR view, and so we consider three special cases: \begin{itemize} \item[\S\ref{sec:kbps-spr-single-agent}] where there is a single agent; \item[\S\ref{sec:kbps-theory-spr-deterministic-protocols}] when the protocols of the agents are deterministic and communication is by broadcast; and \item[\S\ref{sec:kbps-theory-spr-non-deterministic-protocols}] when the agents use non-deterministic protocols and again use broadcast to communicate. \end{itemize} Note that these cases do overlap but none is wholly contained in another. *} (*<*) end (*>*)
theory prop_24 imports Main "$HIPSTER_HOME/IsaHipster" begin datatype Nat = Z | S "Nat" fun plus :: "Nat => Nat => Nat" where "plus (Z) y = y" | "plus (S z) y = S (plus z y)" fun even :: "Nat => bool" where "even (Z) = True" | "even (S (Z)) = False" | "even (S (S z)) = even z" (*hipster plus even *) lemma lemma_a [thy_expl]: "plus x2 Z = x2" by (hipster_induct_schemes plus.simps) lemma lemma_aa [thy_expl]: "plus (plus x2 y2) z2 = plus x2 (plus y2 z2)" by (hipster_induct_schemes plus.simps) lemma lemma_ab [thy_expl]: "plus x2 (S y2) = S (plus x2 y2)" by (hipster_induct_schemes plus.simps) lemma lemma_ac [thy_expl]: "plus x1 (plus y1 x1) = plus y1 (plus x1 x1)" by (hipster_induct_schemes plus.simps) lemma lemma_ad [thy_expl]: "plus x2 (plus y2 y2) = plus y2 (plus y2 x2)" by (hipster_induct_schemes plus.simps) lemma lemma_ae [thy_expl]: "plus x2 (S y2) = S (plus y2 x2)" by (hipster_induct_schemes plus.simps) lemma lemma_af [thy_expl]: "plus (S x2) y2 = S (plus y2 x2)" by (hipster_induct_schemes plus.simps) lemma lemma_ag [thy_expl]: "plus (plus x2 y2) (plus x2 z2) = plus (plus x2 z2) (plus x2 y2)" by (hipster_induct_schemes plus.simps) lemma lemma_ah [thy_expl]: "plus (plus x2 y2) (plus z2 x2) = plus (plus z2 x2) (plus x2 y2)" by (hipster_induct_schemes plus.simps) lemma lemma_ai [thy_expl]: "plus x2 (plus y2 z2) = plus y2 (plus z2 x2)" by (hipster_induct_schemes plus.simps) (*hipster even plus*) lemma lemma_aj []: "even (plus x1 x1) = True" by (hipster_induct_schemes even.simps plus.simps) theorem x0 : "(even (plus x y)) = (even (plus y x))" by (tactic \<open>Subgoal.FOCUS_PARAMS (K (Tactic_Data.hard_tac @{context})) @{context} 1\<close>) end
(* * Correctness proof of the lowering pass *) (* ** Imports and settings *) From mathcomp Require Import all_ssreflect all_algebra. From mathcomp Require Import word_ssrZ. Require Import ZArith psem compiler_util lea_proof x86_instr_decl x86_extra. Require Import lowering lowering_lemmas. Require Import arch_extra sem_params_of_arch_extra. Require Export x86_lowering. Import Utf8. Import Psatz. Import Order.POrderTheory Order.TotalTheory. Import ssrring. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope vmap_scope. Local Open Scope seq_scope. Section PROOF. Context {syscall_state : Type} {sc_sem : syscall_sem syscall_state} {T:eqType} {pT:progT T} {sCP: semCallParams}. Variable p : prog. Variable ev : extra_val_t. Notation gd := (p_globs p). Context (is_regx: var -> bool) (options: lowering_options). Context (warning: instr_info -> warning_msg -> instr_info). Variable fv : fresh_vars. Context (is_var_in_memory: var_i → bool). Notation lower_prog := (lower_prog (asmop := _asmop) (lower_i is_regx) options warning fv is_var_in_memory). Notation lower_cmd := (lower_cmd (asmop := _asmop) (lower_i is_regx) options warning fv is_var_in_memory). Hypothesis fvars_correct: fvars_correct fv (p_funcs p). Definition disj_fvars := disj_fvars fv. Definition vars_p := vars_p (p_funcs p). Definition fvars := fvars fv. Lemma fvars_fresh: disj_fvars vars_p. Proof. by move: fvars_correct => /andP []. Qed. Lemma of_neq_cf : fv.(fresh_OF) != fv.(fresh_CF). Proof. by move: fvars_correct=> /and5P [] ???? /and3P []. Qed. Lemma of_neq_sf : fv.(fresh_OF) != fv.(fresh_SF). Proof. by move: fvars_correct=> /and5P [] ???? /and3P []. Qed. Lemma of_neq_zf : fv.(fresh_OF) != fv.(fresh_ZF). Proof. by move: fvars_correct=> /and5P [] ???? /and3P []. Qed. Lemma cf_neq_sf : fv.(fresh_CF) != fv.(fresh_SF). Proof. by move: fvars_correct=> /and5P [] ???? /and3P []. Qed. Lemma cf_neq_zf : fv.(fresh_CF) != fv.(fresh_ZF). Proof. by move: fvars_correct=> /and5P [] ???? /and3P []. Qed. Lemma sf_neq_zf : fv.(fresh_SF) != fv.(fresh_ZF). Proof. by move: fvars_correct=> /and5P [] ???? /and3P []. Qed. Lemma of_in_fv: Sv.In (vbool fv.(fresh_OF)) fvars. Proof. by rewrite /fvars /x86_lowering.fvars /= /fv_of; SvD.fsetdec. Qed. Lemma cf_in_fv: Sv.In (vbool fv.(fresh_CF)) fvars. Proof. by rewrite /fvars /x86_lowering.fvars /= /fv_cf; SvD.fsetdec. Qed. Lemma sf_in_fv: Sv.In (vbool fv.(fresh_SF)) fvars. Proof. by rewrite /fvars /x86_lowering.fvars /= /fv_sf; SvD.fsetdec. Qed. Lemma pf_in_fv: Sv.In (vbool fv.(fresh_PF)) fvars. Proof. by rewrite /fvars /x86_lowering.fvars /= /fv_pf; SvD.fsetdec. Qed. Lemma zf_in_fv: Sv.In (vbool fv.(fresh_ZF)) fvars. Proof. by rewrite /fvars /x86_lowering.fvars /= /fv_zf; SvD.fsetdec. Qed. Lemma multiplicand_in_fv sz : Sv.In (vword sz (fv.(fresh_multiplicand) sz)) fvars. Proof. by rewrite /fvars /x86_lowering.fvars /=; case: sz; SvD.fsetdec. Qed. Local Hint Resolve of_neq_cf of_neq_sf of_neq_zf cf_neq_sf cf_neq_zf sf_neq_zf : core. Local Hint Resolve of_in_fv cf_in_fv sf_in_fv pf_in_fv zf_in_fv multiplicand_in_fv : core. Local Definition p' := lower_prog p. Definition eq_exc_fresh s1 s2 := estate_eq_except fvars s1 s2. Lemma disj_fvars_subset s1 s2 : Sv.Subset s1 s2 → disj_fvars s2 → disj_fvars s1. Proof. move => Hle h1; rewrite /disj_fvars /x86_lowering.disj_fvars. by apply: disjoint_w; eauto. Qed. Global Instance disj_fvars_m : Proper (Sv.Equal ==> iff) disj_fvars. Proof. by move=> s1 s2 Heq; split; rewrite /disj_fvars /x86_lowering.disj_fvars Heq. Qed. Lemma fvars_fun fn f: get_fundef (p_funcs p) fn = Some f -> disj_fvars (vars_fd f). Proof. have := fvars_fresh; rewrite /vars_p. move: (p_funcs p) fn f. elim=> // [[fn0 fd0]] l Hl fn f. rewrite get_fundef_cons /=. move=> /disjoint_union [Hq Hh]. case: ifP=> Hfn. + by move=> []<-. + move=> Hf. exact: (Hl _ _ Hq Hf). Qed. Let Pi s (i:instr) s' := disj_fvars (vars_I i) -> forall s1, eq_exc_fresh s1 s -> exists s1', sem p' ev s1 (lower_i is_regx options warning fv is_var_in_memory i) s1' /\ eq_exc_fresh s1' s'. Let Pi_r s (i:instr_r) s' := forall ii, Pi s (MkI ii i) s'. Let Pc s (c:cmd) s' := disj_fvars (vars_c c) -> forall s1, eq_exc_fresh s1 s -> exists s1', sem p' ev s1 (lower_cmd c) s1' /\ eq_exc_fresh s1' s'. Let Pfor (i:var_i) vs s c s' := disj_fvars (Sv.union (vars_c c) (Sv.singleton i)) -> forall s1, eq_exc_fresh s1 s -> exists s1', sem_for p' ev i vs s1 (lower_cmd c) s1' /\ eq_exc_fresh s1' s'. Let Pfun scs1 m1 fn vargs scs2 m2 vres := sem_call p' ev scs1 m1 fn vargs scs2 m2 vres. Local Lemma Hskip : sem_Ind_nil Pc. Proof. move=> s ? s1 [H1 H2]; exists s1; repeat split=> //; exact: Eskip. Qed. Local Lemma Hcons : sem_Ind_cons p ev Pc Pi. Proof. move=> s1 s2 s3 i c Hsi Hi Hsc Hc Hdisj s1' Hs1'. move: Hdisj. rewrite /disj_fvars /x86_lowering.disj_fvars vars_c_cons => /disjoint_union [Hdisji Hdisjc]. have [s2' [Hs2'1 Hs2'2]] := Hi Hdisji _ Hs1'. have [s3' [Hs3'1 Hs3'2]] := Hc Hdisjc _ Hs2'2. exists s3'; repeat split=> //. exact: (sem_app Hs2'1 Hs3'1). Qed. Local Lemma HmkI : sem_Ind_mkI p ev Pi_r Pi. Proof. move=> ii i s1 s2 _ Hi; exact: Hi. Qed. Lemma type_of_get_gvar vm sz vn vi vs v: get_gvar gd vm {| gv := {| v_var := {| vtype := sword sz; vname := vn |} ; v_info := vi |} ; gs := vs |} = ok v -> ∃ sz', type_of_val v = sword sz' ∧ (sz' ≤ sz)%CMP. Proof. rewrite /get_gvar; case: vs => /=; last first. - by case/get_globalI => gv [] _ -> ->; exists sz. rewrite /get_var /on_vu. case Heq: (vm.[_])=> [a|[]] // [<-] /=; eauto. case: a {Heq} => /= sz' _; eauto. Qed. Lemma add_inc_dec_classifyP' sz a b: match add_inc_dec_classify sz a b with | AddInc y => (a = y ∧ b = Papp1 (Oword_of_int sz) (Pconst 1)) ∨ (a = Papp1 (Oword_of_int sz) (Pconst 1) ∧ b = y) | AddDec y => (a = y ∧ b = Papp1 (Oword_of_int sz) (Pconst (-1))) ∨ (a = Papp1 (Oword_of_int sz) (Pconst (-1)) ∧ b = y) | AddNone => True end. Proof. rewrite /add_inc_dec_classify. repeat match goal with | |- True => exact: I | |- _ ∨ _ => (left; split; reflexivity) || (right; split; reflexivity) | |- match (if _ == _ then _ else _) with _ => _ end => case: eqP => // ?; subst | |- match match ?x with _ => _ end with _ => _ end => destruct x end. Qed. Lemma add_inc_dec_classifyP s sz (a b : pexpr) w1 (z1: word w1) w2 (z2 : word w2) : sem_pexprs gd s [:: a; b] = ok [:: Vword z1; Vword z2] -> match add_inc_dec_classify sz a b with | AddInc y => exists sz' (w: word sz'), (sz' = w1 ∨ sz' = w2) ∧ sem_pexpr gd s y = ok (Vword w) /\ zero_extend sz w + 1 = zero_extend sz z1 + zero_extend sz z2 | AddDec y => exists sz' (w: word sz'), (sz' = w1 ∨ sz' = w2) ∧ sem_pexpr gd s y = ok (Vword w) /\ zero_extend sz w - 1 = zero_extend sz z1 + zero_extend sz z2 | AddNone => True end%R. Proof. have := add_inc_dec_classifyP' sz a b. case: (add_inc_dec_classify sz a b)=> [y|y|//]. + case=> [[??]|[??]]; subst; rewrite /sem_pexprs /=; t_xrbindP. + by move => z -> -> -> [<-]; exists w1, z1; do 2 (split; first by eauto); rewrite zero_extend_u /wrepr mathcomp.word.word.mkword1E. by move => ? z -> <- -> [<-] [->]; exists w2, z2; do 2 (split; first by eauto); rewrite zero_extend_u /wrepr mathcomp.word.word.mkword1E GRing.addrC. + case=> [[??]|[??]]; subst; rewrite /sem_pexprs /=; t_xrbindP. + by move => z -> -> -> [<-]; exists w1, z1; do 2 (split; first by eauto); rewrite zero_extend_u /wrepr mathcomp.word.word.mkwordN1E. by move => ? z -> <- -> [<-] [->]; exists w2, z2; do 2 (split; first by eauto); rewrite zero_extend_u /wrepr mathcomp.word.word.mkwordN1E GRing.addrC. Qed. Lemma sub_inc_dec_classifyP sz e: match sub_inc_dec_classify sz e with | SubInc => e = Papp1 (Oword_of_int sz) (Pconst (-1)) | SubDec => e = Papp1 (Oword_of_int sz) (Pconst 1) | SubNone => True end. Proof. by case: e => // -[] // ? [] // [] // [] //=; case: eqP => // ->. Qed. Lemma write_lval_word l sz v s s': stype_of_lval l = sword sz → write_lval gd l v s = ok s' → ∃ sz', type_of_val v = sword sz'. Proof. case: l => /= [ _ [] // sz' | [[vt vn] vi] | sz' [[vt vn] vi] e | aa sz' [[vt vn] vi] e | aa sz' len [[vt vn] vi] e ] /=. - case => ->; case: v => //=; eauto => -[] //=; eauto. - move => ->; case: v => //=; eauto => -[] //=; eauto. - move => ->; t_xrbindP => w1 v1 _ h1 w n _ hn w' /to_wordI [ws [? [??]]]; subst => /=; eauto. - by move => ->; apply: on_arr_varP. by move => ->; apply: on_arr_varP. Qed. Lemma between_ZR (a b c: Z) : (a <= b < c)%R → (a <= b < c)%Z. Proof. by case/andP => /word_ssrZ.lezP ? /word_ssrZ.ltzP. Qed. Lemma wleuE' sz (α β: word sz) : wle Unsigned β α = (wunsigned (β - α) != (wunsigned β - wunsigned α)%Z) || (β == α). Proof. case: (β =P α). + by move => <-; rewrite orbT /= lexx. rewrite orbF /wunsigned /=. case: α β => α hα [] β hβ ne'. Transparent word. repeat rewrite /mathcomp.word.word.urepr /=. Opaque word. have ne : α ≠ β. - move => ?; subst; apply: ne'. by rewrite (Eqdep_dec.UIP_dec Bool.bool_dec hα). case/between_ZR: hα hβ {ne'} => hα hα' /between_ZR [hβ hβ']. elim_div => z a [] //. elim_div => z1 b [] //. set m := (wsize_size_minus_1 sz).+1. have /word_ssrZ.ltzP := mathcomp.word.word.modulus_gt0 m. match goal with |- (?x < _)%Z → _ => have hz : x = 0%Z by [] end. rewrite hz in hα, hβ |- * => {hz}. move => hm /Z.eq_opp_r ?; subst α => - []; last Psatz.lia. case => ??? []; last Psatz.lia. case => ??. symmetry; case: word_ssrZ.lezP => h; apply/eqP; first Psatz.nia. fold m in hα', hβ'. suff: z = (- z1)%Z; Psatz.nia. Qed. Lemma lower_condition_corr ii ii' i e e' s1 cond: (i, e') = lower_condition fv ii' e -> forall s1', eq_exc_fresh s1' s1 -> sem_pexpr gd s1' e = ok cond -> exists s2', sem p' ev s1' (map (MkI ii) i) s2' /\ eq_exc_fresh s2' s1 /\ sem_pexpr gd s2' e' = ok cond. Proof. move=> Hcond s1' Hs1' He. move: Hcond. rewrite /lower_condition. case heq : lower_cond_classify => [ [[[[lv ws] c] x] y]| ]; last first. + by move=> [ -> ->]; exists s1' => /=; split => //; constructor. case: ifP; last first. + by move=> _ [ -> ->]; exists s1' => /=; split => //; constructor. move=> hws [??]; subst i e'. case: e He heq => // o e1 e2 /=; t_xrbindP => v1 hv1 v2 hv2. set Of := {| v_var := {| vname := fresh_OF _ |} |}. set Cf := {| v_var := {| vname := fresh_CF _ |} |}. set Sf := {| v_var := {| vname := fresh_SF _ |} |}. set Zf := {| v_var := {| vname := fresh_ZF _ |} |}. have hw : forall (bof bcf bsf bpf bzf: bool), exists s2', [/\ write_lvals gd s1' [:: Lvar Of; Lvar Cf; Lvar Sf; Lnone ii' sbool; Lvar Zf] [:: Vbool bof; Vbool bcf; Vbool bsf; Vbool bpf; Vbool bzf] = ok s2', eq_exc_fresh s1' s2' & [/\ sem_pexpr gd s2' (Plvar Of) = ok (Vbool bof), sem_pexpr gd s2' (Plvar Cf) = ok (Vbool bcf), sem_pexpr gd s2' (Plvar Sf) = ok (Vbool bsf) & sem_pexpr gd s2' (Plvar Zf) = ok (Vbool bzf) ]]. + eexists; split => /=; first reflexivity. + split. + by rewrite !escs_with_vm. + by rewrite !emem_with_vm. rewrite evm_with_vm => z hz. by rewrite !Fv.setP_neq //; apply/eqP => heq; subst z; elim hz; auto using of_in_fv, cf_in_fv, sf_in_fv, pf_in_fv. split=> /=. + rewrite get_gvar_neq; last by move=> _ [] h; have := of_neq_zf; rewrite h eqxx. rewrite get_gvar_neq; last by move=> _ [] h; have := of_neq_sf; rewrite h eqxx. rewrite get_gvar_neq; last by move=> _ [] h; have := of_neq_cf; rewrite h eqxx. by rewrite (@get_gvar_eq gd (mk_lvar Of)). + rewrite get_gvar_neq; last by move=> _ [] h; have := cf_neq_zf; rewrite h eqxx. rewrite get_gvar_neq; last by move=> _ [] h; have := cf_neq_sf; rewrite h eqxx. by rewrite (@get_gvar_eq gd (mk_lvar Cf)). + rewrite get_gvar_neq; last by move=> _ [] h; have := sf_neq_zf; rewrite h eqxx. by rewrite (@get_gvar_eq gd (mk_lvar Sf)). by rewrite (@get_gvar_eq gd (mk_lvar Zf)). have {hw}hw : forall wx wy, to_word ws v2 = ok wy -> to_word ws v1 = ok wx -> ∃ s2' : estate, [/\ sem p' ev s1' [:: MkI ii (Copn [:: Lvar Of; Lvar Cf; Lvar Sf; Lnone ii' sbool; Lvar Zf] AT_none (Ox86 (CMP ws)) [:: e1; e2])] s2', eq_exc_fresh s2' s1 & [/\ sem_pexpr gd s2' (Plvar Of) = ok (Vbool ((wsigned (wx - wy) != (wsigned wx - wsigned wy)%Z))), sem_pexpr gd s2' (Plvar Cf) = ok (Vbool (wunsigned (wx - wy) != (wunsigned wx - wunsigned wy)%Z)), sem_pexpr gd s2' (Plvar Sf) = ok (Vbool (SF_of_word (wx - wy))) & sem_pexpr gd s2' (Plvar Zf) = ok (Vbool (ZF_of_word (wx - wy)))]]. + move=> wx wy hx hy; have [s2' [{hw}hw heq he]] := hw (wsigned (wx - wy) != (wsigned wx - wsigned wy)%Z) (wunsigned (wx - wy) != (wunsigned wx - wunsigned wy)%Z) (SF_of_word (wx - wy)) (PF_of_word (wx - wy)) (ZF_of_word (wx - wy)). exists s2'; split => //. + apply: sem_seq1; econstructor; econstructor. rewrite /sem_sopn /= hv1 hv2 /= /exec_sopn /= hx hy /= /sopn_sem /= /x86_CMP. rewrite /check_size_8_64 hws //. by apply: eeq_excT Hs1'; apply eeq_excS. case: o => //. + case=> // ws' /sem_sop2I /= [wx [wy [b [hw2 hw1]]]] hs ? [] ?????; subst cond e1 e2 ws' c lv. have [s2' [hsem heqe [hof hcf hsf hzf]]]:= hw _ _ hw1 hw2. exists s2'; split => //; split => //. by case: hs => <-; rewrite hzf /ZF_of_word GRing.subr_eq0. + case=> // ws' /sem_sop2I /= [wx [wy [b [hw2 hw1]]]] hs ? [] ?????; subst cond e1 e2 ws' c lv. have [s2' [hsem heqe [hof hcf hsf hzf]]]:= hw _ _ hw1 hw2. exists s2'; split => //; split => //. move: hzf; rewrite /enot /= => -> /=. rewrite /sem_sop1 /=. by case: hs => <-; do 3! f_equal; rewrite /ZF_of_word GRing.subr_eq0. + case => // -[] ws' /sem_sop2I /= [wx [wy [b [hw2 hw1]]]] hs ? [] ?????; subst cond e1 e2 ws' c lv; have [s2' [hsem heqe [hof hcf hsf hzf]]]:= hw _ _ hw1 hw2; exists s2'; split => //; split => //; case: hs => <-. + move: hof hsf => /= -> -> /=; rewrite /sem_sop1 /= /SF_of_word. by rewrite eq_sym -wltsE. by move: hcf => /= -> /=; rewrite -wleuE /= ltNge. + case => // -[] ws' /sem_sop2I /= [wx [wy [b [hw2 hw1]]]] hs ? [] ?????; subst cond e1 e2 ws' c lv; have [s2' [hsem heqe [hof hcf hsf hzf]]]:= hw _ _ hw1 hw2; exists s2'; split => //; split => //; case: hs => <-. + move: hof hsf hzf => /= -> -> -> /=; rewrite /sem_sop2 /= /SF_of_word /ZF_of_word. rewrite eq_sym -wltsE GRing.subr_eq0 le_eqVlt orbC eqtype.inj_eq //. by apply word.srepr_inj. move: hcf hzf => /= -> -> /=; rewrite /sem_sop2 /= /ZF_of_word. by rewrite GRing.subr_eq0 -wleuE'. + case => // -[] ws' /sem_sop2I /= [wx [wy [b [hw2 hw1]]]] hs ? [] ?????; subst cond e1 e2 ws' c lv; have [s2' [hsem heqe [hof hcf hsf hzf]]]:= hw _ _ hw1 hw2; exists s2'; split => //; split => //; case: hs => <-. + move: hof hsf hzf => /= -> -> -> /=; rewrite /sem_sop2 /= /SF_of_word /ZF_of_word. rewrite ltNge -(negbK (_ == msb _)). rewrite -negb_or (eq_sym _ (msb _)) -wltsE GRing.subr_eq0 orbC /= le_eqVlt. by rewrite eqtype.inj_eq //; apply word.srepr_inj. move: hcf hzf => /= -> -> /=; rewrite /sem_sop2 /= /ZF_of_word. by rewrite -negb_or GRing.subr_eq0 ltNge -wleuE'. case => // -[] ws' /sem_sop2I /= [wx [wy [b [hw2 hw1]]]] hs ? [] ?????; subst cond e1 e2 ws' c lv; have [s2' [hsem heqe [hof hcf hsf hzf]]]:= hw _ _ hw1 hw2; exists s2'; split => //; split => //; case: hs => <-. + move: hof hsf => /= -> -> /=; rewrite /sem_sop2 /= /SF_of_word. by rewrite eq_sym -(negbK (_ == _)) -wltsE /= leNgt. by move: hcf => /= -> /=; rewrite /sem_sop1 /= -wleuE negbK. Qed. Lemma read_es_swap x y : Sv.Equal (read_es [:: x ; y ]) (read_es [:: y ; x ]). Proof. by rewrite ! read_es_cons; SvD.fsetdec. Qed. (* ---------------------------------------------------------- *) Lemma is_leaP f sz x e l : is_lea f sz x e = Some l -> [/\ (U16 ≤ sz)%CMP && (sz ≤ U64)%CMP, Sv.Subset (read_lea l) (read_e e), mk_lea sz e = Some l & check_scale l.(lea_scale)]. Proof. rewrite /is_lea; case: ifP => // /andP [-> _]. case h: mk_lea => [[d b sc o]|] //. move /mk_lea_read in h. by case: ifP => // /andP [] /andP [] heq _ _ [<-]. Qed. Lemma zquot_bound m x y : (y ≠ 0 → x ≠ -m ∨ y ≠ -1 → -m <= x <= m - 1 → -m <= y <= m - 1 → -m <= x ÷ y <= m - 1)%Z. Proof. move => hnz hn1 hx hy. move: (x ÷ y)%Z (Z.quot_div x y hnz) => z. elim_div => ? ? []; first lia. move => h []; last lia. nia. Qed. Lemma wsigned_quot_bound sz (w1 w2:word sz) : w2 ≠ 0%R → (wsigned w1 == wmin_signed sz) && (w2 == (-1)%R) = false → [|| wsigned w2 == 0%Z, (wsigned w1 ÷ wsigned w2 <? wmin_signed sz)%Z | (wsigned w1 ÷ wsigned w2 >? wmax_signed sz)%Z] = false. Proof. move => hnz hn1. case: eqP. + by rewrite -(@wsigned0 sz) => /(can_inj (@word.sreprK _)). move => hnz' /=. apply: negbTE; rewrite negb_or; apply/andP. rewrite Z.gtb_ltb -!Z.leb_antisym -!(rwP lezP). apply: zquot_bound => //; try exact: wsigned_range. case /Bool.andb_false_elim: hn1 => /eqP h; [ left | right ] => //. by rewrite -(@wsignedN1 sz) => /(can_inj (@word.sreprK _)). Qed. Lemma wunsigned_div_bound sz (w1 w2: word sz) : wunsigned w2 != 0%Z -> ~~(wunsigned w1 / wunsigned w2 >? wmax_unsigned sz)%Z. Proof. have ? := wunsigned_range w2. move/eqP => hnz. rewrite Z.gtb_ltb -Z.leb_antisym; apply/leZP. rewrite /wmax_unsigned. have := wunsigned_range w1. elim_div; nia. Qed. Lemma check_size_16_64_ve (ve:velem) : (U16 ≤ ve)%CMP -> check_size_16_64 ve = ok tt. Proof. by rewrite /check_size_16_64 => ->; case:ve. Qed. Lemma check_size_32_64_ve (ve:velem) : (U32 ≤ ve)%CMP -> check_size_32_64 ve = ok tt. Proof. by rewrite /check_size_32_64 => ->; case:ve. Qed. Lemma check_size_128_256_ge sz : (U128 <= sz)%CMP -> check_size_128_256 sz = ok tt. Proof. by move=> h; rewrite /check_size_128_256 h wsize_ge_U256. Qed. Lemma mulr_ok l sz w1 w2 (z1 : word w1) (z2:word w2) e1 e2 o e' s s': sem_pexpr gd s e1 = ok (Vword z1) -> sem_pexpr gd s e2 = ok (Vword z2) -> (sz ≤ w1)%CMP -> (sz ≤ w2)%CMP -> (U16 ≤ sz)%CMP && (sz ≤ U64)%CMP -> write_lval gd l (Vword (zero_extend sz z1 * zero_extend sz z2)) s = ok s'-> mulr sz e1 e2 = (o, e') -> Sv.Subset (read_es e') (read_e (Papp2 (Omul (Op_w sz )) e1 e2)) ∧ Let x := Let x := sem_pexprs gd s e' in exec_sopn (Ox86 o) x in write_lvals gd s [:: Lnone (var_info_of_lval l) sbool; Lnone (var_info_of_lval l) sbool; Lnone (var_info_of_lval l) sbool; Lnone (var_info_of_lval l) sbool; Lnone (var_info_of_lval l) sbool; l] x = ok s'. Proof. rewrite /mulr => ok_v1 ok_v2 hle1 hle2 hsz64 Hw. case Heq: (is_wconst _ _) => [z | ]. * have! := (is_wconstP gd s Heq); t_xrbindP => v1 h1 hz [<- <-]. split; first done. rewrite /= ok_v1 ok_v2 /= /exec_sopn /sopn_sem /= /truncate_word hle1 hle2. by rewrite /x86_IMULt /check_size_16_64 hsz64 /= GRing.mulrC Hw. case Heq2: (is_wconst _ _) => [z | ]. * have! := (is_wconstP gd s Heq2); t_xrbindP => v2 h2 hz [<- <-]. split; first by rewrite read_es_swap. rewrite /= ok_v1 ok_v2 /= /exec_sopn /sopn_sem /= /truncate_word hle1 hle2 /=. by rewrite /x86_IMULt /check_size_16_64 hsz64 /= Hw. move=> [<- <-];split; first by rewrite read_es_swap. rewrite /= ok_v1 ok_v2 /= /exec_sopn /sopn_sem /= /truncate_word hle1 hle2 /=. by rewrite /x86_IMULt /check_size_16_64 hsz64 /= Hw. Qed. Lemma lower_cassgn_classifyP e l s s' v ty v' (Hs: sem_pexpr gd s e = ok v) (Hv': truncate_val ty v = ok v') (Hw: write_lval gd l v' s = ok s'): match lower_cassgn_classify is_var_in_memory ty e l with | LowerMov _ => exists2 sz, ty = sword sz & (sz ≤ U64)%CMP ∧ ∃ sz' (w : word sz'), (sz ≤ sz')%CMP ∧ v = Vword w | LowerCopn o a => sem_pexprs gd s a >>= exec_sopn o = ok [:: v' ] | LowerInc o a => ∃ b1 b2 b3 b4, sem_pexprs gd s [:: a] >>= exec_sopn o = ok [:: Vbool b1; Vbool b2; Vbool b3; Vbool b4; v'] | LowerFopn _ o e' _ => let vi := var_info_of_lval l in let f := Lnone vi sbool in Sv.Subset (read_es e') (read_e e) ∧ sem_pexprs gd s e' >>= exec_sopn o >>= write_lvals gd s [:: f; f; f; f; f; l] = ok s' | LowerDiscardFlags n op e' => let f := Lnone (var_info_of_lval l) sbool in Sv.Subset (read_es e') (read_e e) /\ sem_pexprs gd s e' >>= exec_sopn op >>= write_lvals gd s (nseq n f ++ [:: l ]) = ok s' | LowerDivMod p u sz o a b => let vi := var_info_of_lval l in let f := Lnone vi sbool in let lv := match p with | DM_Fst => [:: f; f; f; f; f; l; Lnone vi (sword sz)] | DM_Snd => [:: f; f; f; f; f; Lnone vi (sword sz); l] end in [/\ (exists (va:value)(wa:word sz), [/\ (sem_pexpr gd s a) = ok va, to_word sz va = ok wa & (forall s1, eq_exc_fresh s1 s -> disj_fvars (vars_lval l) -> disj_fvars (read_e e) -> [/\ (sem_pexpr gd s1 a) = ok va & exists s1', (Let vb := (sem_pexpr gd s1 b) in let v0 : word sz := if u is Unsigned then 0%R else if msb wa then (-1)%R else 0%R in exec_sopn o [::Vword v0; va; vb] >>= write_lvals gd s1 lv) = ok s1' /\ eq_exc_fresh s1' s'])]), ty = sword sz , (U16 ≤ sz)%CMP & (sz ≤ U64)%CMP] | LowerCond => True | LowerIf t a e1 e2 => check_size_16_64 (wsize_of_lval l) = ok tt ∧ e = Pif t a e1 e2 ∧ wsize_of_lval l = wsize_of_stype ty ∧ ∃ sz', stype_of_lval l = sword sz' | LowerLea sz l => ((U16 ≤ sz)%CMP && (sz ≤ U64)%CMP ∧ check_scale (lea_scale l) ∧ Sv.Subset (read_lea l) (read_e e) ∧ exists w: word sz, v' = Vword w /\ sem_lea sz (evm s) l = ok w) | LowerConcat hi lo => sem_pexprs gd s [:: hi ; lo ] >>= exec_sopn (Oasm (ExtOp Oconcat128)) = ok [:: v' ] | LowerAssgn => True end. Proof. rewrite /lower_cassgn_classify. move: e Hs=> [z|b|n|x|aa ws x e | aa ws len x e |sz x e| o e|o e1 e2| op es |e e1 e2] //. + case: x => - [] [] [] // sz vn vi vs //= /dup[] ok_v. case/type_of_get_gvar => sz' [Hs Hs']. have := truncate_val_subtype Hv'. rewrite Hs -(truncate_val_has_type Hv'). case hty: (type_of_val v') => [ | | | sz'' ] //= hle. case: (write_lval_undef Hw hty) => w ? {hty}; subst v'. case/truncate_valI: Hv' => s'' [] w'' [] ? ok_w ?; subst. case: Hs => ?; subst s''. case: ifP. * move => h; eexists; first reflexivity. split; first exact: (cmp_le_trans hle (cmp_le_trans Hs' h)). by eexists _, _; split; last reflexivity. rewrite eqxx andbT => _. case: ifP => // hsz''. by rewrite /= ok_v /exec_sopn /sopn_sem /= /x86_MOVX /check_size_32_64 hsz'' ok_w. + rewrite /=; apply: rbindP => - [] // len a /= ok_a; t_xrbindP => i j ok_j ok_i w ok_w ?; subst v. case: x ok_a => x xs ok_a. case/truncate_valE: Hv' => sz' [] w' [] -> {ty} ok_w' ?; subst v'. case: ifP. * move => h. eexists; first reflexivity. case/truncate_wordP: ok_w' => hle _. split; first exact: (cmp_le_trans hle). by eauto. rewrite eqxx andbT => _. case: ifP => // hsz''. by rewrite /= ok_a ok_j /= ok_i /= ok_w /exec_sopn /sopn_sem /= /x86_MOVX /check_size_32_64 hsz'' ok_w'. + rewrite /=; t_xrbindP => ???????? w _ ?; subst v; case: ifP => // ?. have {Hv'} [sz' [? [? /truncate_wordP [hle _] ?]]] := truncate_valE Hv'. subst v' ty => /=. eexists; first reflexivity. split; first exact: (cmp_le_trans hle). by eauto. + case: o => //. (* Oword_of_int *) - move => sz; case: e => // z [?]; subst v. have {Hv'} [sz' [? [? /truncate_wordP [hle _] ?]]] := truncate_valE Hv'. subst v' ty => /=. by case: ifP => // hle'; eauto 6. (* Osignext *) + rewrite /= /sem_sop1 /=; t_xrbindP => sz sz' x ok_x x' /to_wordI' [szx [wx [hle ??]]] ?. subst x x' v. case: sz' Hv' hle => // /truncate_valE [sz' [? [-> /truncate_wordP [_ ->] ->]]] hle. - case: andP => // - [] hs /eqP[] ?; subst sz. by rewrite /= ok_x /= zero_extend_sign_extend /exec_sopn //= /truncate_word hle /= /sopn_sem /= /x86_MOVSX /check_size_16_64 hs. - case: andP => // - [] hs /eqP[] ?; subst sz. by rewrite /= ok_x /= zero_extend_sign_extend /exec_sopn //= /truncate_word hle /= /sopn_sem /= /x86_MOVSX /check_size_16_64 hs. case: andP => // - [] hs /eqP[] /= ?; subst sz'. by rewrite ok_x /= zero_extend_sign_extend // /exec_sopn /= /truncate_word hle /sopn_sem /= /x86_MOVSX /check_size_32_64 hs. (* Ozeroext *) + rewrite /= /sem_sop1 /=; t_xrbindP => sz sz' x ok_x x' /to_wordI' [szx [wx [hle ??]]] ?. subst x x' v. case: sz' Hv' hle => // /truncate_valE [sz' [? [? /truncate_wordP[hle' ->] ?]]] hle; subst ty v'. - case: andP => // - [] hs /eqP[] ?; subst sz. by rewrite /= ok_x /= zero_extend_u /exec_sopn /= /truncate_word hle /sopn_sem /= /x86_MOVZX /check_size_16_64 hs. - case: andP => // - [] hs /eqP[] ?; subst sz. by rewrite /= ok_x /= zero_extend_u /exec_sopn /= /truncate_word hle /sopn_sem /= /x86_MOVZX /check_size_32_64 hs. - case: sz Hw hle' => // Hw hle'; case: eqP => // - [] ?; subst sz'. 1-3: rewrite /= ok_x /exec_sopn /= /truncate_word hle /= zero_extend_u //. do 3 f_equal. exact: zero_extend_cut. case: sz Hw hle' => // Hw hle'; case: eqP => // - [] ?; subst sz'. 1-2: rewrite /= ok_x /exec_sopn /= /truncate_word hle /= zero_extend_u //. do 3 f_equal. exact: zero_extend_cut. (* Olnot *) + rewrite /= /sem_sop1 => sz; t_xrbindP => w Hz z' /to_wordI' [sz' [z [Hsz ? ->]]] ?; subst. case: andP => // - [hsz] /eqP ?; subst ty. rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u in Hv'. case: Hv' => ?; subst v'. by rewrite /sem_pexprs /= Hz /exec_sopn /= /truncate_word Hsz /= /sopn_sem /= /x86_NOT /check_size_8_64 hsz. (* Oneg *) + rewrite /= /sem_sop1 => - [] // sz; t_xrbindP => w Hv z' /to_wordI' [sz' [z [Hsz ? ->]]] ?; subst. case: andP => // - [hsz] /eqP ?; subst ty. split. reflexivity. rewrite /truncate_val /= /truncate_word /= cmp_le_refl /= zero_extend_u in Hv'. case: Hv' => ?; subst v'. by rewrite /sem_pexprs /= Hv /exec_sopn /= /truncate_word Hsz /sopn_sem /= /x86_NEG /check_size_8_64 hsz /= Hw. + case: o => // [[] sz |[] sz|[] sz|[]// u sz| []// u sz|sz|sz|sz|sz|sz|sz|sz|sz| ve sz | ve sz | ve sz | ve sz | ve sz | ve sz] //. case: andP => // - [hsz64] /eqP ?; subst ty. (* Oadd Op_w *) + rewrite /= /sem_sop2 /=; t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [w1] [z1] [hle1 ??]; subst. move => ? /to_wordI' [w2] [z2] [hle2 ??]; subst. move => ?; subst v. rewrite /truncate_val /= /truncate_word /= cmp_le_refl /= zero_extend_u in Hv'. case: Hv' => ?; subst v'. case Heq: is_lea => [lea|]. + (* LEA *) case/is_leaP: Heq => /andP [hsz1 hsz2] hsub hlea hsc. split; first by rewrite hsz1 hsz2. split => //; split => //=. eexists; split; first reflexivity. rewrite -(zero_extend_u (_ + _)). apply: (mk_leaP (gd := gd) _ (cmp_le_refl _) hlea) => //. by rewrite /= ok_v1 ok_v2 /= /sem_sop2 /= /truncate_word hle1 hle2. move => {Heq}. have /= := @add_inc_dec_classifyP s sz e1 e2. rewrite ok_v1 ok_v2 => /(_ _ _ _ _ erefl). case: (add_inc_dec_classify _ _ _) => [y|y|//]. (* AddInc *) * case => sz' [w'] [hsz] []; rewrite /sem_pexprs /= => -> /= <-. have hsz' : (sz ≤ sz')%CMP by case: hsz => ->. by rewrite /exec_sopn /sopn_sem /= /x86_INC /rflags_of_aluop_nocf_w /flags_w /truncate_word hsz' /= /check_size_8_64 hsz64 /=; eauto. (* AddDec *) * case => sz' [w'] [hsz] []; rewrite /sem_pexprs /= => -> /= <-. have hsz' : (sz ≤ sz')%CMP by case: hsz => ->. by rewrite /exec_sopn /sopn_sem /= /x86_DEC /rflags_of_aluop_nocf_w /flags_w /truncate_word hsz' /= /check_size_8_64 hsz64 /=; eauto. (* AddNone *) move=> _;split. rewrite read_es_cons {2}/read_e /= !read_eE. SvD.fsetdec. by rewrite /= ok_v1 ok_v2 /= /exec_sopn /= /sem_sopn /= /truncate_word hle1 hle2 /= /sopn_sem /= /x86_ADD /= /check_size_8_64 hsz64 /= Hw. (* Omul Op_w *) + rewrite /= /sem_sop2 /=; t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [w1] [z1] [hle1 ??]; subst. move => ? /to_wordI' [w2] [z2] [hle2 ??]; subst. move => ?; subst v. case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u in Hv'. case: Hv' => ?; subst v'. case Heq: is_lea => [lea|]. (* LEA *) + case/is_leaP: Heq => /andP [hsz1 hsz2] hsub hlea hsc. split; first by rewrite hsz1 hsz2. split => //; split => //=. eexists; split; first reflexivity. rewrite -(zero_extend_u (_ * _)). apply: (mk_leaP (gd := gd) _ (cmp_le_refl _) hlea) => //. by rewrite /= ok_v1 ok_v2 /= /sem_sop2 /= /truncate_word hle1 hle2. move => {Heq}. case Heq : mulr => [o e']. by apply: mulr_ok ok_v1 ok_v2 hle1 hle2 hsz64 Hw Heq. (* Osub Op_w *) + rewrite /= /sem_sop2 /=; t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [w1] [z1] [hle1 ??]; subst. move => ? /to_wordI' [w2] [z2] [hle2 ??]; subst. move => ?; subst v. case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u in Hv'. case: Hv' => ?; subst v'. case Heq: is_lea => [lea|]. (* LEA *) * case/is_leaP: Heq => /andP [hsz1 hsz2] hsub hlea hsc. split; first by rewrite hsz1 hsz2. split => //; split => //=. eexists; split; first reflexivity. rewrite -(zero_extend_u (_ - _)). apply: (mk_leaP (gd := gd) _ (cmp_le_refl _) hlea) => //. by rewrite /= ok_v1 ok_v2 /= /sem_sop2 /= /truncate_word hle1 hle2. have := sub_inc_dec_classifyP sz e2. case: (sub_inc_dec_classify _ _)=> [He2|He2|//]; try subst e2. (* SubInc *) * move: ok_v2 => /ok_word_inj [??]; subst. rewrite ok_v1 /= /exec_sopn /sopn_sem /= /truncate_word hle1 /=. rewrite /x86_INC /check_size_8_64 hsz64 /rflags_of_aluop_nocf_w /flags_w /=. eexists _, _, _, _. repeat f_equal. rewrite zero_extend_u /wrepr mathcomp.word.word.mkwordN1E. ssring. (* SubDec *) * move: ok_v2 => /ok_word_inj [??]; subst. rewrite ok_v1 /= /exec_sopn /sopn_sem /= /truncate_word hle1 /=. rewrite /x86_DEC /check_size_8_64 hsz64 /rflags_of_aluop_nocf_w /flags_w /=. by eexists _, _, _, _; repeat f_equal; rewrite zero_extend_u /wrepr mathcomp.word.word.mkword1E. (* SubNone *) + split. by rewrite read_es_swap. by rewrite /= ok_v1 ok_v2 /= /exec_sopn /sopn_sem /= /truncate_word hle1 hle2 /x86_SUB /check_size_8_64 hsz64 /= Hw. (* Odiv (Cmp_w u sz) *) + case: ifP => // /andP [] /andP [] hsz1 hsz2 /eqP ?;subst ty. rewrite /sem_pexprs /=; t_xrbindP => v1 hv1 v2 hv2. rewrite /sem_sop2 /= /mk_sem_divmod;t_xrbindP => /= w1 hw1 w2 hw2 w3 hw3 ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl /= => /ok_inj ?; subst v'. split => //. exists v1, w1;split => //. move=> s1 hs1 hl he. have -> /= := eeq_exc_sem_pexpr _ hs1 hv1; last first. + move: he; rewrite /read_e /= /disj_fvars /x86_lowering.disj_fvars !read_eE /disjoint. by rewrite /is_true !Sv.is_empty_spec;SvD.fsetdec. split => //. have -> /= := eeq_exc_sem_pexpr _ hs1 hv2; last first. + move: he; rewrite /read_e /= /disj_fvars /x86_lowering.disj_fvars !read_eE /disjoint. by rewrite /is_true !Sv.is_empty_spec;SvD.fsetdec. case: ifP hw3 => // hdiv []; simpl in * => {he}. case/Bool.orb_false_elim: hdiv => /eqP neq hdiv. case: u => /= ?; subst w3; rewrite /= /exec_sopn /sopn_sem /= /x86_IDIV /x86_DIV !truncate_word_u /check_size_16_64 /= hsz1 hsz2 /= hw2 /=. + rewrite hw1 /= wdwords0 (wsigned_quot_bound neq hdiv) /=. move: Hw;rewrite /wdivi zero_extend_u => /(eeq_exc_write_lval hl hs1) [s1' -> ?]. by exists s1'. have hw2' : (wunsigned w2 == 0%Z) = false. + by apply /negbTE; apply /eqP => h; apply neq, wunsigned_inj. rewrite hw2' hw1 /= wdwordu0. move: hw2' => /negbT -/(wunsigned_div_bound w1) -/negbTE -> /=. move: Hw;rewrite /wdivi zero_extend_u => /(eeq_exc_write_lval hl hs1) [s1' -> ?]. by exists s1'. (* Omod (Cmp_w u sz) *) + case: ifP => // /andP [] /andP [] hsz1 hsz2 /eqP ?; subst ty. rewrite /sem_pexprs /=; t_xrbindP => v1 hv1 v2 hv2. rewrite /sem_sop2 /= /mk_sem_divmod;t_xrbindP => /= w1 hw1 w2 hw2 w3 hw3 ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl /= => /ok_inj ?; subst v'. split => //. exists v1, w1;split => //. move=> s1 hs1 hl he. have -> /= := eeq_exc_sem_pexpr _ hs1 hv1; last first. + move: he; rewrite /read_e /= /disj_fvars /x86_lowering.disj_fvars !read_eE /disjoint. by rewrite /is_true !Sv.is_empty_spec;SvD.fsetdec. split => //. have -> /= := eeq_exc_sem_pexpr _ hs1 hv2; last first. + move: he; rewrite /read_e /= /disj_fvars /x86_lowering.disj_fvars !read_eE /disjoint. by rewrite /is_true !Sv.is_empty_spec;SvD.fsetdec. case: ifP hw3 => // hdiv []; simpl in * => {he}. case/Bool.orb_false_elim: hdiv => /eqP neq hdiv. case: u => /= ?; subst w3; rewrite /= /exec_sopn /sopn_sem /= /x86_IDIV /x86_DIV !truncate_word_u /check_size_16_64 /= hsz1 hsz2 /= hw2 /=. + rewrite hw1 /= wdwords0 (wsigned_quot_bound neq hdiv) /=. move: Hw;rewrite /wdivi zero_extend_u => /(eeq_exc_write_lval hl hs1) [s1' -> ?]. by exists s1'. have hw2' : (wunsigned w2 == 0%Z) = false. + by apply /negbTE; apply /eqP => h; apply neq, wunsigned_inj. rewrite hw2' hw1 /= wdwordu0. move: hw2' => /negbT -/(wunsigned_div_bound w1) -/negbTE -> /=. move: Hw;rewrite /wdivi zero_extend_u => /(eeq_exc_write_lval hl hs1) [s1' -> ?]. by exists s1'. (* Oland Op_w *) + case handn : is_andn => [[a1 a2] | ]. + move=> he. have : sem_pexpr gd s (Papp2 (Oland sz) (Papp1 (Olnot sz) a1) a2) = ok v /\ Sv.Subset (read_es [:: a1; a2]) (read_e (Papp2 (Oland sz) e1 e2)). + have hlnot : forall e, match is_lnot e with | Some a => exists sz, e = Papp1 (Olnot sz) a | _ => True end. + by case => //= -[] // ??;eexists;eauto. move: handn (hlnot e1) (hlnot e2); rewrite /is_andn. case: is_lnot. + move=> a1' [] ?? [sz1 ?] ?; subst e1 a1' a2. move: he;rewrite /= /sem_sop2 /= /sem_sop1 /=. t_xrbindP => y h ha1 h' /to_wordI' [sz' [w' [hsz]]] ???;subst y h h'. move=> w2 -> wn /to_wordI' [sz1' [wn1 [hsz1]]]. move=> /Vword_inj [heq ]; subst sz1' => /= ??; subst wn1 wn. move=> w3 /to_wordI' [sz2 [wn2 [hsz2]]] ???; subst w2 w3 v. have hle := cmp_le_trans hsz1 hsz. rewrite ha1 /= /truncate_word hle /= truncate_word_u /= hsz2 /=. rewrite !wnot_zero_extend // zero_extend_idem //; split => //. by rewrite /read_e /read_es /= !read_eE; SvD.fsetdec. case: is_lnot => //. move=> a1' [] ?? _ [sz1 ?]; subst e1 a1' e2. move: he;rewrite /= /sem_sop2 /= /sem_sop1 /=. t_xrbindP => y -> w wa -> h3 /to_wordI' [sz' [w' [hsz]]] ???; subst wa h3 w. move=> w2 /to_wordI' [sz1' [wn1 [hsz1]]] ??; subst y w2. move=> w3 /to_wordI' [sz2 [wn2 [hsz2]]]. move=> /Vword_inj [heq ]; subst sz1 => /= ???; subst wn2 w3 v. have hle := cmp_le_trans hsz2 hsz. rewrite /truncate_word hle hsz1 /= truncate_word_u /=. by rewrite !wnot_zero_extend // zero_extend_idem // (@wandC sz); split. move=> []; rewrite /= /sem_sop1 /sem_sop2 /=. t_xrbindP => v1 va1 ha1 wa1 hva1 hv1 va2 ha2 wa2 hwa2 twa2 hva2 ? hread. subst v v1. case hty: (_ ≤ _)%CMP => /=. + case hty32: (_ ≤ _)%CMP => //=. case : eqP => //= ?; subst ty. split;first by apply hread. rewrite /exec_sopn /sopn_sem /= ha1 /= ha2 /= hva1 /= hva2 /=. rewrite /x86_ANDN /check_size_32_64 hty32 hty /=. move: Hv' hwa2; rewrite /truncate_val /= /truncate_word cmp_le_refl /=. rewrite !zero_extend_u => /ok_inj ? /ok_inj ?; subst wa2 v'. by rewrite /wandn Hw. case : eqP => //= ?; subst ty. rewrite /exec_sopn /sopn_sem /= ha1 /= ha2 /= hva1 /= hva2 /=. rewrite /x86_VPANDN /x86_u128_binop (wsize_nle_u64_check_128_256 hty) /=. move: Hv' hwa2; rewrite /truncate_val /= /truncate_word cmp_le_refl /=. by rewrite !zero_extend_u => /ok_inj <- /ok_inj <-. case: eqP; last by rewrite andbF => _ _ /=; case: ifP. move => ?; subst ty; rewrite /= /sem_sop2 /=; t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. case hty: (_ ≤ _)%CMP; rewrite /exec_sopn /sopn_sem /= ok_v1 ok_v2 /= /truncate_word hw1 hw2 /=. * (* AND *) split. by rewrite read_es_swap. by rewrite /x86_AND /check_size_8_64 hty /= Hw. (* VPAND *) rewrite /x86_VPAND /x86_u128_binop /=. by rewrite (wsize_nle_u64_check_128_256 hty) /=. (* Olor Op_w *) + case: eqP; last by rewrite andbF => _ _ /=; case: ifP. move => ?; subst ty; rewrite /= /sem_sop2 /=; t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. case hty: (_ ≤ _)%CMP; rewrite /exec_sopn /sopn_sem /= ok_v1 ok_v2 /= /truncate_word hw1 hw2 /=. * (* OR *) split. by rewrite read_es_swap. by rewrite /x86_OR /check_size_8_64 hty /= Hw. (* VPOR *) rewrite /x86_VPOR /x86_u128_binop /=. by rewrite (wsize_nle_u64_check_128_256 hty). (* Olxor Op_w *) + case: eqP; last by rewrite andbF => _ _ /=; case: ifP. move => ?; subst ty; rewrite /= /sem_sop2 /=; t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. case hty: (_ ≤ _)%CMP; rewrite /exec_sopn /sopn_sem /= ok_v1 ok_v2 /= /truncate_word hw1 hw2 /=. * (* XOR *) split. by rewrite read_es_swap. by rewrite /x86_XOR /check_size_8_64 hty /= Hw. (* VPXOR *) rewrite /x86_VPXOR /x86_u128_binop /=. by rewrite (wsize_nle_u64_check_128_256 hty). (* Olsr *) + case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /sem_pexprs /=; t_xrbindP => v1 -> v2 ->. rewrite /sem_sop2 /exec_sopn /sopn_sem /=. t_xrbindP => w1 -> w2 -> /= ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. split. by rewrite read_es_swap. move: Hw; rewrite /sem_shr /sem_shift /x86_SHR /check_size_8_64 hsz64 /=. case: eqP. * by move => ->; rewrite /= wshr0 => ->. move => _ /=. by case: ifP => /= _ ->. (* Olsl *) + case: sz => // sz. case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /sem_pexprs /=; t_xrbindP => v1 -> v2 ->. rewrite /sem_sop2 /exec_sopn /sopn_sem /=; t_xrbindP => w1 -> w2 -> /= ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. split. by rewrite read_es_swap. move: Hw; rewrite /sem_shl /sem_shift /x86_SHL /check_size_8_64 hsz64 /=. case: eqP. * by move => ->; rewrite /= wshl0 => ->. move => _ /=. by case: ifP => /= _ ->. (* Oasr *) + case: sz => // sz. case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /sem_pexprs /=; t_xrbindP => v1 -> v2 ->. rewrite /sem_sop2 /exec_sopn /sopn_sem /=; t_xrbindP => w1 -> w2 -> /= ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. split. by rewrite read_es_swap. move: Hw; rewrite /sem_sar /sem_shift /x86_SAR /check_size_8_64 hsz64 /=. case: eqP. * by move => ->; rewrite /= wsar0 => ->. move => _ /=. by case: ifP => /= _ ->. (* Oror *) + case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /=; t_xrbindP => v1 -> v2 ->. rewrite /sem_sop2 /exec_sopn /sopn_sem /=. t_xrbindP => w1 -> w2 -> /= ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. split. by rewrite read_es_swap. move: Hw; rewrite /sem_shr /sem_shift /x86_ROR /check_size_8_64 hsz64 /=. case: eqP. * rewrite /sem_ror /sem_shift. move=> -> /=. rewrite wunsigned0 wror0. by move=> ->. move=> _ /=. by case: ifP => /= _ ->. (* Orol *) + case: andP => // - [hsz64] /eqP ?; subst ty. rewrite /=; t_xrbindP => v1 -> v2 ->. rewrite /sem_sop2 /exec_sopn /sopn_sem /=. t_xrbindP => w1 -> w2 -> /= ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. split. by rewrite read_es_swap. move: Hw; rewrite /sem_shr /sem_shift /x86_ROL /check_size_8_64 hsz64 /=. case: eqP. * rewrite /sem_rol /sem_shift. move=> -> /=. rewrite wunsigned0 wrol0. by move=> ->. move=> _ /=. by case: ifP => /= _ ->. (* Ovadd ve sz *) + case: ifP => // /andP [hle /eqP ?]; subst ty. rewrite /= /sem_sop2 /exec_sopn /sopn_sem /=;t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. rewrite ok_v1 /= ok_v2 /= /x86_VPADD /x86_u128_binop /=. by rewrite (check_size_128_256_ge hle) /= /truncate_word hw1 hw2. (* Ovsub ve sz *) + case: ifP => // /andP [hle /eqP ?]; subst ty. rewrite /= /sem_sop2 /exec_sopn /sopn_sem /=;t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. rewrite ok_v1 /= ok_v2 /= /x86_VPSUB /x86_u128_binop /=. by rewrite (check_size_128_256_ge hle) /= /truncate_word hw1 hw2. (* Ovmul ve sz *) + case: ifP => // /andP [/andP[hle1 hle2] /eqP ?]; subst ty. rewrite /= /sem_sop2 /exec_sopn /sopn_sem /=;t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. rewrite ok_v1 /= ok_v2 /= /x86_VPMULL /x86_u128_binop /=. rewrite /check_size_16_32 hle1 (check_size_128_256_ge hle2). by rewrite /truncate_word hw1 hw2. (* Ovlsr ve sz *) + case: ifP => // /andP [/andP [hle1 hle2] /eqP ?]; subst ty. rewrite /= /sem_sop2 /exec_sopn /sopn_sem /=;t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. rewrite ok_v1 /= ok_v2 /= /x86_VPSRL /x86_u128_shift /=. rewrite (check_size_128_256_ge hle2) (check_size_16_64_ve hle1) /=. by rewrite /truncate_word hw1 hw2. (* Ovlsl ve sz *) + case: ifP => // /andP [/andP [hle1 hle2] /eqP ?]; subst ty. rewrite /= /sem_sop2 /exec_sopn /sopn_sem /=;t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. rewrite ok_v1 /= ok_v2 /= /x86_VPSLL /x86_u128_shift /=. rewrite (check_size_128_256_ge hle2) (check_size_16_64_ve hle1) /=. by rewrite /truncate_word hw1 hw2. (* Ovasr ve sz *) + case: ifP => // /andP [/andP [hle1 hle2] /eqP ?]; subst ty. rewrite /= /sem_sop2 /exec_sopn /sopn_sem /=;t_xrbindP => v1 ok_v1 v2 ok_v2. move => ? /to_wordI' [sz1] [w1] [hw1 ??]; subst. move => ? /to_wordI' [sz2] [w2] [hw2 ??]; subst. move => ?; subst v. move: Hv'; rewrite /truncate_val /= /truncate_word cmp_le_refl zero_extend_u => /ok_inj ?; subst v'. rewrite ok_v1 /= ok_v2 /= /x86_VPSRA /x86_u128_shift /=. rewrite (check_size_128_256_ge hle2) (check_size_16_64_ve hle1) /=. by rewrite /truncate_word hw1 hw2. (* PappN *) + case: op => // - [] // - [] //. case: es => // - [] // [] // [] // hi. case => // [] // [] // [] // [] // [] // lo [] //. case: ty Hv' => // - [] //= ok_v'. rewrite /= /sem_opN /exec_sopn /sem_sop1 /=. t_xrbindP => ??? -> _ /to_wordI'[] szhi [] whi [] szhi_ge -> -> <- ??? ->. move => ? /to_wordI'[] szlo [] wlo [] szlo_ge -> -> <- <- <- ?. t_xrbindP => _ /to_intI[] <- _ /to_intI[] <- [] <- ?; subst => /=. case: ok_v' => <-{Hw v'}. rewrite /truncate_word zero_extend_u szlo_ge /=. rewrite szhi_ge /=. congr (ok [:: (Vword (wrepr _ (word.wcat_r _))) ]). by rewrite /= -!/(wrepr U128 _) !wrepr_unsigned. (* Pif *) rewrite /check_size_16_64. by case: stype_of_lval => // w hv; case: andP => // - [] /andP[] -> -> /eqP <-; eauto. Qed. Lemma vmap_eq_except_set q s x v: Sv.In x q → s.[ x <- v] = s [\q]. Proof. move=> h a ha. apply: Fv.setP_neq. by case: eqP => // ?; subst. Qed. Definition pwrepr64 n := {| pw_size := U64 ; pw_word := wrepr _ n ; pw_proof := erefl (U64 ≤ U64)%CMP |}. Lemma opn_no_immP (P: sopn → sopn → Prop) : (∀ ws sz, P (Oasm (BaseOp (ws, IMULri sz))) (Oasm (BaseOp (ws, IMULr sz)))) → (∀ op, (∀ ws sz, op ≠ Oasm (BaseOp (ws, IMULri sz))) → P op op) → ∀ op, P op (opn_no_imm op). Proof. clear => A B. case. 1-5: move => >; exact: B. case; last by move => >; exact: B. case => ws. case; try by move => >; exact: B. move => sz; exact: A. Qed. Lemma opn_5flags_casesP a m sz x y z : opn_5flags_cases a m sz = Opn5f_large_immed x y z -> exists2 n : Z, a = x :: y :: z & y = Papp1 (Oword_of_int U64) n. Proof. rewrite /opn_5flags_cases. case: a => [//|] x' [//|] y' z'. case: is_wconst_of_sizeP => [n|//]. case: check_signed_range => //. move=> [] ???; subst x y z. by eexists. Qed. Lemma opn_5flags_correct vi ii s a t o cf r xs ys m sz s' : disj_fvars (read_es a) → disj_fvars (vars_lvals [:: cf ; r ]) → sem_pexprs gd s a = ok xs → exec_sopn o xs = ok ys → write_lvals gd s [:: Lnone_b vi ; cf ; Lnone_b vi ; Lnone_b vi ; Lnone_b vi ; r] ys = ok s' → ∃ s'', sem p' ev s [seq MkI ii i | i <- opn_5flags fv m sz vi cf r t o a] s'' ∧ eq_exc_fresh s'' s'. Proof. move=> da dr hx hr hs; rewrite/opn_5flags. case hopn: opn_5flags_cases => [x y z|] /=. + move: hopn => /opn_5flags_casesP [n ??]; subst a y. set ℓ := with_vm s (evm s).[{| vtype := sword64; vname := fresh_multiplicand fv U64 |} <- ok (pwrepr64 n)]. assert (eq_exc_fresh ℓ s) as e. + subst ℓ; case:(s) => ?? /=;split => //. by apply vmap_eq_except_set, multiplicand_in_fv. assert (disj_fvars (read_e x) ∧ disj_fvars (read_es z)) as dxz. { eapply disj_fvars_m in da. 2: apply SvP.MP.equal_sym; eapply read_es_cons. apply disjoint_union in da;intuition. } case: dxz => dx dz. case:(eeq_exc_write_lvals _ e hs). exact dr. move=> s'' hs' e'. exists s''. refine (conj _ e'). repeat econstructor. rewrite /sem_sopn /= !zero_extend_u -/(pwrepr64 _) -/ℓ. move: hx; rewrite /sem_pexprs /=; t_xrbindP => y hy z' z1 hz1 ? ?; subst z' xs. rewrite (eeq_exc_sem_pexpr dx e hy) /=. fold (sem_pexprs gd s) in hz1. rewrite /get_gvar /get_var /on_vu Fv.setP_eq /= -/(sem_pexprs gd ℓ). rewrite (eeq_exc_sem_pexprs dz e hz1) /= /exec_sopn /sopn_sem /=. move: hr. apply opn_no_immP. - rewrite /exec_sopn /sopn_sem; case. + by move => ws ? /=; case: eqP => /= ? ->. by move => _ /= ->. by rewrite /exec_sopn => op _ ->. + exists s'. repeat econstructor. by rewrite /sem_sopn hx /= hr. Qed. (* This situation comes up several times below. *) Lemma aux_eq_exc_trans P r r' : eq_exc_fresh r r' -> forall s, P s /\ eq_exc_fresh s r -> exists s', P s' /\ eq_exc_fresh s' r'. Proof. move=> Hr' s [Ps Hs]. exists s. split; first exact Ps. exact: (eeq_excT Hs Hr'). Qed. Lemma reduce_wconstP s e sz sz' (v: word sz') : sem_pexpr gd s e = ok (Vword v) → ∃ sw (w: word sw), sem_pexpr gd s (reduce_wconst sz e) = ok (Vword w) ∧ (cmp_min sz sz' ≤ sw)%CMP ∧ zero_extend sz v = zero_extend sz w. Proof. rewrite /reduce_wconst. case: e; eauto using cmp_min_leR. case; eauto using cmp_min_leR. move => sw []; eauto using cmp_min_leR. move => z /ok_word_inj [?]; subst => /= <- {v}. eexists _, _; split; first reflexivity. split => //. refine (cmp_minP (P := λ x, zero_extend _ _ = zero_extend sz (wrepr x z)) _ _) => //. by move => hle; rewrite !zero_extend_wrepr. Qed. Lemma mov_wsP (p1: prog) s1 e ws tag i x w s2 : (ws <= U64)%CMP -> (Let i' := sem_pexpr (p_globs p1) s1 e in to_word ws i') = ok i -> write_lval (p_globs p1) x (Vword i) s1 = ok s2 -> sem_i p1 w s1 (mov_ws is_regx ws x e tag) s2. Proof. by move=> hws he hx; rewrite /mov_ws; case: ifP => [ /andP [] _ h | _]; constructor; rewrite /sem_sopn /= /exec_sopn /=; move: he; t_xrbindP => _ -> /= -> /=; rewrite /sopn_sem /= /x86_MOVX /x86_MOV /check_size_32_64 /check_size_8_64 hws ?h /= hx. Qed. Local Lemma Hassgn : sem_Ind_assgn p Pi_r. Proof. move => s1 s2 l tag ty e v v' Hv hty Hw ii /= Hdisj s1' Hs1'. move: Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_assgn=> /disjoint_union [Hdisjl Hdisje]. have Hv' := eeq_exc_sem_pexpr Hdisje Hs1' Hv. have [s2' Hw' Hs2'] := eeq_exc_write_lval Hdisjl Hs1' Hw. rewrite /= /lower_cassgn. have := lower_cassgn_classifyP Hv' hty Hw'. case: (lower_cassgn_classify is_var_in_memory _ e l). (* LowerMov *) + move=> b [tw ?] [hle'] [sz'] [w] [hsz' ?]; subst ty v. move: hty; rewrite /truncate_val; apply: rbindP => w' /truncate_wordP [] hle -> {w'} [?]; subst v'. have [sz [vw [h [hsz hw]]]] := reduce_wconstP tw Hv'. rewrite (cmp_le_min hle) in hsz. case: b. * set ℓ := with_vm s1' (evm s1').[{| vtype := sword tw; vname := fresh_multiplicand fv tw |} <- ok (pword_of_word (zero_extend tw vw)) ]. assert (eq_exc_fresh ℓ s1') as dℓ. + subst ℓ; case:(s1') => ?? /=; split => //. by apply vmap_eq_except_set, multiplicand_in_fv. case: (eeq_exc_write_lval Hdisjl dℓ Hw') => ℓ' hℓ' dℓ'. eexists; split. repeat econstructor. by rewrite /sem_sopn /sem_pexprs /= h /= /exec_sopn /sopn_sem /= /truncate_word hsz /x86_MOV /check_size_8_64 hle' /= /write_var /set_var /= sumbool_of_boolET. by rewrite /sem_sopn /sem_pexprs/= /get_gvar /get_var Fv.setP_eq /= /exec_sopn /sopn_sem /= /truncate_word cmp_le_refl /x86_MOV /check_size_8_64 hle' /= zero_extend_u /= -/ℓ -hw hℓ'. exact: (eeq_excT dℓ' Hs2'). * exists s2'; split=> //=. case: ifP => [/andP [] /andP [] /is_zeroP he ??| _ ];first last. - apply/sem_seq1/EmkI/mov_wsP => //. + by rewrite h /= /truncate_word hsz. by rewrite -hw. move: h; rewrite he => /ok_word_inj [?]; subst => /= ?; subst vw. rewrite hw zero_extend_u wrepr0 in Hw' => {hw}. by case: ifP => hsz64; apply: sem_seq1; apply: EmkI; apply: Eopn; rewrite /sem_sopn /sem_pexprs /exec_sopn /sopn_sem /= /Oset0_instr hsz64 /= Hw'. (* LowerCopn *) + move=> o e' H. exists s2'; split=> //. apply: sem_seq1; apply: EmkI; apply: Eopn. by rewrite /sem_sopn H /= Hw'. (* LowerInc *) + move=> o e' [b1 [b2 [b3 [b4 H]]]]. exists s2'; split=> //; apply: sem_seq1; apply: EmkI; apply: Eopn. by rewrite /sem_sopn H /= Hw'. (* LowerLea *) + move => sz [d b sc o] /= [hsz] [Hsc] [hrl] [w [? Hslea]]; subst v'; set f := Lnone_b _. set ob := oapp Plvar _ b; set oo := oapp Plvar _ o. have [wb [wo [Hwb Hwo Ew ]]]: exists (wb wo: word sz), [/\ sem_pexpr gd s1' ob >>= to_word sz = ok wb, sem_pexpr gd s1' oo >>= to_word sz = ok wo & w = (wrepr sz d + (wb + (wrepr sz sc * wo)))%R]. + move: Hslea; rewrite /sem_lea /=; t_xrbindP => wb Hwb wo Hwo H. exists wb, wo; split. - subst ob; case: b Hwb {hrl} => [ b | ] /=; t_xrbindP. * by rewrite /get_gvar => vb -> /to_wordI' [sz'] [w'] [h -> ->]; rewrite /= /truncate_word h. by move => <-; rewrite truncate_word_u; f_equal; apply: word_ext. - subst oo; case: o Hwo {hrl} => [ o | ] /=; t_xrbindP. * by rewrite /get_gvar => vb -> /to_wordI' [sz'] [w'] [h -> ->]; rewrite /= /truncate_word h. by move => <-; rewrite truncate_word_u; f_equal; apply: word_ext. by subst. move: Hwb; apply: rbindP => vb Hvb Hwb. move: Hwo; apply: rbindP => vo Hvo Hwo. set elea := Papp2 (Oadd (Op_w sz)) (wconst (wrepr Uptr d)) (Papp2 (Oadd (Op_w sz)) ob (Papp2 (Omul (Op_w sz)) (wconst (wrepr Uptr sc)) oo)). case /andP: hsz => hsz1 hsz2. have Hlea : Let vs := sem_pexprs gd s1' [:: elea ] in exec_sopn (Ox86 (LEA sz)) vs = ok [:: Vword w ]. + rewrite /sem_pexprs /= Hvb Hvo /= /exec_sopn /sopn_sem /sem_sop2 /= /truncate_word hsz2 /=. rewrite Hwb Hwo /= truncate_word_u /= truncate_word_u /= truncate_word_u /= /x86_LEA /check_size_16_64 hsz1 hsz2 /=. by rewrite Ew -!/(zero_extend _ _) !zero_extend_wrepr. have Hlea' : sem p' ev s1' [:: MkI (warning ii Use_lea) (Copn [:: l] tag (Ox86 (LEA sz)) [:: elea])] s2'. + by apply: sem_seq1; apply: EmkI; apply: Eopn; rewrite /sem_sopn Hlea /= Hw'. case: use_lea; first by exists s2'. subst w. case: eqP => [ ? | _ ]. + subst d; case: eqP => [ ? | _]. + subst sc; exists s2'; split => //; apply: sem_seq1; constructor; constructor. move: Hw'; rewrite /sem_sopn /sem_pexprs /exec_sopn /sopn_sem /= Hvb Hvo /= Hwb Hwo /= /x86_ADD /=. by rewrite /check_size_8_64 hsz2 /= wrepr0 wrepr1 GRing.add0r GRing.mul1r => ->. case: is_zeroP => [ Eob | _ ]; last by exists s2'. case Heq : mulr => [o1 e']. move: Hvb; rewrite Eob /= /sem_sop1 /= => -[?]; subst vb. have [sz1 [w1 [hle1 ??]]]:= to_wordI' Hwo;subst vo wo. have Hsc1 : sem_pexpr gd s1' (wconst (wrepr Uptr sc)) = ok (Vword (wrepr Uptr sc)). + by rewrite /wconst /= /sem_sop1 /= wrepr_unsigned. move: Hwb; rewrite /= truncate_word_u wrepr_unsigned => -[?];subst wb. rewrite wrepr0 !GRing.add0r GRing.mulrC in Hw'. rewrite -(zero_extend_wrepr sc hsz2) in Hw'. have [] := mulr_ok Hvo Hsc1 hle1 hsz2 _ Hw' Heq; first by rewrite hsz1. move=> hsub; t_xrbindP => vo vs hvs hvo hw. case: (opn_5flags_correct ii tag (Some U32) sz _ _ hvs hvo hw). + apply: disjoint_w Hdisje . apply: SvP.MP.subset_trans hrl. apply: (SvP.MP.subset_trans hsub). rewrite /read_e /= /read_lea /= /oo read_eE. by case: (o) => [ ?|]; rewrite /= /read_e /=;SvD.fsetdec. + by apply Hdisjl. exact: (aux_eq_exc_trans Hs2'). case: is_zeroP => [ Eoo | _]; last by exists s2'. move: Hvo Hwo Hw'; rewrite Eoo => - [<-] {Eoo oo elea Hlea Hlea'}. rewrite wrepr_unsigned /= truncate_word_u => - [?]; subst wo. rewrite GRing.mulr0 GRing.addr0 GRing.addrC => Hw'. case: eqP => [ Ed | _ ]. + subst d; exists s2'; split => //; apply: sem_seq1; constructor; constructor. by rewrite /sem_sopn /sem_pexprs /exec_sopn /sopn_sem /= Hvb /= Hwb /= /x86_INC /check_size_8_64 hsz2 /= -(zero_extend1 sz sz) Hw'. case: ifP => [ hrange | _ ]. + exists s2'; split => //; apply: sem_seq1; constructor; constructor. by rewrite /sem_sopn /sem_pexprs /exec_sopn /sopn_sem /= Hvb /= Hwb /= /truncate_word hsz2 zero_extend_wrepr //= /x86_ADD /check_size_8_64 hsz2 /= -/(zero_extend _ _) zero_extend_wrepr // Hw'. case: eqP => [ Ed | _ ]. + exists s2'; split => //; apply: sem_seq1; constructor; constructor. rewrite /sem_sopn /sem_pexprs /exec_sopn /sopn_sem /= Hvb /= Hwb /=. rewrite truncate_word_u /x86_SUB /check_size_8_64 hsz2 /=. by rewrite wrepr_unsigned wrepr_opp GRing.opprK Hw'. set si := with_vm s1' (evm s1').[{| vtype := sword64; vname := fresh_multiplicand fv U64 |} <- ok {| pw_size := U64 ; pw_word := wrepr U64 d ; pw_proof := erefl (U64 ≤ U64)%CMP |}]. have hsi : eq_exc_fresh si s1'. + by rewrite /si; case: (s1') => ?? /=; split => //= k hk; rewrite Fv.setP_neq //; apply/eqP => ?; subst k; apply: hk; exact: multiplicand_in_fv. have [si' Hwi hsi'] := eeq_exc_write_lval Hdisjl hsi Hw'. eexists; split. + apply: Eseq; first by repeat constructor. apply: sem_seq1. repeat constructor. rewrite /sem_sopn /exec_sopn /sopn_sem /=. rewrite zero_extend_u wrepr_unsigned /get_gvar /get_var Fv.setP_eq /=. rewrite (eeq_exc_sem_pexpr (xs := fvars) _ _ Hvb) //=. - by rewrite Hwb /= /truncate_word /= /x86_ADD /check_size_8_64 hsz2 /= zero_extend_wrepr // Hwi. apply: (disj_fvars_subset _ Hdisje). apply: (SvD.F.Subset_trans _ hrl). rewrite /read_lea /=; subst ob; case: (b) => [ x | ] /=. - SvD.fsetdec. exact: SvP.MP.subset_empty. exact: (eeq_excT hsi' Hs2'). (* LowerFopn *) + set vi := var_info_of_lval _. move=> sz o a m [] LE. t_xrbindP => ys xs hxs hys hs2. case: (opn_5flags_correct ii tag m sz _ _ hxs hys hs2). move: LE Hdisje. apply disjoint_w. exact Hdisjl. exact: (aux_eq_exc_trans Hs2'). (* LowerDiscardFlags *) + set vi := var_info_of_lval _. move=> n o es [] hreades. t_xrbindP=> ys xs hxs hys hs2. exists s2'. split; last exact: Hs2'. apply: sem_seq1. constructor. constructor. rewrite /sem_sopn hxs {hxs} /=. rewrite hys {hys} /=. exact: hs2. (* LowerCond *) + move=> _. case heq: lower_condition => [i e']. have [s2'' [hs2'' [ heqex he']]]:= lower_condition_corr ii (sym_eq heq) Hs1' Hv'. have [s3 hw3 heqex3] := eeq_exc_write_lval Hdisjl heqex Hw. exists s3; split => //. rewrite map_cat; apply: (sem_app hs2'') => /=. apply: sem_seq1; constructor; econstructor; eauto. (* LowerIf *) + move=> t cond e1 e2 [Hsz64] [He] [Hsz] [sz' Ht]; subst e. set x := lower_condition _ _ _. have Hcond: x = lower_condition fv (var_info_of_lval l) cond by []. move: x Hcond=> [i e'] Hcond. clear s2' Hw' Hs2'. move: Hv' => /=; t_xrbindP=> b bv Hbv Hb trv1 v1 Hv1 Htr1 trv2 v2 Hv2 Htr2 ?;subst v. have [s2' [Hs2'1 [Hs2'2 Hs2'3]]] := lower_condition_corr ii Hcond Hs1' Hbv. have [s3' Hw' Hs3'] := eeq_exc_write_lval Hdisjl Hs2'2 Hw. exists s3'; split=> //. rewrite map_cat. apply: sem_app. + exact: Hs2'1. apply: sem_seq1; apply: EmkI; apply: Eopn. move: bv Hbv Hb Hs2'3=> [] //=; last by case. move=> b0 Hb [?] Hb'; subst b0. rewrite /sem_sopn /sem_pexprs /= Hb' /=. have Heq' := eeq_excT Hs2'2 (eeq_excS Hs1'). rewrite /read_e /= /disj_fvars /x86_lowering.disj_fvars in Hdisje; move: Hdisje. rewrite read_eE read_eE -/(read_e _). move=> /disjoint_union [He /disjoint_union [He1 He2]]. rewrite (eeq_exc_sem_pexpr He1 Heq' Hv1) (eeq_exc_sem_pexpr He2 Heq' Hv2) /=. have [sz Hvt] := write_lval_word Ht Hw'. have [w Hvw] := write_lval_undef Hw' Hvt; subst. rewrite /exec_sopn /sopn_sem /= /x86_CMOVcc. have /=? := truncate_val_has_type hty; subst ty. rewrite Hsz64 Hsz /=. have [sz'' [w' [_ /truncate_wordP[hle ?] hw']]]:= truncate_valI hty; subst. have : exists w1 w2, to_word sz v1 = ok w1 /\ to_word sz v2 = ok w2 /\ (if b then w1 else w2) = zero_extend sz w'. + case: (b) hw' => ?; subst. + have [sz3 [w1 [? /truncate_wordP[hle3 ->] ?]]] /= := truncate_valI Htr1; subst. rewrite /= zero_extend_idem // /truncate_word (cmp_le_trans hle hle3). move: Htr2 => /= /truncate_val_typeE[? [? [? [/truncate_wordP[hle' ?] ??]]]];subst. by rewrite /= /truncate_word (cmp_le_trans hle hle');eauto. have [sz3 [w1 [? /truncate_wordP[hle3 ?] ->]]] /= := truncate_valI Htr2; subst. rewrite zero_extend_idem // /truncate_word (cmp_le_trans hle hle3). move: Htr1 => /=; rewrite /truncate_val; t_xrbindP => /= ? /to_wordI' [? [?[hle'??]]] ?;subst. by rewrite /= /truncate_word (cmp_le_trans hle hle');eauto. move=> [w1 [w2 [ -> [->]]]] /=. by case: (b) => ?;subst => /=;rewrite Hw'. (* LowerDivMod *) + move=> d u w s p0 p1 /= [[va [wa [hva hwa hdiv]]] ? hle1 hle2];subst ty. set vf := {| v_var := _ |}. set i1 := match u with Signed => _ | _ => _ end. move: hdiv; set va0 := Vword (match u with Signed => _ | _ => _ end) => hdiv. have [s1'1 [hsem1 hget heq1]]: exists s1'1, [/\ sem_I p' ev s1' (MkI ii i1) s1'1, get_var (evm s1'1) (v_var vf) = ok va0 & eq_exc_fresh s1'1 s1']. + rewrite /i1 /va0; case: (u); eexists; split. + by apply: EmkI; rewrite /i1; apply: Eopn; rewrite /sem_sopn /exec_sopn /sopn_sem /= hva /= hwa /x86_CQO /= /check_size_16_64 hle1 hle2 /= sumbool_of_boolET;eauto. + by rewrite /get_var Fv.setP_eq. + by split => //; apply vmap_eq_except_set; apply multiplicand_in_fv. + by apply: EmkI; apply: Eopn; rewrite /sem_sopn /exec_sopn /sopn_sem /= truncate_word_u /= /x86_MOV /check_size_8_64 hle2 /=;eauto. + by rewrite /= sumbool_of_boolET /get_var /= Fv.setP_eq /= wrepr0. rewrite sumbool_of_boolET; split => //. by apply vmap_eq_except_set; apply multiplicand_in_fv. have [hwa1 [s3 [hsem heqe] {hdiv}]]:= hdiv _ heq1 Hdisjl Hdisje. exists s3;split. + econstructor;first by eassumption. by case: d hsem => hsem;apply: sem_seq1;apply: EmkI; apply: Eopn; move: hsem; rewrite /sem_sopn /= /get_gvar hget /= hwa1 /=; t_xrbindP => ? -> ? /= ->. apply: eeq_excT heqe Hs2'. (* LowerConcat *) + t_xrbindP => hi lo vs ok_vs ok_v'. exists s2'; split; last exact: Hs2'. apply: sem_seq1; apply: EmkI; apply: Eopn. by rewrite /sem_sopn ok_vs /= ok_v' /= Hw'. (* LowerAssgn *) move=> _. exists s2'; split=> //. apply: sem_seq1; apply: EmkI; apply: Eassgn. * by rewrite Hv'. * exact: hty. exact: Hw'. Qed. Lemma app_wwb_dec T' sz (f:sem_prod [::sword sz; sword sz; sbool] (exec T')) x v : app_sopn _ f x = ok v -> ∃ sz1 (w1: word sz1) sz2 (w2: word sz2) b, (sz ≤ sz1)%CMP ∧ (sz ≤ sz2)%CMP ∧ x = [:: Vword w1; Vword w2; Vbool b] ∧ f (zero_extend _ w1) (zero_extend _ w2) b = ok v. Proof. case: x => // -[] //; last by case => //= ? ?; case: ifP. move => sz1 w1 [ | x y ] //=; rewrite /truncate_word; case: ifP => //= hle. t_xrbindP => wx /to_wordI' [sz'] [wx'] [hle' -> ->] {x wx}. case: y => // y z; t_xrbindP => b /to_boolI -> {y}; case: z => // h. by eexists _, w1, _, wx', b. Qed. Lemma app_ww_dec T' sz (f:sem_prod [::sword sz; sword sz] (exec T')) x v : app_sopn _ f x = ok v -> exists sz1 (w1: word sz1) sz2 (w2: word sz2), (sz ≤ sz1)%CMP ∧ (sz ≤ sz2)%CMP ∧ x = [:: Vword w1; Vword w2] ∧ f (zero_extend _ w1) (zero_extend _ w2) = ok v. Proof. case: x => // -[] //; last by case => //= ? ?; case: ifP. move => sz1 w1 [ | x y ] //=; rewrite /truncate_word; case: ifP => //= hle. t_xrbindP => wx /to_wordI' [sz'] [wx'] [hle' -> ->] {x wx}. case: y => // h. by eexists _, w1, _, wx'. Qed. Lemma add_carry_overflow sz (w1 w2: word sz) (b: bool) : (wbase sz <=? wunsigned w1 + wunsigned w2 + Z.b2z b)%Z = (wunsigned (add_carry sz (wunsigned w1) (wunsigned w2) (Z.b2z b)) != (wunsigned w1 + wunsigned w2 + Z.b2z b))%Z. Proof. rewrite unsigned_overflow //. have := wunsigned_range w1; have := wunsigned_range w2. case: b => /=; lia. Qed. Lemma sub_underflow sz (w1 w2: word sz) : (wunsigned w1 - wunsigned w2 <? 0)%Z = (wunsigned (w1 - w2) != (wunsigned w1 - wunsigned w2))%Z. Proof. have hn: forall b, ~~b = true <-> ~b. + by case;split. have -> : (wunsigned w1 - wunsigned w2 <? 0)%Z = ~~(wunsigned w2 <=? wunsigned w1)%Z. + apply Bool.eq_true_iff_eq. rewrite hn /is_true Z.ltb_lt Z.leb_le; lia. by f_equal; rewrite -wleuE. Qed. Lemma sub_borrow_underflow sz (w1 w2: word sz) (b:bool) : (wunsigned w1 - wunsigned w2 - Z.b2z b <? 0)%Z = (wunsigned (sub_borrow sz (wunsigned w1) (wunsigned w2) (Z.b2z b)) != (wunsigned w1 - (wunsigned w2 + Z.b2z b)))%Z. Proof. rewrite /sub_borrow. case: b => /=;last first. + by rewrite Z.sub_0_r Z.add_0_r wrepr_sub !wrepr_unsigned sub_underflow. have -> : (wunsigned w1 - wunsigned w2 - 1 = wunsigned w1 - (wunsigned w2 + 1))%Z by ring. case : (wunsigned w2 =P wbase sz - 1)%Z => hw2. + have -> : (wunsigned w1 - (wunsigned w2 + 1) <? 0)%Z. + by rewrite /is_true Z.ltb_lt; have := wunsigned_range w1;lia. symmetry;apply /eqP. have ->: (wunsigned w2 + 1)%Z = wbase sz by rewrite hw2;ring. rewrite wrepr_sub wreprB GRing.subr0 wrepr_unsigned. by have := @wbase_n0 sz;lia. have -> : (wunsigned w2 + 1 = wunsigned (w2 + 1))%Z. + rewrite -wunsigned_add ?wrepr1 //. by have := wunsigned_range w2;lia. by rewrite wrepr_sub !wrepr_unsigned sub_underflow. Qed. Lemma sem_pexprs_dec2 s e1 e2 v1 v2: sem_pexprs gd s [:: e1; e2] = ok [:: v1; v2] -> sem_pexpr gd s e1 = ok v1 /\ sem_pexpr gd s e2 = ok v2. Proof. rewrite /sem_pexprs /=. t_xrbindP=> v1' -> [] // v1'' [] // v2' -> []<- <- []<-. by split. Qed. Lemma sem_pexprs_dec3 s e1 e2 e3 v1 v2 v3: sem_pexprs gd s [:: e1; e2; e3] = ok [:: v1; v2; v3] -> sem_pexpr gd s e1 = ok v1 /\ sem_pexpr gd s e2 = ok v2 /\ sem_pexpr gd s e3 = ok v3. Proof. rewrite /sem_pexprs /=. t_xrbindP=> v1' -> [] // v2' [] // v3' [] // v4' Hv4' [] // v5' [] // v6' Hv6' []<- []<- <- <- []<- <-. by split. Qed. Lemma write_lvals_dec2_s s1 s2 v1 v2 xs: write_lvals gd s1 xs [:: v1; v2] = ok s2 -> exists x1 x2, xs = [:: x1; x2]. Proof. move: xs=> [] // x1 [] //=. + by apply: rbindP. move=> x2 [] //; last first. + by move=> x3 ? /=; t_xrbindP. t_xrbindP=> s1' Hs1' s2' Hs2' /= []Hs2; subst s2'. by eauto. Qed. Lemma sem_pexprs_dec2_s s es v1 v2: sem_pexprs gd s es = ok [:: v1; v2] -> exists e1 e2, es = [:: e1; e2]. Proof. move: es=> [] // e1 [] //. + by rewrite /sem_pexprs /=; apply: rbindP. move=> e2 []; last first. + move=> a l; rewrite /sem_pexprs /=; t_xrbindP=> ??????????. by move=> <- <-. rewrite /sem_pexprs /=. t_xrbindP=> v1' Hv1' [] // v1'' [] // v2' Hv2' []??[]?; subst v1'' v1' v2'. by eauto. Qed. Lemma lower_addcarry_classifyP sub xs es : if lower_addcarry_classify sub xs es is Some (vi, op, es', cf, r) then xs = [:: cf; r ] ∧ ∃ x y b, es = [:: x ; y ; b ] ∧ ((b = Pbool false ∧ vi = var_info_of_lval r ∧ op = (if sub then SUB else ADD) ∧ es' = [:: x ; y ]) ∨ (∃ cfi, b = Plvar cfi ∧ vi = v_info cfi ∧ op = (if sub then SBB else ADC) ∧ es' = es)) else True. Proof. clear. case xs => // cf [] // r [] //. case es => // x [] // y [] // [] //. + by move => [] // [] //=; eauto 10. by rewrite /Plvar /mk_lvar => -[cfi []] // [] //=; eauto 11. Qed. Lemma lower_addcarry_correct ii si so si' sub sz xs t es x v : eq_exc_fresh si' si → disj_fvars (vars_lvals xs) → disj_fvars (read_es es) → sem_pexprs gd si' es = ok x → exec_sopn ((if sub then Osubcarry else Oaddcarry) sz) x = ok v → write_lvals gd si' xs v = ok so → ∃ so', sem p' ev si' (map (MkI ii) (lower_addcarry fv sz sub xs t es)) so' ∧ eq_exc_fresh so' so. Proof. move=> hi dxs des hx hv ho. rewrite/lower_addcarry /=. set default := [:: Copn _ _ _ _ ]. have hdefault : ∃ so', sem p' ev si' [seq MkI ii i | i <- default] so' ∧ eq_exc_fresh so' so. + by repeat econstructor; rewrite /sem_sopn hx /= hv. case: ifP => // hsz64. generalize (lower_addcarry_classifyP sub xs es); case: lower_addcarry_classify => //. move => [[[[vi op] es'] cf] r] [? [x' [y' [b [?]]]]] C; subst. assert ( disj_fvars (read_es es') ∧ ∃ x', sem_pexprs gd si' es' = ok x' ∧ ∃ v', exec_sopn (Ox86 (op sz)) x' = ok v' ∧ let f := Lnone_b vi in write_lvals gd si' [:: f ; cf ; f ; f ; f ; r ] v' = ok so) as D. { clear - hsz64 des hx hv C ho. case: C => [ [? [? [? ?]]] | [cfi [?[?[? ?]]]]]; subst; apply (conj des). + move: hv hx; rewrite /exec_sopn; t_xrbindP; case: sub => y hy; have {hy} := app_wwb_dec hy=> -[sz1] [w1] [sz2] [w2] [b] [hsz1] [hsz2] [?] [?] ?;subst x y v => /sem_pexprs_dec3 [hx] [hy] [?]; subst b; (exists [:: Vword w1; Vword w2]; split; [by rewrite /sem_pexprs /= hx /= hy|]); rewrite /= /sopn_sem /= /truncate_word hsz1 hsz2 /x86_SUB /x86_ADD /check_size_8_64 hsz64; eexists; split; first reflexivity. + by rewrite /= Z.sub_0_r sub_underflow wrepr_sub !wrepr_unsigned in ho. + by []. by rewrite /= Z.add_0_r add_overflow wrepr_add !wrepr_unsigned in ho. exists x; split; [ exact hx |]; clear hx. move: hv;rewrite /exec_sopn; t_xrbindP; case: sub => y hy; have {hy} := app_wwb_dec hy=> -[sz1] [w1] [sz2] [w2] [b] [hsz1] [hsz2] [?] [?] ?; subst x y v; rewrite /= /sopn_sem /= /truncate_word hsz1 hsz2 /x86_SBB /x86_ADC /check_size_8_64 hsz64; eexists; split; first reflexivity; rewrite //=. + by rewrite /= sub_borrow_underflow in ho. by rewrite /= add_carry_overflow in ho. } clear C. case: D => des' [ xs' [ hxs' [ v' [hv' ho'] ] ] ]. case: (opn_5flags_correct ii t (Some U32) sz des' dxs hxs' hv' ho') => {hv' ho'} so'. intuition eauto using eeq_excT. Qed. Opaque lower_addcarry. Local Lemma Hopn : sem_Ind_opn p Pi_r. Proof. move => s1 s2 t o xs es. apply: rbindP=> v; apply: rbindP=> x Hx Hv Hw ii Hdisj s1' Hs1'. move: Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_opn=> /disjoint_union [Hdisjl Hdisje]. have Hx' := eeq_exc_sem_pexprs Hdisje Hs1' Hx; have [s2' Hw' Hs2'] := eeq_exc_write_lvals Hdisjl Hs1' Hw. have default : ∃ s2', sem p' ev s1' [:: MkI ii (Copn xs t o es)] s2' ∧ eq_exc_fresh s2' s2. + by exists s2'; split=> //; apply: sem_seq1; apply: EmkI; apply: Eopn; rewrite /sem_sopn Hx' /=; rewrite /= in Hv; by rewrite Hv. case: o Hv default => //; (move => sz Hv default || move => Hv default). (* Omulu *) + move: Hv; rewrite /exec_sopn; t_xrbindP => y hy. have := app_ww_dec hy => -[sz1] [w1 [sz2 [w2 [hsz1 [hsz2 [? [?]]]]]]] ?; subst x y v. move=> {Hx Hw}. have [x1 [x2 ?]] := write_lvals_dec2_s Hw'; subst xs. have [e1 [e2 ?]] := sem_pexprs_dec2_s Hx'; subst es. rewrite /=. have [He1 He2] := sem_pexprs_dec2 Hx'. have hdefault : ∃ s1'0, sem p' ev s1' [seq MkI ii i | i <- [:: Copn [:: x1; x2] t (Omulu sz) [:: e1; e2]]] s1'0 ∧ eq_exc_fresh s1'0 s2. + exists s2'; split=> //; apply: sem_seq1; apply: EmkI; apply: Eopn. by rewrite /sem_sopn /= /exec_sopn /sopn_sem /= He1 He2 /= /truncate_word hsz1 hsz2. rewrite /lower_mulu; case hsz: check_size_16_64 => //. have /andP [hsz16 hsz64] := assertP hsz. have! := (is_wconstP gd s1' (sz := sz) (e := e1)). case: is_wconst => [ n1 | _ ]. + move => /(_ _ erefl) /=; rewrite He1 /= /truncate_word hsz1 => - [?]; subst n1. set s2'' := with_vm s1' (evm s1').[vword sz (fv.(fresh_multiplicand) sz) <- ok (pword_of_word (zero_extend _ w1)) ]. have Heq: eq_exc_fresh s2'' s1'. split=> //. rewrite /s2'' /= => x Hx. rewrite Fv.setP_neq //. apply/eqP=> Habs; apply: Hx; rewrite -Habs //. have [s3'' Hw'' Hs3''] := eeq_exc_write_lvals Hdisjl Heq Hw'. have Hd2 : disj_fvars (read_e e2). - move: Hdisje. rewrite (disj_fvars_m (read_es_cons _ _)) => /disjoint_union [_]. rewrite (disj_fvars_m (read_es_cons _ _)) => /disjoint_union [//]. have He2' := eeq_exc_sem_pexpr Hd2 Heq He2. eexists; split. + apply: Eseq. + apply: EmkI; apply: Eopn; eauto. rewrite /sem_sopn /sem_pexprs /= /exec_sopn /sopn_sem /= He1 /= /truncate_word hsz1 /= /x86_MOV /check_size_8_64 hsz64 /=. by rewrite sumbool_of_boolET. + apply: sem_seq1; apply: EmkI; apply: Eopn=> /=. rewrite /= /read_es /= in Hdisje. rewrite /sem_sopn /sem_pexprs /= He2' /=. rewrite /get_gvar /get_var /on_vu /= Fv.setP_eq /= /exec_sopn /sopn_sem /= /truncate_word hsz2 cmp_le_refl /x86_MUL hsz /= zero_extend_u wmulhuE Z.mul_comm GRing.mulrC wmulE. exact Hw''. + exact: (eeq_excT Hs3'' Hs2'). have! := (is_wconstP gd s1' (sz := sz) (e := e2)). case: is_wconst => [ n2 | _ ]. + move => /(_ _ erefl) /=; rewrite He2 /= /truncate_word hsz2 => - [?]; subst n2. set s2'' := with_vm s1' (evm s1').[vword sz (fv.(fresh_multiplicand) sz) <- ok (pword_of_word (zero_extend _ w2)) ]. have Heq: eq_exc_fresh s2'' s1'. * split=> //. rewrite /s2'' /= => x Hx. rewrite Fv.setP_neq //. apply/eqP=> Habs; apply: Hx; rewrite -Habs //. have [s3'' Hw'' Hs3''] := eeq_exc_write_lvals Hdisjl Heq Hw'. have Hd1 : disj_fvars (read_e e1). * by move: Hdisje; rewrite (disj_fvars_m (read_es_cons _ _)) => /disjoint_union []. have He1' := eeq_exc_sem_pexpr Hd1 Heq He1. eexists; split. + apply: Eseq. + apply: EmkI; apply: Eopn; eauto. rewrite /sem_sopn /sem_pexprs /= He2 /= /exec_sopn /sopn_sem /= /truncate_word hsz2 /= /x86_MOV /check_size_8_64 hsz64 /=. by rewrite /write_var /set_var /= sumbool_of_boolET. + apply: sem_seq1; apply: EmkI; apply: Eopn=> /=. rewrite /= /read_es /= in Hdisje. rewrite /sem_sopn /sem_pexprs /= He1' /=. rewrite /get_gvar /get_var /on_vu /= Fv.setP_eq /= /exec_sopn /sopn_sem /= /truncate_word hsz1 cmp_le_refl /x86_MUL hsz /= zero_extend_u wmulhuE wmulE. exact: Hw''. + exact: (eeq_excT Hs3'' Hs2'). exists s2'; split=> //; apply: sem_seq1; apply: EmkI; apply: Eopn. rewrite /sem_sopn Hx' /= /exec_sopn /sopn_sem /= /truncate_word hsz1 hsz2 /x86_MUL hsz /=. by rewrite /wumul -wmulhuE in Hw'. (* Oaddcarry *) + case: (lower_addcarry_correct ii t (sub:= false) Hs1' Hdisjl Hdisje Hx' Hv Hw'). exact: (aux_eq_exc_trans Hs2'). (* Osubcarry *) + case: (lower_addcarry_correct ii t (sub:= true) Hs1' Hdisjl Hdisje Hx' Hv Hw'). exact: (aux_eq_exc_trans Hs2'). Qed. Local Lemma Hsyscall : sem_Ind_syscall p Pi_r. Proof. move=> s1 scs m s2 o xs es ves vs hes ho hw ii hdisj s1' hs1' /=. move: hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_syscall => /disjoint_union [hdisjx hdisje]. have hes' := eeq_exc_sem_pexprs hdisje hs1' hes. have hs1'w: eq_exc_fresh (with_scs (with_mem s1' m) scs) (with_scs (with_mem s1 m) scs). + by rewrite /eq_exc_fresh /estate_eq_except /=; case: hs1' => ?? ->. have [s2' hw' hs2'] := eeq_exc_write_lvals hdisjx hs1'w hw. exists s2'; split => //. apply: sem_seq1; constructor; econstructor; eauto. by case: hs1' => -> ->. Qed. Local Lemma Hif_true : sem_Ind_if_true p ev Pc Pi_r. Proof. move=> s1 s2 e c1 c2 Hz _ Hc ii /= Hdisj s1' Hs1' /=. move: Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_if=> /disjoint_union [Hdisje /disjoint_union [Hc1 Hc2]]. set x := lower_condition _ _ _. have Hcond: x = lower_condition fv dummy_var_info e by []. move: x Hcond=> [i e'] Hcond. have [s2' [Hs2'1 [Hs2'2 Hs2'3]]] := lower_condition_corr ii Hcond Hs1' (eeq_exc_sem_pexpr Hdisje Hs1' Hz). have [s3' [Hs3'1 Hs3'2]] := Hc Hc1 _ Hs2'2. exists s3'; split=> //. rewrite -cats1. rewrite map_cat. apply: (sem_app Hs2'1). apply: sem_seq1; apply: EmkI; apply: Eif_true. + by rewrite Hs2'3. exact: Hs3'1. Qed. Local Lemma Hif_false : sem_Ind_if_false p ev Pc Pi_r. Proof. move=> s1 s2 e c1 c2 Hz _ Hc ii /= Hdisj s1' Hs1' /=. move: Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_if=> /disjoint_union [Hdisje /disjoint_union [Hc1 Hc2]]. set x := lower_condition _ _ _. have Hcond: x = lower_condition fv dummy_var_info e by []. move: x Hcond=> [i e'] Hcond. have [s2' [Hs2'1 [Hs2'2 Hs2'3]]] := lower_condition_corr ii Hcond Hs1' (eeq_exc_sem_pexpr Hdisje Hs1' Hz). have [s3' [Hs3'1 Hs3'2]] := Hc Hc2 _ Hs2'2. exists s3'; split=> //. rewrite -cats1. rewrite map_cat. apply: (sem_app Hs2'1). apply: sem_seq1; apply: EmkI; apply: Eif_false. + by rewrite Hs2'3. exact: Hs3'1. Qed. Local Lemma Hwhile_true : sem_Ind_while_true p ev Pc Pi_r. Proof. move=> s1 s2 s3 s4 a c e c' _ Hc Hz _ Hc' _ Hwhile ii Hdisj s1' Hs1' /=. have := Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_while=> /disjoint_union [Hdisje /disjoint_union [Hc1 Hc2]]. set x := lower_condition _ _ _. have Hcond: x = lower_condition fv dummy_var_info e by []. move: x Hcond=> [i e'] Hcond. have [s2' [Hs2'1 Hs2'2]] := Hc Hc1 _ Hs1'. have [s3' [Hs3'1 [Hs3'2 Hs3'3]]] := lower_condition_corr dummy_instr_info Hcond Hs2'2 (eeq_exc_sem_pexpr Hdisje Hs2'2 Hz). have [s4' [Hs4'1 Hs4'2]] := Hc' Hc2 _ Hs3'2. have [s5' [Hs5'1 Hs5'2]] := Hwhile ii Hdisj _ Hs4'2. exists s5'; split=> //. apply: sem_seq1; apply: EmkI; apply: Ewhile_true. apply: (sem_app Hs2'1 Hs3'1). by rewrite Hs3'3. exact: Hs4'1. rewrite /= -Hcond in Hs5'1. rewrite {1}/map /= in Hs5'1. by case/semE: Hs5'1 => ? [/sem_IE H] /semE ->. Qed. Local Lemma Hwhile_false : sem_Ind_while_false p ev Pc Pi_r. Proof. move=> s1 s2 a c e c' _ Hc Hz ii Hdisj s1' Hs1' /=. move: Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_while=> /disjoint_union [Hdisje /disjoint_union [Hc1 Hc2]]. set x := lower_condition _ _ _. have Hcond: x = lower_condition fv dummy_var_info e by []. move: x Hcond=> [i e'] Hcond. have [s2' [Hs2'1 Hs2'2]] := Hc Hc1 _ Hs1'. have [s3' [Hs3'1 [Hs3'2 Hs3'3]]] := lower_condition_corr dummy_instr_info Hcond Hs2'2 (eeq_exc_sem_pexpr Hdisje Hs2'2 Hz). exists s3'; split=> //. apply: sem_seq1; apply: EmkI; apply: Ewhile_false. exact: (sem_app Hs2'1 Hs3'1). by rewrite Hs3'3. Qed. Local Lemma Hfor : sem_Ind_for p ev Pi_r Pfor. Proof. move=> s1 s2 i d lo hi c vlo vhi Hlo Hhi _ Hfor ii Hdisj s1' Hs1' /=. move: Hdisj; rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_for=> /disjoint_union [Hdisjc /disjoint_union [Hdisjlo Hdisjhi]]. have [s2' [Hs2'1 Hs2'2]] := Hfor Hdisjc _ Hs1'. exists s2'; split=> //. apply: sem_seq1; apply: EmkI; apply: Efor; eauto. + by rewrite (eeq_exc_sem_pexpr Hdisjlo Hs1' Hlo). by rewrite (eeq_exc_sem_pexpr Hdisjhi Hs1' Hhi). Qed. Local Lemma Hfor_nil : sem_Ind_for_nil Pfor. Proof. move=> s i c _ s' Hs'; exists s'; split=> //; exact: EForDone. Qed. Local Lemma Hfor_cons : sem_Ind_for_cons p ev Pc Pfor. Proof. move=> s1 s1' s2 s3 i w ws c Hw _ Hc _ Hfor Hdisj s1'' Hs1''. have := Hdisj=> /disjoint_union [Hdisjc Hdisji]. have Hw1: write_lval gd (Lvar i) w s1 = ok s1' by exact: Hw. have [|s2'' Hs2''1 Hs2''2] := eeq_exc_write_lval _ Hs1'' Hw1. rewrite /=; have H: Sv.Equal (Sv.union Sv.empty (Sv.add i Sv.empty)) (Sv.singleton i). by SvD.fsetdec. rewrite /vars_lval /= /disj_fvars. by move: Hdisji; rewrite /disj_fvars /x86_lowering.disj_fvars /vars_lval H. have [s3'' [Hs3''1 Hs3''2]] := Hc Hdisjc _ Hs2''2. have [s4'' [Hs4''1 Hs4''2]] := Hfor Hdisj _ Hs3''2. exists s4''; split=> //. by apply: EForOne; eauto. Qed. Local Lemma Hcall : sem_Ind_call p ev Pi_r Pfun. Proof. move=> s1 scs m2 s2 ii xs fn args vargs vs Harg _ Hfun Hret ii' Hdisj s1' Hs1'; move: Hdisj. rewrite /disj_fvars /x86_lowering.disj_fvars vars_I_call=> /disjoint_union [Hxs Hargs]. have Heq: eq_exc_fresh (with_scs (with_mem s1' m2) scs) (with_scs (with_mem s1 m2) scs). + by case: Hs1' => * /=. have [s2' Hs2'1 Hs2'2] := eeq_exc_write_lvals Hxs Heq Hret. exists s2'; split=> //. apply: sem_seq1; apply: EmkI; apply: Ecall; eauto. rewrite (eeq_exc_sem_pexprs Hargs Hs1' Harg) //. move: Hs1'=> [-> -> _]; exact: Hfun. Qed. Local Lemma Hproc : sem_Ind_proc p ev Pc Pfun. Proof. move=> scs1 m1 scs2 m2 fn f vargs vargs' s0 s1 s2 vres vres' Hget Htya Hi Harg _ Hc Hres Htyr Hsys Hfi. have H: eq_exc_fresh s1 s1 by []. have Hdisj := fvars_fun Hget. rewrite /vars_fd in Hdisj. move: Hdisj=> /disjoint_union [Hdisjp /disjoint_union [Hdisjr Hdisjc]]. have [[scs1' m1' vm1'] [Hs1'1 [/= ? Hs1'2 Hs1'3]]] := Hc Hdisjc _ H; subst scs1' m1'. apply: EcallRun=> //. + by rewrite get_map_prog Hget. + exact: Htya. + exact: Hi. + exact: Harg. + exact: Hs1'1. + rewrite /=. have ->: vm1' = evm (with_vm s2 vm1') by rewrite evm_with_vm. rewrite -(sem_pexprs_get_var gd). rewrite -(sem_pexprs_get_var gd) in Hres. have H': forall l, Sv.Equal (read_es (map Plvar l)) (vars_l l). + elim=> // a l /= Hl. rewrite read_es_cons Hl /read_e /= /mk_lvar /read_gvar /=. by SvD.fsetdec. apply: (eeq_exc_sem_pexprs _ _ Hres). * rewrite /disj_fvars /x86_lowering.disj_fvars H'. exact: Hdisjr. done. + exact: Htyr. done. done. Qed. Lemma lower_callP f scs mem scs' mem' va vr: sem_call p ev scs mem f va scs' mem' vr -> sem_call p' ev scs mem f va scs' mem' vr. Proof. exact: (sem_call_Ind Hskip Hcons HmkI Hassgn Hopn Hsyscall Hif_true Hif_false Hwhile_true Hwhile_false Hfor Hfor_nil Hfor_cons Hcall Hproc). Qed. End PROOF.
lemma closed_halfspace_component_le: "closed {x::'a::euclidean_space. x\<bullet>i \<le> a}"
module Tests.SpecFunctions where import Test.QuickCheck hiding (choose,within) --import Test.Framework --import Test.Framework.Providers.QuickCheck2 --import Numeric.SpecFunctions
(* Title: Multisets_Extras Author: Chelsea Edmonds *) section \<open>Micellanious Helper Functions on Sets and Multisets\<close> theory Multisets_Extras imports "HOL-Library.Multiset" Card_Partitions.Set_Partition Nested_Multisets_Ordinals.Multiset_More Nested_Multisets_Ordinals.Duplicate_Free_Multiset "HOL-Library.Disjoint_Sets" begin subsection \<open>Set Theory Extras\<close> text \<open>A number of extra helper lemmas for reasoning on sets (finite) required for Design Theory proofs\<close> lemma card_Pow_filter_one: assumes "finite A" shows "card {x \<in> Pow A . card x = 1} = card (A)" using assms proof (induct rule: finite_induct) case empty then show ?case by auto next case (insert x F) have "Pow (insert x F) = Pow F \<union> insert x ` Pow F" by (simp add: Pow_insert) then have split: "{y \<in> Pow (insert x F) . card y = 1} = {y \<in> (Pow F) . card y = 1} \<union> {y \<in> (insert x ` Pow F) . card y = 1}" by blast have "\<And> y . y \<in> (insert x ` Pow F) \<Longrightarrow> finite y" using finite_subset insert.hyps(1) by fastforce then have single: "\<And> y . y \<in> (insert x ` Pow F) \<Longrightarrow> card y = 1 \<Longrightarrow> y = {x}" by (metis card_1_singletonE empty_iff image_iff insertCI insertE) then have "card {y \<in> (insert x ` Pow F) . card y = 1} = 1" using empty_iff imageI is_singletonI is_singletonI' is_singleton_altdef (* LONG *) by (metis (full_types, lifting) Collect_empty_eq_bot Pow_bottom bot_empty_eq mem_Collect_eq) then have " {y \<in> (insert x ` Pow F) . card y = 1} = {{x}}" using single card_1_singletonE card_eq_0_iff by (smt empty_Collect_eq mem_Collect_eq singletonD zero_neq_one) then have split2:"{y \<in> Pow (insert x F) . card y = 1} = {y \<in> (Pow F) . card y = 1} \<union> {{x}}" using split by simp then show ?case proof (cases "x \<in> F") case True then show ?thesis using insert.hyps(2) by auto next case False then have "{y \<in> (Pow F) . card y = 1} \<inter> {{x}} = {}" by blast then have fact:"card {y \<in> Pow (insert x F) . card y = 1} = card {y \<in> (Pow F) . card y = 1} + card {{x}}" using split2 card_Un_disjoint insert.hyps(1) by auto have "card (insert x F) = card F + 1" using False card_insert_disjoint by (metis Suc_eq_plus1 insert.hyps(1)) then show ?thesis using fact insert.hyps(3) by auto qed qed lemma elem_exists_non_empty_set: assumes "card A > 0" obtains x where "x \<in> A" using assms card_gt_0_iff by fastforce lemma set_self_img_compr: "{a | a . a \<in> A} = A" by blast lemma card_subset_not_gt_card: "finite A \<Longrightarrow> card ps > card A \<Longrightarrow> \<not> (ps \<subseteq> A)" using card_mono leD by auto lemma card_inter_lt_single: "finite A \<Longrightarrow> finite B \<Longrightarrow> card (A \<inter> B) \<le> card A" by (simp add: card_mono) lemma set_diff_non_empty_not_subset: assumes "A \<subseteq> (B - C)" assumes "C \<noteq> {}" assumes "A \<noteq> {}" assumes "B \<noteq> {}" shows " \<not> (A \<subseteq> C)" proof (rule ccontr) assume " \<not> \<not> (A \<subseteq> C)" then have a: "\<And> x . x \<in> A \<Longrightarrow> x \<in> C" by blast thus False using a assms by blast qed lemma set_card_diff_ge_zero: "finite A \<Longrightarrow> finite B \<Longrightarrow> A \<noteq> B \<Longrightarrow> card A = card B \<Longrightarrow> card (A - B) > 0" by (meson Diff_eq_empty_iff card_0_eq card_subset_eq finite_Diff neq0_conv) lemma set_filter_diff: "{a \<in> A . P a } - {x} = {a \<in> (A - {x}) . (P a )}" by (auto) lemma set_filter_diff_card: "card ({a \<in> A . P a } - {x}) = card {a \<in> (A - {x}) . (P a )}" by (simp add: set_filter_diff) lemma obtain_subset_with_card_int_n: assumes "(n ::int) \<le> of_nat (card S)" assumes "(n ::int) \<ge> 0" obtains T where "T \<subseteq> S" "of_nat (card T) = (n ::int)" "finite T" using obtain_subset_with_card_n assms by (metis nonneg_int_cases of_nat_le_iff) lemma transform_filter_img_empty_rm: assumes "\<And> g . g \<in> G \<Longrightarrow> g \<noteq> {}" shows "{g - {x} | g. g \<in> G \<and> g \<noteq> {x}} = {g - {x} | g. g \<in> G } - {{}}" proof - let ?f = "\<lambda> g . g - {x}" have "\<And> g . g \<in> G \<Longrightarrow> g \<noteq> {x} \<longleftrightarrow> ?f g \<noteq> {}" using assms by (metis Diff_cancel Diff_empty Diff_insert0 insert_Diff) thus ?thesis by auto qed lemma bij_betw_inter_subsets: "bij_betw f A B \<Longrightarrow> a1 \<subseteq> A \<Longrightarrow> a2 \<subseteq> A \<Longrightarrow> f ` (a1 \<inter> a2) = (f ` a1) \<inter> (f ` a2)" by (meson bij_betw_imp_inj_on inj_on_image_Int) text\<open>Partition related set theory lemmas\<close> lemma partition_on_remove_pt: assumes "partition_on A G" shows "partition_on (A - {x}) {g - {x} | g. g \<in> G \<and> g \<noteq> {x}}" proof (intro partition_onI) show "\<And>p. p \<in> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}} \<Longrightarrow> p \<noteq> {}" using assms partition_onD3 subset_singletonD by force let ?f = "(\<lambda> g . g - {x})" have un_img: "\<Union>({?f g | g. g \<in> G }) = ?f (\<Union> G)" by blast have empty: "\<Union> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}} = \<Union>({g - {x} | g. g \<in> G } - {{}})" by blast then have "\<Union>({g - {x} | g. g \<in> G } - {{}}) = \<Union>({g - {x} | g. g \<in> G })" by blast then show " \<Union> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}} = A - {x}" using partition_onD1 assms un_img by (metis empty) then show "\<And>p p'. p \<in> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}} \<Longrightarrow> p' \<in> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}} \<Longrightarrow> p \<noteq> p' \<Longrightarrow> p \<inter> p' = {}" proof - fix p1 p2 assume p1: "p1 \<in> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}}" and p2: "p2 \<in> {g - {x} |g. g \<in> G \<and> g \<noteq> {x}}" and ne: "p1 \<noteq> p2" obtain p1' p2' where orig1: "p1 = p1' - {x}" and orig2: "p2 = p2' - {x}" and origne: "p1' \<noteq> p2'" and ne1: "p1' \<noteq> {x}" and ne2:"p2' \<noteq> {x}" and ing1: "p1' \<in> G" and ing2: "p2' \<in> G" using p1 p2 using mem_Collect_eq ne by blast then have "p1' \<inter> p2' = {}" using assms partition_onD2 ing1 ing2 origne disjointD by blast thus "p1 \<inter> p2 = {}" using orig1 orig2 by blast qed qed lemma partition_on_cart_prod: assumes "card I > 0" assumes "A \<noteq> {}" assumes "G \<noteq> {}" assumes "partition_on A G" shows "partition_on (A \<times> I) {g \<times> I |g. g \<in> G}" proof (intro partition_onI) show "\<And>p. p \<in> {g \<times> I |g. g \<in> G} \<Longrightarrow> p \<noteq> {}" using assms(1) assms(4) partition_onD3 by fastforce show "\<Union> {g \<times> I |g. g \<in> G} = A \<times> I" by (metis Setcompr_eq_image Sigma_Union assms(4) partition_onD1) show "\<And>p p'. p \<in> {g \<times> I |g. g \<in> G} \<Longrightarrow> p' \<in> {g \<times> I |g. g \<in> G} \<Longrightarrow> p \<noteq> p' \<Longrightarrow> p \<inter> p' = {}" by (smt (verit, best) Sigma_Int_distrib1 Sigma_empty1 assms(4) mem_Collect_eq partition_onE) qed subsection \<open>Multiset Helpers\<close> text \<open>Generic Size, count and card helpers\<close> lemma count_size_set_repr: "size {# x \<in># A . x = g#} = count A g" by (simp add: filter_eq_replicate_mset) lemma mset_nempty_set_nempty: "A \<noteq> {#} \<longleftrightarrow> (set_mset A) \<noteq> {}" by simp lemma mset_size_ne0_set_card: "size A > 0 \<Longrightarrow> card (set_mset A) > 0" using mset_nempty_set_nempty by fastforce lemma set_count_size_min: "count A a \<ge> n \<Longrightarrow> size A \<ge> n" by (metis (full_types) count_le_replicate_mset_subset_eq size_mset_mono size_replicate_mset) lemma card_size_filter_eq: "finite A \<Longrightarrow> card {a \<in> A . P a} = size {#a \<in># mset_set A . P a#}" by simp lemma size_multiset_set_mset_const_count: assumes "card (set_mset A) = ca" assumes "\<And>p. p \<in># A \<Longrightarrow> count A p = ca2" shows "size A = (ca * ca2)" proof - have "size A = (\<Sum> p \<in> (set_mset A) . count A p)" using size_multiset_overloaded_eq by auto then have "size A = (\<Sum> p \<in> (set_mset A) . ca2)" using assms by simp thus ?thesis using assms(1) by auto qed lemma size_multiset_int_count: assumes "of_nat (card (set_mset A)) = (ca :: int)" assumes "\<And>p. p \<in># A \<Longrightarrow> of_nat (count A p) = (ca2 :: int)" shows "of_nat (size A) = ((ca :: int) * ca2)" proof - have "size A = (\<Sum> p \<in> (set_mset A) . count A p)" using size_multiset_overloaded_eq by auto then have "of_nat (size A) = (\<Sum> p \<in> (set_mset A) . ca2)" using assms by simp thus ?thesis using assms(1) by auto qed lemma mset_union_size: "size (A \<union># B) = size (A) + size (B - A)" by (simp add: union_mset_def) lemma mset_union_size_inter: "size (A \<union># B) = size (A) + size B - size (A \<inter># B)" by (metis diff_add_inverse2 size_Un_Int) text \<open>Lemmas for repeat\_mset\<close> lemma repeat_mset_size [simp]: "size (repeat_mset n A) = n * size A" by (induction n) auto lemma repeat_mset_subset_in: assumes "\<And> a . a \<in># A \<Longrightarrow> a \<subseteq> B" assumes "X \<in># repeat_mset n A" assumes "x \<in> X" shows " x \<in> B" using assms by (induction n) auto lemma repeat_mset_not_empty: "n > 0 \<Longrightarrow> A \<noteq> {#} \<Longrightarrow> repeat_mset n A \<noteq> {#}" by (induction n) auto lemma elem_in_repeat_in_original: "a \<in># repeat_mset n A \<Longrightarrow> a \<in># A" by (metis count_inI count_repeat_mset in_countE mult.commute mult_zero_left nat.distinct(1)) lemma elem_in_original_in_repeat: "n > 0 \<Longrightarrow> a \<in># A \<Longrightarrow> a \<in># repeat_mset n A" by (metis count_greater_zero_iff count_repeat_mset nat_0_less_mult_iff) text \<open>Lemmas on image and filter for multisets\<close> lemma multiset_add_filter_size: "size {# a \<in># (A1 + A2) . P a #} = size {# a \<in># A1 . P a #} + size {# a \<in># A2 . P a #}" by simp lemma size_filter_neg: "size {#a \<in># A . P a #} = size A - size {# a \<in># A . \<not> P a #}" using size_filter_mset_lesseq size_union union_filter_mset_complement by (metis ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add) lemma filter_filter_mset_cond_simp: assumes "\<And> a . P a \<Longrightarrow> Q a" shows "filter_mset P A = filter_mset P (filter_mset Q A)" proof - have "filter_mset P (filter_mset Q A) = filter_mset (\<lambda> a. Q a \<and> P a) A" by (simp add: filter_filter_mset) thus ?thesis using assms by (metis (mono_tags, lifting) filter_mset_cong) qed lemma filter_filter_mset_ss_member: "filter_mset (\<lambda> a . {x, y} \<subseteq> a) A = filter_mset (\<lambda> a . {x, y} \<subseteq> a) (filter_mset (\<lambda> a . x \<in> a) A)" proof - have filter: "filter_mset (\<lambda> a . {x, y} \<subseteq> a) (filter_mset (\<lambda> a . x \<in> a) A) = filter_mset (\<lambda> a . x \<in> a \<and> {x, y} \<subseteq> a) A" by (simp add: filter_filter_mset) have "\<And> a. {x, y} \<subseteq> a \<Longrightarrow> x \<in> a" by simp thus ?thesis using filter by auto qed lemma multiset_image_do_nothing: "(\<And> x .x \<in># A \<Longrightarrow> f x = x) \<Longrightarrow> image_mset f A = A" by (induct A) auto lemma set_mset_filter: "set_mset {# f a . a \<in># A #} = {f a | a. a \<in># A}" by (simp add: Setcompr_eq_image) lemma mset_exists_imply: "x \<in># {# f a . a \<in># A #} \<Longrightarrow> \<exists> y \<in># A . x = f y" by auto lemma filter_mset_image_mset: "filter_mset P (image_mset f A) = image_mset f (filter_mset (\<lambda>x. P (f x)) A)" by (induction A) auto lemma mset_bunion_filter: "{# a \<in># A . P a \<or> Q a #} = {# a \<in># A . P a #} \<union># {# a \<in># A . Q a #}" by (rule multiset_eqI) simp lemma mset_inter_filter: "{# a \<in># A . P a \<and> Q a #} = {# a \<in># A . P a #} \<inter># {# a \<in># A . Q a #}" by (rule multiset_eqI) simp lemma image_image_mset: "image_mset (\<lambda> x . f x) (image_mset (\<lambda> y . g y) A) = image_mset (\<lambda> x. f (g x)) A" by simp text \<open>Big Union over multiset helpers\<close> lemma mset_big_union_obtain: assumes "x \<in># \<Sum>\<^sub># A" obtains a where "a \<in># A" and "x \<in># a" using assms by blast lemma size_big_union_sum: "size (\<Sum>\<^sub># (M :: 'a multiset multiset)) = (\<Sum>x \<in>#M . size x)" by (induct M) auto text \<open>Cartesian Product on Multisets\<close> lemma size_cartesian_product_singleton [simp]: "size ({#a#} \<times># B) = size B" by (simp add: Times_mset_single_left) lemma size_cartesian_product_singleton_right [simp]: "size (A \<times># {#b#}) = size A" by (simp add: Times_mset_single_right) lemma size_cartesian_product_empty [simp]: "size (A \<times># {#}) = 0" by simp lemma size_add_elem_step_eq: assumes "size (A \<times># B) = size A * size B" shows "size (add_mset x A \<times># B) = size (add_mset x A) * size B" proof - have "(add_mset x A \<times># B) = A \<times># B + {#x#} \<times># B" by (metis Sigma_mset_plus_distrib1 add_mset_add_single) then have "size (add_mset x A \<times># B) = size (A \<times># B) + size B" by auto also have "... = size A * size B + size B" by (simp add: assms) finally have "size (add_mset x A \<times># B) = (size A + 1) * size B" by auto thus ?thesis by simp qed lemma size_cartesian_product: "size (A \<times># B) = size A * size B" by (induct A) (simp_all add: size_add_elem_step_eq) lemma cart_prod_distinct_mset: assumes assm1: "distinct_mset A" assumes assm2: "distinct_mset B" shows "distinct_mset (A \<times># B)" unfolding distinct_mset_count_less_1 proof (rule allI) fix x have count_mult: "count (A \<times># B) x = count A (fst x) * count B (snd x)" using count_Sigma_mset by (metis prod.exhaust_sel) then have "count A (fst x) * count B (snd x) \<le> 1" using assm1 assm2 unfolding distinct_mset_count_less_1 using mult_le_one by blast thus "count (A \<times># B) x \<le> 1" using count_mult by simp qed lemma cart_product_single_intersect: "x1 \<noteq> x2 \<Longrightarrow> ({#x1#} \<times># A) \<inter># ({#x2#} \<times># B) = {#}" using multiset_inter_single by fastforce lemma size_union_distinct_cart_prod: "x1 \<noteq> x2 \<Longrightarrow> size (({#x1#} \<times># A) \<union># ({#x2#} \<times># B)) = size ({#x1#} \<times># A) + size ({#x2#} \<times># B)" by (simp add: cart_product_single_intersect size_Un_disjoint) lemma size_Union_distinct_cart_prod: "distinct_mset M \<Longrightarrow> size (\<Sum>p\<in>#M. ({#p#} \<times># B)) = size (M) * size (B)" by (induction M) auto lemma size_Union_distinct_cart_prod_filter: "distinct_mset M \<Longrightarrow> (\<And> p . p \<in># M \<Longrightarrow> size ({# b \<in># B . P p b #}) = c) \<Longrightarrow> size (\<Sum>p\<in>#M. ({#p#} \<times># {# b \<in># B . P p b #})) = size (M) * c" by (induction M) auto lemma size_Union_distinct_cart_prod_filter2: "distinct_mset V \<Longrightarrow> (\<And> b . b \<in># B \<Longrightarrow> size ({# v \<in># V . P v b #}) = c) \<Longrightarrow> size (\<Sum>b\<in>#B. ( {# v \<in># V . P v b #} \<times># {#b#})) = size (B) * c" by (induction B) auto lemma cart_product_add_1: "(add_mset a A) \<times># B = ({#a#} \<times># B) + (A \<times># B)" by (metis Sigma_mset_plus_distrib1 add_mset_add_single union_commute) lemma cart_product_add_1_filter: "{#m \<in># ((add_mset a M) \<times># N) . P m #} = {#m \<in># (M \<times># N) . P m #} + {#m \<in># ({#a#} \<times># N) . P m #}" unfolding add_mset_add_single [of a M] Sigma_mset_plus_distrib1 by (simp add: Times_mset_single_left) lemma cart_product_add_1_filter2: "{#m \<in># (M \<times># (add_mset b N)) . P m #} = {#m \<in># (M \<times># N) . P m #} + {#m \<in># (M \<times># {#b#}) . P m #}" unfolding add_mset_add_single [of b N] Sigma_mset_plus_distrib1 by (metis Times_insert_left Times_mset_single_right add_mset_add_single filter_union_mset) lemma cart_prod_singleton_right_gen: assumes "\<And> x . x \<in># (A \<times># {#b#}) \<Longrightarrow> P x \<longleftrightarrow> Q (fst x)" shows "{#x \<in># (A \<times># {#b#}). P x#} = {# a \<in># A . Q a#} \<times># {#b#}" using assms proof (induction A) case empty then show ?case by simp next case (add x A) have "add_mset x A \<times># {#b#} = add_mset (x, b) (A \<times># {#b#})" by (simp add: Times_mset_single_right) then have lhs: "filter_mset P (add_mset x A \<times># {#b#}) = filter_mset P (A \<times># {#b#}) + filter_mset P {#(x, b)#}" by simp have rhs: "filter_mset Q (add_mset x A) \<times># {#b#} = filter_mset Q A \<times># {#b#} + filter_mset Q {#x#} \<times># {#b#}" by (metis Sigma_mset_plus_distrib1 add_mset_add_single filter_union_mset) have "filter_mset P {#(x, b)#} = filter_mset Q {#x#} \<times># {#b#}" using add.prems by fastforce then show ?case using lhs rhs add.IH add.prems by force qed lemma cart_prod_singleton_left_gen: assumes "\<And> x . x \<in># ({#a#} \<times># B) \<Longrightarrow> P x \<longleftrightarrow> Q (snd x)" shows "{#x \<in># ({#a#} \<times># B). P x#} = {#a#} \<times># {#b \<in># B . Q b#}" using assms proof (induction B) case empty then show ?case by simp next case (add x B) have lhs: "filter_mset P ({#a#} \<times># add_mset x B) = filter_mset P ({#a#} \<times># B) + filter_mset P {#(a, x)#}" by (simp add: cart_product_add_1_filter2) have rhs: "{#a#} \<times># filter_mset Q (add_mset x B) = {#a#} \<times># filter_mset Q B + {#a#} \<times># filter_mset Q {#x#}" using add_mset_add_single filter_union_mset by (metis Times_mset_single_left image_mset_union) have "filter_mset P {#(a, x)#} = {#a#} \<times># filter_mset Q {#x#}" using add.prems by fastforce then show ?case using lhs rhs add.IH add.prems by force qed lemma cart_product_singleton_left: "{#m \<in># ({#a#} \<times># N) . fst m \<in> snd m #} = ({#a#} \<times># {# n \<in># N . a \<in> n #})" (is "?A = ?B") proof - have stmt: "\<And>m. m \<in># ({#a#} \<times># N) \<Longrightarrow> fst m \<in> snd m \<longleftrightarrow> a \<in> snd m" by (simp add: mem_Times_mset_iff) thus ?thesis by (metis (no_types, lifting) Sigma_mset_cong stmt cart_prod_singleton_left_gen) qed lemma cart_product_singleton_right: "{#m \<in># (N \<times># {#b#}) . fst m \<in> snd m #} = ({# n \<in># N . n \<in> b #} \<times># {# b #})" (is "?A = ?B") proof - have stmt: "\<And>m. m \<in># (N \<times># {#b#}) \<Longrightarrow> fst m \<in> snd m \<longleftrightarrow> fst m \<in>b" by (simp add: mem_Times_mset_iff) thus ?thesis by (metis (no_types, lifting) Sigma_mset_cong stmt cart_prod_singleton_right_gen) qed lemma cart_product_add_1_filter_eq: "{#m \<in># ((add_mset a M) \<times># N) . (fst m \<in> snd m) #} = {#m \<in># (M \<times># N) . (fst m \<in> snd m) #} + ({#a#} \<times># {# n \<in># N . a \<in> n #})" unfolding add_mset_add_single [of a M] Sigma_mset_plus_distrib1 using cart_product_singleton_left cart_product_add_1_filter by fastforce lemma cart_product_add_1_filter_eq_mirror: "{#m \<in># M \<times># (add_mset b N) . (fst m \<in> snd m) #} = {#m \<in># (M \<times># N) . (fst m \<in> snd m) #} + ({# n \<in># M . n \<in> b #} \<times># {#b#})" unfolding add_mset_add_single [of b N] Sigma_mset_plus_distrib1 (* longish *) by (metis (no_types) add_mset_add_single cart_product_add_1_filter2 cart_product_singleton_right) lemma set_break_down_left: shows "{# m \<in># (M \<times># N) . (fst m) \<in> (snd m) #} = (\<Sum>m\<in>#M. ({#m#} \<times># {#n \<in># N. m \<in> n#}))" by (induction M) (auto simp add: cart_product_add_1_filter_eq) lemma set_break_down_right: shows "{# x \<in># M \<times># N . (fst x) \<in> (snd x) #} = (\<Sum>n\<in>#N. ({#m \<in># M. m \<in> n#} \<times># {#n#}))" by (induction N) (auto simp add: cart_product_add_1_filter_eq_mirror) text \<open>Reasoning on sums of elements over multisets\<close> lemma sum_over_fun_eq: assumes "\<And> x . x \<in># A \<Longrightarrow> f x = g x" shows "(\<Sum>x \<in># A . f(x)) = (\<Sum> x \<in># A . g (x))" using assms by auto lemma sum_mset_add_diff_nat: fixes x:: 'a and f g :: "'a \<Rightarrow> nat" assumes "\<And>x . x \<in># A \<Longrightarrow> f x \<ge> g x" shows "(\<Sum> x \<in># A. f x - g x) = (\<Sum> x \<in># A . f x) - (\<Sum> x \<in># A . g x)" using assms by (induction A) (simp_all add: sum_mset_mono) lemma sum_mset_add_diff_int: fixes x:: 'a and f g :: "'a \<Rightarrow> int" shows "(\<Sum> x \<in># A. f x - g x) = (\<Sum> x \<in># A . f x) - (\<Sum> x \<in># A . g x)" by (induction A) (simp_all add: sum_mset_mono) context ring_1 begin lemma sum_mset_add_diff: "(\<Sum> x \<in># A. f x - g x) = (\<Sum> x \<in># A . f x) - (\<Sum> x \<in># A . g x)" by (induction A) (auto simp add: algebra_simps) end context ordered_semiring begin lemma sum_mset_ge0:"(\<And> x . f x \<ge> 0) \<Longrightarrow> (\<Sum> x \<in># A. f x ) \<ge> 0" proof (induction A) case empty then show ?case by simp next case (add x A) then have hyp2: "0 \<le> sum_mset (image_mset f A)" by blast then have " sum_mset (image_mset f (add_mset x A)) = sum_mset (image_mset f A) + f x" by (simp add: add_commute) then show ?case by (simp add: add.IH add.prems) qed lemma sum_order_add_mset: "(\<And> x . f x \<ge> 0) \<Longrightarrow> (\<Sum> x \<in># A. f x ) \<le> (\<Sum> x \<in># add_mset a A. f x )" by (simp add: local.add_increasing) lemma sum_mset_0_left: "(\<And> x . f x \<ge> 0) \<Longrightarrow> (\<Sum> x \<in># A. f x ) = 0 \<Longrightarrow> (\<forall> x \<in># A .f x = 0)" apply (induction A) apply auto using local.add_nonneg_eq_0_iff sum_mset_ge0 apply blast using local.add_nonneg_eq_0_iff sum_mset_ge0 by blast lemma sum_mset_0_iff_ge_0: assumes "(\<And> x . f x \<ge> 0)" shows "(\<Sum> x \<in># A. f x ) = 0 \<longleftrightarrow> (\<forall> x \<in> set_mset A .f x = 0)" using sum_mset_0_left assms by auto end lemma mset_set_size_card_count: "(\<Sum>x \<in># A. x) = (\<Sum>x \<in> set_mset A . x * (count A x))" proof (induction A) case empty then show ?case by simp next case (add y A) have lhs: "(\<Sum>x\<in>#add_mset y A. x) = (\<Sum>x\<in># A. x) + y" by simp have rhs: "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = (\<Sum>x\<in>(insert y (set_mset A)) . x * count (add_mset y A) x)" by simp then show ?case proof (cases "y \<in># A") case True have x_val: "\<And> x . x \<in> (insert y (set_mset A)) \<Longrightarrow> x \<noteq> y \<Longrightarrow> x* count (add_mset y A) x = x * (count A x)" by auto have y_count: "count (add_mset y A) y = 1 + count A y" using True count_inI by fastforce then have "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = (y * (count (add_mset y A) y)) + (\<Sum>x\<in>(set_mset A) - {y}. x * count A x)" using x_val finite_set_mset sum.cong sum.insert rhs by (smt DiffD1 Diff_insert_absorb insert_absorb mk_disjoint_insert sum.insert_remove) then have s1: "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = y + y * (count A y) + (\<Sum>x\<in>(set_mset A) - {y}. x * count A x)" using y_count by simp then have "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = y + (\<Sum>x\<in>insert y ((set_mset A) - {y} ) . x * count A x)" by (simp add: sum.insert_remove) then have "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = y + (\<Sum>x\<in>(set_mset A) . x * count A x)" by (simp add: True insert_absorb) then show ?thesis using lhs add.IH by linarith next case False have x_val: "\<And> x . x \<in> set_mset A \<Longrightarrow> x* count (add_mset y A) x = x * (count A x)" using False by auto have y_count: "count (add_mset y A) y = 1" using False count_inI by fastforce have lhs: "(\<Sum>x\<in>#add_mset y A. x) = (\<Sum>x\<in># A. x) + y" by simp have "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = (y * count (add_mset y A) y) + (\<Sum>x\<in>set_mset A. x * count A x)" using x_val rhs by (metis (no_types, lifting) False finite_set_mset sum.cong sum.insert) then have "(\<Sum>x\<in>set_mset (add_mset y A). x * count (add_mset y A) x) = y + (\<Sum>x\<in>set_mset A. x * count A x)" using y_count by simp then show ?thesis using lhs add.IH by linarith qed qed subsection \<open>Partitions on Multisets\<close> text \<open>A partition on a multiset A is a multiset of multisets, where the sum over P equals A and the empty multiset is not in the partition. Based off set partition definition. We note that unlike set partitions, there is no requirement for elements in the multisets to be distinct due to the definition of union on multisets \<^cite>\<open>"benderPartitionsMultisets1974"\<close>\<close> lemma mset_size_partition_dep: "size {# a \<in># A . P a \<or> Q a #} = size {# a \<in># A . P a #} + size {# a \<in># A . Q a #} - size {# a \<in># A . P a \<and> Q a #}" by (simp add: mset_bunion_filter mset_inter_filter mset_union_size_inter) definition partition_on_mset :: "'a multiset \<Rightarrow> 'a multiset multiset \<Rightarrow> bool" where "partition_on_mset A P \<longleftrightarrow> \<Sum>\<^sub>#P = A \<and> {#} \<notin># P" lemma partition_on_msetI [intro]: "\<Sum>\<^sub>#P = A \<Longrightarrow> {#} \<notin># P \<Longrightarrow> partition_on_mset A P" by (simp add: partition_on_mset_def) lemma partition_on_msetD1: "partition_on_mset A P \<Longrightarrow> \<Sum>\<^sub>#P = A" by (simp add: partition_on_mset_def) lemma partition_on_msetD2: "partition_on_mset A P \<Longrightarrow> {#} \<notin># P" by (simp add: partition_on_mset_def) lemma partition_on_mset_empty: "partition_on_mset {#} P \<longleftrightarrow> P = {#}" unfolding partition_on_mset_def using multiset_nonemptyE by fastforce lemma partition_on_mset_all: "A \<noteq> {#} \<Longrightarrow> partition_on_mset A {#A #}" by (simp add: partition_on_mset_def) lemma partition_on_mset_singletons: "partition_on_mset A (image_mset (\<lambda> x . {#x#}) A)" by (auto simp: partition_on_mset_def) lemma partition_on_mset_not_empty: "A \<noteq> {#} \<Longrightarrow> partition_on_mset A P \<Longrightarrow> P \<noteq> {#}" by (auto simp: partition_on_mset_def) lemma partition_on_msetI2: "\<Sum>\<^sub>#P = A \<Longrightarrow> (\<And> p . p \<in># P \<Longrightarrow> p \<noteq> {#}) \<Longrightarrow> partition_on_mset A P" by (auto simp: partition_on_mset_def) lemma partition_on_mset_elems: "partition_on_mset A P \<Longrightarrow> p1 \<in># P \<Longrightarrow> x \<in># p1 \<Longrightarrow> x \<in># A" by (auto simp: partition_on_mset_def) lemma partition_on_mset_sum_size_eq: "partition_on_mset A P \<Longrightarrow> (\<Sum>x \<in># P. size x) = size A" by (metis partition_on_msetD1 size_big_union_sum) lemma partition_on_mset_card: assumes "partition_on_mset A P" shows " size P \<le> size A" proof (rule ccontr) assume "\<not> size P \<le> size A" then have a: "size P > size A" by simp have "\<And> x . x \<in># P \<Longrightarrow> size x > 0" using partition_on_msetD2 using assms nonempty_has_size by auto then have " (\<Sum>x \<in># P. size x) \<ge> size P" by (metis leI less_one not_less_zero size_eq_sum_mset sum_mset_mono) thus False using a partition_on_mset_sum_size_eq using assms by fastforce qed lemma partition_on_mset_count_eq: "partition_on_mset A P \<Longrightarrow> a \<in># A \<Longrightarrow> (\<Sum>x \<in># P. count x a) = count A a" by (metis count_sum_mset partition_on_msetD1) lemma partition_on_mset_subsets: "partition_on_mset A P \<Longrightarrow> x \<in># P \<Longrightarrow> x \<subseteq># A" by (auto simp add: partition_on_mset_def) lemma partition_on_mset_distinct: assumes "partition_on_mset A P" assumes "distinct_mset A" shows "distinct_mset P" proof (rule ccontr) assume "\<not> distinct_mset P" then obtain p1 where count: "count P p1 \<ge> 2" by (metis Suc_1 distinct_mset_count_less_1 less_Suc_eq_le not_less_eq) then have cge: "\<And> x . x \<in># p1 \<Longrightarrow> (\<Sum>p \<in># P. count p x ) \<ge> 2" by (smt count_greater_eq_one_iff count_sum_mset_if_1_0 dual_order.trans sum_mset_mono zero_le) have elem_in: "\<And> x . x \<in># p1 \<Longrightarrow> x \<in># A" using partition_on_mset_elems by (metis count assms(1) count_eq_zero_iff not_numeral_le_zero) have "\<And> x . x \<in># A \<Longrightarrow> count A x = 1" using assms by (simp add: distinct_mset_def) thus False using assms partition_on_mset_count_eq cge elem_in count_inI local.count multiset_nonemptyE by (metis (mono_tags) not_numeral_le_zero numeral_One numeral_le_iff partition_on_mset_def semiring_norm(69)) qed lemma partition_on_mset_distinct_disjoint: assumes "partition_on_mset A P" assumes "distinct_mset A" assumes "p1 \<in># P" assumes "p2 \<in># P - {#p1#}" shows "p1 \<inter># p2 = {#}" using Diff_eq_empty_iff_mset assms diff_add_zero distinct_mset_add multiset_inter_assoc sum_mset.remove by (smt partition_on_msetD1 subset_mset.inf.absorb_iff2 subset_mset.le_add_same_cancel1 subset_mset.le_iff_inf) lemma partition_on_mset_diff: assumes "partition_on_mset A P" assumes "Q \<subseteq>#P" shows "partition_on_mset (A - \<Sum>\<^sub>#Q) (P - Q)" using assms partition_on_mset_def by (smt diff_union_cancelL subset_mset.add_diff_inverse sum_mset.union union_iff) lemma sigma_over_set_partition_count: assumes "finite A" assumes "partition_on A P" assumes "x \<in># \<Sum>\<^sub># (mset_set (mset_set ` P))" shows "count (\<Sum>\<^sub># (mset_set (mset_set ` P))) x = 1" proof - have disj: "disjoint P" using assms partition_onD2 by auto then obtain p where pin: "p \<in># mset_set (mset_set ` P)" and xin: "x \<in># p" using assms by blast then have "count (mset_set (mset_set ` P)) p = 1" by (meson count_eq_zero_iff count_mset_set') then have filter: "\<And> p' . p' \<in># ((mset_set (mset_set` P)) - {#p#}) \<Longrightarrow> p \<noteq> p'" using count_eq_zero_iff count_single by fastforce have zero: "\<And> p'. p' \<in># mset_set (mset_set ` P) \<Longrightarrow> p' \<noteq> p \<Longrightarrow> count p' x = 0" proof (rule ccontr) fix p' assume assm: "p' \<in># mset_set (mset_set ` P)" and ne: "p' \<noteq> p" and n0: "count p' x \<noteq> 0" then have xin2: "x \<in># p'" by auto obtain p1 p2 where p1in: "p1 \<in> P" and p2in: "p2 \<in> P" and p1eq: "mset_set p1 = p" and p2eq: "mset_set p2 = p'" using assm assms(1) assms(2) pin by (metis (no_types, lifting) elem_mset_set finite_elements finite_imageI image_iff) have origne: "p1 \<noteq> p2" using ne p1eq p2eq by auto have "p1 = p2" using partition_onD4 xin xin2 by (metis assms(2) count_eq_zero_iff count_mset_set' p1eq p1in p2eq p2in) then show False using origne by simp qed have one: "count p x = 1" using pin xin assms count_eq_zero_iff count_greater_eq_one_iff by (metis count_mset_set(3) count_mset_set_le_one image_iff le_antisym) then have "count (\<Sum>\<^sub># (mset_set (mset_set ` P))) x = (\<Sum>p' \<in># (mset_set (mset_set ` P)) . count p' x)" using count_sum_mset by auto also have "... = (count p x) + (\<Sum>p' \<in># ((mset_set (mset_set ` P)) - {#p#}) . count p' x)" by (metis (mono_tags, lifting) insert_DiffM pin sum_mset.insert) also have "... = 1 + (\<Sum>p' \<in># ((mset_set (mset_set ` P)) - {#p#}) . count p' x)" using one by presburger finally have "count (\<Sum>\<^sub># (mset_set (mset_set ` P))) x = 1 + (\<Sum>p' \<in># ((mset_set (mset_set ` P)) - {#p#}) . 0)" using zero filter by (metis (mono_tags, lifting) in_diffD sum_over_fun_eq) then show "count (\<Sum>\<^sub># (mset_set (mset_set ` P))) x = 1" by simp qed lemma partition_on_mset_set: assumes "finite A" assumes "partition_on A P" shows "partition_on_mset (mset_set A) (mset_set (image (\<lambda> x. mset_set x) P))" proof (intro partition_on_msetI) have partd1: "\<Union>P = A" using assms partition_onD1 by auto have imp: "\<And>x. x \<in># \<Sum>\<^sub># (mset_set (mset_set ` P)) \<Longrightarrow> x \<in># mset_set A" proof - fix x assume "x \<in># \<Sum>\<^sub># (mset_set (mset_set ` P))" then obtain p where "p \<in> (mset_set ` P)" and xin: "x \<in># p" by (metis elem_mset_set equals0D infinite_set_mset_mset_set mset_big_union_obtain) then have "set_mset p \<in> P" by (metis empty_iff finite_set_mset_mset_set image_iff infinite_set_mset_mset_set) then show "x \<in># mset_set A" using partd1 xin assms(1) by auto qed have imp2: "\<And>x . x \<in># mset_set A \<Longrightarrow> x \<in># \<Sum>\<^sub># (mset_set (mset_set ` P))" proof - fix x assume "x \<in># mset_set A" then have "x \<in> A" by (simp add: assms(1)) then obtain p where "p \<in> P" and "x \<in> p" using assms(2) using partd1 by blast then obtain p' where "p' \<in> (mset_set ` P)" and "p' = mset_set p" by blast thus "x \<in># \<Sum>\<^sub># (mset_set (mset_set ` P))" using assms \<open>p \<in> P\<close> \<open>x \<in> p\<close> finite_elements partd1 by (metis Sup_upper finite_imageI finite_set_mset_mset_set in_Union_mset_iff rev_finite_subset) qed have a1: "\<And> x . x \<in># mset_set A \<Longrightarrow> count (mset_set A) x = 1" using assms(1) by fastforce then show "\<Sum>\<^sub># (mset_set (mset_set ` P)) = mset_set A" using imp imp2 a1 by (metis assms(1) assms(2) count_eq_zero_iff multiset_eqI sigma_over_set_partition_count) have "\<And> p. p \<in> P \<Longrightarrow> p \<noteq> {} " using assms partition_onD3 by auto then have "\<And> p. p \<in> P \<Longrightarrow> mset_set p \<noteq> {#}" using mset_set_empty_iff by (metis Union_upper assms(1) partd1 rev_finite_subset) then show "{#} \<notin># mset_set (mset_set ` P)" by (metis elem_mset_set equals0D image_iff infinite_set_mset_mset_set) qed lemma partition_on_mset_distinct_inter: assumes "partition_on_mset A P" assumes "distinct_mset A" assumes "p1 \<in># P" and "p2 \<in># P" and "p1 \<noteq> p2" shows "p1 \<inter># p2 = {#}" by (metis assms in_remove1_mset_neq partition_on_mset_distinct_disjoint) lemma partition_on_set_mset_distinct: assumes "partition_on_mset A P" assumes "distinct_mset A" assumes "p \<in># image_mset set_mset P" assumes "p' \<in># image_mset set_mset P" assumes "p \<noteq> p'" shows "p \<inter> p' = {}" proof - obtain p1 where p1in: "p1 \<in># P" and p1eq: "set_mset p1 = p" using assms(3) by blast obtain p2 where p2in: "p2 \<in># P" and p2eq: "set_mset p2 = p'" using assms(4) by blast have "distinct_mset P" using assms partition_on_mset_distinct by blast then have "p1 \<noteq> p2" using assms using p1eq p2eq by fastforce then have "p1 \<inter># p2 = {#}" using partition_on_mset_distinct_inter using assms(1) assms(2) p1in p2in by auto thus ?thesis using p1eq p2eq by (metis set_mset_empty set_mset_inter) qed lemma partition_on_set_mset: assumes "partition_on_mset A P" assumes "distinct_mset A" shows "partition_on (set_mset A) (set_mset (image_mset set_mset P))" proof (intro partition_onI) show "\<And>p. p \<in># image_mset set_mset P \<Longrightarrow> p \<noteq> {}" using assms(1) partition_on_msetD2 by fastforce next have "\<And> x . x \<in> set_mset A \<Longrightarrow> x \<in> \<Union> (set_mset (image_mset set_mset P))" by (metis Union_iff assms(1) image_eqI mset_big_union_obtain partition_on_msetD1 set_image_mset) then show "\<Union> (set_mset (image_mset set_mset P)) = set_mset A" using set_eqI' partition_on_mset_elems assms by auto show "\<And>p p'. p \<in># image_mset set_mset P \<Longrightarrow> p' \<in># image_mset set_mset P \<Longrightarrow> p \<noteq> p' \<Longrightarrow> p \<inter> p' = {}" using partition_on_set_mset_distinct assms by blast qed lemma partition_on_mset_eq_imp_eq_carrier: assumes "partition_on_mset A P" assumes "partition_on_mset B P" shows "A = B" using assms partition_on_msetD1 by auto lemma partition_on_mset_add_single: assumes "partition_on_mset A P" shows "partition_on_mset (add_mset a A) (add_mset {#a#} P)" using assms by (auto simp: partition_on_mset_def) lemma partition_on_mset_add_part: assumes "partition_on_mset A P" assumes "X \<noteq> {#}" assumes "A + X = A'" shows "partition_on_mset A' (add_mset X P)" using assms by (auto simp: partition_on_mset_def) lemma partition_on_mset_add: assumes "partition_on_mset A P" assumes "X \<in># P" assumes "add_mset a X = X'" shows "partition_on_mset (add_mset a A) (add_mset X' (P - {#X#}))" using add_mset_add_single assms empty_not_add_mset mset_subset_eq_single partition_on_mset_all by (smt partition_on_mset_def subset_mset.add_diff_inverse sum_mset.add_mset sum_mset.remove union_iff union_mset_add_mset_left) lemma partition_on_mset_elem_exists_part: assumes "partition_on_mset A P" assumes "x \<in># A" obtains p where "p \<in># P" and "x \<in># p" using assms in_Union_mset_iff partition_on_msetD2 partition_on_msetI by (metis partition_on_mset_eq_imp_eq_carrier) lemma partition_on_mset_combine: assumes "partition_on_mset A P" assumes "partition_on_mset B Q" shows "partition_on_mset (A + B) (P + Q)" unfolding partition_on_mset_def using assms partition_on_msetD1 partition_on_msetD2 by auto lemma partition_on_mset_split: assumes "partition_on_mset A (P + Q)" shows "partition_on_mset (\<Sum>\<^sub>#P) P" using partition_on_mset_def partition_on_msetD2 assms by fastforce end
(* Author: Norbert Schirmer Maintainer: Norbert Schirmer, norbert.schirmer at web de License: LGPL *) (* Title: UserGuide.thy Author: Norbert Schirmer, TU Muenchen Copyright (C) 2004-2008 Norbert Schirmer Some rights reserved, TU Muenchen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) section \<open>User Guide \label{sec:UserGuide}\<close> (*<*) theory UserGuide imports HeapList Vcg "HOL-Statespace.StateSpaceSyntax" "HOL-Library.LaTeXsugar" begin (*>*) (*<*) syntax "_statespace_updates" :: "('a \<Rightarrow> 'b) \<Rightarrow> updbinds \<Rightarrow> ('a \<Rightarrow> 'b)" ("_\<langle>_\<rangle>" [900,0] 900) (*>*) text \<open> We introduce the verification environment with a couple of examples that illustrate how to use the different bits and pieces to verify programs. \<close> subsection \<open>Basics\<close> text \<open> First of all we have to decide how to represent the state space. There are currently two implementations. One is based on records the other one on the concept called `statespace' that was introduced with Isabelle 2007 (see \texttt{HOL/Statespace}) . In contrast to records a 'satespace' does not define a new type, but provides a notion of state, based on locales. Logically the state is modelled as a function from (abstract) names to (abstract) values and the statespace infrastructure organises distinctness of names an projection/injection of concrete values into the abstract one. Towards the user the interface of records and statespaces is quite similar. However, statespaces offer more flexibility, inherited from the locale infrastructure, in particular multiple inheritance and renaming of components. In this user guide we prefer statespaces, but give some comments on the usage of records in Section \ref{sec:records}. \<close> hoarestate vars = A :: nat I :: nat M :: nat N :: nat R :: nat S :: nat text (in vars) \<open>The command \isacommand{hoarestate} is a simple preprocessor for the command \isacommand{statespaces} which decorates the state components with the suffix \<open>_'\<close>, to avoid cluttering the namespace. Also note that underscores are printed as hyphens in this documentation. So what you see as @{term "A_'"} in this document is actually \texttt{A\_'}. Every component name becomes a fixed variable in the locale \<open>vars\<close> and can no longer be used for logical variables. Lookup of a component @{term "A_'"} in a state @{term "s"} is written as @{term "s\<cdot>A_'"}, and update with a value @{term "term v"} as @{term "s\<langle>A_' := v\<rangle>"}. To deal with local and global variables in the context of procedures the program state is organised as a record containing the two componets @{const "locals"} and @{const "globals"}. The variables defined in hoarestate \<open>vars\<close> reside in the @{const "locals"} part. \<close> text \<open> Here is a first example. \<close> lemma (in vars) "\<Gamma>\<turnstile> \<lbrace>\<acute>N = 5\<rbrace> \<acute>N :== 2 * \<acute>N \<lbrace>\<acute>N = 10\<rbrace>" apply vcg txt \<open>@{subgoals}\<close> apply simp txt \<open>@{subgoals}\<close> done text \<open>We enable the locale of statespace \<open>vars\<close> by the \texttt{in vars} directive. The verification condition generator is invoked via the \<open>vcg\<close> method and leaves us with the expected subgoal that can be proved by simplification.\<close> text (in vars) \<open> If we refer to components (variables) of the state-space of the program we always mark these with \<open>\<acute>\<close> (in assertions and also in the program itself). It is the acute-symbol and is present on most keyboards. The assertions of the Hoare tuple are ordinary Isabelle sets. As we usually want to refer to the state space in the assertions, we provide special brackets for them. They can be written as {\verb+{| |}+} in ASCII or \<open>\<lbrace> \<rbrace>\<close> with symbols. Internally, marking variables has two effects. First of all we refer to the implicit state and secondary we get rid of the suffix \<open>_'\<close>. So the assertion @{term "{|\<acute>N = 5|}"} internally gets expanded to \<open>{s. locals s \<cdot>N_' = 5}\<close> written in ordinary set comprehension notation of Isabelle. It describes the set of states where the \<open>N_'\<close> component is equal to \<open>5\<close>. An empty context and an empty postcondition for abrupt termination can be omitted. The lemma above is a shorthand for \<open>\<Gamma>,{}\<turnstile> \<lbrace>\<acute>N = 5\<rbrace> \<acute>N :== 2 * \<acute>N \<lbrace>\<acute>N = 10\<rbrace>,{}\<close>. \<close> text \<open>We can step through verification condition generation by the method \<open>vcg_step\<close>. \<close> lemma (in vars) "\<Gamma>,{}\<turnstile> \<lbrace>\<acute>N = 5\<rbrace> \<acute>N :== 2 * \<acute>N \<lbrace>\<acute>N = 10\<rbrace>" apply vcg_step txt \<open>@{subgoals}\<close> txt \<open>The last step of verification condition generation, transforms the inclusion of state sets to the corresponding predicate on components of the state space. \<close> apply vcg_step txt \<open>@{subgoals}\<close> by simp text \<open> Although our assertions work semantically on the state space, stepping through verification condition generation ``feels'' like the expected syntactic substitutions of traditional Hoare logic. This is achieved by light simplification on the assertions calculated by the Hoare rules. \<close> lemma (in vars) "\<Gamma>\<turnstile> \<lbrace>\<acute>N = 5\<rbrace> \<acute>N :== 2 * \<acute>N \<lbrace>\<acute>N = 10\<rbrace>" apply (rule HoarePartial.Basic) txt \<open>@{subgoals}\<close> apply (simp only: mem_Collect_eq) txt \<open>@{subgoals}\<close> apply (tactic \<open>Hoare.BasicSimpTac @{context} Hoare.Function false [] (K all_tac) 1\<close>) txt \<open>@{subgoals}\<close> by simp text \<open>The next example shows how we deal with the while loop. Note the invariant annotation. \<close> lemma (in vars) "\<Gamma>,{}\<turnstile> \<lbrace>\<acute>M = 0 \<and> \<acute>S = 0\<rbrace> WHILE \<acute>M \<noteq> a INV \<lbrace>\<acute>S = \<acute>M * b\<rbrace> DO \<acute>S :== \<acute>S + b;; \<acute>M :== \<acute>M + 1 OD \<lbrace>\<acute>S = a * b\<rbrace>" apply vcg txt \<open>@{subgoals [display]}\<close> txt \<open>The verification condition generator gives us three proof obligations, stemming from the path from the precondition to the invariant, from the invariant together with loop condition through the loop body to the invariant, and finally from the invariant together with the negated loop condition to the postcondition.\<close> apply auto done subsection \<open>Procedures\<close> subsubsection \<open>Declaration\<close> text \<open> Our first procedure is a simple square procedure. We provide the command \isacommand{procedures}, to declare and define a procedure. \<close> procedures Square (N::nat|R::nat) where I::nat in "\<acute>R :== \<acute>N * \<acute>N" text \<open>A procedure is given by the signature of the procedure followed by the procedure body. The signature consists of the name of the procedure and a list of parameters together with their types. The parameters in front of the pipe \<open>|\<close> are value parameters and behind the pipe are the result parameters. Value parameters model call by value semantics. The value of a result parameter at the end of the procedure is passed back to the caller. Local variables follow the \<open>where\<close>. If there are no local variables the \<open>where \<dots> in\<close> can be omitted. The variable @{term "I"} is actually unused in the body, but is used in the examples below.\<close> text \<open> The procedures command provides convenient syntax for procedure calls (that creates the proper @{term init}, @{term return} and @{term result} functions on the fly) and creates locales and statespaces to reason about the procedure. The purpose of locales is to set up logical contexts to support modular reasoning. Locales can be seen as freeze-dried proof contexts that get alive as you setup a new lemma or theorem (\cite{Ballarin-04-locales}). The locale the user deals with is named \<open>Square_impl\<close>. It defines the procedure name (internally @{term "Square_'proc"}), the procedure body (named \<open>Square_body\<close>) and the statespaces for parameters and local and global variables. Moreover it contains the assumption @{term "\<Gamma> Square_'proc = Some Square_body"}, which states that the procedure is properly defined in the procedure context. The purpose of the locale is to give us easy means to setup the context in which we prove programs correct. In this locale the procedure context @{term "\<Gamma>"} is fixed. So we always use this letter for the procedure specification. This is crucial, if we prove programs under the assumption of some procedure specifications. \<close> (*<*) context Square_impl begin (*>*) text \<open>The procedures command generates syntax, so that we can either write \<open>CALL Square(\<acute>I,\<acute>R)\<close> or @{term "\<acute>I :== CALL Square(\<acute>R)"} for the procedure call. The internal term is the following: \<close> (*<*) declare [[hoare_use_call_tr' = false]] (*>*) text \<open>\small @{term [display] "CALL Square(\<acute>I,\<acute>R)"}\<close> (*<*) declare [[hoare_use_call_tr' = true]] (*>*) text \<open>Note the additional decoration (with the procedure name) of the parameter and local variable names.\<close> (*<*) end (*>*) text \<open>The abstract syntax for the procedure call is @{term "call init p return result"}. The @{term "init"} function copies the values of the actual parameters to the formal parameters, the @{term return} function copies the global variables back (in our case there are no global variables), and the @{term "result"} function additionally copies the values of the formal result parameters to the actual locations. Actual value parameters can be all kind of expressions, since we only need their value. But result parameters must be proper ``lvalues'': variables (including dereferenced pointers) or array locations, since we have to assign values to them. \<close> subsubsection \<open>Verification\<close> text (in Square_impl) \<open> A procedure specification is an ordinary Hoare tuple. We use the parameterless call for the specification; \<open>\<acute>R :== PROC Square(\<acute>N)\<close> is syntactic sugar for \<open>Call Square_'proc\<close>. This emphasises that the specification describes the internal behaviour of the procedure, whereas parameter passing corresponds to the procedure call. The following precondition fixes the current value \<open>\<acute>N\<close> to the logical variable @{term n}. Universal quantification of @{term "n"} enables us to adapt the specification to an actual parameter. The specification is used in the rule for procedure call when we come upon a call to @{term Square}. Thus @{term "n"} plays the role of the auxiliary variable @{term "Z"}. \<close> text \<open>To verify the procedure we need to verify the body. We use a derived variant of the general recursion rule, tailored for non recursive procedures: @{thm [source] HoarePartial.ProcNoRec1}: \begin{center} @{thm [mode=Rule,mode=ParenStmt] HoarePartial.ProcNoRec1 [no_vars]} \end{center} The naming convention for the rule is the following: The \<open>1\<close> expresses that we look at one procedure, and \<open>NoRec\<close> that the procedure is non recursive. \<close> lemma (in Square_impl) shows "\<forall>n. \<Gamma>\<turnstile>\<lbrace>\<acute>N = n\<rbrace> \<acute>R :== PROC Square(\<acute>N) \<lbrace>\<acute>R = n * n\<rbrace>" txt \<open>The directive \<open>in\<close> has the effect that the context of the locale @{term "Square_impl"} is included to the current lemma, and that the lemma is added as a fact to the locale, after it is proven. The next time locale @{term "Square_impl"} is invoked this lemma is immediately available as fact, which the verification condition generator can use. \<close> apply (hoare_rule HoarePartial.ProcNoRec1) txt "@{subgoals[display]}" txt \<open>The method \<open>hoare_rule\<close>, like \<open>rule\<close> applies a single rule, but additionally does some ``obvious'' steps: It solves the canonical side-conditions of various Hoare-rules and it automatically expands the procedure body: With @{thm [source] Square_impl}: @{thm [names_short] Square_impl [no_vars]} we get the procedure body out of the procedure context @{term "\<Gamma>"}; with @{thm [source] Square_body_def}: @{thm [names_short] Square_body_def [no_vars]} we can unfold the definition of the body. The proof is finished by the vcg and simp. \<close> txt "@{subgoals[display]}" by vcg simp text \<open>If the procedure is non recursive and there is no specification given, the verification condition generator automatically expands the body.\<close> lemma (in Square_impl) Square_spec: shows "\<forall>n. \<Gamma>\<turnstile>\<lbrace>\<acute>N = n\<rbrace> \<acute>R :== PROC Square(\<acute>N) \<lbrace>\<acute>R = n * n\<rbrace>" by vcg simp text \<open>An important naming convention is to name the specification as \<open><procedure-name>_spec\<close>. The verification condition generator refers to this name in order to search for a specification in the theorem database. \<close> subsubsection \<open>Usage\<close> text\<open>Let us see how we can use procedure specifications.\<close> (* FIXME: maybe don't show this at all *) lemma (in Square_impl) shows "\<Gamma>\<turnstile>\<lbrace>\<acute>I = 2\<rbrace> \<acute>R :== CALL Square(\<acute>I) \<lbrace>\<acute>R = 4\<rbrace>" txt \<open>Remember that we have already proven @{thm [source] "Square_spec"} in the locale \<open>Square_impl\<close>. This is crucial for verification condition generation. When reaching a procedure call, it looks for the specification (by its name) and applies the rule @{thm [source,mode=ParenStmt] HoarePartial.ProcSpec} instantiated with the specification (as last premise). Before we apply the verification condition generator, let us take some time to think of what we can expect. Let's look at the specification @{thm [source] Square_spec} again: @{thm [display] Square_spec [no_vars]} The specification talks about the formal parameters @{term "N"} and @{term R}. The precondition @{term "\<lbrace>\<acute>N = n\<rbrace>"} just fixes the initial value of \<open>N\<close>. The actual parameters are @{term "I"} and @{term "R"}. We have to adapt the specification to this calling context. @{term "\<forall>n. \<Gamma>\<turnstile> \<lbrace>\<acute>I = n\<rbrace> \<acute>R :== CALL Square(\<acute>I) \<lbrace>\<acute>R = n * n\<rbrace>"}. From the postcondition @{term "\<lbrace>\<acute>R = n * n\<rbrace>"} we have to derive the actual postcondition @{term "\<lbrace>\<acute>R = 4\<rbrace>"}. So we gain something like: @{term "\<lbrace>n * n = (4::nat)\<rbrace>"}. The precondition is @{term "\<lbrace>\<acute>I = 2\<rbrace>"} and the specification tells us @{term "\<lbrace>\<acute>I = n\<rbrace>"} for the pre-state. So the value of @{term n} is the value of @{term I} in the pre-state. So we arrive at @{term "\<lbrace>\<acute>I = 2\<rbrace> \<subseteq> \<lbrace>\<acute>I * \<acute>I = 4\<rbrace>"}. \<close> apply vcg_step txt "@{subgoals[display]}" txt \<open> The second set looks slightly more involved: @{term "\<lbrace>\<forall>t. \<^bsup>t\<^esup>R = \<acute>I * \<acute>I \<longrightarrow> \<acute>I * \<acute>I = 4\<rbrace>"}, this is an artefact from the procedure call rule. Originally \<open>\<acute>I * \<acute>I = 4\<close> was \<open>\<^bsup>t\<^esup>R = 4\<close>. Where @{term "t"} denotes the final state of the procedure and the superscript notation allows to select a component from a particular state. \<close> apply vcg_step txt "@{subgoals[display]}" by simp text \<open> The adaption of the procedure specification to the actual calling context is done due to the @{term init}, @{term return} and @{term result} functions in the rule @{thm [source] HoarePartial.ProcSpec} (or in the variant @{thm [source] HoarePartial.ProcSpecNoAbrupt} which already incorporates the fact that the postcondition for abrupt termination is the empty set). For the readers interested in the internals, here a version without vcg. \<close> lemma (in Square_impl) shows "\<Gamma>\<turnstile>\<lbrace>\<acute>I = 2\<rbrace> \<acute>R :== CALL Square(\<acute>I) \<lbrace>\<acute>R = 4\<rbrace>" apply (rule HoarePartial.ProcSpecNoAbrupt [OF _ _ Square_spec]) txt "@{subgoals[display]}" txt \<open>This is the raw verification condition, It is interesting to see how the auxiliary variable @{term "Z"} is actually used. It is unified with @{term n} of the specification and fixes the state after parameter passing. \<close> apply simp txt "@{subgoals[display]}" prefer 2 apply vcg_step txt "@{subgoals[display]}" apply (auto intro: ext) done subsubsection \<open>Recursion\<close> text \<open>We want to define a procedure for the factorial. We first define a HOL function that calculates it, to specify the procedure later on. \<close> primrec fac:: "nat \<Rightarrow> nat" where "fac 0 = 1" | "fac (Suc n) = (Suc n) * fac n" (*<*) lemma fac_simp [simp]: "0 < i \<Longrightarrow> fac i = i * fac (i - 1)" by (cases i) simp_all (*>*) text \<open>Now we define the procedure.\<close> procedures Fac (N::nat | R::nat) "IF \<acute>N = 0 THEN \<acute>R :== 1 ELSE \<acute>R :== CALL Fac(\<acute>N - 1);; \<acute>R :== \<acute>N * \<acute>R FI" text \<open> Now let us prove that our implementation of @{term "Fac"} meets its specification. \<close> lemma (in Fac_impl) shows "\<forall>n. \<Gamma>\<turnstile> \<lbrace>\<acute>N = n\<rbrace> \<acute>R :== PROC Fac(\<acute>N) \<lbrace>\<acute>R = fac n\<rbrace>" apply (hoare_rule HoarePartial.ProcRec1) txt "@{subgoals[display]}" apply vcg txt "@{subgoals[display]}" apply simp done text \<open> Since the factorial is implemented recursively, the main ingredient of this proof is, to assume that the specification holds for the recursive call of @{term Fac} and prove the body correct. The assumption for recursive calls is added to the context by the rule @{thm [source] HoarePartial.ProcRec1} (also derived from the general rule for mutually recursive procedures): \begin{center} @{thm [mode=Rule,mode=ParenStmt] HoarePartial.ProcRec1 [no_vars]} \end{center} The verification condition generator infers the specification out of the context @{term "\<Theta>"} when it encounters a recursive call of the factorial. \<close> subsection \<open>Global Variables and Heap \label{sec:VcgHeap}\<close> text \<open> Now we define and verify some procedures on heap-lists. We consider list structures consisting of two fields, a content element @{term "cont"} and a reference to the next list element @{term "next"}. We model this by the following state space where every field has its own heap. \<close> hoarestate globals_heap = "next" :: "ref \<Rightarrow> ref" cont :: "ref \<Rightarrow> nat" text \<open>It is mandatory to start the state name with `globals'. This is exploited by the syntax translations to store the components in the @{const globals} part of the state. \<close> text \<open>Updates to global components inside a procedure are always propagated to the caller. This is implicitly done by the parameter passing syntax translations. \<close> text \<open>We first define an append function on lists. It takes two references as parameters. It appends the list referred to by the first parameter with the list referred to by the second parameter. The statespace of the global variables has to be imported. \<close> procedures (imports globals_heap) append(p :: ref, q::ref | p::ref) "IF \<acute>p=Null THEN \<acute>p :== \<acute>q ELSE \<acute>p\<rightarrow>\<acute>next :== CALL append(\<acute>p\<rightarrow>\<acute>next,\<acute>q) FI" (*<*) context append_impl begin (*>*) text \<open> The difference of a global and a local variable is that global variables are automatically copied back to the procedure caller. We can study this effect on the translation of @{term "\<acute>p :== CALL append(\<acute>p,\<acute>q)"}: \<close> (*<*) declare [[hoare_use_call_tr' = false]] (*>*) text \<open> @{term [display] "\<acute>p :== CALL append(\<acute>p,\<acute>q)"} \<close> (*<*) declare [[hoare_use_call_tr' = true]] end (*>*) text \<open>Below we give two specifications this time. One captures the functional behaviour and focuses on the entities that are potentially modified by the procedure, the second one is a pure frame condition. \<close> text \<open> The functional specification below introduces two logical variables besides the state space variable @{term "\<sigma>"}, namely @{term "Ps"} and @{term "Qs"}. They are universally quantified and range over both the pre-and the postcondition, so that we are able to properly instantiate the specification during the proofs. The syntax \<open>\<lbrace>\<sigma>. \<dots>\<rbrace>\<close> is a shorthand to fix the current state: \<open>{s. \<sigma> = s \<dots>}\<close>. Moreover \<open>\<^bsup>\<sigma>\<^esup>x\<close> abbreviates the lookup of variable \<open>x\<close> in the state \<open>\<sigma>\<close>. The approach to specify procedures on lists basically follows \cite{MehtaN-CADE03}. From the pointer structure in the heap we (relationally) abstract to HOL lists of references. Then we can specify further properties on the level of HOL lists, rather then on the heap. The basic abstractions are: @{thm [display] Path.simps [no_vars]} @{term [show_types] "Path x h y ps"}: @{term ps} is a list of references that we can obtain out of the heap @{term h} by starting with the reference @{term x}, following the references in @{term h} up to the reference @{term y}. @{thm [display] List_def [no_vars]} A list @{term "List p h ps"} is a path starting in @{term p} and ending up in @{term Null}. \<close> lemma (in append_impl) append_spec1: shows "\<forall>\<sigma> Ps Qs. \<Gamma>\<turnstile> \<lbrace>\<sigma>. List \<acute>p \<acute>next Ps \<and> List \<acute>q \<acute>next Qs \<and> set Ps \<inter> set Qs = {}\<rbrace> \<acute>p :== PROC append(\<acute>p,\<acute>q) \<lbrace>List \<acute>p \<acute>next (Ps@Qs) \<and> (\<forall>x. x\<notin>set Ps \<longrightarrow> \<acute>next x = \<^bsup>\<sigma>\<^esup>next x)\<rbrace>" apply (hoare_rule HoarePartial.ProcRec1) txt \<open>@{subgoals [margin=80,display]} Note that @{term "hoare_rule"} takes care of multiple auxiliary variables! @{thm [source] HoarePartial.ProcRec1} has only one auxiliary variable, namely @{term Z}. But the type of @{term Z} can be instantiated arbitrarily. So \<open>hoare_rule\<close> instantiates @{term Z} with the tuple @{term "(\<sigma>,Ps,Qs)"} and derives a proper variant of the rule. Therefore \<open>hoare_rule\<close> depends on the proper quantification of auxiliary variables! \<close> apply vcg txt \<open>@{subgoals [display]} For each branch of the \<open>IF\<close> statement we have one conjunct to prove. The \<open>THEN\<close> branch starts with \<open>p = Null \<longrightarrow> \<dots>\<close> and the \<open>ELSE\<close> branch with \<open>p \<noteq> Null \<longrightarrow> \<dots>\<close>. Let us focus on the \<open>ELSE\<close> branch, were the recursive call to append occurs. First of all we have to prove that the precondition for the recursive call is fulfilled. That means we have to provide some witnesses for the lists @{term Psa} and @{term Qsa} which are referenced by \<open>p\<rightarrow>next\<close> (now written as @{term "next p"}) and @{term q}. Then we have to show that we can derive the overall postcondition from the postcondition of the recursive call. The state components that have changed by the recursive call are the ones with the suffix \<open>a\<close>, like \<open>nexta\<close> and \<open>pa\<close>. \<close> apply fastforce done text \<open>If the verification condition generator works on a procedure call it checks whether it can find a modifies clause in the context. If one is present the procedure call is simplified before the Hoare rule @{thm [source] HoarePartial.ProcSpec} is applied. Simplification of the procedure call means that the ``copy back'' of the global components is simplified. Only those components that occur in the modifies clause are actually copied back. This simplification is justified by the rule @{thm [source] HoarePartial.ProcModifyReturn}. So after this simplification all global components that do not appear in the modifies clause are treated as local variables.\<close> text \<open>We study the effect of the modifies clause on the following examples, where we want to prove that @{term "append"} does not change the @{term "cont"} part of the heap. \<close> lemma (in append_impl) shows "\<Gamma>\<turnstile> \<lbrace>\<acute>cont=c\<rbrace> \<acute>p :== CALL append(Null,Null) \<lbrace>\<acute>cont=c\<rbrace>" proof - note append_spec = append_spec1 show ?thesis apply vcg txt \<open>@{subgoals [display]}\<close> txt \<open>Only focus on the very last line: @{term conta} is the heap component after the procedure call, and @{term cont} the heap component before the procedure call. Since we have not added the modified clause we do not know that they have to be equal. \<close> oops text \<open> We now add the frame condition. The list in the modifies clause names all global state components that may be changed by the procedure. Note that we know from the modifies clause that the @{term cont} parts are not changed. Also a small side note on the syntax. We use ordinary brackets in the postcondition of the modifies clause, and also the state components do not carry the acute, because we explicitly note the state @{term t} here. \<close> lemma (in append_impl) append_modifies: shows "\<forall>\<sigma>. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> {\<sigma>} \<acute>p :== PROC append(\<acute>p,\<acute>q) {t. t may_only_modify_globals \<sigma> in [next]}" apply (hoare_rule HoarePartial.ProcRec1) apply (vcg spec=modifies) done text \<open>We tell the verification condition generator to use only the modifies clauses and not to search for functional specifications by the parameter \<open>spec=modifies\<close>. It also tries to solve the verification conditions automatically. Again it is crucial to name the lemma with this naming scheme, since the verfication condition generator searches for these names. \<close> text \<open>The modifies clause is equal to a state update specification of the following form. \<close> lemma (in append_impl) shows "{t. t may_only_modify_globals Z in [next]} = {t. \<exists>next. globals t=update id id next_' (K_statefun next) (globals Z)}" apply (unfold mex_def meq_def) apply simp done text \<open>Now that we have proven the frame-condition, it is available within the locale \<open>append_impl\<close> and the \<open>vcg\<close> exploits it.\<close> lemma (in append_impl) shows "\<Gamma>\<turnstile> \<lbrace>\<acute>cont=c\<rbrace> \<acute>p :== CALL append(Null,Null) \<lbrace>\<acute>cont=c\<rbrace>" proof - note append_spec = append_spec1 show ?thesis apply vcg txt \<open>@{subgoals [display]}\<close> txt \<open>With a modifies clause present we know that no change to @{term cont} has occurred. \<close> by simp qed text \<open> Of course we could add the modifies clause to the functional specification as well. But separating both has the advantage that we split up the verification work. We can make use of the modifies clause before we apply the functional specification in a fully automatic fashion. \<close> text \<open> To prove that a procedure respects the modifies clause, we only need the modifies clauses of the procedures called in the body. We do not need the functional specifications. So we can always prove the modifies clause without functional specifications, but we may need the modifies clause to prove the functional specifications. So usually the modifies clause is proved before the proof of the functional specification, so that it can already be used by the verification condition generator. \<close> subsection \<open>Total Correctness\<close> text \<open>When proving total correctness the additional proof burden to the user is to come up with a well-founded relation and to prove that certain states get smaller according to this relation. Proving that a relation is well-founded can be quite hard. But fortunately there are ways to construct and stick together relations so that they are well-founded by construction. This infrastructure is already present in Isabelle/HOL. For example, @{term "measure f"} is always well-founded; the lexicographic product of two well-founded relations is again well-founded and the inverse image construction @{term "inv_image"} of a well-founded relation is again well-founded. The constructions are best explained by some equations: @{thm in_measure_iff [no_vars]}\\ @{thm in_lex_iff [no_vars]}\\ @{thm in_inv_image_iff [no_vars]} Another useful construction is \<open><*mlex*>\<close> which is a combination of a measure and a lexicographic product: @{thm in_mlex_iff [no_vars]}\\ In contrast to the lexicographic product it does not construct a product type. The state may either decrease according to the measure function @{term f} or the measure stays the same and the state decreases because of the relation @{term r}. Lets look at a loop: \<close> lemma (in vars) "\<Gamma>\<turnstile>\<^sub>t \<lbrace>\<acute>M = 0 \<and> \<acute>S = 0\<rbrace> WHILE \<acute>M \<noteq> a INV \<lbrace>\<acute>S = \<acute>M * b \<and> \<acute>M \<le> a\<rbrace> VAR MEASURE a - \<acute>M DO \<acute>S :== \<acute>S + b;; \<acute>M :== \<acute>M + 1 OD \<lbrace>\<acute>S = a * b\<rbrace>" apply vcg txt \<open>@{subgoals [display]} The first conjunct of the second subgoal is the proof obligation that the variant decreases in the loop body. \<close> by auto text \<open>The variant annotation is preceded by \<open>VAR\<close>. The capital \<open>MEASURE\<close> is a shorthand for \<open>measure (\<lambda>s. a - \<^bsup>s\<^esup>M)\<close>. Analogous there is a capital \<open><*MLEX*>\<close>. \<close> lemma (in Fac_impl) Fac_spec': shows "\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} \<acute>R :== PROC Fac(\<acute>N) \<lbrace>\<acute>R = fac \<^bsup>\<sigma>\<^esup>N\<rbrace>" apply (hoare_rule HoareTotal.ProcRec1 [where r="measure (\<lambda>(s,p). \<^bsup>s\<^esup>N)"]) txt \<open>In case of the factorial the parameter @{term N} decreases in every call. This is easily expressed by the measure function. Note that the well-founded relation for recursive procedures is formally defined on tuples containing the state space and the procedure name. \<close> txt \<open>@{subgoals [display]} The initial call to the factorial is in state @{term "\<sigma>"}. Note that in the precondition @{term "{\<sigma>} \<inter> {\<sigma>'}"}, @{term "\<sigma>'"} stems from the lemma we want to prove and @{term "\<sigma>"} stems from the recursion rule for total correctness. Both are synonym for the initial state. To use the assumption in the Hoare context we have to show that the call to the factorial is invoked on a smaller @{term N} compared to the initial \<open>\<^bsup>\<sigma>\<^esup>N\<close>. \<close> apply vcg txt \<open>@{subgoals [display]} The tribute to termination is that we have to show \<open>N - 1 < N\<close> in case of the recursive call. \<close> by simp lemma (in append_impl) append_spec2: shows "\<forall>\<sigma> Ps Qs. \<Gamma>\<turnstile>\<^sub>t \<lbrace>\<sigma>. List \<acute>p \<acute>next Ps \<and> List \<acute>q \<acute>next Qs \<and> set Ps \<inter> set Qs = {}\<rbrace> \<acute>p :== PROC append(\<acute>p,\<acute>q) \<lbrace>List \<acute>p \<acute>next (Ps@Qs) \<and> (\<forall>x. x\<notin>set Ps \<longrightarrow> \<acute>next x = \<^bsup>\<sigma>\<^esup>next x)\<rbrace>" apply (hoare_rule HoareTotal.ProcRec1 [where r="measure (\<lambda>(s,p). length (list \<^bsup>s\<^esup>p \<^bsup>s\<^esup>next))"]) txt \<open>In case of the append function the length of the list referenced by @{term p} decreases in every recursive call. \<close> txt \<open>@{subgoals [margin=80,display]}\<close> apply vcg apply (fastforce simp add: List_list) done text \<open> In case of the lists above, we have used a relational list abstraction @{term List} to construct the HOL lists @{term Ps} and @{term Qs} for the pre- and postcondition. To supply a proper measure function we use a functional abstraction @{term list}. The functional abstraction can be defined by means of the relational list abstraction, since the lists are already uniquely determined by the relational abstraction: @{thm islist_def [no_vars]}\\ @{thm list_def [no_vars]} \isacommand{lemma} @{thm List_conv_islist_list [no_vars]} \<close> text \<open> The next contrived example is taken from \cite{Homeier-95-vcg}, to illustrate a more complex termination criterion for mutually recursive procedures. The procedures do not calculate anything useful. \<close> procedures pedal(N::nat,M::nat) "IF 0 < \<acute>N THEN IF 0 < \<acute>M THEN CALL coast(\<acute>N- 1,\<acute>M- 1) FI;; CALL pedal(\<acute>N- 1,\<acute>M) FI" and coast(N::nat,M::nat) "CALL pedal(\<acute>N,\<acute>M);; IF 0 < \<acute>M THEN CALL coast(\<acute>N,\<acute>M- 1) FI" text \<open> In the recursive calls in procedure \<open>pedal\<close> the first argument always decreases. In the body of \<open>coast\<close> in the recursive call of \<open>coast\<close> the second argument decreases, but in the call to \<open>pedal\<close> no argument decreases. Therefore an relation only on the state space is insufficient. We have to take the procedure names into account, too. We consider the procedure \<open>coast\<close> to be ``bigger'' than \<open>pedal\<close> when we construct a well-founded relation on the product of state space and procedure names. \<close> ML \<open>ML_Thms.bind_thm ("HoareTotal_ProcRec2", Hoare.gen_proc_rec @{context} Hoare.Total 2)\<close> text \<open> We provide the ML function {\tt gen\_proc\_rec} to automatically derive a convenient rule for recursion for a given number of mutually recursive procedures. \<close> lemma (in pedal_coast_clique) shows "(\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} PROC pedal(\<acute>N,\<acute>M) UNIV) \<and> (\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} PROC coast(\<acute>N,\<acute>M) UNIV)" apply (hoare_rule HoareTotal_ProcRec2 [where r= "((\<lambda>(s,p). \<^bsup>s\<^esup>N) <*mlex*> (\<lambda>(s,p). \<^bsup>s\<^esup>M) <*mlex*> measure (\<lambda>(s,p). if p = coast_'proc then 1 else 0))"]) txt \<open>We can directly express the termination condition described above with the \<open><*mlex*>\<close> construction. Either state component \<open>N\<close> decreases, or it stays the same and \<open>M\<close> decreases or this also stays the same, but then the procedure name has to decrease.\<close> txt \<open>@{subgoals [margin=80,display]}\<close> apply simp_all txt \<open>@{subgoals [margin=75,display]}\<close> by (vcg,simp)+ text \<open>We can achieve the same effect without \<open><*mlex*>\<close> by using the ordinary lexicographic product \<open><*lex*>\<close>, \<open>inv_image\<close> and \<open>measure\<close> \<close> lemma (in pedal_coast_clique) shows "(\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} PROC pedal(\<acute>N,\<acute>M) UNIV) \<and> (\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} PROC coast(\<acute>N,\<acute>M) UNIV)" apply (hoare_rule HoareTotal_ProcRec2 [where r= "inv_image (measure (\<lambda>m. m) <*lex*> measure (\<lambda>m. m) <*lex*> measure (\<lambda>p. if p = coast_'proc then 1 else 0)) (\<lambda>(s,p). (\<^bsup>s\<^esup>N,\<^bsup>s\<^esup>M,p))"]) txt \<open>With the lexicographic product we construct a well-founded relation on triples of type @{typ "(nat\<times>nat\<times>string)"}. With @{term inv_image} we project the components out of the state-space and the procedure names to this triple. \<close> txt \<open>@{subgoals [margin=75,display]}\<close> apply simp_all by (vcg,force)+ text \<open>By doing some arithmetic we can express the termination condition with a single measure function. \<close> lemma (in pedal_coast_clique) shows "(\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} PROC pedal(\<acute>N,\<acute>M) UNIV) \<and> (\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t {\<sigma>} PROC coast(\<acute>N,\<acute>M) UNIV)" apply(hoare_rule HoareTotal_ProcRec2 [where r= "measure (\<lambda>(s,p). \<^bsup>s\<^esup>N + \<^bsup>s\<^esup>M + (if p = coast_'proc then 1 else 0))"]) apply simp_all txt \<open>@{subgoals [margin=75,display]}\<close> by (vcg,simp,arith?)+ subsection \<open>Guards\<close> text (in vars) \<open>The purpose of a guard is to guard the {\bf (sub-) expressions} of a statement against runtime faults. Typical runtime faults are array bound violations, dereferencing null pointers or arithmetical overflow. Guards make the potential runtime faults explicit, since the expressions themselves never ``fail'' because they are ordinary HOL expressions. To relieve the user from typing in lots of standard guards for every subexpression, we supply some input syntax for the common language constructs that automatically generate the guards. For example the guarded assignment \<open>\<acute>M :==\<^sub>g (\<acute>M + 1) div \<acute>N\<close> gets expanded to guarded command @{term "\<acute>M :==\<^sub>g (\<acute>M + 1) div \<acute>N"}. Here @{term "in_range"} is uninterpreted by now. \<close> lemma (in vars) "\<Gamma>\<turnstile>\<lbrace>True\<rbrace> \<acute>M :==\<^sub>g (\<acute>M + 1) div \<acute>N \<lbrace>True\<rbrace>" apply vcg txt \<open>@{subgoals}\<close> oops text \<open> The user can supply on (overloaded) definition of \<open>in_range\<close> to fit to his needs. Currently guards are generated for: \begin{itemize} \item overflow and underflow of numbers (\<open>in_range\<close>). For subtraction of natural numbers \<open>a - b\<close> the guard \<open>b \<le> a\<close> is generated instead of \<open>in_range\<close> to guard against underflows. \item division by \<open>0\<close> \item dereferencing of @{term Null} pointers \item array bound violations \end{itemize} Following (input) variants of guarded statements are available: \begin{itemize} \item Assignment: \<open>\<dots> :==\<^sub>g \<dots>\<close> \item If: \<open>IF\<^sub>g \<dots>\<close> \item While: \<open>WHILE\<^sub>g \<dots>\<close> \item Call: \<open>CALL\<^sub>g \<dots>\<close> or \<open>\<dots> :== CALL\<^sub>g \<dots>\<close> \end{itemize} \<close> subsection \<open>Miscellaneous Techniques\<close> subsubsection \<open>Modifies Clause\<close> text \<open>We look at some issues regarding the modifies clause with the example of insertion sort for heap lists. \<close> primrec sorted:: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where "sorted le [] = True" | "sorted le (x#xs) = ((\<forall>y\<in>set xs. le x y) \<and> sorted le xs)" procedures (imports globals_heap) insert(r::ref,p::ref | p::ref) "IF \<acute>r=Null THEN SKIP ELSE IF \<acute>p=Null THEN \<acute>p :== \<acute>r;; \<acute>p\<rightarrow>\<acute>next :== Null ELSE IF \<acute>r\<rightarrow>\<acute>cont \<le> \<acute>p\<rightarrow>\<acute>cont THEN \<acute>r\<rightarrow>\<acute>next :== \<acute>p;; \<acute>p:==\<acute>r ELSE \<acute>p\<rightarrow>\<acute>next :== CALL insert(\<acute>r,\<acute>p\<rightarrow>\<acute>next) FI FI FI" lemma (in insert_impl) insert_modifies: "\<forall>\<sigma>. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> {\<sigma>} \<acute>p :== PROC insert(\<acute>r,\<acute>p) {t. t may_only_modify_globals \<sigma> in [next]}" by (hoare_rule HoarePartial.ProcRec1) (vcg spec=modifies) lemma (in insert_impl) insert_spec: "\<forall>\<sigma> Ps . \<Gamma>\<turnstile> \<lbrace>\<sigma>. List \<acute>p \<acute>next Ps \<and> sorted (\<le>) (map \<acute>cont Ps) \<and> \<acute>r \<noteq> Null \<and> \<acute>r \<notin> set Ps\<rbrace> \<acute>p :== PROC insert(\<acute>r,\<acute>p) \<lbrace>\<exists>Qs. List \<acute>p \<acute>next Qs \<and> sorted (\<le>) (map \<^bsup>\<sigma>\<^esup>cont Qs) \<and> set Qs = insert \<^bsup>\<sigma>\<^esup>r (set Ps) \<and> (\<forall>x. x \<notin> set Qs \<longrightarrow> \<acute>next x = \<^bsup>\<sigma>\<^esup>next x)\<rbrace>" (*<*) apply (hoare_rule HoarePartial.ProcRec1) apply vcg apply (intro conjI impI) apply fastforce apply fastforce apply fastforce apply (clarsimp) apply force done (*>*) text \<open> In the postcondition of the functional specification there is a small but important subtlety. Whenever we talk about the @{term "cont"} part we refer to the one of the pre-state. The reason is that we have separated out the information that @{term "cont"} is not modified by the procedure, to the modifies clause. So whenever we talk about unmodified parts in the postcondition we have to use the pre-state part, or explicitly state an equality in the postcondition. The reason is simple. If the postcondition would talk about \<open>\<acute>cont\<close> instead of \mbox{\<open>\<^bsup>\<sigma>\<^esup>cont\<close>}, we get a new instance of \<open>cont\<close> during verification and the postcondition would only state something about this new instance. But as the verification condition generator uses the modifies clause the caller of @{term "insert"} instead still has the old \<open>cont\<close> after the call. Thats the sense of the modifies clause. So the caller and the specification simply talk about two different things, without being able to relate them (unless an explicit equality is added to the specification). \<close> subsubsection \<open>Annotations\<close> text \<open> Annotations (like loop invariants) are mere syntactic sugar of statements that are used by the \<open>vcg\<close>. Logically a statement with an annotation is equal to the statement without it. Hence annotations can be introduced by the user while building a proof: @{thm [source] HoarePartial.annotateI}: @{thm [mode=Rule] HoarePartial.annotateI [no_vars]} When introducing annotations it can easily happen that these mess around with the nesting of sequential composition. Then after stripping the annotations the resulting statement is no longer syntactically identical to original one, only equivalent modulo associativity of sequential composition. The following rule also deals with this case: @{thm [source] HoarePartial.annotate_normI}: @{thm [mode=Rule] HoarePartial.annotate_normI [no_vars]} \<close> text_raw \<open>\paragraph{Loop Annotations} \mbox{} \medskip \mbox{} \<close> procedures (imports globals_heap) insertSort(p::ref| p::ref) where r::ref q::ref in "\<acute>r:==Null;; WHILE (\<acute>p \<noteq> Null) DO \<acute>q :== \<acute>p;; \<acute>p :== \<acute>p\<rightarrow>\<acute>next;; \<acute>r :== CALL insert(\<acute>q,\<acute>r) OD;; \<acute>p:==\<acute>r" lemma (in insertSort_impl) insertSort_modifies: shows "\<forall>\<sigma>. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> {\<sigma>} \<acute>p :== PROC insertSort(\<acute>p) {t. t may_only_modify_globals \<sigma> in [next]}" apply (hoare_rule HoarePartial.ProcRec1) apply (vcg spec=modifies) done text \<open>Insertion sort is not implemented recursively here, but with a loop. Note that the while loop is not annotated with an invariant in the procedure definition. The invariant only comes into play during verification. Therefore we annotate the loop first, before we run the \<open>vcg\<close>. \<close> lemma (in insertSort_impl) insertSort_spec: shows "\<forall>\<sigma> Ps. \<Gamma>\<turnstile> \<lbrace>\<sigma>. List \<acute>p \<acute>next Ps \<rbrace> \<acute>p :== PROC insertSort(\<acute>p) \<lbrace>\<exists>Qs. List \<acute>p \<acute>next Qs \<and> sorted (\<le>) (map \<^bsup>\<sigma>\<^esup>cont Qs) \<and> set Qs = set Ps\<rbrace>" apply (hoare_rule HoarePartial.ProcRec1) apply (hoare_rule anno= "\<acute>r :== Null;; WHILE \<acute>p \<noteq> Null INV \<lbrace>\<exists>Qs Rs. List \<acute>p \<acute>next Qs \<and> List \<acute>r \<acute>next Rs \<and> set Qs \<inter> set Rs = {} \<and> sorted (\<le>) (map \<acute>cont Rs) \<and> set Qs \<union> set Rs = set Ps \<and> \<acute>cont = \<^bsup>\<sigma>\<^esup>cont \<rbrace> DO \<acute>q :== \<acute>p;; \<acute>p :== \<acute>p\<rightarrow>\<acute>next;; \<acute>r :== CALL insert(\<acute>q,\<acute>r) OD;; \<acute>p :== \<acute>r" in HoarePartial.annotateI) apply vcg txt \<open>\<open>\<dots>\<close>\<close> (*<*) apply fastforce prefer 2 apply fastforce apply (clarsimp) apply (rule_tac x=ps in exI) apply (intro conjI) apply (rule heap_eq_ListI1) apply assumption apply clarsimp apply (subgoal_tac "x\<noteq>p \<and> x \<notin> set Rs") apply auto done (*>*) text \<open>The method \<open>hoare_rule\<close> automatically solves the side-condition that the annotated program is the same as the original one after stripping the annotations.\<close> text_raw \<open>\paragraph{Specification Annotations} \mbox{} \medskip \mbox{} \<close> text \<open> When verifying a larger block of program text, it might be useful to split up the block and to prove the parts in isolation. This is especially useful to isolate loops. On the level of the Hoare calculus the parts can then be combined with the consequence rule. To automate this process we introduce the derived command @{term specAnno}, which allows to introduce a Hoare tuple (inclusive auxiliary variables) in the program text: @{thm specAnno_def [no_vars]} The whole annotation reduces to the body @{term "c undefined"}. The type of the assertions @{term "P"}, @{term "Q"} and @{term "A"} is @{typ "'a \<Rightarrow> 's set"} and the type of command @{term c} is @{typ "'a \<Rightarrow> ('s,'p,'f) com"}. All entities formally depend on an auxiliary (logical) variable of type @{typ "'a"}. The body @{term "c"} formally also depends on this variable, since a nested annotation or loop invariant may also depend on this logical variable. But the raw body without annotations does not depend on the logical variable. The logical variable is only used by the verification condition generator. We express this by defining the whole @{term specAnno} to be equivalent with the body applied to an arbitrary variable. The Hoare rule for \<open>specAnno\<close> is mainly an instance of the consequence rule: @{thm [mode=Rule,mode=ParenStmt] HoarePartial.SpecAnno [no_vars]} The side-condition @{term "\<forall>Z. c Z = c undefined"} expresses the intention of body @{term c} explained above: The raw body is independent of the auxiliary variable. This side-condition is solved automatically by the \<open>vcg\<close>. The concrete syntax for this specification annotation is shown in the following example: \<close> lemma (in vars) "\<Gamma>\<turnstile> {\<sigma>} \<acute>I :== \<acute>M;; ANNO \<tau>. \<lbrace>\<tau>. \<acute>I = \<^bsup>\<sigma>\<^esup>M\<rbrace> \<acute>M :== \<acute>N;; \<acute>N :== \<acute>I \<lbrace>\<acute>M = \<^bsup>\<tau>\<^esup>N \<and> \<acute>N = \<^bsup>\<tau>\<^esup>I\<rbrace> \<lbrace>\<acute>M = \<^bsup>\<sigma>\<^esup>N \<and> \<acute>N = \<^bsup>\<sigma>\<^esup>M\<rbrace>" txt \<open>With the annotation we can name an intermediate state @{term \<tau>}. Since the postcondition refers to @{term "\<sigma>"} we have to link the information about the equivalence of \<open>\<^bsup>\<tau>\<^esup>I\<close> and \<open>\<^bsup>\<sigma>\<^esup>M\<close> in the specification in order to be able to derive the postcondition. \<close> apply vcg_step apply vcg_step txt \<open>@{subgoals [display]}\<close> txt \<open>The first subgoal is the isolated Hoare tuple. The second one is the side-condition of the consequence rule that allows us to derive the outermost pre/post condition from our inserted specification. \<open>\<acute>I = \<^bsup>\<sigma>\<^esup>M\<close> is the precondition of the specification, The second conjunct is a simplified version of \<open>\<forall>t. \<^bsup>t\<^esup>M = \<acute>N \<and> \<^bsup>t\<^esup>N = \<acute>I \<longrightarrow> \<^bsup>t\<^esup>M = \<^bsup>\<sigma>\<^esup>N \<and> \<^bsup>t\<^esup>N = \<^bsup>\<sigma>\<^esup>M\<close> expressing that the postcondition of the specification implies the outermost postcondition. \<close> apply vcg txt \<open>@{subgoals [display]}\<close> apply simp apply vcg txt \<open>@{subgoals [display]}\<close> by simp lemma (in vars) "\<Gamma>\<turnstile> {\<sigma>} \<acute>I :== \<acute>M;; ANNO \<tau>. \<lbrace>\<tau>. \<acute>I = \<^bsup>\<sigma>\<^esup>M\<rbrace> \<acute>M :== \<acute>N;; \<acute>N :== \<acute>I \<lbrace>\<acute>M = \<^bsup>\<tau>\<^esup>N \<and> \<acute>N = \<^bsup>\<tau>\<^esup>I\<rbrace> \<lbrace>\<acute>M = \<^bsup>\<sigma>\<^esup>N \<and> \<acute>N = \<^bsup>\<sigma>\<^esup>M\<rbrace>" apply vcg txt \<open>@{subgoals [display]}\<close> by simp_all text \<open>Note that \<open>vcg_step\<close> changes the order of sequential composition, to allow the user to decompose sequences by repeated calls to \<open>vcg_step\<close>, whereas \<open>vcg\<close> preserves the order. The above example illustrates how we can introduce a new logical state variable @{term "\<tau>"}. You can introduce multiple variables by using a tuple: \<close> lemma (in vars) "\<Gamma>\<turnstile> {\<sigma>} \<acute>I :== \<acute>M;; ANNO (n,i,m). \<lbrace>\<acute>I = \<^bsup>\<sigma>\<^esup>M \<and> \<acute>N=n \<and> \<acute>I=i \<and> \<acute>M=m\<rbrace> \<acute>M :== \<acute>N;; \<acute>N :== \<acute>I \<lbrace>\<acute>M = n \<and> \<acute>N = i\<rbrace> \<lbrace>\<acute>M = \<^bsup>\<sigma>\<^esup>N \<and> \<acute>N = \<^bsup>\<sigma>\<^esup>M\<rbrace>" apply vcg txt \<open>@{subgoals [display]}\<close> by simp_all text_raw \<open>\paragraph{Lemma Annotations} \mbox{} \medskip \mbox{} \<close> text \<open> The specification annotations described before split the verification into several Hoare triples which result in several subgoals. If we instead want to proof the Hoare triples independently as separate lemmas we can use the \<open>LEMMA\<close> annotation to plug together the lemmas. It inserts the lemma in the same fashion as the specification annotation. \<close> lemma (in vars) foo_lemma: "\<forall>n m. \<Gamma>\<turnstile> \<lbrace>\<acute>N = n \<and> \<acute>M = m\<rbrace> \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 \<lbrace>\<acute>N = n + 1 \<and> \<acute>M = m + 1\<rbrace>" apply vcg apply simp done lemma (in vars) "\<Gamma>\<turnstile> \<lbrace>\<acute>N = n \<and> \<acute>M = m\<rbrace> LEMMA foo_lemma \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 END;; \<acute>N :== \<acute>N + 1 \<lbrace>\<acute>N = n + 2 \<and> \<acute>M = m + 1\<rbrace>" apply vcg apply simp done lemma (in vars) "\<Gamma>\<turnstile> \<lbrace>\<acute>N = n \<and> \<acute>M = m\<rbrace> LEMMA foo_lemma \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 END;; LEMMA foo_lemma \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 END \<lbrace>\<acute>N = n + 2 \<and> \<acute>M = m + 2\<rbrace>" apply vcg apply simp done lemma (in vars) "\<Gamma>\<turnstile> \<lbrace>\<acute>N = n \<and> \<acute>M = m\<rbrace> \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1;; \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 \<lbrace>\<acute>N = n + 2 \<and> \<acute>M = m + 2\<rbrace>" apply (hoare_rule anno= "LEMMA foo_lemma \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 END;; LEMMA foo_lemma \<acute>N :== \<acute>N + 1;; \<acute>M :== \<acute>M + 1 END" in HoarePartial.annotate_normI) apply vcg apply simp done subsubsection \<open>Total Correctness of Nested Loops\<close> text \<open> When proving termination of nested loops it is sometimes necessary to express that the loop variable of the outer loop is not modified in the inner loop. To express this one has to fix the value of the outer loop variable before the inner loop and use this value in the invariant of the inner loop. This can be achieved by surrounding the inner while loop with an \<open>ANNO\<close> specification as explained previously. However, this leads to repeating the invariant of the inner loop three times: in the invariant itself and in the the pre- and postcondition of the \<open>ANNO\<close> specification. Moreover one has to deal with the additional subgoal introduced by \<open>ANNO\<close> that expresses how the pre- and postcondition is connected to the invariant. To avoid this extra specification and verification work, we introduce an variant of the annotated while-loop, where one can introduce logical variables by \<open>FIX\<close>. As for the \<open>ANNO\<close> specification multiple logical variables can be introduced via a tuple (\<open>FIX (a,b,c).\<close>). The Hoare logic rule for the augmented while-loop is a mixture of the invariant rule for loops and the consequence rule for \<open>ANNO\<close>: \begin{center} @{thm [mode=Rule,mode=ParenStmt] HoareTotal.WhileAnnoFix' [no_vars]} \end{center} The first premise expresses that the precondition implies the invariant and that the invariant together with the negated loop condition implies the postcondition. Since both implications may depend on the choice of the auxiliary variable @{term "Z"} these two implications are expressed in a single premise and not in two of them as for the usual while rule. The second premise is the preservation of the invariant by the loop body. And the third premise is the side-condition that the computational part of the body does not depend on the auxiliary variable. Finally the last premise is the well-foundedness of the variant. The last two premises are usually discharged automatically by the verification condition generator. Hence usually two subgoals remain for the user, stemming from the first two premises. The following example illustrates the usage of this rule. The outer loop increments the loop variable @{term "M"} while the inner loop increments @{term "N"}. To discharge the proof obligation for the termination of the outer loop, we need to know that the inner loop does not mess around with @{term "M"}. This is expressed by introducing the logical variable @{term "m"} and fixing the value of @{term "M"} to it. \<close> lemma (in vars) "\<Gamma>\<turnstile>\<^sub>t \<lbrace>\<acute>M=0 \<and> \<acute>N=0\<rbrace> WHILE (\<acute>M < i) INV \<lbrace>\<acute>M \<le> i \<and> (\<acute>M \<noteq> 0 \<longrightarrow> \<acute>N = j) \<and> \<acute>N \<le> j\<rbrace> VAR MEASURE (i - \<acute>M) DO \<acute>N :== 0;; WHILE (\<acute>N < j) FIX m. INV \<lbrace>\<acute>M=m \<and> \<acute>N \<le> j\<rbrace> VAR MEASURE (j - \<acute>N) DO \<acute>N :== \<acute>N + 1 OD;; \<acute>M :== \<acute>M + 1 OD \<lbrace>\<acute>M=i \<and> (\<acute>M\<noteq>0 \<longrightarrow> \<acute>N=j)\<rbrace>" apply vcg txt \<open>@{subgoals [display]} The first subgoal is from the precondition to the invariant of the outer loop. The fourth subgoal is from the invariant together with the negated loop condition of the outer loop to the postcondition. The subgoals two and three are from the body of the outer while loop which is mainly the inner while loop. Because we introduce the logical variable @{term "m"} here, the while Rule described above is used instead of the ordinary while Rule. That is why we end up with two subgoals for the inner loop. Subgoal two is from the invariant and the loop condition of the outer loop to the invariant of the inner loop. And at the same time from the invariant of the inner loop to the invariant of the outer loop (together with the proof obligation that the measure of the outer loop decreases). The universal quantified variables @{term "Ma"} and @{term "N"} are the ``fresh'' state variables introduced for the final state of the inner loop. The equality @{term "Ma=M"} is the result of the equality \<open>\<acute>M=m\<close> in the inner invariant. Subgoal three is the preservation of the invariant by the inner loop body (together with the proof obligation that the measure of the inner loop decreases). \<close> (*<*) apply (simp) apply (simp,arith) apply (simp,arith) done (*>*) subsection \<open>Functional Correctness, Termination and Runtime Faults\<close> text \<open> Total correctness of a program with guards conceptually leads to three verification tasks. \begin{itemize} \item functional (partial) correctness \item absence of runtime faults \item termination \end{itemize} In case of a modifies specification the functional correctness part can be solved automatically. But the absence of runtime faults and termination may be non trivial. Fortunately the modifies clause is usually just a helpful companion of another specification that expresses the ``real'' functional behaviour. Therefor the task to prove the absence of runtime faults and termination can be dealt with during the proof of this functional specification. In most cases the absence of runtime faults and termination heavily build on the functional specification parts. So after all there is no reason why we should again prove the absence of runtime faults and termination for the modifies clause. Therefor it suffices to have partial correctness of the modifies clause for a program were all guards are ignored. This leads to the following pattern:\<close> procedures foo (N::nat|M::nat) "\<acute>M :== \<acute>M \<comment> \<open>think of body with guards instead\<close>" foo_spec: "\<forall>\<sigma>. \<Gamma>\<turnstile>\<^sub>t (P \<sigma>) \<acute>M :== PROC foo(\<acute>N) (Q \<sigma>)" foo_modifies: "\<forall>\<sigma>. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> {\<sigma>} \<acute>M :== PROC foo(\<acute>N) {t. t may_only_modify_globals \<sigma> in []}" text \<open> The verification condition generator can solve those modifies clauses automatically and can use them to simplify calls to \<open>foo\<close> even in the context of total correctness. \<close> subsection \<open>Procedures and Locales \label{sec:Locales}\<close> text \<open> Verification of a larger program is organised on the granularity of procedures. We proof the procedures in a bottom up fashion. Of course you can also always use Isabelle's dummy proof \<open>sorry\<close> to prototype your formalisation. So you can write the theory in a bottom up fashion but actually prove the lemmas in any other order. Here are some explanations of handling of locales. In the examples below, consider \<open>proc\<^sub>1\<close> and \<open>proc\<^sub>2\<close> to be ``leaf'' procedures, which do not call any other procedure. Procedure \<open>proc\<close> directly calls \<open>proc\<^sub>1\<close> and \<open>proc\<^sub>2\<close>. \isacommand{lemma} (\isacommand{in} \<open>proc\<^sub>1_impl\<close>) \<open>proc\<^sub>1_modifies\<close>:\\ \isacommand{shows} \<open>\<dots>\<close> After the proof of \<open>proc\<^sub>1_modifies\<close>, the \isacommand{in} directive stores the lemma in the locale \<open>proc\<^sub>1_impl\<close>. When we later on include \<open>proc\<^sub>1_impl\<close> or prove another theorem in locale \<open>proc\<^sub>1_impl\<close> the lemma \<open>proc\<^sub>1_modifies\<close> will already be available as fact. \isacommand{lemma} (\isacommand{in} \<open>proc\<^sub>1_impl\<close>) \<open>proc\<^sub>1_spec\<close>:\\ \isacommand{shows} \<open>\<dots>\<close> \isacommand{lemma} (\isacommand{in} \<open>proc\<^sub>2_impl\<close>) \<open>proc\<^sub>2_modifies\<close>:\\ \isacommand{shows} \<open>\<dots>\<close> \isacommand{lemma} (\isacommand{in} \<open>proc\<^sub>2_impl\<close>) \<open>proc\<^sub>2_spec\<close>:\\ \isacommand{shows} \<open>\<dots>\<close> \isacommand{lemma} (\isacommand{in} \<open>proc_impl\<close>) \<open>proc_modifies\<close>:\\ \isacommand{shows} \<open>\<dots>\<close> Note that we do not explicitly include anything about \<open>proc\<^sub>1\<close> or \<open>proc\<^sub>2\<close> here. This is handled automatically. When defining an \<open>impl\<close>-locale it imports all \<open>impl\<close>-locales of procedures that are called in the body. In case of \<open>proc_impl\<close> this means, that \<open>proc\<^sub>1_impl\<close> and \<open>proc\<^sub>2_impl\<close> are imported. This has the neat effect that all theorems that are proven in \<open>proc\<^sub>1_impl\<close> and \<open>proc\<^sub>2_impl\<close> are also present in \<open>proc_impl\<close>. \isacommand{lemma} (\isacommand{in} \<open>proc_impl\<close>) \<open>proc_spec\<close>:\\ \isacommand{shows} \<open>\<dots>\<close> As we have seen in this example you only have to prove a procedure in its own \<open>impl\<close> locale. You do not have to include any other locale. \<close> subsection \<open>Records \label{sec:records}\<close> text \<open> Before @{term "statespaces"} where introduced the state was represented as a @{term "record"}. This is still supported. Compared to the flexibility of statespaces there are some drawbacks in particular with respect to modularity. Even names of local variables and parameters are globally visible and records can only be extended in a linear fashion, whereas statespaces also allow multiple inheritance. The usage of records is quite similar to the usage of statespaces. We repeat the example of an append function for heap lists. First we define the global components. Again the appearance of the prefix `globals' is mandatory. This is the way the syntax layer distinguishes local and global variables. \<close> record globals_list = next_' :: "ref \<Rightarrow> ref" cont_' :: "ref \<Rightarrow> nat" text \<open>The local variables also have to be defined as a record before the actual definition of the procedure. The parent record \<open>state\<close> defines a generic @{term "globals"} field as a place-holder for the record of global components. In contrast to the statespace approach there is no single @{term "locals"} slot. The local components are just added to the record. \<close> record 'g list_vars = "'g state" + p_' :: "ref" q_' :: "ref" r_' :: "ref" root_' :: "ref" tmp_' :: "ref" text \<open>Since the parameters and local variables are determined by the record, there are no type annotations or definitions of local variables while defining a procedure. \<close> procedures append'(p,q|p) = "IF \<acute>p=Null THEN \<acute>p :== \<acute>q ELSE \<acute>p \<rightarrow>\<acute>next:== CALL append'(\<acute>p\<rightarrow>\<acute>next,\<acute>q) FI" text \<open>As in the statespace approach, a locale called \<open>append'_impl\<close> is created. Note that we do not give any explicit information which global or local state-record to use. Since the records are already defined we rely on Isabelle's type inference. Dealing with the locale is analogous to the case with statespaces. \<close> lemma (in append'_impl) append'_modifies: shows "\<forall>\<sigma>. \<Gamma>\<turnstile> {\<sigma>} \<acute>p :== PROC append'(\<acute>p,\<acute>q) {t. t may_only_modify_globals \<sigma> in [next]}" apply (hoare_rule HoarePartial.ProcRec1) apply (vcg spec=modifies) done lemma (in append'_impl) append'_spec: shows "\<forall>\<sigma> Ps Qs. \<Gamma>\<turnstile> \<lbrace>\<sigma>. List \<acute>p \<acute>next Ps \<and> List \<acute>q \<acute>next Qs \<and> set Ps \<inter> set Qs = {}\<rbrace> \<acute>p :== PROC append'(\<acute>p,\<acute>q) \<lbrace>List \<acute>p \<acute>next (Ps@Qs) \<and> (\<forall>x. x\<notin>set Ps \<longrightarrow> \<acute>next x = \<^bsup>\<sigma>\<^esup>next x)\<rbrace>" apply (hoare_rule HoarePartial.ProcRec1) apply vcg apply fastforce done text \<open> However, in some corner cases the inferred state type in a procedure definition can be too general which raises problems when attempting to proof a suitable specifications in the locale. Consider for example the simple procedure body @{term "\<acute>p :== NULL"} for a procedure \<open>init\<close>. \<close> procedures init (|p) = "\<acute>p:== Null" text \<open> Here Isabelle can only infer the local variable record. Since no reference to any global variable is made the type fixed for the global variables (in the locale \<open>init'_impl\<close>) is a type variable say @{typ "'g"} and not a @{term "globals_list"} record. Any specification mentioning @{term "next"} or @{term "cont"} restricts the state type and cannot be added to the locale \<open>init_impl\<close>. Hence we have to restrict the body @{term "\<acute>p :== NULL"} in the first place by adding a typing annotation: \<close> procedures init' (|p) = "\<acute>p:== Null::(('a globals_list_scheme, 'b) list_vars_scheme, char list, 'c) com" subsubsection \<open>Extending State Spaces\<close> text \<open> The records in Isabelle are extensible \cite{Nipkow-02-hol,NaraschewskiW-TPHOLs98}. In principle this can be exploited during verification. The state space can be extended while we we add procedures. But there is one major drawback: \begin{itemize} \item records can only be extended in a linear fashion (there is no multiple inheritance) \end{itemize} You can extend both the main state record as well as the record for the global variables. \<close> subsubsection \<open>Mapping Variables to Record Fields\<close> text \<open> Generally the state space (global and local variables) is flat and all components are accessible from everywhere. Locality or globality of variables is achieved by the proper \<open>init\<close> and \<open>return\<close>/\<open>result\<close> functions in procedure calls. What is the best way to map programming language variables to the state records? One way is to disambiguate all names, by using the procedure names as prefix or the structure names for heap components. This leads to long names and lots of record components. But for local variables this is not necessary, since variable @{term i} of procedure @{term A} and variable @{term "i"} of procedure @{term B} can be mapped to the same record component, without any harm, provided they have the same logical type. Therefor for local variables it is preferable to map them per type. You only have to distinguish a variable with the same name if they have a different type. Note that all pointers just have logical type \<open>ref\<close>. So you even do not have to distinguish between a pointer \<open>p\<close> to a integer and a pointer \<open>p\<close> to a list. For global components (global variables and heap structures) you have to disambiguate the name. But hopefully the field names of structures have different names anyway. Also note that there is no notion of hiding of a global component by a local one in the logic. You have to disambiguate global and local names! As the names of the components show up in the specifications and the proof obligations, names are even more important as for programming. Try to find meaningful and short names, to avoid cluttering up your reasoning. \<close> (*<*) text \<open> in locales, includes, spec or impl? Names: per type not per procedure\<dots> downgrading total to partial\<dots> \<close> (*>*) text \<open>\<close> (*<*) end (*>*)
module New.Correctness where open import Function hiding (const) open import New.Lang open import New.Changes open import New.Derive open import New.LangChanges open import New.LangOps open import New.FunctionLemmas open import New.Unused ⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ ⟦Γ≼ΔΓ⟧ ∅ ∅ tt = refl ⟦Γ≼ΔΓ⟧ (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ ρdρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → ⟦ t ⟧Term ρ ≡ ⟦ fit t ⟧Term dρ fit-sound t ρ dρ ρdρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ ρ dρ ρdρ)) (sym (weaken-sound t _)) correctDeriveConst : ∀ {τ} (c : Const τ) → ⟦ c ⟧Const ≡ ⟦ c ⟧Const ⊕ (⟦_⟧ΔConst c) correctDeriveConst (lit n) = sym (right-id-int n) correctDeriveConst plus = ext (λ m → ext (lemma m)) where lemma : ∀ m n → m + n ≡ m + n + (m + - m + (n + - n)) lemma m n rewrite right-inv-int m | right-inv-int n | right-id-int (m + n) = refl correctDeriveConst minus = ext (λ m → ext (λ n → lemma m n)) where lemma : ∀ m n → m - n ≡ m - n + (m + - m - (n + - n)) lemma m n rewrite right-inv-int m | right-inv-int n | right-id-int (m - n) = refl correctDeriveConst cons = ext (λ v1 → ext (λ v2 → sym (update-nil (v1 , v2)))) correctDeriveConst fst = ext (λ vp → sym (update-nil (proj₁ vp))) correctDeriveConst snd = ext (λ vp → sym (update-nil (proj₂ vp))) correctDeriveConst linj = ext (λ va → sym (cong inj₁ (update-nil va))) correctDeriveConst rinj = ext (λ vb → sym (cong inj₂ (update-nil vb))) correctDeriveConst (match {t1} {t2} {t3}) = ext³ lemma where lemma : ∀ s f g → ⟦ match {t1} {t2} {t3} ⟧Const s f g ≡ (⟦ match ⟧Const ⊕ ⟦ match ⟧ΔConst) s f g lemma (inj₁ x) f g rewrite update-nil x | update-nil (f x) = refl lemma (inj₂ y) f g rewrite update-nil y | update-nil (g y) = refl validDeriveConst : ∀ {τ} (c : Const τ) → valid ⟦ c ⟧Const (⟦_⟧ΔConst c) validDeriveConst (lit n) = tt validDeriveConst {τ = t1 ⇒ t2 ⇒ pair .t1 .t2} cons = binary-valid (λ a da ada b db bdb → (ada , bdb)) dcons-eq where open BinaryValid ⟦ cons {t1} {t2} ⟧Const (⟦ cons ⟧ΔConst) dcons-eq : binary-valid-eq-hp dcons-eq a da ada b db bdb rewrite update-nil (a ⊕ da) | update-nil (b ⊕ db) = refl validDeriveConst fst (a , b) (da , db) (ada , bdb) = ada , update-nil (a ⊕ da) validDeriveConst snd (a , b) (da , db) (ada , bdb) = bdb , update-nil (b ⊕ db) validDeriveConst plus = binary-valid (λ a da ada b db bdb → tt) dplus-eq where open BinaryValid ⟦ plus ⟧Const (⟦ plus ⟧ΔConst) dplus-eq : binary-valid-eq-hp dplus-eq a da ada b db bdb rewrite right-inv-int (a + da) | right-inv-int (b + db) | right-id-int (a + da + (b + db)) = mn·pq=mp·nq {a} {da} {b} {db} validDeriveConst minus = binary-valid (λ a da ada b db bdb → tt) dminus-eq where open BinaryValid ⟦ minus ⟧Const (⟦ minus ⟧ΔConst) dminus-eq : binary-valid-eq-hp dminus-eq a da ada b db bdb rewrite right-inv-int (a + da) | right-inv-int (b + db) | right-id-int (a + da - (b + db)) | sym (-m·-n=-mn {b} {db}) = mn·pq=mp·nq {a} {da} { - b} { - db} validDeriveConst linj a da ada = sv₁ a da ada , cong inj₁ (update-nil (a ⊕ da)) validDeriveConst rinj b db bdb = sv₂ b db bdb , cong inj₂ (update-nil (b ⊕ db)) validDeriveConst (match {t1} {t2} {t3}) = ternary-valid dmatch-valid dmatch-eq where open TernaryValid {{chAlgt (sum t1 t2)}} {{chAlgt (t1 ⇒ t3)}} {{chAlgt (t2 ⇒ t3)}} {{chAlgt t3}} ⟦ match ⟧Const (⟦ match ⟧ΔConst) dmatch-valid : ternary-valid-preserve-hp dmatch-valid .(inj₁ a) .(inj₁ (inj₁ da)) (sv₁ a da ada) f df fdf g dg gdg = proj₁ (fdf a da ada) dmatch-valid .(inj₂ b) .(inj₁ (inj₂ db)) (sv₂ b db bdb) f df fdf g dg gdg = proj₁ (gdg b db bdb) dmatch-valid .(inj₁ a1) .(inj₂ (inj₂ b2)) (svrp₁ a1 b2) f df fdf g dg gdg rewrite changeMatchSem-lem1 f df g dg a1 b2 = ⊝-valid (f a1) (g b2 ⊕ dg b2 (nil b2)) dmatch-valid .(inj₂ b1) .(inj₂ (inj₁ a2)) (svrp₂ b1 a2) f df fdf g dg gdg rewrite changeMatchSem-lem2 f df g dg b1 a2 = ⊝-valid (g b1) (f a2 ⊕ df a2 (nil a2)) dmatch-eq : ternary-valid-eq-hp dmatch-eq .(inj₁ a) .(inj₁ (inj₁ da)) (sv₁ a da ada) f df fdf g dg gdg rewrite update-nil (a ⊕ da) | update-nil (f (a ⊕ da) ⊕ df (a ⊕ da) (nil (a ⊕ da))) = proj₂ (fdf a da ada) dmatch-eq .(inj₂ b) .(inj₁ (inj₂ db)) (sv₂ b db bdb) f df fdf g dg gdg rewrite update-nil (b ⊕ db) | update-nil (g (b ⊕ db) ⊕ dg (b ⊕ db) (nil (b ⊕ db))) = proj₂ (gdg b db bdb) dmatch-eq .(inj₁ a1) .(inj₂ (inj₂ b2)) (svrp₁ a1 b2) f df fdf g dg gdg rewrite changeMatchSem-lem1 f df g dg a1 b2 | update-nil b2 | update-diff (g b2 ⊕ dg b2 (nil b2)) (f a1) | update-nil (g b2 ⊕ dg b2 (nil b2)) = refl dmatch-eq .(inj₂ b1) .(inj₂ (inj₁ a2)) (svrp₂ b1 a2) f df fdf g dg gdg rewrite changeMatchSem-lem2 f df g dg b1 a2 | update-nil a2 | update-diff (f a2 ⊕ df a2 (nil a2)) (g b1) | update-nil (f a2 ⊕ df a2 (nil a2)) = refl validDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → valid (⟦ x ⟧Var ρ) (⟦ x ⟧ΔVar ρ dρ) validDeriveVar this (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = vdv validDeriveVar (that x) (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = validDeriveVar x ρ dρ ρdρ correctDeriveVar : ∀ {Γ τ} → (x : Var Γ τ) → IsDerivative ⟦ x ⟧Var (⟦ x ⟧ΔVar) correctDeriveVar this (v • ρ) (dv • v' • dρ) ρdρ = refl correctDeriveVar (that x) (v • ρ) (dv • .v • dρ) (vdv , refl , ρdρ) = correctDeriveVar x ρ dρ ρdρ validDerive : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → validΓ ρ dρ → valid (⟦ t ⟧Term ρ) (⟦ t ⟧ΔTerm ρ dρ) correctDerive : ∀ {Γ τ} → (t : Term Γ τ) → IsDerivative ⟦ t ⟧Term ⟦ t ⟧ΔTerm correctDerive (const c) ρ dρ ρdρ rewrite ⟦ c ⟧ΔConst-rewrite ρ dρ = correctDeriveConst c correctDerive (var x) ρ dρ ρdρ = correctDeriveVar x ρ dρ ρdρ correctDerive (app s t) ρ dρ ρdρ rewrite sym (fit-sound t ρ dρ ρdρ) = let open ≡-Reasoning a0 = ⟦ t ⟧Term ρ da0 = ⟦ derive t ⟧Term dρ a0da0 = validDerive t ρ dρ ρdρ in begin ⟦ s ⟧Term (ρ ⊕ dρ) (⟦ t ⟧Term (ρ ⊕ dρ)) ≡⟨ correctDerive s ρ dρ ρdρ ⟨$⟩ correctDerive t ρ dρ ρdρ ⟩ (⟦ s ⟧Term ρ ⊕ ⟦ s ⟧ΔTerm ρ dρ) (⟦ t ⟧Term ρ ⊕ ⟦ t ⟧ΔTerm ρ dρ) ≡⟨ proj₂ (validDerive s ρ dρ ρdρ a0 da0 a0da0) ⟩ ⟦ s ⟧Term ρ (⟦ t ⟧Term ρ) ⊕ (⟦ s ⟧ΔTerm ρ dρ) (⟦ t ⟧Term ρ) (⟦ t ⟧ΔTerm ρ dρ) ∎ where open import Theorem.CongApp correctDerive (abs t) ρ dρ ρdρ = ext $ λ a → let open ≡-Reasoning ρ1 = a • ρ dρ1 = nil a • a • dρ ρ1dρ1 = nil-valid a , refl , ρdρ in -- equal-future-expand-derivative ⟦ t ⟧Term ⟦ t ⟧ΔTerm (correctDerive t) -- ρ1 dρ1 ρ1dρ1 -- (a • (ρ ⊕ dρ)) -- (cong (_• ρ ⊕ dρ) (sym (update-nil a))) begin ⟦ t ⟧Term (a • ρ ⊕ dρ) ≡⟨ cong (λ a′ → ⟦ t ⟧Term (a′ • ρ ⊕ dρ)) (sym (update-nil a)) ⟩ ⟦ t ⟧Term (ρ1 ⊕ dρ1) ≡⟨ correctDerive t ρ1 dρ1 ρ1dρ1 ⟩ ⟦ t ⟧Term ρ1 ⊕ ⟦ t ⟧ΔTerm ρ1 dρ1 ∎ validDerive (app s t) ρ dρ ρdρ = let f = ⟦ s ⟧Term ρ df = ⟦ derive s ⟧Term dρ v = ⟦ t ⟧Term ρ dv = ⟦ derive t ⟧Term dρ vdv = validDerive t ρ dρ ρdρ fdf = validDerive s ρ dρ ρdρ fvdfv = proj₁ (fdf v dv vdv) in subst (λ v′ → valid (f v) (df v′ dv)) (fit-sound t ρ dρ ρdρ) fvdfv validDerive (abs t) ρ dρ ρdρ = λ a da ada → let ρ1 = a ⊕ da • ρ dρ1 = nil (a ⊕ da) • (a ⊕ da) • dρ ρ2 = a • ρ dρ2 = da • a • dρ ρ1dρ1 = nil-valid (a ⊕ da) , refl , ρdρ ρ2dρ2 = ada , refl , ρdρ rdr = validDerive t ρ2 dρ2 ρ2dρ2 open ≡-Reasoning in rdr , equal-future-derivative ⟦ t ⟧Term ⟦ t ⟧ΔTerm (correctDerive t) ρ1 dρ1 ρ1dρ1 ρ2 dρ2 ρ2dρ2 (cong (λ a′ → (a′ • ρ ⊕ dρ)) (update-nil (a ⊕ da))) validDerive (var x) ρ dρ ρdρ = validDeriveVar x ρ dρ ρdρ validDerive (const c) ρ dρ ρdρ rewrite ⟦ c ⟧ΔConst-rewrite ρ dρ = validDeriveConst c
About existT. Print existT. Print Implicit existT. Print eq_refl. About eq_refl. Print Implicit eq_refl. Print Nat.add. About Nat.add. Print Implicit Nat.add. About plus_n_O. Arguments le_S {n} [m] _. Print le_S. About comparison. Print comparison. Definition foo := forall x, x = 0. Parameter bar : foo. Arguments bar [x]. About bar. Print bar. About Peano. (* Module *) About sym_eq. (* Notation *) Arguments eq_refl {A} {x}, {A} x. Print eq_refl. Definition newdef := fun x:nat => x. Goal forall n:nat, n <> newdef n -> newdef n <> n -> False. intros n h h'. About n. (* search hypothesis *) About h. (* search hypothesis *) Abort. Goal forall n:nat, let g := newdef in n <> newdef n -> newdef n <> n -> False. intros n g h h'. About g. (* search hypothesis *) About h. (* search hypothesis *) Abort.
main@global(128) { #// printf ("Hello World\n"); : nop : mov eax, 1 : push eax : int 0x80 }
// $Id$ // // Copyright (C) 2003-2013 Greg Landrum and Rational Discovery LLC // // @@ All Rights Reserved @@ // This file is part of the RDKit. // The contents are covered by the terms of the BSD license // which is included in the file license.txt, found at the root // of the RDKit source tree. // #include <GraphMol/RDKitBase.h> #include <GraphMol/SmilesParse/SmilesParse.h> #include <GraphMol/SmilesParse/SmilesWrite.h> #include <GraphMol/SmilesParse/SmartsWrite.h> #include <GraphMol/Subgraphs/Subgraphs.h> #include <GraphMol/Subgraphs/SubgraphUtils.h> #include <boost/foreach.hpp> #include <iostream> using namespace std; using namespace RDKit; void test1() { std::cout << "-----------------------\n Test1: pathToSubmol" << std::endl; { std::string smiles = "CC1CC1"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); PATH_LIST sgs; sgs = findAllSubgraphsOfLengthN(*mol, 3, false, 0); TEST_ASSERT(sgs.size() == 3); BOOST_FOREACH (PATH_TYPE tmp, sgs) { TEST_ASSERT(tmp[0] == 0); TEST_ASSERT(tmp.size() == 3); ROMol *frag = Subgraphs::pathToSubmol(*mol, tmp, false); smiles = MolToSmiles(*frag, true, false, 0, false); if (tmp[1] == 1) { if (tmp[2] == 2) { TEST_ASSERT(smiles == "CCCC"); } else if (tmp[2] == 3) { TEST_ASSERT(smiles == "CC(C)C"); } else { TEST_ASSERT(0); } } else if (tmp[1] == 3) { if (tmp[2] == 2) { TEST_ASSERT(smiles == "CCCC"); } else if (tmp[2] == 1) { TEST_ASSERT(smiles == "CC(C)C"); } else { TEST_ASSERT(0); } } else { TEST_ASSERT(0); } delete frag; } delete mol; } std::cout << "Finished" << std::endl; } void test2() { std::cout << "-----------------------\n Test2: Atom Environments" << std::endl; { std::string smiles = "CC1CC1"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); PATH_TYPE pth = findAtomEnvironmentOfRadiusN(*mol, 1, 0); TEST_ASSERT(pth.size() == 1); TEST_ASSERT(pth[0] == 0); pth = findAtomEnvironmentOfRadiusN(*mol, 2, 0); TEST_ASSERT(pth.size() == 3); TEST_ASSERT(pth[0] == 0); pth = findAtomEnvironmentOfRadiusN(*mol, 3, 0); TEST_ASSERT(pth.size() == 4); TEST_ASSERT(pth[0] == 0); pth = findAtomEnvironmentOfRadiusN(*mol, 4, 0); TEST_ASSERT(pth.size() == 0); pth = findAtomEnvironmentOfRadiusN(*mol, 1, 1); TEST_ASSERT(pth.size() == 3); pth = findAtomEnvironmentOfRadiusN(*mol, 2, 1); TEST_ASSERT(pth.size() == 4); pth = findAtomEnvironmentOfRadiusN(*mol, 3, 1); TEST_ASSERT(pth.size() == 0); delete mol; } { std::string smiles = "CC1CC1"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); ROMol *mH = MolOps::addHs(static_cast<const ROMol &>(*mol)); PATH_TYPE pth = findAtomEnvironmentOfRadiusN(*mH, 1, 0); TEST_ASSERT(pth.size() == 1); TEST_ASSERT(pth[0] == 0); pth = findAtomEnvironmentOfRadiusN(*mH, 1, 0, true); TEST_ASSERT(pth.size() == 4); delete mol; delete mH; } { std::string smiles = "O=C(O)CCCC=CC(C1C(O)CC(O)C1(C=CC(O)CCCCC))"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); smiles = MolToSmiles(*mol); PATH_TYPE pth = findAtomEnvironmentOfRadiusN(*mol, 2, 9); TEST_ASSERT(pth.size() == 8); ROMol *frag = Subgraphs::pathToSubmol(*mol, pth, false); smiles = MolToSmiles(*frag, true, false, 0, false); TEST_ASSERT(smiles == "C(C(C(O)C)C(C)C)C"); delete frag; delete mol; } std::cout << "Finished" << std::endl; } void testGithubIssue103() { std::cout << "-----------------------\n Testing github Issue103: " "stereochemistry and pathToSubmol" << std::endl; { std::string smiles = "O=C(O)C(=O)C[C@@]1(C(=O)O)C=C[C@H](O)C=C1"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); PATH_TYPE pth = findAtomEnvironmentOfRadiusN(*mol, 2, 12); TEST_ASSERT(pth.size() == 5); ROMol *frag = Subgraphs::pathToSubmol(*mol, pth, false); smiles = MolToSmiles(*frag, true); TEST_ASSERT(smiles == "C=CC(O)C=C"); delete frag; delete mol; } { std::string smiles = "O=C(O)C(=O)C[C@@]1(C(=O)O)C=C[C@H](O)C=C1"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); PATH_TYPE pth = findAtomEnvironmentOfRadiusN(*mol, 2, 12); TEST_ASSERT(pth.size() == 5); ROMol *frag = Subgraphs::pathToSubmol(*mol, pth, false); smiles = MolToSmarts(*frag); TEST_ASSERT(smiles == "[#6](-[#6H](-[#8])-[#6]=[#6])=[#6]"); delete frag; delete mol; } { std::string smiles = "O=C(O)C(=O)C[C@@]1(C(=O)O)C=C[C@H](O)C=C1"; RWMol *mol = SmilesToMol(smiles); TEST_ASSERT(mol); PATH_TYPE pth = findAtomEnvironmentOfRadiusN(*mol, 2, 12); TEST_ASSERT(pth.size() == 5); ROMol *frag = Subgraphs::pathToSubmol(*mol, pth, true); smiles = MolToSmarts(*frag); TEST_ASSERT(smiles == "[#6](-[#6](-[#8])-[#6]=[#6])=[#6]"); delete frag; delete mol; } std::cout << "Finished" << std::endl; } // ------------------------------------------------------------------- int main() { test1(); test2(); testGithubIssue103(); return 0; }
subroutine test1 character*8 c character*2 d, f dimension d(2), f(2) character*4 e equivalence (c(1:1), d(1)(2:)), (c(3:5), e(2:4)) equivalence (c(6:6), f(2)(:)) d(1)='AB' c='abcdefgh' if (c.ne.'abcdefgh'.or.d(1).ne.'Aa'.or.d(2).ne.'bc') call abort if (e.ne.'bcde'.or.f(1).ne.'de'.or.f(2).ne.'fg') call abort end subroutine test1 subroutine test2 equivalence (c(1:1), d(1)(2:2)), (c(3:5), e(2:4)) equivalence (c(6:6), f(2)(1:)) character*8 c character*2 d, f dimension d(2), f(2) character*4 e d(1)='AB' c='abcdefgh' if (c.ne.'abcdefgh'.or.d(1).ne.'Aa'.or.d(2).ne.'bc') call abort if (e.ne.'bcde'.or.f(1).ne.'de'.or.f(2).ne.'fg') call abort end subroutine test2 subroutine test3 character*8 c character*2 d, f character*4 e equivalence (c(1:1), d(1)(2:)), (c(3:5), e(2:4)) equivalence (c(6:6), f(2)(:1)) dimension d(2), f(2) d(1)='AB' c='abcdefgh' if (c.ne.'abcdefgh'.or.d(1).ne.'Aa'.or.d(2).ne.'bc') call abort if (e.ne.'bcde'.or.f(1).ne.'de'.or.f(2).ne.'fg') call abort end subroutine test3 subroutine test4 dimension d(2), f(2) equivalence (c(1:1), d(1)(2:2)), (c(3:5), e(2:4)) equivalence (c(6:6), f(2)(1:2)) character*8 c character*2 d, f character*4 e d(1)='AB' c='abcdefgh' if (c.ne.'abcdefgh'.or.d(1).ne.'Aa'.or.d(2).ne.'bc') call abort if (e.ne.'bcde'.or.f(1).ne.'de'.or.f(2).ne.'fg') call abort end subroutine test4 program main call test1 call test2 call test3 call test4 end program main
module PackageCompiler using Libdl, SnoopCompile Sys.iswindows() && using WinRPM include("compiler_flags.jl") include("static_julia.jl") include("api.jl") include("snooping.jl") include("system_image.jl") const sysimage_binaries = ("sys.$(Libdl.dlext)",) function copy_system_image(src, dest, ignore_missing = false) for file in sysimage_binaries # backup srcfile = joinpath(src, file) destfile = joinpath(dest, file) if !isfile(srcfile) ignore_missing && continue error("No file: $srcfile") end if isfile(destfile) if isfile(destfile * ".backup") rm(destfile * ".backup", force = true) end mv(destfile, destfile * ".backup", force = true) end @info "Copying system image: $srcfile to $destfile" cp(srcfile, destfile, force = true) end end julia_cpu_target(x) = error("CPU target needs to be a string or `nothing`") julia_cpu_target(x::String) = x # TODO: match against available targets function julia_cpu_target(::Nothing) replace(Base.julia_cmd().exec[2], "-C" => "") end """ Reverts a forced compilation of the system image. This will restore any previously backed up system image files, or build a new, clean system image. """ function revert(debug = false) syspath = default_sysimg_path(debug) sysimg_backup = dirname(get_backup!(debug)) copy_system_image(sysimg_backup, syspath) end function get_root_dir(path) path, name = splitdir(path) if isempty(name) return splitdir(path)[2] else name end end function sysimg_folder(files...) base_path = normpath(abspath(joinpath(@__DIR__, "..", "sysimg"))) isdir(base_path) || mkpath(base_path) normpath(abspath(joinpath(base_path, files...))) end function sysimgbackup_folder(files...) backup = sysimg_folder("backup") isdir(backup) || mkpath(backup) sysimg_folder("backup", files...) end function package_folder(package...) packages = normpath(abspath(joinpath(@__DIR__, "..", "packages"))) isdir(packages) || mkpath(packages) normpath(abspath(joinpath(packages, package...))) end """ compile_package(packages...; kw_args...) with packages being either a string naming a package, or a tuple `(package_name, precompile_file)`. If no precompile file is given, it will use the packages `runtests.jl`, which is a good canditate for figuring out what functions to compile! """ function compile_package(packages...; kw_args...) args = map(packages) do package # If no explicit path to a seperate precompile file, use runtests isa(package, String) && return (package, "test/runtests.jl") isa(package, Tuple{String, String}) && return package error("Unrecognized package. Use `packagename::String`, or `(packagename::String, rel_path_to_testfile::String)`. Found: `$package`") end compile_package(args...; kw_args...) end """ compile_package(packages::Tuple{String, String}...; force = false, reuse = false, debug = false, cpu_target = nothing) Compile a list of packages. Each package comes as a tuple of `(package_name, precompile_file)` where the precompile file should contain all function calls, that should get compiled into the system image. Usually the `runtests.jl` file is a good candidate, since it should run all important functions of a package. """ function compile_package(packages::Tuple{String, String}...; force = false, reuse = false, debug = false, cpu_target = nothing) userimg = sysimg_folder("precompile.jl") if !reuse snoop_userimg(userimg, packages...) end !isfile(userimg) && reuse && error("Nothing to reuse. Please run `compile_package(reuse = true)`") image_path = sysimg_folder() build_sysimg(image_path, userimg, cpu_target=cpu_target) imgfile = joinpath(image_path, "sys.$(Libdl.dlext)") syspath = joinpath(default_sysimg_path(debug), "sys.$(Libdl.dlext)") if force try backup = syspath * ".packagecompiler_backup" isfile(backup) || mv(syspath, backup) cp(imgfile, syspath) @info """Replaced system image successfully. Next start of julia will load the newly compiled system image. If you encounter any errors with the new julia image, try `PackageCompiler.revert([debug = false])`.""" catch e @warn "An error occured while replacing sysimg files:" error=e @info "Recovering old system image from backup" # if any file is missing in default system image, revert! if !isfile(syspath) @info "$syspath missing. Reverting!" revert(debug) end end else @info """Not replacing system image. You can start julia with $(`julia -J $imgfile`) at a posix shell to load the compiled files.""" end imgfile end function __init__() if Base.julia_cmd().exec[2] != "-Cnative" @warn "Your Julia system image is not compiled natively for this CPU architecture.\n" * "Please run `PackageCompiler.force_native_image!()` for optimal Julia performance." end end export compile_package, revert, force_native_image!, executable_ext, build_executable, build_shared_lib, static_julia end # module
module adios2_adios use adios2_adios_init implicit none contains subroutine adios2_declare_io(io, adios, io_name, ierr) integer(kind=8), intent(out) :: io integer(kind=8), intent(in) :: adios character*(*), intent(in) :: io_name integer, intent(out) :: ierr call adios2_declare_io_f2c(io, adios, TRIM(ADJUSTL(io_name))//char(0), & & ierr) end subroutine adios2_finalize(adios, ierr) integer(kind=8), intent(in) :: adios integer, intent(out) :: ierr call adios2_finalize_f2c(adios, ierr) end end module
Personalize your space with cyber monday gym membership in a wide variety of style. We have all of the little details you need to turn your house into a home with style. The cyber monday gym membership with good price can always be found at Beddinginn.com. For you who love great deals and gorgeous cyber monday gym membership, Beddinginn sell lovely things for even lovelier prices.
% $Id: WB08_Fig_2.m,v 1.1.1.1 2008/05/09 21:34:52 myself Exp $ % % This prepares data for Figure 2 which is created with the corresponding % shell script using GMT. It also makes a plot in Matlab/Octave. % % Wessel, P. and J. M. Becker, 2008, Interpolation using a % generalized Green's function for a spherical surface spline % in tension, Geophys. J. Int., doi:10.1111/j.1365-246X.2008.03829.x % % Replicate Parker and then find the tension that minimizes the misfit at % his 8 extra validation stations. load mag_obs_1990.d loni = mag_obs_1990(:,1); lati = mag_obs_1990(:,2); zi = mag_obs_1990(:,3); d=1; % Set global 1x1 grid output coordinates [X Y] = meshgrid (0:d:360, 0:d:90); % First Parker's solution (p = 0) Z = sphsplinet (loni, lati, zi, X, Y); figure(1); clf subplot (2,1,1) contour (X, Y, Z) drawnow A = [X(:) Y(:) Z(:)]; save Fig_2_p0.d A -ascii -tabs %Then used the wrong Oslo longitude to recreate Parker's figure k = find (loni == 10.45) loni(k) = 104.5; Z = sphsplinet (loni, lati, zi, X, Y); subplot (2,1,2) contour (X, Y, Z) A = [X(:) Y(:) Z(:)]; save Fig_2_orig.d A -ascii -tabs
import counit_ker_abelian import pq_induction_principles import group_theory.abelianization universe u section commutator_counit_kernel variables {G : Type u} [group G] theorem commutator_intersect_counit_kernel_trivial (x y : pq_group G) (hxy : counit (x * y * x⁻¹ * y⁻¹) = 1) : x * y * x⁻¹ * y⁻¹ = 1 := begin simp only [counit_of, monoid_hom.map_mul, monoid_hom.map_mul_inv] at hxy, rw ←rhd_def_group, rw inner_aut_eq, generalize ha : counit x = a, rw ha at hxy, clear ha x, suffices : of a ▷ y = y, { rw this, simp only [mul_right_inv], }, have hya : a ▷ (counit y) = counit y, { rw ←rhd_def_group at hxy, exact mul_inv_eq_one.mp hxy, }, clear hxy, suffices : (of a) ▷ (y * (of (counit y))⁻¹) = y * (of (counit y))⁻¹, { rw rhd_mul at this, suffices this2 : (of a▷(of (counit y))⁻¹) = (of (counit y))⁻¹, { rw this2 at this, simp only [mul_left_inj] at this, exact this, }, clear this, rw of_inv, rw rhd_of_eq_of_rhd, apply congr_arg, rw ←power_quandle.pow_rhd, rw hya, }, suffices : (y * (of (counit y))⁻¹) ▷ (of a) = of a, { generalize ha1 : of a = a1, generalize ha2 : (y * (of (counit y))⁻¹) = a2, rw ha1 at this, rw ha2 at this, clear ha1 ha2 hya a y, rw rhd_def_group at *, rw ←center_reformulate at *, symmetry, exact this, }, rw inner_aut_eq, simp only [counit_of, mul_right_inv, monoid_hom.map_mul_inv], rw of_one, rw power_quandle.one_rhd, end end commutator_counit_kernel
import Language.Reflection %language ElabReflection logPrims : Elab a logPrims = do ns <- getType `{ (++) } traverse_ (\ (n, ty) => do logMsg "" 0 ("Name: " ++ show n) logTerm "" 0 "Type" ty) ns fail "Not really trying" logDataCons : Elab a logDataCons = do [(n, _)] <- getType `{ Nat } | _ => fail "Ambiguous name" logMsg "" 0 ("Resolved name: " ++ show n) logMsg "" 0 ("Constructors: " ++ show !(getCons n)) fail "Still not trying" logBad : Elab a logBad = do [(n, _)] <- getType `{ DoesntExist } | [] => fail "Undefined name" | _ => fail "Ambiguous name" logMsg "" 0 ("Resolved name: " ++ show n) logMsg "" 0 ("Constructors: " ++ show !(getCons n)) fail "Still not trying" -- because the exact sequence number in a gensym depends on -- the library and compiler internals we need to censor it so the -- output won't be overly dependent on the exact versions used. censorDigits : String -> String censorDigits str = pack $ map (\c => if isDigit c then 'X' else c) (unpack str) tryGenSym : Elab a tryGenSym = do n <- genSym "plus" ns <- inCurrentNS n fail $ "failed after generating " ++ censorDigits (show ns) dummy1 : a dummy1 = %runElab logPrims dummy2 : a dummy2 = %runElab logDataCons dummy3 : a dummy3 = %runElab logBad dummy4 : a dummy4 = %runElab tryGenSym
Require Import ssreflect ssrbool ssrfun seq eqtype fintype. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Require Import sepcomp. Import SepComp. Lemma reestablish_locBlocksSrc mu0 mu : locBlocksSrc (reestablish mu0 mu) = locBlocksSrc mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_locBlocksTgt mu0 mu : locBlocksTgt (reestablish mu0 mu) = locBlocksTgt mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_pubBlocksSrc mu0 mu : pubBlocksSrc (reestablish mu0 mu) = pubBlocksSrc mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_pubBlocksTgt mu0 mu : pubBlocksTgt (reestablish mu0 mu) = pubBlocksTgt mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_extBlocksSrc mu0 mu : extBlocksSrc (reestablish mu0 mu) = (fun b => if locBlocksSrc mu0 b then false else DomSrc mu b). Proof. by case: mu0; case: mu. Qed. Lemma reestablish_extBlocksTgt mu0 mu : extBlocksTgt (reestablish mu0 mu) = (fun b => if locBlocksTgt mu0 b then false else DomTgt mu b). Proof. by case: mu0; case: mu. Qed. Lemma reestablish_frgnBlocksSrc mu0 mu : frgnBlocksSrc (reestablish mu0 mu) = frgnBlocksSrc mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_frgnBlocksTgt mu0 mu : frgnBlocksTgt (reestablish mu0 mu) = frgnBlocksTgt mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_local_of mu0 mu : local_of (reestablish mu0 mu) = local_of mu0. Proof. by case: mu0; case: mu. Qed. Lemma reestablish_extern_of mu0 mu : extern_of (reestablish mu0 mu) = (fun b => if locBlocksSrc mu0 b then None else as_inj mu b). Proof. by case: mu0; case: mu. Qed.
(* Copyright 2018 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) theory task_list_push_back_mem imports tasks begin text \<open>Up to two locales per function in the binary.\<close> locale task_list_push_back_function = tasks_context + fixes rsp\<^sub>0 rbp\<^sub>0 a task_list_push_back_ret :: \<open>64 word\<close> and v\<^sub>0 :: \<open>8 word\<close> and blocks :: \<open>(nat \<times> 64 word \<times> nat) set\<close> assumes seps: \<open>seps blocks\<close> and masters: \<open>master blocks (a, 1) 0\<close> \<open>master blocks (rsp\<^sub>0, 8) 1\<close> \<open>master blocks (rsp\<^sub>0-8, 8) 2\<close> \<open>master blocks (rsp\<^sub>0-16, 8) 3\<close> \<open>master blocks (rsp\<^sub>0-24, 8) 4\<close> and ret_address: \<open>outside task_list_push_back_ret 139 317\<close> \<comment> \<open>Only works for non-recursive functions.\<close> begin text \<open> The Floyd invariant expresses for some locations properties that are invariably true. Simply expresses that a byte in the memory remains untouched. \<close> definition pp_\<Theta> :: \<open>_ \<Rightarrow> _ \<Rightarrow> _ \<Rightarrow> floyd_invar\<close> where \<open>pp_\<Theta> list task last' \<equiv> [ \<comment> \<open>precondition\<close> boffset+139 \<mapsto> \<lambda>\<sigma>. regs \<sigma> rsp = rsp\<^sub>0 \<and> regs \<sigma> rbp = rbp\<^sub>0 \<and> regs \<sigma> rdi = list \<and> regs \<sigma> rsi = task \<and> \<sigma> \<turnstile> *[list + 8,8] = last' \<and> \<sigma> \<turnstile> *[rsp\<^sub>0,8] = boffset+task_list_push_back_ret \<and> \<sigma> \<turnstile> *[a,1] = v\<^sub>0, boffset+314 \<mapsto> \<lambda>\<sigma>. regs \<sigma> rsp = rsp\<^sub>0-8 \<and> regs \<sigma> rbp = rsp\<^sub>0-8 \<and> \<sigma> \<turnstile> *[list + 8,8] = last' \<and> \<sigma> \<turnstile> *[rsp\<^sub>0-24,8] = task \<and> \<sigma> \<turnstile> *[rsp\<^sub>0-16,8] = list \<and> \<sigma> \<turnstile> *[rsp\<^sub>0-8,8] = rbp\<^sub>0 \<and> \<sigma> \<turnstile> *[rsp\<^sub>0,8] = boffset+task_list_push_back_ret \<and> \<sigma> \<turnstile> *[a,1] = v\<^sub>0, boffset+315 \<mapsto> \<lambda>\<sigma>. regs \<sigma> rsp = rsp\<^sub>0-8 \<and> regs \<sigma> rbp = rsp\<^sub>0-8 \<and> \<sigma> \<turnstile> *[rsp\<^sub>0-8,8] = rbp\<^sub>0 \<and> \<sigma> \<turnstile> *[rsp\<^sub>0,8] = boffset+task_list_push_back_ret \<and> \<sigma> \<turnstile> *[a,1] = v\<^sub>0, \<comment> \<open>postcondition\<close> boffset+task_list_push_back_ret \<mapsto> \<lambda>\<sigma>. \<sigma> \<turnstile> *[a,1] = v\<^sub>0 \<and> regs \<sigma> rsp = rsp\<^sub>0+8 \<and> regs \<sigma> rbp = rbp\<^sub>0 ]\<close> text \<open>Adding some rules to the simplifier to simplify proofs.\<close> schematic_goal pp_\<Theta>_zero[simp]: \<open>pp_\<Theta> list task last' boffset = ?x\<close> unfolding pp_\<Theta>_def by simp schematic_goal pp_\<Theta>_numeral_l[simp]: \<open>pp_\<Theta> list task last' (n + boffset) = ?x\<close> unfolding pp_\<Theta>_def by simp schematic_goal pp_\<Theta>_numeral_r[simp]: \<open>pp_\<Theta> list task last' (boffset + n) = ?x\<close> unfolding pp_\<Theta>_def by simp lemma rewrite_task_list_push_back_mem: assumes \<open>master blocks (list, 8) 5\<close> \<open>master blocks (list + 8, 8) 6\<close> \<open>master blocks (task + 0x58, 8) 7\<close> \<open>master blocks (task + 0x60, 8) 8\<close> \<open>master blocks (last' + 0x58, 8) 9\<close> shows \<open>is_std_invar task_list_push_back_ret (floyd.invar task_list_push_back_ret (pp_\<Theta> list task last'))\<close> proof - note masters = masters assms show ?thesis text \<open>Boilerplate code to start the VCG\<close> apply (rule floyd_invarI) apply (rewrite at \<open>floyd_vcs task_list_push_back_ret \<hole> _\<close> pp_\<Theta>_def) apply (intro floyd_vcsI) text \<open>Subgoal for rip = boffset+139\<close> subgoal premises prems for \<sigma> text \<open>Insert relevant knowledge\<close> apply (insert prems seps ret_address) text \<open>Apply VCG/symb.\ execution\<close> apply (restart_symbolic_execution?, (symbolic_execution masters: masters)+, (finish_symbolic_execution masters: masters)?)+ done text \<open>Subgoal for rip = boffset+314\<close> subgoal premises prems for \<sigma> text \<open>Insert relevant knowledge\<close> apply (insert prems seps ret_address) text \<open>Apply VCG/symb.\ execution\<close> apply (restart_symbolic_execution?, (symbolic_execution masters: masters)+, (finish_symbolic_execution masters: masters)?)+ done text \<open>Subgoal for rip = boffset+315\<close> subgoal premises prems for \<sigma> text \<open>Insert relevant knowledge\<close> apply (insert prems seps ret_address) text \<open>Apply VCG/symb.\ execution\<close> apply (restart_symbolic_execution?, (symbolic_execution masters: masters)+, (finish_symbolic_execution masters: masters)?)+ done text \<open>Trivial ending subgoal.\<close> subgoal by simp done qed end end
import numpy as np from scipy.signal import correlate from scipy.linalg import eigh, blas from alphacsc.utils import check_random_state def learn_atoms(X, n_atoms, n_times_atom, n_iter=10, max_shift=11, random_state=None): """Learn atoms using the MoTIF algorithm. Parameters ---------- X : array, shape (n_trials, n_times) The data on which to apply MoTIF. n_atoms : int The number of atoms. n_times_atom : int The support of the atoms n_iter : int The number of iterations max_shift : int The maximum allowable shift for the atoms. random_state : int | None The random initialization. """ rng = check_random_state(random_state) n_trials, n_times = X.shape atoms = rng.rand(n_atoms, n_times_atom) corrs = np.zeros(n_trials) match = np.zeros((n_atoms, n_trials), dtype=np.int) # loop through atoms for k in range(n_atoms): aligned_data = np.zeros((n_times_atom, n_trials)) # compute Bk B = np.zeros((n_times_atom, n_times_atom), order='F') for l in range(k): for p in np.arange(max_shift): atom_shifted = np.roll(atoms[l], -p)[np.newaxis, :] # B += np.dot(atom_shifted.T, atom_shifted) B = blas.dger(1, atom_shifted, atom_shifted, a=B, overwrite_a=1) # make B invertible by adding a full-rank matrix B += np.eye(B.shape[0]) * np.finfo(np.float32).eps for i in range(n_iter): print('[seed %s] Atom %d Iteration %d' % (random_state, k, i)) # loop through training data for n in range(n_trials): # ### STEP 1: Find out where the data and atom align #### # which of these to use for template matching? vec1 = (X[n] - np.mean(X[n])) / (np.std(X[n]) * len(X[n])) vec2 = (atoms[k] - np.mean(atoms[k])) / np.std(atoms[k]) tmp = np.abs(correlate(vec1, vec2, 'same')) offset = n_times_atom // 2 match[k, n] = tmp[offset:-offset].argmax() + offset corrs[n] = tmp[match[k, n]] # aligned_data[:, n] = np.roll(X[n], -shift[n])[:n_times_atom] aligned_data[:, n] = X[n, match[k, n] - offset: match[k, n] + offset].copy() # ### STEP 2: Solve the generalized eigenvalue problem #### A = np.dot(aligned_data, aligned_data.T).copy() if k == 0: B = None e, U = eigh(A, B) # e, U = eigh(A) atoms[k, :] = U[:, -1] / np.linalg.norm(U[:, -1]) return atoms
import topology.basic import topology.compact_open import data.nat.prime import data.real.basic import data.real.irrational import data.complex.basic import data.fin.basic import geometry.euclidean.basic import analysis.inner_product_space.pi_L2 import algebra.group.defs import algebra.field.basic import combinatorics.configuration import ring_theory.polynomial.basic import group_theory.free_group import combinatorics.simple_graph.basic import ring_theory.integral_closure import data.fintype.card import category_theory.category.basic import ring_theory.discrete_valuation_ring import group_theory.torsion import linear_algebra.matrix.charpoly.basic import algebra.order.absolute_value import analysis.convex.basic import topology.uniform_space.uniform_convergence_topology import topology.sequences import analysis.normed.group.infinite_sum import data.nat.choose.sum import group_theory.specific_groups.cyclic import group_theory.order_of_element import analysis.mean_inequalities import analysis.normed_space.banach import topology.algebra.continuous_monoid_hom import linear_algebra.matrix.symmetric import analysis.inner_product_space.spectrum import ring_theory.class_group import ring_theory.dedekind_domain.basic import ring_theory.principal_ideal_domain import model_theory.satisfiability import probability.integration import ring_theory.simple_module import category_theory.preadditive.schur import representation_theory.maschke import topology.paracompact import combinatorics.simple_graph.coloring --Prove that Overflow in Lean mathlib --OUTPUT 1 theorem overflow_add_sub (x y : ℤ) : x + y = x - -y := begin rw [int.add_sub_cancel_left, int.sub_neg_eq_add], --OUTPUT 2 theorem overflow_thm (a b : ℕ) (h : a+b < a) : b = 0 := begin cases h with d hd, have h1 : a + b = a + d, { rw hd }, rw add_comm at h1, rw add_right_cancel at h1, assumption, --OUTPUT 3 theorem overflow_thm (n : ℕ) : n + n = n ↔ n = 0 := begin split, { intro h, have h' : n + n = n + 0, { rw add_zero }, rw h at h', apply add_right_cancel h', }, { intro h, rw h, rw add_zero, }
This refined home in desirable Cow Hollow has a stately façade and shingled roofline that belie the tasteful contemporary style of its spacious multilevel interiors, all recently updated. Spanning four levels and offering five bedrooms, three and a half baths, the home blends San Francisco classicism with modern fixtures and amenities, creating a uniquely appealing home. Upon entering the main level, one immediately appreciates the delicate balance between preserving historical architectural details and creating a contemporary atmosphere. A highlight of the home is the chic living/dining room, which boasts a regal arched entryway, handsome hardwood floors, classical moldings, a wall of windows, and marble fireplace flanked by plentiful built-in bookshelves. Beyond the central gallery landing is the elegant family room, with its hardwood floors and French doors that lead to a private deck, allowing for a great flow between indoor and outdoor living. The adjoining kitchen has been expertly outfitted with white Carrera marble counters, white subway tile backsplash, stainless steel appliances including a 6-burner gas range, white shaker cabinetry, and great storage. The adjacent bay-windowed breakfast area features built-in seating and glorious natural light with direct access through a series of french doors to a private deck, perfect for enjoying meals, coffee, or cocktails alfresco. A powder room is conveniently tucked below the stairs. The third level of the home hosts three bedrooms and two baths, including the spacious master suite. The sophisticated and serene master suite has incredible scale and enjoys a tranquil sitting area nestled in a sun-dappled bay window. En suite is a luxurious bath with a soaking tub, glass-enclosed shower, and dual sinks – all appointed with timeless finishes, including white Carrera marble and subway tiles. A thoughtfully appointed walk-in closet and a series of built-ins complete the master suite. The guest and master bedrooms are separated for privacy by the grand stairway hall and a convenient laundry room. Two restful guest bedrooms share a bath with timeless fixtures. The south bedroom is a stylish space with hardwood floors and a light-filled bay window. The north bedroom enjoys access to the enviable roof terrace, perfect for relaxation with its whimsical astroturf and views of the Golden Gate Bridge. Completing the top floor of the residence is a built-in window bench with serene outlooks. On the entry level of the home, beyond the formal main entry and past the stairway, rests the office. The home office, which could also serve as a family room, is a cool, quiet, stylish space with a bay window and a series of built-ins. A peaceful bedroom with plentiful windows and a nearby bath are secluded on the rear of the home. A discreet rear stairway affords access from the entry level to the breakfast nook above. An additional bedroom, an office/lounge space, and extra storage are located on the home’s lowest level, accessible via the rear stairway. The incredibly private rear garden, accessed from the lower level, is surrounded by mature landscaping, including a wall of hydrangeas, and enjoys a built-in spa and seating bench, creating a serene garden oasis. The garage accommodates two vehicles and includes built-in shelving for storage and direct access into the home. 3041 Divisadero St is located on the western side of Cow Hollow and is perfectly positioned near the restaurants and shops along Chestnut St and the Presidio National Park.
State Before: α : Type u inst✝ : IsEmpty α ⊢ (#α →₀ ℕ) = 1 State After: no goals Tactic: simp
[STATEMENT] lemma parts_analz [simp]: "parts (analz H) = parts H" [PROOF STATE] proof (prove) goal (1 subgoal): 1. parts (analz H) = parts H [PROOF STEP] apply (rule equalityI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. parts (analz H) \<subseteq> parts H 2. parts H \<subseteq> parts (analz H) [PROOF STEP] apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp) [PROOF STATE] proof (prove) goal (1 subgoal): 1. parts H \<subseteq> parts (analz H) [PROOF STEP] apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD]) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
Require Import Coq.Reals.Rdefinitions. Require Import ChargeTactics.Lemmas. Require Import TLA.TLA. Require Import TLA.EnabledLemmas. Require Import TLA.ProofRules. Require Import Examples.System2. Require Import Examples.UpperLowerSecond. Require Import Examples.UpperLowerFirst. Local Open Scope string_scope. Local Open Scope HP_scope. Module Type UpperLowerParams. Parameter ub : R. Parameter d : R. Parameter d_gt_0 : (d > 0)%R. Parameter amin : R. Parameter amin_lt_0 : (amin < 0)%R. Parameter ubv : R. Axiom ubv_gt_amin_d : (ubv >= -amin*d)%R. Parameter ub_ubv : (ubv*d + ubv*ubv*(0 - /2)*(/amin) <= ub)%R. End UpperLowerParams. Module UpperLower (Import P : UpperLowerParams). Module Y <: UpperLowerSecondParams. Definition ub := P.ub. Definition d := P.d. Definition d_gt_0 := P.d_gt_0. Definition amin := P.amin. Definition amin_lt_0 := P.amin_lt_0. Definition ubv := P.ubv. Definition ub_ubv := P.ub_ubv. End Y. Module V <: UpperLowerFirstParams. Definition ub := P.ubv. Definition d := P.d. Definition d_gt_0 := P.d_gt_0. End V. Module Position := UpperLowerSecond Y. Module Vel := UpperLowerFirst V. Definition Next : ActionFormula := SysCompose Vel.Next Position.Next. Definition IndInv : StateFormula := Vel.IndInv //\\ Position.IndInv. Lemma Vel_IndInv_Position_Assumption : Vel.IndInv //\\ TimeBound V.d |-- Position.Next_Assumption. Proof. rewrite Vel.IndInv_impl_Inv. unfold Position.Next_Assumption, Vel.Safe, V.ub, Position.Monitor.Next_Assumption, Position.Params.ubv, Y.ubv. rewrite <- Rename_ok by eauto with rw_rename. solve_linear. Qed. Lemma TimedPreserves_Next : |-- TimedPreserves d IndInv Next. Proof with (refine _). unfold IndInv, Next. unfold SysCompose. rewrite SysCompose_simpl. rewrite <- TimedPreserves_And... charge_split. { apply TimedPreserves_intro. rewrite <- Vel.TimedPreserves_Next. charge_tauto. } { apply TimedPreserves_intro. rewrite <- Position.TimedPreserves_Next. rewrite Vel_IndInv_Position_Assumption. charge_tauto. } Qed. Definition Constraint := P.amin <= "a" <= --P.amin. Lemma SysNeverStuck_Discr : |-- Enabled ((0 <= "T"! <= d //\\ Sys_D Next) //\\ next Constraint). Proof. enable_ex_st. pose proof P.amin_lt_0. pose proof P.d_gt_0. pose proof P.ubv_gt_amin_d. unfold Vel.V.ub, Vel.V.d, V.ub, V.d. unfold Position.Params.amin. unfold Y.amin. destruct (RIneq.Rgt_dec (st "y") R0); destruct (RIneq.Rgt_dec (st "v") R0). { exists amin; do 2 eexists; exists d; solve_linear. } { do 3 eexists; exists d; solve_linear. } { do 3 eexists; exists d; solve_linear. } { exists (-amin)%R; do 2 eexists; exists d; solve_linear. } Qed. Theorem SysNeverStuck_Next : |-- SysNeverStuck d IndInv Next. Proof. eapply SysNeverStuck_Sys'; [ refine _ | pose proof d_gt_0 ; solve_linear | | ]. { pose proof SysNeverStuck_Discr. etransitivity; [ apply H; clear H | apply Proper_Enabled_lentails ]. charge_tauto. } { admit. (** Provable, but we won't worry about it *) } Qed. Definition Safe : StateFormula := Vel.Safe //\\ Position.Safe. Lemma IndInv_impl_Safe : IndInv //\\ TimeBound d |-- Safe. Proof with (eauto with rw_rename). charge_split. { rewrite <- Vel.IndInv_impl_Inv. unfold IndInv, TimeBound, V.d. charge_tauto. } { rewrite <- Position.IndInv_impl_Safe. unfold Y.d, IndInv. rewrite <- Vel_IndInv_Position_Assumption. unfold V.d. charge_tauto. } Qed. Lemma UpperLower_safe : |-- (IndInv //\\ TimeBound d) //\\ []Next -->> []Safe. Proof. rewrite <- IndInv_impl_Safe. eapply Inductively.Preserves_Inv. 3: apply TimedPreserves_Next. - compute; tauto. - apply always_tauto. charge_tauto. Qed. End UpperLower.
module Types mutual public export data Val = A String -- atom | L (List Val) -- list | D (List Val) Val -- Dotted List | N Integer -- num | S String -- string | B Bool -- bool | PrimitiveFunc (List Val -> ThrowsError Val) | Func (List String) (Maybe String) (List Val) Env public export data Error = ParserE String | BadSpecialForm String Val | NotFunction String String | NumArgs Integer (List Val) | TypeMismatch String Val | UnboundVar String String public export ThrowsError : Type -> Type ThrowsError = Either Error public export Env : Type Env = List (String, Val) mutual unwordsList : List Val -> String unwordsList = unwords . map showVal p : Maybe String -> String p varargs = case varargs of Nothing => "" Just arg => " . " ++ arg export showVal : Val -> String showVal (A x) = x showVal (L xs) = "(" ++ unwordsList xs ++ ")" showVal (D xs x) = "(" ++ unwordsList xs ++ " . " ++ showVal x ++ ")" showVal (N x) = show x showVal (S x) = "\"" ++ x ++ "\"" showVal (B True) = "#t" showVal (B False) = "#f" showVal (PrimitiveFunc _) = "<primitive>" showVal (Func args varargs body closure) = "(lambda (" ++ (unwords (map show args)) ++ (p varargs) ++ ") ...)" export Show Val where show = showVal export Show Error where show (ParserE e) = "Parse error " ++ e show (UnboundVar m v) = m ++ ": " ++ v show (BadSpecialForm s v) = s ++ " : " ++ show v show (NotFunction s f) = s ++ " : " ++ show f show (NumArgs e f) = "Expected " ++ show e ++ " args; found " ++ (show $ length f) show (TypeMismatch e f) = "Invalid type: expected " ++ e ++ ", found " ++ show f show _ = "Error!!!"
lemma prime_int_iff': "prime (p :: int) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> {2..<p}. \<not> n dvd p)" (is "?P \<longleftrightarrow> ?Q")
#ミラーの指定 options(repos="http://cran.ism.ac.jp/")#東京の統計数理研究所 # パッケージのインストール install.packages("partitions",dependencies=TRUE) install.packages("DoE.base",dependencies=TRUE)
#ifndef DIRICHLETSAMPLE_H #define DIRICHLETSAMPLE_H #include <stdio.h> #include <iostream> #include <vector> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include <sys/time.h> using namespace std; std::vector<double> DirSample(std::vector<double> alpha, int k, int N); #endif
Song lyrics by Crystal Pride. Check-out these awesome song lyrics by the artist, learn every word of your favourite song and sing it like Crystal Pride. Get one of the 8 lyrics and watch the video by artist Crystal Pride.
""" bresenhams_line_algorithm(maxx, maxy, x1, y1, x2, y2) maxx, maxy: Integer max values Assuming x1 and x2 are coordinates > 0.5, return integer coordinates between the two coordinates. x1 to y2 may be floats, but this is intended to be 'floating point indexes' in a matrix. Based on https://stackoverflow.com/questions/40273880/draw-a-line-between-two-pixels-on-a-grayscale-image-in-julia Adapted for float input arguments and limit checks. """ function bresenhams_line_algorithm(maxx::T, maxy::T, x1, y1, x2, y2) where {T<:Int} @assert round(Int, x1) <= maxx @assert round(Int, y1) <= maxy @assert round(Int, x1) >= 1 @assert round(Int, y1) >= 1 @assert round(Int, x2) <= maxx @assert round(Int, y2) <= maxy @assert round(Int, x2) >= 1 @assert round(Int, y2) >= 1 # Calculate distances dx = x2 - x1 dy = y2 - y1 # Determine how steep the line is is_steep = abs(dy) > abs(dx) # Rotate line if is_steep x1, y1 = y1, x1 x2, y2 = y2, x2 maxy, maxx = maxx, maxy end # Swap start and end points if necessary and store swap state swapped = if x1 > x2 x1, x2 = x2, x1 y1, y2 = y2, y1 true else false end # Recalculate differentials dx = x2 - x1 dy = y2 - y1 # Calculate error error = round(Int, dx / 2.0) ystep = if y1 < y2 1 else -1 end vy = Vector{Int}() # Iterate while generating points between start and end y = round(Int, y1) xiter = round(Int, x1):(round(Int, x2)) for x in xiter push!(vy, y) error -= abs(dy) if error < 0 y += ystep # edge case, a subpixel line might cover two pixels due to rounding. # However, if that happens to be on the edge, don't bleed over and don't cause an # error throw. if y > maxy || y < 1 y -= ystep error -= dx end error += dx end end # Reverse the list if the coordinates were swapped if swapped if is_steep zip(reverse(vy), reverse(xiter)) else zip(reverse(xiter), reverse(vy)) end else if is_steep zip(vy, xiter) else zip(xiter, vy) end end end """ crossing_line_algorithm(maxx, maxy, cx, cy) maxx, maxy: Integer max values Return indices for pixels in a 10x10 to 11x11 cross centered at cx, cy cx, cy may be floats, but this is intended to be 'floating point indexes' in a matrix. """ function crossing_line_algorithm(maxx::T, maxy::T, cx, cy) where T<:Int indices = Set{Tuple{Int64, Int64}}() d = 5 xb = clamp(cx - d, 1, maxx) xt = clamp(cx + d, 1, maxx) yb = clamp(cy - d, 1, maxy) yt = clamp(cy + d, 1, maxy) lineindices = bresenhams_line_algorithm( maxx, maxy, xt, yb, xb, yt) push!(indices, lineindices...) lineindices = bresenhams_line_algorithm( maxx, maxy, xb, yb, xt, yt) push!(indices, lineindices...) indices end """ box_line_algorithm(maxx, maxy, cx, cy) maxx, maxy: Integer max values Return indices for pixels in a 10x10 to 11x11 cross centered at cx, cy cx, cy may be floats, but this is intended to be 'floating point indexes' in a matrix. """ function box_line_algorithm(maxx::T, maxy::T, cx, cy) where T<:Int indices = Set{Tuple{Int64, Int64}}() d = 5 xb = clamp(cx - d, 1, maxx) xt = clamp(cx + d, 1, maxx) yb = clamp(cy - d, 1, maxy) yt = clamp(cy + d, 1, maxy) lineindices = bresenhams_line_algorithm( maxx, maxy, xt, yb, xb, yb) push!(indices, lineindices...) lineindices = bresenhams_line_algorithm( maxx, maxy, xt, yt, xb, yt) push!(indices, lineindices...) lineindices = bresenhams_line_algorithm( maxx, maxy, xt, yb, xt, yt) push!(indices, lineindices...) lineindices = bresenhams_line_algorithm( maxx, maxy, xb, yb, xb, yt) push!(indices, lineindices...) indices end """ circle_algorithm(maxx, maxy, cx, cy) maxx, maxy: Integer max values Return indices for pixels in a 10 pixel diameter circle centered at cx, cy cx, cy may be floats, but this is intended to be 'floating point indexes' in a matrix. """ function circle_algorithm(maxx::T, maxy::T, cx, cy) where T<:Int indices = Set{Tuple{Int64, Int64}}() d = 10 pts = 2 * round(Int, π * d) for ϕ in range(0.0, 2π, length = pts) x = clamp(round(Int, cx + d * cos(ϕ) / 2), 1, maxx) y = clamp(round(Int, cy + d * cos(ϕ) / 2), 1, maxy) push!(indices, (x, y)) end indices end
theory clique imports Main begin text \<open>Formalise the polynomial-time reduction between vertex cover, clique and independent set\<close> section \<open>definitions\<close> type_synonym 'a graph = "'a set \<times> ('a set set)" definition invar :: "'a graph => bool" where "invar g = ( let (V, E) = g in (\<forall>s \<in> E. (\<forall>x \<in> s. x \<in> V) \<and> card s = 2) )" fun vertex_cover :: "'a graph => 'a set => bool" where "vertex_cover g s = ( let (_, E) = g in (\<forall>s1 \<in> E. \<exists>x \<in> s1. x \<in> s) )" fun clique :: "'a graph => 'a set => bool" where "clique g s = ( let (_, E) = g in (\<forall>a \<in> s. \<forall> b \<in> s. a \<noteq> b \<longrightarrow> {a, b} \<in> E) )" fun vc_to_clique :: "'a graph => 'a graph" where "vc_to_clique g = ( let (V, E) = g in (V, {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b}) )" fun T_vc_to_clique :: "'a graph => nat" where "T_vc_to_clique (V, E) = card {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b}" section \<open>proofs of invariant, correctness and polynomial time\<close> theorem invar_vc_to_clique : "invar (V, E) \<Longrightarrow> invar (vc_to_clique (V, E))" by (auto simp add: invar_def) theorem vc_clique_correct: assumes "invar (V, E)" shows "clique (vc_to_clique (V, E)) (V - s) = vertex_cover (V, E) s" proof have 1:"\<forall>a. {a} \<notin> E" using assms invar_def by force from assms have prems: "\<forall>s \<in> E. (\<forall>x \<in> s. x \<in> V)" "\<forall>s \<in> E. \<exists>a \<in> V. \<exists> b \<in> V. s = {a, b}" apply (auto simp: invar_def) by (metis card_2_iff insert_iff) assume "clique (vc_to_clique (V, E)) (V - s)" hence "\<forall>a \<in> V-s. \<forall>b \<in> V-s. a \<noteq> b \<longrightarrow> {a, b} \<in> {s. \<exists>a\<in>V. \<exists>b\<in>V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b}" by simp hence "\<forall>a \<in> V-s. \<forall>b \<in> V-s. a \<noteq> b \<longrightarrow> {a, b} \<notin> E" by auto hence "\<forall>a \<in> V-s. \<forall>b \<in> V-s. {a, b} \<notin> E" using 1 by force hence "\<forall>s1 \<in> E. \<exists>a b. s1 = {a, b} \<and> (a \<notin> V-s \<or> b \<notin> V-s)" using prems(2) doubleton_eq_iff by fast hence "\<forall>s1 \<in> E. \<exists>a \<in> s1. a \<notin> V-s" by auto hence "\<forall>s1 \<in> E. \<exists>a \<in> s1. a \<in> s" using prems(1) by simp thus "vertex_cover (V, E) s" by simp next assume "vertex_cover (V, E) s" hence "\<forall>s1 \<in> E. \<exists>a \<in> s1. a \<in> s" by simp hence "\<forall>s1 \<in> E. \<exists>a \<in> s1. a \<notin> V-s" by auto hence "\<forall>a \<in>V-s. \<forall>b \<in>V-s. a \<noteq> b \<longrightarrow> {a, b} \<notin> E" by fast thus "clique (vc_to_clique (V, E)) (V - s)" by auto qed lemma aux0 : assumes "finite A" "x \<in> A" shows "card {s. \<exists>a\<in>A. s={x, a} \<and> a \<noteq> x} = card A - 1" using assms proof (induction A rule: remove_induct) case empty then show ?case by simp next case infinite then show ?case by simp next case (remove A) hence 0:"\<forall>y \<in> A - {x}. card {s. \<exists>a\<in>A - {y}. s = {x, a} \<and> a \<noteq> x} = card (A - {y}) - 1" by auto have "\<forall>y \<in> A - {x}. {s. \<exists>a\<in>A. s = {x, a} \<and> a \<noteq> x} = insert {x, y} {s. \<exists>a\<in>A - {y}. s = {x, a} \<and> a \<noteq> x}" by auto moreover have "\<forall>y \<in> A - {x}. {x, y} \<notin> {s. \<exists>a\<in>A - {y}. s = {x, a} \<and> a \<noteq> x}" by auto ultimately have 1:"\<forall>y \<in> A - {x}. card {s. \<exists>a\<in>A. s = {x, a} \<and> a \<noteq> x} = card {s. \<exists>a\<in>A - {y}. s = {x, a} \<and> a \<noteq> x} + 1" using remove by simp from 0 1 have "\<forall>y \<in> A - {x}. card {s. \<exists>a\<in>A. s = {x, a} \<and> a \<noteq> x} = card (A - {y}) - 1 + 1" by simp hence 3: "\<forall>y \<in> A - {x}. card {s. \<exists>a\<in>A. s = {x, a} \<and> a \<noteq> x} = card (A) - 1" by (metis (no_types, lifting) One_nat_def add.right_neutral add_Suc_right card_Diff_singleton card_Suc_Diff1 finite_insert insert_Diff_single insert_iff remove.prems(1) remove.prems(2)) from 3 show ?case apply auto by (metis card_le_Suc0_iff_eq remove.prems(1)) qed lemma aux: assumes "finite V" shows "card {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> a \<noteq> b} = card V * (card V - 1) div 2" using assms proof (induction V rule: finite_remove_induct) case empty then show ?case by auto next case (remove A) have "\<forall>x \<in> A. {s. \<exists>a\<in>A - {x}. \<exists>b\<in>A - {x}. s = {a, b} \<and> a \<noteq> b} = {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} - {s. \<exists>a\<in>A. s={x, a} \<and> a \<noteq> x}" by auto hence "\<forall>x \<in> A. {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} = {s. \<exists>a\<in>A - {x}. \<exists>b\<in>A - {x}. s = {a, b} \<and> a \<noteq> b} \<union> {s. \<exists>a\<in>A. s={x, a} \<and> a \<noteq> x}" by auto moreover have "\<forall>x \<in> A. finite {s. \<exists>a\<in>A - {x}. \<exists>b\<in>A - {x}. s = {a, b} \<and> a \<noteq> b}" using remove by simp moreover have "\<forall>x \<in> A. finite {s. \<exists>a\<in>A. s={x, a} \<and> a \<noteq> x}" using remove by simp moreover have "\<forall>x \<in> A. {s. \<exists>a\<in>A - {x}. \<exists>b\<in>A - {x}. s = {a, b} \<and> a \<noteq> b} \<inter> {s. \<exists>a\<in>A. s={x, a} \<and> a \<noteq> x} = {}" by auto ultimately have "\<forall>x \<in> A. card {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} = card {s. \<exists>a\<in>A - {x}. \<exists>b\<in>A - {x}. s = {a, b} \<and> a \<noteq> b} + card {s. \<exists>a\<in>A. s={x, a} \<and> a \<noteq> x}" using card_Un_disjoint by fastforce hence "\<forall>x \<in> A. card {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} = card (A - {x}) * (card (A - {x}) - 1) div 2 + (card A - 1)" using aux0 remove by fastforce hence "\<forall>x \<in> A. card {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} = (card A - 1) * (card A - 2) div 2 + (card A - 1)" by (metis (no_types, lifting) card_Diff_singleton diff_diff_left nat_1_add_1) hence "\<forall>x \<in> A. card {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} = ((card A - 1) * (card A - 2) + (card A - 1) * 2) div 2" by simp hence "\<forall>x \<in> A. card {s. \<exists>a\<in>A. \<exists>b\<in>A. s = {a, b} \<and> a \<noteq> b} = card A * (card A - 1) div 2" by (metis (no_types, lifting) One_nat_def cancel_comm_monoid_add_class.diff_cancel card_0_eq distrib_left le_add_diff_inverse2 less_Suc0 less_Suc_eq linorder_not_less mult.commute mult_zero_right one_add_one plus_1_eq_Suc remove.hyps(1) remove.hyps(2)) then show ?case by auto qed theorem vc_to_clique_polynomial : "\<lbrakk>invar (V, E); finite E; finite V\<rbrakk> \<Longrightarrow> T_vc_to_clique (V, E) = card V * (card V -1) div 2 - card E" proof- assume assms: "invar (V, E)" "finite E" "finite V" hence "\<forall>s \<in> E. \<exists>a \<in> V. \<exists> b \<in> V. s = {a, b} \<and> a \<noteq> b" apply (auto simp add: invar_def) by (metis card_2_iff insert_iff) hence 1: "E \<subseteq> {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> a \<noteq> b}" by auto have "{s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b} = {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> a \<noteq> b} - E" by auto from card_Diff_subset[OF assms(2) 1] this have "card {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b} = card {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> a \<noteq> b} - card E" by argo also have "... = card V * (card V - 1) div 2 - card E" by (auto simp add: aux[OF assms(3)]) finally show ?thesis by simp qed section \<open>independent set\<close> fun independent_set :: "'a graph => 'a set => bool" where "independent_set g s = ( let (V, E) = g in (\<forall>a \<in>s. \<forall>b \<in>s. a \<noteq> b \<longrightarrow> {a, b} \<notin> E) )" text \<open>constant reduction from independet set to vertex cover\<close> fun is_to_vc :: "'a graph => 'a graph" where "is_to_vc g = g" fun T_is_to_vc :: "'a graph => nat" where "T_is_to_vc _ = 1" theorem is_to_vc_correct: assumes "invar (V, E)" shows "independent_set (V, E) s = vertex_cover (is_to_vc (V, E)) (V-s)" proof from assms have prems: "\<forall>s \<in> E. (\<forall>x \<in> s. x \<in> V)" "\<forall>s \<in> E. \<exists>a \<in> V. \<exists> b \<in> V. s = {a, b}" apply (auto simp: invar_def) by (metis card_2_iff insert_iff) assume "independent_set (V, E) s" hence "\<forall>a \<in>s. \<forall>b \<in>s. a \<noteq> b \<longrightarrow> {a, b} \<notin> E" by simp hence "(\<forall>a \<in>s. \<forall>b \<in>s. {a, b} \<notin> E)" using assms by (force simp add: invar_def) hence "\<forall>s1 \<in>E. \<exists>a b. s1 = {a, b} \<and> (a \<notin> s \<or> b \<notin> s)" using prems(2) by metis hence "\<forall>s1 \<in>E. \<exists>a \<in>s1. a\<notin>s" by auto hence "\<forall>s1 \<in>E. \<exists>a \<in>s1. a \<in> V-s" using prems(1) by simp then show "vertex_cover (is_to_vc (V, E)) (V-s)" by simp next assume "vertex_cover (is_to_vc (V, E)) (V-s)" hence "\<forall>s1 \<in>E. \<exists>a \<in>s1. a \<in>V-s" by simp hence "\<forall>s1 \<in>E. \<exists>a \<in>s1. a \<in> V-s" by auto hence "\<forall>a \<in>s. \<forall>b \<in>s. a \<noteq> b \<longrightarrow> {a, b} \<notin> E" by fastforce then show "independent_set (V, E) s" by simp qed theorem is_to_vc_polynomial: "T_is_to_vc g = 1" by simp text \<open>reduction from clique to independent set\<close> fun clique_to_is :: "'a graph => 'a graph" where "clique_to_is g = ( let (V, E) = g in (V, {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b}) )" fun T_clique_to_is :: "'a graph => nat" where "T_clique_to_is (V, E) = card {s. \<exists>a \<in> V. \<exists>b \<in> V. s = {a, b} \<and> s \<notin> E \<and> a \<noteq> b}" theorem clique_to_is_correct : assumes "invar (V, E)" "s \<subseteq> V" shows "clique (V, E) s = independent_set (clique_to_is (V, E)) s" using assms apply (auto simp add: invar_def) apply metis by blast theorem clique_to_is_polynomial : "\<lbrakk>invar (V, E); finite E; finite v\<rbrakk> \<Longrightarrow> T_clique_to_is (V, E) = card V * (card V -1) div 2 - card E" using vc_to_clique_polynomial by auto theorem threeway_reduction_correct: assumes "invar (V, E)" "s \<subseteq> V" shows "clique (V, E) s = vertex_cover (is_to_vc (clique_to_is (V, E))) (V - s)" proof- have "clique (V, E) s = independent_set (clique_to_is (V, E)) s" using clique_to_is_correct assms by blast also have "... = vertex_cover (is_to_vc (clique_to_is (V, E))) (V - s)" using is_to_vc_correct assms by (metis (mono_tags, lifting) clique_to_is.elims invar_vc_to_clique prod.simps(2) vc_to_clique.simps) finally show ?thesis by simp qed end
# Built-in Binomial(5, 3); # 10
import tactic -- hide open function nat -- hide /- ## More on `apply` In the following example, `h` can be seen as a map $$h : \mathbb{N} \rightarrow \\{\text{proofs}\\}$$ which gives, for each natural number $x$, a proof of the fact that this particular $x$ satisfies $0 \leq x^2$. This is why `apply` will work in the following example. *Lean* is smart enough to figure out which value of $x$ needs to be plugged in to match the conclusion of `h` with the goal. -/ /- Symbol: ≤ : \leq -/ /- Lemma : no-side-bar If for all x we know $0 ≤ x^2$, then $0 ≤ 3^2$. -/ lemma l6 (h : ∀ x, 0 ≤ x^2) : 0 ≤ 3^2:= begin apply h, end
(* Exercise 2: Definiți o funcție de egalitate peste acest tip de date. *) (* Define the 'Day' data type. *) Inductive Day := | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday. (* Define the 'equality' function. *) Definition equality (firstDay secondDay : Day) : bool := match firstDay, secondDay with | Monday, Monday => true | Tuesday, Tuesday => true | Wednesday, Wednesday => true | Thursday, Thursday => true | Friday, Friday => true | Saturday, Saturday => true | Sunday, Sunday => true | _, _ => false end. (* Test the 'equality' function. *) Compute equality Monday Monday. Compute equality Tuesday Tuesday. Compute equality Wednesday Wednesday. Compute equality Thursday Thursday. Compute equality Friday Friday. Compute equality Saturday Saturday. Compute equality Sunday Sunday. Compute equality Monday Friday. Compute equality Thursday Sunday. Compute equality Tuesday Sunday. Compute equality Thursday Monday. Compute equality Friday Saturday.
-- Infinite series of analytic functions import analysis.analytic.basic import data.complex.basic import data.real.basic import data.real.ennreal import data.real.nnreal import data.real.pi.bounds import data.set.basic import topology.metric_space.basic import topology.uniform_space.uniform_convergence import topology.algebra.infinite_sum import analytic import bounds import simple import tactics import uniform open complex (abs) open filter (at_top) open metric (ball closed_ball sphere) open_locale real nnreal ennreal topological_space noncomputable theory -- Summability restricted to sets def summable_on (f : ℕ → ℂ → ℂ) (s : set ℂ) := ∀ z, z ∈ s → summable (λ n, f n z) def has_sum_on (f : ℕ → ℂ → ℂ) (g : ℂ → ℂ) (s : set ℂ) := ∀ z, z ∈ s → has_sum (λ n, f n z) (g z) noncomputable def tsum_on (f : ℕ → ℂ → ℂ) := λ z, tsum (λ n, f n z) def has_uniform_sum (f : ℕ → ℂ → ℂ) (g : ℂ → ℂ) (s : set ℂ) := tendsto_uniformly_on (λ (N : finset ℕ) z, N.sum (λ n, f n z)) g at_top s -- Uniform vanishing means late sums are uniformly small def uniform_vanishing (f : ℕ → ℂ → ℂ) (s : set ℂ) := ∀ e : ℝ, e > 0 → ∃ n : ℕ, ∀ (N : finset ℕ) z, late N n → z ∈ s → N.sum (λ n, abs (f n z)) < e lemma uniform_vanishing_to_summable {f : ℕ → ℂ → ℂ} {s : set ℂ} {z : ℂ} (zs : z ∈ s) (h : uniform_vanishing f s) : summable (λ n, f n z) := begin rw [summable_iff_cauchy_seq_finset, metric.cauchy_seq_iff], intros e ep, rcases h e ep with ⟨m,hm⟩, existsi finset.range m, intros A HA B HB, calc dist (A.sum (λ n, f n z)) (B.sum (λ n, f n z)) ≤ (A ∆ B).sum (λ n, abs (f n z)) : symm_diff_bound _ _ _ ... < e : hm (A ∆ B) z (symm_diff_late HA HB) zs end lemma uniform_vanishing_to_uniform_cauchy_series {f : ℕ → ℂ → ℂ} {s : set ℂ} (h : uniform_vanishing f s) : uniform_cauchy_seq_on (λ (N : finset ℕ) z, N.sum (λ n, f n z)) at_top s := begin rw metric.uniform_cauchy_seq_on_iff, intros e ep, rcases h e ep with ⟨m,hm⟩, existsi finset.range m, intros A HA B HB z zs, calc dist (A.sum (λ n, f n z)) (B.sum (λ n, f n z)) ≤ (A ∆ B).sum (λ n, abs (f n z)) : symm_diff_bound _ _ _ ... < e : hm (A ∆ B) z (symm_diff_late HA HB) zs end lemma uniform_vanishing_to_tendsto_uniformly_on {f : ℕ → ℂ → ℂ} {s : set ℂ} (h : uniform_vanishing f s) : has_uniform_sum f (tsum_on f) s := begin rw [has_uniform_sum, metric.tendsto_uniformly_on_iff], intros e ep, rcases h (e/4) (by bound) with ⟨m,hm⟩, rw filter.eventually_at_top, existsi finset.range m, intros N Nm z zs, rw tsum_on, simp, generalize G : tsum (λ n, f n z) = g, have S : summable (λ n, f n z) := uniform_vanishing_to_summable zs h, have GS : has_sum (λ n, f n z) g, { rw ←G, exact summable.has_sum S }, clear S, rw has_sum at GS, rw metric.tendsto_at_top at GS, rcases GS (e/4) (by bound) with ⟨M,HM⟩, clear GS G h, set A := N ∪ (M \ N), have AM : M ⊆ A := simple.subset_union_sdiff _ _, simp at HM, specialize HM A AM, rw dist_comm at HM, calc dist g (N.sum (λ n, f n z)) ≤ dist g (A.sum (λ n, f n z)) + dist (A.sum (λ n, f n z)) (N.sum (λ n, f n z)) : by bound ... ≤ e/4 + dist (A.sum (λ n, f n z)) (N.sum (λ n, f n z)) : by bound ... = e/4 + dist (N.sum (λ n, f n z) + (M \ N).sum (λ n, f n z)) (N.sum (λ n, f n z)) : by rw finset.sum_union finset.disjoint_sdiff ... = e/4 + abs (N.sum (λ n, f n z) + (M \ N).sum (λ n, f n z) - N.sum (λ n, f n z)) : by rw complex.dist_eq ... = e/4 + abs ((M \ N).sum (λ n, f n z)) : by ring_nf ... ≤ e/4 + (M \ N).sum (λ n, abs (f n z)) : by bound [simple.finset_complex_abs_sum_le (M \ N) (λ n, f n z)] ... ≤ e/4 + e/4 : by bound [hm (M \ N) z (sdiff_late M Nm) zs] ... = e/2 : by ring ... < e : by bound end -- Geometric bounds with c ≤ 0 are degenerate lemma c_nonpos.degenerate {f : ℕ → ℂ → ℂ} {s : set ℂ} {c a : ℝ} (c0 : c ≤ 0) (a0 : 0 ≤ a) (hf : ∀ n z, z ∈ s → abs (f n z) ≤ c * a^n) : ∀ n z, z ∈ s → f n z = 0 := begin intros n z zs, specialize hf n z zs, have ca : c * a^n ≤ 0 := mul_nonpos_iff.mpr (or.inr ⟨c0, by bound⟩), exact complex.abs_eq_zero.mp (le_antisymm (trans hf ca) (complex.abs_nonneg _)) end -- Uniformly exponentially converging series converge uniformly. theorem fast_series_converge_uniformly_on {f : ℕ → ℂ → ℂ} {s : set ℂ} {c a : ℝ} (a0 : 0 ≤ a) (a1 : a < 1) (hf : ∀ n z, z ∈ s → abs (f n z) ≤ c * a^n) : has_uniform_sum f (tsum_on f) s := begin by_cases c0 : c ≤ 0, { have fz := c_nonpos.degenerate c0 a0 hf, simp at fz, rw [has_uniform_sum, metric.tendsto_uniformly_on_iff], intros e ep, apply filter.eventually_of_forall, intros n z zs, rw tsum_on, simp, simp_rw fz _ z zs, simp, assumption }, { simp at c0, apply uniform_vanishing_to_tendsto_uniformly_on, -- ∀ e : ℝ, e > 0 → ∃ n : ℕ, ∀ (N : finset ℕ) z, late N n → z ∈ s → N.sum (λ n, abs (f n z)) < e intros e ep, set t := (1-↑a)/↑c*(e/2), have tp : t > 0 := by bound, rcases exists_pow_lt_of_lt_one tp a1 with ⟨n,nt⟩, existsi n, intros N z NL zs, have a1p : 1 - (a : ℝ) > 0 := by bound, calc N.sum (λ n, abs (f n z)) ≤ N.sum (λ n, c * a^n) : finset.sum_le_sum (λ n _, hf n z zs) ... = c * N.sum (λ n, a^n) : finset.mul_sum.symm ... ≤ c * (a^n * (1 - a)⁻¹) : by bound [late_geometric_bound _ (by bound) a1] ... = a^n * (c * (1 - a)⁻¹) : by ring ... ≤ t * (c * (1 - a)⁻¹) : by bound ... = (1 - a) / c * (e / 2) * (c * (1 - a)⁻¹) : rfl ... = (1 - a) * (1 - a)⁻¹ * (c / c) * (e / 2) : by ring ... = 1 * 1 * (e / 2) : by rw [field.mul_inv_cancel (ne_of_gt a1p), simple.div_self (ne_of_gt c0)] ... = e / 2 : by ring ... < e : by bound } end -- Exponentially converging series converge. theorem fast_series_converge_at {f : ℕ → ℂ} {c a : ℝ} (a0 : 0 ≤ a) (a1 : a < 1) (hf : ∀ n, abs (f n) ≤ c * a^n) : summable f := begin set s : set ℂ := {0}, set g : ℕ → ℂ → ℂ := λ n _, f n, have hg : ∀ n z, z ∈ s → abs (g n z) ≤ c * a^n := λ n z zs, hf n, have u := fast_series_converge_uniformly_on a0 a1 hg, simp at u, rw has_uniform_sum at u, rw tendsto_uniformly_on_singleton_iff_tendsto at u, apply has_sum.summable, assumption end -- Finite sums of analytic functions are analytic lemma finite_sums_are_analytic {f : ℕ → ℂ → ℂ} {s : set ℂ} (h : ∀ n, analytic_on ℂ (f n) s) (N : finset ℕ) : analytic_on ℂ (λ z, N.sum (λ n, f n z)) s := begin induction N using finset.induction with a B aB hB, { simp, intros z zs, exact entire.zero z }, { intros z zs, simp_rw finset.sum_insert aB, apply analytic_at.add, exact h a z zs, exact hB z zs } end -- Analytic series that converge exponentially converge to analytic functions. theorem fast_series_converge {f : ℕ → ℂ → ℂ} {s : set ℂ} {c a : ℝ} (o : is_open s) (a0 : 0 ≤ a) (a1 : a < 1) (h : ∀ n, analytic_on ℂ (f n) s) (hf : ∀ n z, z ∈ s → abs (f n z) ≤ c * a^n) : ∃ (g : ℂ → ℂ), analytic_on ℂ g s ∧ has_sum_on f g s := begin set g := tsum_on f, existsi g, have su : has_uniform_sum f g s := fast_series_converge_uniformly_on a0 a1 hf, constructor, { refine uniform_analytic_lim o _ su, exact finite_sums_are_analytic h }, { intros z zs, exact summable.has_sum (fast_series_converge_at a0 a1 (λ n, hf n z zs)) } end
theory Chapter12_4 imports "HOL-IMP.VCG" "HOL-IMP.Hoare_Examples" begin text \<open> \exercise Let @{term "asum i"} be the annotated command \texttt{y := 0; W} where \texttt{W} is defined in Example~12.7. Prove \<close> definition asum :: "int \<Rightarrow> acom"where "asum i = ''y'' ::= (N 0);; {\<lambda>s. s ''y'' + sum (s ''x'') = sum i} WHILE Less (N 0) (V ''x'') DO (''y'' ::= Plus (V ''y'') (V ''x'');; ''x'' ::= Plus (V ''x'') (N (-1)))" lemma "\<turnstile> {\<lambda>s. s ''x'' = i} strip(asum i) {\<lambda>s. s ''y'' = sum i}" unfolding asum_def by (rule vc_sound', auto) text \<open> with the help of corollary @{thm[source] vc_sound'}. \endexercise \exercise Solve exercises \ref{exe:Hoare:sumeq} to \ref{exe:Hoare:sqrt} using the VCG: for every Hoare triple @{prop"\<turnstile> {P} c {Q}"} from one of those exercises define an annotated version @{text C} of @{text c} and prove @{prop"\<turnstile> {P} strip C {Q}"} with the help of %Corollary~\ref{cor:vc_sound} corollary @{thm[source] vc_sound'}. \<close> definition Eq :: "aexp \<Rightarrow> aexp \<Rightarrow> bexp" where "Eq a1 a2 = (And (Not (Less a1 a2)) (Not (Less a2 a1)))" lemma bval_Eq[simp]: "bval (Eq a1 a2) s = (aval a1 s = aval a2 s)" unfolding Eq_def by auto lemma "\<turnstile> {\<lambda>s. s ''x'' = i \<and> 0 \<le> i} strip ( ''y'' ::= N 0;; {\<lambda>s. s ''y'' = sum i - sum (s ''x'') \<and> 0 \<le> s ''x''} WHILE Not(Eq (V ''x'') (N 0)) DO (''y'' ::= Plus (V ''y'') (V ''x'');; ''x'' ::= Plus (V ''x'') (N (-1)))) {\<lambda>s. s ''y'' = sum i}" by (rule vc_sound', auto) lemma "\<turnstile> {\<lambda>s. s ''x'' = x \<and> s ''y'' = y \<and> 0 \<le> x} strip ( {\<lambda>s. s ''y'' - s ''x'' = y - x \<and> 0 \<le> s ''x''} WHILE Less (N 0) (V ''x'') DO (''x'' ::= Plus (V ''x'') (N (-1));; ''y'' ::= Plus (V ''y'') (N (-1)))) {\<lambda>t. t ''y'' = y - x}" by (rule vc_sound', auto) abbreviation cmult :: com where "cmult \<equiv> ''z'' ::= N 0;; WHILE Less (N 0) (V ''y'') DO (''y'' ::= (Plus (V ''y'') (N (-1)));; ''z'' ::= (Plus (V ''z'') (V ''x'')))" lemma "\<turnstile> {\<lambda>s. s ''x'' = x \<and> s ''y'' = y \<and> 0 \<le> y} strip ( ''z'' ::= N 0;; {\<lambda>s. s ''x'' = x \<and> s ''z'' = s ''x'' * (y - s ''y'') \<and> 0 \<le> s ''y''} WHILE Less (N 0) (V ''y'') DO (''y'' ::= (Plus (V ''y'') (N (-1)));; ''z'' ::= (Plus (V ''z'') (V ''x'')))) {\<lambda>t. t ''z'' = x*y}" by (rule vc_sound', auto simp add: algebra_simps) lemma "\<turnstile> { \<lambda>s. s ''x'' = i \<and> 0 \<le> i} strip ( ''r'' ::= N 0;; ''r2'' ::= N 1;; {\<lambda>s. s ''x'' = i \<and> (s ''r'')\<^sup>2 \<le> s ''x'' \<and> s ''r2'' = (s ''r'' + 1)\<^sup>2} WHILE (Not (Less (V ''x'') (V ''r2''))) DO (''r'' ::= Plus (V ''r'') (N 1);; ''r2'' ::= Plus (V ''r2'') (Plus (Plus (V ''r'') (V ''r'')) (N 1)))) {\<lambda>s. (s ''r'')^2 \<le> i \<and> i < (s ''r'' + 1)^2}" proof (rule vc_sound', auto simp add: algebra_simps) fix s :: state have "\<And>x::int. 3 + (2 * x + (1 + x)\<^sup>2) = (2 + x)\<^sup>2" proof - fix x :: int have "(1 + x)\<^sup>2 = x\<^sup>2 + 2 * x + 1" by (simp add: power2_sum) then have "3 + (2 * x + (1 + x)\<^sup>2) = 3 + (2 * x + (x\<^sup>2 + 2 * x + 1))" by simp also have "\<dots> = 4 + 4 * x + x\<^sup>2" by simp also have "\<dots> = (2 + x)\<^sup>2" by (simp add: power2_sum) finally show "3 + (2 * x + (1 + x)\<^sup>2) = (2 + x)\<^sup>2" . qed then show "3 + (2 * s ''r'' + (1 + s ''r'')\<^sup>2) = (2 + s ''r'')\<^sup>2" by simp qed text \<open> \endexercise \exercise Having two separate functions @{const pre} and @{const vc} is inefficient. When computing @{const vc} one often needs to compute @{const pre} too, leading to multiple traversals of many subcommands. Define an optimised function \<close> fun prevc :: "acom \<Rightarrow> assn \<Rightarrow> assn \<times> bool" where "prevc SKIP Q = (Q, True)" | "prevc (x ::= a) Q = (\<lambda>s. Q(s(x := aval a s)), True)" | "prevc (C\<^sub>1;; C\<^sub>2) Q = (\<lambda>(P', S'). (\<lambda>(P, S). (P, S \<and> S')) (prevc C\<^sub>1 P')) (prevc C\<^sub>2 Q)" | "prevc (IF b THEN C\<^sub>1 ELSE C\<^sub>2) Q = (\<lambda>(P\<^sub>1, S\<^sub>1). (\<lambda>(P\<^sub>2, S\<^sub>2). (\<lambda>s. if bval b s then P\<^sub>1 s else P\<^sub>2 s, S\<^sub>1 \<and> S\<^sub>2) ) (prevc C\<^sub>2 Q)) (prevc C\<^sub>1 Q)" | "prevc ({I} WHILE b DO C) Q = (\<lambda>(P, S). (I, (\<forall>s. (I s \<and> bval b s \<longrightarrow> P s) \<and> (I s \<and> \<not> bval b s \<longrightarrow> Q s)) \<and> S)) (prevc C I)" text \<open> that traverses the command only once. Prove \<close> lemma "prevc C Q = (pre C Q, vc C Q)" by (induct C arbitrary: Q) auto text \<open> \endexercise \exercise Design a VCG that computes post rather than preconditions. Start by solving Exercise~\ref{exe:fwdassign}. Now modify theory @{short_theory "VCG"} as follows. Instead of @{const pre} define a function \<close> fun post :: "acom \<Rightarrow> assn \<Rightarrow> assn" where "post SKIP P = P" | "post (x ::= a) P = (\<lambda>s. \<exists> x'. P (s(x := x')) \<and> s x = aval a (s(x := x')))" | "post (C\<^sub>1;; C\<^sub>2) P = post C\<^sub>2 (post C\<^sub>1 P)" | "post (IF b THEN C\<^sub>1 ELSE C\<^sub>2) P = (\<lambda>t. post C\<^sub>1 (\<lambda>s. P s \<and> bval b s) t \<or> post C\<^sub>2 (\<lambda>s. P s \<and> \<not>bval b s) t)" | "post ({I} WHILE b DO c) P = (\<lambda>s. I s \<and> \<not>bval b s)" text \<open> such that (with the execption of loops) @{term "post C P"} is the strongest postcondition of @{text C} w.r.t.\ the precondition @{text P} (see also Exercise~\ref{exe:sp}). Now modify @{const vc} such that is uses @{const post} instead of @{const pre} and prove its soundness and completeness. \<close> fun vc :: "acom \<Rightarrow> assn \<Rightarrow> bool" where "vc SKIP P = True" | "vc (x ::= a) P = True" | "vc (C\<^sub>1;; C\<^sub>2) P \<longleftrightarrow> vc C\<^sub>1 P \<and> vc C\<^sub>2 (post C\<^sub>1 P)" | "vc (IF b THEN C\<^sub>1 ELSE C\<^sub>2) P \<longleftrightarrow> vc C\<^sub>1 (\<lambda>s. P s \<and> bval b s) \<and> vc C\<^sub>2 (\<lambda>s. P s \<and> \<not>bval b s)" | "vc ({I} WHILE b DO C) P = ((\<forall>s. (post C (\<lambda>s. I s \<and> bval b s) s \<longrightarrow> I s) \<and> (P s \<longrightarrow> I s)) \<and> vc C (\<lambda>s. I s \<and> bval b s))" lemma vc_sound: "vc C P \<Longrightarrow> \<turnstile> {P} strip C {post C P}" proof (induction C arbitrary: P) case (Aassign x x2) show ?case proof (rule strengthen_pre; (simp, rule hoare.Assign)?; simp, intro allI impI) fix s :: state let ?H = "\<lambda>x'. P (s(x := x')) \<and> aval x2 s = aval x2 (s(x := x'))" assume "P s" then have "?H (s x)" by auto from exI [of ?H, OF this] show "\<exists>x'. ?H x'" by simp qed next case (Aif b C1 C2) show ?case by (simp, rule hoare.If; rule weaken_post; (rule Aif(1) | rule Aif(2))?; insert Aif(3)) auto next case (Awhile I b C) let ?c = "strip C" show ?case by (simp, rule strengthen_pre; (rule hoare.While, rule weaken_post; (rule Awhile(1))?)?; insert Awhile(2); auto) qed auto lemma post_mono: "\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> post C P s \<Longrightarrow> post C P' s" proof (induction C arbitrary: P P' s) case (Aassign x1 x2) then show ?case by simp metis next case (Aseq C1 C2) then show ?case by simp metis next case (Aif b C1 C2) let ?PT = "\<lambda>P s. P s \<and> bval b s" let ?PF = "\<lambda>P s. P s \<and> \<not>bval b s" from Aif(3) have HT: "\<forall>s. ?PT P s \<longrightarrow> ?PT P' s" by simp from Aif(3) have HF: "\<forall>s. ?PF P s \<longrightarrow> ?PF P' s" by simp from Aif(4) consider (T) "post C1 (?PT P) s" | (F) "post C2 (?PF P) s" by auto then show ?case proof cases case T from Aif(1) [OF HT T] show ?thesis by simp next case F from Aif(2) [OF HF F] show ?thesis by simp qed qed auto lemma vc_antimono: "\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> vc C P' \<Longrightarrow> vc C P" proof(induct C arbitrary: P P') case (Aseq C1 C2) thus ?case by simp (metis post_mono) next case (Aif b C1 C2) let ?PT = "\<lambda>P s. P s \<and> bval b s" let ?PF = "\<lambda>P s. P s \<and> \<not>bval b s" from Aif(3) have HT: "\<forall>s. ?PT P s \<longrightarrow> ?PT P' s" by simp from Aif(3) have HF: "\<forall>s. ?PF P s \<longrightarrow> ?PF P' s" by simp from Aif(1) [OF HT] Aif(2) [OF HF] Aif(4) show ?case by auto qed simp_all lemma vc_complete: "\<turnstile> {P} c {Q} \<Longrightarrow> \<exists>C. strip C = c \<and> vc C P \<and> (\<forall>s. post C P s \<longrightarrow> Q s)" (is "_ \<Longrightarrow> \<exists>C. ?G P c Q C") proof (induct rule: hoare.induct) case (Skip P) show ?case (is "\<exists>C. ?C C") by (rule exI [of ?C Askip], simp) next case (Assign P a x) show ?case (is "\<exists>C. ?C C") proof (rule exI [of ?C "Aassign x a"], auto) fix s :: state and x' assume "s x = aval a (s(x := x'))" then have "s(x := aval a (s(x := x'))) = s" by auto moreover assume "P (s(x := aval a (s(x := x'))))" ultimately show "P s" by simp qed next case (Seq P c\<^sub>1 Q c\<^sub>2 R) from Seq(4) obtain C\<^sub>2 where IH2: "?G Q c\<^sub>2 R C\<^sub>2" by blast from Seq(2) obtain C\<^sub>1 where IH1: "?G P c\<^sub>1 Q C\<^sub>1" by blast have "?G P (c\<^sub>1;; c\<^sub>2) R (C\<^sub>1;; C\<^sub>2)" proof (intro conjI) from IH1 IH2 show "strip (C\<^sub>1;; C\<^sub>2) = c\<^sub>1;; c\<^sub>2" by auto from IH1 IH2 show "vc (C\<^sub>1;; C\<^sub>2) P" by (fastforce elim!: post_mono vc_antimono) show "\<forall>s. post (C\<^sub>1;; C\<^sub>2) P s \<longrightarrow> R s" proof (intro allI) fix s from IH1 have "post C\<^sub>2 (post C\<^sub>1 P) s \<Longrightarrow> post C\<^sub>2 Q s" by (auto elim!: post_mono) with IH2 show "post (C\<^sub>1;; C\<^sub>2) P s \<longrightarrow> R s" by auto qed qed then show ?case by blast next case (If P b c\<^sub>1 Q c\<^sub>2) from If(2) obtain C\<^sub>1 where IH1: "?G (\<lambda>s. P s \<and> bval b s) c\<^sub>1 Q C\<^sub>1" by blast from If(4) obtain C\<^sub>2 where IH2: "?G (\<lambda>s. P s \<and> \<not>bval b s) c\<^sub>2 Q C\<^sub>2" by blast from IH1 IH2 have "?G P (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q (IF b THEN C\<^sub>1 ELSE C\<^sub>2)" by simp then show ?case by blast next case (While P b c) from While(2) obtain C where IH: "?G (\<lambda>s. P s \<and> bval b s) c P C" by blast then have "?G P (WHILE b DO c) (\<lambda>s. P s \<and> \<not>bval b s) ({P} WHILE b DO C)" by auto then show ?case by blast next case (conseq P' P c Q Q') from conseq(3) obtain C where HC: "strip C = c" "vc C P" "\<forall>s. post C P s \<longrightarrow> Q s" by blast+ from conseq(1) HC(2) have "vc C P'" by (simp add: vc_antimono) moreover from conseq(1, 4) HC(3) have "\<forall>s. post C P' s \<longrightarrow> Q' s" by (simp add: post_mono vc_antimono) ultimately show ?case using HC(1) by auto qed text \<open> \endexercise \<close> end
State Before: α : Type u_1 β : Type ?u.122213 γ : Type ?u.122216 ι : Sort ?u.122219 ι' : Sort ?u.122222 ι₂ : Sort ?u.122225 κ : ι → Sort ?u.122230 κ₁ : ι → Sort ?u.122235 κ₂ : ι → Sort ?u.122240 κ' : ι' → Sort ?u.122245 S : Set (Set α) ⊢ Set.Nonempty (⋃₀ S) ↔ ∃ s, s ∈ S ∧ Set.Nonempty s State After: no goals Tactic: simp [nonempty_iff_ne_empty]
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import data.polynomial.degree.definitions /-! # Cancel the leading terms of two polynomials ## Definition * `cancel_leads p q`: the polynomial formed by multiplying `p` and `q` by monomials so that they have the same leading term, and then subtracting. ## Main Results The degree of `cancel_leads` is less than that of the larger of the two polynomials being cancelled. Thus it is useful for induction or minimal-degree arguments. -/ namespace polynomial noncomputable theory variables {R : Type*} section comm_ring variables [comm_ring R] (p q : polynomial R) /-- `cancel_leads p q` is formed by multiplying `p` and `q` by monomials so that they have the same leading term, and then subtracting. -/ def cancel_leads : polynomial R := C p.leading_coeff * X ^ (p.nat_degree - q.nat_degree) * q - C q.leading_coeff * X ^ (q.nat_degree - p.nat_degree) * p variables {p q} @[simp] lemma neg_cancel_leads : - p.cancel_leads q = q.cancel_leads p := neg_sub _ _ lemma dvd_cancel_leads_of_dvd_of_dvd {r : polynomial R} (pq : p ∣ q) (pr : p ∣ r) : p ∣ q.cancel_leads r := dvd_sub (pr.trans (dvd.intro_left _ rfl)) (pq.trans (dvd.intro_left _ rfl)) end comm_ring lemma nat_degree_cancel_leads_lt_of_nat_degree_le_nat_degree [comm_ring R] [is_domain R] {p q : polynomial R} (h : p.nat_degree ≤ q.nat_degree) (hq : 0 < q.nat_degree) : (p.cancel_leads q).nat_degree < q.nat_degree := begin by_cases hp : p = 0, { convert hq, simp [hp, cancel_leads], }, rw [cancel_leads, sub_eq_add_neg, tsub_eq_zero_iff_le.mpr h, pow_zero, mul_one], by_cases h0 : C p.leading_coeff * q + -(C q.leading_coeff * X ^ (q.nat_degree - p.nat_degree) * p) = 0, { convert hq, simp only [h0, nat_degree_zero], }, have hq0 : ¬ q = 0, { contrapose! hq, simp [hq] }, apply lt_of_le_of_ne, { rw [← with_bot.coe_le_coe, ← degree_eq_nat_degree h0, ← degree_eq_nat_degree hq0], apply le_trans (degree_add_le _ _), rw ← leading_coeff_eq_zero at hp hq0, simp only [max_le_iff, degree_C hp, degree_C hq0, le_refl q.degree, true_and, nat.cast_with_bot, nsmul_one, degree_neg, degree_mul, zero_add, degree_X, degree_pow], rw leading_coeff_eq_zero at hp hq0, rw [degree_eq_nat_degree hp, degree_eq_nat_degree hq0, ← with_bot.coe_add, with_bot.coe_le_coe, tsub_add_cancel_of_le h], }, { contrapose! h0, rw [← leading_coeff_eq_zero, leading_coeff, h0, mul_assoc, mul_comm _ p, ← tsub_add_cancel_of_le h, add_comm _ p.nat_degree], simp only [coeff_mul_X_pow, coeff_neg, coeff_C_mul, add_tsub_cancel_left, coeff_add], rw [add_comm p.nat_degree, tsub_add_cancel_of_le h, ← leading_coeff, ← leading_coeff, mul_comm _ q.leading_coeff, ← sub_eq_add_neg, ← mul_sub, sub_self, mul_zero] } end end polynomial
module SizedIO.coIOIO where open import Size mutual data coIO² (i : Size) (j : Size) (Cin : Set ) (Rin : Cin → Set) (Cext : Set) (Rext : Cext → Set) (A : Set) : Set where return : A → coIO² i j Cin Rin Cext Rext A dof : (i' : Size< i) → (c : Cin) → (Rin c → coIO² i' j Cin Rin Cext Rext A) → coIO² i j Cin Rin Cext Rext A do∞ : (c : Cext) → (Rext c → coIO²∞ j Cin Rin Cext Rext A) → coIO² i j Cin Rin Cext Rext A record coIO²∞ (j : Size) (Cin : Set ) (Rin : Cin → Set) (Cext : Set) (Rext : Cext → Set) (A : Set) : Set where coinductive field force : (j' : Size< j) → coIO² ∞ j' Cin Rin Cext Rext A open coIO²∞ public
theory Chapter12_3 imports "HOL-IMP.Hoare_Sound_Complete" begin text\<open> \exercise Prove \<close> lemma "\<Turnstile> {P} c {Q} \<longleftrightarrow> (\<forall>s. P s \<longrightarrow> wp c Q s)" (* your definition/proof here *) text\<open> \endexercise \begin{exercise} Replace the assignment command with a new command \mbox{@{term"Do f"}} where @{text "f ::"} @{typ "state \<Rightarrow> state"} can be an arbitrary state transformer. Update the big-step semantics, Hoare logic and the soundness and completeness proofs. \end{exercise} \exercise Which of the following rules are correct? Proof or counterexample! \<close> lemma "\<lbrakk>\<turnstile> {P} c {Q}; \<turnstile> {P'} c {Q'}\<rbrakk> \<Longrightarrow> \<turnstile> {\<lambda>s. P s \<or> P' s} c {\<lambda>s. Q s \<or> Q' s}" (* your definition/proof here *) lemma "\<lbrakk>\<turnstile> {P} c {Q}; \<turnstile> {P'} c {Q'}\<rbrakk> \<Longrightarrow> \<turnstile> {\<lambda>s. P s \<and> P' s} c {\<lambda>s. Q s \<and> Q' s}" (* your definition/proof here *) lemma "\<lbrakk>\<turnstile> {P} c {Q}; \<turnstile> {P'} c {Q'}\<rbrakk> \<Longrightarrow> \<turnstile> {\<lambda>s. P s \<longrightarrow> P' s} c {\<lambda>s. Q s \<longrightarrow> Q' s}" (* your definition/proof here *) text\<open> \endexercise \begin{exercise} Based on Exercise~\ref{exe:IMP:OR}, extend Hoare logic and the soundness and completeness proofs with nondeterministic choice. \end{exercise} \begin{exercise} Based on Exercise~\ref{exe:IMP:REPEAT}, extend Hoare logic and the soundness and completeness proofs with a @{text REPEAT} loop. Hint: think of @{text"REPEAT c UNTIL b"} as equivalent to \noquotes{@{term[source]"c;; WHILE Not b DO c"}}. \end{exercise} \exercise\label{exe:sp} The dual of the weakest precondition is the \concept{strongest postcondition} @{text sp}. Define @{text sp} in analogy with @{const wp} via the big-step semantics: \<close> definition sp :: "com \<Rightarrow> assn \<Rightarrow> assn" where (* your definition/proof here *) text\<open> Prove that @{const sp} really is the strongest postcondition: \<close> lemma "(\<Turnstile> {P} c {Q}) \<longleftrightarrow> (\<forall>s. sp c P s \<longrightarrow> Q s)" (* your definition/proof here *) text\<open> In analogy with the derived equations for @{const wp} given in the text, give and prove equations for \<open>\<close>calculating'' @{const sp} for three constructs: @{prop"sp (x ::= a) P = Q\<^sub>1"}, @{prop"sp (c\<^sub>1;;c\<^sub>2) P = Q\<^sub>2"}, and @{prop"sp (IF b THEN c\<^sub>1 ELSE c\<^sub>2) P = Q\<^sub>3"}. The @{text Q\<^sub>i} must not involve the semantics and may only call @{const sp} recursively on the subcommands @{text c\<^sub>i}. Hint: @{text Q\<^sub>1} requires an existential quantifier. \<close> text\<open> \endexercise \<close> end
c----------------------------------------------------------------------------- c c Copyright (c) 2000 - 2014, Lawrence Livermore National Security, LLC c Produced at the Lawrence Livermore National Laboratory c LLNL-CODE-442911 c All rights reserved. c c This file is part of VisIt. For details, see https://visit.llnl.gov/. The c full copyright notice is contained in the file COPYRIGHT located at the root c of the VisIt distribution or at http://www.llnl.gov/visit/copyright.html. c c Redistribution and use in source and binary forms, with or without c modification, are permitted provided that the following conditions are met: c c - Redistributions of source code must retain the above copyright notice, c this list of conditions and the disclaimer below. c - Redistributions in binary form must reproduce the above copyright notice, c this list of conditions and the disclaimer (as noted below) in the c documentation and/or other materials provided with the distribution. c - Neither the name of the LLNS/LLNL nor the names of its contributors may c be used to endorse or promote products derived from this software without c specific prior written permission. c c THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" c AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE c IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE c ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, c LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY c DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL c DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR c SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER c CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT c LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY c OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH c DAMAGE. c c----------------------------------------------------------------------------- program main implicit none include "silo.inc" integer dbfile, ierr c Create the Silo file ierr = dbcreate("fucdvar2d.silo", 14, DB_CLOBBER, DB_LOCAL, . "Unstructured 2D mesh with variable", 34, . DB_HDF5, dbfile) if(dbfile.eq.-1) then write (6,*) 'Could not create Silo file!\n' goto 10000 endif c Add other Silo calls here. call write_ucd2d(dbfile) call write_ucdvars(dbfile) c Close the Silo file. ierr = dbclose(dbfile) 10000 stop end c c *---*---*--* nodes (5,6,7,8) c | |\5/ 3 | c | 1 |4*----* nodes (3,4) c | |/ 2 | c *---*------* nodes(0,1,2) c c cell 1 quad(0,1,6,5) c cell 2 quad(1,2,4,3) c cell 3 quad(3,4,8,7) c cell 4 tri(1,3,6) c cell 5 tri(3,7,6) c subroutine write_ucd2d(dbfile) implicit none integer dbfile include "silo.inc" integer err, ierr, ndims, nshapetypes, nnodes, nzones c Node coordinates real x(9) /0., 2., 5., 3., 5., 0., 2., 4., 5./ real y(9) /0., 0., 0., 3., 3., 5., 5., 5., 5./ c Connectivity integer LNODELIST parameter (LNODELIST = 18) integer nodelist(LNODELIST) /2,4,7, . 4,8,7, . 1,2,7,6, . 2,3,5,4, . 4,5,9,8/ c Shape type 1 has 3 nodes (tri), shape type 2 is quad integer shapesize(2) /3, 4/ c We have 2 tris and 3 quads integer shapecounts(2) /2, 3/ nshapetypes = 2 nnodes = 9 nzones = 5 ndims = 2 c Write out connectivity information. err = dbputzl(dbfile, "zonelist", 8, nzones, ndims, nodelist, . LNODELIST, 1, shapesize, shapecounts, nshapetypes, ierr) c Write an unstructured mesh err = dbputum(dbfile, "mesh", 4, ndims, x, y, DB_F77NULL, . "X", 1, "Y", 1, DB_F77NULL, 0, DB_FLOAT, nnodes, nzones, . "zonelist", 8, DB_F77NULL, 0, DB_F77NULL, ierr) end subroutine write_ucdvars(dbfile) implicit none integer dbfile include "silo.inc" integer err, ierr, NNODES, NZONES, optlistid parameter (NNODES = 9) parameter (NZONES = 5) real nodal(NNODES) /1.,2.,3.,4.,5.,6.,7.,8.,9./ real zonal(NZONES) /1.,2.,3.,4.,5./ err = dbmkoptlist(1, optlistid) err = dbaddcopt(optlistid, DBOPT_UNITS, "g/cc", 4) c Write a zone-centered variable. err = dbputuv1(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES, . DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, optlistid, ierr) err = dbfreeoptlist(optlistid) c Write a node-centered variable. err = dbputuv1(dbfile, "nodal", 5, "mesh", 4, nodal, NNODES, . DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL, ierr) end
* hot_100: https://leetcode-cn.com/problemset/leetcode-hot-100/ leetcode提供的最热100道题,可以快速刷下 * picked_200 : https://leetcode-cn.com/problemset/leetcode-200/ leetcode精选的200道算法题目,大部分都是locked,T_T * 网上找到的一个帖子积累的经典的题目: https://blog.csdn.net/haolexiao/article/details/53487436 * curated list of top 100, 有分类,感觉还不错的 https://h1ros.github.io/posts/coding/leetcode-top-100-problem-selection/ * 网上看到的一些算法题的总结,可以用来思考下: https://wizardforcel.gitbooks.io/the-art-of-programming-by-july/content/02.15.html
{-# LANGUAGE CPP, TypeOperators, TypeFamilies #-} {-# LANGUAGE DeriveFunctor, DeriveDataTypeable #-} {-# OPTIONS_GHC -Wall #-} -- {-# OPTIONS_GHC -fno-warn-unused-imports #-} -- TEMP -- {-# OPTIONS_GHC -fno-warn-unused-binds #-} -- TEMP #define CustomComplex #if !defined CustomComplex {-# OPTIONS_GHC -fno-warn-orphans #-} -- for HasRep #endif ---------------------------------------------------------------------- -- | -- Module : ConCat.Complex -- Copyright : (c) 2015 Conal Elliott and David Banas -- License : BSD3 -- -- Maintainer : [email protected] -- Stability : experimental -- -- Simplified Complex type ---------------------------------------------------------------------- module ConCat.Complex (Complex(..),cis) where #if defined CustomComplex import Control.Applicative (liftA2) import Data.Typeable import Data.Data import Test.QuickCheck (Arbitrary(..),CoArbitrary(..)) #else import Data.Complex #endif #if defined CustomComplex infixl 1 :+ data Complex a = a :+ a deriving (Functor,Eq,Show,Typeable,Data,Ord) -- | The nonnegative magnitude of a complex number. -- {-# SPECIALISE magnitude :: Complex Double -> Double #-} magnitude :: (RealFloat a) => Complex a -> a magnitude (x:+y) = sqrt (x*x + y*y) -- From Data.Complex -- magnitude (x:+y) = scaleFloat k -- (sqrt (sqr (scaleFloat mk x) + sqr (scaleFloat mk y))) -- where k = max (exponent x) (exponent y) -- mk = - k -- sqr z = z * z -- | The phase of a complex number, in the range @(-'pi', 'pi']@. -- If the magnitude is zero, then so is the phase. -- {-# SPECIALISE phase :: Complex Double -> Double #-} phase :: (RealFloat a) => Complex a -> a phase (0 :+ 0) = 0 -- SLPJ July 97 from John Peterson phase (x:+y) = atan2 y x -- | Complex Identity Scaler -- Returns a point on the unit circle, such that the angle between the -- vector to that point and the positive x-axis is equal to the function -- argument, given in radians. cis :: (RealFloat a) => a -> Complex a cis w = cos w :+ sin w instance (RealFloat a) => Num (Complex a) where -- {-# SPECIALISE instance Num (Complex Float) #-} -- {-# SPECIALISE instance Num (Complex Double) #-} (x:+y) + (x':+y') = (x+x') :+ (y+y') (x:+y) - (x':+y') = (x-x') :+ (y-y') (x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x') negate (x:+y) = negate x :+ negate y abs z = magnitude z :+ 0 signum (0:+0) = 0 signum z@(x:+y) = x/r :+ y/r where r = magnitude z fromInteger n = fromInteger n :+ 0 {-# INLINE (+) #-} {-# INLINE (-) #-} {-# INLINE (*) #-} {-# INLINE negate #-} {-# INLINE abs #-} {-# INLINE signum #-} {-# INLINE fromInteger #-} instance (RealFloat a) => Fractional (Complex a) where -- {-# SPECIALISE instance Fractional (Complex Float) #-} -- {-# SPECIALISE instance Fractional (Complex Double) #-} recip z@(x:+y) = x/mag :+ (-y)/mag where mag = magnitude z -- (x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d -- where x'' = scaleFloat k x' -- y'' = scaleFloat k y' -- k = - max (exponent x') (exponent y') -- d = x'*x'' + y'*y'' fromRational a = fromRational a :+ 0 instance (RealFloat a) => Floating (Complex a) where -- {-# SPECIALISE instance Floating (Complex Float) #-} -- {-# SPECIALISE instance Floating (Complex Double) #-} pi = pi :+ 0 exp (x:+y) = expx * cos y :+ expx * sin y where expx = exp x log z = log (magnitude z) :+ phase z sqrt (0:+0) = 0 sqrt z@(x:+y) = u :+ (if y < 0 then -v else v) where (u,v) = if x < 0 then (v',u') else (u',v') v' = abs y / (u'*2) u' = sqrt ((magnitude z + abs x) / 2) sin (x:+y) = sin x * cosh y :+ cos x * sinh y cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y) tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy)) where sinx = sin x cosx = cos x sinhy = sinh y coshy = cosh y sinh (x:+y) = cos y * sinh x :+ sin y * cosh x cosh (x:+y) = cos y * cosh x :+ sin y * sinh x tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx) where siny = sin y cosy = cos y sinhx = sinh x coshx = cosh x asin z@(x:+y) = y':+(-x') where (x':+y') = log (((-y):+x) + sqrt (1 - z*z)) acos z = y'':+(-x'') where (x'':+y'') = log (z + ((-y'):+x')) (x':+y') = sqrt (1 - z*z) atan z@(x:+y) = y':+(-x') where (x':+y') = log (((1-y):+x) / sqrt (1+z*z)) asinh z = log (z + sqrt (1+z*z)) acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1))) atanh z = 0.5 * log ((1.0+z) / (1.0-z)) instance Arbitrary a => Arbitrary (Complex a) where arbitrary = liftA2 (:+) arbitrary arbitrary shrink (x :+ y) = map (uncurry (:+)) (shrink (x,y)) instance CoArbitrary a => CoArbitrary (Complex a) where coarbitrary (x :+ y) = coarbitrary x . coarbitrary y #endif
import Kenny.sites.basic order.complete_boolean_algebra universes u v namespace lattice class Sup_lattice (X : Type u) extends lattice X, has_Sup X := (le_Sup : ∀ {s : set X} {a : X}, a ∈ s → a ≤ Sup s) (Sup_le : ∀ {s : set X} {a : X}, (∀ (b : X), b ∈ s → b ≤ a) → Sup s ≤ a) class Sup_distrib_lattice (X : Type u) extends Sup_lattice X := (inf_Sup_le {} : ∀ {x : X} {s : set X}, x ⊓ lattice.Sup s ≤ lattice.Sup ((⊓) x '' s)) section Sup_lattice instance complete_lattice.to_Sup_lattice {X : Type u} [complete_lattice X] : Sup_lattice X := { .. (infer_instance : complete_lattice X) } variables {X : Type u} [Sup_lattice X] theorem le_Sup' {s : set X} {a : X} : a ∈ s → a ≤ Sup s := Sup_lattice.le_Sup theorem Sup_le' {s : set X} {a : X} : (∀ (b : X), b ∈ s → b ≤ a) → Sup s ≤ a := Sup_lattice.Sup_le theorem Sup_singleton' (x : X) : Sup {x} = x := le_antisymm (Sup_le' $ λ b hb, set.eq_of_mem_singleton hb ▸ le_refl _) $ le_Sup' $ set.mem_singleton x end Sup_lattice section Sup_discrete_lattice instance complete_distrib_lattice.to_Sup_distrib_lattice {X : Type u} [complete_distrib_lattice X] : Sup_distrib_lattice X := { inf_Sup_le := λ x s, by rw [inf_Sup_eq, Sup_image], .. (infer_instance : complete_distrib_lattice X) } variables {X : Type u} [Sup_distrib_lattice X] theorem inf_Sup {x : X} {s : set X} : x ⊓ lattice.Sup s = lattice.Sup ((⊓) x '' s) := le_antisymm Sup_distrib_lattice.inf_Sup_le $ Sup_le' $ λ b ⟨c, hcs, hxcb⟩, hxcb ▸ inf_le_inf (le_refl x) (le_Sup' hcs) end Sup_discrete_lattice end lattice namespace category_theory open lattice variables {X : Type u} class is_univalent (X : Type u) [category.{v} X] : Prop := (univalent : ∀ x y : X, ∀ e : x ≅ y, x = y) theorem eq_of_iso [category.{v} X] [is_univalent X] {x y : X} (e : x ≅ y) : x = y := is_univalent.univalent x y e instance is_univalent_partial_order [partial_order X] : is_univalent X := ⟨λ x y e, le_antisymm e.1.1.1 e.2.1.1⟩ instance semilattice_inf.has_pullback [semilattice_inf X] : has_pullback X := ⟨λ F, { cone := { X := F.obj pullback_diagram.base_left ⊓ F.obj pullback_diagram.base_right, π := { app := λ p, pullback_diagram.rec_on p ⟨⟨inf_le_left⟩⟩ ⟨⟨inf_le_right⟩⟩ ⟨⟨le_trans inf_le_left (F.map pullback_diagram.hom.to_target_left).down.down⟩⟩, naturality' := by intros; ext } }, is_limit := { lift := λ c, ⟨⟨le_inf (c.π.app pullback_diagram.base_left).down.down (c.π.app pullback_diagram.base_right).down.down⟩⟩, fac' := by intros; ext, uniq' := by intros; ext } }⟩ instance Sup_lattice.has_site [Sup_distrib_lattice X] : has_site X := { cov := λ U, { c | U ≤ Sup (sigma.fst '' c) }, iso_mem := λ U V e, show U ≤ _, by rw [set.image_singleton, Sup_singleton']; exact e.2.1.1, comp_mem := λ U S HS F HF, le_trans HS $ Sup_le' $ λ x hx, let ⟨m, hmS, hmx⟩ := hx in hmx ▸ le_trans (HF m hmS) (Sup_le' $ λ y hy, let ⟨n, hnFS, hny⟩ := hy in le_Sup' ⟨⟨n.1, ⟨⟨le_trans n.2.1.1 m.2.1.1⟩⟩⟩, ⟨m, hmS, n, hnFS, rfl⟩, hny⟩), pullback_mem := λ U S HS V f, calc V ≤ V ⊓ Sup (sigma.fst '' S) : le_inf (le_refl V) (le_trans f.1.1 HS) ... = Sup ((⊓) V '' (sigma.fst '' S)) : inf_Sup ... = Sup ((⊓) V ∘ sigma.fst '' S) : congr_arg Sup (set.image_comp _ _ S).symm ... ≤ Sup (sigma.fst '' {m | ∃ t ∈ S, (⟨_, pullback.fst f t.2⟩ : Σ W, W ⟶ V) = m}) : Sup_le' (λ b ⟨c, hcs, hb⟩, le_Sup' ⟨⟨V ⊓ c.1, ⟨⟨inf_le_left⟩⟩⟩, ⟨c, hcs, rfl⟩, hb⟩) } end category_theory
Formal statement is: lemma bigo_bigomega_trans: "f \<in> O[F](g) \<Longrightarrow> h \<in> \<Omega>[F](g) \<Longrightarrow> f \<in> O[F](h)" and bigo_smallomega_trans: "f \<in> O[F](g) \<Longrightarrow> h \<in> \<omega>[F](g) \<Longrightarrow> f \<in> o[F](h)" and smallo_bigomega_trans: "f \<in> o[F](g) \<Longrightarrow> h \<in> \<Omega>[F](g) \<Longrightarrow> f \<in> o[F](h)" and smallo_smallomega_trans: "f \<in> o[F](g) \<Longrightarrow> h \<in> \<omega>[F](g) \<Longrightarrow> f \<in> o[F](h)" and bigomega_bigo_trans: "f \<in> \<Omega>[F](g) \<Longrightarrow> h \<in> O[F](g) \<Longrightarrow> f \<in> \<Omega>[F](h)" and bigomega_smallo_trans: "f \<in> \<Omega>[F](g) \<Longrightarrow> h \<in> o[F](g) \<Longrightarrow> f \<in> \<omega>[F](h)" and smallomega_bigo_trans: "f \<in> \<omega>[F](g) \<Longrightarrow> h \<in> O[F](g) \<Longrightarrow> f \<in> \<omega>[F](h)" and smallomega_smallo_trans: "f \<in> \<omega>[F](g) \<Longrightarrow> h \<in> o[F](g) \<Longrightarrow> f \<in> \<omega>[F](h)" Informal statement is: If $f \in O(g)$ and $h \in \Omega(g)$, then $f \in O(h)$.
Require Import Ascii. Inductive Decidable (P : Prop) : Prop := | dec_true : P -> Decidable P | dec_false : ~ P -> Decidable P. Inductive pbool : Prop := | ptrue | pfalse. Definition compute_dec (P : Prop) {d : Decidable P} := match d with | dec_true _ _ => ptrue | dec_false _ _ => pfalse end. Lemma DecidableBoolEq (a b : bool) : (Decidable (a = b)). Proof. destruct a; destruct b; try (now left); now right. Qed. Lemma DecidableAsciiEq (a b : ascii) : (Decidable (a = b)). Proof. assert ({a = b} + {a <> b}) by repeat decide equality. destruct H; [ now left | now right ]. Defined.
lemma (in algebra) is_sigma_algebra: assumes "finite M" shows "sigma_algebra \<Omega> M"
module Simpson using Base.Threads function simpson(func, x1::BigFloat, x2::BigFloat, n) dh = (x2 - x1) / BigFloat(n) # Simpsonの公式によって数値積分する m = div(n, 2) results = Array{BigFloat}(undef, m) @inbounds @threads for i = 1:m fx1 = func(x1 + dh * BigFloat(i * 2 - 1)) fx2 = func(x1 + dh * BigFloat(i * 2)) results[i] = BigFloat(4) * fx1 + BigFloat(2) * fx2 end sum = func(x1) + reduce(+, results) - func(x2) return dh / BigFloat(3) * sum end end
[GOAL] X Y : Scheme f : X ⟶ Y x✝ : QuasiCompact f h : ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U) ⊢ Continuous ↑f.val.base [PROOFSTEP] continuity [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f ⊢ QuasiCompact f [PROOFSTEP] constructor [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f ⊢ ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] intro U _ hU' [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] convert hU'.image (inv f.1.base).continuous_toFun using 1 [GOAL] case h.e'_3.h X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ ↑f.val.base ⁻¹' U = (inv f.val.base).toFun '' U [PROOFSTEP] rw [Set.image_eq_preimage_of_inverse] [GOAL] case h.e'_3.h.h₁ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ Function.LeftInverse (↑f.val.base) (inv f.val.base).toFun case h.e'_3.h.h₂ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ Function.RightInverse (↑f.val.base) (inv f.val.base).toFun [PROOFSTEP] delta Function.LeftInverse [GOAL] case h.e'_3.h.h₁ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ ∀ (x : ↑↑Y.toPresheafedSpace), ↑f.val.base (ContinuousMap.toFun (inv f.val.base) x) = x case h.e'_3.h.h₂ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ Function.RightInverse (↑f.val.base) (inv f.val.base).toFun [PROOFSTEP] exacts [IsIso.inv_hom_id_apply f.1.base, IsIso.hom_inv_id_apply f.1.base] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g ⊢ QuasiCompact (f ≫ g) [PROOFSTEP] constructor [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g ⊢ ∀ (U : Set ↑↑Z.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑(f ≫ g).val.base ⁻¹' U) [PROOFSTEP] intro U hU hU' [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑(f ≫ g).val.base ⁻¹' U) [PROOFSTEP] rw [Scheme.comp_val_base, coe_comp, Set.preimage_comp] [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑f.val.base ⁻¹' (↑g.val.base ⁻¹' U)) [PROOFSTEP] apply QuasiCompact.isCompact_preimage [GOAL] case isCompact_preimage.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsOpen (↑g.val.base ⁻¹' U) [PROOFSTEP] exact Continuous.isOpen_preimage (by -- porting note: `continuity` failed -- see https://github.com/leanprover-community/mathlib4/issues/5030exact Scheme.Hom.continuous g) _ hU [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ Continuous ↑g.val.base [PROOFSTEP] exact Scheme.Hom.continuous g [GOAL] case isCompact_preimage.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑g.val.base ⁻¹' U) [PROOFSTEP] apply QuasiCompact.isCompact_preimage [GOAL] case isCompact_preimage.a.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsOpen U [PROOFSTEP] assumption [GOAL] case isCompact_preimage.a.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact U [PROOFSTEP] assumption [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ IsCompact U ∧ IsOpen U ↔ ∃ s, Set.Finite s ∧ U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] apply Opens.IsBasis.isCompact_open_iff_eq_finite_iUnion (fun (U : X.affineOpens) => (U : Opens X.carrier)) [GOAL] case hb X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ Opens.IsBasis (Set.range fun U => ↑U) [PROOFSTEP] rw [Subtype.range_coe] [GOAL] case hb X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ Opens.IsBasis (Scheme.affineOpens X) [PROOFSTEP] exact isBasis_affine_open X [GOAL] case hb' X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ ∀ (i : ↑(Scheme.affineOpens X)), IsCompact ↑↑i [PROOFSTEP] exact fun i => i.2.isCompact [GOAL] X Y : Scheme f : X ⟶ Y ⊢ QuasiCompact f ↔ ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) [PROOFSTEP] rw [QuasiCompact_iff] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U)) ↔ ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) [PROOFSTEP] refine' ⟨fun H U hU => H U U.isOpen hU.isCompact, _⟩ [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) → ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] intro H U hU hU' [GOAL] X Y : Scheme f : X ⟶ Y H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) U : Set ↑↑Y.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] obtain ⟨S, hS, rfl⟩ := (isCompact_open_iff_eq_finset_affine_union U).mp ⟨hU', hU⟩ [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) S : Set ↑(Scheme.affineOpens Y) hS : Set.Finite S hU : IsOpen (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) hU' : IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) ⊢ IsCompact (↑f.val.base ⁻¹' ⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) [PROOFSTEP] simp only [Set.preimage_iUnion] [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) S : Set ↑(Scheme.affineOpens Y) hS : Set.Finite S hU : IsOpen (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) hU' : IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) ⊢ IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑f.val.base ⁻¹' ↑↑i) [PROOFSTEP] exact Set.Finite.isCompact_biUnion hS (fun i _ => H i i.prop) [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.toProperty affineProperty f ↔ IsAffine Y ∧ CompactSpace ↑↑X.toPresheafedSpace [PROOFSTEP] delta AffineTargetMorphismProperty.toProperty QuasiCompact.affineProperty [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ (∃ h, CompactSpace ↑↑X.toPresheafedSpace) ↔ IsAffine Y ∧ CompactSpace ↑↑X.toPresheafedSpace [PROOFSTEP] simp [GOAL] X Y : Scheme f : X ⟶ Y ⊢ QuasiCompact f ↔ targetAffineLocally QuasiCompact.affineProperty f [PROOFSTEP] rw [quasiCompact_iff_forall_affine] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) ↔ targetAffineLocally QuasiCompact.affineProperty f [PROOFSTEP] trans ∀ U : Y.affineOpens, IsCompact (f.1.base ⁻¹' (U : Set Y.carrier)) [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) ↔ ∀ (U : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑U) [PROOFSTEP] exact ⟨fun h U => h U U.prop, fun h U hU => h ⟨U, hU⟩⟩ [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑U)) ↔ targetAffineLocally QuasiCompact.affineProperty f [PROOFSTEP] apply forall_congr' [GOAL] case h X Y : Scheme f : X ⟶ Y ⊢ ∀ (a : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑a) ↔ QuasiCompact.affineProperty (f ∣_ ↑a) [PROOFSTEP] exact fun _ => isCompact_iff_compactSpace [GOAL] X Y : Scheme f : X ⟶ Y ⊢ @QuasiCompact = targetAffineLocally QuasiCompact.affineProperty [PROOFSTEP] ext [GOAL] case h.h.h.a X Y : Scheme f : X ⟶ Y x✝² x✝¹ : Scheme x✝ : x✝² ⟶ x✝¹ ⊢ QuasiCompact x✝ ↔ targetAffineLocally QuasiCompact.affineProperty x✝ [PROOFSTEP] exact quasiCompact_iff_affineProperty _ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) ⊢ IsCompact ↑(Scheme.basicOpen X f) [PROOFSTEP] classical refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1 obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hU, U.isOpen⟩ let g : s → X.affineOpens := by intro V use V.1 ⊓ X.basicOpen f have : V.1.1 ⟶ U := by apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op] exact IsAffineOpen.basicOpenIsAffine V.1.prop _ haveI : Finite s := hs.to_subtype refine' ⟨Set.range g, Set.finite_range g, _⟩ refine' (Set.inter_eq_right_iff_subset.mpr (SetLike.coe_subset_coe.2 <| RingedSpace.basicOpen_le _ _)).symm.trans _ rw [e, Set.iUnion₂_inter] apply le_antisymm <;> apply Set.iUnion₂_subset · intro i hi exact Set.Subset.trans (Set.Subset.rfl : _ ≤ g ⟨i, hi⟩) (@Set.subset_iUnion₂ _ _ _ (fun (i : Scheme.affineOpens X) (_ : i ∈ Set.range g) => (i : Set X.toPresheafedSpace)) _ (Set.mem_range_self ⟨i, hi⟩)) · rintro ⟨i, hi⟩ ⟨⟨j, hj⟩, hj'⟩ rw [← hj'] refine' Set.Subset.trans _ (Set.subset_iUnion₂ j hj) exact Set.Subset.rfl [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) ⊢ IsCompact ↑(Scheme.basicOpen X f) [PROOFSTEP] refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hU, U.isOpen⟩ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] let g : s → X.affineOpens := by intro V use V.1 ⊓ X.basicOpen f have : V.1.1 ⟶ U := by apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op] exact IsAffineOpen.basicOpenIsAffine V.1.prop _ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ↑s → ↑(Scheme.affineOpens X) [PROOFSTEP] intro V [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑(Scheme.affineOpens X) [PROOFSTEP] use V.1 ⊓ X.basicOpen f [GOAL] case property X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X [PROOFSTEP] have : V.1.1 ⟶ U := by apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑V ⟶ U [PROOFSTEP] apply homOfLE [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑V ≤ U [PROOFSTEP] change _ ⊆ (U : Set X.carrier) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑↑V ⊆ ↑U [PROOFSTEP] rw [e] [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑↑V ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 [GOAL] case property X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s this : ↑↑V ⟶ U ⊢ ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X [PROOFSTEP] erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op] [GOAL] case property X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s this : ↑↑V ⟶ U ⊢ RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) (↑((LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf.map this.op) f) ∈ Scheme.affineOpens X [PROOFSTEP] exact IsAffineOpen.basicOpenIsAffine V.1.prop _ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] haveI : Finite s := hs.to_subtype [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] refine' ⟨Set.range g, Set.finite_range g, _⟩ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] refine' (Set.inter_eq_right_iff_subset.mpr (SetLike.coe_subset_coe.2 <| RingedSpace.basicOpen_le _ _)).symm.trans _ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ↑U ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] rw [e, Set.iUnion₂_inter] [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] apply le_antisymm [GOAL] case intro.intro.a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ≤ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] apply Set.iUnion₂_subset [GOAL] case intro.intro.a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i ≤ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] apply Set.iUnion₂_subset [GOAL] case intro.intro.a.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ∀ (i : ↑(Scheme.affineOpens X)), i ∈ s → ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] intro i hi [GOAL] case intro.intro.a.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : ↑(Scheme.affineOpens X) hi : i ∈ s ⊢ ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] exact Set.Subset.trans (Set.Subset.rfl : _ ≤ g ⟨i, hi⟩) (@Set.subset_iUnion₂ _ _ _ (fun (i : Scheme.affineOpens X) (_ : i ∈ Set.range g) => (i : Set X.toPresheafedSpace)) _ (Set.mem_range_self ⟨i, hi⟩)) [GOAL] case intro.intro.a.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ∀ (i : ↑(Scheme.affineOpens X)), i ∈ Set.range g → ↑↑i ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] rintro ⟨i, hi⟩ ⟨⟨j, hj⟩, hj'⟩ [GOAL] case intro.intro.a.h.mk.intro.mk X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : Opens ↑↑X.toPresheafedSpace hi : i ∈ Scheme.affineOpens X j : ↑(Scheme.affineOpens X) hj : j ∈ s hj' : g { val := j, property := hj } = { val := i, property := hi } ⊢ ↑↑{ val := i, property := hi } ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] rw [← hj'] [GOAL] case intro.intro.a.h.mk.intro.mk X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : Opens ↑↑X.toPresheafedSpace hi : i ∈ Scheme.affineOpens X j : ↑(Scheme.affineOpens X) hj : j ∈ s hj' : g { val := j, property := hj } = { val := i, property := hi } ⊢ ↑↑(g { val := j, property := hj }) ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] refine' Set.Subset.trans _ (Set.subset_iUnion₂ j hj) [GOAL] case intro.intro.a.h.mk.intro.mk X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : Opens ↑↑X.toPresheafedSpace hi : i ∈ Scheme.affineOpens X j : ↑(Scheme.affineOpens X) hj : j ∈ s hj' : g { val := j, property := hj } = { val := i, property := hi } ⊢ ↑↑(g { val := j, property := hj }) ⊆ ↑↑j ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] exact Set.Subset.rfl [GOAL] X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.IsLocal affineProperty [PROOFSTEP] constructor [GOAL] case RespectsIso X Y : Scheme f : X ⟶ Y ⊢ MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty affineProperty) [PROOFSTEP] apply AffineTargetMorphismProperty.respectsIso_mk [GOAL] case RespectsIso.h₁ X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], affineProperty f → affineProperty (e.hom ≫ f) [PROOFSTEP] rintro X Y Z e _ _ H [GOAL] case RespectsIso.h₂ X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], affineProperty f → affineProperty (f ≫ e.hom) [PROOFSTEP] rintro X Y Z e _ _ H [GOAL] case RespectsIso.h₁ X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ X Y Z : Scheme e : X ≅ Y f✝ : Y ⟶ Z inst✝ : IsAffine Z H : affineProperty f✝ ⊢ affineProperty (e.hom ≫ f✝) case RespectsIso.h₂ X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ X Y Z : Scheme e : Y ≅ Z f✝ : X ⟶ Y h✝ : IsAffine Y H : affineProperty f✝ ⊢ affineProperty (f✝ ≫ e.hom) [PROOFSTEP] exacts [@Homeomorph.compactSpace _ _ _ _ H (TopCat.homeoOfIso (asIso e.inv.1.base)), H] [GOAL] case toBasicOpen X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (r : ↑(Y.presheaf.obj (op ⊤))), affineProperty f → affineProperty (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] introv H [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : affineProperty f ⊢ affineProperty (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] dsimp [affineProperty] at H ⊢ [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ CompactSpace ↑((Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.basicOpen Y r))) [PROOFSTEP] change CompactSpace ((Opens.map f.val.base).obj (Y.basicOpen r)) [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ CompactSpace { x // x ∈ (Opens.map f.val.base).obj (Scheme.basicOpen Y r) } [PROOFSTEP] rw [Scheme.preimage_basicOpen f r] [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ CompactSpace { x // x ∈ Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r) } [PROOFSTEP] erw [← isCompact_iff_compactSpace] [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ IsCompact ↑(Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r)) [PROOFSTEP] rw [← isCompact_univ_iff] at H [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : IsCompact Set.univ ⊢ IsCompact ↑(Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r)) [PROOFSTEP] apply isCompact_basicOpen [GOAL] case toBasicOpen.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : IsCompact Set.univ ⊢ IsCompact ↑((Opens.map f.val.base).obj ⊤) [PROOFSTEP] exact H [GOAL] case ofBasicOpenCover X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (s : Finset ↑(Y.presheaf.obj (op ⊤))), Ideal.span ↑s = ⊤ → (∀ (r : { x // x ∈ s }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)) → affineProperty f [PROOFSTEP] rintro X Y H f S hS hS' [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ affineProperty f [PROOFSTEP] rw [← IsAffineOpen.basicOpen_union_eq_self_iff] at hS [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ affineProperty f case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] delta QuasiCompact.affineProperty [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ CompactSpace ↑↑X.toPresheafedSpace case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] rw [← isCompact_univ_iff] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact Set.univ case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] change IsCompact ((Opens.map f.val.base).obj ⊤).1 [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact ((Opens.map f.val.base).obj ⊤).carrier case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] rw [← hS] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact ((Opens.map f.val.base).obj (⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f)).carrier case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] dsimp [Opens.map] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact (↑f.val.base ⁻¹' ↑(⨆ (f : { x // x ∈ S }), Scheme.basicOpen Y ↑f)) case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] simp only [Opens.iSup_mk, Opens.carrier_eq_coe, Opens.coe_mk, Set.preimage_iUnion] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact (⋃ (i : { x // x ∈ S }), ↑f.val.base ⁻¹' ↑(Scheme.basicOpen Y ↑i)) case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] exacts [isCompact_iUnion fun i => isCompact_iff_compactSpace.mpr (hS' i), topIsAffineOpen _] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.StableUnderBaseChange affineProperty [PROOFSTEP] intro X Y S _ _ f g h [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : affineProperty g ⊢ affineProperty pullback.fst [PROOFSTEP] rw [QuasiCompact.affineProperty] at h ⊢ [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] skip [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] let 𝒰 := Scheme.Pullback.openCoverOfRight Y.affineCover.finiteSubcover f g [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] have : Finite 𝒰.J := by dsimp; infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g ⊢ Finite 𝒰.J [PROOFSTEP] dsimp [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g ⊢ Finite (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)).J [PROOFSTEP] infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] have : ∀ i, CompactSpace (𝒰.obj i).carrier := by intro i; dsimp; infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J ⊢ ∀ (i : 𝒰.J), CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace [PROOFSTEP] intro i [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J i : 𝒰.J ⊢ CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace [PROOFSTEP] dsimp [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J i : 𝒰.J ⊢ CompactSpace ↑↑(pullback f (Scheme.OpenCover.map (Scheme.affineCover Y) (Scheme.OpenCover.f (Scheme.affineCover Y) ↑i) ≫ g)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this✝ : Finite 𝒰.J this : ∀ (i : 𝒰.J), CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] exact 𝒰.compactSpace [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) ⊢ P S [PROOFSTEP] classical obtain ⟨s, hs, hs'⟩ := (isCompact_open_iff_eq_finset_affine_union S.1).mp ⟨hS, S.2⟩ replace hs' : S = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs' subst hs' apply @Set.Finite.induction_on _ _ _ hs · convert h₁; rw [iSup_eq_bot]; rintro ⟨_, h⟩; exact h.elim · intro x s _ hs h₄ have : IsCompact (⨆ i : s, (i : Opens X.carrier)).1 := by refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1; exact ⟨s, hs, by simp⟩ convert h₂ _ this x h₄ rw [iSup_subtype, sup_comm] conv_rhs => rw [iSup_subtype] exact iSup_insert [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) ⊢ P S [PROOFSTEP] obtain ⟨s, hs, hs'⟩ := (isCompact_open_iff_eq_finset_affine_union S.1).mp ⟨hS, S.2⟩ [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ P S [PROOFSTEP] replace hs' : S = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs' [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ S = ⨆ (i : ↑s), ↑↑i [PROOFSTEP] ext1 [GOAL] case h X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ↑S = ↑(⨆ (i : ↑s), ↑↑i) [PROOFSTEP] simpa using hs' [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S = ⨆ (i : ↑s), ↑↑i ⊢ P S [PROOFSTEP] subst hs' [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ P (⨆ (i : ↑s), ↑↑i) [PROOFSTEP] apply @Set.Finite.induction_on _ _ _ hs [GOAL] case intro.intro.H0 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ P (⨆ (i : ↑∅), ↑↑i) [PROOFSTEP] convert h₁ [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑∅), ↑↑i = ⊥ [PROOFSTEP] rw [iSup_eq_bot] [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ∀ (i : ↑∅), ↑↑i = ⊥ [PROOFSTEP] rintro ⟨_, h⟩ [GOAL] case h.e'_1.mk X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier val✝ : ↑(Scheme.affineOpens X) h : val✝ ∈ ∅ ⊢ ↑↑{ val := val✝, property := h } = ⊥ [PROOFSTEP] exact h.elim [GOAL] case intro.intro.H1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ∀ {a : ↑(Scheme.affineOpens X)} {s : Set ↑(Scheme.affineOpens X)}, ¬a ∈ s → Set.Finite s → P (⨆ (i : ↑s), ↑↑i) → P (⨆ (i : ↑(insert a s)), ↑↑i) [PROOFSTEP] intro x s _ hs h₄ [GOAL] case intro.intro.H1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ P (⨆ (i : ↑(insert x s)), ↑↑i) [PROOFSTEP] have : IsCompact (⨆ i : s, (i : Opens X.carrier)).1 := by refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1; exact ⟨s, hs, by simp⟩ [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ IsCompact (⨆ (i : ↑s), ↑↑i).carrier [PROOFSTEP] refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1 [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ ∃ s_1, Set.Finite s_1 ∧ (⨆ (i : ↑s), ↑↑i).carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s_1), ↑↑i [PROOFSTEP] exact ⟨s, hs, by simp⟩ [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ (⨆ (i : ↑s), ↑↑i).carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] simp [GOAL] case intro.intro.H1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ P (⨆ (i : ↑(insert x s)), ↑↑i) [PROOFSTEP] convert h₂ _ this x h₄ [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑(insert x s)), ↑↑i = (⨆ (i : ↑s), ↑↑i) ⊔ ↑x [PROOFSTEP] rw [iSup_subtype, sup_comm] [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ insert x s), ↑↑{ val := i, property := h } = ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] conv_rhs => rw [iSup_subtype] [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier | ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] rw [iSup_subtype] [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier | ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] rw [iSup_subtype] [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier | ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] rw [iSup_subtype] [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ insert x s), ↑↑{ val := i, property := h } = ↑x ⊔ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ s), ↑↑{ val := i, property := h } [PROOFSTEP] exact iSup_insert [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] rw [← map_zero (X.presheaf.map (homOfLE <| X.basicOpen_le f : X.basicOpen f ⟶ U).op)] at H [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] obtain ⟨⟨_, n, rfl⟩, e⟩ := (isLocalization_basicOpen hU f).eq_iff_exists'.mp H [GOAL] case intro.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * x = ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] exact ⟨n, by simpa [mul_comm x] using e⟩ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * x = ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * 0 ⊢ f ^ n * x = 0 [PROOFSTEP] simpa [mul_comm x] using e [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union U.1).mp ⟨hU, U.2⟩ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] replace e : U = iSup fun i : s => (i : Opens X.carrier) [GOAL] case e X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ U = ⨆ (i : ↑s), ↑↑i [PROOFSTEP] ext1 [GOAL] case e.h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ↑U = ↑(⨆ (i : ↑s), ↑↑i) [PROOFSTEP] simpa using e [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] have h₁ : ∀ i : s, i.1.1 ≤ U := by intro i change (i : Opens X.carrier) ≤ U rw [e] -- porting note: `exact le_iSup _ _` no longer works exact le_iSup (fun (i : s) => (i : Opens (X.toPresheafedSpace))) _ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i ⊢ ∀ (i : ↑s), ↑↑i ≤ U [PROOFSTEP] intro i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ U [PROOFSTEP] change (i : Opens X.carrier) ≤ U [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ U [PROOFSTEP] rw [e] -- porting note: `exact le_iSup _ _` no longer works [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] exact le_iSup (fun (i : s) => (i : Opens (X.toPresheafedSpace))) _ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] have H' := fun i : s => exists_pow_mul_eq_zero_of_res_basicOpen_eq_zero_of_isAffineOpen X i.1.2 (X.presheaf.map (homOfLE (h₁ i)).op x) (X.presheaf.map (homOfLE (h₁ i)).op f) ?_ [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U H' : ∀ (i : ↑s), ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 ⊢ ∃ n, f ^ n * x = 0 case intro.intro.refine_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) = 0 [PROOFSTEP] swap [GOAL] case intro.intro.refine_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) = 0 [PROOFSTEP] delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict at H ⊢ [GOAL] case intro.intro.refine_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = 0 [PROOFSTEP] convert congr_arg (X.presheaf.map (homOfLE _).op) H [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = ↑(X.presheaf.map (homOfLE ?intro.intro.refine_1.convert_1).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x) [PROOFSTEP] simp only [← comp_apply, ← Functor.map_comp] [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map ((homOfLE (_ : ↑↑i ≤ U)).op ≫ (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op)) x = ↑(X.presheaf.map ((homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op ≫ (homOfLE ?intro.intro.refine_1.convert_1).op)) x [PROOFSTEP] rfl [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ 0 = ↑(X.presheaf.map (homOfLE ?intro.intro.refine_1.convert_1).op) 0 [PROOFSTEP] rw [map_zero] [GOAL] case intro.intro.refine_1.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) ≤ Scheme.basicOpen X f [PROOFSTEP] simp only [Scheme.basicOpen_res, ge_iff_le, inf_le_right] [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U H' : ∀ (i : ↑s), ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] choose n hn using H' [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] haveI := hs.to_subtype [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] cases nonempty_fintype s [GOAL] case intro.intro.refine_2.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] use Finset.univ.sup n [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s ⊢ f ^ Finset.sup Finset.univ n * x = 0 [PROOFSTEP] suffices ∀ i : s, X.presheaf.map (homOfLE (h₁ i)).op (f ^ Finset.univ.sup n * x) = 0 by subst e apply TopCat.Sheaf.eq_of_locally_eq X.sheaf fun i : s => (i : Opens X.carrier) intro i rw [map_zero] apply this [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this✝ : Finite ↑s val✝ : Fintype ↑s this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 ⊢ f ^ Finset.sup Finset.univ n * x = 0 [PROOFSTEP] subst e [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 ⊢ f ^ Finset.sup Finset.univ n * x = 0 [PROOFSTEP] apply TopCat.Sheaf.eq_of_locally_eq X.sheaf fun i : s => (i : Opens X.carrier) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 ⊢ ∀ (i : ↑s), ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) 0 [PROOFSTEP] intro i [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 i : ↑s ⊢ ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) 0 [PROOFSTEP] rw [map_zero] [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 i : ↑s ⊢ ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] apply this [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s ⊢ ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] intro i [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] replace hn := congr_arg (fun x => X.presheaf.map (homOfLE (h₁ i)).op (f ^ (Finset.univ.sup n - n i)) * x) (hn i) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : (fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * x) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = (fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * x) 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] dsimp at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] simp only [← map_mul, ← map_pow] at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i) * (f ^ n i * x)) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] rwa [mul_zero, ← mul_assoc, ← pow_add, tsub_add_cancel_of_le] at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i) * x) = 0 ⊢ n i ≤ Finset.sup Finset.univ n [PROOFSTEP] apply Finset.le_sup (Finset.mem_univ i)
## This replication file ## makes the following tables and figures: # Figure 5 # Packages library(MatchIt) library(lmtest) library(sandwich) library(tidyverse) ## # Figure 5 ## #savepdf <- function(file, width=7.28, height=3.54){ # 3.46, 1.77 # fname <- paste("",file,".pdf",sep="") # pdf(fname, width=width, height=height, # pointsize=7) # par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(3.3,3.6,1.1,1.1)) #} #savepdf("output/Fukumoto_Fig5") p_path <- "../Fukumoto2021/preprocess/preprocess.0406.R" m_path <- "../Fukumoto2021/matching_results/alt_att_0406_1000_1000.RDS" source("gen.0406.att_beta.R") plot(YMD[part.adj], average.C2, col = 2, lty = 2, xlim=c(YMD[part.adj[1]], YMD[part.adj[length(part.adj)]]), xlab="Day", ylab="Outcome", type="l", main = paste("Outcome (April 6): ", reduction*100, "% mitigating effect"), ylim=c(0,1)) lines(YMD[part.adj], average.C2, col = 2, lty = 1) lines(YMD[part.adj], average.T2, lty = 1) #lines(YMD[part.adj], average.all.T2[part.adj], lty = 2) abline(v=YMD[part.adj[8]], col = "turquoise") # April 6 plot(YMD[part.adj], summary.Match.out2[, 1], xlim=c(YMD[part.adj[1]], YMD[part.adj[length(part.adj)]]), ylim=c(-0.5,0.5), main = "ATT", xlab="Day", ylab="ATT", type="l") polygon(c(YMD[part.adj], rev(YMD[part.adj])), c(UB2, rev(LB2)), col = shadecolor, border = NA) lines(YMD[part.adj], summary.Match.out2[, 1], col = 1, lty = 1, lwd = 3) abline(v=YMD[part.adj[8]], col = "turquoise") # April 6 abline(0,0,lty=2) # Fukumoto_Fig5_a_source Fukumoto_Fig5_a <- cbind(as.character(YMD[part.adj]), average.C2, average.T2, average.all.T2[part.adj]) colnames(Fukumoto_Fig5_a) <- c("date", "outcome average in matched control municipalities", "outcome average in matched treated municipalities", "outcome average in all treated municipalities") write.csv(Fukumoto_Fig5_a, "../output/Fukumoto_Fig5_a_beta_source.csv", row.names = FALSE) # Fukumoto_Fig5_b_source Fukumoto_Fig5_b <- cbind(as.character(YMD[part.adj]), summary.Match.out2[, 1], LB2, UB2) colnames(Fukumoto_Fig5_b) <- c("date", "ATC", "lower bound of 95% confidence interval", "upper bound of 95% confidence interval") write.csv(Fukumoto_Fig5_b, "../output/Fukumoto_Fig5_b_beta_source.csv", row.names = FALSE)
Humans vs. Zombies Rule 1: Dont Be A Dick
[STATEMENT] lemma Eats_Subset_E [intro!]: "insert (x SUBS z) (insert (y IN z) H) \<turnstile> C \<Longrightarrow> insert (Eats x y SUBS z) H \<turnstile> C" [PROOF STATE] proof (prove) goal (1 subgoal): 1. insert (x SUBS z) (insert (y IN z) H) \<turnstile> C \<Longrightarrow> insert (Eats x y SUBS z) H \<turnstile> C [PROOF STEP] by (metis Conj_E Eats_Subset_Iff Iff_MP_left')
/- Copyright (c) 2022 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou ! This file was ported from Lean 3 source module algebraic_topology.dold_kan.faces ! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.AlgebraicTopology.DoldKan.Homotopies import Mathbin.Tactic.RingExp /-! # Study of face maps for the Dold-Kan correspondence TODO (@joelriou) continue adding the various files referenced below In this file, we obtain the technical lemmas that are used in the file `projections.lean` in order to get basic properties of the endomorphisms `P q : K[X] ⟶ K[X]` with respect to face maps (see `homotopies.lean` for the role of these endomorphisms in the overall strategy of proof). The main lemma in this file is `higher_faces_vanish.induction`. It is based on two technical lemmas `higher_faces_vanish.comp_Hσ_eq` and `higher_faces_vanish.comp_Hσ_eq_zero`. -/ open Nat open CategoryTheory open CategoryTheory.Limits open CategoryTheory.Category open CategoryTheory.Preadditive open CategoryTheory.SimplicialObject open Simplicial DoldKan namespace AlgebraicTopology namespace DoldKan variable {C : Type _} [Category C] [Preadditive C] variable {X : SimplicialObject C} /-- A morphism `φ : Y ⟶ X _[n+1]` satisfies `higher_faces_vanish q φ` when the compositions `φ ≫ X.δ j` are `0` for `j ≥ max 1 (n+2-q)`. When `q ≤ n+1`, it basically means that the composition `φ ≫ X.δ j` are `0` for the `q` highest possible values of a nonzero `j`. Otherwise, when `q ≥ n+2`, all the compositions `φ ≫ X.δ j` for nonzero `j` vanish. See also the lemma `comp_P_eq_self_iff` in `projections.lean` which states that `higher_faces_vanish q φ` is equivalent to the identity `φ ≫ (P q).f (n+1) = φ`. -/ def HigherFacesVanish {Y : C} {n : ℕ} (q : ℕ) (φ : Y ⟶ X _[n + 1]) : Prop := ∀ j : Fin (n + 1), n + 1 ≤ (j : ℕ) + q → φ ≫ X.δ j.succ = 0 #align algebraic_topology.dold_kan.higher_faces_vanish AlgebraicTopology.DoldKan.HigherFacesVanish namespace HigherFacesVanish @[reassoc.1] theorem comp_δ_eq_zero {Y : C} {n : ℕ} {q : ℕ} {φ : Y ⟶ X _[n + 1]} (v : HigherFacesVanish q φ) (j : Fin (n + 2)) (hj₁ : j ≠ 0) (hj₂ : n + 2 ≤ (j : ℕ) + q) : φ ≫ X.δ j = 0 := by obtain ⟨i, hi⟩ := Fin.eq_succ_of_ne_zero hj₁ subst hi apply v i rw [← @Nat.add_le_add_iff_right 1, add_assoc] simpa only [Fin.val_succ, add_assoc, add_comm 1] using hj₂ #align algebraic_topology.dold_kan.higher_faces_vanish.comp_δ_eq_zero AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero theorem of_succ {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n + 1]} (v : HigherFacesVanish (q + 1) φ) : HigherFacesVanish q φ := fun j hj => v j (by simpa only [← add_assoc] using le_add_right hj) #align algebraic_topology.dold_kan.higher_faces_vanish.of_succ AlgebraicTopology.DoldKan.HigherFacesVanish.of_succ theorem of_comp {Y Z : C} {q n : ℕ} {φ : Y ⟶ X _[n + 1]} (v : HigherFacesVanish q φ) (f : Z ⟶ Y) : HigherFacesVanish q (f ≫ φ) := fun j hj => by rw [assoc, v j hj, comp_zero] #align algebraic_topology.dold_kan.higher_faces_vanish.of_comp AlgebraicTopology.DoldKan.HigherFacesVanish.of_comp theorem comp_hσ_eq {Y : C} {n a q : ℕ} {φ : Y ⟶ X _[n + 1]} (v : HigherFacesVanish q φ) (hnaq : n = a + q) : φ ≫ (hσ q).f (n + 1) = -φ ≫ X.δ ⟨a + 1, Nat.succ_lt_succ (Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm))⟩ ≫ X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm)⟩ := by have hnaq_shift : ∀ d : ℕ, n + d = a + d + q := by intro d rw [add_assoc, add_comm d, ← add_assoc, hnaq] rw [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2) (n + 1) rfl) (c_mk (n + 1) n rfl), hσ'_eq hnaq (c_mk (n + 1) n rfl), hσ'_eq (hnaq_shift 1) (c_mk (n + 2) (n + 1) rfl)] simp only [alternating_face_map_complex.obj_d_eq, eq_to_hom_refl, comp_id, comp_sum, sum_comp, comp_add] simp only [comp_zsmul, zsmul_comp, ← assoc, ← mul_zsmul] -- cleaning up the first sum rw [← Fin.sum_congr' _ (hnaq_shift 2).symm, Fin.sum_trunc] swap · rintro ⟨k, hk⟩ suffices φ ≫ X.δ (⟨a + 2 + k, by linarith⟩ : Fin (n + 2)) = 0 by simp only [this, Fin.natAdd_mk, Fin.cast_mk, zero_comp, smul_zero] convert v ⟨a + k + 1, by linarith⟩ (by rw [Fin.val_mk] linarith) rw [Nat.succ_eq_add_one] linarith -- cleaning up the second sum rw [← Fin.sum_congr' _ (hnaq_shift 3).symm, @Fin.sum_trunc _ _ (a + 3)] swap · rintro ⟨k, hk⟩ rw [assoc, X.δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero] · intro h rw [Fin.pred_eq_iff_eq_succ, Fin.ext_iff] at h dsimp at h linarith · dsimp simp only [Fin.coe_pred, Fin.val_mk, succ_add_sub_one] linarith · dsimp linarith -- leaving out three specific terms conv_lhs => congr skip rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] rw [Fin.sum_univ_castSucc] simp only [Fin.last, Fin.castLe_mk, Fin.coe_cast, Fin.cast_mk, Fin.coe_castLe, Fin.val_mk, Fin.castSucc_mk, Fin.coe_castSucc] /- the purpose of the following `simplif` is to create three subgoals in order to finish the proof -/ have simplif : ∀ a b c d e f : Y ⟶ X _[n + 1], b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f := by intro a b c d e f h1 h2 h3 rw [add_assoc c d e, h2, add_zero, add_comm a b, add_assoc, add_comm a c, h3, add_zero, h1] apply simplif · -- b=f rw [← pow_add, Odd.neg_one_pow, neg_smul, one_zsmul] use a linarith · -- d+e = 0 rw [assoc, assoc, X.δ_comp_σ_self' (Fin.castSucc_mk _ _ _).symm, X.δ_comp_σ_succ' (Fin.succ_mk _ _ _).symm] simp only [comp_id, pow_add _ (a + 1) 1, pow_one, mul_neg, mul_one, neg_smul, add_right_neg] · -- c+a = 0 rw [← Finset.sum_add_distrib] apply Finset.sum_eq_zero rintro ⟨i, hi⟩ h₀ have hia : (⟨i, by linarith⟩ : Fin (n + 2)) ≤ Fin.castSucc (⟨a, by linarith⟩ : Fin (n + 1)) := by simpa only [Fin.le_iff_val_le_val, Fin.val_mk, Fin.castSucc_mk, ← lt_succ_iff] using hi simp only [Fin.val_mk, Fin.castLe_mk, Fin.castSucc_mk, Fin.succ_mk, assoc, Fin.cast_mk, ← δ_comp_σ_of_le X hia, add_eq_zero_iff_eq_neg, ← neg_zsmul] congr ring #align algebraic_topology.dold_kan.higher_faces_vanish.comp_Hσ_eq AlgebraicTopology.DoldKan.HigherFacesVanish.comp_hσ_eq theorem comp_hσ_eq_zero {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n + 1]} (v : HigherFacesVanish q φ) (hqn : n < q) : φ ≫ (hσ q).f (n + 1) = 0 := by simp only [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2) (n + 1) rfl) (c_mk (n + 1) n rfl)] rw [hσ'_eq_zero hqn (c_mk (n + 1) n rfl), comp_zero, zero_add] by_cases hqn' : n + 1 < q · rw [hσ'_eq_zero hqn' (c_mk (n + 2) (n + 1) rfl), zero_comp, comp_zero] · simp only [hσ'_eq (show n + 1 = 0 + q by linarith) (c_mk (n + 2) (n + 1) rfl), pow_zero, Fin.mk_zero, one_zsmul, eq_to_hom_refl, comp_id, comp_sum, alternating_face_map_complex.obj_d_eq] rw [← Fin.sum_congr' _ (show 2 + (n + 1) = n + 1 + 2 by linarith), Fin.sum_trunc] · simp only [Fin.sum_univ_castSucc, Fin.sum_univ_zero, zero_add, Fin.last, Fin.castLe_mk, Fin.cast_mk, Fin.castSucc_mk] simp only [Fin.mk_zero, Fin.val_zero, pow_zero, one_zsmul, Fin.mk_one, Fin.val_one, pow_one, neg_smul, comp_neg] erw [δ_comp_σ_self, δ_comp_σ_succ, add_right_neg] · intro j rw [comp_zsmul, comp_zsmul, δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero] · intro h rw [Fin.pred_eq_iff_eq_succ, Fin.ext_iff] at h dsimp at h linarith · dsimp simp only [Fin.cast_natAdd, Fin.coe_pred, Fin.coe_addNat, add_succ_sub_one] linarith · rw [Fin.lt_iff_val_lt_val] dsimp linarith #align algebraic_topology.dold_kan.higher_faces_vanish.comp_Hσ_eq_zero AlgebraicTopology.DoldKan.HigherFacesVanish.comp_hσ_eq_zero theorem induction {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n + 1]} (v : HigherFacesVanish q φ) : HigherFacesVanish (q + 1) (φ ≫ (𝟙 _ + hσ q).f (n + 1)) := by intro j hj₁ dsimp simp only [comp_add, add_comp, comp_id] -- when n < q, the result follows immediately from the assumption by_cases hqn : n < q · rw [v.comp_Hσ_eq_zero hqn, zero_comp, add_zero, v j (by linarith)] -- we now assume that n≥q, and write n=a+q cases' Nat.le.dest (not_lt.mp hqn) with a ha rw [v.comp_Hσ_eq (show n = a + q by linarith), neg_comp, add_neg_eq_zero, assoc, assoc] cases' n with m hm -- the boundary case n=0 · simpa only [Nat.eq_zero_of_add_eq_zero_left ha, Fin.eq_zero j, Fin.mk_zero, Fin.mk_one, δ_comp_σ_succ, comp_id] -- in the other case, we need to write n as m+1 -- then, we first consider the particular case j = a by_cases hj₂ : a = (j : ℕ) · simp only [hj₂, Fin.eta, δ_comp_σ_succ, comp_id] congr ext simp only [Fin.val_succ, Fin.val_mk] -- now, we assume j ≠ a (i.e. a < j) have haj : a < j := (Ne.le_iff_lt hj₂).mp (by linarith) have hj₃ := j.is_lt have ham : a ≤ m := by by_contra rw [not_le, ← Nat.succ_le_iff] at h linarith rw [X.δ_comp_σ_of_gt', j.pred_succ] swap · rw [Fin.lt_iff_val_lt_val] simpa only [Fin.val_mk, Fin.val_succ, add_lt_add_iff_right] using haj obtain ham' | ham'' := ham.lt_or_eq · -- case where `a<m` rw [← X.δ_comp_δ''_assoc] swap · rw [Fin.le_iff_val_le_val] dsimp linarith simp only [← assoc, v j (by linarith), zero_comp] · -- in the last case, a=m, q=1 and j=a+1 rw [X.δ_comp_δ_self'_assoc] swap · ext dsimp have hq : q = 1 := by rw [← add_left_inj a, ha, ham'', add_comm] linarith simp only [← assoc, v j (by linarith), zero_comp] #align algebraic_topology.dold_kan.higher_faces_vanish.induction AlgebraicTopology.DoldKan.HigherFacesVanish.induction end HigherFacesVanish end DoldKan end AlgebraicTopology
Inductive nat : Set := | O : nat | S : nat -> nat. Fixpoint plus (m n : nat) : nat := match m with | O => match n with | O => O | S n' => S n' end | S m' => match n with | O => S m' | S n' => S (S (plus m' n')) end end. Theorem S_injective : forall m n : nat, S m = S n -> m = n. injection 1. trivial. Qed. Theorem O_left_id : forall m : nat, plus O m = m. intros. case m. (* m = O *) simpl. trivial. (* m = S m' *) intros. simpl. trivial. Qed. Theorem O_right_id : forall m : nat, plus m O = m. intros. case m. (* m = O *) simpl. trivial. (* m = S m' *) intros. simpl. trivial. Qed. Theorem O_id : forall m : nat, plus O m = m /\ plus m O = m. intros. refine (conj _ _). apply O_left_id. apply O_right_id. Qed.
""" WSVarScoreTestBaseObs A base per-observation object for the score test of within-subject variance linear mixed model data instance without information on X1 or W1. Contains base variables for testing H0: β1 = 0 and τ1 = 0, H1: β1 ≠ 0 or τ1 ≠ 0, for the full model of WiSER (with parameters β = [β1, β2], τ = [τ1, τ2], and Lγ), We make use of the fitted null model. """ struct WSVarScoreTestBaseObs{T <: BlasReal} nullObs :: WSVarLmmObs{T} # is it redundant? n :: Int p :: Int q :: Int l :: Int # working arrays A_21_β2β1_pre :: Matrix{T} # becomes A_21_β2β1 when right-multiplied by X1 A_21_τ2τ1_pre :: Matrix{T} # becomes A_21_τ2τ1 when right-multiplied by W1 A_21_Lγτ1_pre :: Matrix{T} # becomes A_21_Lγτ1 when right-multiplied by W1 A_21_β2β1_rowsum :: Vector{T} # for time-invariant X1, length p A_21_τ2τ1_rowsum :: Vector{T} # for time-invariant W1, length l A_21_Lγτ1_rowsum :: Vector{T} # for time-invariant W1, length q◺ end function WSVarScoreTestBaseObs(nullObs::WSVarLmmObs{T}) where T <: BlasReal n, p, q, l = size(nullObs.Xt, 2), size(nullObs.Xt, 1), size(nullObs.Zt, 1), size(nullObs.Wt, 1) q◺ = ◺(q) A_21_β2β1_pre = Matrix{T}(undef, p, n) A_21_τ2τ1_pre = Matrix{T}(undef, l, n) A_21_Lγτ1_pre = Matrix{T}(undef, q◺, n) # construct A_21_β2β1_pre # X2t * Vinv, Vinv = Dinv - UUt X2t_U = nullObs.Xt * transpose(nullObs.Ut) mul!(A_21_β2β1_pre, -X2t_U, nullObs.Ut) @inbounds @simd for j in 1:n for i in 1:p A_21_β2β1_pre[i, j] += nullObs.Xt[i, j] * nullObs.Dinv[j] # first term end end # construct A_21_τ2τ1_pre # W2t * D * Vinv .* Vinv * D, this is no longer symmetric. # compute W2t * D * Vinv .* Vinv mul!(A_21_τ2τ1_pre, nullObs.Wt_D_Ut_kr_Utt, nullObs.Ut_kr_Ut) # third term @inbounds @simd for j in 1:n for i in 1:l # first term A_21_τ2τ1_pre[i, j] += nullObs.Wt_D_Dinv[i, j] * nullObs.Dinv[j] # second term A_21_τ2τ1_pre[i, j] += -2 * nullObs.Wt_D_sqrtdiagDinv_UUt[i, j] * nullObs.sqrtDinv_UUt[j] end end # right-multiply by D. @inbounds @simd for j in 1:n for i in 1:l A_21_τ2τ1_pre[i, j] = A_21_τ2τ1_pre[i, j] * nullObs.expwτ[j] end end # construct A_21_Lγτ1_pre # 2 * Cq' * (L'Z'(V^-1) ⊙ Z'(V^-1)) * Diagonal(expwτ) # nullObs.storage_q◺n is always Cq' * (L'Z'(V^-1) ⊙ Z'(V^-1)). A_21_Lγτ1_pre .= 2 * nullObs.storage_q◺n @inbounds @simd for j in 1:n for i in 1:q◺ A_21_Lγτ1_pre[i, j] = A_21_Lγτ1_pre[i, j] * nullObs.expwτ[j] end end A_21_β2β1_rowsum = reshape(sum(A_21_β2β1_pre; dims=2), :) A_21_τ2τ1_rowsum = reshape(sum(A_21_τ2τ1_pre; dims=2), :) A_21_Lγτ1_rowsum = reshape(sum(A_21_Lγτ1_pre; dims=2), :) WSVarScoreTestBaseObs{T}(nullObs, n, p, q, l, A_21_β2β1_pre, A_21_τ2τ1_pre, A_21_Lγτ1_pre, A_21_β2β1_rowsum, A_21_τ2τ1_rowsum, A_21_Lγτ1_rowsum) end """ WSVarScoreTestObs A base per-observation object for the score test of within-subject variance linear mixed model data instance. H0: β1 = 0 and τ1 = 0, H1: β1 ≠ 0 or τ1 ≠ 0, for the full model of WiSER (with parameters β = [β1, β2], τ = [τ1, τ2], and Lγ). We make use of the fitted null model. """ struct WSVarScoreTestObs{T <: BlasReal} # data testbaseobs :: WSVarScoreTestBaseObs{T} r_X1 :: Int # number of test variables in X1 r_W1 :: Int # number of test variables in W1 r :: Int # number of total test variables, = r_X1 + r_W1. #X1t :: Matrix{T} # test variables for X #W1t :: Matrix{T} # test variables for W # working arrays ψ_1 :: Vector{T} ψ_β1 :: AbstractVector{T} ψ_τ1 :: AbstractVector{T} # ψ_β2 = testbaseobs.nullObs.∇β # ψ_τ2 = testbaseobs.nullObs.∇τ # ψ_Lγ = vech(testbaseobs.nullObs.∇Lγ), # be consistent with order of variables in WiSER.sandwich!() A_21_β2β1 :: Matrix{T} # p x r_X1, testbaseobs.A_21_β2β1_pre * X1 A_21_τ2τ1 :: Matrix{T} # l x r_W1, testbaseobs.A_21_τ2τ1_pre * W1 A_21_Lγτ1 :: Matrix{T} # q◺ x r_W1, testbaseobs.A_21_Lγτ1_pre * W1 end function WSVarScoreTestObs(testbaseobs::WSVarScoreTestBaseObs{T}, r_X1, r_W1 #X1obs::AbstractMatrix{T}, W1obs::AbstractMatrix{T} ) where {T <: BlasReal} n, p, q, l = testbaseobs.n, testbaseobs.p, testbaseobs.q, testbaseobs.l q◺ = ◺(q) #r_X1 = size(X1obs, 2) #r_W1 = size(W1obs, 2) r = r_X1 + r_W1 #X1t = Matrix{T}(undef, r_X1, n) #W1t = Matrix{T}(undef, r_W1, n) ψ_1 = Vector{T}(undef, r) ψ_β1 = @view(ψ_1[1:r_X1]) ψ_τ1 = @view(ψ_1[r_X1+1:end]) A_21_β2β1 = Matrix{T}(undef, p, r_X1) A_21_τ2τ1 = Matrix{T}(undef, l, r_W1) A_21_Lγτ1 = Matrix{T}(undef, q◺, r_W1) WSVarScoreTestObs{T}(testbaseobs, r_X1, r_W1, r, #X1t, W1t, ψ_1, ψ_β1, ψ_τ1, A_21_β2β1, A_21_τ2τ1, A_21_Lγτ1) end """ update!(testobs::WSVarScoreTestObs, X1obs, W1obs) Updates WSVarScoreTestObs based on the test data. """ function update!(testobs::WSVarScoreTestObs, X1obs::Union{Nothing, AbstractVecOrMat{T}}, W1obs::Union{Nothing, AbstractVecOrMat{T}} ) where {T <: BlasReal} testbaseobs = testobs.testbaseobs if testobs.r_X1 > 0 mul!(testobs.ψ_β1, transpose(X1obs), reshape(testbaseobs.nullObs.Dinv_r - transpose(testbaseobs.nullObs.rt_UUt), : ) ) mul!(testobs.A_21_β2β1, testbaseobs.A_21_β2β1_pre, X1obs) end if testobs.r_W1 > 0 mul!(testobs.ψ_τ1, -transpose(W1obs), testbaseobs.nullObs.diagDVRV) mul!(testobs.A_21_τ2τ1, testbaseobs.A_21_τ2τ1_pre, W1obs) mul!(testobs.A_21_Lγτ1, testbaseobs.A_21_Lγτ1_pre, W1obs) end end """ WSVarScoreTest A base object for the score test of within-subject vLMM data instance. H0: β1 = 0 and τ1 = 0, H1: β1 ≠ 0 or τ1 ≠ 0, for the full model of WiSER (with parameters β = [β1, β2], τ = [τ1, τ2], and Lγ). We make use of the fitted null model. """ struct WSVarScoreTest{T <: BlasReal} nullmodel :: WSVarLmmModel{T} testobsvec :: Vector{WSVarScoreTestObs{T}} # dimensions p :: Int # #mean parameters in linear regression q :: Int # #random effects l :: Int # #parameters for modeling WS variability m :: Int # #individuals/clusters nsum :: Int # #observations (summed across individuals) r_X1 :: Int # #test variables in X1 r_W1 :: Int # #test variables in W1 r :: Int # #total test variables, = r_X1 + r_W1. # working arrays ψ_1 :: Vector{T} # length-r vector, sum_i testobs.ψ_1 ψ_1obs :: Matrix{T} # r x m ψ_2obs :: Matrix{T} # (p + l + q◺) x m B_11 :: Matrix{T} # r x r matrix. B_21 :: Matrix{T} # (p + l + q◺) x r matrix. A_21 :: Matrix{T} # (p + l + q◺) x r matrix. # B_22 = nullmodel.B # inv(A_22) = nullmodel.Ainv AinvBAinv :: AbstractMatrix{T} # r x r. tmp_sr :: AbstractMatrix{T} # p + l + q◺ x r. tmp_srx1 :: AbstractMatrix{T} # p + l + q◺ x r_X1. tmp_srw1 :: AbstractMatrix{T} # p + l + q◺ x r_W1. tmp_rr :: AbstractMatrix{T} # r x r. tmp_rx1rx1 :: AbstractMatrix{T} # r_X1 x r_X1. tmp_rw1rw1 :: AbstractMatrix{T} # r_W1 x r_W1. tmp_r :: AbstractVector{T} tmp_rx1 :: AbstractVector{T} tmp_rw1 :: AbstractVector{T} end function WSVarScoreTest(nullmodel::WSVarLmmModel{T}, r_X1::Int, r_W1::Int; testbaseobsvec::Union{Vector{WSVarScoreTestBaseObs{T}}, Nothing} = nothing ) where {T <: BlasReal} @assert r_X1 >= 0 && r_W1 >= 0 @assert r_X1 > 0 || r_W1 > 0 if testbaseobsvec === nothing testbaseobsvec = [WSVarScoreTestBaseObs(obs) for obs in nullmodel.data] end testobsvec = [WSVarScoreTestObs(testbaseobs, r_X1, r_W1) for testbaseobs in testbaseobsvec] @assert nullmodel.isfitted[1] "Please fit the model first." p, q, l, m, nsum = nullmodel.p, nullmodel.q, nullmodel.l, nullmodel.m, nullmodel.nsum q◺ = ◺(q) r = r_X1 + r_W1 ψ_1 = Vector{T}(undef, r) ψ_1obs = Matrix{T}(undef, r, m) ψ_2obs = Matrix{T}(undef, p + l + q◺, m) fill!(ψ_2obs, zero(T)) for (i, obs) in enumerate(nullmodel.data) ψ_β2 = @view ψ_2obs[1:p, i] ψ_τ2 = @view ψ_2obs[(p + 1):(p + l), i] ψ_Lγ = @view ψ_2obs[(p + l + 1):end, i] ψ_β2 .= obs.∇β ψ_τ2 .= obs.∇τ offset = 1 @inbounds for j in 1:q, i in j:q ψ_Lγ[offset] = obs.∇Lγ[i, j] offset += 1 end end B_11 = Matrix{T}(undef, r, r) B_21 = Matrix{T}(undef, p + l + q◺, r) A_21 = Matrix{T}(undef, p + l + q◺, r) AinvBAinv = nullmodel.Ainv * nullmodel.B * nullmodel.Ainv tmp_sr = Matrix{T}(undef, p + l + q◺, r) tmp_srx1 = Matrix{T}(undef, p + l + q◺, r_X1) tmp_srw1 = Matrix{T}(undef, p + l + q◺, r_W1) tmp_rr = Matrix{T}(undef, r, r) tmp_rx1rx1 = Matrix{T}(undef, r_X1, r_X1) tmp_rw1rw1 = Matrix{T}(undef, r_W1, r_W1) tmp_r = Vector{T}(undef, r) tmp_rx1 = Vector{T}(undef, r_X1) tmp_rw1 = Vector{T}(undef, r_W1) WSVarScoreTest{T}(nullmodel, testobsvec, p, q, l, m, nsum, r_X1, r_W1, r, ψ_1, ψ_1obs, ψ_2obs, B_11, B_21, A_21, AinvBAinv, tmp_sr, tmp_srx1, tmp_srw1, tmp_rr, tmp_rx1rx1, tmp_rw1rw1, tmp_r, tmp_rx1, tmp_rw1 ) end """ test!(st::WSVarScoreTest, X1Vec, W1Vec) Performs the score test, and returns the three p-values on the time-variant test data """ function test!(st::WSVarScoreTest, X1vec::Union{Nothing, Vector{<:AbstractVecOrMat{T}}}, W1vec::Union{Nothing, Vector{<:AbstractVecOrMat{T}}}) where {T <: BlasReal} if X1vec === nothing @assert st.r_X1 == 0 X1vec = repeat([nothing], length(st.testobsvec)) elseif W1vec === nothing @assert st.r_W1 == 0 W1vec = repeat([nothing], length(st.testobsvec)) end nm = st.nullmodel p, q, l, m, nsum = nm.p, nm.q, nm.l, nm.m, nm.nsum r_X1, r_W1, r = st.r_X1, st.r_W1, st.r # update testobsvec first for (testobs, X1obs, W1obs) in zip(st.testobsvec, X1vec, W1vec) if r_X1 > 0 @assert size(X1obs, 1) == testobs.testbaseobs.n @assert size(X1obs, 2) == st.r_X1 end if r_W1 > 0 @assert size(W1obs, 1) == testobs.testbaseobs.n @assert size(W1obs, 2) == st.r_W1 end update!(testobs, X1obs, W1obs) end # build ψ_1: sum_i testobs.ψ_1 fill!(st.ψ_1, zero(T)) for (i, testobs) in enumerate(st.testobsvec) st.ψ_1obs[:, i] .= testobs.ψ_1 st.ψ_1 .+= testobs.ψ_1 end # build B_11: using BLAS.syr!() fill!(st.B_11, zero(T)) BLAS.syrk!('U', 'N', one(T), st.ψ_1obs, zero(T), st.B_11) copytri!(st.B_11, 'U') lmul!(one(T) / m, st.B_11) # build B_21 mul!(st.B_21, st.ψ_2obs, transpose(st.ψ_1obs), one(T) / m, zero(T)) # build A_21: 1/m sum_i Ai_21. fill!(st.A_21, zero(T)) A_21_β2β1 = @view st.A_21[1 : p , 1 : r_X1] A_21_τ2τ1 = @view st.A_21[p + 1 : p + l, r_X1 + 1 : r] A_21_Lγτ1 = @view st.A_21[p + l + 1 : end , r_X1 + 1 : r] if r_X1 > 0 for testobs in st.testobsvec A_21_β2β1 .+= testobs.A_21_β2β1 end end if r_W1 > 0 for testobs in st.testobsvec A_21_τ2τ1 .+= testobs.A_21_τ2τ1 A_21_Lγτ1 .+= testobs.A_21_Lγτ1 end end lmul!(1 / m, st.A_21) pvalues!(st) end
[STATEMENT] lemma prj_chine: shows "\<lbrakk>\<lbrakk>TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1\<rbrakk>\<rbrakk>" and "\<lbrakk>\<lbrakk>Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1\<rbrakk>\<rbrakk>" and "\<lbrakk>\<lbrakk>Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>TTfgh.p\<^sub>0\<rbrakk>\<rbrakk>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> &&& \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> &&& \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 1: "ide TfTgh.p\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide f\<^sub>0gh\<^sub>1.p\<^sub>1 [PROOF STEP] by (simp add: TfTgh.composable) [PROOF STATE] proof (state) this: ide f\<^sub>0gh\<^sub>1.p\<^sub>1 goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 2: "ide TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide TTfgh_TfTgh.chine goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 3: "src TfTgh.p\<^sub>1 = trg TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine [PROOF STEP] using TTfgh_TfTgh.chine_in_hom(1) [PROOF STATE] proof (prove) using this: \<guillemotleft>TTfgh_TfTgh.chine : src (tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<rightarrow> src ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0)\<guillemotright> goal (1 subgoal): 1. src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 4: "src (tab\<^sub>1 f) = trg TfTgh.p\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1 [PROOF STEP] using TfTgh.leg1_simps(2) [PROOF STATE] proof (prove) using this: hseq (tab\<^sub>1 f) f\<^sub>0gh\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1 [PROOF STEP] by blast [PROOF STATE] proof (state) this: src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1 goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define u\<^sub>f where "u\<^sub>f = g \<star> h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0" [PROOF STATE] proof (state) this: u\<^sub>f = g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define w\<^sub>f where "w\<^sub>f = Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1" [PROOF STATE] proof (state) this: w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define w\<^sub>f' where "w\<^sub>f' = TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (state) this: w\<^sub>f' = f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<theta>\<^sub>f where "\<theta>\<^sub>f = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> ((g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (state) this: \<theta>\<^sub>f = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<theta>\<^sub>f' where "\<theta>\<^sub>f' = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]" [PROOF STATE] proof (state) this: \<theta>\<^sub>f' = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<beta>\<^sub>f where "\<beta>\<^sub>f = \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (state) this: \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>f: "ide w\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide w\<^sub>f [PROOF STEP] using w\<^sub>f_def fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. ide w\<^sub>f [PROOF STEP] by auto [PROOF STATE] proof (state) this: ide w\<^sub>f goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>f_is_map: "is_left_adjoint w\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint w\<^sub>f [PROOF STEP] using w\<^sub>f_def fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. is_left_adjoint w\<^sub>f [PROOF STEP] by (simp add: left_adjoints_compose) [PROOF STATE] proof (state) this: is_left_adjoint w\<^sub>f goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>f': "ide w\<^sub>f'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide w\<^sub>f' [PROOF STEP] unfolding w\<^sub>f'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide (f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide w\<^sub>f' goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>f'_is_map: "is_left_adjoint w\<^sub>f'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint w\<^sub>f' [PROOF STEP] unfolding w\<^sub>f'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint (f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using 3 TTfgh_TfTgh.is_map f\<^sub>0gh\<^sub>1.leg1_is_map [PROOF STATE] proof (prove) using this: src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine is_left_adjoint TTfgh_TfTgh.chine is_left_adjoint f\<^sub>0gh\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. is_left_adjoint (f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by (simp add: left_adjoints_compose) [PROOF STATE] proof (state) this: is_left_adjoint w\<^sub>f' goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<theta>\<^sub>f: "\<guillemotleft>\<theta>\<^sub>f : tab\<^sub>0 f \<star> w\<^sub>f \<Rightarrow> u\<^sub>f\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>f : tab\<^sub>0 f \<star> w\<^sub>f \<rightarrow> u\<^sub>f\<guillemotright> [PROOF STEP] proof (unfold \<theta>\<^sub>f_def w\<^sub>f_def u\<^sub>f_def, intro comp_in_homI) [PROOF STATE] proof (state) goal (8 subgoals): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b6\<guillemotright> 2. \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b6 \<rightarrow> ?b5\<guillemotright> 3. \<guillemotleft>(g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b5 \<rightarrow> ?b4\<guillemotright> 4. \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b4 \<rightarrow> ?b3\<guillemotright> 5. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b3 \<rightarrow> ?b2\<guillemotright> 6. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : ?b2 \<rightarrow> ?b1\<guillemotright> 7. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : ?b1 \<rightarrow> ?b\<guillemotright> 8. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] : tab\<^sub>0 f \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1 \<Rightarrow> (tab\<^sub>0 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using f\<^sub>0g\<^sub>1.leg1_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan [PROOF STATE] proof (prove) using this: ide f\<^sub>0g\<^sub>1.p\<^sub>1 arr f\<^sub>0g\<^sub>1.p\<^sub>1 src f\<^sub>0g\<^sub>1.p\<^sub>1 = src f\<^sub>0g\<^sub>1.p\<^sub>0 trg f\<^sub>0g\<^sub>1.p\<^sub>1 = trg ((tab\<^sub>0 f)\<^sup>* \<star> tab\<^sub>1 g) local.dom f\<^sub>0g\<^sub>1.p\<^sub>1 = f\<^sub>0g\<^sub>1.p\<^sub>1 cod f\<^sub>0g\<^sub>1.p\<^sub>1 = f\<^sub>0g\<^sub>1.p\<^sub>1 trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg (tab\<^sub>1 g) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (7 subgoals): 1. \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b5\<guillemotright> 2. \<guillemotleft>(g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b5 \<rightarrow> ?b4\<guillemotright> 3. \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b4 \<rightarrow> ?b3\<guillemotright> 4. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b3 \<rightarrow> ?b2\<guillemotright> 5. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : ?b2 \<rightarrow> ?b1\<guillemotright> 6. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : ?b1 \<rightarrow> ?b\<guillemotright> 7. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1 : (tab\<^sub>0 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1 \<Rightarrow> (tab\<^sub>1 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using f\<^sub>0g\<^sub>1.\<phi>_in_hom(2) Tfg.\<rho>\<sigma>.T0.antipar(1) [PROOF STATE] proof (prove) using this: \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> trg (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0)\<^sup>* = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (6 subgoals): 1. \<guillemotleft>(g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b4\<guillemotright> 2. \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b4 \<rightarrow> ?b3\<guillemotright> 3. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b3 \<rightarrow> ?b2\<guillemotright> 4. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : ?b2 \<rightarrow> ?b1\<guillemotright> 5. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : ?b1 \<rightarrow> ?b\<guillemotright> 6. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>(g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 : (tab\<^sub>1 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 \<Rightarrow> ((g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>(g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using Tfg.\<rho>\<sigma>.T0.antipar(1) [PROOF STATE] proof (prove) using this: trg (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0)\<^sup>* = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>(g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>(g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (5 subgoals): 1. \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b3\<guillemotright> 2. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b3 \<rightarrow> ?b2\<guillemotright> 3. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : ?b2 \<rightarrow> ?b1\<guillemotright> 4. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : ?b1 \<rightarrow> ?b\<guillemotright> 5. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1 : ((g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 \<Rightarrow> (g \<star> tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ((g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (4 subgoals): 1. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b2\<guillemotright> 2. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : ?b2 \<rightarrow> ?b1\<guillemotright> 3. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : ?b1 \<rightarrow> ?b\<guillemotright> 4. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] : (g \<star> tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 \<Rightarrow> g \<star> (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (g \<star> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (3 subgoals): 1. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b1\<guillemotright> 2. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : ?b1 \<rightarrow> ?b\<guillemotright> 3. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : g \<star> (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 \<Rightarrow> g \<star> tab\<^sub>1 h \<star> TTfgh.p\<^sub>0\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.\<phi>_in_hom fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : src fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 h)\<guillemotright> \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>g \<star> fg\<^sub>0h\<^sub>1.\<phi> : g \<star> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal (2 subgoals): 1. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> ?b\<guillemotright> 2. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>g \<star> h.tab \<star> TTfgh.p\<^sub>0 : g \<star> tab\<^sub>1 h \<star> TTfgh.p\<^sub>0 \<Rightarrow> g \<star> (h \<star> tab\<^sub>0 h) \<star> TTfgh.p\<^sub>0\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] using gh fg\<^sub>0h\<^sub>1.\<phi>_in_hom fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: src g = trg h \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : src fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 h)\<guillemotright> \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : g \<star> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] : g \<star> (h \<star> tab\<^sub>0 h) \<star> TTfgh.p\<^sub>0 \<Rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] using gh fg\<^sub>0h\<^sub>1.\<phi>_in_hom fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: src g = trg h \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : src fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 h)\<guillemotright> \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] : g \<star> (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<guillemotleft>\<theta>\<^sub>f : tab\<^sub>0 f \<star> w\<^sub>f \<rightarrow> u\<^sub>f\<guillemotright> goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<theta>\<^sub>f': "\<guillemotleft>\<theta>\<^sub>f' : tab\<^sub>0 f \<star> w\<^sub>f' \<Rightarrow> u\<^sub>f\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>f' : tab\<^sub>0 f \<star> w\<^sub>f' \<rightarrow> u\<^sub>f\<guillemotright> [PROOF STEP] proof (unfold \<theta>\<^sub>f'_def w\<^sub>f'_def u\<^sub>f_def, intro comp_in_homI) [PROOF STATE] proof (state) goal (8 subgoals): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> ?b6\<guillemotright> 2. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b6 \<rightarrow> ?b5\<guillemotright> 3. \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b5 \<rightarrow> ?b4\<guillemotright> 4. \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b4 \<rightarrow> ?b3\<guillemotright> 5. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b3 \<rightarrow> ?b2\<guillemotright> 6. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 7. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b1 \<rightarrow> ?b\<guillemotright> 8. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<Rightarrow> (tab\<^sub>0 f \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using "1" "2" "3" "4" assoc'_in_hom(2) f.ide_u f.leg1_simps(3) [PROOF STATE] proof (prove) using this: ide f\<^sub>0gh\<^sub>1.p\<^sub>1 ide TTfgh_TfTgh.chine src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1 \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<guillemotleft>\<a>\<^sup>-\<^sup>1[?f, ?g, ?h] : local.dom ?f \<star> local.dom ?g \<star> local.dom ?h \<rightarrow> (cod ?f \<star> cod ?g) \<star> cod ?h\<guillemotright> ide (tab\<^sub>0 f) src (tab\<^sub>1 f) = src (tab\<^sub>0 f) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (7 subgoals): 1. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b5\<guillemotright> 2. \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b5 \<rightarrow> ?b4\<guillemotright> 3. \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b4 \<rightarrow> ?b3\<guillemotright> 4. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b3 \<rightarrow> ?b2\<guillemotright> 5. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 6. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b1 \<rightarrow> ?b\<guillemotright> 7. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<Rightarrow> ((tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.\<phi>_in_hom(2) [PROOF STATE] proof (prove) using this: \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (6 subgoals): 1. \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b4\<guillemotright> 2. \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b4 \<rightarrow> ?b3\<guillemotright> 3. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b3 \<rightarrow> ?b2\<guillemotright> 4. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 5. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b1 \<rightarrow> ?b\<guillemotright> 6. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> (((g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan [PROOF STATE] proof (prove) using this: trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) goal (1 subgoal): 1. \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (5 subgoals): 1. \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b3\<guillemotright> 2. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b3 \<rightarrow> ?b2\<guillemotright> 3. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 4. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b1 \<rightarrow> ?b\<guillemotright> 5. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>(\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine : (((g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> ((g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan [PROOF STATE] proof (prove) using this: trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) goal (1 subgoal): 1. \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : (((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (4 subgoals): 1. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b2\<guillemotright> 2. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 3. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b1 \<rightarrow> ?b\<guillemotright> 4. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> ((g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan g\<^sub>0h\<^sub>1.\<phi>_in_hom(2) [PROOF STATE] proof (prove) using this: trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (3 subgoals): 1. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b1\<guillemotright> 2. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b1 \<rightarrow> ?b\<guillemotright> 3. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> ((g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan [PROOF STATE] proof (prove) using this: trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) goal (1 subgoal): 1. \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ((g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (2 subgoals): 1. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b\<guillemotright> 2. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ((g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> g \<star> h \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan [PROOF STATE] proof (prove) using this: trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) goal (1 subgoal): 1. \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ((g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] show "\<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : g \<star> h \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.cospan g\<^sub>0h\<^sub>1.cospan TTfgh_TfTgh.the_\<theta>_in_hom [PROOF STATE] proof (prove) using this: trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg (tab\<^sub>0 f) trg (tab\<^sub>1 h) = trg (tab\<^sub>0 g) \<guillemotleft>TTfgh_TfTgh.the_\<theta> : src (tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<rightarrow> trg (tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)\<guillemotright> \<guillemotleft>TTfgh_TfTgh.the_\<theta> : ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom, auto) [PROOF STATE] proof (state) this: \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : g \<star> h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<guillemotleft>\<theta>\<^sub>f' : tab\<^sub>0 f \<star> w\<^sub>f' \<rightarrow> u\<^sub>f\<guillemotright> goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<beta>\<^sub>f: "\<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<Rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright> [PROOF STEP] proof (unfold \<beta>\<^sub>f_def w\<^sub>f_def w\<^sub>f'_def, intro comp_in_homI) [PROOF STATE] proof (state) goal (3 subgoals): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b1\<guillemotright> 2. \<guillemotleft>TTfgh_TfTgh.the_\<nu> : ?b1 \<rightarrow> ?b\<guillemotright> 3. \<guillemotleft>\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] : tab\<^sub>1 f \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1 \<Rightarrow> (tab\<^sub>1 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using TTfgh.leg1_in_hom(2) assoc'_in_hom [PROOF STATE] proof (prove) using this: \<guillemotleft>(tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<guillemotleft>\<a>\<^sup>-\<^sup>1[?f, ?g, ?h] : src ?h \<rightarrow> trg ?f\<guillemotright> \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<guillemotleft>\<a>\<^sup>-\<^sup>1[?f, ?g, ?h] : local.dom ?f \<star> local.dom ?g \<star> local.dom ?h \<rightarrow> (cod ?f \<star> cod ?g) \<star> cod ?h\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (2 subgoals): 1. \<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b\<guillemotright> 2. \<guillemotleft>\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1 \<Rightarrow> (tab\<^sub>1 f \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using TTfgh_TfTgh.the_\<nu>_in_hom TTfgh_TfTgh.the_\<nu>_props [PROOF STATE] proof (prove) using this: \<guillemotleft>TTfgh_TfTgh.the_\<nu> : src ((tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<rightarrow> trg ((tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)\<guillemotright> \<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> \<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> local.iso TTfgh_TfTgh.the_\<nu> goal (1 subgoal): 1. \<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<guillemotleft>TTfgh_TfTgh.the_\<nu> : (tab\<^sub>1 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] : (tab\<^sub>1 f \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<Rightarrow> tab\<^sub>1 f \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using 1 2 3 4 [PROOF STATE] proof (prove) using this: ide f\<^sub>0gh\<^sub>1.p\<^sub>1 ide TTfgh_TfTgh.chine src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : (tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright> goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have iso_\<beta>\<^sub>f: "iso \<beta>\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. local.iso \<beta>\<^sub>f [PROOF STEP] unfolding \<beta>\<^sub>f_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. local.iso (\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) [PROOF STEP] using 1 2 3 4 \<beta>\<^sub>f \<beta>\<^sub>f_def isos_compose [PROOF STATE] proof (prove) using this: ide f\<^sub>0gh\<^sub>1.p\<^sub>1 ide TTfgh_TfTgh.chine src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1 \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright> \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<lbrakk>local.iso ?f; local.iso ?f'; seq ?f' ?f\<rbrakk> \<Longrightarrow> local.iso (?f' \<cdot> ?f) goal (1 subgoal): 1. local.iso (\<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) [PROOF STEP] apply (intro isos_compose) [PROOF STATE] proof (prove) goal (5 subgoals): 1. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] 2. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso TTfgh_TfTgh.the_\<nu> 3. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> seq TTfgh_TfTgh.the_\<nu> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] 4. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] 5. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> seq \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] (TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) [PROOF STEP] apply (metis TTfgh.composable TTfgh.leg1_in_hom(2) Tfg.\<rho>\<sigma>.T0.antipar(2) Tfg.\<rho>\<sigma>.T0.ide_right Tfg.\<rho>\<sigma>.leg1_in_hom(2) Tfg_Hfg.u_simps(3) f.T0.antipar(2) f.T0.ide_right f.ide_leg1 f\<^sub>0g\<^sub>1.cospan g.ide_leg1 h.ide_leg1 h.leg1_simps(4) hcomp_in_vhomE ide_hcomp iso_assoc' tab\<^sub>1_simps(1)) [PROOF STATE] proof (prove) goal (4 subgoals): 1. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso TTfgh_TfTgh.the_\<nu> 2. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> seq TTfgh_TfTgh.the_\<nu> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] 3. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] 4. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> seq \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] (TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) [PROOF STEP] using TTfgh_TfTgh.the_\<nu>_props(2) f.ide_leg1 iso_assoc [PROOF STATE] proof (prove) using this: local.iso TTfgh_TfTgh.the_\<nu> ide (tab\<^sub>1 f) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> local.iso \<a>[?f, ?g, ?h] goal (4 subgoals): 1. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso TTfgh_TfTgh.the_\<nu> 2. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> seq TTfgh_TfTgh.the_\<nu> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] 3. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> local.iso \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] 4. \<lbrakk>ide f\<^sub>0gh\<^sub>1.p\<^sub>1; ide TTfgh_TfTgh.chine; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine; src (tab\<^sub>1 f) = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; \<beta>\<^sub>f = \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]; \<And>f f'. \<lbrakk>local.iso f; local.iso f'; seq f' f\<rbrakk> \<Longrightarrow> local.iso (f' \<cdot> f)\<rbrakk> \<Longrightarrow> seq \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] (TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) [PROOF STEP] by blast+ [PROOF STATE] proof (state) this: local.iso \<beta>\<^sub>f goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have u\<^sub>f: "ide u\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide u\<^sub>f [PROOF STEP] using \<theta>\<^sub>f ide_cod [PROOF STATE] proof (prove) using this: \<guillemotleft>\<theta>\<^sub>f : tab\<^sub>0 f \<star> w\<^sub>f \<rightarrow> u\<^sub>f\<guillemotright> arr ?f \<Longrightarrow> ide (cod ?f) goal (1 subgoal): 1. ide u\<^sub>f [PROOF STEP] by blast [PROOF STATE] proof (state) this: ide u\<^sub>f goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>f_in_hhom: "in_hhom w\<^sub>f (src u\<^sub>f) (src (tab\<^sub>0 f))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>w\<^sub>f : src u\<^sub>f \<rightarrow> src (tab\<^sub>0 f)\<guillemotright> [PROOF STEP] using u\<^sub>f w\<^sub>f u\<^sub>f_def w\<^sub>f_def [PROOF STATE] proof (prove) using this: ide u\<^sub>f ide w\<^sub>f u\<^sub>f = g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. \<guillemotleft>w\<^sub>f : src u\<^sub>f \<rightarrow> src (tab\<^sub>0 f)\<guillemotright> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<guillemotleft>w\<^sub>f : src u\<^sub>f \<rightarrow> src (tab\<^sub>0 f)\<guillemotright> goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>f'_in_hhom: "in_hhom w\<^sub>f' (src u\<^sub>f) (src (tab\<^sub>0 f))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>w\<^sub>f' : src u\<^sub>f \<rightarrow> src (tab\<^sub>0 f)\<guillemotright> [PROOF STEP] using u\<^sub>f w\<^sub>f' w\<^sub>f'_def u\<^sub>f_def [PROOF STATE] proof (prove) using this: ide u\<^sub>f ide w\<^sub>f' w\<^sub>f' = f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine u\<^sub>f = g \<star> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<guillemotleft>w\<^sub>f' : src u\<^sub>f \<rightarrow> src (tab\<^sub>0 f)\<guillemotright> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<guillemotleft>w\<^sub>f' : src u\<^sub>f \<rightarrow> src (tab\<^sub>0 f)\<guillemotright> goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 5: "\<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<Rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) [PROOF STEP] have eq\<^sub>f: "f.composite_cell w\<^sub>f \<theta>\<^sub>f = f.composite_cell w\<^sub>f' \<theta>\<^sub>f' \<cdot> \<beta>\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "f.composite_cell w\<^sub>f \<theta>\<^sub>f = ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] unfolding w\<^sub>f_def \<theta>\<^sub>f_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps Tgh.composable whisker_left [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) src g = trg h \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?f \<star> ?\<nu> \<cdot> ?\<mu> = (?f \<star> ?\<nu>) \<cdot> (?f \<star> ?\<mu>) goal (1 subgoal): 1. (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] have "(\<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0]) \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) = f \<star> g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] goal (1 subgoal): 1. (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] goal (1 subgoal): 1. (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> TTfgh.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> TTfgh.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_assoc assoc'_naturality [of f g "\<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]"] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f \<lbrakk>arr f; arr g; arr \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]; src f = trg g; src g = trg \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod g, cod \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom g, local.dom \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> TTfgh.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_assoc assoc'_naturality [of f g "h.tab \<star> TTfgh.p\<^sub>0"] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f \<lbrakk>arr f; arr g; hseq h.tab fg\<^sub>0h\<^sub>1.p\<^sub>0; src f = trg g; src g = trg (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod g, cod (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom g, local.dom (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (h \<star> tab\<^sub>0 h) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0)) \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1]) \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_assoc assoc'_naturality [of f g fg\<^sub>0h\<^sub>1.\<phi>] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f \<lbrakk>arr f; arr g; arr fg\<^sub>0h\<^sub>1.\<phi>; src f = trg g; src g = trg fg\<^sub>0h\<^sub>1.\<phi>\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod g, cod fg\<^sub>0h\<^sub>1.\<phi>] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>) = ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom g, local.dom fg\<^sub>0h\<^sub>1.\<phi>] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (f \<star> g \<star> fg\<^sub>0h\<^sub>1.\<phi>)) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] have "(f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1] = \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>Tfg.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>Tfg.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tfg.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>Tfg.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>Tfg.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) goal (1 subgoal): 1. \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by (intro E.eval_eqI, simp_all) [PROOF STATE] proof (state) this: \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: \<lbrace>(\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = \<a>[f, tab\<^sub>0 f \<star> Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by blast [PROOF STATE] proof (state) this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] have "(f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> Tfg.p\<^sub>1, TTfgh.p\<^sub>1] = \<a>[f, tab\<^sub>1 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.\<phi>_in_hom assoc_naturality [of f f\<^sub>0g\<^sub>1.\<phi> TTfgh.p\<^sub>1] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : src f\<^sub>0g\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 g)\<guillemotright> \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> \<lbrakk>arr f; arr f\<^sub>0g\<^sub>1.\<phi>; arr fg\<^sub>0h\<^sub>1.p\<^sub>1; src f = trg f\<^sub>0g\<^sub>1.\<phi>; src f\<^sub>0g\<^sub>1.\<phi> = trg fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk> \<Longrightarrow> \<a>[cod f, cod f\<^sub>0g\<^sub>1.\<phi>, cod fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[local.dom f, local.dom f\<^sub>0g\<^sub>1.\<phi>, local.dom fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] have "(f \<star> (g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] = \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.\<phi>_in_hom assoc_naturality [of f "g.tab \<star> Tfg.p\<^sub>0" TTfgh.p\<^sub>1] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : src f\<^sub>0g\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 g)\<guillemotright> \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> \<lbrakk>arr f; hseq g.tab f\<^sub>0g\<^sub>1.p\<^sub>0; arr fg\<^sub>0h\<^sub>1.p\<^sub>1; src f = trg (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0); src (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) = trg fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk> \<Longrightarrow> \<a>[cod f, cod (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0), cod fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[local.dom f, local.dom (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0), local.dom fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> ((f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f.tab Tfg.p\<^sub>1 TTfgh.p\<^sub>1] comp_assoc [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr f.tab; arr f\<^sub>0g\<^sub>1.p\<^sub>1; arr fg\<^sub>0h\<^sub>1.p\<^sub>1; src f.tab = trg f\<^sub>0g\<^sub>1.p\<^sub>1; src f\<^sub>0g\<^sub>1.p\<^sub>1 = trg fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f.tab, cod f\<^sub>0g\<^sub>1.p\<^sub>1, cod fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f.tab, local.dom f\<^sub>0g\<^sub>1.p\<^sub>1, local.dom fg\<^sub>0h\<^sub>1.p\<^sub>1] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1)) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> ((f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1)) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1) = (f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_cod_arr whisker_right comp_assoc_assoc' whisker_left [of f "\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]" "\<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]"] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> ?f = (?\<nu> \<star> ?f) \<cdot> (?\<mu> \<star> ?f) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h \<lbrakk>ide f; seq \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]\<rbrakk> \<Longrightarrow> f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] = (f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) goal (1 subgoal): 1. (((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] by simp [PROOF STATE] proof (state) this: (((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> ((f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1)) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> ((f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "((\<a>[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) = (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] using fg fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_cod_arr comp_assoc_assoc' whisker_right [of TTfgh.p\<^sub>1 "\<a>[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0]" "\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0]"] [PROOF STATE] proof (prove) using this: src f = trg g trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h \<lbrakk>ide fg\<^sub>0h\<^sub>1.p\<^sub>1; seq \<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0]\<rbrakk> \<Longrightarrow> \<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 = (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. ((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<star> TTfgh.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<star> TTfgh.p\<^sub>1) \<cdot> ((f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (((\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps whisker_right comp_assoc [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> ?f = (?\<nu> \<star> ?f) \<cdot> (?\<mu> \<star> ?f) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>)\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tfg.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by (intro E.eval_eqI, auto) [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>)\<rbrace> = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = \<a>[f \<star> g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0g\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>fg\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>[f, (g \<star> tab\<^sub>0 g) \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(\<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) = ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0])" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = (f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = (f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = (f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) = (f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0]) \<cdot> (f \<star> (g.tab \<star> Tfg.p\<^sub>0)) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, Tfg.p\<^sub>1] \<cdot> (f.tab \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0])) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using TTfgh.tab_def Tfg.\<rho>\<sigma>.tab_def [PROOF STATE] proof (prove) using this: TTfgh.tab \<equiv> \<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (Tfg.\<rho>\<sigma>.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) Tfg.\<rho>\<sigma>.tab \<equiv> \<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> g) \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g) \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[f \<star> g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0g\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<cdot> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using src_tab_eq TfTgh.tab_def Tgh.\<rho>\<sigma>.tab_def comp_assoc [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (TfTgh.tab \<star> TTfgh_TfTgh.chine)) \<cdot> TTfgh_TfTgh.the_\<nu> = TTfgh.tab TfTgh.tab \<equiv> \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> Tgh.\<rho>\<sigma>.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) Tgh.\<rho>\<sigma>.tab \<equiv> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> TTfgh.tab \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<cdot> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 = (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 = (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) [PROOF STEP] using fg gh whisker_right whisker_left [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> ?f = (?\<nu> \<star> ?f) \<cdot> (?\<mu> \<star> ?f) \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?f \<star> ?\<nu> \<cdot> ?\<mu> = (?f \<star> ?\<nu>) \<cdot> (?f \<star> ?\<mu>) goal (1 subgoal): 1. f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 = (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) [PROOF STEP] by simp [PROOF STATE] proof (state) this: f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 = (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 = (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 = (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using fg gh [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h goal (1 subgoal): 1. seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by (intro seqI' comp_in_homI) auto [PROOF STATE] proof (state) this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "arr (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) goal (1 subgoal): 1. seq \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using whisker_right [of TTfgh_TfTgh.chine] TTfgh_TfTgh.is_ide [PROOF STATE] proof (prove) using this: seq \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1)) seq \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<lbrakk>ide TTfgh_TfTgh.chine; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> TTfgh_TfTgh.chine = (?\<nu> \<star> TTfgh_TfTgh.chine) \<cdot> (?\<mu> \<star> TTfgh_TfTgh.chine) ide TTfgh_TfTgh.chine goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine = (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi>)) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "((f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] = (f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps comp_arr_dom comp_assoc_assoc' [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr ?f; local.dom ?f = ?a\<rbrakk> \<Longrightarrow> ?f \<cdot> ?a = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "((f.tab \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f.tab TfTgh.p\<^sub>1 TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr f.tab; arr f\<^sub>0gh\<^sub>1.p\<^sub>1; arr TTfgh_TfTgh.chine; src f.tab = trg f\<^sub>0gh\<^sub>1.p\<^sub>1; src f\<^sub>0gh\<^sub>1.p\<^sub>1 = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f.tab, cod f\<^sub>0gh\<^sub>1.p\<^sub>1, cod TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f.tab, local.dom f\<^sub>0gh\<^sub>1.p\<^sub>1, local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> (((f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) = f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] have "(\<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] have "... = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) goal (1 subgoal): 1. \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> [PROOF STEP] by (intro E.eval_eqI, auto) [PROOF STATE] proof (state) this: \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] also [PROOF STATE] proof (state) this: \<lbrace>(\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] using \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 f\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>])\<rbrace> = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f \<star> tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f f\<^sub>0gh\<^sub>1.\<phi> TTfgh_TfTgh.chine] comp_assoc [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr f; arr f\<^sub>0gh\<^sub>1.\<phi>; arr TTfgh_TfTgh.chine; src f = trg f\<^sub>0gh\<^sub>1.\<phi>; src f\<^sub>0gh\<^sub>1.\<phi> = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod f\<^sub>0gh\<^sub>1.\<phi>, cod TTfgh_TfTgh.chine] \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom f\<^sub>0gh\<^sub>1.\<phi>, local.dom TTfgh_TfTgh.chine] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((f \<star> (g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f "(g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0" TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr f; hseq (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src f = trg ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0); src ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), cod TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((f \<star> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f "\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0" TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr f; hseq \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src f = trg (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0); src (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), cod TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, ((g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f "(g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0" TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr f; hseq (g \<star> g\<^sub>0h\<^sub>1.\<phi>) f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src f = trg ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0); src ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), cod TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((f \<star> (g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps assoc'_naturality [of f "(g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0" TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<lbrakk>arr f; hseq (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src f = trg ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0); src ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod f, cod ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), cod TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom f, local.dom ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0), local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) goal (1 subgoal): 1. \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>src f = trg g; src g = trg h; trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h); trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0); trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g); trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f)\<rbrakk> \<Longrightarrow> E.VPar (((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]) (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) 2. \<lbrakk>src f = trg g; src g = trg h; trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h); trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0); trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g); trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f)\<rbrakk> \<Longrightarrow> \<^bold>\<lfloor>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<rfloor> [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: \<lbrace>((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.p\<^sub>0_simps f\<^sub>0g\<^sub>1.p\<^sub>1_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg f\<^sub>0g\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 f) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (((f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0]) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> f\<^sub>0gh\<^sub>1.\<phi>) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(f \<star> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) = (f \<star> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] using fg gh whisker_left [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?f \<star> ?\<nu> \<cdot> ?\<mu> = (?f \<star> ?\<nu>) \<cdot> (?f \<star> ?\<mu>) goal (1 subgoal): 1. (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((f \<star> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "\<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> [PROOF STEP] using fg gh comp_arr_dom comp_cod_arr interchange [of "\<a>\<^sup>-\<^sup>1[f, g, h]" "f \<star> g \<star> h" "tab\<^sub>0 h \<star> TTfgh.p\<^sub>0" TTfgh_TfTgh.the_\<theta>] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>arr ?f; local.dom ?f = ?a\<rbrakk> \<Longrightarrow> ?f \<cdot> ?a = ?f \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>seq \<a>\<^sup>-\<^sup>1[f, g, h] (f \<star> g \<star> h); seq (tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) TTfgh_TfTgh.the_\<theta>\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[f, g, h] \<cdot> (f \<star> g \<star> h) \<star> (tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> TTfgh_TfTgh.the_\<theta> = (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh comp_arr_dom comp_cod_arr interchange [of "(f \<star> g) \<star> h" "\<a>\<^sup>-\<^sup>1[f, g, h]" TTfgh_TfTgh.the_\<theta> "((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine"] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>arr ?f; local.dom ?f = ?a\<rbrakk> \<Longrightarrow> ?f \<cdot> ?a = ?f \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>seq ((f \<star> g) \<star> h) \<a>\<^sup>-\<^sup>1[f, g, h]; seq TTfgh_TfTgh.the_\<theta> (((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)\<rbrakk> \<Longrightarrow> ((f \<star> g) \<star> h) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> \<cdot> (((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[f, g, h] \<star> TTfgh_TfTgh.the_\<theta> = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh assoc_naturality [of "f \<star> g" h TTfgh_TfTgh.the_\<theta>] comp_assoc [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>hseq f g; arr h; arr TTfgh_TfTgh.the_\<theta>; src (f \<star> g) = trg h; src h = trg TTfgh_TfTgh.the_\<theta>\<rbrakk> \<Longrightarrow> \<a>[cod (f \<star> g), cod h, cod TTfgh_TfTgh.the_\<theta>] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[local.dom (f \<star> g), local.dom h, local.dom TTfgh_TfTgh.the_\<theta>] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (((f \<star> g) \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using fg gh assoc_naturality [of f g "h \<star> TTfgh_TfTgh.the_\<theta>"] comp_assoc [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>arr f; arr g; hseq h TTfgh_TfTgh.the_\<theta>; src f = trg g; src g = trg (h \<star> TTfgh_TfTgh.the_\<theta>)\<rbrakk> \<Longrightarrow> \<a>[cod f, cod g, cod (h \<star> TTfgh_TfTgh.the_\<theta>)] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[local.dom f, local.dom g, local.dom (h \<star> TTfgh_TfTgh.the_\<theta>)] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> ((f \<star> g) \<star> h \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: \<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>) = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>[f, g, h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> \<a>[f \<star> g, h, tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> ((f \<star> g \<star> h) \<star> TTfgh_TfTgh.the_\<theta>)) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> Tgh.p\<^sub>0] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0]) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> [PROOF STEP] using \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "... = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] using fg gh [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] apply (unfold can_def) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = \<lbrace>E.Inv ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> E.VPar (\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) (E.Inv ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) 2. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<^bold>\<lfloor>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<rfloor> = \<^bold>\<lfloor>E.Inv ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<^bold>\<rfloor> [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] also [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>] \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<rbrace> = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "... = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] using fg gh whisker_can_left_0 [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h \<lbrakk>E.Ide ?t; E.Ide ?u; \<^bold>\<lfloor>?t\<^bold>\<rfloor> = \<^bold>\<lfloor>?u\<^bold>\<rfloor>; ide ?g; E.Trg ?t = \<^bold>\<langle>src ?g\<^bold>\<rangle>\<^sub>0\<rbrakk> \<Longrightarrow> ?g \<star> can ?u ?t = can (\<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> ?u) (\<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> ?t) goal (1 subgoal): 1. can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: \<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (\<a>[f, g, h \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[f \<star> g, h, ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h] \<star> ((tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[f \<star> g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g \<star> h, (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[f, (g \<star> h) \<star> (tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f \<star> \<a>[g \<star> h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0] \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> (\<a>\<^sup>-\<^sup>1[g, h, tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f \<star> ((g \<star> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0]) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] have 1: "arr ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] using fg gh [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h goal (1 subgoal): 1. seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] apply (intro seqI' comp_in_homI) [PROOF STATE] proof (prove) goal (8 subgoals): 1. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?a2 \<rightarrow> ?b8\<guillemotright> 2. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b8 \<rightarrow> ?b7\<guillemotright> 3. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b7 \<rightarrow> ?b6\<guillemotright> 4. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>(\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b6 \<rightarrow> ?b5\<guillemotright> 5. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b5 \<rightarrow> ?b4\<guillemotright> 6. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine : ?b4 \<rightarrow> ?b3\<guillemotright> 7. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) : ?b3 \<rightarrow> ?b2\<guillemotright> 8. \<lbrakk>src f = trg g; src g = trg h\<rbrakk> \<Longrightarrow> \<guillemotleft>g \<star> h \<star> TTfgh_TfTgh.the_\<theta> : ?b2 \<rightarrow> ?c2\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] moreover [PROOF STATE] proof (state) this: seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] have 2: "arr (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine])" [PROOF STATE] proof (prove) goal (1 subgoal): 1. seq (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] using calculation [PROOF STATE] proof (prove) using this: seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. seq (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] by blast [PROOF STATE] proof (state) this: seq (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) seq (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) seq (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] using whisker_left f.ide_base [PROOF STATE] proof (prove) using this: seq (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) seq (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?f \<star> ?\<nu> \<cdot> ?\<mu> = (?f \<star> ?\<nu>) \<cdot> (?f \<star> ?\<mu>) ide f goal (1 subgoal): 1. (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] goal (1 subgoal): 1. ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) = f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] also [PROOF STATE] proof (state) this: ((f \<star> g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (f \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (f \<star> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine])) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] have "... = f.composite_cell w\<^sub>f' \<theta>\<^sub>f' \<cdot> \<beta>\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] unfolding w\<^sub>f'_def \<theta>\<^sub>f'_def \<beta>\<^sub>f_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (f \<star> (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> \<a>[f, tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine] \<cdot> (f.tab \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> TTfgh_TfTgh.the_\<nu> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f goal (1 subgoal): 1. (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f [PROOF STEP] by blast [PROOF STATE] proof (state) this: (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) [PROOF STEP] using w\<^sub>f w\<^sub>f' \<theta>\<^sub>f \<theta>\<^sub>f' \<beta>\<^sub>f f.T2 [of w\<^sub>f w\<^sub>f' \<theta>\<^sub>f u\<^sub>f \<theta>\<^sub>f' \<beta>\<^sub>f] eq\<^sub>f [PROOF STATE] proof (prove) using this: ide w\<^sub>f ide w\<^sub>f' \<guillemotleft>\<theta>\<^sub>f : tab\<^sub>0 f \<star> w\<^sub>f \<rightarrow> u\<^sub>f\<guillemotright> \<guillemotleft>\<theta>\<^sub>f' : tab\<^sub>0 f \<star> w\<^sub>f' \<rightarrow> u\<^sub>f\<guillemotright> \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright> \<lbrakk>ide w\<^sub>f; ide w\<^sub>f'; \<guillemotleft>\<theta>\<^sub>f : tab\<^sub>0 f \<star> w\<^sub>f \<rightarrow> u\<^sub>f\<guillemotright>; \<guillemotleft>\<theta>\<^sub>f' : tab\<^sub>0 f \<star> w\<^sub>f' \<rightarrow> u\<^sub>f\<guillemotright>; \<guillemotleft>\<beta>\<^sub>f : tab\<^sub>1 f \<star> w\<^sub>f \<rightarrow> tab\<^sub>1 f \<star> w\<^sub>f'\<guillemotright>; (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f\<rbrakk> \<Longrightarrow> \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) (f \<star> \<theta>\<^sub>f) \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f] \<cdot> (f.tab \<star> w\<^sub>f) = ((f \<star> \<theta>\<^sub>f') \<cdot> \<a>[f, tab\<^sub>0 f, w\<^sub>f'] \<cdot> (f.tab \<star> w\<^sub>f')) \<cdot> \<beta>\<^sub>f goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) [PROOF STEP] by fast [PROOF STATE] proof (state) this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] obtain \<gamma>\<^sub>f where \<gamma>\<^sub>f: "\<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<Rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>\<gamma>\<^sub>f. \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using 5 [PROOF STATE] proof (prove) using this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma> \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>) goal (1 subgoal): 1. (\<And>\<gamma>\<^sub>f. \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) goal (3 subgoals): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 3. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] show "\<lbrakk>\<lbrakk>TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1\<rbrakk>\<rbrakk>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] have "iso \<gamma>\<^sub>f" [PROOF STATE] proof (prove) goal (1 subgoal): 1. local.iso \<gamma>\<^sub>f [PROOF STEP] using \<gamma>\<^sub>f BS3 w\<^sub>f_is_map w\<^sub>f'_is_map [PROOF STATE] proof (prove) using this: \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<lbrakk>is_left_adjoint ?f; is_left_adjoint ?f'; \<guillemotleft>?\<mu> : ?f \<rightarrow> ?f'\<guillemotright>; \<guillemotleft>?\<mu>' : ?f \<rightarrow> ?f'\<guillemotright>\<rbrakk> \<Longrightarrow> local.iso ?\<mu> \<and> local.iso ?\<mu>' \<and> ?\<mu> = ?\<mu>' is_left_adjoint w\<^sub>f is_left_adjoint w\<^sub>f' goal (1 subgoal): 1. local.iso \<gamma>\<^sub>f [PROOF STEP] by blast [PROOF STATE] proof (state) this: local.iso \<gamma>\<^sub>f goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] hence "isomorphic w\<^sub>f w\<^sub>f'" [PROOF STATE] proof (prove) using this: local.iso \<gamma>\<^sub>f goal (1 subgoal): 1. w\<^sub>f \<cong> w\<^sub>f' [PROOF STEP] using \<gamma>\<^sub>f isomorphic_def isomorphic_symmetric [PROOF STATE] proof (prove) using this: local.iso \<gamma>\<^sub>f \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) (?a \<cong> ?a') = (\<exists>f. \<guillemotleft>f : ?a \<rightarrow> ?a'\<guillemotright> \<and> local.iso f) ?f \<cong> ?g \<Longrightarrow> ?g \<cong> ?f goal (1 subgoal): 1. w\<^sub>f \<cong> w\<^sub>f' [PROOF STEP] by auto [PROOF STATE] proof (state) this: w\<^sub>f \<cong> w\<^sub>f' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: w\<^sub>f \<cong> w\<^sub>f' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] using w\<^sub>f w\<^sub>f_def w\<^sub>f'_def Maps.CLS_eqI isomorphic_symmetric [PROOF STATE] proof (prove) using this: w\<^sub>f \<cong> w\<^sub>f' ide w\<^sub>f w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 w\<^sub>f' = f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine ide ?f \<Longrightarrow> (\<lbrakk>\<lbrakk>?f\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>?g\<rbrakk>\<rbrakk>) = (?f \<cong> ?g) ?f \<cong> ?g \<Longrightarrow> ?g \<cong> ?f goal (1 subgoal): 1. \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<lbrakk>\<lbrakk>f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define u\<^sub>g where "u\<^sub>g = h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0" [PROOF STATE] proof (state) this: u\<^sub>g = h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define w\<^sub>g where "w\<^sub>g = Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1" [PROOF STATE] proof (state) this: w\<^sub>g = f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define w\<^sub>g' where "w\<^sub>g' = Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (state) this: w\<^sub>g' = g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<theta>\<^sub>g where "\<theta>\<^sub>g = \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] \<cdot> (h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (state) this: \<theta>\<^sub>g = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<theta>\<^sub>g' where "\<theta>\<^sub>g' = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (state) this: \<theta>\<^sub>g' = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<beta>\<^sub>g where "\<beta>\<^sub>g = \<a>[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (state) this: \<beta>\<^sub>g = \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have u\<^sub>g: "ide u\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide u\<^sub>g [PROOF STEP] unfolding u\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide u\<^sub>g goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>g: "ide w\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide w\<^sub>g [PROOF STEP] unfolding w\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide (f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. ide (f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by auto [PROOF STATE] proof (state) this: ide w\<^sub>g goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>g_is_map: "is_left_adjoint w\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint w\<^sub>g [PROOF STEP] unfolding w\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint (f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps left_adjoints_compose [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>is_left_adjoint ?f; is_left_adjoint ?f'; src ?f = trg ?f'\<rbrakk> \<Longrightarrow> is_left_adjoint (?f \<star> ?f') goal (1 subgoal): 1. is_left_adjoint (f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: is_left_adjoint w\<^sub>g goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>g': "ide w\<^sub>g'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide w\<^sub>g' [PROOF STEP] unfolding w\<^sub>g'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide (g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide w\<^sub>g' goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>g'_is_map: "is_left_adjoint w\<^sub>g'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint w\<^sub>g' [PROOF STEP] unfolding w\<^sub>g'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint (g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using TTfgh_TfTgh.is_map left_adjoints_compose [PROOF STATE] proof (prove) using this: is_left_adjoint TTfgh_TfTgh.chine \<lbrakk>is_left_adjoint ?f; is_left_adjoint ?f'; src ?f = trg ?f'\<rbrakk> \<Longrightarrow> is_left_adjoint (?f \<star> ?f') goal (1 subgoal): 1. is_left_adjoint (g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: is_left_adjoint w\<^sub>g' goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<theta>\<^sub>g: "\<guillemotleft>\<theta>\<^sub>g : tab\<^sub>0 g \<star> w\<^sub>g \<Rightarrow> u\<^sub>g\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>g : tab\<^sub>0 g \<star> w\<^sub>g \<rightarrow> u\<^sub>g\<guillemotright> [PROOF STEP] using w\<^sub>g_def u\<^sub>g_def \<theta>\<^sub>g_def fg\<^sub>0h\<^sub>1.p\<^sub>1_simps fg\<^sub>0h\<^sub>1.\<phi>_in_hom [PROOF STATE] proof (prove) using this: w\<^sub>g = f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 u\<^sub>g = h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<theta>\<^sub>g = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : src fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 h)\<guillemotright> \<guillemotleft>fg\<^sub>0h\<^sub>1.\<phi> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>g : tab\<^sub>0 g \<star> w\<^sub>g \<rightarrow> u\<^sub>g\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<theta>\<^sub>g : tab\<^sub>0 g \<star> w\<^sub>g \<rightarrow> u\<^sub>g\<guillemotright> goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<theta>\<^sub>g': "\<guillemotleft>\<theta>\<^sub>g' : tab\<^sub>0 g \<star> w\<^sub>g' \<Rightarrow> u\<^sub>g\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>g' : tab\<^sub>0 g \<star> w\<^sub>g' \<rightarrow> u\<^sub>g\<guillemotright> [PROOF STEP] unfolding w\<^sub>g'_def u\<^sub>g_def \<theta>\<^sub>g'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>(h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by (intro comp_in_homI) auto [PROOF STATE] proof (state) this: \<guillemotleft>\<theta>\<^sub>g' : tab\<^sub>0 g \<star> w\<^sub>g' \<rightarrow> u\<^sub>g\<guillemotright> goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>g_in_hhom: "in_hhom w\<^sub>g (src u\<^sub>g) (src (tab\<^sub>0 g))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>w\<^sub>g : src u\<^sub>g \<rightarrow> src (tab\<^sub>0 g)\<guillemotright> [PROOF STEP] unfolding w\<^sub>g_def u\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : src (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<rightarrow> src (tab\<^sub>0 g)\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>w\<^sub>g : src u\<^sub>g \<rightarrow> src (tab\<^sub>0 g)\<guillemotright> goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>g'_in_hhom: "in_hhom w\<^sub>g' (src u\<^sub>g) (src (tab\<^sub>0 g))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>w\<^sub>g' : src u\<^sub>g \<rightarrow> src (tab\<^sub>0 g)\<guillemotright> [PROOF STEP] unfolding w\<^sub>g'_def u\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : src (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<rightarrow> src (tab\<^sub>0 g)\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>w\<^sub>g' : src u\<^sub>g \<rightarrow> src (tab\<^sub>0 g)\<guillemotright> goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<beta>\<^sub>g: "\<guillemotleft>\<beta>\<^sub>g : tab\<^sub>1 g \<star> w\<^sub>g \<Rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<beta>\<^sub>g : tab\<^sub>1 g \<star> w\<^sub>g \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] proof (unfold \<beta>\<^sub>g_def w\<^sub>g_def, intro comp_in_homI) [PROOF STATE] proof (state) goal (8 subgoals): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b6\<guillemotright> 2. \<guillemotleft>local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : ?b6 \<rightarrow> ?b5\<guillemotright> 3. \<guillemotleft>\<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b5 \<rightarrow> ?b4\<guillemotright> 4. \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : ?b4 \<rightarrow> ?b3\<guillemotright> 5. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?b3 \<rightarrow> ?b2\<guillemotright> 6. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 7. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ?b1 \<rightarrow> ?b\<guillemotright> 8. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] : tab\<^sub>1 g \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1 \<Rightarrow> (tab\<^sub>1 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (7 subgoals): 1. \<guillemotleft>local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b5\<guillemotright> 2. \<guillemotleft>\<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b5 \<rightarrow> ?b4\<guillemotright> 3. \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : ?b4 \<rightarrow> ?b3\<guillemotright> 4. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?b3 \<rightarrow> ?b2\<guillemotright> 5. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 6. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ?b1 \<rightarrow> ?b\<guillemotright> 7. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1 : (tab\<^sub>1 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 \<Rightarrow> (tab\<^sub>0 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.\<phi>_in_hom f\<^sub>0g\<^sub>1.\<phi>_uniqueness(2) [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : src f\<^sub>0g\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 g)\<guillemotright> \<guillemotleft>f\<^sub>0g\<^sub>1.\<phi> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> local.iso f\<^sub>0g\<^sub>1.\<phi> goal (1 subgoal): 1. \<guillemotleft>local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom) auto [PROOF STATE] proof (state) this: \<guillemotleft>local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 : (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (6 subgoals): 1. \<guillemotleft>\<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b4\<guillemotright> 2. \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : ?b4 \<rightarrow> ?b3\<guillemotright> 3. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?b3 \<rightarrow> ?b2\<guillemotright> 4. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 5. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ?b1 \<rightarrow> ?b\<guillemotright> 6. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] : (tab\<^sub>0 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1 \<Rightarrow> tab\<^sub>0 f \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps \<gamma>\<^sub>f w\<^sub>f_def w\<^sub>f'_def [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 w\<^sub>f' = f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (5 subgoals): 1. \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b3\<guillemotright> 2. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : ?b3 \<rightarrow> ?b2\<guillemotright> 3. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 4. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ?b1 \<rightarrow> ?b\<guillemotright> 5. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : tab\<^sub>0 f \<star> Tfg.p\<^sub>1 \<star> TTfgh.p\<^sub>1 \<Rightarrow> tab\<^sub>0 f \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps \<gamma>\<^sub>f w\<^sub>f_def w\<^sub>f'_def [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) w\<^sub>f = f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 w\<^sub>f' = f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>tab\<^sub>0 f \<star> \<gamma>\<^sub>f : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine\<guillemotright> goal (4 subgoals): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> ?b2\<guillemotright> 2. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : ?b2 \<rightarrow> ?b1\<guillemotright> 3. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ?b1 \<rightarrow> ?b\<guillemotright> 4. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> TfTgh.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<Rightarrow> (tab\<^sub>0 f \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (3 subgoals): 1. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b1\<guillemotright> 2. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ?b1 \<rightarrow> ?b\<guillemotright> 3. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> TfTgh.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<Rightarrow> ((tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using f\<^sub>0gh\<^sub>1.\<phi>_in_hom [PROOF STATE] proof (prove) using this: \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> : src f\<^sub>0gh\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1)\<guillemotright> \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> : tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1 \<rightarrow> (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by (intro hcomp_in_vhom) auto [PROOF STATE] proof (state) this: \<guillemotleft>f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 f \<star> f\<^sub>0gh\<^sub>1.p\<^sub>1) \<star> TTfgh_TfTgh.chine \<rightarrow> ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine\<guillemotright> goal (2 subgoals): 1. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> ?b\<guillemotright> 2. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] : ((tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<Rightarrow> (tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] : ((tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<Rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] using w\<^sub>g'_def [PROOF STATE] proof (prove) using this: w\<^sub>g' = g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<guillemotleft>\<beta>\<^sub>g : tab\<^sub>1 g \<star> w\<^sub>g \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have eq\<^sub>g: "g.composite_cell w\<^sub>g \<theta>\<^sub>g = g.composite_cell w\<^sub>g' \<theta>\<^sub>g' \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "g.composite_cell w\<^sub>g \<theta>\<^sub>g = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] \<cdot> (h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1] \<cdot> (g.tab \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] unfolding w\<^sub>g_def \<theta>\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1]) \<cdot> (g.tab \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh f\<^sub>0g\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps whisker_left comp_assoc [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?f \<star> ?\<nu> \<cdot> ?\<mu> = (?f \<star> ?\<nu>) \<cdot> (?f \<star> ?\<mu>) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]))) \<cdot> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1] \<cdot> (g.tab \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] have "(\<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by (simp add: comp_assoc) [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> ((g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1]) \<cdot> (g.tab \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (g.tab \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] using fg gh f\<^sub>0g\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>0_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_assoc pentagon' invert_opposite_sides_of_square [of "\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1" "(\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1])" "\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" "\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1]"] [PROOF STATE] proof (prove) using this: src f = trg g src g = trg h trg f\<^sub>0g\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g) trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f \<lbrakk>ide ?f; ide ?g; ide ?h; ide ?k; src ?f = trg ?g; src ?g = trg ?h; src ?h = trg ?k\<rbrakk> \<Longrightarrow> ((\<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<star> ?k) \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g \<star> ?h, ?k]) \<cdot> (?f \<star> \<a>\<^sup>-\<^sup>1[?g, ?h, ?k]) = \<a>\<^sup>-\<^sup>1[?f \<star> ?g, ?h, ?k] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h \<star> ?k] \<lbrakk>seq (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])); (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]; local.iso (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1); local.iso \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]\<rbrakk> \<Longrightarrow> seq (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) (local.inv \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<and> seq (local.inv (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<and> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1])) \<cdot> local.inv \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1] = local.inv (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> ((g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps assoc'_naturality [of g.tab Tfg.p\<^sub>0 TTfgh.p\<^sub>1] [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr g.tab; arr f\<^sub>0g\<^sub>1.p\<^sub>0; arr fg\<^sub>0h\<^sub>1.p\<^sub>1; src g.tab = trg f\<^sub>0g\<^sub>1.p\<^sub>0; src f\<^sub>0g\<^sub>1.p\<^sub>0 = trg fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod g.tab, cod f\<^sub>0g\<^sub>1.p\<^sub>0, cod fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom g.tab, local.dom f\<^sub>0g\<^sub>1.p\<^sub>0, local.dom fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, Tfg.p\<^sub>0] \<star> TTfgh.p\<^sub>1) \<cdot> ((g.tab \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1]) \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = ((f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> Tfg.p\<^sub>1) \<star> TTfgh.p\<^sub>1) \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps whisker_right comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> ?f = (?\<nu> \<star> ?f) \<cdot> (?\<mu> \<star> ?f) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = ((f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0g\<^sub>1.\<phi>_uniqueness comp_cod_arr [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>?\<mu> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> \<Longrightarrow> ?\<mu> = f\<^sub>0g\<^sub>1.\<phi> local.iso f\<^sub>0g\<^sub>1.\<phi> \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = ((tab\<^sub>1 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) = f\<^sub>0g\<^sub>1.\<phi> \<cdot> inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] using f\<^sub>0g\<^sub>1.\<phi>_uniqueness whisker_right [PROOF STATE] proof (prove) using this: \<guillemotleft>?\<mu> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> \<Longrightarrow> ?\<mu> = f\<^sub>0g\<^sub>1.\<phi> local.iso f\<^sub>0g\<^sub>1.\<phi> \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> ?f = (?\<nu> \<star> ?f) \<cdot> (?\<mu> \<star> ?f) goal (1 subgoal): 1. (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = (tab\<^sub>1 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1" [PROOF STATE] proof (prove) goal (1 subgoal): 1. f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 = (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] using f\<^sub>0g\<^sub>1.\<phi>_uniqueness comp_arr_inv' [PROOF STATE] proof (prove) using this: \<guillemotleft>?\<mu> : tab\<^sub>0 f \<star> f\<^sub>0g\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0\<guillemotright> \<Longrightarrow> ?\<mu> = f\<^sub>0g\<^sub>1.\<phi> local.iso f\<^sub>0g\<^sub>1.\<phi> local.iso ?f \<Longrightarrow> ?f \<cdot> local.inv ?f = cod ?f goal (1 subgoal): 1. f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 = (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] by simp [PROOF STATE] proof (state) this: f\<^sub>0g\<^sub>1.\<phi> \<cdot> local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 = (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) = (tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 goal (1 subgoal): 1. ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] also [PROOF STATE] proof (state) this: ((f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_cod_arr [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f goal (1 subgoal): 1. ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((tab\<^sub>1 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) using this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] unfolding \<theta>\<^sub>f_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = ((g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0]) \<cdot> (g \<star> h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (g \<star> fg\<^sub>0h\<^sub>1.\<phi>) \<cdot> \<a>[g, tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (\<a>[g, tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0] \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> ((g.tab \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> (f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using \<gamma>\<^sub>f comp_assoc [PROOF STATE] proof (prove) using this: \<guillemotleft>\<gamma>\<^sub>f : w\<^sub>f \<rightarrow> w\<^sub>f'\<guillemotright> \<and> \<beta>\<^sub>f = tab\<^sub>1 f \<star> \<gamma>\<^sub>f \<and> \<theta>\<^sub>f = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: \<theta>\<^sub>f \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] unfolding \<theta>\<^sub>f'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine]) \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: \<theta>\<^sub>f' \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, TfTgh.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, Tfg.p\<^sub>1, TTfgh.p\<^sub>1] \<cdot> (inv f\<^sub>0g\<^sub>1.\<phi> \<star> TTfgh.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine [PROOF STEP] using f\<^sub>0gh\<^sub>1.p\<^sub>0_simps comp_cod_arr comp_arr_dom comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>arr ?f; local.dom ?f = ?a\<rbrakk> \<Longrightarrow> ?f \<cdot> ?a = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) = f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by fastforce [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g [PROOF STEP] unfolding \<beta>\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (f\<^sub>0gh\<^sub>1.\<phi> \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 f, f\<^sub>0gh\<^sub>1.p\<^sub>1, TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 f \<star> \<gamma>\<^sub>f) \<cdot> \<a>[tab\<^sub>0 f, f\<^sub>0g\<^sub>1.p\<^sub>1, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> (local.inv f\<^sub>0g\<^sub>1.\<phi> \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "(((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using f\<^sub>0gh\<^sub>1.p\<^sub>0_simps assoc'_naturality [of "(g.tab \<star> Tgh.p\<^sub>1)" TfTgh.p\<^sub>0 TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>hseq g.tab g\<^sub>0h\<^sub>1.p\<^sub>1; arr f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) = trg f\<^sub>0gh\<^sub>1.p\<^sub>0; src f\<^sub>0gh\<^sub>1.p\<^sub>0 = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1), cod f\<^sub>0gh\<^sub>1.p\<^sub>0, cod TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1), local.dom f\<^sub>0gh\<^sub>1.p\<^sub>0, local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "((g.tab \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps assoc'_naturality [of g.tab Tgh.p\<^sub>1 "TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine"] [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>arr g.tab; arr g\<^sub>0h\<^sub>1.p\<^sub>1; hseq f\<^sub>0gh\<^sub>1.p\<^sub>0 TTfgh_TfTgh.chine; src g.tab = trg g\<^sub>0h\<^sub>1.p\<^sub>1; src g\<^sub>0h\<^sub>1.p\<^sub>1 = trg (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod g.tab, cod g\<^sub>0h\<^sub>1.p\<^sub>1, cod (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom g.tab, local.dom g\<^sub>0h\<^sub>1.p\<^sub>1, local.dom (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] goal (1 subgoal): 1. ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>1 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine [PROOF STEP] using comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc g\<^sub>0h\<^sub>1.\<phi>_in_hom [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> : src g\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> trg (tab\<^sub>1 h)\<guillemotright> \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] by simp [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> (tab\<^sub>0 g \<star> Tgh.p\<^sub>1)) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps comp_assoc comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (((g \<star> (tab\<^sub>0 g \<star> Tgh.p\<^sub>1)) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps whisker_right comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?\<nu> \<cdot> ?\<mu> \<star> ?f = (?\<nu> \<star> ?f) \<cdot> (?\<mu> \<star> ?f) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps comp_cod_arr [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f goal (1 subgoal): 1. (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: (((g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) = (\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((\<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "(((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "(((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = ((((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] have "(((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using gh f\<^sub>0gh\<^sub>1.p\<^sub>0_simps assoc'_naturality [of "g \<star> g\<^sub>0h\<^sub>1.\<phi>" TfTgh.p\<^sub>0 TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src g = trg h trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>hseq g g\<^sub>0h\<^sub>1.\<phi>; arr f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src (g \<star> g\<^sub>0h\<^sub>1.\<phi>) = trg f\<^sub>0gh\<^sub>1.p\<^sub>0; src f\<^sub>0gh\<^sub>1.p\<^sub>0 = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod (g \<star> g\<^sub>0h\<^sub>1.\<phi>), cod f\<^sub>0gh\<^sub>1.p\<^sub>0, cod TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom (g \<star> g\<^sub>0h\<^sub>1.\<phi>), local.dom f\<^sub>0gh\<^sub>1.p\<^sub>0, local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> ((((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] have "(((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using gh f\<^sub>0gh\<^sub>1.p\<^sub>0_simps assoc'_naturality [of "g \<star> h.tab \<star> Tgh.p\<^sub>0" TfTgh.p\<^sub>0 TTfgh_TfTgh.chine] [PROOF STATE] proof (prove) using this: src g = trg h trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>hseq g (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0); arr f\<^sub>0gh\<^sub>1.p\<^sub>0; arr TTfgh_TfTgh.chine; src (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) = trg f\<^sub>0gh\<^sub>1.p\<^sub>0; src f\<^sub>0gh\<^sub>1.p\<^sub>0 = trg TTfgh_TfTgh.chine\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0), cod f\<^sub>0gh\<^sub>1.p\<^sub>0, cod TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom (g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0), local.dom f\<^sub>0gh\<^sub>1.p\<^sub>0, local.dom TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by presburger [PROOF STATE] proof (state) this: ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine]) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using gh f\<^sub>0gh\<^sub>1.p\<^sub>0_simps assoc'_naturality [of g g\<^sub>0h\<^sub>1.\<phi> "TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine"] [PROOF STATE] proof (prove) using this: src g = trg h trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>arr g; arr g\<^sub>0h\<^sub>1.\<phi>; hseq f\<^sub>0gh\<^sub>1.p\<^sub>0 TTfgh_TfTgh.chine; src g = trg g\<^sub>0h\<^sub>1.\<phi>; src g\<^sub>0h\<^sub>1.\<phi> = trg (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod g, cod g\<^sub>0h\<^sub>1.\<phi>, cod (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom g, local.dom g\<^sub>0h\<^sub>1.\<phi>, local.dom (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] goal (1 subgoal): 1. ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> ((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] have "((g \<star> h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using gh f\<^sub>0gh\<^sub>1.p\<^sub>0_simps assoc'_naturality [of g "h.tab \<star> Tgh.p\<^sub>0" "TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine"] [PROOF STATE] proof (prove) using this: src g = trg h trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>arr g; hseq h.tab g\<^sub>0h\<^sub>1.p\<^sub>0; hseq f\<^sub>0gh\<^sub>1.p\<^sub>0 TTfgh_TfTgh.chine; src g = trg (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0); src (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) = trg (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[cod g, cod (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0), cod (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[local.dom g, local.dom (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0), local.dom (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] goal (1 subgoal): 1. ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: ((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by presburger [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((((g \<star> h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> (((g \<star> g\<^sub>0h\<^sub>1.\<phi>) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g = (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "\<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "\<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using gh f\<^sub>0gh\<^sub>1.p\<^sub>0_simps canI_associator_0 \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src g = trg h trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] = can (\<^bold>\<langle>?f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>?h\<^bold>\<rangle>) ((\<^bold>\<langle>?f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>?g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>?h\<^bold>\<rangle>) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "... = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] unfolding can_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>E.Inv ((((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> [PROOF STEP] using gh [PROOF STATE] proof (prove) using this: src g = trg h goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>E.Inv ((((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. src g = trg h \<Longrightarrow> E.VPar \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] (E.Inv ((((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) 2. src g = trg h \<Longrightarrow> \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> = \<^bold>\<lfloor>E.Inv ((((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<^bold>\<rfloor> [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "\<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "\<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using gh f\<^sub>0gh\<^sub>1.p\<^sub>0_simps canI_associator_0 \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src g = trg h trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] = can (\<^bold>\<langle>?f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>?h\<^bold>\<rangle>) ((\<^bold>\<langle>?f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>?g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>?h\<^bold>\<rangle>) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "... = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] unfolding can_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>E.Inv (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> [PROOF STEP] using gh [PROOF STATE] proof (prove) using this: src g = trg h goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>E.Inv (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. src g = trg h \<Longrightarrow> E.VPar \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] (E.Inv (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) 2. src g = trg h \<Longrightarrow> \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> = \<^bold>\<lfloor>E.Inv (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<^bold>\<rfloor> [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] using gh whisker_can_left_0 [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] = can (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can ((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) src g = trg h \<lbrakk>E.Ide ?t; E.Ide ?u; \<^bold>\<lfloor>?t\<^bold>\<rfloor> = \<^bold>\<lfloor>?u\<^bold>\<rfloor>; ide ?g; E.Trg ?t = \<^bold>\<langle>src ?g\<^bold>\<rangle>\<^sub>0\<rbrakk> \<Longrightarrow> ?g \<star> can ?u ?t = can (\<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> ?u) (\<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> ?t) goal (1 subgoal): 1. can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] moreover [PROOF STATE] proof (state) this: can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "\<a>[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] have "\<a>[g, tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1] \<star> TfTgh.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> Tgh.p\<^sub>1, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using gh g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src g = trg h trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] have "... = \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. E.VPar (\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]) 2. \<^bold>\<lfloor>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] also [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> ((\<^bold>\<a>\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] have "... = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] using gh g\<^sub>0h\<^sub>1.p\<^sub>1_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: src g = trg h trg g\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 g\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>1\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: (g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, (h \<star> tab\<^sub>0 h) \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (\<a>[g, tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[g \<star> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> ((\<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1] \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0) \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[(g \<star> tab\<^sub>0 g) \<star> g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g \<star> tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> ((h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] using gh whisker_left [PROOF STATE] proof (prove) using this: src g = trg h \<lbrakk>ide ?f; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> ?f \<star> ?\<nu> \<cdot> ?\<mu> = (?f \<star> ?\<nu>) \<cdot> (?f \<star> ?\<mu>) goal (1 subgoal): 1. ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g [PROOF STEP] by auto [PROOF STATE] proof (state) this: ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] also [PROOF STATE] proof (state) this: ((g \<star> h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (g \<star> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> (g \<star> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] have "... = g.composite_cell w\<^sub>g' \<theta>\<^sub>g' \<cdot> \<beta>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] unfolding w\<^sub>g'_def \<theta>\<^sub>g'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<beta>\<^sub>g [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (g \<star> (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[g, tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<beta>\<^sub>g = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g goal (1 subgoal): 1. (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g [PROOF STEP] by blast [PROOF STATE] proof (state) this: (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 6: "\<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>g \<Rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma> \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma> \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>) [PROOF STEP] using w\<^sub>g w\<^sub>g' \<theta>\<^sub>g \<theta>\<^sub>g' \<beta>\<^sub>g eq\<^sub>g g.T2 [of w\<^sub>g w\<^sub>g' \<theta>\<^sub>g u\<^sub>g \<theta>\<^sub>g' \<beta>\<^sub>g] [PROOF STATE] proof (prove) using this: ide w\<^sub>g ide w\<^sub>g' \<guillemotleft>\<theta>\<^sub>g : tab\<^sub>0 g \<star> w\<^sub>g \<rightarrow> u\<^sub>g\<guillemotright> \<guillemotleft>\<theta>\<^sub>g' : tab\<^sub>0 g \<star> w\<^sub>g' \<rightarrow> u\<^sub>g\<guillemotright> \<guillemotleft>\<beta>\<^sub>g : tab\<^sub>1 g \<star> w\<^sub>g \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright> (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g \<lbrakk>ide w\<^sub>g; ide w\<^sub>g'; \<guillemotleft>\<theta>\<^sub>g : tab\<^sub>0 g \<star> w\<^sub>g \<rightarrow> u\<^sub>g\<guillemotright>; \<guillemotleft>\<theta>\<^sub>g' : tab\<^sub>0 g \<star> w\<^sub>g' \<rightarrow> u\<^sub>g\<guillemotright>; \<guillemotleft>\<beta>\<^sub>g : tab\<^sub>1 g \<star> w\<^sub>g \<rightarrow> tab\<^sub>1 g \<star> w\<^sub>g'\<guillemotright>; (g \<star> \<theta>\<^sub>g) \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g] \<cdot> (g.tab \<star> w\<^sub>g) = ((g \<star> \<theta>\<^sub>g') \<cdot> \<a>[g, tab\<^sub>0 g, w\<^sub>g'] \<cdot> (g.tab \<star> w\<^sub>g')) \<cdot> \<beta>\<^sub>g\<rbrakk> \<Longrightarrow> \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma> \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma> \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>) [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma> \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>) goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] obtain \<gamma>\<^sub>g where \<gamma>\<^sub>g: "\<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<Rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>\<gamma>\<^sub>g. \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using 6 [PROOF STATE] proof (prove) using this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma> \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>) goal (1 subgoal): 1. (\<And>\<gamma>\<^sub>g. \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) goal (2 subgoals): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> 2. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] show "\<lbrakk>\<lbrakk>Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1\<rbrakk>\<rbrakk>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] have "iso \<gamma>\<^sub>g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. local.iso \<gamma>\<^sub>g [PROOF STEP] using \<gamma>\<^sub>g BS3 w\<^sub>g_is_map w\<^sub>g'_is_map [PROOF STATE] proof (prove) using this: \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<lbrakk>is_left_adjoint ?f; is_left_adjoint ?f'; \<guillemotleft>?\<mu> : ?f \<rightarrow> ?f'\<guillemotright>; \<guillemotleft>?\<mu>' : ?f \<rightarrow> ?f'\<guillemotright>\<rbrakk> \<Longrightarrow> local.iso ?\<mu> \<and> local.iso ?\<mu>' \<and> ?\<mu> = ?\<mu>' is_left_adjoint w\<^sub>g is_left_adjoint w\<^sub>g' goal (1 subgoal): 1. local.iso \<gamma>\<^sub>g [PROOF STEP] by blast [PROOF STATE] proof (state) this: local.iso \<gamma>\<^sub>g goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] hence "isomorphic w\<^sub>g w\<^sub>g'" [PROOF STATE] proof (prove) using this: local.iso \<gamma>\<^sub>g goal (1 subgoal): 1. w\<^sub>g \<cong> w\<^sub>g' [PROOF STEP] using \<gamma>\<^sub>g isomorphic_def isomorphic_symmetric [PROOF STATE] proof (prove) using this: local.iso \<gamma>\<^sub>g \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) (?a \<cong> ?a') = (\<exists>f. \<guillemotleft>f : ?a \<rightarrow> ?a'\<guillemotright> \<and> local.iso f) ?f \<cong> ?g \<Longrightarrow> ?g \<cong> ?f goal (1 subgoal): 1. w\<^sub>g \<cong> w\<^sub>g' [PROOF STEP] by auto [PROOF STATE] proof (state) this: w\<^sub>g \<cong> w\<^sub>g' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: w\<^sub>g \<cong> w\<^sub>g' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] using w\<^sub>g w\<^sub>g' w\<^sub>g_def w\<^sub>g'_def Maps.CLS_eqI [PROOF STATE] proof (prove) using this: w\<^sub>g \<cong> w\<^sub>g' ide w\<^sub>g ide w\<^sub>g' w\<^sub>g = f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 w\<^sub>g' = g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine ide ?f \<Longrightarrow> (\<lbrakk>\<lbrakk>?f\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>?g\<rbrakk>\<rbrakk>) = (?f \<cong> ?g) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<rbrakk>\<rbrakk> goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define u\<^sub>h where "u\<^sub>h = tab\<^sub>0 h \<star> TTfgh.p\<^sub>0" [PROOF STATE] proof (state) this: u\<^sub>h = tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define w\<^sub>h where "w\<^sub>h = TTfgh.p\<^sub>0" [PROOF STATE] proof (state) this: w\<^sub>h = fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define w\<^sub>h' where "w\<^sub>h' = Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (state) this: w\<^sub>h' = g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<theta>\<^sub>h where "\<theta>\<^sub>h = tab\<^sub>0 h \<star> TTfgh.p\<^sub>0" [PROOF STATE] proof (state) this: \<theta>\<^sub>h = tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<theta>\<^sub>h' where "\<theta>\<^sub>h' = TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (state) this: \<theta>\<^sub>h' = TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] define \<beta>\<^sub>h where "\<beta>\<^sub>h = \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (state) this: \<beta>\<^sub>h = \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have u\<^sub>h: "ide u\<^sub>h" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide u\<^sub>h [PROOF STEP] unfolding u\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide (tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide u\<^sub>h goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>h: "ide w\<^sub>h" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide w\<^sub>h [PROOF STEP] unfolding w\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide fg\<^sub>0h\<^sub>1.p\<^sub>0 [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide w\<^sub>h goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>h_is_map: "is_left_adjoint w\<^sub>h" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint w\<^sub>h [PROOF STEP] unfolding w\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint fg\<^sub>0h\<^sub>1.p\<^sub>0 [PROOF STEP] by simp [PROOF STATE] proof (state) this: is_left_adjoint w\<^sub>h goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>h': "ide w\<^sub>h'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide w\<^sub>h' [PROOF STEP] unfolding w\<^sub>h'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. ide (g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: ide w\<^sub>h' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have w\<^sub>h'_is_map: "is_left_adjoint w\<^sub>h'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint w\<^sub>h' [PROOF STEP] unfolding w\<^sub>h'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_left_adjoint (g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>0_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps TTfgh_TfTgh.is_map left_adjoints_compose [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) is_left_adjoint TTfgh_TfTgh.chine \<lbrakk>is_left_adjoint ?f; is_left_adjoint ?f'; src ?f = trg ?f'\<rbrakk> \<Longrightarrow> is_left_adjoint (?f \<star> ?f') goal (1 subgoal): 1. is_left_adjoint (g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) [PROOF STEP] by simp [PROOF STATE] proof (state) this: is_left_adjoint w\<^sub>h' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<theta>\<^sub>h: "\<guillemotleft>\<theta>\<^sub>h : tab\<^sub>0 h \<star> w\<^sub>h \<Rightarrow> u\<^sub>h\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>h : tab\<^sub>0 h \<star> w\<^sub>h \<rightarrow> u\<^sub>h\<guillemotright> [PROOF STEP] unfolding \<theta>\<^sub>h_def w\<^sub>h_def u\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 : tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<theta>\<^sub>h : tab\<^sub>0 h \<star> w\<^sub>h \<rightarrow> u\<^sub>h\<guillemotright> goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<theta>\<^sub>h': "\<guillemotleft>\<theta>\<^sub>h' : tab\<^sub>0 h \<star> w\<^sub>h' \<Rightarrow> u\<^sub>h\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<theta>\<^sub>h' : tab\<^sub>0 h \<star> w\<^sub>h' \<rightarrow> u\<^sub>h\<guillemotright> [PROOF STEP] unfolding \<theta>\<^sub>h'_def w\<^sub>h'_def u\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] using g\<^sub>0h\<^sub>1.p\<^sub>0_simps f\<^sub>0gh\<^sub>1.p\<^sub>0_simps [PROOF STATE] proof (prove) using this: trg g\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) trg f\<^sub>0gh\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) goal (1 subgoal): 1. \<guillemotleft>TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> [PROOF STEP] by (intro comp_in_homI) auto [PROOF STATE] proof (state) this: \<guillemotleft>\<theta>\<^sub>h' : tab\<^sub>0 h \<star> w\<^sub>h' \<rightarrow> u\<^sub>h\<guillemotright> goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have \<beta>\<^sub>h: "\<guillemotleft>\<beta>\<^sub>h : tab\<^sub>1 h \<star> w\<^sub>h \<Rightarrow> tab\<^sub>1 h \<star> w\<^sub>h'\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<beta>\<^sub>h : tab\<^sub>1 h \<star> w\<^sub>h \<rightarrow> tab\<^sub>1 h \<star> w\<^sub>h'\<guillemotright> [PROOF STEP] proof (unfold \<beta>\<^sub>h_def w\<^sub>h_def w\<^sub>h'_def, intro comp_in_homI) [PROOF STATE] proof (state) goal (6 subgoals): 1. \<guillemotleft>local.inv fg\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> ?b4\<guillemotright> 2. \<guillemotleft>\<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : ?b4 \<rightarrow> ?b3\<guillemotright> 3. \<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : ?b3 \<rightarrow> ?b2\<guillemotright> 4. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b2 \<rightarrow> ?b1\<guillemotright> 5. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : ?b1 \<rightarrow> ?b\<guillemotright> 6. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>inv fg\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>1 h \<star> TTfgh.p\<^sub>0 \<Rightarrow> (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>local.inv fg\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.\<phi>_uniqueness [PROOF STATE] proof (prove) using this: \<guillemotleft>?\<mu> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> \<Longrightarrow> ?\<mu> = fg\<^sub>0h\<^sub>1.\<phi> local.iso fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. \<guillemotleft>local.inv fg\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<guillemotleft>local.inv fg\<^sub>0h\<^sub>1.\<phi> : tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 \<rightarrow> (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (5 subgoals): 1. \<guillemotleft>\<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b3\<guillemotright> 2. \<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : ?b3 \<rightarrow> ?b2\<guillemotright> 3. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b2 \<rightarrow> ?b1\<guillemotright> 4. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : ?b1 \<rightarrow> ?b\<guillemotright> 5. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] : (tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1 \<Rightarrow> tab\<^sub>0 g \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1\<guillemotright> goal (4 subgoals): 1. \<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> ?b2\<guillemotright> 2. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b2 \<rightarrow> ?b1\<guillemotright> 3. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : ?b1 \<rightarrow> ?b\<guillemotright> 4. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : tab\<^sub>0 g \<star> Tfg.p\<^sub>0 \<star> TTfgh.p\<^sub>1 \<Rightarrow> tab\<^sub>0 g \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using \<gamma>\<^sub>g w\<^sub>g_def w\<^sub>g'_def fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) w\<^sub>g = f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 w\<^sub>g' = g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>tab\<^sub>0 g \<star> \<gamma>\<^sub>g : tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0 \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> goal (3 subgoals): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> ?b1\<guillemotright> 2. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : ?b1 \<rightarrow> ?b\<guillemotright> 3. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 g \<star> Tgh.p\<^sub>1 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<Rightarrow> (tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> goal (2 subgoals): 1. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> ?b\<guillemotright> 2. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : ?b \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 g \<star> Tgh.p\<^sub>1) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<Rightarrow> (tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by force [PROOF STATE] proof (state) this: \<guillemotleft>g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine : (tab\<^sub>0 g \<star> g\<^sub>0h\<^sub>1.p\<^sub>1) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] show "\<guillemotleft>\<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 h \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<Rightarrow> tab\<^sub>1 h \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] : (tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine \<rightarrow> tab\<^sub>1 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<guillemotright> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<guillemotleft>\<beta>\<^sub>h : tab\<^sub>1 h \<star> w\<^sub>h \<rightarrow> tab\<^sub>1 h \<star> w\<^sub>h'\<guillemotright> goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have eq\<^sub>h: "h.composite_cell w\<^sub>h \<theta>\<^sub>h = h.composite_cell w\<^sub>h' \<theta>\<^sub>h' \<cdot> \<beta>\<^sub>h" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "h.composite_cell w\<^sub>h \<theta>\<^sub>h = (h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] \<cdot> (h.tab \<star> TTfgh.p\<^sub>0)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] unfolding w\<^sub>h_def \<theta>\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] \<cdot> (h.tab \<star> TTfgh.p\<^sub>0)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] have "(h \<star> tab\<^sub>0 h \<star> TTfgh.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] = \<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] [PROOF STEP] using comp_cod_arr [PROOF STATE] proof (prove) using this: \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] by metis [PROOF STATE] proof (state) this: (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> tab\<^sub>0 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (\<a>[h, tab\<^sub>0 h, TTfgh.p\<^sub>0] \<cdot> (h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "(h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> Tfg.p\<^sub>0) \<star> TTfgh.p\<^sub>1) \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps comp_assoc_assoc' [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = (h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using fg\<^sub>0h\<^sub>1.p\<^sub>1_simps fg\<^sub>0h\<^sub>1.\<phi>_uniqueness comp_cod_arr [PROOF STATE] proof (prove) using this: trg fg\<^sub>0h\<^sub>1.p\<^sub>1 = src (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<guillemotleft>?\<mu> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> \<Longrightarrow> ?\<mu> = fg\<^sub>0h\<^sub>1.\<phi> local.iso fg\<^sub>0h\<^sub>1.\<phi> \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> ((tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = (h.tab \<star> TTfgh.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> TTfgh.p\<^sub>0)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] using comp_arr_inv' fg\<^sub>0h\<^sub>1.\<phi>_uniqueness [PROOF STATE] proof (prove) using this: local.iso ?f \<Longrightarrow> ?f \<cdot> local.inv ?f = cod ?f \<guillemotleft>?\<mu> : (tab\<^sub>0 g \<star> f\<^sub>0g\<^sub>1.p\<^sub>0) \<star> fg\<^sub>0h\<^sub>1.p\<^sub>1 \<rightarrow> tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0\<guillemotright> \<Longrightarrow> ?\<mu> = fg\<^sub>0h\<^sub>1.\<phi> local.iso fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = h.tab \<star> TTfgh.p\<^sub>0" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 [PROOF STEP] using comp_arr_dom fg\<^sub>0h\<^sub>1.p\<^sub>0_simps [PROOF STATE] proof (prove) using this: \<lbrakk>arr ?f; local.dom ?f = ?a\<rbrakk> \<Longrightarrow> ?f \<cdot> ?a = ?f trg fg\<^sub>0h\<^sub>1.p\<^sub>0 = src (tab\<^sub>1 h) goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> (tab\<^sub>1 h \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 [PROOF STEP] have "(h.tab \<star> TTfgh.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1]) \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> TTfgh.p\<^sub>0" [PROOF STATE] proof (prove) using this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> (\<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0 (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: \<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] unfolding \<theta>\<^sub>g_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (\<a>[h, tab\<^sub>0 h, fg\<^sub>0h\<^sub>1.p\<^sub>0] \<cdot> (h.tab \<star> fg\<^sub>0h\<^sub>1.p\<^sub>0) \<cdot> fg\<^sub>0h\<^sub>1.\<phi> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1]) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using \<gamma>\<^sub>g [PROOF STATE] proof (prove) using this: \<guillemotleft>\<gamma>\<^sub>g : w\<^sub>g \<rightarrow> w\<^sub>g'\<guillemotright> \<and> \<beta>\<^sub>g = tab\<^sub>1 g \<star> \<gamma>\<^sub>g \<and> \<theta>\<^sub>g = \<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) goal (1 subgoal): 1. \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: \<theta>\<^sub>g \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] unfolding \<theta>\<^sub>g'_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (\<theta>\<^sub>g' \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g)) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine [PROOF STEP] using comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> Tgh.p\<^sub>0) \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> ((\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using assoc_naturality [of h.tab Tgh.p\<^sub>0 "TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine"] comp_assoc [PROOF STATE] proof (prove) using this: \<lbrakk>arr h.tab; arr g\<^sub>0h\<^sub>1.p\<^sub>0; hseq f\<^sub>0gh\<^sub>1.p\<^sub>0 TTfgh_TfTgh.chine; src h.tab = trg g\<^sub>0h\<^sub>1.p\<^sub>0; src g\<^sub>0h\<^sub>1.p\<^sub>0 = trg (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)\<rbrakk> \<Longrightarrow> \<a>[cod h.tab, cod g\<^sub>0h\<^sub>1.p\<^sub>0, cod (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[local.dom h.tab, local.dom g\<^sub>0h\<^sub>1.p\<^sub>0, local.dom (f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)] (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (\<a>[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0) \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "(\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine [PROOF STEP] using comp_cod_arr comp_assoc_assoc' [PROOF STATE] proof (prove) using this: \<lbrakk>arr ?f; cod ?f = ?b\<rbrakk> \<Longrightarrow> ?b \<cdot> ?f = ?f \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>[?f, ?g, ?h] \<cdot> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] = ?f \<star> ?g \<star> ?h \<lbrakk>ide ?f; ide ?g; ide ?h; src ?f = trg ?g; src ?g = trg ?h\<rbrakk> \<Longrightarrow> \<a>\<^sup>-\<^sup>1[?f, ?g, ?h] \<cdot> \<a>[?f, ?g, ?h] = (?f \<star> ?g) \<star> ?h goal (1 subgoal): 1. (\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine [PROOF STEP] by simp [PROOF STATE] proof (state) this: (\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) = h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine])) \<cdot> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> ((\<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] using \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "\<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] unfolding can_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<lbrace>E.Inv ((((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. E.VPar (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]) (E.Inv ((((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) 2. \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> = \<^bold>\<lfloor>E.Inv ((((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<^bold>\<rfloor> [PROOF STEP] by simp_all [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>h\<^bold>\<rangle>, \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> can (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] using whisker_can_left_0 [PROOF STATE] proof (prove) using this: \<lbrakk>E.Ide ?t; E.Ide ?u; \<^bold>\<lfloor>?t\<^bold>\<rfloor> = \<^bold>\<lfloor>?u\<^bold>\<rfloor>; ide ?g; E.Trg ?t = \<^bold>\<langle>src ?g\<^bold>\<rangle>\<^sub>0\<rbrakk> \<Longrightarrow> ?g \<star> can ?u ?t = can (\<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> ?u) (\<^bold>\<langle>?g\<^bold>\<rangle> \<^bold>\<star> ?t) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] have "can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> (\<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)" [PROOF STATE] proof (prove) using this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] = h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (can (\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> ((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (((\<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using whisker_left [of h] comp_assoc [PROOF STATE] proof (prove) using this: \<lbrakk>ide h; seq ?\<nu> ?\<mu>\<rbrakk> \<Longrightarrow> h \<star> ?\<nu> \<cdot> ?\<mu> = (h \<star> ?\<nu>) \<cdot> (h \<star> ?\<mu>) (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: ((h \<star> TTfgh_TfTgh.the_\<theta>) \<cdot> (h \<star> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>))) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, Tgh.p\<^sub>1, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, Tfg.p\<^sub>0, TTfgh.p\<^sub>1] \<cdot> inv fg\<^sub>0h\<^sub>1.\<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] unfolding can_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>E.Inv ((((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<rbrace> = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> [PROOF STEP] apply (intro E.eval_eqI) [PROOF STATE] proof (prove) goal (2 subgoals): 1. E.VPar (E.Inv ((((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) (\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]) 2. \<^bold>\<lfloor>E.Inv ((((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<^bold>\<rfloor> [PROOF STEP] by auto [PROOF STATE] proof (state) this: can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] also [PROOF STATE] proof (state) this: can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] have "... = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] using \<a>'_def \<alpha>_def [PROOF STATE] proof (prove) using this: \<a>\<^sup>-\<^sup>1[?\<mu>, ?\<nu>, ?\<tau>] \<equiv> \<alpha>' (?\<mu>, ?\<nu>, ?\<tau>) \<alpha> ?\<mu>\<nu>\<tau> \<equiv> \<a>[fst ?\<mu>\<nu>\<tau>, fst (snd ?\<mu>\<nu>\<tau>), snd (snd ?\<mu>\<nu>\<tau>)] goal (1 subgoal): 1. \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle>, \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>, \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>\<^bold>]\<rbrace> = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] have "can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>Tgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TfTgh.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> Tgh.p\<^sub>0, TfTgh.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, Tgh.p\<^sub>0, TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine]" [PROOF STATE] proof (prove) using this: can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] [PROOF STEP] by simp [PROOF STATE] proof (state) this: can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) = \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] also [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> can (((\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>) (\<^bold>\<langle>tab\<^sub>0 h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^sub>0h\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>f\<^sub>0gh\<^sub>1.p\<^sub>0\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>TTfgh_TfTgh.chine\<^bold>\<rangle>)) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] have "... = h.composite_cell w\<^sub>h' \<theta>\<^sub>h' \<cdot> \<beta>\<^sub>h" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] unfolding w\<^sub>h'_def \<theta>\<^sub>h'_def \<beta>\<^sub>h_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] using comp_assoc [PROOF STATE] proof (prove) using this: (?h \<cdot> ?g) \<cdot> ?f = ?h \<cdot> ?g \<cdot> ?f goal (1 subgoal): 1. (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine)) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> [PROOF STEP] by presburger [PROOF STATE] proof (state) this: (h \<star> TTfgh_TfTgh.the_\<theta> \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h \<star> g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0, TTfgh_TfTgh.chine] \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine]) \<cdot> \<a>[h, tab\<^sub>0 h, g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (h.tab \<star> g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>[tab\<^sub>1 h, g\<^sub>0h\<^sub>1.p\<^sub>0, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (g\<^sub>0h\<^sub>1.\<phi> \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine) \<cdot> \<a>\<^sup>-\<^sup>1[tab\<^sub>0 g, g\<^sub>0h\<^sub>1.p\<^sub>1, f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine] \<cdot> (tab\<^sub>0 g \<star> \<gamma>\<^sub>g) \<cdot> \<a>[tab\<^sub>0 g, f\<^sub>0g\<^sub>1.p\<^sub>0, fg\<^sub>0h\<^sub>1.p\<^sub>1] \<cdot> local.inv fg\<^sub>0h\<^sub>1.\<phi> = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h goal (1 subgoal): 1. (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h [PROOF STEP] by simp [PROOF STATE] proof (state) this: (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have 7: "\<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>h \<Rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma> \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma> \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>) [PROOF STEP] using w\<^sub>h w\<^sub>h' \<theta>\<^sub>h \<theta>\<^sub>h' \<beta>\<^sub>h eq\<^sub>h h.T2 [of w\<^sub>h w\<^sub>h' \<theta>\<^sub>h u\<^sub>h \<theta>\<^sub>h' \<beta>\<^sub>h] [PROOF STATE] proof (prove) using this: ide w\<^sub>h ide w\<^sub>h' \<guillemotleft>\<theta>\<^sub>h : tab\<^sub>0 h \<star> w\<^sub>h \<rightarrow> u\<^sub>h\<guillemotright> \<guillemotleft>\<theta>\<^sub>h' : tab\<^sub>0 h \<star> w\<^sub>h' \<rightarrow> u\<^sub>h\<guillemotright> \<guillemotleft>\<beta>\<^sub>h : tab\<^sub>1 h \<star> w\<^sub>h \<rightarrow> tab\<^sub>1 h \<star> w\<^sub>h'\<guillemotright> (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h \<lbrakk>ide w\<^sub>h; ide w\<^sub>h'; \<guillemotleft>\<theta>\<^sub>h : tab\<^sub>0 h \<star> w\<^sub>h \<rightarrow> u\<^sub>h\<guillemotright>; \<guillemotleft>\<theta>\<^sub>h' : tab\<^sub>0 h \<star> w\<^sub>h' \<rightarrow> u\<^sub>h\<guillemotright>; \<guillemotleft>\<beta>\<^sub>h : tab\<^sub>1 h \<star> w\<^sub>h \<rightarrow> tab\<^sub>1 h \<star> w\<^sub>h'\<guillemotright>; (h \<star> \<theta>\<^sub>h) \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h] \<cdot> (h.tab \<star> w\<^sub>h) = ((h \<star> \<theta>\<^sub>h') \<cdot> \<a>[h, tab\<^sub>0 h, w\<^sub>h'] \<cdot> (h.tab \<star> w\<^sub>h')) \<cdot> \<beta>\<^sub>h\<rbrakk> \<Longrightarrow> \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma> \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>) goal (1 subgoal): 1. \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma> \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>) [PROOF STEP] by blast [PROOF STATE] proof (state) this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma> \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] obtain \<gamma>\<^sub>h where \<gamma>\<^sub>h: "\<guillemotleft>\<gamma>\<^sub>h : w\<^sub>h \<Rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma>\<^sub>h \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>\<^sub>h)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>\<gamma>\<^sub>h. \<guillemotleft>\<gamma>\<^sub>h : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma>\<^sub>h \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>\<^sub>h) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using 7 [PROOF STATE] proof (prove) using this: \<exists>!\<gamma>. \<guillemotleft>\<gamma> : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma> \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>) goal (1 subgoal): 1. (\<And>\<gamma>\<^sub>h. \<guillemotleft>\<gamma>\<^sub>h : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma>\<^sub>h \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>\<^sub>h) \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<guillemotleft>\<gamma>\<^sub>h : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma>\<^sub>h \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>\<^sub>h) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] show "\<lbrakk>\<lbrakk>Tgh.p\<^sub>0 \<star> TfTgh.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>TTfgh.p\<^sub>0\<rbrakk>\<rbrakk>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] have "iso \<gamma>\<^sub>h" [PROOF STATE] proof (prove) goal (1 subgoal): 1. local.iso \<gamma>\<^sub>h [PROOF STEP] using \<gamma>\<^sub>h BS3 w\<^sub>h_is_map w\<^sub>h'_is_map [PROOF STATE] proof (prove) using this: \<guillemotleft>\<gamma>\<^sub>h : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma>\<^sub>h \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>\<^sub>h) \<lbrakk>is_left_adjoint ?f; is_left_adjoint ?f'; \<guillemotleft>?\<mu> : ?f \<rightarrow> ?f'\<guillemotright>; \<guillemotleft>?\<mu>' : ?f \<rightarrow> ?f'\<guillemotright>\<rbrakk> \<Longrightarrow> local.iso ?\<mu> \<and> local.iso ?\<mu>' \<and> ?\<mu> = ?\<mu>' is_left_adjoint w\<^sub>h is_left_adjoint w\<^sub>h' goal (1 subgoal): 1. local.iso \<gamma>\<^sub>h [PROOF STEP] by blast [PROOF STATE] proof (state) this: local.iso \<gamma>\<^sub>h goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] hence "isomorphic w\<^sub>h w\<^sub>h'" [PROOF STATE] proof (prove) using this: local.iso \<gamma>\<^sub>h goal (1 subgoal): 1. w\<^sub>h \<cong> w\<^sub>h' [PROOF STEP] using \<gamma>\<^sub>h isomorphic_def isomorphic_symmetric [PROOF STATE] proof (prove) using this: local.iso \<gamma>\<^sub>h \<guillemotleft>\<gamma>\<^sub>h : w\<^sub>h \<rightarrow> w\<^sub>h'\<guillemotright> \<and> \<beta>\<^sub>h = tab\<^sub>1 h \<star> \<gamma>\<^sub>h \<and> \<theta>\<^sub>h = \<theta>\<^sub>h' \<cdot> (tab\<^sub>0 h \<star> \<gamma>\<^sub>h) (?a \<cong> ?a') = (\<exists>f. \<guillemotleft>f : ?a \<rightarrow> ?a'\<guillemotright> \<and> local.iso f) ?f \<cong> ?g \<Longrightarrow> ?g \<cong> ?f goal (1 subgoal): 1. w\<^sub>h \<cong> w\<^sub>h' [PROOF STEP] by auto [PROOF STATE] proof (state) this: w\<^sub>h \<cong> w\<^sub>h' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: w\<^sub>h \<cong> w\<^sub>h' goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] using w\<^sub>h w\<^sub>h' w\<^sub>h_def w\<^sub>h'_def Maps.CLS_eqI [of w\<^sub>h w\<^sub>h'] [PROOF STATE] proof (prove) using this: w\<^sub>h \<cong> w\<^sub>h' ide w\<^sub>h ide w\<^sub>h' w\<^sub>h = fg\<^sub>0h\<^sub>1.p\<^sub>0 w\<^sub>h' = g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine ide w\<^sub>h \<Longrightarrow> (\<lbrakk>\<lbrakk>w\<^sub>h\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>w\<^sub>h'\<rbrakk>\<rbrakk>) = (w\<^sub>h \<cong> w\<^sub>h') goal (1 subgoal): 1. \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<lbrakk>\<lbrakk>g\<^sub>0h\<^sub>1.p\<^sub>0 \<star> f\<^sub>0gh\<^sub>1.p\<^sub>0 \<star> TTfgh_TfTgh.chine\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>fg\<^sub>0h\<^sub>1.p\<^sub>0\<rbrakk>\<rbrakk> goal: No subgoals! [PROOF STEP] qed
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sebastien Gouezel, Heather Macbeth, Patrick Massot, Floris van Doorn ! This file was ported from Lean 3 source module topology.vector_bundle.basic ! leanprover-community/mathlib commit 0187644979f2d3e10a06e916a869c994facd9a87 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Analysis.NormedSpace.BoundedLinearMaps import Mathbin.Topology.FiberBundle.Basic /-! # Vector bundles In this file we define (topological) vector bundles. Let `B` be the base space, let `F` be a normed space over a normed field `R`, and let `E : B → Type*` be a `fiber_bundle` with fiber `F`, in which, for each `x`, the fiber `E x` is a topological vector space over `R`. To have a vector bundle structure on `bundle.total_space E`, one should additionally have the following properties: * The bundle trivializations in the trivialization atlas should be continuous linear equivs in the fibers; * For any two trivializations `e`, `e'` in the atlas the transition function considered as a map from `B` into `F →L[R] F` is continuous on `e.base_set ∩ e'.base_set` with respect to the operator norm topology on `F →L[R] F`. If these conditions are satisfied, we register the typeclass `vector_bundle R F E`. We define constructions on vector bundles like pullbacks and direct sums in other files. ## Implementation notes The implementation choices in the vector bundle definition are discussed in the "Implementation notes" section of `topology.fiber_bundle.basic`. ## Tags Vector bundle -/ noncomputable section open Bundle Set open Classical Bundle variable (R 𝕜 : Type _) {B : Type _} (F : Type _) (E : B → Type _) section TopologicalVectorSpace variable {B F E} [Semiring R] [TopologicalSpace F] [TopologicalSpace B] /-- A mixin class for `pretrivialization`, stating that a pretrivialization is fiberwise linear with respect to given module structures on its fibers and the model fiber. -/ protected class Pretrivialization.IsLinear [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] (e : Pretrivialization F (π E)) : Prop where linear : ∀ b ∈ e.baseSet, IsLinearMap R fun x : E b => (e (totalSpaceMk b x)).2 #align pretrivialization.is_linear Pretrivialization.IsLinear namespace Pretrivialization variable {F E} (e : Pretrivialization F (π E)) {x : TotalSpace E} {b : B} {y : E b} theorem linear [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : IsLinearMap R fun x : E b => (e (totalSpaceMk b x)).2 := Pretrivialization.IsLinear.linear b hb #align pretrivialization.linear Pretrivialization.linear variable [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] /-- A fiberwise linear inverse to `e`. -/ @[simps] protected def symmₗ (e : Pretrivialization F (π E)) [e.isLinear R] (b : B) : F →ₗ[R] E b := by refine' IsLinearMap.mk' (e.symm b) _ by_cases hb : b ∈ e.base_set · exact (((e.linear R hb).mk' _).inverse (e.symm b) (e.symm_apply_apply_mk hb) fun v => congr_arg Prod.snd <| e.apply_mk_symm hb v).isLinear · rw [e.coe_symm_of_not_mem hb] exact (0 : F →ₗ[R] E b).isLinear #align pretrivialization.symmₗ Pretrivialization.symmₗ /-- A pretrivialization for a vector bundle defines linear equivalences between the fibers and the model space. -/ @[simps (config := { fullyApplied := false })] def linearEquivAt (e : Pretrivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) : E b ≃ₗ[R] F where toFun y := (e (totalSpaceMk b y)).2 invFun := e.symm b left_inv := e.symm_apply_apply_mk hb right_inv v := by simp_rw [e.apply_mk_symm hb v] map_add' v w := (e.linear R hb).map_add v w map_smul' c v := (e.linear R hb).map_smul c v #align pretrivialization.linear_equiv_at Pretrivialization.linearEquivAt /-- A fiberwise linear map equal to `e` on `e.base_set`. -/ protected def linearMapAt (e : Pretrivialization F (π E)) [e.isLinear R] (b : B) : E b →ₗ[R] F := if hb : b ∈ e.baseSet then e.linearEquivAt R b hb else 0 #align pretrivialization.linear_map_at Pretrivialization.linearMapAt variable {R} theorem coe_linearMapAt (e : Pretrivialization F (π E)) [e.isLinear R] (b : B) : ⇑(e.linearMapAt R b) = fun y => if b ∈ e.baseSet then (e (totalSpaceMk b y)).2 else 0 := by rw [Pretrivialization.linearMapAt] split_ifs <;> rfl #align pretrivialization.coe_linear_map_at Pretrivialization.coe_linearMapAt theorem coe_linearMapAt_of_mem (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : ⇑(e.linearMapAt R b) = fun y => (e (totalSpaceMk b y)).2 := by simp_rw [coe_linear_map_at, if_pos hb] #align pretrivialization.coe_linear_map_at_of_mem Pretrivialization.coe_linearMapAt_of_mem theorem linearMapAt_apply (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (y : E b) : e.linearMapAt R b y = if b ∈ e.baseSet then (e (totalSpaceMk b y)).2 else 0 := by rw [coe_linear_map_at] #align pretrivialization.linear_map_at_apply Pretrivialization.linearMapAt_apply theorem linearMapAt_def_of_mem (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : e.linearMapAt R b = e.linearEquivAt R b hb := dif_pos hb #align pretrivialization.linear_map_at_def_of_mem Pretrivialization.linearMapAt_def_of_mem theorem linearMapAt_def_of_not_mem (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∉ e.baseSet) : e.linearMapAt R b = 0 := dif_neg hb #align pretrivialization.linear_map_at_def_of_not_mem Pretrivialization.linearMapAt_def_of_not_mem theorem linearMapAt_eq_zero (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∉ e.baseSet) : e.linearMapAt R b = 0 := dif_neg hb #align pretrivialization.linear_map_at_eq_zero Pretrivialization.linearMapAt_eq_zero theorem symmₗ_linearMapAt (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) (y : E b) : e.symmₗ R b (e.linearMapAt R b y) = y := by rw [e.linear_map_at_def_of_mem hb] exact (e.linear_equiv_at R b hb).left_inv y #align pretrivialization.symmₗ_linear_map_at Pretrivialization.symmₗ_linearMapAt theorem linearMapAt_symmₗ (e : Pretrivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) (y : F) : e.linearMapAt R b (e.symmₗ R b y) = y := by rw [e.linear_map_at_def_of_mem hb] exact (e.linear_equiv_at R b hb).right_inv y #align pretrivialization.linear_map_at_symmₗ Pretrivialization.linearMapAt_symmₗ end Pretrivialization variable (R) [TopologicalSpace (TotalSpace E)] /-- A mixin class for `trivialization`, stating that a trivialization is fiberwise linear with respect to given module structures on its fibers and the model fiber. -/ protected class Trivialization.IsLinear [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] (e : Trivialization F (π E)) : Prop where linear : ∀ b ∈ e.baseSet, IsLinearMap R fun x : E b => (e (totalSpaceMk b x)).2 #align trivialization.is_linear Trivialization.IsLinear namespace Trivialization variable (e : Trivialization F (π E)) {x : TotalSpace E} {b : B} {y : E b} protected theorem linear [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : IsLinearMap R fun y : E b => (e (totalSpaceMk b y)).2 := Trivialization.IsLinear.linear b hb #align trivialization.linear Trivialization.linear instance toPretrivialization.isLinear [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] [e.isLinear R] : e.toPretrivialization.isLinear R := { (‹_› : e.isLinear R) with } #align trivialization.to_pretrivialization.is_linear Trivialization.toPretrivialization.isLinear variable [AddCommMonoid F] [Module R F] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] /-- A trivialization for a vector bundle defines linear equivalences between the fibers and the model space. -/ def linearEquivAt (e : Trivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) : E b ≃ₗ[R] F := e.toPretrivialization.linearEquivAt R b hb #align trivialization.linear_equiv_at Trivialization.linearEquivAt variable {R} @[simp] theorem linearEquivAt_apply (e : Trivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) (v : E b) : e.linearEquivAt R b hb v = (e (totalSpaceMk b v)).2 := rfl #align trivialization.linear_equiv_at_apply Trivialization.linearEquivAt_apply @[simp] theorem linearEquivAt_symm_apply (e : Trivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) (v : F) : (e.linearEquivAt R b hb).symm v = e.symm b v := rfl #align trivialization.linear_equiv_at_symm_apply Trivialization.linearEquivAt_symm_apply variable (R) /-- A fiberwise linear inverse to `e`. -/ protected def symmₗ (e : Trivialization F (π E)) [e.isLinear R] (b : B) : F →ₗ[R] E b := e.toPretrivialization.symmₗ R b #align trivialization.symmₗ Trivialization.symmₗ variable {R} theorem coe_symmₗ (e : Trivialization F (π E)) [e.isLinear R] (b : B) : ⇑(e.symmₗ R b) = e.symm b := rfl #align trivialization.coe_symmₗ Trivialization.coe_symmₗ variable (R) /-- A fiberwise linear map equal to `e` on `e.base_set`. -/ protected def linearMapAt (e : Trivialization F (π E)) [e.isLinear R] (b : B) : E b →ₗ[R] F := e.toPretrivialization.linearMapAt R b #align trivialization.linear_map_at Trivialization.linearMapAt variable {R} theorem coe_linearMapAt (e : Trivialization F (π E)) [e.isLinear R] (b : B) : ⇑(e.linearMapAt R b) = fun y => if b ∈ e.baseSet then (e (totalSpaceMk b y)).2 else 0 := e.toPretrivialization.coe_linearMapAt b #align trivialization.coe_linear_map_at Trivialization.coe_linearMapAt theorem coe_linearMapAt_of_mem (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : ⇑(e.linearMapAt R b) = fun y => (e (totalSpaceMk b y)).2 := by simp_rw [coe_linear_map_at, if_pos hb] #align trivialization.coe_linear_map_at_of_mem Trivialization.coe_linearMapAt_of_mem theorem linearMapAt_apply (e : Trivialization F (π E)) [e.isLinear R] {b : B} (y : E b) : e.linearMapAt R b y = if b ∈ e.baseSet then (e (totalSpaceMk b y)).2 else 0 := by rw [coe_linear_map_at] #align trivialization.linear_map_at_apply Trivialization.linearMapAt_apply theorem linearMapAt_def_of_mem (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : e.linearMapAt R b = e.linearEquivAt R b hb := dif_pos hb #align trivialization.linear_map_at_def_of_mem Trivialization.linearMapAt_def_of_mem theorem linearMapAt_def_of_not_mem (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∉ e.baseSet) : e.linearMapAt R b = 0 := dif_neg hb #align trivialization.linear_map_at_def_of_not_mem Trivialization.linearMapAt_def_of_not_mem theorem symmₗ_linearMapAt (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) (y : E b) : e.symmₗ R b (e.linearMapAt R b y) = y := e.toPretrivialization.symmₗ_linearMapAt hb y #align trivialization.symmₗ_linear_map_at Trivialization.symmₗ_linearMapAt theorem linearMapAt_symmₗ (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) (y : F) : e.linearMapAt R b (e.symmₗ R b y) = y := e.toPretrivialization.linearMapAt_symmₗ hb y #align trivialization.linear_map_at_symmₗ Trivialization.linearMapAt_symmₗ variable (R) /-- A coordinate change function between two trivializations, as a continuous linear equivalence. Defined to be the identity when `b` does not lie in the base set of both trivializations. -/ def coordChangeL (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] (b : B) : F ≃L[R] F := { if hb : b ∈ e.baseSet ∩ e'.baseSet then (e.linearEquivAt R b (hb.1 : _)).symm.trans (e'.linearEquivAt R b hb.2) else LinearEquiv.refl R F with continuous_toFun := by by_cases hb : b ∈ e.base_set ∩ e'.base_set · simp_rw [dif_pos hb] refine' (e'.continuous_on.comp_continuous _ _).snd exact e.continuous_on_symm.comp_continuous (Continuous.Prod.mk b) fun y => mk_mem_prod hb.1 (mem_univ y) exact fun y => e'.mem_source.mpr hb.2 · rw [dif_neg hb] exact continuous_id continuous_invFun := by by_cases hb : b ∈ e.base_set ∩ e'.base_set · simp_rw [dif_pos hb] refine' (e.continuous_on.comp_continuous _ _).snd exact e'.continuous_on_symm.comp_continuous (Continuous.Prod.mk b) fun y => mk_mem_prod hb.2 (mem_univ y) exact fun y => e.mem_source.mpr hb.1 · rw [dif_neg hb] exact continuous_id } #align trivialization.coord_changeL Trivialization.coordChangeL variable {R} theorem coe_coordChangeL (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) : ⇑(coordChangeL R e e' b) = (e.linearEquivAt R b hb.1).symm.trans (e'.linearEquivAt R b hb.2) := congr_arg LinearEquiv.toFun (dif_pos hb) #align trivialization.coe_coord_changeL Trivialization.coe_coordChangeL theorem coe_coord_changeL' (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) : (coordChangeL R e e' b).toLinearEquiv = (e.linearEquivAt R b hb.1).symm.trans (e'.linearEquivAt R b hb.2) := LinearEquiv.coe_injective (coe_coordChangeL _ _ _) #align trivialization.coe_coord_changeL' Trivialization.coe_coord_changeL' theorem symm_coordChangeL (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e'.baseSet ∩ e.baseSet) : (e.coordChangeL R e' b).symm = e'.coordChangeL R e b := by apply ContinuousLinearEquiv.toLinearEquiv_injective rw [coe_coord_changeL' e' e hb, (coord_changeL R e e' b).symm_toLinearEquiv, coe_coord_changeL' e e' hb.symm, LinearEquiv.trans_symm, LinearEquiv.symm_symm] #align trivialization.symm_coord_changeL Trivialization.symm_coordChangeL theorem coordChangeL_apply (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) (y : F) : coordChangeL R e e' b y = (e' (totalSpaceMk b (e.symm b y))).2 := congr_arg (fun f => LinearEquiv.toFun f y) (dif_pos hb) #align trivialization.coord_changeL_apply Trivialization.coordChangeL_apply theorem mk_coordChangeL (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) (y : F) : (b, coordChangeL R e e' b y) = e' (totalSpaceMk b (e.symm b y)) := by ext · rw [e.mk_symm hb.1 y, e'.coe_fst', e.proj_symm_apply' hb.1] rw [e.proj_symm_apply' hb.1] exact hb.2 · exact e.coord_changeL_apply e' hb y #align trivialization.mk_coord_changeL Trivialization.mk_coordChangeL theorem apply_symm_apply_eq_coordChangeL (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) (v : F) : e' (e.toLocalHomeomorph.symm (b, v)) = (b, e.coordChangeL R e' b v) := by rw [e.mk_coord_changeL e' hb, e.mk_symm hb.1] #align trivialization.apply_symm_apply_eq_coord_changeL Trivialization.apply_symm_apply_eq_coordChangeL /-- A version of `coord_change_apply` that fully unfolds `coord_change`. The right-hand side is ugly, but has good definitional properties for specifically defined trivializations. -/ theorem coordChangeL_apply' (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) (y : F) : coordChangeL R e e' b y = (e' (e.toLocalHomeomorph.symm (b, y))).2 := by rw [e.coord_changeL_apply e' hb, e.mk_symm hb.1] #align trivialization.coord_changeL_apply' Trivialization.coordChangeL_apply' theorem coordChangeL_symm_apply (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) : ⇑(coordChangeL R e e' b).symm = (e'.linearEquivAt R b hb.2).symm.trans (e.linearEquivAt R b hb.1) := congr_arg LinearEquiv.invFun (dif_pos hb) #align trivialization.coord_changeL_symm_apply Trivialization.coordChangeL_symm_apply end Trivialization end TopologicalVectorSpace section namespace Bundle /-- The zero section of a vector bundle -/ def zeroSection [∀ x, Zero (E x)] : B → TotalSpace E := fun x => totalSpaceMk x 0 #align bundle.zero_section Bundle.zeroSection @[simp, mfld_simps] theorem zeroSection_proj [∀ x, Zero (E x)] (x : B) : (zeroSection E x).proj = x := rfl #align bundle.zero_section_proj Bundle.zeroSection_proj @[simp, mfld_simps] theorem zeroSection_snd [∀ x, Zero (E x)] (x : B) : (zeroSection E x).2 = 0 := rfl #align bundle.zero_section_snd Bundle.zeroSection_snd end Bundle open Bundle variable [NontriviallyNormedField R] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] [NormedAddCommGroup F] [NormedSpace R F] [TopologicalSpace B] [TopologicalSpace (TotalSpace E)] [∀ x, TopologicalSpace (E x)] [FiberBundle F E] /- ./././Mathport/Syntax/Translate/Command.lean:388:30: infer kinds are unsupported in Lean 4: #[`continuousOn_coord_change'] [] -/ /-- The space `total_space E` (for `E : B → Type*` such that each `E x` is a topological vector space) has a topological vector space structure with fiber `F` (denoted with `vector_bundle R F E`) if around every point there is a fiber bundle trivialization which is linear in the fibers. -/ class VectorBundle : Prop where trivialization_linear' : ∀ (e : Trivialization F (π E)) [MemTrivializationAtlas e], e.isLinear R continuousOn_coord_change' : ∀ (e e' : Trivialization F (π E)) [MemTrivializationAtlas e] [MemTrivializationAtlas e'], ContinuousOn (fun b => Trivialization.coordChangeL R e e' b : B → F →L[R] F) (e.baseSet ∩ e'.baseSet) #align vector_bundle VectorBundle variable {F E} instance (priority := 100) trivialization_linear [VectorBundle R F E] (e : Trivialization F (π E)) [MemTrivializationAtlas e] : e.isLinear R := VectorBundle.trivialization_linear' e #align trivialization_linear trivialization_linear theorem continuousOn_coord_change [VectorBundle R F E] (e e' : Trivialization F (π E)) [he : MemTrivializationAtlas e] [he' : MemTrivializationAtlas e'] : ContinuousOn (fun b => Trivialization.coordChangeL R e e' b : B → F →L[R] F) (e.baseSet ∩ e'.baseSet) := VectorBundle.continuousOn_coord_change' R e e' #align continuous_on_coord_change continuousOn_coord_change namespace Trivialization /-- Forward map of `continuous_linear_equiv_at` (only propositionally equal), defined everywhere (`0` outside domain). -/ @[simps (config := { fullyApplied := false }) apply] def continuousLinearMapAt (e : Trivialization F (π E)) [e.isLinear R] (b : B) : E b →L[R] F := {-- given explicitly to help `simps` e.linearMapAt R b with toFun := e.linearMapAt R b cont := by dsimp rw [e.coe_linear_map_at b] refine' continuous_if_const _ (fun hb => _) fun _ => continuous_zero exact continuous_snd.comp (e.continuous_on.comp_continuous (FiberBundle.totalSpaceMk_inducing F E b).Continuous fun x => e.mem_source.mpr hb) } #align trivialization.continuous_linear_map_at Trivialization.continuousLinearMapAt /-- Backwards map of `continuous_linear_equiv_at`, defined everywhere. -/ @[simps (config := { fullyApplied := false }) apply] def symmL (e : Trivialization F (π E)) [e.isLinear R] (b : B) : F →L[R] E b := {-- given explicitly to help `simps` e.symmₗ R b with toFun := e.symm b cont := by by_cases hb : b ∈ e.base_set · rw [(FiberBundle.totalSpaceMk_inducing F E b).continuous_iff] exact e.continuous_on_symm.comp_continuous (continuous_const.prod_mk continuous_id) fun x => mk_mem_prod hb (mem_univ x) · refine' continuous_zero.congr fun x => (e.symm_apply_of_not_mem hb x).symm } #align trivialization.symmL Trivialization.symmL variable {R} theorem symmL_continuousLinearMapAt (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) (y : E b) : e.symmL R b (e.continuousLinearMapAt R b y) = y := e.symmₗ_linearMapAt hb y #align trivialization.symmL_continuous_linear_map_at Trivialization.symmL_continuousLinearMapAt theorem continuousLinearMapAt_symmL (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) (y : F) : e.continuousLinearMapAt R b (e.symmL R b y) = y := e.linearMapAt_symmₗ hb y #align trivialization.continuous_linear_map_at_symmL Trivialization.continuousLinearMapAt_symmL variable (R) /-- In a vector bundle, a trivialization in the fiber (which is a priori only linear) is in fact a continuous linear equiv between the fibers and the model fiber. -/ @[simps (config := { fullyApplied := false }) apply symm_apply] def continuousLinearEquivAt (e : Trivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) : E b ≃L[R] F := {-- given explicitly to help `simps` -- given explicitly to help `simps` e.toPretrivialization.linearEquivAt R b hb with toFun := fun y => (e (totalSpaceMk b y)).2 invFun := e.symm b continuous_toFun := continuous_snd.comp (e.ContinuousOn.comp_continuous (FiberBundle.totalSpaceMk_inducing F E b).Continuous fun x => e.mem_source.mpr hb) continuous_invFun := (e.symmL R b).Continuous } #align trivialization.continuous_linear_equiv_at Trivialization.continuousLinearEquivAt variable {R} theorem coe_continuousLinearEquivAt_eq (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : (e.continuousLinearEquivAt R b hb : E b → F) = e.continuousLinearMapAt R b := (e.coe_linearMapAt_of_mem hb).symm #align trivialization.coe_continuous_linear_equiv_at_eq Trivialization.coe_continuousLinearEquivAt_eq theorem symm_continuousLinearEquivAt_eq (e : Trivialization F (π E)) [e.isLinear R] {b : B} (hb : b ∈ e.baseSet) : ((e.continuousLinearEquivAt R b hb).symm : F → E b) = e.symmL R b := rfl #align trivialization.symm_continuous_linear_equiv_at_eq Trivialization.symm_continuousLinearEquivAt_eq @[simp] theorem continuousLinearEquivAt_apply' (e : Trivialization F (π E)) [e.isLinear R] (x : TotalSpace E) (hx : x ∈ e.source) : e.continuousLinearEquivAt R x.proj (e.mem_source.1 hx) x.2 = (e x).2 := by cases x rfl #align trivialization.continuous_linear_equiv_at_apply' Trivialization.continuousLinearEquivAt_apply' variable (R) theorem apply_eq_prod_continuousLinearEquivAt (e : Trivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) (z : E b) : e ⟨b, z⟩ = (b, e.continuousLinearEquivAt R b hb z) := by ext · refine' e.coe_fst _ rw [e.source_eq] exact hb · simp only [coe_coe, continuous_linear_equiv_at_apply] #align trivialization.apply_eq_prod_continuous_linear_equiv_at Trivialization.apply_eq_prod_continuousLinearEquivAt protected theorem zeroSection (e : Trivialization F (π E)) [e.isLinear R] {x : B} (hx : x ∈ e.baseSet) : e (zeroSection E x) = (x, 0) := by simp_rw [zero_section, total_space_mk, e.apply_eq_prod_continuous_linear_equiv_at R x hx 0, map_zero] #align trivialization.zero_section Trivialization.zeroSection variable {R} theorem symm_apply_eq_mk_continuousLinearEquivAt_symm (e : Trivialization F (π E)) [e.isLinear R] (b : B) (hb : b ∈ e.baseSet) (z : F) : e.toLocalHomeomorph.symm ⟨b, z⟩ = totalSpaceMk b ((e.continuousLinearEquivAt R b hb).symm z) := by have h : (b, z) ∈ e.target := by rw [e.target_eq] exact ⟨hb, mem_univ _⟩ apply e.inj_on (e.map_target h) · simp only [e.source_eq, hb, mem_preimage] simp_rw [e.right_inv h, coe_coe, e.apply_eq_prod_continuous_linear_equiv_at R b hb, ContinuousLinearEquiv.apply_symm_apply] #align trivialization.symm_apply_eq_mk_continuous_linear_equiv_at_symm Trivialization.symm_apply_eq_mk_continuousLinearEquivAt_symm theorem comp_continuousLinearEquivAt_eq_coord_change (e e' : Trivialization F (π E)) [e.isLinear R] [e'.isLinear R] {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) : (e.continuousLinearEquivAt R b hb.1).symm.trans (e'.continuousLinearEquivAt R b hb.2) = coordChangeL R e e' b := by ext v rw [coord_changeL_apply e e' hb] rfl #align trivialization.comp_continuous_linear_equiv_at_eq_coord_change Trivialization.comp_continuousLinearEquivAt_eq_coord_change end Trivialization include R F /-! ### Constructing vector bundles -/ variable (R B F) /-- Analogous construction of `fiber_bundle_core` for vector bundles. This construction gives a way to construct vector bundles from a structure registering how trivialization changes act on fibers. -/ structure VectorBundleCore (ι : Type _) where baseSet : ι → Set B isOpen_baseSet : ∀ i, IsOpen (base_set i) indexAt : B → ι mem_baseSet_at : ∀ x, x ∈ base_set (index_at x) coordChange : ι → ι → B → F →L[R] F coordChange_self : ∀ i, ∀ x ∈ base_set i, ∀ v, coord_change i i x v = v continuousOn_coordChange : ∀ i j, ContinuousOn (coord_change i j) (base_set i ∩ base_set j) coordChange_comp : ∀ i j k, ∀ x ∈ base_set i ∩ base_set j ∩ base_set k, ∀ v, (coord_change j k x) (coord_change i j x v) = coord_change i k x v #align vector_bundle_core VectorBundleCore /-- The trivial vector bundle core, in which all the changes of coordinates are the identity. -/ def trivialVectorBundleCore (ι : Type _) [Inhabited ι] : VectorBundleCore R B F ι where baseSet ι := univ isOpen_baseSet i := isOpen_univ indexAt := default mem_baseSet_at x := mem_univ x coordChange i j x := ContinuousLinearMap.id R F coordChange_self i x hx v := rfl coordChange_comp i j k x hx v := rfl continuousOn_coordChange i j := continuousOn_const #align trivial_vector_bundle_core trivialVectorBundleCore instance (ι : Type _) [Inhabited ι] : Inhabited (VectorBundleCore R B F ι) := ⟨trivialVectorBundleCore R B F ι⟩ namespace VectorBundleCore variable {R B F} {ι : Type _} (Z : VectorBundleCore R B F ι) /-- Natural identification to a `fiber_bundle_core`. -/ @[simps (config := mfld_cfg)] def toFiberBundleCore : FiberBundleCore ι B F := { Z with coordChange := fun i j b => Z.coordChange i j b continuousOn_coordChange := fun i j => isBoundedBilinearMapApply.Continuous.comp_continuousOn ((Z.continuousOn_coordChange i j).Prod_map continuousOn_id) } #align vector_bundle_core.to_fiber_bundle_core VectorBundleCore.toFiberBundleCore instance toFiberBundleCoreCoe : Coe (VectorBundleCore R B F ι) (FiberBundleCore ι B F) := ⟨toFiberBundleCore⟩ #align vector_bundle_core.to_fiber_bundle_core_coe VectorBundleCore.toFiberBundleCoreCoe include Z theorem coordChange_linear_comp (i j k : ι) : ∀ x ∈ Z.baseSet i ∩ Z.baseSet j ∩ Z.baseSet k, (Z.coordChange j k x).comp (Z.coordChange i j x) = Z.coordChange i k x := fun x hx => by ext v exact Z.coord_change_comp i j k x hx v #align vector_bundle_core.coord_change_linear_comp VectorBundleCore.coordChange_linear_comp /-- The index set of a vector bundle core, as a convenience function for dot notation -/ @[nolint unused_arguments has_nonempty_instance] def Index := ι #align vector_bundle_core.index VectorBundleCore.Index /-- The base space of a vector bundle core, as a convenience function for dot notation-/ @[nolint unused_arguments, reducible] def Base := B #align vector_bundle_core.base VectorBundleCore.Base /-- The fiber of a vector bundle core, as a convenience function for dot notation and typeclass inference -/ @[nolint unused_arguments has_nonempty_instance] def Fiber : B → Type _ := Z.toFiberBundleCore.Fiber #align vector_bundle_core.fiber VectorBundleCore.Fiber instance topologicalSpaceFiber (x : B) : TopologicalSpace (Z.Fiber x) := by delta_instance vector_bundle_core.fiber #align vector_bundle_core.topological_space_fiber VectorBundleCore.topologicalSpaceFiber instance addCommMonoidFiber : ∀ x : B, AddCommMonoid (Z.Fiber x) := by dsimp [VectorBundleCore.Fiber] <;> delta_instance fiber_bundle_core.fiber #align vector_bundle_core.add_comm_monoid_fiber VectorBundleCore.addCommMonoidFiber instance moduleFiber : ∀ x : B, Module R (Z.Fiber x) := by dsimp [VectorBundleCore.Fiber] <;> delta_instance fiber_bundle_core.fiber #align vector_bundle_core.module_fiber VectorBundleCore.moduleFiber instance addCommGroupFiber [AddCommGroup F] : ∀ x : B, AddCommGroup (Z.Fiber x) := by dsimp [VectorBundleCore.Fiber] <;> delta_instance fiber_bundle_core.fiber #align vector_bundle_core.add_comm_group_fiber VectorBundleCore.addCommGroupFiber /-- The projection from the total space of a fiber bundle core, on its base. -/ @[reducible, simp, mfld_simps] def proj : TotalSpace Z.Fiber → B := TotalSpace.proj #align vector_bundle_core.proj VectorBundleCore.proj /-- The total space of the vector bundle, as a convenience function for dot notation. It is by definition equal to `bundle.total_space Z.fiber`, a.k.a. `Σ x, Z.fiber x` but with a different name for typeclass inference. -/ @[nolint unused_arguments, reducible] def TotalSpace := Bundle.TotalSpace Z.Fiber #align vector_bundle_core.total_space VectorBundleCore.TotalSpace /-- Local homeomorphism version of the trivialization change. -/ def trivChange (i j : ι) : LocalHomeomorph (B × F) (B × F) := FiberBundleCore.trivChange (↑Z) i j #align vector_bundle_core.triv_change VectorBundleCore.trivChange @[simp, mfld_simps] theorem mem_trivChange_source (i j : ι) (p : B × F) : p ∈ (Z.trivChange i j).source ↔ p.1 ∈ Z.baseSet i ∩ Z.baseSet j := FiberBundleCore.mem_trivChange_source (↑Z) i j p #align vector_bundle_core.mem_triv_change_source VectorBundleCore.mem_trivChange_source /-- Topological structure on the total space of a vector bundle created from core, designed so that all the local trivialization are continuous. -/ instance toTopologicalSpace : TopologicalSpace Z.TotalSpace := Z.toFiberBundleCore.toTopologicalSpace #align vector_bundle_core.to_topological_space VectorBundleCore.toTopologicalSpace variable (b : B) (a : F) @[simp, mfld_simps] theorem coe_coordChange (i j : ι) : Z.toFiberBundleCore.coordChange i j b = Z.coordChange i j b := rfl #align vector_bundle_core.coe_coord_change VectorBundleCore.coe_coordChange /-- One of the standard local trivializations of a vector bundle constructed from core, taken by considering this in particular as a fiber bundle constructed from core. -/ def localTriv (i : ι) : Trivialization F (π Z.Fiber) := by dsimp [VectorBundleCore.TotalSpace, VectorBundleCore.Fiber] <;> exact Z.to_fiber_bundle_core.local_triv i #align vector_bundle_core.local_triv VectorBundleCore.localTriv /-- The standard local trivializations of a vector bundle constructed from core are linear. -/ instance localTriv.isLinear (i : ι) : (Z.localTriv i).isLinear R where linear x hx := by dsimp [VectorBundleCore.localTriv] <;> exact { map_add := fun v w => by simp only [ContinuousLinearMap.map_add, mfld_simps] map_smul := fun r v => by simp only [ContinuousLinearMap.map_smul, mfld_simps] } #align vector_bundle_core.local_triv.is_linear VectorBundleCore.localTriv.isLinear variable (i j : ι) @[simp, mfld_simps] theorem mem_localTriv_source (p : Z.TotalSpace) : p ∈ (Z.localTriv i).source ↔ p.1 ∈ Z.baseSet i := by dsimp [VectorBundleCore.Fiber] <;> exact Iff.rfl #align vector_bundle_core.mem_local_triv_source VectorBundleCore.mem_localTriv_source @[simp, mfld_simps] theorem baseSet_at : Z.baseSet i = (Z.localTriv i).baseSet := rfl #align vector_bundle_core.base_set_at VectorBundleCore.baseSet_at @[simp, mfld_simps] theorem localTriv_apply (p : Z.TotalSpace) : (Z.localTriv i) p = ⟨p.1, Z.coordChange (Z.indexAt p.1) i p.1 p.2⟩ := rfl #align vector_bundle_core.local_triv_apply VectorBundleCore.localTriv_apply @[simp, mfld_simps] theorem mem_localTriv_target (p : B × F) : p ∈ (Z.localTriv i).target ↔ p.1 ∈ (Z.localTriv i).baseSet := Z.toFiberBundleCore.mem_localTriv_target i p #align vector_bundle_core.mem_local_triv_target VectorBundleCore.mem_localTriv_target @[simp, mfld_simps] theorem localTriv_symm_fst (p : B × F) : (Z.localTriv i).toLocalHomeomorph.symm p = ⟨p.1, Z.coordChange i (Z.indexAt p.1) p.1 p.2⟩ := rfl #align vector_bundle_core.local_triv_symm_fst VectorBundleCore.localTriv_symm_fst @[simp, mfld_simps] theorem localTriv_symm_apply {b : B} (hb : b ∈ Z.baseSet i) (v : F) : (Z.localTriv i).symm b v = Z.coordChange i (Z.indexAt b) b v := by apply (Z.local_triv i).symm_apply hb v #align vector_bundle_core.local_triv_symm_apply VectorBundleCore.localTriv_symm_apply @[simp, mfld_simps] theorem localTriv_coordChange_eq {b : B} (hb : b ∈ Z.baseSet i ∩ Z.baseSet j) (v : F) : (Z.localTriv i).coordChangeL R (Z.localTriv j) b v = Z.coordChange i j b v := by rw [Trivialization.coordChangeL_apply', local_triv_symm_fst, local_triv_apply, coord_change_comp] exacts[⟨⟨hb.1, Z.mem_base_set_at b⟩, hb.2⟩, hb] #align vector_bundle_core.local_triv_coord_change_eq VectorBundleCore.localTriv_coordChange_eq /-- Preferred local trivialization of a vector bundle constructed from core, at a given point, as a bundle trivialization -/ def localTrivAt (b : B) : Trivialization F (π Z.Fiber) := Z.localTriv (Z.indexAt b) #align vector_bundle_core.local_triv_at VectorBundleCore.localTrivAt @[simp, mfld_simps] theorem localTrivAt_def : Z.localTriv (Z.indexAt b) = Z.localTrivAt b := rfl #align vector_bundle_core.local_triv_at_def VectorBundleCore.localTrivAt_def @[simp, mfld_simps] theorem mem_source_at : (⟨b, a⟩ : Z.TotalSpace) ∈ (Z.localTrivAt b).source := by rw [local_triv_at, mem_local_triv_source] exact Z.mem_base_set_at b #align vector_bundle_core.mem_source_at VectorBundleCore.mem_source_at @[simp, mfld_simps] theorem localTrivAt_apply (p : Z.TotalSpace) : (Z.localTrivAt p.1) p = ⟨p.1, p.2⟩ := FiberBundleCore.localTrivAt_apply Z p #align vector_bundle_core.local_triv_at_apply VectorBundleCore.localTrivAt_apply @[simp, mfld_simps] theorem localTrivAt_apply_mk (b : B) (a : F) : (Z.localTrivAt b) ⟨b, a⟩ = ⟨b, a⟩ := Z.localTrivAt_apply _ #align vector_bundle_core.local_triv_at_apply_mk VectorBundleCore.localTrivAt_apply_mk @[simp, mfld_simps] theorem mem_localTrivAt_baseSet : b ∈ (Z.localTrivAt b).baseSet := FiberBundleCore.mem_localTrivAt_baseSet Z b #align vector_bundle_core.mem_local_triv_at_base_set VectorBundleCore.mem_localTrivAt_baseSet instance fiberBundle : FiberBundle F Z.Fiber := Z.toFiberBundleCore.FiberBundle #align vector_bundle_core.fiber_bundle VectorBundleCore.fiberBundle instance vectorBundle : VectorBundle R F Z.Fiber where trivialization_linear' := by rintro _ ⟨i, rfl⟩ apply local_triv.is_linear continuousOn_coord_change' := by rintro _ _ ⟨i, rfl⟩ ⟨i', rfl⟩ refine' (Z.continuous_on_coord_change i i').congr fun b hb => _ ext v exact Z.local_triv_coord_change_eq i i' hb v #align vector_bundle_core.vector_bundle VectorBundleCore.vectorBundle /-- The projection on the base of a vector bundle created from core is continuous -/ @[continuity] theorem continuous_proj : Continuous Z.proj := FiberBundleCore.continuous_proj Z #align vector_bundle_core.continuous_proj VectorBundleCore.continuous_proj /-- The projection on the base of a vector bundle created from core is an open map -/ theorem isOpenMap_proj : IsOpenMap Z.proj := FiberBundleCore.isOpenMap_proj Z #align vector_bundle_core.is_open_map_proj VectorBundleCore.isOpenMap_proj end VectorBundleCore end /-! ### Vector prebundle -/ section variable [NontriviallyNormedField R] [∀ x, AddCommMonoid (E x)] [∀ x, Module R (E x)] [NormedAddCommGroup F] [NormedSpace R F] [TopologicalSpace B] open TopologicalSpace open VectorBundle /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (e e' «expr ∈ » pretrivialization_atlas) -/ /-- This structure permits to define a vector bundle when trivializations are given as local equivalences but there is not yet a topology on the total space or the fibers. The total space is hence given a topology in such a way that there is a fiber bundle structure for which the local equivalences are also local homeomorphisms and hence vector bundle trivializations. The topology on the fibers is induced from the one on the total space. The field `exists_coord_change` is stated as an existential statement (instead of 3 separate fields), since it depends on propositional information (namely `e e' ∈ pretrivialization_atlas`). This makes it inconvenient to explicitly define a `coord_change` function when constructing a `vector_prebundle`. -/ @[nolint has_nonempty_instance] structure VectorPrebundle where pretrivializationAtlas : Set (Pretrivialization F (π E)) pretrivialization_linear' : ∀ (e : Pretrivialization F (π E)) (he : e ∈ pretrivialization_atlas), e.isLinear R pretrivializationAt : B → Pretrivialization F (π E) mem_base_pretrivializationAt : ∀ x : B, x ∈ (pretrivialization_at x).baseSet pretrivialization_mem_atlas : ∀ x : B, pretrivialization_at x ∈ pretrivialization_atlas exists_coord_change : ∀ (e) (_ : e ∈ pretrivialization_atlas) (e') (_ : e' ∈ pretrivialization_atlas), ∃ f : B → F →L[R] F, ContinuousOn f (e.baseSet ∩ e'.baseSet) ∧ ∀ (b : B) (hb : b ∈ e.baseSet ∩ e'.baseSet) (v : F), f b v = (e' (totalSpaceMk b (e.symm b v))).2 #align vector_prebundle VectorPrebundle namespace VectorPrebundle variable {R E F} /-- A randomly chosen coordinate change on a `vector_prebundle`, given by the field `exists_coord_change`. -/ def coordChange (a : VectorPrebundle R F E) {e e' : Pretrivialization F (π E)} (he : e ∈ a.pretrivializationAtlas) (he' : e' ∈ a.pretrivializationAtlas) (b : B) : F →L[R] F := Classical.choose (a.exists_coord_change e he e' he') b #align vector_prebundle.coord_change VectorPrebundle.coordChange theorem continuousOn_coordChange (a : VectorPrebundle R F E) {e e' : Pretrivialization F (π E)} (he : e ∈ a.pretrivializationAtlas) (he' : e' ∈ a.pretrivializationAtlas) : ContinuousOn (a.coordChange he he') (e.baseSet ∩ e'.baseSet) := (Classical.choose_spec (a.exists_coord_change e he e' he')).1 #align vector_prebundle.continuous_on_coord_change VectorPrebundle.continuousOn_coordChange theorem coordChange_apply (a : VectorPrebundle R F E) {e e' : Pretrivialization F (π E)} (he : e ∈ a.pretrivializationAtlas) (he' : e' ∈ a.pretrivializationAtlas) {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) (v : F) : a.coordChange he he' b v = (e' (totalSpaceMk b (e.symm b v))).2 := (Classical.choose_spec (a.exists_coord_change e he e' he')).2 b hb v #align vector_prebundle.coord_change_apply VectorPrebundle.coordChange_apply theorem mk_coordChange (a : VectorPrebundle R F E) {e e' : Pretrivialization F (π E)} (he : e ∈ a.pretrivializationAtlas) (he' : e' ∈ a.pretrivializationAtlas) {b : B} (hb : b ∈ e.baseSet ∩ e'.baseSet) (v : F) : (b, a.coordChange he he' b v) = e' (totalSpaceMk b (e.symm b v)) := by ext · rw [e.mk_symm hb.1 v, e'.coe_fst', e.proj_symm_apply' hb.1] rw [e.proj_symm_apply' hb.1] exact hb.2 · exact a.coord_change_apply he he' hb v #align vector_prebundle.mk_coord_change VectorPrebundle.mk_coordChange /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/ /-- Natural identification of `vector_prebundle` as a `fiber_prebundle`. -/ def toFiberPrebundle (a : VectorPrebundle R F E) : FiberPrebundle F E := { a with continuous_triv_change := by intro e he e' he' have := is_bounded_bilinear_map_apply.continuous.comp_continuous_on ((a.continuous_on_coord_change he' he).Prod_map continuousOn_id) have H : e'.to_local_equiv.target ∩ e'.to_local_equiv.symm ⁻¹' e.to_local_equiv.source = (e'.base_set ∩ e.base_set) ×ˢ univ := by rw [e'.target_eq, e.source_eq] ext ⟨b, f⟩ simp (config := { contextual := true }) only [-total_space.proj, and_congr_right_iff, e'.proj_symm_apply', iff_self_iff, imp_true_iff, mfld_simps] rw [H] refine' (continuous_on_fst.prod this).congr _ rintro ⟨b, f⟩ ⟨hb, -⟩ dsimp only [Function.comp, Prod.map] rw [a.mk_coord_change _ _ hb, e'.mk_symm hb.1] rfl } #align vector_prebundle.to_fiber_prebundle VectorPrebundle.toFiberPrebundle /-- Topology on the total space that will make the prebundle into a bundle. -/ def totalSpaceTopology (a : VectorPrebundle R F E) : TopologicalSpace (TotalSpace E) := a.toFiberPrebundle.totalSpaceTopology #align vector_prebundle.total_space_topology VectorPrebundle.totalSpaceTopology /-- Promotion from a `trivialization` in the `pretrivialization_atlas` of a `vector_prebundle` to a `trivialization`. -/ def trivializationOfMemPretrivializationAtlas (a : VectorPrebundle R F E) {e : Pretrivialization F (π E)} (he : e ∈ a.pretrivializationAtlas) : @Trivialization B F _ _ _ a.totalSpaceTopology (π E) := a.toFiberPrebundle.trivializationOfMemPretrivializationAtlas he #align vector_prebundle.trivialization_of_mem_pretrivialization_atlas VectorPrebundle.trivializationOfMemPretrivializationAtlas theorem linear_of_mem_pretrivializationAtlas (a : VectorPrebundle R F E) {e : Pretrivialization F (π E)} (he : e ∈ a.pretrivializationAtlas) : @Trivialization.IsLinear R B F _ _ _ _ a.totalSpaceTopology _ _ _ _ (trivializationOfMemPretrivializationAtlas a he) := { linear := (a.pretrivialization_linear' e he).linear } #align vector_prebundle.linear_of_mem_pretrivialization_atlas VectorPrebundle.linear_of_mem_pretrivializationAtlas variable (a : VectorPrebundle R F E) theorem mem_trivialization_at_source (b : B) (x : E b) : totalSpaceMk b x ∈ (a.pretrivializationAt b).source := a.toFiberPrebundle.mem_pretrivializationAt_source b x #align vector_prebundle.mem_trivialization_at_source VectorPrebundle.mem_trivialization_at_source @[simp] theorem totalSpaceMk_preimage_source (b : B) : totalSpaceMk b ⁻¹' (a.pretrivializationAt b).source = univ := a.toFiberPrebundle.totalSpaceMk_preimage_source b #align vector_prebundle.total_space_mk_preimage_source VectorPrebundle.totalSpaceMk_preimage_source /-- Topology on the fibers `E b` induced by the map `E b → E.total_space`. -/ def fiberTopology (b : B) : TopologicalSpace (E b) := a.toFiberPrebundle.fiberTopology b #align vector_prebundle.fiber_topology VectorPrebundle.fiberTopology @[continuity] theorem inducing_totalSpaceMk (b : B) : @Inducing _ _ (a.fiberTopology b) a.totalSpaceTopology (totalSpaceMk b) := a.toFiberPrebundle.inducing_totalSpaceMk b #align vector_prebundle.inducing_total_space_mk VectorPrebundle.inducing_totalSpaceMk @[continuity] theorem continuous_totalSpaceMk (b : B) : @Continuous _ _ (a.fiberTopology b) a.totalSpaceTopology (totalSpaceMk b) := a.toFiberPrebundle.continuous_totalSpaceMk b #align vector_prebundle.continuous_total_space_mk VectorPrebundle.continuous_totalSpaceMk /-- Make a `fiber_bundle` from a `vector_prebundle`; auxiliary construction for `vector_prebundle.vector_bundle`. -/ def toFiberBundle : @FiberBundle B F _ _ _ a.totalSpaceTopology a.fiberTopology := a.toFiberPrebundle.toFiberBundle #align vector_prebundle.to_fiber_bundle VectorPrebundle.toFiberBundle /-- Make a `vector_bundle` from a `vector_prebundle`. Concretely this means that, given a `vector_prebundle` structure for a sigma-type `E` -- which consists of a number of "pretrivializations" identifying parts of `E` with product spaces `U × F` -- one establishes that for the topology constructed on the sigma-type using `vector_prebundle.total_space_topology`, these "pretrivializations" are actually "trivializations" (i.e., homeomorphisms with respect to the constructed topology). -/ theorem to_vectorBundle : @VectorBundle R _ F E _ _ _ _ _ _ a.totalSpaceTopology a.fiberTopology a.toFiberBundle := { trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ apply linear_of_mem_pretrivialization_atlas continuousOn_coord_change' := by rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩ refine' (a.continuous_on_coord_change he he').congr _ intro b hb ext v rw [a.coord_change_apply he he' hb v, ContinuousLinearEquiv.coe_coe, Trivialization.coordChangeL_apply] exacts[rfl, hb] } #align vector_prebundle.to_vector_bundle VectorPrebundle.to_vectorBundle end VectorPrebundle end
open import Agda.Primitive open import Agda.Builtin.List open import Agda.Builtin.Equality private variable a p : Level A : Set a P Q : A → Set p data Any {a p} {A : Set a} (P : A → Set p) : List A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) map : (∀ {x} → P x → Q x) → (∀ {xs} → Any P xs → Any Q xs) map g (here px) = here (g px) map g (there pxs) = there (map g pxs) postulate map-id : ∀ (f : ∀ {x} → P x → P x) → (∀ {x} (p : P x) → f p ≡ p) → ∀ {xs} → (p : Any P xs) → map f p ≡ p
theory Set_Example imports Sepreftime begin fun makeset where "makeset (S,[]) = S" | "makeset (S,(x#xs)) = makeset (insert x S, xs)" lemma makeset_set_aux: "makeset (S,xs) = S \<union> set xs" apply(induct xs arbitrary: S) by auto corollary Z: "makeset ({},xs) = set xs" using makeset_set_aux by fast fun t_insert :: "nat \<Rightarrow> nat" where "t_insert n = 3*n" fun t_makeset :: "nat \<Rightarrow> nat" where "t_makeset n = n * t_insert n" definition "makeset_SPEC xs = SPECT [set xs \<mapsto> t_makeset (length xs)]" definition "makeset_impl xs \<equiv> do { as \<leftarrow> RETURNT xs; S \<leftarrow> RETURNT {}; s \<leftarrow> RETURNT (S,xs); r \<leftarrow> whileT (\<lambda>(S,as). as \<noteq> []) (\<lambda>(S,as). do { (* ASSERT (as\<noteq>[]); ASSERT (length as \<le> length xs);*) x \<leftarrow> RETURNT (hd as); as' \<leftarrow> RETURNT (tl as); S' \<leftarrow> REST [insert x S \<mapsto> t_insert (length xs)]; RETURNT (S',as') } ) s; RETURNT (fst r) }" thm whileT_rule''' (* lemma ASSERT_bindT: "ASSERT B \<bind> f = SPECT M \<longleftrightarrow> (B \<and> f () = SPECT M)" unfolding ASSERT_def iASSERT_def by simp *) lemma k: "y\<noteq>[] \<Longrightarrow> makeset (insert (hd y) x, tl y) = makeset (x, y)" apply (cases y) by auto lemma "makeset_impl xs \<le> makeset_SPEC xs" unfolding makeset_SPEC_def makeset_impl_def apply simp apply(rule Refinement_by_T) apply (simp only: T_bindT) apply(simp only: T_RETURNT) apply(rule T_conseq4) apply(rule whileT_rule'''[where I="\<lambda>s. if makeset s = makeset ({},xs) then Some (length (snd s) * t_insert (length xs) ) else None" ]) apply simp subgoal (* progress *) apply(auto split: prod.splits) apply(auto simp add: ASSERT_bindT) sorry subgoal (* IS *) apply (auto split: if_splits) apply (simp only: T_bindT) apply(simp only: T_RETURNT) apply(simp only: T_REST) apply(subst k) apply simp apply simp apply(auto simp: mm3_def mm2_def) by (simp add: left_diff_distrib') apply simp (* post condition *) apply (auto split: if_splits) unfolding Z apply simp apply simp unfolding mm3_def by simp end
theory Mk_Record_Simp imports Refine_Util Mpat_Antiquot begin (* mk_record_simp: Converts a lemma of the form "f s = x" to the form "r \<equiv> s \<Longrightarrow> f r = x" This is used to fold the x.simp - lemmas of a record x with a definition of the form "r \<equiv> \<lparr> ... \<rparr>". Usage example: record foo = ... definition c :: foo where "c \<equiv> \<lparr> ... \<rparr>" lemmas c_simps[simp] = foo.simps[mk_record_simp, OF c_def] *) lemma mk_record_simp_thm: fixes f :: "'a \<Rightarrow> 'b" assumes "f s = x" assumes "r \<equiv> s" shows "f r = x" using assms by simp ML {* fun mk_record_simp context thm = let val ctxt = Context.proof_of context val cert = Thm.cterm_of ctxt in case Thm.concl_of thm of @{mpat "Trueprop (?f _=_)"} => let val cf = cert f val r = infer_instantiate ctxt [(("f", 0), cf)] @{thm mk_record_simp_thm} val r = r OF [thm] in r end | _ => raise THM("",~1,[thm]) end *} attribute_setup mk_record_simp = {* Scan.succeed (Thm.rule_attribute [] (mk_record_simp)) *} "Make simplification rule for record definition" end
[GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F x : F (α → β) f : γ → α y : F γ ⊢ (Seq.seq x fun x => f <$> y) = Seq.seq ((fun x => x ∘ f) <$> x) fun x => y [PROOFSTEP] simp [← pure_seq] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F x : F (α → β) f : γ → α y : F γ ⊢ (Seq.seq x fun x => Seq.seq (pure f) fun x => y) = Seq.seq (Seq.seq (pure fun x => x ∘ f) fun x_1 => x) fun x => y [PROOFSTEP] simp [seq_assoc, ← comp_map, (· ∘ ·)] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F x : F (α → β) f : γ → α y : F γ ⊢ (Seq.seq ((fun x x_1 => x (f x_1)) <$> x) fun x => y) = Seq.seq (Seq.seq (pure fun x x_1 => x (f x_1)) fun x_1 => x) fun x => y [PROOFSTEP] simp [pure_seq] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F f : β → γ x : F (α → β) y : F α ⊢ (f <$> Seq.seq x fun x => y) = Seq.seq ((fun x => f ∘ x) <$> x) fun x => y [PROOFSTEP] simp only [← pure_seq] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F f : β → γ x : F (α → β) y : F α ⊢ (Seq.seq (pure f) fun x_1 => Seq.seq x fun x => y) = Seq.seq (Seq.seq (pure fun x => f ∘ x) fun x_1 => x) fun x => y [PROOFSTEP] simp [seq_assoc] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : α → m β f : β → γ ⊢ f <$> (x >>= g) = do let a ← x f <$> g a [PROOFSTEP] rw [← bind_pure_comp, bind_assoc] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : α → m β f : β → γ ⊢ (do let x ← x let a ← g x pure (f a)) = do let a ← x f <$> g a [PROOFSTEP] simp [bind_pure_comp] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : β → m γ f : α → β ⊢ f <$> x >>= g = x >>= g ∘ f [PROOFSTEP] rw [← bind_pure_comp, bind_assoc] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : β → m γ f : α → β ⊢ (x >>= fun x => pure (f x) >>= g) = x >>= g ∘ f [PROOFSTEP] simp [pure_bind, (· ∘ ·)] [GOAL] α✝ β✝ γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u_1 β : Type u f : α → m β ⊢ f >=> pure = f [PROOFSTEP] simp only [(· >=> ·), functor_norm] [GOAL] α✝ β✝ γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α β : Type u f : α → m β ⊢ pure >=> f = f [PROOFSTEP] simp only [(· >=> ·), functor_norm] [GOAL] α✝ β✝ γ✝ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u_1 β γ φ : Type u f : α → m β g : β → m γ h : γ → m φ ⊢ (f >=> g) >=> h = f >=> g >=> h [PROOFSTEP] simp only [(· >=> ·), functor_norm] [GOAL] α✝ β✝ γ : Type u m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m α β : Type u f : α → β a : m (m α) ⊢ joinM (Functor.map f <$> a) = f <$> joinM a [PROOFSTEP] simp only [joinM, (· ∘ ·), id.def, ← bind_pure_comp, bind_assoc, map_bind, pure_bind] [GOAL] α✝ β γ : Type u m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u a : m (m (m α)) ⊢ joinM (joinM <$> a) = joinM (joinM a) [PROOFSTEP] simp only [joinM, (· ∘ ·), id.def, map_bind, ← bind_pure_comp, bind_assoc, pure_bind] [GOAL] α✝ β γ : Type u m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u a : m α ⊢ joinM (pure <$> a) = a [PROOFSTEP] simp only [joinM, (· ∘ ·), id.def, map_bind, ← bind_pure_comp, bind_assoc, pure_bind, bind_pure] [GOAL] α β γ : Type u F : Type → Type v inst✝ : Alternative F h : Decidable True ⊢ guard True = pure () [PROOFSTEP] simp [guard, if_pos] [GOAL] α β γ : Type u F : Type → Type v inst✝ : Alternative F h : Decidable False ⊢ guard False = failure [PROOFSTEP] simp [guard, if_neg not_false] [GOAL] α β γ : Type u e : Type v ⊢ LawfulFunctor (Sum e) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 α β γ : Type u e : Type v ⊢ ∀ {α β : Type u}, Functor.mapConst = Functor.map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 α β γ : Type u e : Type v ⊢ ∀ {α : Type u} (x : e ⊕ α), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 α β γ : Type u e : Type v ⊢ ∀ {α β γ : Type u} (g : α → β) (h : β → γ) (x : e ⊕ α), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_1 α β γ : Type u e : Type v α✝ β✝ : Type u ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] try casesm Sum _ _ [GOAL] case refine'_1 α β γ : Type u e : Type v α✝ β✝ : Type u ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case refine'_2 α β γ : Type u e : Type v α✝ : Type u x✝ : e ⊕ α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] try casesm Sum _ _ [GOAL] case refine'_2 α β γ : Type u e : Type v α✝ : Type u x✝ : e ⊕ α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case refine'_3 α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : e ⊕ α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] try casesm Sum _ _ [GOAL] case refine'_3 α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : e ⊕ α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case refine'_1 α β γ : Type u e : Type v α✝ β✝ : Type u ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] case refine'_2.inl α β γ : Type u e : Type v α✝ : Type u val✝ : e ⊢ id <$> inl val✝ = inl val✝ [PROOFSTEP] rfl [GOAL] case refine'_2.inr α β γ : Type u e : Type v α✝ : Type u val✝ : α✝ ⊢ id <$> inr val✝ = inr val✝ [PROOFSTEP] rfl [GOAL] case refine'_3.inl α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ val✝ : e ⊢ (h✝ ∘ g✝) <$> inl val✝ = h✝ <$> g✝ <$> inl val✝ [PROOFSTEP] rfl [GOAL] case refine'_3.inr α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ val✝ : α✝ ⊢ (h✝ ∘ g✝) <$> inr val✝ = h✝ <$> g✝ <$> inr val✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (x : e ⊕ α) (y : e ⊕ β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ y✝ : e ⊕ β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : e ⊢ (SeqLeft.seqLeft (inl val✝) fun x => y✝) = Seq.seq (Function.const β✝ <$> inl val✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : α✝ ⊢ (SeqLeft.seqLeft (inr val✝) fun x => y✝) = Seq.seq (Function.const β✝ <$> inr val✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (x : e ⊕ α) (y : e ⊕ β), (SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ y✝ : e ⊕ β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : e ⊢ (SeqRight.seqRight (inl val✝) fun x => y✝) = Seq.seq (Function.const α✝ id <$> inl val✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : α✝ ⊢ (SeqRight.seqRight (inr val✝) fun x => y✝) = Seq.seq (Function.const α✝ id <$> inr val✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl.inl α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ val✝ : e ⊢ (SeqRight.seqRight (inl val✝¹) fun x => inl val✝) = Seq.seq (Function.const α✝ id <$> inl val✝¹) fun x => inl val✝ [PROOFSTEP] rfl [GOAL] case inl.inr α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ : e val✝ : β✝ ⊢ (SeqRight.seqRight (inl val✝¹) fun x => inr val✝) = Seq.seq (Function.const α✝ id <$> inl val✝¹) fun x => inr val✝ [PROOFSTEP] rfl [GOAL] case inr.inl α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ : α✝ val✝ : e ⊢ (SeqRight.seqRight (inr val✝¹) fun x => inl val✝) = Seq.seq (Function.const α✝ id <$> inr val✝¹) fun x => inl val✝ [PROOFSTEP] rfl [GOAL] case inr.inr α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ : α✝ val✝ : β✝ ⊢ (SeqRight.seqRight (inr val✝¹) fun x => inr val✝) = Seq.seq (Function.const α✝ id <$> inr val✝¹) fun x => inr val✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (g : α → β) (x : e ⊕ α), (Seq.seq (pure g) fun x_1 => x) = g <$> x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u g✝ : α✝ → β✝ x✝ : e ⊕ α✝ ⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (f : α → β) (x : e ⊕ α), (do let a ← x pure (f a)) = f <$> x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : e ⊕ α✝ ⊢ (do let a ← x✝ pure (f✝ a)) = f✝ <$> x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : α✝ → β✝ val✝ : e ⊢ (do let a ← inl val✝ pure (f✝ a)) = f✝ <$> inl val✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : α✝ → β✝ val✝ : α✝ ⊢ (do let a ← inr val✝ pure (f✝ a)) = f✝ <$> inr val✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (f : e ⊕ (α → β)) (x : e ⊕ α), (do let x_1 ← f x_1 <$> x) = Seq.seq f fun x_1 => x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : e ⊕ (α✝ → β✝) x✝ : e ⊕ α✝ ⊢ (do let x ← f✝ x <$> x✝) = Seq.seq f✝ fun x => x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ val✝ : e ⊢ (do let x ← inl val✝ x <$> x✝) = Seq.seq (inl val✝) fun x => x✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ val✝ : α✝ → β✝ ⊢ (do let x ← inr val✝ x <$> x✝) = Seq.seq (inr val✝) fun x => x✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (x : α) (f : α → e ⊕ β), pure x >>= f = f x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : α✝ f✝ : α✝ → e ⊕ β✝ ⊢ pure x✝ >>= f✝ = f✝ x✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β γ : Type u} (x : e ⊕ α) (f : α → e ⊕ β) (g : β → e ⊕ γ), x >>= f >>= g = x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u x✝ : e ⊕ α✝ f✝ : α✝ → e ⊕ β✝ g✝ : β✝ → e ⊕ γ✝ ⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u f✝ : α✝ → e ⊕ β✝ g✝ : β✝ → e ⊕ γ✝ val✝ : e ⊢ inl val✝ >>= f✝ >>= g✝ = inl val✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u f✝ : α✝ → e ⊕ β✝ g✝ : β✝ → e ⊕ γ✝ val✝ : α✝ ⊢ inr val✝ >>= f✝ >>= g✝ = inr val✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rfl [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ (Seq.seq (f <$> a) fun x => b) = (fun p => f p.fst p.snd) <$> Seq.seq (Prod.mk <$> a) fun x => b [PROOFSTEP] simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map] [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ (Seq.seq (f <$> a) fun x => b) = Seq.seq (((fun x => (fun p => f p.fst p.snd) ∘ x) ∘ Prod.mk) <$> a) fun x => b [PROOFSTEP] rfl [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ ((fun p => f p.fst p.snd) <$> Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => f a b) <$> b) fun x => a [PROOFSTEP] rw [@CommApplicative.commutative_prod m h] [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ ((fun p => f p.fst p.snd) <$> Seq.seq ((fun b a => (a, b)) <$> b) fun x => a) = Seq.seq ((fun b a => f a b) <$> b) fun x => a [PROOFSTEP] simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map, (· ∘ ·)]
function y=stdtpdf(x,mu,sigma2,nu) % Probability Density Function (PDF) for the Standardized T distribution % % USAGE: % Y = stdtpdf(X,MU,SIGMA2,NU) % % INPUTS: % X - Standardized T random variables % MU - Mean of X, either scalar or size(x) % SIGMA2 - Variance of X, either scalar or size(x) % NU - Degree of freedom parameters, either scalar or size(x) % % OUTPUTS: % Y - Probability density evaluated at X % % COMMENTS: % NU>2 % % REFERENCES: % [1] Cassella and Berger (1990) 'Statistical Inference' % % See also STDTCDF, STDTINV, STDTRND, STDTLOGLIK, TPDF % Copyright: % Kevin Sheppard % [email protected] % Revision: 6 Date: 8/21/2014 [T,K]=size(x); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Input Checking %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if K~=1 error('X must be a column vector'); end if nargin==4 if length(mu)~=1 && ~all(size(mu)==[T K]) error('mu must be either a scalar or the same size as X'); end if any(sigma2<=0) error('sigma2 must contain only positive elements') end if length(sigma2)==1 sigma2=sigma2*ones(T,K); elseif size(sigma2,1)~=T || size(sigma2,2)~=1 error('sigma2 must be a scalar or a vector with the same dimensions as X'); end if length(nu)>1 || nu<=2 error('nu must be a scalar greater than 2'); end x=x-mu; else error('Only 4 inputs supported'); end constant = exp(gammaln( 0.5 * (nu + 1)) - gammaln(0.5 * nu)); y = constant ./ sqrt(pi * (nu - 2) * sigma2) .* (1 + (x-mu) .^ 2.0 / (sigma2 * (nu - 2))) .^ (-(nu + 1) / 2);
/- Copyright © 2018 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -/ import .basic .subst universe u variables {σ : Type u} {sig : σ → ℕ} {I : Type*} (ax : I → eqn sig) include sig ax definition models (e : eqn sig) : Prop := ∀ {α : Type (u+1)} (a : alg sig α), (∀ i, a ⊧ ax i) → (a ⊧ e) infix ` ⊨ `:20 := models lemma model.axiom (i : I) : ax ⊨ ax i := λ _ _ ha, ha i namespace model lemma reflexivity (t : term sig) : ax ⊨ t ≡ t := λ _ _ _ _, rfl lemma symmetry {{t u : term sig}} : (ax ⊨ t ≡ u) → (ax ⊨ u ≡ t) := λ h _ a ha val, eq.symm (h a ha val) lemma transitivity {{t u v : term sig}} : (ax ⊨ t ≡ u) → (ax ⊨ u ≡ v) → (ax ⊨ t ≡ v) := λ htu huv α a ha val, eq.trans (htu a ha val) (huv a ha val) lemma substitiution (sub : ℕ → term sig) {{t u : term sig}} : (ax ⊨ t ≡ u) → (ax ⊨ subst sub t ≡ subst sub u) := λ h _ a ha val, calc eval a val (subst sub t) = eval a (λ n, eval a val (sub n)) t : by rw subst_eval ... = eval a (λ n, eval a val (sub n)) u : by rw h a ha ... = eval a val (subst sub u) : by rw subst_eval lemma replacement {{sub₁ sub₂ : ℕ → term sig}} : (∀ n, ax ⊨ (sub₁ n) ≡ (sub₂ n)) → (∀ t, ax ⊨ subst sub₁ t ≡ subst sub₂ t) | h (term.var n) := λ _ a ha val, h n a ha val | h (term.app s ts) := λ _ a ha val, have tup.map (eval a val) (tup.map (subst sub₁) ts) = tup.map (eval a val) (tup.map (subst sub₂) ts), from tup.ext (λ i, replacement h (ts i) a ha val), calc eval a val (subst sub₁ (term.app s ts)) = eval a val (term.app s (tup.map (subst sub₁) ts)) : by rw subst_app ... = a.app s (tup.map (eval a val) (tup.map (subst sub₁) ts)) : by rw eval_app ... = a.app s (tup.map (eval a val) (tup.map (subst sub₂) ts)) : by rw this ... = eval a val (term.app s (tup.map (subst sub₂) ts)) : by rw eval_app ... = eval a val (subst sub₂ (term.app s ts)) : by rw subst_app end model
[STATEMENT] lemma less_nat_qbs_morphism: "(<) \<in> \<nat>\<^sub>Q \<rightarrow>\<^sub>Q exp_qbs \<nat>\<^sub>Q \<bool>\<^sub>Q" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (<) \<in> \<nat>\<^sub>Q \<rightarrow>\<^sub>Q \<nat>\<^sub>Q \<Rightarrow>\<^sub>Q \<bool>\<^sub>Q [PROOF STEP] by(auto intro!: nat_qbs_morphism)
theory State_Networks_Impl imports TA_Impl.Normalized_Zone_Semantics_Impl State_Networks begin (* XXX Move *) lemma finite_lists_length_eq: "finite {s. length s = r \<and> set s \<subseteq> S}" if "finite S" by (rule finite_lists_length_le[OF that, THEN finite_subset[rotated], where n1 = r]) auto (* XXX Move *) lemma finite_lists_boundedI: assumes "\<forall> i < r. finite (S i)" shows "finite {s. length s = r \<and> (\<forall>i<r. s ! i \<in> S i)}" (is "finite ?R") proof - let ?S = "\<Union> {S i | i. i < r}" have "?R \<subseteq> {s. length s = r \<and> set s \<subseteq> ?S}" by (auto dest!: aux) moreover have "finite \<dots>" by (rule finite_lists_length_eq) (use assms in auto) ultimately show ?thesis by (rule finite_subset) qed abbreviation "repeat x n \<equiv> map (\<lambda> _. x) [0..<n]" subsection \<open>Pre-compiled networks with states and clocks as natural numbers\<close> locale State_Network_Reachability_Problem_precompiled_defs = fixes p :: nat \<comment> \<open>Number of processes\<close> and m :: nat \<comment> \<open>Number of clocks\<close> and k :: "nat list" \<comment> \<open>Clock ceiling. Maximal constant appearing in automaton for each state\<close> and inv :: "(nat, int) cconstraint list list" \<comment> \<open>Clock invariants on states per process\<close> and pred :: "('st \<Rightarrow> bool) list list" \<comment> \<open>Clock invariants on states per process\<close> and trans :: "((nat, int) cconstraint * ('st \<Rightarrow> bool) * nat act * nat list * ('st \<Rightarrow> 'st) * nat) list list list" \<comment> \<open>Transitions between states per process\<close> and final :: "nat list list" \<comment> \<open>Final states per process. Initial location is 0\<close> begin definition "clkp_set' \<equiv> \<Union> (collect_clock_pairs ` set (concat inv) \<union> (\<lambda> (g, _). collect_clock_pairs g) ` set (concat (concat trans)))" definition clk_set'_def: "clk_set' = (fst ` clkp_set' \<union> \<Union> ((\<lambda> (_, _, _, r, _). set r) ` set (concat (concat trans))))" text \<open>Definition of the corresponding network\<close> definition "make_trans \<equiv> \<lambda> (g, c, a, r, m, l'). (g, (a, (c, m)), r, l')" definition "I i l \<equiv> if l < length (inv ! i) then inv ! i ! l else []" definition "T i \<equiv> {(l, make_trans (trans ! i ! l ! j)) | l j. l < length (trans ! i) \<and> j < length (trans ! i ! l)}" definition "P \<equiv> map (\<lambda> P l. P ! l) pred" definition N :: "(nat, nat, int, nat, 'st) snta" where "N \<equiv> (map (\<lambda> i. (T i, I i)) [0..<p], P)" definition "init \<equiv> repeat (0::nat) p" definition "F s \<equiv> \<exists> i < length s. s ! i \<in> set (final ! i)" definition "k_fun \<equiv> \<lambda> i. if i \<le> m then k ! i else 0" sublocale product: Prod_TA_Defs N . abbreviation "A \<equiv> product.prod_ta" term state_set end lemma snd_comp[simp]: "snd o (\<lambda> i. (f i, g i)) = g" by auto locale State_Network_Reachability_Problem_precompiled_raw = State_Network_Reachability_Problem_precompiled_defs + assumes process_length: "length inv = p" "length trans = p" "length pred = p" and lengths: "\<forall> i < p. length (pred ! i) = length (trans ! i) \<and> length (inv ! i) = length (trans ! i)" and state_set: "\<forall> T \<in> set trans. \<forall> xs \<in> set T. \<forall> (_, _, _, _, _, l) \<in> set xs. l < length T" and k_length: "length k = m + 1" \<comment> \<open>Zero entry is just a dummy for the zero clock\<close> (* XXX Make this an abbreviation? *) assumes k_ceiling: (* "\<forall> c \<in> {1..m}. k ! c = Max ({d. (c, d) \<in> clkp_set'} \<union> {0})" *) "\<forall> (c, d) \<in> clkp_set'. k ! c \<ge> d" "k ! 0 = 0" assumes consts_nats: "snd ` clkp_set' \<subseteq> \<nat>" assumes clock_set: "clk_set' = {1..m}" and p_gt_0: "p > 0" and m_gt_0: "m > 0" (* XXX Can get rid of these two? *) and processes_have_trans: "\<forall> i < p. trans ! i \<noteq> []" \<comment> \<open>Necessary for refinement\<close> and start_has_trans: "\<forall> q < p. trans ! q ! 0 \<noteq> []" \<comment> \<open>Necessary for refinement\<close> locale State_Network_Reachability_Problem_precompiled = State_Network_Reachability_Problem_precompiled_raw + assumes discrete_state_finite: "\<forall> i < p. \<forall> l < length (trans ! i). finite {s. (pred ! i ! l) s}" begin lemma consts_nats': "\<forall> I \<in> set inv. \<forall> cc \<in> set I. \<forall> (c, d) \<in> collect_clock_pairs cc. d \<in> \<nat>" "\<forall> T \<in> set trans. \<forall> xs \<in> set T. \<forall> (g, _) \<in> set xs. \<forall> (c, d) \<in> collect_clock_pairs g. d \<in> \<nat>" using consts_nats unfolding clkp_set'_def by fastforce+ lemma clkp_set_simp_1: "\<Union> (collect_clock_pairs ` set (concat inv)) = collect_clki (inv_of A)" apply (simp add: product.prod_ta_def inv_of_def product.collect_clki_prod_invariant product.collect_clki_product_invariant ) unfolding inv_of_def collect_clki_alt_def I_def[abs_def] N_def I_def using process_length(1) apply (simp add: image_Union inv_of_def) apply safe apply (fastforce dest!: aux) by (fastforce dest!: nth_mem) (* XXX Unused *) lemma processes_have_trans_alt: "\<forall> i < p. length (trans ! i) > 0" using processes_have_trans by auto lemma init_states: "init \<in> Product_TA_Defs.states (fst N)" unfolding Product_TA_Defs.states_def unfolding N_def trans_of_def T_def init_def using processes_have_trans p_gt_0 start_has_trans by force lemma states_not_empty: "Product_TA_Defs.states (fst N) \<noteq> {}" using init_states by blast lemma length_prod_T [simp]: "length product.T = p" unfolding N_def by auto lemma length_N [simp]: "length (fst N) = p" unfolding N_def by auto lemma length_P [simp]: "length P = p" unfolding N_def P_def using process_length(3) by auto (* lemma trans_length_simp: assumes "xs \<in> set trans" shows "n = length xs" using assms trans_length by auto *) lemma [simp]: "product.T' = product.product_trans" unfolding product.product_ta_def trans_of_def by simp lemma clk_set_simp_2: "\<Union> ((\<lambda> (g, _, _, r, _). set r) ` set (concat (concat trans))) \<supseteq> collect_clkvt (trans_of A)" apply (simp add: product.product_ta_def trans_of_def) apply (rule subset_trans) apply (rule product.collect_clkvt_prod_trans_subs) apply simp apply (rule subset_trans) apply (rule product.collect_clkvt_product_trans_subs) unfolding collect_clkvt_alt_def trans_of_def N_def T_def make_trans_def using process_length(2) by (fastforce dest!: nth_mem elim: bexI[rotated]) (* XXX Magic *) lemma clkp_set_simp_3: "\<Union> ((\<lambda> (g, _). collect_clock_pairs g) ` set (concat (concat trans))) \<supseteq> collect_clkt (trans_of A)" apply (simp add: product.product_ta_def trans_of_def) apply (rule subset_trans) apply (rule product.collect_clkt_prod_trans_subs) apply simp apply (rule subset_trans) apply (rule product.collect_clkt_product_trans_subs) unfolding collect_clkt_alt_def trans_of_def N_def T_def make_trans_def using process_length(2) by (fastforce dest!: nth_mem elim: bexI[rotated]) (* XXX Magic *) lemma clkp_set'_subs: "clkp_set A \<subseteq> clkp_set'" using clkp_set_simp_1 clkp_set_simp_3 by (fastforce simp add: clkp_set'_def clkp_set_def) lemma clk_set'_subs: "clk_set A \<subseteq> clk_set'" using clkp_set'_subs clk_set_simp_2 by (auto simp: clk_set'_def) (* XXX Interesting for finiteness *) (* XXX Move *) lemma Collect_fold_pair: "{f a b | a b. P a b} = (\<lambda> (a, b). f a b) ` {(a, b). P a b}" for P by auto lemma [simp]: "product.p = p" unfolding product.p_def by simp (* XXX Interesting case of proving finiteness *) lemma finite_T[intro, simp]: "finite (trans_of A)" unfolding product.prod_ta_def trans_of_def proof (simp, rule product.finite_prod_trans, goal_cases) case 1 have *: "l < length (trans ! q)" if "l \<in> state_set (trans_of (product.N ! q))" "q < p" for l q using that state_set unfolding trans_of_def apply simp apply (erule disjE) unfolding N_def apply simp unfolding T_def apply force unfolding make_trans_def apply clarsimp using process_length(2) apply (fastforce dest!: nth_mem split: prod.split_asm) done with process_length(3) discrete_state_finite show ?case by simp (auto simp: N_def P_def) next case 2 show ?case proof fix A assume A: "A \<in> set product.N" have "{(l, j). l < length (trans ! i) \<and> j < length (trans ! i ! l)} = \<Union> ((\<lambda> l. {(l, j) | j. j < length (trans ! i ! l)}) ` {l. l < length (trans ! i)})" for i by auto then show "finite (trans_of A)" using A unfolding N_def T_def trans_of_def by (fastforce simp: Collect_fold_pair) qed next case 3 then show ?case unfolding product.p_def unfolding N_def using p_gt_0 by simp qed (* XXX *) lemma "clk_set' \<noteq> {}" using clock_set m_gt_0 by auto lemma clk_set: "clk_set A \<subseteq> {1..m}" using clock_set m_gt_0 clk_set'_subs by auto lemma "\<forall>(_, d)\<in>clkp_set A. d \<in> \<int>" unfolding Ints_def by auto lemma clkp_set_consts_nat: "\<forall>(_, d)\<in>clkp_set A. d \<in> \<nat>" using clkp_set'_subs consts_nats' unfolding clkp_set'_def by force lemma finite_range_I': "finite (range product.I')" apply (rule product.finite_invariant_of_product) unfolding N_def inv_of_def I_def by (auto intro: finite_subset[where B = "{[]}"]) lemma finite_range_inv_of_A[intro, simp]: "finite (range (inv_of A))" proof - have "range (inv_of A) \<subseteq> range (product.I')" by (auto simp: product.inv_of_simp) then show ?thesis by (rule finite_subset) (rule finite_range_I') qed lemma finite_clkp_set_A[intro, simp]: "finite (clkp_set A)" unfolding clkp_set_def collect_clki_alt_def collect_clkt_alt_def by fast lemma [intro, simp]: "k_fun 0 = 0" unfolding k_fun_def using k_ceiling by simp lemma [intro, simp]: "k_fun i = 0" if "i > m" unfolding k_fun_def using that by simp lemma clkp_set'_bounds: "a \<in> {Suc 0..m}" if "(a, b) \<in> clkp_set'" using that clock_set unfolding clk_set'_def by auto lemma [intro]: "b \<le> int (k_fun a)" if "(a, b) \<in> clkp_set A" using that k_ceiling clkp_set'_subs k_length clkp_set'_bounds unfolding k_fun_def by force end locale State_Network_Reachability_Problem_precompiled_start_state = State_Network_Reachability_Problem_precompiled _ _ _ _ pred for pred :: "('st \<Rightarrow> bool) list list" + fixes s\<^sub>0 :: "'st" assumes start_pred: "(\<forall> i < p. (pred ! i ! 0) s\<^sub>0)" begin sublocale Reachability_Problem A "(init, s\<^sub>0)" "PR_CONST (\<lambda> (l, s). F l)" m k_fun using clkp_set_consts_nat clk_set m_gt_0 by - (standard; blast) lemma [simp]: "fst ` (\<lambda>(l, g, a, r, l'). (l, map conv_ac g, a, r, l')) ` S = fst ` S" by force lemma [simp]: "(snd \<circ> snd \<circ> snd \<circ> snd) ` (\<lambda>(l, g, a, r, l'). (l, map conv_ac g, a, r, l')) ` S = (snd \<circ> snd \<circ> snd \<circ> snd) ` S" by force lemma map_trans_of: "map trans_of (map conv_A (fst N)) = map ((`) conv_t) (map trans_of (fst N))" by (simp add: trans_of_def split: prod.split) lemma [simp]: "Product_TA_Defs.states (map conv_A (fst N)) = Product_TA_Defs.states (fst N)" unfolding Product_TA_Defs.states_def map_trans_of by simp lemma [simp]: "product.P = P" unfolding N_def by simp lemma start_pred': "\<forall> i < p. (pred ! i ! (init ! i)) s\<^sub>0" using start_pred unfolding init_def by auto lemma start_pred'': "\<forall> i < p. ((P ! i) (init ! i)) s\<^sub>0" using start_pred' process_length(3) unfolding P_def by auto sublocale product': Prod_TA "(map conv_A (fst N), snd N)" init s\<^sub>0 by (standard; simp add: init_states start_pred'') end (* End of locale *) datatype ('c, 't) constr = lt 'c 't | le 'c 't | eq 'c 't | gt 'c 't | ge 'c 't type_synonym int_var_constr = "(nat, int) cconstraint" definition check :: "int_var_constr \<Rightarrow> (nat \<Rightarrow> int) \<Rightarrow> bool" where "check c x \<equiv> list_all (clock_val_a x) c" datatype ('c, 't) upd = upd 'c 't | inc 'c | dec 'c type_synonym int_var_upd = "(nat, int) upd" fun modify :: "(nat, int) upd \<Rightarrow> int list \<Rightarrow> int list" where "modify (upd i x) s = s[i := x]" | "modify (inc i) s = s[i := s ! i + 1]" | "modify (dec i) s = s[i := s ! i - 1]" locale State_Network_Reachability_Problem_precompiled_int_vars_defs = fixes p :: nat \<comment> \<open>Number of processes\<close> and m :: nat \<comment> \<open>Number of clocks\<close> and k :: "nat list" \<comment> \<open>Clock ceiling. Maximal constant appearing in automaton for each state\<close> and inv :: "(nat, int) cconstraint list list" \<comment> \<open>Clock invariants on states per process\<close> and pred :: "int_var_constr list list" \<comment> \<open>Clock invariants on states per process\<close> and trans :: "((nat, int) cconstraint * int_var_constr * nat act * nat list * int_var_upd * nat) list list list" \<comment> \<open>Transitions between states per process\<close> and final :: "nat list list" \<comment> \<open>Final states per process. Initial location is 0\<close> fixes r :: nat \<comment> \<open>Number of integer variables\<close> and bounds :: "(int \<times> int) list" \<comment> \<open>Lower and upper bounds for the variables\<close> begin definition "checkb c s \<equiv> check c ((!) s) \<and> length s = r \<and> (\<forall> i < r. fst (bounds ! i) < s ! i \<and> s ! i < snd (bounds ! i))" definition pred' where "pred' = map (map checkb) pred" definition trans' where "trans' = map (map (map (\<lambda> (g, c, a, r, m, l). (g, \<lambda> s. check c ((!) s), a, r, modify m, l)))) trans" definition "s\<^sub>0 \<equiv> repeat 0 r" end locale State_Network_Reachability_Problem_precompiled_int_vars = State_Network_Reachability_Problem_precompiled_int_vars_defs p m k inv pred trans final r bounds + State_Network_Reachability_Problem_precompiled_raw p m k inv pred' trans' final for p m k inv pred trans final r bounds + fixes na :: nat \<comment> \<open>Number of action labels\<close> assumes init_pred: "\<forall>i<p. (pred' ! i ! 0) s\<^sub>0" and actions_bounded: "\<forall>T\<in>set trans'. \<forall>xs\<in>set T. \<forall>(_, _, a, _)\<in>set xs. pred_act (\<lambda>a. a < na) a" begin lemma trans'_length: "length trans' = length trans" unfolding trans'_def by simp lemma trans'_lengths: "length (trans' ! i) = length (trans ! i)" if "i < p" unfolding trans'_def using process_length(2)[unfolded trans'_length] that by simp lemma pred'_length: "length pred' = length pred" unfolding pred'_def by simp lemma pred'_lengths: "length (pred' ! i) = length (pred ! i)" if "i < p" unfolding pred'_def using process_length(3)[unfolded pred'_length] that by simp lemma trans'_length_pred: "length (trans' ! i) = length (pred ! i)" if "i < p" using pred'_lengths lengths that by simp lemma "finite {s. length s = r \<and> (\<forall>i<r. fst (bounds ! i) < s ! i \<and> s ! i < snd (bounds ! i))}" using finite_lists_boundedI by force sublocale State_Network_Reachability_Problem_precompiled p m k inv pred' trans' final apply standard apply safe apply (simp only: trans'_length_pred) unfolding pred'_def trans'_def checkb_def using process_length(3)[unfolded pred'_length] finite_lists_boundedI by force (* XXX Slow *) end end (* End of theory *)
#pragma once #include "kl/type_traits.hpp" #include "kl/reflect_struct.hpp" #include <boost/type_index.hpp> #include <type_traits> #include <string> namespace kl { namespace detail { KL_VALID_EXPR_HELPER(has_reflect_struct, reflect_struct(0, std::declval<T&>(), record<T>)) } // namespace detail template <typename T> using is_reflectable = detail::has_reflect_struct<T>; template <typename T> inline constexpr bool is_reflectable_v = is_reflectable<T>::value; struct ctti { template <typename T> static constexpr bool is_reflectable = kl::is_reflectable_v<T>; template <typename Reflected> static std::string name() { return boost::typeindex::type_id<Reflected>().pretty_name(); } template <typename Reflected, typename Visitor> static constexpr void reflect(Reflected&& r, Visitor&& v) { using R = remove_cvref_t<Reflected>; static_assert( detail::has_reflect_struct_v<R>, "Can't reflect this type. Define reflect_struct function"); reflect_struct(std::forward<Visitor>(v), std::forward<Reflected>(r), record<R>); } template <typename Reflected> static constexpr std::size_t num_fields() noexcept { using R = remove_cvref_t<Reflected>; static_assert( detail::has_reflect_struct_v<R>, "Can't reflect this type. Define reflect_struct function"); return reflect_num_fields(record<R>); } }; } // namespace kl
# Write JavaSeis with Julia package TeaSeis.jl # Run from Julia REPL # julia> include("C:/Users/xinfa/Documents/code/pieseis/examples/write_file.jl") # Run from command line (Linux terminal or Windows command prompt) # C:\Users\xinfa\AppData\Local\Julia-1.0.1\bin\julia.exe C:\Users\xinfa\Documents\code\pieseis\examples\write_file.jl println("start") push!(LOAD_PATH, "C:/Users/xinfa/Documents/code/TeaSeis.jl/src") using TeaSeis println("done load") filename = "C:/Users/xinfa/Documents/181116_julia.js" io = jsopen(filename, "w", axis_lengths=[101, 101, 101], dataformat=Int16) println("done open") trcs, hdrs = allocframe(io) map(i->set!(prop(io, stockprop[:TRC_TYPE]), hdrs, i, tracetype[:live]), 1:size(io,2)) map(i->set!(prop(io, stockprop[:TRACE] ), hdrs, i, i ), 1:size(io,2)) map(i->set!(prop(io, stockprop[:FRAME] ), hdrs, i, 1 ), 1:size(io,2)) println("done write headers") using Random rand!(trcs) writeframe(io, trcs, hdrs) println("done write traces") close(io)