Datasets:
AI4M
/

text
stringlengths
0
3.34M
#include <fstream> #include <iostream> #include <boost/iostreams/filtering_streambuf.hpp> #include <filesystem> #include <qtr/parquet/parquet_primitive_row.h> #include "qtr/schema/parquet_json_schema.h" #include "qtr/io/parquet_file_sink.h" #include "qtr/io/parquet_file_source.h" using json = nlohmann::json; int main(int argc, char *argv[]) { std::shared_ptr<parquet::schema::GroupNode> dst_parquet_schema = qtr::load_parquet_schema("/home/saka/source/crypto-tools-cpp/schemas/tardis_option_options_chain_v1.parquet-schema.json"); //LOG(INFO) << to_string(dst_parquet_schema); std::string src_filename = "/mnt/lab0/dataset-raw/tardis-parquet/deribit/OPTIONS/options_chain/2020/2020-01-01-deribit.OPTIONS.options_chain.parquet"; /* if (!std::filesystem::exists(src_filename)){ std::cerr << "cannot find " << src_filename << std::endl; return -1; } */ auto source = qtr::parquet_file_source<qtr::parquet_primitive_row>(src_filename); auto sink = qtr::parquet_file_sink<qtr::parquet_primitive_row>("/tmp/tardis_option_options_chain.parquet", dst_parquet_schema); auto group_node = source.group_node(); std::vector<std::string> src_column_names; for (int i =0; i!= group_node->field_count(); ++i){ src_column_names.emplace_back(group_node->field(i)->name()); } std::vector<int> src_index; auto dummy = qtr::parquet_primitive_row::make_unique(dst_parquet_schema); for (size_t i=0; i!=dummy->field_count(); ++i){ int index=0; bool found = false; for (std::vector<std::string>::const_iterator j= src_column_names.begin(); j!=src_column_names.end(); ++j, ++index){ if (dummy->name(i) == *j){ src_index.push_back(index); found = true; break; } } if (!found){ std::cerr << "could not find column: " << dummy->name(i) << " in source, exiting " << std::endl; return -1; } } std::vector<std::shared_ptr<parquet::schema::PrimitiveNode>> columns = dummy->primitive_nodes(); while(auto src_row = source.get_next()) { auto dst_row = qtr::parquet_primitive_row::make_unique(dst_parquet_schema); for (size_t i=0; i!=dst_row->field_count(); ++i){ auto item = src_row->value(src_index[i]); dst_row->assign(i, item); } sink.push_back(std::move(dst_row)); } //Cleanup //source.close(); todo sink.flush(); return 0; }
import tensorflow as tf import numpy as np import cv2 import random import PIL.Image import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from modules import * from utils import * from RecordReaderAll import * from SegmentationRefinement import * HEIGHT=192 WIDTH=256 NUM_PLANES = 20 def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def writeRecordFile(split, dataset): batchSize = 8 numOutputPlanes = 20 if split == 'train': reader = RecordReaderAll() filename_queue = tf.train.string_input_producer(['/mnt/vision/PlaneNet/planes_' + dataset + '_train.tfrecords'], num_epochs=1) img_inp, global_gt_dict, _ = reader.getBatch(filename_queue, numOutputPlanes=numOutputPlanes, batchSize=batchSize, random=False, getLocal=True) writer = tf.python_io.TFRecordWriter('/mnt/vision/PlaneNet/planes_' + dataset + '_train_temp.tfrecords') numImages = 50000 else: reader = RecordReaderAll() filename_queue = tf.train.string_input_producer(['/mnt/vision/PlaneNet/planes_' + dataset + '_val.tfrecords'], num_epochs=1) img_inp, global_gt_dict, _ = reader.getBatch(filename_queue, numOutputPlanes=numOutputPlanes, batchSize=batchSize, random=False, getLocal=True) writer = tf.python_io.TFRecordWriter('/mnt/vision/PlaneNet/planes_' + dataset + '_val_temp.tfrecords') numImages = 1000 pass init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) #segmentation_gt, plane_mask = fitPlaneMasksModule(global_gt_dict['plane'], global_gt_dict['depth'], global_gt_dict['normal'], width=WIDTH, height=HEIGHT, normalDotThreshold=np.cos(np.deg2rad(5)), distanceThreshold=0.05, closing=True, one_hot=True) #global_gt_dict['segmentation'] = tf.argmax(tf.concat([segmentation_gt, 1 - plane_mask], axis=3), axis=3) #segmentation_gt = tf.cast(tf.equal(global_gt_dict['segmentation'], tf.reshape(tf.range(NUM_PLANES), (1, 1, 1, -1))), tf.float32) #plane_mask = tf.cast(tf.less(global_gt_dict['segmentation'], NUM_PLANES), tf.float32) #global_gt_dict['boundary'] = findBoundaryModuleSmooth(global_gt_dict['depth'], segmentation_gt, plane_mask, global_gt_dict['smooth_boundary'], max_depth_diff = 0.1, max_normal_diff = np.sqrt(2 * (1 - np.cos(np.deg2rad(20))))) with tf.Session() as sess: sess.run(init_op) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: for _ in range(numImages / batchSize): img, global_gt = sess.run([img_inp, global_gt_dict]) for batchIndex in range(batchSize): numPlanes = global_gt['num_planes'][batchIndex] if numPlanes == 0: print(_) print('no plane') continue image = ((img[batchIndex] + 0.5) * 255).astype(np.uint8) segmentation = np.argmax(np.concatenate([global_gt['segmentation'][batchIndex], global_gt['non_plane_mask'][batchIndex]], axis=-1), axis=-1).astype(np.uint8).squeeze() boundary = global_gt['boundary'][batchIndex].astype(np.uint8) semantics = global_gt['semantics'][batchIndex].astype(np.uint8) planes = global_gt['plane'][batchIndex] if np.isnan(planes).any(): print((global_gt['image_path'][batchIndex])) planes, segmentation, numPlanes = removeSmallSegments(planes, np.zeros((HEIGHT, WIDTH, 3)), global_gt['depth'][batchIndex].squeeze(), np.zeros((HEIGHT, WIDTH, 3)), np.argmax(global_gt['segmentation'][batchIndex], axis=-1), global_gt['semantics'][batchIndex], global_gt['info'][batchIndex], global_gt['num_planes'][batchIndex]) if np.isnan(planes).any(): np.save('temp/plane.npy', global_gt['plane'][batchIndex]) np.save('temp/depth.npy', global_gt['depth'][batchIndex]) np.save('temp/segmentation.npy', global_gt['segmentation'][batchIndex]) np.save('temp/info.npy', global_gt['info'][batchIndex]) np.save('temp/num_planes.npy', global_gt['num_planes'][batchIndex]) print('why') exit(1) pass example = tf.train.Example(features=tf.train.Features(feature={ 'image_path': _bytes_feature(global_gt['image_path'][batchIndex]), 'image_raw': _bytes_feature(image.tostring()), 'depth': _float_feature(global_gt['depth'][batchIndex].reshape(-1)), 'normal': _float_feature(np.zeros((HEIGHT * WIDTH * 3))), 'semantics_raw': _bytes_feature(semantics.tostring()), 'plane': _float_feature(planes.reshape(-1)), 'num_planes': _int64_feature([numPlanes]), 'segmentation_raw': _bytes_feature(segmentation.tostring()), 'boundary_raw': _bytes_feature(boundary.tostring()), #'plane_relation': _float_feature(planeRelations.reshape(-1)), 'info': _float_feature(global_gt['info'][batchIndex]), })) writer.write(example.SerializeToString()) continue continue pass except tf.errors.OutOfRangeError: print('Done training -- epoch limit reached') finally: # When done, ask the threads to stop. coord.request_stop() pass # Wait for threads to finish. coord.join(threads) sess.close() return if __name__=='__main__': #writeRecordFile('val', 'matterport') #writeRecordFile('val', 'scannet') # writeRecordFile('train', 'matterport') #writeRecordFile('train', 'scannet') #writeRecordFile('train', 'nyu_rgbd') writeRecordFile('val', 'nyu_rgbd')
#include "../ec/builtins.hpp" #include "../ec/mnemonic.hpp" #include "../coin/builtins.hpp" #include "wallet_interpreter.hpp" #include "wallet.hpp" #include <boost/filesystem/path.hpp> using namespace epilog::common; using namespace epilog::interp; namespace epilog { namespace wallet { wallet_interpreter::wallet_interpreter(wallet &w, const std::string &wallet_file) : interp::interpreter("wallet"), file_path_(wallet_file), wallet_(w), no_coin_security_(this->disable_coin_security()) { init(); } void wallet_interpreter::init() { set_debug_enabled(); load_builtins_file_io(); ec::builtins::load(*this); coin::builtins::load(*this); setup_standard_lib(); set_current_module(con_cell("wallet",0)); setup_local_builtins(); setup_wallet_impl(); // Make wallet inherit everything from wallet_impl use_module(functor("wallet_impl",0)); set_auto_wam(true); set_retain_state_between_queries(true); } void wallet_interpreter::total_reset() { interpreter::total_reset(); disable_coin_security(); init(); } void wallet_interpreter::setup_local_builtins() { static const con_cell M("wallet",0); load_builtin(M, con_cell("@",2), &wallet_interpreter::operator_at_2); load_builtin(M, con_cell("@-",2), &wallet_interpreter::operator_at_silent_2); load_builtin(M, con_cell("create",2), &wallet_interpreter::create_2); load_builtin(M, con_cell("save",0), &wallet_interpreter::save_0); load_builtin(M, functor("auto_save",1), &wallet_interpreter::auto_save_1); load_builtin(M, con_cell("load",0), &wallet_interpreter::load_0); load_builtin(M, con_cell("file",1), &wallet_interpreter::file_1); } void wallet_interpreter::setup_wallet_impl() { std::string template_source = R"PROG( % % New key. Increment counter. % newkey(PublicKey, Address) :- wallet:numkeys(N), retract(wallet:numkeys(_)), N1 is N + 1, assert(wallet:numkeys(N1)), wallet:pubkey(N, PublicKey), ec:address(PublicKey, Address). '$member2'(X, Y, [X|Xs], [Y|Ys]). '$member2'(X, Y, [_|Xs], [_|Ys]) :- '$member2'(X, Y, Xs, Ys). % % Sync N heap references (to frozen closures) % sync(N) :- wallet:lastheap(H), H1 is H + 1, wallet:'@'(((frozenk(H1, N, HeapAddrs), frozen(HeapAddrs, Closures)) @ global), node), wallet:'@'(discard, node), HeapAddrs = [_|_], % At least one address! (last(HeapAddrs, LastH) -> retract(wallet:lastheap(_)), assert(wallet:lastheap(LastH)) ; true), forall('$member2'(Closure, HeapAddress, Closures, HeapAddrs), ('$new_utxo_closure'(HeapAddress, Closure) ; true)). % % Iterate through next 100 frozen closures to see if we have received % something we recognize. % sync :- '$cache_addresses', sync(100), !. sync. sync_all :- '$cache_addresses', sync_all0. sync_all0 :- sync(100), !, sync_all0. sync_all0. % % Restart wallet sweep. Clean UTXO database and start from heap address 0. % Call one sync step (which syncs 100 UTXOs) % resync :- retractall(wallet:utxo(_,_,_,_)), retractall(lastheap(_)), assert(lastheap(0)), sync. % % Compute public key addresses and store them in memory (using program database() % '$cache_addresses' :- (\+ current_predicate(cache:last_address/1) -> assert(cache:last_address(0)) ; true), cache:last_address(I), wallet:numkeys(N), '$cache_addresses_n'(I, N), retract(cache:last_address(_)), assert(cache:last_address(N)). '$cache_addresses_n'(N, N) :- !. '$cache_addresses_n'(I, N) :- wallet:pubkey(I, PubKey), ec:address(PubKey, Address), (\+ current_predicate(cache:valid_address/2) -> assert(cache:valid_address(Address,I)) ; true), (\+ cache:valid_address(Address,_) -> assert(cache:valid_address(Address,I)) ; true), I1 is I + 1, '$cache_addresses_n'(I1, N). % % Check this frozen closure for transaction type. % '$new_utxo_closure'(HeapAddress, '$freeze':F) :- functor(F, _, Arity), Arity >= 3, arg(5, F, TxType), arg(6, F, Args), arg(8, F, Coin), arg(1, Coin, Value), ((current_predicate(wallet:new_utxo/4), wallet:new_utxo(TxType, HeapAddress, Value, Args)) -> true ; '$new_utxo'(TxType, HeapAddress, Value, Args) ). % % Check for each transaction type, currently only for 'tx1' % '$new_utxo'(tx1, HeapAddress, Value, args(_, _, Address)) :- current_predicate(cache:valid_address/2), cache:valid_address(Address,_), ((current_predicate(wallet:utxo/4), wallet:utxo(HeapAddress, _,_,_)) -> true ; assert(wallet:utxo(HeapAddress, tx1, Value, Address))). % % Quickly get total balance % balance(Balance) :- (current_predicate(wallet:utxo/4) -> findall(utxo(Value,HeapAddr), wallet:utxo(HeapAddr,_,Value,_), Values), '$sum_utxo'(Values, 0, Balance) ; Balance = 0 ). % % Spending logic % spend_one(Address, Amount, Fee, FinalTx, ConsumedUtxos) :- spend_many([Address], [Amount], Fee, FinalTx, ConsumedUtxos). % % spend_many is the generic predicate that can be used to % spend to many addresses with different amounts. % spend_many(Addresses, Amounts, Fee, FinalTx, ConsumedUtxos) :- '$cache_addresses', % --- Get all available UTXOs from wallet, findall(utxo(Value,HeapAddress), wallet:utxo(HeapAddress,_,Value,_),Utxos), % --- Sort all UTXOs on value sort(Utxos, SortedUtxos), % --- Compute the total sum of funds that will be spent (excluding fee.) '$sum'(Amounts, AmountToSpend), % --- The total sum of funds that will be spent including fee. TotalAmount is AmountToSpend + Fee, % --- Find the UTXOs that we'd like to spend. '$choose'(SortedUtxos, TotalAmount, ChosenUtxos), % --- Compute its sum '$sum_utxo'(ChosenUtxos, 0, ChosenSum), % --- Rest is the remainder that will go back to self Rest is ChosenSum - TotalAmount, % --- Compute the list of instructions to open these UTXOs % --- Signs are the created signatures '$open_utxos'(ChosenUtxos, Hash, Coins, Signs, Commands), % --- Append a join instruction (if more than one UTXO) (Coins = [SumCoin] -> Commands1 = Commands ; append(Commands, [cjoin(Coins, SumCoin)], Commands1)), % --- Create txs for all the provided addresses (and funds.) findall(tx(_, _, tx1, args(_,_,Address),_), member(Address, Addresses), Txs), % --- Collect all coin arguments for these txs into SendCoins '$get_coins'(Txs, SendCoins), % --- Do we get change? (Rest > 0 -> % --- Yes, create a new change address newkey(_, ChangeAddr), % --- All the different funds AllAmounts = [Fee,Rest|Amounts], % --- Note that SendCoins will be unified with the above append(Commands1,[csplit(SumCoin, AllAmounts, [FeeCoin,RestCoin|SendCoins]), tx(RestCoin, _, tx1, args(_,_,ChangeAddr),_)|Txs], Commands2) ; AllAmounts = [Fee|Amounts], append(Commands1, [csplit(SumCoin,AllAmounts,[FeeCoin|SendCoins])|Txs], Commands2) ), % --- At this point Commands2 are all the combined instructions we need % --- Convert list to commas '$list_to_commas'(Commands2, Command), % --- The combined command as a self hash predicate (i.e. the script) '$collect_sign_vars'(Signs, SignVars), Script = (p(Hash, SignVars, FeeCoin) :- Command), % --- Compute the hash for this script ec:hash(Script, HashValue), % --- Get the required signatures to "run" this script % --- (without them, the commitment would fail to the global sate.) % --- One signature per opened UTXO '$signatures'(Signs, SignVars, HashValue, SignAssigns), % --- Prepend these signature statements to the script append(SignAssigns, [Script], Commands3), % --- Commands3 is the final instruction list, convert it to commas '$list_to_commas'(Commands3, FinalTx), % --- Return list of consumed utxos (so the user can remove them from % --- his wallet.) findall(H, member(utxo(_,H), ChosenUtxos), ConsumedUtxos), !. retract_utxos([]). retract_utxos([HeapAddr|HeapAddrs]) :- retract(wallet:utxo(HeapAddr, _, _, _)), retract_utxos(HeapAddrs). '$list_to_commas'([X], C) :- !, C = X. '$list_to_commas'([X|Xs], C) :- C = (X, Y), '$list_to_commas'(Xs, Y). '$signatures'([], [], _, []). '$signatures'([sign(tx1, SignVar, PubKeyAddress)|Signs], [SignVar|SignVars], HashValue, [(SignVar = Signature)|Commands]) :- cache:valid_address(PubKeyAddress, Count), wallet:privkey(Count, PrivKey), ec:sign(PrivKey, HashValue, Signature), '$signatures'(Signs, SignVars, HashValue, Commands). '$collect_sign_vars'([], []). '$collect_sign_vars'([sign(_,SignVar,_)|Signs],[SignVar|SignVars]) :- '$collect_sign_vars'(Signs,SignVars). '$open_utxos'([], _, [], [], []). '$open_utxos'([utxo(_,HeapAddress)|Utxos], Hash, [Coin|Coins], [Sign|Signs], Commands) :- '$open_utxo'(HeapAddress, Hash, Coin, Sign, Commands0), '$open_utxos'(Utxos, Hash, Coins, Signs, Commands1), append(Commands0, Commands1, Commands). '$open_utxo'(HeapAddress, Hash, Coin, Sign, Commands) :- wallet:utxo(HeapAddress, TxType, _, Data), '$open_utxo_tx'(TxType, HeapAddress, Data, Hash, Coin, Sign, Commands). '$open_utxo_tx'(tx1, HeapAddress, PubKeyAddress, Hash, Coin, sign(tx1,Signature,PubKeyAddress),Commands) :- cache:valid_address(PubKeyAddress, Count), wallet:pubkey(Count, PubKey), Commands = [defrost(HeapAddress, Closure, [Hash, args(Signature,PubKey,PubKeyAddress)]), arg(7, Closure, Coin)]. '$choose'(_, 0, []) :- !. '$choose'([utxo(Value,HeapAddress)|Utxos], Funds, Chosen) :- Value =< Funds, !, Chosen = [utxo(Value,HeapAddress)|ChosenUtxos], Funds1 is Funds - Value, '$choose'(Utxos, Funds1, ChosenUtxos). '$choose'([Utxo], _, [Utxo]) :- !. '$choose'([Utxo|Utxos], Funds, ChosenUtxos) :- '$choose'(Utxos, Funds, ChosenUtxos). '$sum_utxo'([], Sum, Sum). '$sum_utxo'([utxo(Value,_)|Rest], In, Out) :- '$sum_utxo'(Rest, In, Out0), Out is Out0 + Value. '$get_coins'([], []). '$get_coins'([tx(Coin,_,_,_,_)|Txs], [Coin|Coins]) :- '$get_coins'(Txs,Coins). '$sum'([], 0). '$sum'([X|Xs], Sum) :- '$sum'(Xs, Sum0), Sum is Sum0 + X. )PROG"; con_cell old_module = current_module(); set_current_module(functor("wallet_impl",0)); try { load_program(template_source); } catch (interpreter_exception &ex) { std::cout << "Error while loading internal wallet_impl source:" << std::endl; std::cout << ex.what() << std::endl; } catch (term_parse_exception &ex) { std::cout << "Error while loading internal wallet_impl source:" << std::endl; std::cout << term_parser::report_string(*this, ex) << std::endl; } catch (token_exception &ex) { std::cout << "Error while loading internal wallet_impl source:" << std::endl; std::cout << term_parser::report_string(*this, ex) << std::endl; } compile(); set_current_module(old_module); } bool wallet_interpreter::operator_at_impl(interpreter_base &interp, size_t arity, term args[], const std::string &name, interp::remote_execute_mode mode) { static con_cell NODE("node", 0); auto query = args[0]; term else_do; size_t timeout; auto where_term = args[1]; std::tie(where_term, else_do, timeout) = interpreter::deconstruct_where(interp, where_term); if (where_term != NODE) { return interpreter::operator_at_impl(interp, arity, args, name, mode); } std::string where = interp.atom_name(where_term); #define LL(x) reinterpret_cast<wallet_interpreter &>(interp) interp::remote_execution_proxy proxy(interp, [](interpreter_base &interp, term query, term else_do, const std::string &where, interp::remote_execute_mode mode, size_t timeout) {return LL(interp).get_wallet().execute_at(query, else_do, interp, where, mode, timeout);}, [](interpreter_base &interp, term query, term else_do, const std::string &where, interp::remote_execute_mode mode, size_t timeout) {return LL(interp).get_wallet().continue_at(query, else_do, interp, where, mode, timeout);}, [](interpreter_base &interp, const std::string &where) {return LL(interp).get_wallet().delete_instance_at(interp, where);}); proxy.set_mode(mode); proxy.set_timeout(timeout); return proxy.start(query, else_do, where); } bool wallet_interpreter::operator_at_2(interpreter_base &interp, size_t arity, term args[]) { return operator_at_impl(interp, arity, args, "@/2", interp::MODE_NORMAL); } bool wallet_interpreter::operator_at_silent_2(interpreter_base &interp, size_t arity, term args[]) { return operator_at_impl(interp, arity, args, "@-/2", interp::MODE_SILENT); } bool wallet_interpreter::operator_at_parallel_2(interpreter_base &interp, size_t arity, term args[]) { return operator_at_impl(interp, arity, args, "@=/2", interp::MODE_PARALLEL); } bool wallet_interpreter::save_0(interpreter_base &interp, size_t arity, term args[]) { auto &w = reinterpret_cast<wallet_interpreter &>(interp).get_wallet(); w.save(); return true; } bool wallet_interpreter::auto_save_1(interpreter_base &interp, size_t arity, term args[]) { auto &w = reinterpret_cast<wallet_interpreter &>(interp).get_wallet(); static con_cell on("on",0); static con_cell off("off",0); if (args[0].tag().is_ref()) { con_cell c = w.is_auto_save() ? on : off; return interp.unify(args[0], c); } else if (args[0] == on) { w.set_auto_save(true); return true; } else if (args[0] == off) { w.set_auto_save(false); return true; } else { return false; } } bool wallet_interpreter::load_0(interpreter_base &interp, size_t arity, term args[]) { auto &w = reinterpret_cast<wallet_interpreter &>(interp).get_wallet(); w.load(); return true; } bool wallet_interpreter::file_1(interpreter_base &interp, size_t arity, term args[]) { auto &w = reinterpret_cast<wallet_interpreter &>(interp).get_wallet(); if (args[0].tag().is_ref()) { return interp.unify(args[0], interp.string_to_list(w.get_file())); } else { // Switch to a new file // If the file name is relative, // use the same directory as the current file. if (!interp.is_string(args[0])) { throw interp::interpreter_exception_wrong_arg_type("file/1: Argument must be a string; was " + interp.to_string(args[0])); } auto new_file = interp.list_to_string(args[0]); if (new_file.empty()) { w.set_file(new_file); return true; } auto new_path = boost::filesystem::path(new_file); if (new_path.is_relative()) { auto p = boost::filesystem::path(w.get_file()).parent_path(); p /= new_path; new_path = p; } new_file = new_path.string(); w.save(); // Save current wallet before switching to new file w.set_file(new_file); return true; } } bool wallet_interpreter::create_2(interpreter_base &interp, size_t arity, term args[]) { if (!interp.is_string(args[0])) { throw interpreter_exception_wrong_arg_type( "create/2: First argument must be a string (the password); was " + interp.to_string(args[0])); } term sentence; ec::mnemonic mn(interp); if (args[1].tag() == tag_t::REF) { // Generate new sentence mn.generate_new(256); sentence = mn.to_sentence(); } else { if (!mn.from_sentence(args[1])) { throw interpreter_exception_wrong_arg_type( "create/2: Invalid BIP39 sentence; was " + interp.to_string(args[1])); } sentence = args[1]; } std::string passwd = interp.list_to_string(args[0]); auto &w = reinterpret_cast<wallet_interpreter &>(interp).get_wallet(); w.create(passwd, sentence); return interp.unify(args[1], sentence); } }}
------------------------------------------------------------------------------ -- Definition of mutual inductive predicates ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --without-K #-} {-# OPTIONS --no-universe-polymorphism #-} module FOTC.MutualInductivePredicates where open import FOTC.Base ------------------------------------------------------------------------------ -- Using mutual inductive predicates data Even : D → Set data Odd : D → Set data Even where ezero : Even zero esucc : ∀ {n} → Odd n → Even (succ₁ n) data Odd where osucc : ∀ {n} → Even n → Odd (succ₁ n) -- Non-mutual induction principles Even-ind : (A : D → Set) → A zero → (∀ {n} → Odd n → A (succ₁ n)) → ∀ {n} → Even n → A n Even-ind A A0 h ezero = A0 Even-ind A A0 h (esucc On) = h On Odd-ind : (A : D → Set) → (∀ {n} → Even n → A (succ₁ n)) → ∀ {n} → Odd n → A n Odd-ind A h (osucc En) = h En -- Mutual induction principles (from Coq) Even-mutual-ind : (A B : D → Set) → A zero → (∀ {n} → Odd n → B n → A (succ₁ n)) → (∀ {n} → Even n → A n → B (succ₁ n)) → ∀ {n} → Even n → A n Odd-mutual-ind : (A B : D → Set) → A zero → (∀ {n} → Odd n → B n → A (succ₁ n)) → (∀ {n} → Even n → A n → B (succ₁ n)) → ∀ {n} → Odd n → B n Even-mutual-ind A B A0 h₁ h₂ ezero = A0 Even-mutual-ind A B A0 h₁ h₂ (esucc On) = h₁ On (Odd-mutual-ind A B A0 h₁ h₂ On) Odd-mutual-ind A B A0 h₁ h₂ (osucc En) = h₂ En (Even-mutual-ind A B A0 h₁ h₂ En) module DisjointSum where -- Using a single inductive predicate on D × D (see -- Blanchette (2013)). _+_ : Set → Set → Set _+_ = _∨_ data EvenOdd : D + D → Set where eozero : EvenOdd (inj₁ zero) eoodd : {n : D} → EvenOdd (inj₁ n) → EvenOdd (inj₂ (succ₁ n)) eoeven : {n : D} → EvenOdd (inj₂ n) → EvenOdd (inj₁ (succ₁ n)) -- Induction principle EvenOdd-ind : (A : D + D → Set) → A (inj₁ zero) → ({n : D} → A (inj₁ n) → A (inj₂ (succ₁ n))) → ({n : D} → A (inj₂ n) → A (inj₁ (succ₁ n))) → {n : D + D} → EvenOdd n → A n EvenOdd-ind A A0 h₁ h₂ eozero = A0 EvenOdd-ind A A0 h₁ h₂ (eoodd EOn) = h₁ (EvenOdd-ind A A0 h₁ h₂ EOn) EvenOdd-ind A A0 h₁ h₂ (eoeven EOn) = h₂ (EvenOdd-ind A A0 h₁ h₂ EOn) ------------------------------------------------------------------------- -- From the single inductive predicate to the mutual inductive predicates -- Even and Odd from EvenOdd. Even' : D → Set Even' n = EvenOdd (inj₁ n) Odd' : D → Set Odd' n = EvenOdd (inj₂ n) -- From Even/Odd to Even'/Odd' Even→Even' : ∀ {n} → Even n → Even' n Odd→Odd' : ∀ {n} → Odd n → Odd' n Even→Even' ezero = eozero Even→Even' (esucc On) = eoeven (Odd→Odd' On) Odd→Odd' (osucc En) = eoodd (Even→Even' En) -- From Even'/Odd' to Even/Odd Even'→Even : ∀ {n} → Even' n → Even n Odd'→Odd : ∀ {n} → Odd' n → Odd n -- Requires K. Even'→Even eozero = ezero Even'→Even (eoeven h) = esucc (Odd'→Odd h) Odd'→Odd (eoodd h) = osucc (Even'→Even h) -- TODO (03 December 2012). From EvenOdd-ind to Even-mutual-ind and -- Odd-mutual-ind. module FunctionSpace where -- Using a single inductive predicate on D → D data EvenOdd : D → D → Set where eozero : EvenOdd zero (succ₁ zero) eoodd : ∀ {m n} → EvenOdd m n → EvenOdd m (succ₁ m) eoeven : ∀ {m n} → EvenOdd m n → EvenOdd (succ₁ n) n -- Even and Odd from EvenOdd. -- Even' : D → Set -- Even' n = EvenOdd zero (succ₁ zero) ∨ EvenOdd (succ₁ n) n -- Odd' : D → Set -- Odd' n = EvenOdd n (succ₁ n) -- -- From Even/Odd to Even'/Odd' -- Even→Even' : ∀ {n} → Even n → Even' n -- Odd→Odd' : ∀ {n} → Odd n → Odd' n -- Even→Even' ezero = inj₁ eozero -- Even→Even' (esucc On) = inj₂ (eoeven (Odd→Odd' On)) -- Odd→Odd' (osucc En) = eoodd {!!} -- -- From Even'/Odd' to Even/Odd -- Even'→Even : ∀ {n} → Even' n → Even n -- Odd'→Odd : ∀ {n} → Odd' n → Odd n -- Even'→Even (inj₁ x) = {!!} -- Even'→Even (inj₂ x) = {!!} -- Odd'→Odd h = {!!} ------------------------------------------------------------------------------ -- References -- -- Blanchette, Jasmin Christian (2013). Relational analysis of -- (co)inductive predicates, (co)algebraic datatypes, and -- (co)recursive functions. Software Quality Journal 21.1, -- pp. 101–126.
#include "irods/Hasher.hpp" #include <iostream> #include <algorithm> #include <boost/algorithm/string.hpp> #include "irods/rodsErrorTable.h" #include "irods/irods_stacktrace.hpp" namespace irods { error Hasher::init( const HashStrategy* _strategy_in ) { _strategy = _strategy_in; _stored_error = SUCCESS(); _stored_digest.clear(); return PASS( _strategy->init( _context ) ); } error Hasher::update( const std::string& _data ) { if ( NULL == _strategy ) { return ERROR( SYS_UNINITIALIZED, "Update called on a hasher that has not been initialized" ); } if ( !_stored_digest.empty() ) { return ERROR( SYS_HASH_IMMUTABLE, "Update called on a hasher that has already generated a digest" ); } error ret = _strategy->update( _data, _context ); return PASS( ret ); } error Hasher::digest( std::string& _messageDigest ) { if ( NULL == _strategy ) { return ERROR( SYS_UNINITIALIZED, "Digest called on a hasher that has not been initialized" ); } if ( _stored_digest.empty() ) { _stored_error = _strategy->digest( _stored_digest, _context ); } _messageDigest = _stored_digest; return PASS( _stored_error ); } }; //namespace irods
There is one known planet in the orbit of WASP @-@ 44 : WASP @-@ 44b . The planet is a Hot Jupiter with a mass of 0 @.@ 889 Jupiters . Its radius is 1 @.@ 14 times that of Jupiter . WASP @-@ 44b orbits its host star every 2 @.@ <unk> days at a distance 0 @.@ <unk> AU , approximately 3 @.@ 47 % the mean distance between the Earth and Sun . With an orbital inclination of <unk> , WASP @-@ 44b has an orbit that exists almost edge @-@ on to its host star with respect to Earth . <unk> @-@ 44b 's orbital eccentricity is fit to 0 @.@ 036 , indicating a mostly circular orbit .
(* File: SDS_Automation.thy Author: Manuel Eberl <[email protected]> This theory provides a number of commands to automatically derive restrictions on the results of Social Decision Schemes fulfilling properties like Anonymity, Neutrality, Ex-post- or SD-efficiency, and SD-Strategy-Proofness. *) section \<open>Automatic Fact Gathering for Social Decision Schemes\<close> theory SDS_Automation imports Preference_Profile_Cmd QSOpt_Exact "../Social_Decision_Schemes" keywords "derive_orbit_equations" "derive_support_conditions" "derive_ex_post_conditions" "find_inefficient_supports" "prove_inefficient_supports" "derive_strategyproofness_conditions" :: thy_goal begin text \<open> We now provide the following commands to automatically derive restrictions on the results of Social Decision Schemes satisfying Anonymity, Neutrality, Efficiency, or Strategy-Proofness: \begin{description} \item[@{command derive_orbit_equations}] to derive equalities arising from automorphisms of the given profiles due to Anonymity and Neutrality \item[@{command derive_ex_post_conditions}] to find all Pareto losers and the given profiles and derive the facts that they must be assigned probability 0 by any \textit{ex-post}-efficient SDS \item[@{command find_inefficient_supports}] to use Linear Programming to find all minimal SD-inefficient (but not \textit{ex-post}-inefficient) supports in the given profiles and output a corresponding witness lottery for each of them \item[@{command prove_inefficient_supports}] to prove a specified set of support conditions arising from \textit{ex-post}- or \textit{SD}-Efficiency. For conditions arising from \textit{SD}-Efficiency, a witness lottery must be specified (e.\,g. as computed by @{command derive_orbit_equations}). \item[@{command derive_support_conditions}] to automatically find and prove all support conditions arising from \textit{ex-post-} and \textit{SD}-Efficiency \item [@{command derive_strategyproofness_conditions}] to automatically derive all conditions arising from weak Strategy-Proofness and any manipulations between the given preference profiles. An optional maximum manipulation size can be specified. \end{description} All commands except @{command find_inefficient_supports} open a proof state and leave behind proof obligations for the user to discharge. This should always be possible using the Simplifier, possibly with a few additional rules, depending on the context. \<close> lemma disj_False_right: "P \<or> False \<longleftrightarrow> P" by simp lemmas multiset_add_ac = add_ac[where ?'a = "'a multiset"] lemma less_or_eq_real: "(x::real) < y \<or> x = y \<longleftrightarrow> x \<le> y" "x < y \<or> y = x \<longleftrightarrow> x \<le> y" by linarith+ lemma multiset_Diff_single_normalize: fixes a c assumes "a \<noteq> c" shows "({#a#} + B) - {#c#} = {#a#} + (B - {#c#})" using assms by auto lemma ex_post_efficient_aux: assumes "prefs_from_table_wf agents alts xss" "R \<equiv> prefs_from_table xss" assumes "i \<in> agents" "\<forall>i\<in>agents. y \<succeq>[prefs_from_table xss i] x" "\<not>y \<preceq>[prefs_from_table xss i] x" shows "ex_post_efficient_sds agents alts sds \<longrightarrow> pmf (sds R) x = 0" proof assume ex_post: "ex_post_efficient_sds agents alts sds" from assms(1,2) have wf: "pref_profile_wf agents alts R" by (simp add: pref_profile_from_tableI') from ex_post interpret ex_post_efficient_sds agents alts sds . from assms(2-) show "pmf (sds R) x = 0" by (intro ex_post_efficient''[OF wf, of i x y]) simp_all qed lemma SD_inefficient_support_aux: assumes R: "prefs_from_table_wf agents alts xss" "R \<equiv> prefs_from_table xss" assumes as: "as \<noteq> []" "set as \<subseteq> alts" "distinct as" "A = set as" assumes ys: "\<forall>x\<in>set (map snd ys). 0 \<le> x" "sum_list (map snd ys) = 1" "set (map fst ys) \<subseteq> alts" assumes i: "i \<in> agents" assumes SD1: "\<forall>i\<in>agents. \<forall>x\<in>alts. sum_list (map snd (filter (\<lambda>y. prefs_from_table xss i x (fst y)) ys)) \<ge> real (length (filter (prefs_from_table xss i x) as)) / real (length as)" assumes SD2: "\<exists>x\<in>alts. sum_list (map snd (filter (\<lambda>y. prefs_from_table xss i x (fst y)) ys)) > real (length (filter (prefs_from_table xss i x) as)) / real (length as)" shows "sd_efficient_sds agents alts sds \<longrightarrow> (\<exists>x\<in>A. pmf (sds R) x = 0)" proof assume "sd_efficient_sds agents alts sds" from R have wf: "pref_profile_wf agents alts R" by (simp add: pref_profile_from_tableI') then interpret pref_profile_wf agents alts R . interpret sd_efficient_sds agents alts sds by fact from ys have ys': "pmf_of_list_wf ys" by (intro pmf_of_list_wfI) auto { fix i x assume "x \<in> alts" "i \<in> agents" with ys' have "lottery_prob (pmf_of_list ys) (preferred_alts (R i) x) = sum_list (map snd (filter (\<lambda>y. prefs_from_table xss i x (fst y)) ys))" by (subst measure_pmf_of_list) (simp_all add: preferred_alts_def R) } note A = this { fix i x assume "x \<in> alts" "i \<in> agents" with as have "lottery_prob (pmf_of_set (set as)) (preferred_alts (R i) x) = real (card (set as \<inter> preferred_alts (R i) x)) / real (card (set as))" by (subst measure_pmf_of_set) simp_all also have "set as \<inter> preferred_alts (R i) x = set (filter (\<lambda>y. R i x y) as)" by (auto simp add: preferred_alts_def) also have "card \<dots> = length (filter (\<lambda>y. R i x y) as)" by (intro distinct_card distinct_filter assms) also have "card (set as) = length as" by (intro distinct_card assms) finally have "lottery_prob (pmf_of_set (set as)) (preferred_alts (R i) x) = real (length (filter (prefs_from_table xss i x) as)) / real (length as)" by (simp add: R) } note B = this from wf show "\<exists>x\<in>A. pmf (sds R) x = 0" proof (rule SD_inefficient_support') from ys ys' show lottery1: "pmf_of_list ys \<in> lotteries" by (intro pmf_of_list_lottery) show i: "i \<in> agents" by fact from as have lottery2: "pmf_of_set (set as) \<in> lotteries" by (intro pmf_of_set_lottery) simp_all from i as SD2 lottery1 lottery2 show "\<not>SD (R i) (pmf_of_list ys) (pmf_of_set A)" by (subst preorder_on.SD_preorder[of alts]) (auto simp: A B not_le) from as SD1 lottery1 lottery2 show "\<forall>i\<in>agents. SD (R i) (pmf_of_set A) (pmf_of_list ys)" by safe (auto simp: preorder_on.SD_preorder[of alts] A B) qed (insert as, simp_all) qed definition pref_classes where "pref_classes alts le = preferred_alts le ` alts - {alts}" primrec pref_classes_lists where "pref_classes_lists [] = {}" | "pref_classes_lists (xs#xss) = insert (\<Union>(set (xs#xss))) (pref_classes_lists xss)" fun pref_classes_lists_aux where "pref_classes_lists_aux acc [] = {}" | "pref_classes_lists_aux acc (xs#xss) = insert acc (pref_classes_lists_aux (acc \<union> xs) xss)" lemma pref_classes_lists_append: "pref_classes_lists (xs @ ys) = (\<union>) (\<Union>(set ys)) ` pref_classes_lists xs \<union> pref_classes_lists ys" by (induction xs) auto lemma pref_classes_lists_aux: assumes "is_weak_ranking xss" "acc \<inter> (\<Union>(set xss)) = {}" shows "pref_classes_lists_aux acc xss = (insert acc ((\<lambda>A. A \<union> acc) ` pref_classes_lists (rev xss)) - {acc \<union> \<Union>(set xss)})" using assms proof (induction acc xss rule: pref_classes_lists_aux.induct [case_names Nil Cons]) case (Cons acc xs xss) from Cons.prems have A: "acc \<inter> (xs \<union> \<Union>(set xss)) = {}" "xs \<noteq> {}" by (simp_all add: is_weak_ranking_Cons) from Cons.prems have "pref_classes_lists_aux (acc \<union> xs) xss = insert (acc \<union> xs) ((\<lambda>A. A \<union> (acc \<union> xs)) `pref_classes_lists (rev xss)) - {acc \<union> xs \<union> \<Union>(set xss)}" by (intro Cons.IH) (auto simp: is_weak_ranking_Cons) with Cons.prems have "pref_classes_lists_aux acc (xs # xss) = insert acc (insert (acc \<union> xs) ((\<lambda>A. A \<union> (acc \<union> xs)) ` pref_classes_lists (rev xss)) - {acc \<union> (xs \<union> \<Union>(set xss))})" by (simp_all add: is_weak_ranking_Cons pref_classes_lists_append image_image Un_ac) also from A have "\<dots> = insert acc (insert (acc \<union> xs) ((\<lambda>x. x \<union> (acc \<union> xs)) ` pref_classes_lists (rev xss))) - {acc \<union> (xs \<union> \<Union>(set xss))}" by blast finally show ?case by (simp_all add: pref_classes_lists_append image_image Un_ac) qed simp_all lemma pref_classes_list_aux_hd_tl: assumes "is_weak_ranking xss" "xss \<noteq> []" shows "pref_classes_lists_aux (hd xss) (tl xss) = pref_classes_lists (rev xss) - {\<Union>(set xss)}" proof - from assms have A: "xss = hd xss # tl xss" by simp from assms have "hd xss \<inter> \<Union>(set (tl xss)) = {} \<and> is_weak_ranking (tl xss)" by (subst (asm) A, subst (asm) is_weak_ranking_Cons) simp_all hence "pref_classes_lists_aux (hd xss) (tl xss) = insert (hd xss) ((\<lambda>A. A \<union> hd xss) ` pref_classes_lists (rev (tl xss))) - {hd xss \<union> \<Union>(set (tl xss))}" by (intro pref_classes_lists_aux) simp_all also have "hd xss \<union> \<Union>(set (tl xss)) = \<Union>(set xss)" by (subst (3) A, subst set_simps) simp_all also have "insert (hd xss) ((\<lambda>A. A \<union> hd xss) ` pref_classes_lists (rev (tl xss))) = pref_classes_lists (rev (tl xss) @ [hd xss])" by (subst pref_classes_lists_append) auto also have "rev (tl xss) @ [hd xss] = rev xss" by (subst (3) A) (simp only: rev.simps) finally show ?thesis . qed lemma pref_classes_of_weak_ranking_aux: assumes "is_weak_ranking xss" shows "of_weak_ranking_Collect_ge xss ` (\<Union>(set xss)) = pref_classes_lists xss" proof safe fix X x assume "x \<in> X" "X \<in> set xss" with assms show "of_weak_ranking_Collect_ge xss x \<in> pref_classes_lists xss" by (induction xss) (auto simp: is_weak_ranking_Cons of_weak_ranking_Collect_ge_Cons') next fix x assume "x \<in> pref_classes_lists xss" with assms show "x \<in> of_weak_ranking_Collect_ge xss ` \<Union>(set xss)" proof (induction xss) case (Cons xs xss) from Cons.prems consider "x = xs \<union> \<Union>(set xss)" | "x \<in> pref_classes_lists xss" by auto thus ?case proof cases assume "x = xs \<union> \<Union>(set xss)" with Cons.prems show ?thesis by (auto simp: is_weak_ranking_Cons of_weak_ranking_Collect_ge_Cons') next assume x: "x \<in> pref_classes_lists xss" from Cons.prems x have "x \<in> of_weak_ranking_Collect_ge xss ` \<Union>(set xss)" by (intro Cons.IH) (simp_all add: is_weak_ranking_Cons) moreover from Cons.prems have "xs \<inter> \<Union>(set xss) = {}" by (simp add: is_weak_ranking_Cons) ultimately have "x \<in> of_weak_ranking_Collect_ge xss ` ((xs \<union> \<Union>(set xss)) \<inter> {x. x \<notin> xs})" by blast thus ?thesis by (simp add: of_weak_ranking_Collect_ge_Cons') qed qed simp_all qed lemma eval_pref_classes_of_weak_ranking: assumes "\<Union>(set xss) = alts" "is_weak_ranking xss" "alts \<noteq> {}" shows "pref_classes alts (of_weak_ranking xss) = pref_classes_lists_aux (hd xss) (tl xss)" proof - have "pref_classes alts (of_weak_ranking xss) = preferred_alts (of_weak_ranking xss) ` (\<Union>(set (rev xss))) - {\<Union>(set xss)}" by (simp add: pref_classes_def assms) also { have "of_weak_ranking_Collect_ge (rev xss) ` (\<Union>(set (rev xss))) = pref_classes_lists (rev xss)" using assms by (intro pref_classes_of_weak_ranking_aux) simp_all also have "of_weak_ranking_Collect_ge (rev xss) = preferred_alts (of_weak_ranking xss)" by (intro ext) (simp_all add: of_weak_ranking_Collect_ge_def preferred_alts_def) finally have "preferred_alts (of_weak_ranking xss) ` (\<Union>(set (rev xss))) = pref_classes_lists (rev xss)" . } also from assms have "pref_classes_lists (rev xss) - {\<Union>(set xss)} = pref_classes_lists_aux (hd xss) (tl xss)" by (intro pref_classes_list_aux_hd_tl [symmetric]) auto finally show ?thesis by simp qed context preorder_on begin lemma SD_iff_pref_classes: assumes "p \<in> lotteries_on carrier" "q \<in> lotteries_on carrier" shows "p \<preceq>[SD(le)] q \<longleftrightarrow> (\<forall>A\<in>pref_classes carrier le. measure_pmf.prob p A \<le> measure_pmf.prob q A)" proof safe fix A assume "p \<preceq>[SD(le)] q" "A \<in> pref_classes carrier le" thus "measure_pmf.prob p A \<le> measure_pmf.prob q A" by (auto simp: SD_preorder pref_classes_def) next assume A: "\<forall>A\<in>pref_classes carrier le. measure_pmf.prob p A \<le> measure_pmf.prob q A" show "p \<preceq>[SD(le)] q" proof (rule SD_preorderI) fix x assume x: "x \<in> carrier" show "measure_pmf.prob p (preferred_alts le x) \<le> measure_pmf.prob q (preferred_alts le x)" proof (cases "preferred_alts le x = carrier") case False with x have "preferred_alts le x \<in> pref_classes carrier le" unfolding pref_classes_def by (intro DiffI imageI) simp_all with A show ?thesis by simp next case True from assms have "measure_pmf.prob p carrier = 1" "measure_pmf.prob q carrier = 1" by (auto simp: measure_pmf.prob_eq_1 lotteries_on_def AE_measure_pmf_iff) with True show ?thesis by simp qed qed (insert assms, simp_all) qed end lemma (in strategyproof_an_sds) strategyproof': assumes wf: "is_pref_profile R" "total_preorder_on alts Ri'" and i: "i \<in> agents" shows "(\<exists>A\<in>pref_classes alts (R i). lottery_prob (sds (R(i := Ri'))) A < lottery_prob (sds R) A) \<or> (\<forall>A\<in>pref_classes alts (R i). lottery_prob (sds (R(i := Ri'))) A = lottery_prob (sds R) A)" proof - from wf(1) interpret R: pref_profile_wf agents alts R . from i interpret total_preorder_on alts "R i" by simp from assms have "\<not> manipulable_profile R i Ri'" by (intro strategyproof) moreover from wf i have "sds R \<in> lotteries" "sds (R(i := Ri')) \<in> lotteries" by (simp_all add: sds_wf) ultimately show ?thesis by (fastforce simp: manipulable_profile_def strongly_preferred_def SD_iff_pref_classes not_le not_less) qed lemma pref_classes_lists_aux_finite: "A \<in> pref_classes_lists_aux acc xss \<Longrightarrow> finite acc \<Longrightarrow> (\<And>A. A \<in> set xss \<Longrightarrow> finite A) \<Longrightarrow> finite A" by (induction acc xss rule: pref_classes_lists_aux.induct) auto lemma strategyproof_aux: assumes wf: "prefs_from_table_wf agents alts xss1" "R1 = prefs_from_table xss1" "prefs_from_table_wf agents alts xss2" "R2 = prefs_from_table xss2" assumes sds: "strategyproof_an_sds agents alts sds" and i: "i \<in> agents" and j: "j \<in> agents" assumes eq: "R1(i := R2 j) = R2" "the (map_of xss1 i) = xs" "pref_classes_lists_aux (hd xs) (tl xs) = ps" shows "(\<exists>A\<in>ps. (\<Sum>x\<in>A. pmf (sds R2) x) < (\<Sum>x\<in>A. pmf (sds R1) x)) \<or> (\<forall>A\<in>ps. (\<Sum>x\<in>A. pmf (sds R2) x) = (\<Sum>x\<in>A. pmf (sds R1) x))" proof - from sds interpret strategyproof_an_sds agents alts sds . let ?Ri' = "R2 j" from wf j have wf': "is_pref_profile R1" "total_preorder_on alts ?Ri'" by (auto intro: pref_profile_from_tableI pref_profile_wf.prefs_wf'(1)) from wf(1) i have "i \<in> set (map fst xss1)" by (simp add: prefs_from_table_wf_def) with prefs_from_table_wfD(3)[OF wf(1)] eq have "xs \<in> set (map snd xss1)" by force note xs = prefs_from_table_wfD(2)[OF wf(1)] prefs_from_table_wfD(5,6)[OF wf(1) this] { fix p A assume A: "A \<in> pref_classes_lists_aux (hd xs) (tl xs)" from xs have "xs \<noteq> []" by auto with xs have "finite A" by (intro pref_classes_lists_aux_finite[OF A]) (auto simp: is_finite_weak_ranking_def list.set_sel) hence "lottery_prob p A = (\<Sum>x\<in>A. pmf p x)" by (rule measure_measure_pmf_finite) } note A = this from strategyproof'[OF wf' i] eq have "(\<exists>A\<in>pref_classes alts (R1 i). lottery_prob (sds R2) A < lottery_prob (sds R1) A) \<or> (\<forall>A\<in>pref_classes alts (R1 i). lottery_prob (sds R2) A = lottery_prob (sds R1) A)" by simp also from wf eq i have "R1 i = of_weak_ranking xs" by (simp add: prefs_from_table_map_of) also from xs have "pref_classes alts (of_weak_ranking xs) = pref_classes_lists_aux (hd xs) (tl xs)" unfolding is_finite_weak_ranking_def by (intro eval_pref_classes_of_weak_ranking) simp_all finally show ?thesis by (simp add: A eq) qed lemma strategyproof_aux': assumes wf: "prefs_from_table_wf agents alts xss1" "R1 \<equiv> prefs_from_table xss1" "prefs_from_table_wf agents alts xss2" "R2 \<equiv> prefs_from_table xss2" assumes sds: "strategyproof_an_sds agents alts sds" and i: "i \<in> agents" and j: "j \<in> agents" assumes perm: "list_permutes ys alts" defines "\<sigma> \<equiv> permutation_of_list ys" and "\<sigma>' \<equiv> inverse_permutation_of_list ys" defines "xs \<equiv> the (map_of xss1 i)" defines xs': "xs' \<equiv> map ((`) \<sigma>) (the (map_of xss2 j))" defines "Ri' \<equiv> of_weak_ranking xs'" assumes distinct_ps: "\<forall>A\<in>ps. distinct A" assumes eq: "mset (map snd xss1) - {#the (map_of xss1 i)#} + {#xs'#} = mset (map (map ((`) \<sigma>) \<circ> snd) xss2)" "pref_classes_lists_aux (hd xs) (tl xs) = set ` ps" shows "list_permutes ys alts \<and> ((\<exists>A\<in>ps. (\<Sum>x\<leftarrow>A. pmf (sds R2) (\<sigma>' x)) < (\<Sum>x\<leftarrow>A. pmf (sds R1) x)) \<or> (\<forall>A\<in>ps. (\<Sum>x\<leftarrow>A. pmf (sds R2) (\<sigma>' x)) = (\<Sum>x\<leftarrow>A. pmf (sds R1) x)))" (is "_ \<and> ?th") proof from perm have perm': "\<sigma> permutes alts" by (simp add: \<sigma>_def) from sds interpret strategyproof_an_sds agents alts sds . from wf(3) j have "j \<in> set (map fst xss2)" by (simp add: prefs_from_table_wf_def) with prefs_from_table_wfD(3)[OF wf(3)] have xs'_aux: "the (map_of xss2 j) \<in> set (map snd xss2)" by force with wf(3) have xs'_aux': "is_finite_weak_ranking (the (map_of xss2 j))" by (auto simp: prefs_from_table_wf_def) hence *: "is_weak_ranking xs'" unfolding xs' by (intro is_weak_ranking_map_inj permutes_inj_on[OF perm']) (auto simp add: is_finite_weak_ranking_def) moreover from * xs'_aux' have "is_finite_weak_ranking xs'" by (auto simp: xs' is_finite_weak_ranking_def) moreover from prefs_from_table_wfD(5)[OF wf(3) xs'_aux] have "\<Union>(set xs') = alts" unfolding xs' by (simp add: image_Union [symmetric] permutes_image[OF perm']) ultimately have wf_xs': "is_weak_ranking xs'" "is_finite_weak_ranking xs'" "\<Union>(set xs') = alts" by (simp_all add: is_finite_weak_ranking_def) from this wf j have wf': "is_pref_profile R1" "total_preorder_on alts Ri'" "is_pref_profile R2" "finite_total_preorder_on alts Ri'" unfolding Ri'_def by (auto intro: pref_profile_from_tableI pref_profile_wf.prefs_wf'(1) total_preorder_of_weak_ranking) interpret R1: pref_profile_wf agents alts R1 by fact interpret R2: pref_profile_wf agents alts R2 by fact from wf(1) i have "i \<in> set (map fst xss1)" by (simp add: prefs_from_table_wf_def) with prefs_from_table_wfD(3)[OF wf(1)] eq(2) have "xs \<in> set (map snd xss1)" unfolding xs_def by force note xs = prefs_from_table_wfD(2)[OF wf(1)] prefs_from_table_wfD(5,6)[OF wf(1) this] from wf i wf' wf_xs' xs eq have eq': "anonymous_profile (R1(i := Ri')) = image_mset (map ((`) \<sigma>)) (anonymous_profile R2)" by (subst R1.anonymous_profile_update) (simp_all add: Ri'_def weak_ranking_of_weak_ranking mset_map multiset.map_comp xs_def anonymise_prefs_from_table prefs_from_table_map_of) { fix p A assume A: "A \<in> pref_classes_lists_aux (hd xs) (tl xs)" from xs have "xs \<noteq> []" by auto with xs have "finite A" by (intro pref_classes_lists_aux_finite[OF A]) (auto simp: is_finite_weak_ranking_def list.set_sel) hence "lottery_prob p A = (\<Sum>x\<in>A. pmf p x)" by (rule measure_measure_pmf_finite) } note A = this from strategyproof'[OF wf'(1,2) i] eq' have "(\<exists>A\<in>pref_classes alts (R1 i). lottery_prob (sds (R1(i := Ri'))) A < lottery_prob (sds R1) A) \<or> (\<forall>A\<in>pref_classes alts (R1 i). lottery_prob (sds (R1(i := Ri'))) A = lottery_prob (sds R1) A)" by simp also from eq' i have "sds (R1(i := Ri')) = map_pmf \<sigma> (sds R2)" unfolding \<sigma>_def by (intro sds_anonymous_neutral permutation_of_list_permutes perm wf' pref_profile_wf.wf_update eq) also from wf eq i have "R1 i = of_weak_ranking xs" by (simp add: prefs_from_table_map_of xs_def) also from xs have "pref_classes alts (of_weak_ranking xs) = pref_classes_lists_aux (hd xs) (tl xs)" unfolding is_finite_weak_ranking_def by (intro eval_pref_classes_of_weak_ranking) simp_all finally have "(\<exists>A\<in>ps. (\<Sum>x\<leftarrow>A. pmf (map_pmf \<sigma> (sds R2)) x) < (\<Sum>x\<leftarrow>A. pmf (sds R1) x)) \<or> (\<forall>A\<in>ps. (\<Sum>x\<leftarrow>A. pmf (map_pmf \<sigma> (sds R2)) x) = (\<Sum>x\<leftarrow>A. pmf (sds R1) x))" using distinct_ps by (simp add: A eq sum.distinct_set_conv_list del: measure_map_pmf) also from perm' have "pmf (map_pmf \<sigma> (sds R2)) = (\<lambda>x. pmf (sds R2) (inv \<sigma> x))" using pmf_map_inj'[of \<sigma> _ "inv \<sigma> x" for x] by (simp add: fun_eq_iff permutes_inj permutes_inverses) also from perm have "inv \<sigma> = \<sigma>'" unfolding \<sigma>_def \<sigma>'_def by (rule inverse_permutation_of_list_correct [symmetric]) finally show ?th . qed fact+ ML_file \<open>randomised_social_choice.ML\<close> ML_file \<open>sds_automation.ML\<close> end
############################################################################################ """ $(TYPEDEF) Default Configuration for NUTS sampler. # Fields $(TYPEDFIELDS) """ struct ConfigNUTS{K<:KineticEnergy} <: AbstractConfiguration ## Global targets "Target Acceptance Rate" δ::Float64 "Default size for tuning iterations in each cycle." window::ConfigTuningWindow "Kinetic Energy used in Hamiltonian: GaussianKineticEnergy" energy::K function ConfigNUTS( δ::Float64, window::ConfigTuningWindow, energy::K, ) where {K<:KineticEnergy} @argcheck 0.0 < δ <= 1.0 "Acceptance rate not bounded between 0 and 1" return new{K}( δ, window, energy ) end end """ $(SIGNATURES) Initialize NUTS custom configurations. # Examples ```julia ``` """ function init( ::Type{AbstractConfiguration}, mcmc::Type{NUTS}, objective::Objective, proposalconfig::ConfigProposal; ## Target Acceptance Rate δ=0.80, ## MCMC Phase tune variables based on standard HMC best practice target acceptance rate of 0.80 window= ConfigTuningWindow( [1, 5, 1], [75, 50, 25], [Warmup(), Adaptionˢˡᵒʷ(), Adaptionᶠᵃˢᵗ(), Exploration()] ), ## Kinetic energy in Hamiltonian energy=GaussianKineticEnergy( init( objective.model.info.reconstruct.default.output, proposalconfig.metric, length(objective.tagged) )..., ) ) return ConfigNUTS( δ, window, energy ) end ############################################################################################ #export export ConfigNUTS
(*=========================================================================== Auxiliary lemmas for Hoare triples on *programs* ===========================================================================*) Require Import ssreflect ssrbool ssrnat eqtype seq fintype. Require Import procstate procstatemonad bitsops bitsprops bitsopsprops. Require Import SPred septac spec spectac safe pointsto cursor instr reader instrcodec. Require Import Setoid RelationClasses Morphisms. Require Import program basic antiframe. (* Morphism for program equivalence *) Global Instance basic_progEq_m: Proper (lequiv ==> progEq ==> lequiv ==> lequiv) basic. Proof. move => P P' HP c c' Hc Q Q' HQ. rewrite {1}/basic. setoid_rewrite HQ. setoid_rewrite HP. setoid_rewrite Hc. reflexivity. Qed. (* Skip rule *) Lemma basic_skip P: |-- basic P prog_skip P. Proof. rewrite /basic. specintros => i j. unfold_program. specintro => H. rewrite emp_unit spec_reads_eq_at; rewrite <- emp_unit. rewrite spec_at_emp. inversion H. subst. by apply limplValid. Qed. (* Sequencing rule *) Lemma basic_seq (c1 c2: program) S P Q R: S |-- basic P c1 Q -> S |-- basic Q c2 R -> S |-- basic P (c1;; c2) R. Proof. rewrite /basic. move=> Hc1 Hc2. specintros => i j. unfold_program. specintro => i'. rewrite -> memIsNonTop. specintros => p' EQ. subst. specapply Hc1. by ssimpl. specapply Hc2. by ssimpl. rewrite <-spec_reads_frame. apply: limplAdj. apply: landL2. by rewrite spec_at_emp. Qed. (* Scoped label rule *) Lemma basic_local S P c Q: (forall l, S |-- basic P (c l) Q) -> S |-- basic P (prog_declabel c) Q. Proof. move=> H. rewrite /basic. rewrite /memIs /=. specintros => i j l. specialize (H l). lforwardR H. - apply lforallL with i. apply lforallL with j. reflexivity. apply H. Qed. (* Needed to avoid problems with coercions *) Lemma basic_instr S P i Q : S |-- basic P i Q -> S |-- basic P (prog_instr i) Q. Proof. done. Qed. Lemma regMissingIn_program r (i j: DWORD) (c: program): regMissingIn r (i -- j :-> c). Proof. move: i j. induction c => i j; unfold_program; by eauto with reg_not_in. Qed. Hint Resolve regMissingIn_program : reg_not_in. Lemma antiframe_register_basic (r: Reg) P Q c: regNotFree r P -> (forall v, |-- basic (P ** r~=v) c (Q ** r~=v)) -> |-- basic P c Q. Proof. rewrite /basic /spec_reads => HregNotFree H. specintros => i j s Hs. autorewrite with push_at. apply limplValid. apply antiframe_register with r. - apply regNotFree_sepSP. + apply regNotFree_sepSP; last done. apply regNotFree_reg. by destruct r; first destruct r. + apply regMissingIn_regNotFree. rewrite ->Hs. auto with reg_not_in. - apply _. - move => v. specialize (H v). lforwardR H. { apply lforallL with i. apply lforallL with j. apply lforallL with s. apply lpropimplL; first done. reflexivity. } specapply H; first by ssimpl. autorewrite with push_at. rewrite spec_reads_emp. cancel1. by ssimpl. Qed. (* Attempts to apply "basic" lemma on a single command (basic_basic) or on the first of a sequence (basic_seq). Note that it attempts to use sbazooka to discharge subgoals, so be careful if existentials are exposed in the goal -- they will be instantiated! *) Hint Unfold not : basicapply. Hint Rewrite eq_refl : basicapply. Ltac instRule R H := move: (R) => H; repeat (autounfold with basicapply in H); eforalls H; autorewrite with push_at in H. (* This is all very sensitive to use of "e" versions of apply/exact. Beware! *) (* We ensure that we leave at most one goal remaining. *) Ltac basicatom R tacfin := lazymatch goal with | |- |-- basic ?P (prog_instr ?i) ?Q => (eapply basic_basic; first eapply basic_instr; [ eexact R | tacfin .. | try tacfin ]) | _ => eapply basic_basic; [ eexact R | tacfin .. | try tacfin ] end. Ltac basicseq R tacfin := lazymatch goal with | |- |-- basic ?P (prog_seq ?p1 ?p2) ?Q => (eapply basic_seq; first basicatom R tacfin) | _ => basicatom R tacfin end. Ltac basicapply R tac tacfin := let Hlem := fresh "Hlem" in instRule R Hlem; tac Hlem; first basicseq Hlem tacfin; clear Hlem. Tactic Notation "basicapply" open_constr(R) "using" tactic3(tac) "side" "conditions" tactic(tacfin) := basicapply R tac tacfin. Tactic Notation "basicapply" open_constr(R) "using" tactic3(tac) := basicapply R using (tac) side conditions by autounfold with spred; sbazooka. Tactic Notation "basicapply" open_constr(R) "side" "conditions" tactic(tacfin) := basicapply R using (fun Hlem => autorewrite with basicapply in Hlem) side conditions tacfin. Tactic Notation "basicapply" open_constr(R) := basicapply R using (fun Hlem => autorewrite with basicapply in Hlem). (** Variant of [basicapply] that doesn't require that the side conditions be fully solved. *) Tactic Notation "try_basicapply" open_constr(R) "using" tactic3(tac) := basicapply R using (tac) side conditions autounfold with spred; sbazooka. Tactic Notation "try_basicapply" open_constr(R) := try_basicapply R using (fun Hlem => autorewrite with basicapply in Hlem).
#' @title Summary statistics for a quantitative variable #' @description This function provides descriptive statistics for a quantitative #' variable alone or seperately by groups. Any function that returns a single #' numeric value can bue used. #' @param data data frame #' @param x numeric variable in data (unquoted) #' @param statistics statistics to calculate (any function that produces a #' numeric value), Default: \code{c("n", "mean", "sd")} #' @param na.rm if \code{TRUE}, delete cases with missing values on x and or grouping #' variables, Default: \code{TRUE} #' @param digits number of decimal digits to print, Default: 2 #' @param ... list of grouping variables #' @importFrom purrr map_dfc #' @import dplyr #' @importFrom purrr map_dfc #' @import rlang #' @import haven #' @return a data frame, where columns are grouping variables (optional) and #' statistics #' @examples #' # If no keyword arguments are provided, default values are used #' qstats(mtcars, mpg, am, gear) #' #' # You can supply as many (or no) grouping variables as needed #' qstats(mtcars, mpg) #' #' qstats(mtcars, mpg, am, cyl) #' #' # You can specify your own functions (e.g., median, #' # median absolute deviation, minimum, maximum)) #' qstats(mtcars, mpg, am, gear, #' stats = c("median", "mad", "min", "max")) #' @rdname qstats #' @export qstats <- function(data, x, ...){ x <- enquo(x) dots <- enquos(...) if(!is.numeric(data %>% pull(!!x))){ stop("data$x is not numeric") } ## stats median <- function(xs){ ys <- sort(xs) m <- length(xs)/2 if(length(xs) %% 2 == 0){ mean(c(ys[m], ys[m+1])) } else { ys[floor(m) + 1] } } n <- function(xs){ length(xs) } ## Auxiliary functions my_sum <- function(data, col, cus_sum) { col <- enquo(col) cus_sum_name <- cus_sum cus_sum <- rlang::as_function(cus_sum) data %>% summarise(!!cus_sum_name := cus_sum(!!col)) } my_sums <- function(data, col, cus_sums) { col <- enquo(col) purrr::map_dfc(cus_sums, my_sum, data = data, col = !!col) } extract_list_unnamed_elems <- function(my_list){ unnamed_idxs <- (1:length(my_list))[names(my_list) == ""] my_list[unnamed_idxs] } stats <- if(is.null(dots$stats)) { c("n", "mean", "sd") } else { eval(rlang::quo_get_expr(dots$stats)) } na.rm <- if(is.null(dots$na.rm)) TRUE else rlang::quo_get_expr(dots$na.rm) digits <- if(is.null(dots$digits)) 2 else rlang::quo_get_expr(dots$digits) grouping_vars <- extract_list_unnamed_elems(dots) data <- data %>% select(!!x, !!!grouping_vars) if(na.rm){ data <- stats::na.omit(data) } data %>% mutate_at(vars(!!!grouping_vars), as_factor) %>% group_by(!!!grouping_vars) %>% group_modify(~my_sums(.x, col = !!x, cus_sums = stats)) %>% mutate_at(vars(-group_cols()), ~ round(as.double(.x), digits = digits)) %>% ungroup() %>% as.data.frame() }
Formal statement is: lemma to_fract_0 [simp]: "to_fract 0 = 0" Informal statement is: $\text{to\_fract}(0) = 0$.
# Copyright (c) 2018-2021, Carnegie Mellon University # See LICENSE for details neg.doPeel := true; #F CopyPropagate(<code>) #F Performs copy propagation and strength reduction #F If <code> has IFs it MUST be in SSA form, i.e., #F SSA(<code>) must be run first. #F Class(SubstVarsRules, RuleSet, rec( create := (self, varmap) >> Inherit(self, rec( rules := rec( v := Rule(@(1,var,e->IsBound(varmap.(e.id))), e -> varmap.(e.id)) ) )).compile() )); # apply linear normalization to index expressions, this will simplify cases like # 3x + 2x = 5x # Class(SimpIndicesRules, RuleSet, rec( create := (self, opts) >> Inherit(self, rec( rules := rec( simp_indices := Rule(@(1, opts.simpIndicesInside), x -> GroupSummandsExp(x)) ) )).compile() )); # Transforms nth(x, idx) to deref(x + idx) Class(RulesDerefNth, RuleSet); RewriteRules(RulesDerefNth, rec( deref_nth := Rule( [nth, @(1).cond( x -> not (x _is [Value, param]) or not IsBound(x.value)), @(2)], e -> let( b := @(1).val, idx := @(2).val, Cond( ObjId(idx) = add, deref(ApplyFunc(add, [b] :: idx.args)), ObjId(idx) = sub, deref(ApplyFunc(add, [b] :: [idx.args[1], neg(idx.args[2])])), deref(b + idx)))) )); # sorts the incoming array of assignments by the offset of the # variable being assigned TO, rather than the one assigned FROM. # improves locality hence cache performance. _sortByIdx := function(array) local newarray; newarray := Copy(array); SortParallel( List(array, e -> Double(SubString(e.args[2].id, 2))), newarray ); return newarray; end; CopyTab := function (t) local r, a; r := tab(); for a in NSFields(t) do r.(a):=Copy(t.(a)); od; return r; end; Class(CopyPropagate, CSE, rec( propagate := (self, cloc, cexp) >> let(cebase := ObjId(cexp), ((cebase in [var, Value, noneExp]) or (self.propagateNth and cebase in [nth, deref] and IsValue(cexp.idx)) or (IsBound(self.opts.autoinline) and IsBound(cloc.succ) and Length(cloc.succ)<=1) or (IsBound(cloc.succ) and Length(cloc.succ)=0))), # sreduce_and_subst(c.exp) can lead to inf loop - why? procRHS := (self, x) >> self.sreduce(self.subst3(self.sreduce(self.subst2(x)))), procLHS := (self, x) >> self.sreduce3(self.sreduce(self.subst2(x))), # NOTE: explain this prepVarMap := meth(self, initial_map, do_sreduce, do_init_scalarized, do_idx) local v, varmap, rs_subst, rs2, rs_deref, rs_idx; self.varmap := initial_map; if do_sreduce then # do_idx is done initially, at the same time as scalarization # deref prevents scalarization, so must be disabled at that moment rs_deref := When(not do_idx and self.opts.useDeref, RulesDerefNth, EmptyRuleSet); rs_idx := When(do_idx, SimpIndicesRules.create(self.opts), EmptyRuleSet); rs_subst := SubstVarsRules.create(self.varmap); rs2 := MergedRuleSet(rs_subst, rs_deref); rs_subst.__avoid__ := [Value]; rs_idx.__avoid__ := [Value]; rs2.__avoid__ := [Value]; self.subst := x -> SubstVars(x, self.varmap); self.subst2 := x -> BU(x, rs2); self.subst3 := x -> SubstBottomUpRules(BU(x, rs_subst), rs_idx.rules); self.sreduce := x -> SReduce(x, self.opts); self.sreduce3 := x -> SubstBottomUpRules(x, rs_idx.rules); self.sreduce_and_subst := MergedRuleSet(rs_subst, rs_deref, RulesStrengthReduce); else self.subst := x -> SubstVars(x, self.varmap); self.subst2 := x -> SubstVars(x, self.varmap); self.subst3 := x -> SubstVars(x, self.varmap); self.sreduce := x -> x; self.sreduce_and_subst := self.subst; fi; if do_init_scalarized then for v in compiler.Compile.scalarized do self.varmap.(v.id) := noneExp(v.t); od; fi; return self; end, assumeSSA := false, afterSSA := self >> WithBases(self, rec(assumeSSA:=true)), closeVarMap := meth(self, other, newcmds) local v; for v in UserNSFields(other.varmap) do if (not IsBound(self.varmap.(v)) or self.varmap.(v) <> other.varmap.(v)) and SuccLoc(var(v))<>[] then if self.assumeSSA then ; # self.varmap.(v) := other.subst(other.varmap.(v)); # PrintLine("close ", v, " => ", other.subst(other.varmap.(v))); else Unbind(self.varmap.(v)); Add(newcmds.cmds, assign(var(v), other.subst(other.varmap.(v)))); fi; fi; od; #Print("-----\n"); end, init := meth(self, opts) self.opts := opts; self.prepVarMap(tab(), true, true, false); self.doScalarReplacement := opts.doScalarReplacement; self.propagateNth := opts.propagateNth; self.flush(); return self; end, initial := meth(self, code, opts) self.opts := opts; self.prepVarMap(tab(), true, true, true); self.doScalarReplacement := opts.doScalarReplacement; self.propagateNth := opts.propagateNth; self.flush(); return self.copyProp(code); end, __call__ := (self, code, opts) >> self.init(opts).copyProp(code), flush := meth(self) self.csetab := tab(); if (self.doScalarReplacement) then self.lhsCSE := CSE.init(); fi; end, fast := meth(self, code, opts) self.prepVarMap(tab(), false, false, false); self.doScalarReplacement := opts.doScalarReplacement; self.propagateNth := opts.propagateNth; self.opts := opts; self.flush(); return self.copyProp(code); end, procAssign := meth(self, c, newcmds, live_out) local newloc, newexp, cid, cloc, op, varmap, lkup; varmap := self.varmap; # NOTE: generalize this, use .in()/.out()/.inout() somehow if IsBound(c.p) then cid := (loc, exp) -> ObjId(c)(loc, exp, c.p); else cid := ObjId(c); fi; # to my current understanding, if we assign a phi function, nothing can be propagated. # If you propagate inside a phi, you lose the branch information. if (ObjId(c.exp)=phi) then Add(newcmds, c); return; fi; # Run strength reduction, variable remapping, and all other rewrite rules newexp := self.procRHS(c.exp); cloc := When(not IsVar(c.loc) or (c.loc in c.op_inout()), self.procLHS(c.loc), c.loc); # check if newexp was already computed lkup := self.cseLookup(newexp); if lkup <> false then newexp := lkup; fi; # if cloc is marked as live_out, save it in the list, so that its not kicked out When(IsVar(cloc) and IsBound(cloc.live_out), AddSet(live_out, cloc)); # invalidate the LHS in the CSE tables if (self.cseLookup(cloc) <> false) then self.cseInvalidate(cloc); fi; if (self.doScalarReplacement and self.lhsCSE.cseLookup(cloc) <> false) then self.lhsCSE.cseInvalidate(cloc); fi; # propagate if IsVar(cloc) and cid=assign and self.propagate(cloc,newexp) then # this should not happen due to sreduce/subst above When(IsVar(newexp) and IsBound(varmap.(newexp.id)), Error("Should not happen")); varmap.(cloc.id) := newexp; # do not propagate else # NOTE: YSV: is this right??? # it seems that its correct, above case catches var=noneExp, # so this looks like a mem-store, e.g., nth(..) = noneExp if ObjId(newexp)=noneExp then return; fi; # do not propagate AND cloc is a variable if IsVar(cloc) and not (cloc in c.op_inout()) then # propagate 'neg' like unary operators outwards if IsBound(newexp.doPeel) and newexp.doPeel then op := ObjId(newexp); newexp := newexp.args[1]; if self.propagate(cloc, newexp) then if IsVar(newexp) and IsBound(varmap.(newexp.id)) then varmap.(cloc.id) := op(varmap.(newexp.id)); else varmap.(cloc.id) := op(newexp); fi; else newloc := cloc.clone(); varmap.(cloc.id) := op(newloc); Add(newcmds, cid(newloc, newexp)); # careful! cid can be any storeop, not always <assign> When(cid=assign, self.cseAdd(newloc, newexp)); fi; else # variable that is not propagated is remapped to a fresh name (to get code in SSA form) newloc := cloc.clone(); varmap.(cloc.id) := newloc; Add(newcmds, cid(newloc, newexp)); # cid == assign | assign_nop | ... # careful! cid can be any storeop, not always <assign> When(cid=assign, self.cseAdd(newloc, newexp)); fi; # do not propagate AND cloc is *not* a variable (ie. nth(X, i)) or it is an inout variable else if self.doScalarReplacement or not (self.propagateNth or IsVar(newexp) or IsValue(newexp)) then # for non-variable newexp a fresh temporary var sXX is created to hold the result newloc := var.fresh_t("s", newexp.t); self.cseAdd(newloc, newexp); Add(newcmds, assign(newloc, newexp)); newexp := newloc; fi; if self.doScalarReplacement then When(cid<>assign or not (ObjId(cloc) in [nth,deref]), Error("Scalar replacement can't handle <cloc> of type ", ObjId(cloc))); self.cseAdd(newexp, cloc); self.lhsCSE.cseAdd(newexp, cloc); else Add(newcmds, cid(cloc, newexp)); fi; fi; fi; end, procIF := meth(self, c, newcmds, live_out) local lo_map, v, orig, then_cmd, else_cmd, then_cp, else_cp; c.cond := self.procRHS(c.cond); if IsValue(c.cond) then Error("This is a constant IF, it should be folded away before reaching copyprop"); # Following code should work if needed (if you uncomment the error) but it is not optimized # self.flush(); # YSV: why is this needed??? I will comment this out. if c.cond.v=0 or c.cond.v=false then Add(newcmds, self.copyProp(c.else_cmd)); else Add(newcmds, self.copyProp(c.then_cmd)); fi; else # Here the idea is that each part of the branch should work with # the original csetab (there cannot be crossings) and the final thing # should be restored to the original csetab then_cp := CopyFields(self, rec(csetab := CopyTab(self.csetab))) .prepVarMap(CopyTab(self.varmap), true, false, false); else_cp := CopyFields(self, rec(csetab := CopyTab(self.csetab))) .prepVarMap(CopyTab(self.varmap), true, false, false); then_cmd := then_cp.copyProp(c.then_cmd); self.closeVarMap(then_cp, then_cmd); else_cmd := else_cp.copyProp(c.else_cmd); self.closeVarMap(else_cp, else_cmd); Add(newcmds, IF(c.cond, then_cmd, else_cmd)); #self.flush(); fi; end, #if we do Scalar Replacement on the fly, reinject the final writes as assigns (for now) finalizeScalarReplacement := meth(self, newcmds) local entry; if IsBound(self.lhsCSE.csetab.nth) then # MRT: sort by order of variable being assigned TO rather # than variable assigned FROM. This reduces cache misses by # exploiting possible locality in the output array. # # eg: Y[0] := a1 ===> Y[0] := a1 # Y[32] := a2 Y[1] := a3 # Y[1] := a3 Y[32] := a2 for entry in _sortByIdx(self.lhsCSE.csetab.nth) do if Length(entry.args)=2 then Add(newcmds, assign(nth(entry.args[1],entry.args[2]), entry.loc)); fi; od; fi; if IsBound(self.lhsCSE.csetab.deref) then for entry in self.lhsCSE.csetab.deref do if Length(entry.args)=1 then Add(newcmds, assign(deref(entry.args[1]), entry.loc)); fi; od; fi; end, # create the reverse mapping, to map last assignment to live_out variable # to the actual variable intead of an SSA related substitute substLiveOut := meth(self, newcmds, live_out) local varmap, lo_map, active, v; varmap := self.varmap; lo_map := tab(); active := Set(Collect(newcmds, var)); # explain this for v in live_out do # NOTE: The commented out lines with #X removed extra copies # associated with live_out variables. But it turns out that this # does not work if a live_out variable is never actually remapped, # but has an entry in varmap due to copy propagation. # For example (a = t11; b = a) if a is live_out will be compiled to # (b=t11) b CopyPropagate and converted to (b=a) by function below. # which is incorrect #X if not IsVar(varmap.(v.id)) or not (varmap.(v.id) in active) then Add(newcmds, assign(v, varmap.(v.id))); #X else #X lo_map.(varmap.(v.id).id) := v; #X fi; Unbind(varmap.(v.id)); # prevent duplication of cleanup code due to closeVarMap od; newcmds := SubstVars(newcmds, lo_map); return newcmds; end, copyProp := meth(self, code) local c, cid, cmds, newcmds, live_out; cmds := When(ObjId(code)=chain, code.cmds, [code]); newcmds := []; live_out := Set([]); for c in cmds do cid := ObjId(c); if IsAssign(c) then self.procAssign(c, newcmds, live_out); elif (cid = IF) then self.procIF(c, newcmds, live_out); elif IsExpCommand(c) then Add(newcmds, self.procRHS(c)); elif (cid = skip) then ; # do nothing # if .sideeffect is bound, the command is assumed have side effects # so one has to enable array scalarization inside all its children elif IsRec(c) and IsBound(c.sideeffect) and c.sideeffect then Add(newcmds, map_children_safe(c, x -> self.procRHS(x))); # the command is a container for other functions, copyprop all children else Add(newcmds, map_children_safe(c, x -> Cond(IsCommand(x), self.copyProp(x), self.procRHS(x)))); fi; od; When(self.doScalarReplacement, self.finalizeScalarReplacement(newcmds)); newcmds := self.substLiveOut(newcmds, live_out); # self.flush(); return chain(newcmds); end ));
INCLUDE "non_pp_include.f90" PROGRAM MAINF90 CALL NON_PP_INCLUDE_SUBROUTINE END PROGRAM MAINF90
[STATEMENT] lemma non_empty_set_has_least: "S \<subseteq> T \<Longrightarrow> S \<noteq> {} \<Longrightarrow> least S \<in> S \<and> (\<forall> y \<in> S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>S \<subseteq> T; S \<noteq> {}\<rbrakk> \<Longrightarrow> least S \<in> S \<and> (\<forall>y\<in>S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S) [PROOF STEP] proof goal_cases [PROOF STATE] proof (state) goal (1 subgoal): 1. \<lbrakk>S \<subseteq> T; S \<noteq> {}\<rbrakk> \<Longrightarrow> least S \<in> S \<and> (\<forall>y\<in>S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S) [PROOF STEP] case 1 [PROOF STATE] proof (state) this: S \<subseteq> T S \<noteq> {} goal (1 subgoal): 1. \<lbrakk>S \<subseteq> T; S \<noteq> {}\<rbrakk> \<Longrightarrow> least S \<in> S \<and> (\<forall>y\<in>S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S) [PROOF STEP] note A = this [PROOF STATE] proof (state) this: S \<subseteq> T S \<noteq> {} goal (1 subgoal): 1. \<lbrakk>S \<subseteq> T; S \<noteq> {}\<rbrakk> \<Longrightarrow> least S \<in> S \<and> (\<forall>y\<in>S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) goal (1 subgoal): 1. least S \<in> S \<and> (\<forall>y\<in>S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S) [PROOF STEP] proof (rule theI', goal_cases) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>!y. y \<in> S \<and> (\<forall>ya\<in>S. y \<noteq> ya \<longrightarrow> \<not> ya \<prec> y) [PROOF STEP] case 1 [PROOF STATE] proof (state) this: goal (1 subgoal): 1. \<exists>!y. y \<in> S \<and> (\<forall>ya\<in>S. y \<noteq> ya \<longrightarrow> \<not> ya \<prec> y) [PROOF STEP] from non_empty_set_has_least''[OF A] [PROOF STATE] proof (chain) picking this: \<exists>!x. x \<in> S \<and> (\<forall>y\<in>S. x \<noteq> y \<longrightarrow> \<not> y \<prec> x) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: \<exists>!x. x \<in> S \<and> (\<forall>y\<in>S. x \<noteq> y \<longrightarrow> \<not> y \<prec> x) goal (1 subgoal): 1. \<exists>!y. y \<in> S \<and> (\<forall>ya\<in>S. y \<noteq> ya \<longrightarrow> \<not> ya \<prec> y) [PROOF STEP] . [PROOF STATE] proof (state) this: \<exists>!y. y \<in> S \<and> (\<forall>ya\<in>S. y \<noteq> ya \<longrightarrow> \<not> ya \<prec> y) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: least S \<in> S \<and> (\<forall>y\<in>S. least S \<noteq> y \<longrightarrow> \<not> y \<prec> least S) goal: No subgoals! [PROOF STEP] qed
lemma coeff_mult_degree_sum: "coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)"
Require Import Coq.ZArith.ZArith Coq.micromega.Lia. Require Import Crypto.Util.ZUtil.Hints.Core. Require Import Crypto.Util.ZUtil.Hints.ZArith. Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem. Local Open Scope Z_scope. Module Z. Lemma mod_mod_small a n m (Hnm : (m mod n = 0)%Z) (Hnm_le : (0 < n <= m)%Z) (H : (a mod m < n)%Z) : ((a mod n) mod m = a mod m)%Z. Proof. assert ((a mod n) < m)%Z by (eapply Z.lt_le_trans; [ apply Z.mod_pos_bound | ]; lia). rewrite (Z.mod_small _ m) by auto with zarith. apply Z.mod_divide in Hnm; [ | lia ]. destruct Hnm as [x ?]; subst. repeat match goal with | [ H : context[(_ mod _)%Z] |- _ ] => revert H end. Z.div_mod_to_quot_rem_in_goal. lazymatch goal with | [ H : a = (?x * ?n * ?q) + _, H' : a = (?n * ?q') + _ |- _ ] => assert (q' = x * q) by nia; subst q'; nia end. Qed. (** [rewrite_mod_small] is a better version of [rewrite Z.mod_small by rewrite_mod_small_solver]; it backtracks across occurences that the solver fails to solve the side-conditions on. *) Ltac rewrite_mod_small_solver := zutil_arith_more_inequalities. Ltac rewrite_mod_small := repeat match goal with | [ |- context[?x mod ?y] ] => rewrite (Z.mod_small x y) by rewrite_mod_small_solver end. Ltac rewrite_mod_mod_small := repeat match goal with | [ |- context[(?a mod ?n) mod ?m] ] => rewrite (mod_mod_small a n m) by rewrite_mod_small_solver end. Ltac rewrite_mod_small_more := repeat (rewrite_mod_small || rewrite_mod_mod_small). Ltac rewrite_mod_small_in_hyps := repeat match goal with | [ H : context[?x mod ?y] |- _ ] => rewrite (Z.mod_small x y) in H by rewrite_mod_small_solver end. Ltac rewrite_mod_mod_small_in_hyps := repeat match goal with | [ H : context[(?a mod ?n) mod ?m] |- _ ] => rewrite (mod_mod_small a n m) in H by rewrite_mod_small_solver end. Ltac rewrite_mod_small_more_in_hyps := repeat (rewrite_mod_small_in_hyps || rewrite_mod_mod_small_in_hyps). Ltac rewrite_mod_small_in_all := repeat (rewrite_mod_small || rewrite_mod_small_in_hyps). Ltac rewrite_mod_mod_small_in_all := repeat (rewrite_mod_mod_small || rewrite_mod_mod_small_in_hyps). Ltac rewrite_mod_small_more_in_all := repeat (rewrite_mod_small_more || rewrite_mod_small_more_in_hyps). End Z.
// -------------------------------------------------------------------------- // OpenMS -- Open-Source Mass Spectrometry // -------------------------------------------------------------------------- // Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, // ETH Zurich, and Freie Universitaet Berlin 2002-2013. // // This software is released under a three-clause BSD license: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of any author or any participating institution // may be used to endorse or promote products derived from this software // without specific prior written permission. // For a full list of authors, refer to the file AUTHORS. // -------------------------------------------------------------------------- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING // INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- // $Maintainer: Andreas Bertsch $ // $Authors: $ // -------------------------------------------------------------------------- // #ifndef OPENMS_MATH_STATISTICS_GAUSSFITTER_H #define OPENMS_MATH_STATISTICS_GAUSSFITTER_H #include <OpenMS/DATASTRUCTURES/String.h> #include <OpenMS/DATASTRUCTURES/DPosition.h> #include <vector> // gsl includes #include <gsl/gsl_rng.h> #include <gsl/gsl_vector.h> #include <gsl/gsl_multifit_nlin.h> namespace OpenMS { namespace Math { /** @brief Implements a fitter for gaussian functions This class fits a gaussian distribution to a number of data points. The results as well as the initial guess are specified using the struct GaussFitResult. The complete gaussian formula with the fitted parameters can be transformed into a gnuplot formula using getGnuplotFormula after fitting. The fitting is implemented using GSL fitting algorithms. @ingroup Math */ class OPENMS_DLLAPI GaussFitter { public: /// struct of parameters of a gaussian distribution struct GaussFitResult { public: /// parameter A of gaussian distribution (amplitude) double A; /// parameter x0 of gaussian distribution (left/right shift) double x0; /// parameter sigma of gaussian distribution (width) double sigma; }; /// Default constructor GaussFitter(); /// Destructor virtual ~GaussFitter(); /// sets the initial parameters used by the fit method as initial guess for the gaussian void setInitialParameters(const GaussFitResult & result); /** @brief Fits a gaussian distribution to the given data points @param points the data points used for the gaussian fitting @exception Exception::UnableToFit is thrown if fitting cannot be performed */ GaussFitResult fit(std::vector<DPosition<2> > & points); /// return the gnuplot formula of the gaussian const String & getGnuplotFormula() const; protected: static int gaussFitterf_(const gsl_vector * x, void * params, gsl_vector * f); static int gaussFitterdf_(const gsl_vector * x, void * params, gsl_matrix * J); static int gaussFitterfdf_(const gsl_vector * x, void * params, gsl_vector * f, gsl_matrix * J); void printState_(size_t iter, gsl_multifit_fdfsolver * s); GaussFitResult init_param_; String gnuplot_formula_; private: /// Copy constructor (not implemented) GaussFitter(const GaussFitter & rhs); /// Assignment operator (not implemented) GaussFitter & operator=(const GaussFitter & rhs); }; } } #endif
""" # pcor $(SIGNATURES) Computes the partial correlation between two variables given a set of other variables. ### Method ```julia pcor(; * `d::DAG` : DAG object * `u::Vector{Symbol}` : Variables used to compute correlation ) ``` where: u[1], u[2]: Variables used to compute correlation between, remaining variables are the conditioning set ### Returns ```julia * `res::Float64` : Correlation between u[1] and u[2] ``` # Extended help ### Example ### Correlation between vectors and algebra, conditioning on analysis and statistics ```julia using StructuralCausalModels, CSV df = DataFrame!(CSV.File(scm_path("..", "data", "marks.csv")); S = cov(Array(df)) u = [2, 3, 4, 5] pcor(u, S) u = [:vectors, :algebra, :statistics, :analysis] ``` ### Acknowledgements Original author: Giovanni M. Marchetti Translated to Julia: Rob J Goedman ### License The R package ggm is licensed under License: GPL-2. The Julia translation is licenced under: MIT. Part of the api, not exported. """ function pcor(d::DAG, u::SymbolList) us = String.(u) k = inv(d.s[us, us]) -k[1,2] / sqrt(k[1,1] * k[2,2]) end export pcor
type CuDNNPoolingState pooling_desc :: CuDNN.PoolingDescriptor inputs_desc :: Vector{CuDNN.Tensor4dDescriptor} outputs_desc :: Vector{CuDNN.Tensor4dDescriptor} end function setup_etc(backend::GPUBackend, layer::PoolingLayer, inputs, pooled_width, pooled_height) dtype = eltype(inputs[1]) if isa(layer.pooling, Pooling.Max) pooling_mode = CuDNN.CUDNN_POOLING_MAX elseif isa(layer.pooling, Pooling.Mean) pooling_mode = CuDNN.CUDNN_POOLING_AVERAGE else error("TODO: pooling mode $(layer.pooling) not supported by CuDNN") end pooling_desc = CuDNN.create_pooling_descriptor(pooling_mode, layer.kernel, layer.stride, layer.pad) inputs_desc = Array(CuDNN.Tensor4dDescriptor, length(inputs)) outputs_desc = Array(CuDNN.Tensor4dDescriptor, length(inputs)) for i = 1:length(inputs) width,height,channels,num = size(inputs[i]) inputs_desc[i] = CuDNN.create_tensor4d_descriptor(dtype,(width,height,channels,num)) outputs_desc[i] = CuDNN.create_tensor4d_descriptor(dtype, (pooled_width[i],pooled_height[i],channels,num)) end etc = CuDNNPoolingState(pooling_desc, inputs_desc, outputs_desc) return etc end function shutdown(backend::GPUBackend, state::PoolingLayerState) map(destroy, state.blobs) map(destroy, state.blobs_diff) CuDNN.destroy_pooling_descriotpr(state.etc.pooling_desc) map(CuDNN.destroy_tensor4d_descriptor, state.etc.inputs_desc) map(CuDNN.destroy_tensor4d_descriptor, state.etc.outputs_desc) end function forward(backend::GPUBackend, state::PoolingLayerState, inputs::Vector{Blob}) layer = state.layer alpha = one(eltype(inputs[1])) beta = zero(eltype(inputs[1])) for i = 1:length(inputs) CuDNN.pooling_forward(backend.cudnn_ctx, state.etc.pooling_desc, alpha, state.etc.inputs_desc[i], inputs[i].ptr, beta, state.etc.outputs_desc[i], state.blobs[i].ptr) end end function backward(backend::GPUBackend, state::PoolingLayerState, inputs::Vector{Blob}, diffs::Vector{Blob}) layer = state.layer alpha = one(eltype(inputs[1])) beta = zero(eltype(inputs[1])) for i = 1:length(inputs) if isa(diffs[i], CuTensorBlob) CuDNN.pooling_backward(backend.cudnn_ctx, state.etc.pooling_desc, alpha, state.etc.outputs_desc[i], state.blobs[i].ptr, state.etc.outputs_desc[i], state.blobs_diff[i].ptr, state.etc.inputs_desc[i], inputs[i].ptr, beta, state.etc.inputs_desc[i], diffs[i].ptr) end end end
# Run a synthetic benchmark (Jarosch's 2013 benchmark) using Plots, Printf @views av(A) = 0.25*(A[1:end-1,1:end-1].+A[2:end,1:end-1].+A[1:end-1,2:end].+A[2:end,2:end]) @views av_xa(A) = 0.5.*(A[1:end-1,:].+A[2:end,:]) @views av_ya(A) = 0.5.*(A[:,1:end-1].+A[:,2:end]) @views inn(A) = A[2:end-1,2:end-1] @views function iceflow() # physics s2y = 3600*24*365.25 # seconds to years lx, ly = 30e3, 30e3 rho_i = 910.0 # ice density g = 9.81 # gravity acceleration npow = 3.0 # Glen's power law exponent a0 = 1.5e-24 # Glen's law enhancement term # numerics nx, ny = 100, 100 # numerical grid resolution itMax = 1e5 # number of iteration steps nout = 200 # error check frequency tolnl = 1e-6 # nonlinear tolerance epsi = 1e-4 # small number damp = 0.85 # convergence acceleration dtausc = 1.0/2.0 # iterative dtau scaling # derived physics a = 2.0*a0/(npow+2)*(rho_i*g)^npow*s2y # derived numerics dx, dy = lx/nx, ly/ny xc, yc = LinRange(dx/2, lx-dx/2, nx), LinRange(dy/2, ly-dy/2, ny) (Xc,Yc) = ([x for x=xc,y=yc], [y for x=xc,y=yc]) cfl = max(dx^2,dy^2)/4.1 # array initialisation S = zeros(nx , ny ) B = zeros(nx , ny ) M = zeros(nx , ny ) Err = zeros(nx , ny ) dSdx = zeros(nx-1, ny ) dSdy = zeros(nx , ny-1) gradS = zeros(nx-1, ny-1) D = zeros(nx-1, ny-1) qHx = zeros(nx-1, ny-2) qHy = zeros(nx-2, ny-1) dtau = zeros(nx-2, ny-2) ResH = zeros(nx-2, ny-2) dHdt = zeros(nx-2, ny-2) Vx = zeros(nx-1, ny-1) Vy = zeros(nx-1, ny-1) # initial condition (Jarosch's 2013 benchmark) H = ones(nx , ny ) xm, xmB = 20e3, 7e3 M .= (((npow.*2.0./xm.^(2*npow-1)).*Xc.^(npow-1)).*abs.(xm.-Xc).^(npow-1)).*(xm.-2.0.*Xc) M[Xc.>xm] .= 0.0 B[Xc.<xmB] .= 500 # smoothing (Mahaffy, 1976) B[2:end-1,2:end-1] .= B[2:end-1,2:end-1] .+ 1.0./4.1.*(diff(diff(B[:,2:end-1], dims=1), dims=1) .+ diff(diff(B[2:end-1,:], dims=2), dims=2)) S .= B .+ H # iteration loop it = 1; err = 2*tolnl while err>tolnl && it<itMax Err .= H # compute diffusivity dSdx .= diff(S, dims=1)/dx dSdy .= diff(S, dims=2)/dy gradS .= sqrt.(av_ya(dSdx).^2 .+ av_xa(dSdy).^2) D .= a*av(H).^(npow+2) .* gradS.^(npow-1) # compute flux qHx .= .-av_ya(D).*diff(S[:,2:end-1], dims=1)/dx qHy .= .-av_xa(D).*diff(S[2:end-1,:], dims=2)/dy # update ice thickness dtau .= dtausc*min.(1.0, cfl./(epsi .+ av(D))) ResH .= .-(diff(qHx, dims=1)/dx .+ diff(qHy, dims=2)/dy) .+ inn(M) dHdt .= dHdt.*damp .+ ResH H[2:end-1,2:end-1] .= max.(0.0, inn(H) .+ dtau.*dHdt) # update surface S .= B .+ H # error check if mod(it, nout)==0 Err .= Err .- H err = (sum(abs.(Err))./nx./ny) @printf("it = %d, error = %1.2e \n", it, err) if isnan(err) error("NaNs") end # safeguard end it += 1 end # compute velocities Vx .= -D./(av(H) .+ epsi).*av_ya(dSdx) Vy .= -D./(av(H) .+ epsi).*av_xa(dSdy) # visualisation FS = 7 xc, yc = xc./1e3, yc./1e3 xax = ((xc[1], xc[end]), font(FS, "Courier")) yax = ((yc[1], yc[end]), font(FS, "Courier")) p1 = heatmap(xc, yc, S' , aspect_ratio=1, xaxis=xax, yaxis=yax, c=:davos, title="Surface elev. [m]", titlefont="Courier", titlefontsize=FS) p2 = heatmap(xc, yc, H' , aspect_ratio=1, xaxis=xax, yaxis=yax, c=:davos, title="Ice thickness [m]", titlefont="Courier", titlefontsize=FS) # display(plot(p1, p2, size=(400,160), dpi=200)) plot(p1, p2, size=(400,160), dpi=200) !ispath("../output") && mkdir("../output") savefig("../output/iceflow_bench_out.png") return end iceflow()
using ExplainableAI: augment_batch_dim, augment_indices, reduce_augmentation using ExplainableAI: interpolate_batch # augment_batch_dim A = [1 2; 3 4] B = @inferred augment_batch_dim(A, 3) @test B == [ 1 1 1 2 2 2 3 3 3 4 4 4 ] B = @inferred augment_batch_dim(A, 4) @test B == [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ] A = reshape(1:8, 2, 2, 2) B = @inferred augment_batch_dim(A, 3) @test B[:, :, 1] == A[:, :, 1] @test B[:, :, 2] == A[:, :, 1] @test B[:, :, 3] == A[:, :, 1] @test B[:, :, 4] == A[:, :, 2] @test B[:, :, 5] == A[:, :, 2] @test B[:, :, 6] == A[:, :, 2] # augment_batch_dim inds = [CartesianIndex(5, 1), CartesianIndex(3, 2)] augmented_inds = @inferred augment_indices(inds, 3) @test augmented_inds == [ CartesianIndex(5, 1) CartesianIndex(5, 2) CartesianIndex(5, 3) CartesianIndex(3, 4) CartesianIndex(3, 5) CartesianIndex(3, 6) ] # reduce_augmentation A = Float32.(reshape(1:10, 1, 1, 10)) R = @inferred reduce_augmentation(A, 5) @test R == reshape([sum(1:5), sum(6:10)] / 5, 1, 1, :) A = Float64.(reshape(1:10, 1, 1, 1, 1, 10)) R = @inferred reduce_augmentation(A, 2) @test R == reshape([3, 7, 11, 15, 19] / 2, 1, 1, 1, 1, :) x = Float16.(reshape(1:4, 2, 2)) x0 = zero(x) A = @inferred interpolate_batch(x, x0, 5) @test A ≈ [ 0.0 0.25 0.5 0.75 1.0 0.0 0.75 1.5 2.25 3.0 0.0 0.5 1.0 1.5 2.0 0.0 1.0 2.0 3.0 4.0 ]
module Test import Data.Vect import System.File import System import Data.Buffer import Data.String test1 : Nat -> List String -> Vect n Int -> String test1 1 (x :: xs) (y :: ys) = show 1 ++ show x ++ show xs ++ show y ++ show ys test1 0 [] [x] = "m1 " ++ show x test1 2 (x :: xs) (y :: []) = "m2 " ++ show x ++ show xs ++ show y test1 (S k) d t = "m3 " ++ let x = test1 k (show k :: d) t in x test1 k d t = "m4 " ++ show k ++ show d ++ show t data MyDat = A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 Show MyDat where show A1 = "A1" show A2 = "A2" show A3 = "A3" show A4 = "A4" show A5 = "A5" show A6 = "A6" show A7 = "A7" show A8 = "A8" ansiColorStr : String -> Vect 3 Int -> String ansiColorStr str [r, g, b] = "\x1b[38;2;" ++ show r ++ ";" ++ show g ++ ";" ++ show b ++ "m" ++ str ++ "\x1b[0m" namespace Either public export ignoreErr : (Show a) => IO (Either a b) -> IO b ignoreErr io = do (Right ok) <- io | Left err => do putStrLn $ show err exitFailure pure ok namespace Maybe public export ignoreErr : IO (Maybe a) -> IO a ignoreErr io = do (Just ok) <- io | Nothing => do putStrLn "Got nothing" exitFailure pure ok main : IO () main = do let aα = the Nat 5 putStrLn $ show aα putStrLn $ test1 1 ["a", "b"] [2, 3, 4, 5] putStrLn $ test1 0 [] [6] putStrLn $ test1 2 ["c", "d", "e"] [1] putStrLn $ test1 3 ["p", "t"] [0] putStrLn $ test1 4 ["a"] [0, 1, 2, 3] putChar 'c' putChar 'b' putChar '\n' putStrLn $ show A1 putStrLn $ show A8 putStrLn $ show A6 f <- ignoreErr $ openFile "data4.txt" Read putStrLn $ show !(fGetLine f) putStrLn $ show !(fEOF f) ignore $ fPutStrLn stdout "\x1b[38;2;255;100;0mThis is error\x1b[0m" ignore $ closeFile f ignore $ writeFile "data.txt" $ ansiColorStr "red\n" [255, 0, 0] ++ ansiColorStr "green\n" [0, 255, 0] ++ ansiColorStr "blue" [0, 0, 255] putStrLn $ show (the Int 257) putStrLn $ show !(ignoreErr $ readFile "data.txt") buf <- ignoreErr $ createBufferFromFile "data.txt" size <- rawSize buf putStrLn $ "buf size " ++ show size putStrLn $ "buf contents:\n" ++ !(getString buf 0 size) let i64s = 8 ibuf <- ignoreErr $ newBuffer (i64s * 10) putStrLn $ "init size" ++ show !(rawSize ibuf) let list = [0..9] traverse_ (\i => do setInt ibuf (i64s * i) i;putStrLn $ "next size" ++ show !(rawSize ibuf)) list --setInt31 ibuf 114 (-991133) setInt ibuf 114 (-567) setDouble ibuf 122 (-241.123456789) setString ibuf 80 "hi there !" setString ibuf 90 "русский язык" dat2 <- ignoreErr $ openFile "data2.txt" WriteTruncate ignore $ writeBufferData dat2 ibuf 0 !(rawSize ibuf) putStrLn $ show $ !(getInt ibuf 0 ) putStrLn $ show $ !(getInt ibuf 8 ) putStrLn $ show $ !(getInt ibuf (8 * 9) ) ignore $ closeFile dat2 ibuf <- ignoreErr $ createBufferFromFile "data2.txt" putStrLn $ show $ !(getInt ibuf 0 ) putStrLn $ show $ !(getInt ibuf 8 ) putStrLn $ show $ !(getInt ibuf (8 * 9) ) putStrLn $ show !(rawSize ibuf) putStrLn !(getString ibuf 80 10) putStrLn !(getString ibuf 90 24) putStrLn $ show !(getInt ibuf 114) putStrLn $ show !(getDouble ibuf 122)
module probdata_module use amrex_fort_module, only : rt => amrex_real ! Tagging variables integer, save :: max_num_part ! Use these to define the spheroid real(rt), save :: center(3) real(rt), save :: a1, a3 end module probdata_module
mutable struct GFSimulateState trace::GFTrace score::Float64 visitor::AddressVisitor params::Dict{Symbol,Any} end function GFSimulateState(params::Dict{Symbol,Any}) GFSimulateState(GFTrace(), 0., AddressVisitor(), params) end get_args_change(state::GFSimulateState) = nothing get_addr_change(state::GFSimulateState, addr) = nothing set_ret_change!(state::GFSimulateState, value) = begin end function addr(state::GFSimulateState, dist::Distribution{T}, args, addr, arg_change) where {T} visit!(state.visitor, addr) retval::T = random(dist, args...) score = logpdf(dist, retval, args...) call = CallRecord(score, retval, args) state.trace = assoc_primitive_call(state.trace, addr, call) state.trace.has_choices = true state.score += score retval end function addr(state::GFSimulateState, gen::Generator{T,U}, args, addr, arg_change) where {T,U} visit!(state.visitor, addr) trace::U = simulate(gen, args) call::CallRecord = get_call_record(trace) state.trace = assoc_subtrace(state.trace, addr, trace) state.trace.has_choices = state.trace.has_choices || has_choices(trace) state.score += call.score call.retval::T end splice(state::GFSimulateState, gf::GenFunction, args::Tuple) = exec(gf, state, args) function simulate(gen::GenFunction, args) state = GFSimulateState(gen.params) retval = exec(gen, state, args) # TODO add return type annotation for gen functions call = CallRecord{Any}(state.score, retval, args) state.trace.call = call state.trace end
#!/usr/bin/env python3 from vision.modules.base import ModuleBase from vision import options from vision.stdlib import * import shm import math import time import cv2 as cv2 import numpy as np from collections import namedtuple from cash_in_shared import * module_options = [ options.IntOption('gaussian_kernel', 2, 1, 40), options.IntOption('gaussian_stdev', 10, 0, 40), options.IntOption('min_area', 100, 1, 2000), options.DoubleOption('min_circularity', 0.4, 0, 1), ] class RandomPinger(ModuleBase): last_run = 0 def process(self, img): curr_time = time.time() print(curr_time - self.last_run) if curr_time - self.last_run < .2: print("skipping") # self.last_run = curr_time return self.last_run = curr_time img = img[::2, ::2, :] # uimg = cv2.UMat(img) h, w, _ = img.shape shm.camera.downward_height.set(h) shm.camera.downward_width.set(w) # self.post("Original", img) luv = cv2.cvtColor(img, cv2.COLOR_BGR2LUV) (luv_l, luv_u, luv_v) = cv2.split(luv) lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) (lab_l, lab_a, lab_b) = cv2.split(lab) k_size = self.options["gaussian_kernel"] k_std = self.options["gaussian_stdev"] blurred = cv2.GaussianBlur(lab_l, (k_size * 2 + 1, k_size * 2 + 1), k_std, k_std) p1 = 70 canny = cv2.Canny(blurred, p1, p1 / 2) # self.post("Canny", canny) circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, 1, 50, param1=p1, param2=50, minRadius=15, maxRadius=175) final = img.copy() found = False if circles is not None: for circle in circles[0, :]: if circle[2]: found = True print(circle[2]) # draw the outer circle cv2.circle(final, (circle[0], circle[1]), circle[2], (0, 255, 0), 2) # draw the center of the circle cv2.circle(final, (circle[0], circle[1]), 2, (0, 0, 255), 3) found_img = img.copy() found_img[:, :] = (COLORS["RED"], COLORS["GREEN"])[found] self.post("found", found_img) self.post("Final", final) if __name__ == '__main__': RandomPinger("downward", module_options)()
-- examples in "Type-Driven Development with Idris" -- chapter 15, section 15.2 import ProcessLib -- check that all functions are total %default total record WCData where constructor MkWCData wordCount : Nat lineCount : Nat doCount : (content : String) -> WCData doCount content = let lcount = length (lines content) wcount = length (words content) in MkWCData lcount wcount data WC = CountFile String | GetData String WCType : WC -> Type WCType (CountFile x) = () WCType (GetData x) = Maybe WCData countFile : List (String, WCData) -> String -> Process WCType (List (String, WCData)) Sent Sent countFile files fname = do Right content <- Action (readFile fname) | Left err => Pure files let count = doCount content Action (putStrLn ("Counting complete for " ++ fname)) Pure ((fname, doCount content) :: files) total wcService : (loaded : List (String, WCData)) -> Service WCType () wcService loaded = do msg <- Respond (\msg => case msg of CountFile fname => Pure () GetData fname => Pure (lookup fname loaded)) newLoaded <- case msg of Just (CountFile fname) => countFile loaded fname _ => Pure loaded Loop (wcService newLoaded) procMain : Client () procMain = do Just wc <- Spawn (wcService []) | Nothing => Action (putStrLn "Spawn failed") Action (putStrLn "Counting test.txt") Request wc (CountFile "test.txt") Action (putStrLn "Processing") Just wcdata <- Request wc (GetData "test.txt") | Nothing => Action (putStrLn "File error") Action (putStrLn ("Words: " ++ show (wordCount wcdata))) Action (putStrLn ("Lines: " ++ show (lineCount wcdata))) -- run with: -- :exec runProc procMain
""" Vertical circulation associated with horizontal velocities u, v. """ @inline Γᶠᶠᵃ(i, j, k, grid, u, v) = δxᶠᵃᵃ(i, j, k, grid, Δy_vᶜᶠᵃ, v) - δyᵃᶠᵃ(i, j, k, grid, Δx_uᶠᶜᵃ, u) """ Vertical vorticity associated with horizontal velocities u, v. """ @inline ζ₃ᶠᶠᵃ(i, j, k, grid, u, v) = Γᶠᶠᵃ(i, j, k, grid, u, v) / Azᶠᶠᵃ(i, j, k, grid)
theory CorresHelper imports UpdateSemHelper CogentCRefinement.Cogent_Corres begin section "C wp helpers" lemma whileLoopE_add_invI: assumes "\<lbrace> P \<rbrace> whileLoopE_inv c b init I (measure M) \<lbrace> Q \<rbrace>, \<lbrace> R \<rbrace>!" shows "\<lbrace> P \<rbrace> whileLoopE c b init \<lbrace> Q \<rbrace>, \<lbrace> R \<rbrace>!" by (metis assms whileLoopE_inv_def) lemma validNF_select_UNIV: "\<lbrace>\<lambda>s. \<forall>x. Q x s\<rbrace> select UNIV \<lbrace>Q\<rbrace>!" apply (subst select_UNIV_unknown) apply (rule validNF_unknown) done section "Simplification of corres definition for abstract functions" context update_sem_init begin definition "abs_fun_rel \<Xi>' srel afun_name \<xi>' afun_mon \<sigma> st x x' = (proc_ctx_wellformed \<Xi>' \<longrightarrow> \<xi>' matches-u \<Xi>' \<longrightarrow> (\<sigma>,st) \<in> srel \<longrightarrow> (\<forall>r' w'. val_rel x x' \<and> \<Xi>', \<sigma> \<turnstile> x :u fst (snd (snd (snd (\<Xi>' afun_name)))) \<langle>r', w'\<rangle> \<longrightarrow> \<not> snd (afun_mon x' st) \<and> (\<forall>st' y'. (y', st') \<in> fst (afun_mon x' st) \<longrightarrow> (\<exists>\<sigma>' y. \<xi>' afun_name (\<sigma>, x) (\<sigma>', y) \<and> val_rel y y' \<and> (\<sigma>', st') \<in> srel))))" lemma absfun_corres: "abs_fun_rel \<Xi>' srel s \<xi>' afun' \<sigma> st (\<gamma> ! i) v' \<Longrightarrow> i < length \<gamma> \<Longrightarrow> val_rel (\<gamma> ! i) v' \<Longrightarrow> \<Gamma>' ! i = Some (fst (snd (snd (snd (\<Xi>' s))))) \<Longrightarrow> corres srel (App (AFun s [] []) (Var i)) (do x \<leftarrow> afun' v'; gets (\<lambda>s. x) od) \<xi>' \<gamma> \<Xi>' \<Gamma>' \<sigma> st" apply (clarsimp simp: corres_def abs_fun_rel_def) apply (frule matches_ptrs_length, simp) apply (frule(2) matches_ptrs_proj_single') apply clarsimp apply (erule impE, blast) apply clarsimp apply (elim allE, drule mp, blast) apply clarsimp apply (intro exI conjI[rotated], assumption+) apply (rule u_sem_abs_app) apply (rule u_sem_afun) apply (rule u_sem_var) apply simp done lemma abs_fun_rel_def': "abs_fun_rel \<Xi>' srel afun_name \<xi>' afun_mon \<sigma> st x x' = (proc_ctx_wellformed \<Xi>' \<longrightarrow> \<xi>' matches-u \<Xi>' \<longrightarrow> (\<sigma>,st) \<in> srel \<longrightarrow> (\<forall>r' w'. val_rel x x' \<and> \<Xi>', \<sigma> \<turnstile> x :u fst (snd (snd (snd (\<Xi>' afun_name)))) \<langle>r', w'\<rangle> \<longrightarrow> \<lbrace>\<lambda>s0. s0 = st\<rbrace> afun_mon x' \<lbrace>\<lambda>y' s'. \<exists>\<sigma>' y. \<xi>' afun_name (\<sigma>, x) (\<sigma>', y) \<and> (\<sigma>',s') \<in> srel \<and> val_rel y y'\<rbrace>!))" by (fastforce simp: abs_fun_rel_def validNF_def valid_def no_fail_def) end (* of context *) section "Ordering on abstract function specification properties for corres" lemma (in update_sem_init) corres_rel_leqD: "\<lbrakk>rel_leq \<xi>a \<xi>b; corres srel c m \<xi>a \<gamma> \<Xi>' \<Gamma> \<sigma> s\<rbrakk> \<Longrightarrow> corres srel c m \<xi>b \<gamma> \<Xi>' \<Gamma> \<sigma> s" unfolding corres_def apply clarsimp apply (erule impE, rule rel_leq_matchesuD, assumption, assumption) apply (erule impE, intro exI, assumption) apply clarsimp apply (elim allE, erule impE, assumption) apply clarsimp apply (drule u_sem_u_sem_all_rel_leqD; simp?) apply (intro exI conjI; assumption) done end
import tactic general set_lemmas linear_algebra.basis new_free ring_theory.principal_ideal_domain torsion primes run_cmd tactic.skip open_locale classical variables {R : Type*} [integral_domain R] [is_principal_ideal_ring R] noncomputable def projection {ι : Type*} {M : Type*} [add_comm_group M] [module R M] (v : ι → M) (hv : is_basis R v) (a : ι) : linear_map R M M := { to_fun := λ x, x - hv.repr x a • v a, map_add' := λ x y, by {show (x + y) - hv.repr (x + y) a • v a = (x - _) + (y - _), rw linear_map.map_add, erw add_smul, abel, }, map_smul' := λ c x, by {show c • x - hv.repr (c • x) a • v a = c • (x - _), rw linear_map.map_smul, rw smul_sub, rw ←mul_smul, refl, } } theorem proj_mem {ι : Type*} {M : Type*} [add_comm_group M] [module R M] {s : set ι} {v : ι → M} (hv : is_basis R (v ∘ subtype.val : s → M)) {a : ι} (ha : a ∈ s) {x : M} : projection _ hv ⟨a, ha⟩ x ∈ submodule.span R (set.range (v ∘ subtype.val : (s \ {a} → M))) := begin show _ - _ ∈ _, conv {to_lhs, congr, rw ←hv.total_repr x}, cases classical.em ((⟨a, ha⟩ : s) ∈ (hv.repr x).support), rw finsupp.total_apply, unfold finsupp.sum, rw ←finset.insert_erase h, erw finset.sum_insert (finset.not_mem_erase (⟨a, ha⟩ : s) (hv.repr x).support), simp only [add_sub_cancel', function.comp_app], refine @submodule.sum_mem R M _ _ _ _ (submodule.span R (set.range (v ∘ subtype.val))) (((hv.repr) x).support.erase ⟨a, ha⟩) (λ (y : s), ((hv.repr) x) y • v y.val) _, intros y hy, dsimp, apply submodule.smul_mem (submodule.span R (set.range (v ∘ subtype.val))) _, apply submodule.subset_span, use y, rw set.mem_diff, split, exact y.2, intro hya, have hyan : y = ⟨a, ha⟩ := subtype.ext_iff.2 hya, exact (finset.ne_of_mem_erase hy) hyan, rw finsupp.not_mem_support_iff.1 h, rw zero_smul, rw sub_zero, refine @submodule.sum_mem R M _ _ _ _ (submodule.span R (set.range (v ∘ subtype.val))) (((hv.repr) x).support) (λ (y : s), ((hv.repr) x) y • v y.val) _, intros y hy, dsimp, apply submodule.smul_mem (submodule.span R (set.range (v ∘ subtype.val))) _, apply submodule.subset_span, use y, rw set.mem_diff, split, exact y.2, intro hya, have hyan : y = ⟨a, ha⟩ := subtype.ext_iff.2 hya, rw hyan at hy, exact h hy, end lemma proj_ker {ι : Type*} {M : Type*} [add_comm_group M] [module R M] {s : set ι} {v : ι → M} (hv : is_basis R (v ∘ subtype.val : s → M)) {a : ι} (ha : a ∈ s) : (projection _ hv ⟨a, ha⟩).ker = submodule.span R {v a} := begin ext, split, intro hx, rw linear_map.mem_ker at hx, erw sub_eq_zero at hx, rw submodule.mem_span_singleton, use hv.repr x ⟨a, ha⟩, exact hx.symm, intro hx, rw submodule.mem_span_singleton at hx, cases hx with r hr, rw linear_map.mem_ker, erw sub_eq_zero, rw ←hr, rw linear_map.map_smul, have := @is_basis.repr_eq_single _ _ _ _ _ _ _ hv ⟨a, ha⟩, have hh : hv.repr ((v ∘ subtype.val) (⟨a, ha⟩ : s)) (⟨a, ha⟩ : s) = (1 : R) := by rw this; exact finsupp.single_eq_same, simp only [finsupp.smul_apply, algebra.id.smul_eq_mul, function.comp_app], rw mul_comm, rw mul_smul, rw hh, rw one_smul, end lemma projective_of_has_basis {ι : Type*} {M : Type*} [add_comm_group M] [module R M] {v : ι → M} (hv : is_basis R v) : projective R M := begin intros _ _ _ _ _ _ _ _ hg, let F' := λ i : ι, classical.some (hg (f (v i))), let F := @is_basis.constr _ _ _ _ _ _ _ _inst_6 _ _inst_7 hv F', use F, have huh : ∀ i : ι, g (F $ v i) = f (v i) := by { intro i, rw constr_basis, exact classical.some_spec (hg (f $ v i))}, have : @linear_map.comp R M A B _ _ (@add_comm_group.to_add_comm_monoid A _inst_6) (@add_comm_group.to_add_comm_monoid B _inst_7_1) _ _ _ g F = f := @is_basis.ext _ _ _ _ _ _ _ _inst_7_1 _ _inst_7_2 (@linear_map.comp R M A B _ _ (@add_comm_group.to_add_comm_monoid A _inst_6) (@add_comm_group.to_add_comm_monoid B _inst_7_1) _ _ _ g F) f hv (λ x, huh x), intro x, rw ←this, refl, end lemma split_of_left_inv {M : Type*} [add_comm_group M] [module R M] (A : submodule R M) {B : Type*} [add_comm_group B] [module R B] (f : M →ₗ[R] B) (H : A.subtype.range = f.ker) (g : B →ₗ[R] M) (hfg : f.comp g = linear_map.id) (hf : f.range = ⊤) : A ⊓ g.range = ⊥ ∧ A ⊔ g.range = ⊤ := begin split, rw eq_bot_iff, intros x hx, refine (submodule.mem_bot R).2 _, cases hx.2 with y hy, have : f x = 0, by {rw ←linear_map.mem_ker, rw ←H, exact ⟨⟨x, hx.1⟩, trivial, rfl⟩}, rw ←hy.2 at this, rw ←linear_map.comp_apply at this, rw hfg at this, rw linear_map.id_apply at this, rw ←hy.2, rw this, rw g.map_zero, rw eq_top_iff, intros x _, apply submodule.mem_sup.2, clear a, use x - g (f x), split, rw ←submodule.range_subtype A, rw H, rw linear_map.mem_ker, rw linear_map.map_sub, show f x - f.comp g (f x) = 0, rw hfg, exact sub_self (f x), use g (f x), split, exact linear_map.mem_range.2 ⟨f x, rfl⟩, rw sub_add_cancel, end variables {ι : Type*} {M : Type*} (s : set ι) [fintype ι] [add_comm_group M] [module R M] (v : ι → M) (a : ι) variables (R) def wtf' (i : (s \ ({a} : set ι) : set ι)) : submodule.span R (set.range (v ∘ subtype.val : s \ {a} → M)) := subtype.mk ((v ∘ subtype.val) i) (submodule.subset_span $ set.mem_range_self i) variables {R} lemma is_basis_diff {n : ℕ} {ι : Type*} {M : Type*} {s : set ι} [fintype ι] (hs : fintype.card ↥s = nat.succ n) [add_comm_group M] [module R M] {v : ι → M} (hv : is_basis R (v ∘ subtype.val : s → M)) {a : ι} (ha : a ∈ s) : is_basis R (wtf' R s v a ∘ (subtype.val : (@set.univ (s \ ({a} : set ι) : set ι) : set _) → (s \ ({a} : set ι) : set ι))) := begin split, refine linear_independent.comp _ subtype.val subtype.val_injective, apply linear_independent_span, dsimp, cases hv with hv1 hv2, have := linear_independent.to_subtype_range hv1, have H := linear_independent.mono (show (set.range (v ∘ subtype.val : s \ {a} → M) ⊆ set.range (v ∘ subtype.val : s → M)), by {rw set.range_subset_iff, intro y, exact ⟨⟨(y : ι), set.diff_subset _ _ y.2⟩, rfl⟩}) this, refine linear_independent.of_subtype_range _ H, have hi := linear_independent.injective hv1, intros x y h, have hxy : (⟨(x : ι), set.diff_subset _ _ x.2⟩ : s) = (⟨(y : ι), set.diff_subset _ _ y.2⟩ : s) := hi (by simpa only [function.comp_app] using h), apply subtype.ext_iff.2, simpa only [] using hxy, refine linear_map.map_injective (submodule.ker_subtype _) _, rw submodule.map_subtype_top, rw ←submodule.span_image, rw ←set.range_comp, congr' 1, ext, split, rintro ⟨y, hy⟩, simp only [submodule.subtype_apply, function.comp_app, wtf'] at hy, rw ←hy, use y.1, refl, rintro ⟨y, hy⟩, rw ←hy, use y, simp only [wtf', submodule.subtype_apply, submodule.coe_mk, function.comp_app], end theorem free_subm0 (ι : Type*) [fintype ι] (s : set ι) (hs : fintype.card s = 0) (M : Type*) [add_comm_group M] [module R M] (v : ι → M) (hv : is_basis R (v ∘ (subtype.val : s → ι))) (S : submodule R M) : ∃ (t : set M), linear_independent R (λ x, x : t → M) ∧ submodule.span R (set.range (λ x, x : t → M)) = S := begin use ∅, split, exact linear_independent_empty R M, cases hv with hv1 hv2, have hs := fintype.card_eq_zero_iff.1 hs, erw subtype.range_coe_subtype, erw submodule.span_empty, suffices : ∀ x : M, x = 0, by {symmetry, rw eq_bot_iff, intros x hx, apply (submodule.mem_bot R).2, exact this (x : M)}, intro x, have : set.range (v ∘ (subtype.val : s → ι )) = ∅ := by {apply set.range_eq_empty.2, intro h, cases h with y hy, exact hs y }, rw this at hv2, rw submodule.span_empty at hv2, apply (submodule.mem_bot R).1, rw hv2, exact submodule.mem_top, end noncomputable def free_equiv {ι : Type*} (x : ι) {M : Type*} [add_comm_group M] [module R M] {v : ι → M} (hv : is_basis R (v ∘ (subtype.val : ({x}: set ι) → ι))) : linear_equiv R R M := equiv_of_is_basis (@is_basis_singleton_one ({x} : set ι) R (set.unique_singleton x) _) hv (equiv.refl _) lemma free_subm1 (ι : Type*) [fintype ι] (s : set ι) (hs : ¬ 1 < fintype.card s) (M : Type*) [add_comm_group M] [module R M] (v : ι → M) (hv : is_basis R (v ∘ (subtype.val : s → ι))) (S : submodule R M) : ∃ (t : set M), linear_independent R (λ x, x : t → M) ∧ submodule.span R (set.range (λ x, x : t → M)) = S := begin cases classical.em (S = ⊥), use ∅, split, exact linear_independent_empty _ _, rw h, simp, have : fintype.card s = 0 ∨ fintype.card s = 1 := by omega, cases this with hl hr, exact free_subm0 ι s hl M v hv S, cases fintype.card_eq_one_iff.1 hr with y hy, have hrange : set.range (v ∘ subtype.val) = {(v ∘ subtype.val) y} := by {rw ←set.image_univ, convert set.image_singleton, symmetry, rw ←set.univ_subset_iff, intros t ht, exact hy t,}, have hys : {(y : ι)} = s := by {ext a, split, intro ha, convert y.2, intro ha, exact subtype.ext_iff.1 (hy ⟨a, ha⟩)}, let Smap := S.map (@free_equiv R _ _ ι (y : ι) M _ _ v (hys.symm ▸ hv)).symm.to_linear_map, cases submodule.is_principal.principal Smap with c hc, let C := @free_equiv R _ _ ι (y : ι) M _ _ v (hys.symm ▸ hv) c, use {C}, have hCy : C ∈ submodule.span R {(v ∘ subtype.val) y} := by {rw ←hrange, rw hv.2, exact submodule.mem_top,}, cases submodule.mem_span_singleton.1 hCy with r hr, have hCS : S = submodule.span R {C} := by {simp only [Smap, C] at hc ⊢, rw ←set.image_singleton, erw submodule.span_image, rw ←hc, rw ←submodule.map_comp, symmetry, convert submodule.map_id S, ext z, exact linear_equiv.apply_symm_apply (@free_equiv R _ _ ι (y : ι) M _ _ v (hys.symm ▸ hv)) z,}, have hC0 : C ≠ 0 := λ hC0, by {rw hC0 at hCS, change S = submodule.span R (⊥ : submodule R M) at hCS, erw submodule.span_eq at hCS, exact h hCS}, have hr0 : r ≠ 0 := λ hr0, by {rw hr0 at hr, rw zero_smul at hr, apply hC0, exact hr.symm}, split, refine linear_independent.mono _ _, exact {r • v (y : ι)}, rw ←hr, rw set.singleton_subset_iff, exact set.mem_singleton _, have hry : {r • v (y : ι)} = set.range (λ m : s, r • (v ∘ subtype.val) m) := by {rw ←set.image_univ, erw ←@set.image_singleton _ _ (λ m : s, r • (v ∘ subtype.val) m) y, congr, exact set.eq_univ_of_forall hy}, rw hry, apply linear_independent.to_subtype_range, rw linear_independent_iff, have hv1 := linear_independent_iff.1 hv.1, intros l hl, let L : {x // x ∈ s} →₀ R := finsupp.map_range (λ m, r • m) (smul_zero r) l, have hvL := hv1 L (by {rw finsupp.total_apply at hl ⊢, unfold finsupp.sum, simp only [finsupp.map_range_apply], rw finset.sum_subset (finsupp.support_map_range), convert hl,dsimp, simp only [mul_comm r, mul_smul], refl, intros X hX hX0, have hm := finsupp.not_mem_support_iff.1 hX0, rw finsupp.map_range_apply at hm,rw hm, rw zero_smul, }), ext, rw finsupp.ext_iff at hvL, specialize hvL a, exact or.resolve_left (mul_eq_zero.1 hvL) hr0, convert hCS.symm, simp only [subtype.range_coe_subtype], refl, end lemma one_empty {n : ℕ} {ι : Type*} {M : Type*} {s : set ι} [hι : fintype ι] (hs : fintype.card ↥s = n.succ) [add_comm_group M] [module R M] {v : ι → M} (hv : is_basis R (v ∘ subtype.val : s → M)) {S : submodule R M} (h1 : 1 < fintype.card ↥s) {b : ι} (hb : b ∈ s) {t : set ↥(submodule.span R (set.range (v ∘ subtype.val : s \ {b} → M)))} (ht : linear_independent R (λ (x : t), (↑x : submodule.span R (set.range (v ∘ subtype.val : s \ {b} → M)))) ∧ submodule.span R (set.range (λ (x : ↥t), (↑x : submodule.span R (set.range (v ∘ subtype.val : s \ {b} → M))))) = submodule.map (linear_map.cod_restrict (submodule.span R (set.range (v ∘ subtype.val))) (projection (v ∘ subtype.val) hv ⟨b, hb⟩) (λ c, proj_mem hv hb)) S) {l : set ↥((projection (v ∘ subtype.val) hv ⟨b, hb⟩).ker)} (hl : linear_independent R (λ (x : ↥l), (↑x : (projection (v ∘ subtype.val) hv ⟨b, hb⟩).ker)) ∧ submodule.span R (set.range (λ (x : ↥l), (↑x : (projection (v ∘ subtype.val) hv ⟨b, hb⟩).ker))) = ((submodule.of_le $ @inf_le_right _ _ S (projection _ hv ⟨b, hb⟩).ker).range)) (h : l = ∅) : ∃ (t : set M), linear_independent R (λ (x : ↥t), (↑x : M)) ∧ submodule.span R (set.range (λ (x : ↥t), ↑x)) = S := begin use (submodule.span R (set.range (v ∘ subtype.val : s \ {b} → M))).subtype '' t, split, apply linear_independent.image_subtype, exact ht.1, simp only [disjoint_bot_right, submodule.ker_subtype], simp only [submodule.subtype_apply, subtype.range_coe_subtype], show submodule.span R ((submodule.span R (set.range (v ∘ subtype.val))).subtype '' t) = S, rw submodule.span_image, apply le_antisymm, rw submodule.map_le_iff_le_comap, intros y hy, simp only [submodule.mem_comap, submodule.subtype_apply], sorry, sorry, end theorem free_subm (ι : Type*) [fintype ι] (s : set ι) (n : ℕ) (hs : fintype.card s = n) (M : Type*) [add_comm_group M] [module R M] (v : ι → M) (hv : is_basis R (v ∘ (subtype.val : s → ι))) (S : submodule R M) : ∃ (t : set M), linear_independent R (λ x, x : t → M) ∧ submodule.span R (set.range (λ x, x : t → M)) = S := begin unfreezingI {revert ι M s, induction n using nat.case_strong_induction_on with n hn}, intros ι M s hι h0 inst inst' v hv S, exact @free_subm0 _ _ _ ι hι s h0 M inst inst' v hv S, intros ι M s hι hs _ _ v hv S, resetI, cases (classical.em (1 < fintype.card s)) with h1 h1, rcases fintype.card_pos_iff.1 (show 0 < fintype.card s, by omega) with ⟨b, hb⟩, rcases hn n (nat.le_refl n) (s \ ({b} : set ι) : set ι) (submodule.span R (set.range (v ∘ subtype.val : (s \ ({b} : set ι)) → M))) (set.univ) (by { apply (add_right_inj 1).1, rw add_comm 1 n, rw ←nat.succ_eq_add_one n, rw ← hs, erw univ_card'', rw add_comm, rw (card_insert' (s \ ({b} : set ι)) not_mem_diff_singleton).symm, congr, rw ←eq_insert_erase_of_mem s b hb, apply_instance, apply_instance}) (λ i, ⟨v i, submodule.subset_span $ set.mem_range_self i⟩) (by convert is_basis_diff hs hv hb) (S.map $ (projection _ hv ⟨b, hb⟩).cod_restrict (submodule.span R (set.range (v ∘ subtype.val : (s \ ({b} : set ι)) → M))) (λ c, proj_mem hv hb)) with ⟨t, ht⟩, rcases hn 1 (by omega) ({b} : set ι) (projection _ hv ⟨b, hb⟩).ker set.univ sorry (λ x, ⟨v x, by {rw proj_ker,apply submodule.subset_span,convert set.mem_singleton _, exact x.2.symm}⟩) (by {split, suffices : linear_independent R (v ∘ subtype.val : ({b} : set ι) → M), by { apply linear_independent.comp _ subtype.val subtype.val_injective, erw linear_independent_comp_subtype at this, rw linear_independent_iff,intros l hl, specialize this (finsupp.emb_domain (function.embedding.subtype ({b} : set ι)) l) (by {rw finsupp.mem_supported, rw finsupp.support_emb_domain, intros x hx, rcases finset.mem_map.1 hx with ⟨y, hym, hy⟩, rw ←hy, exact y.2}), rw finsupp.total_apply at hl, rw finsupp.total_emb_domain at this,rw finsupp.total_apply at this, simp only [function.comp_app] at this, change ((l.sum (λ (i : ({b} : set ι)) (c : R), c • v (↑i : ι)) = 0) → (finsupp.emb_domain (function.embedding.subtype ({b} : set ι)) l = 0)) at this, specialize this (by {rw subtype.ext_iff at hl,dsimp at hl,rw ←hl, show _ = submodule.subtype _ _, conv_rhs {rw ←finsupp.total_apply}, rw linear_map.map_finsupp_total, rw finsupp.total_apply, apply finset.sum_congr rfl, intros x hx, simp only [submodule.subtype_apply, submodule.coe_mk, function.comp_app], }), rw finsupp.ext_iff at this,ext,specialize this a,erw finsupp.emb_domain_apply at this, rw this,simp only [finsupp.zero_apply], }, have huh := linear_independent.to_subtype_range hv.1, have hm := linear_independent.mono (show set.range (v ∘ subtype.val : ({b} : set ι) → M) ⊆ set.range (v ∘ subtype.val : s → M), by {rw set.range_subset_iff, intro y, use b, exact hb, rw ←subtype.eta y y.2, simp only [function.comp_app, subtype.eta], exact congr_arg v y.2.symm, }) huh, apply linear_independent.of_subtype_range, intros c d hcd, rw subtype.ext_iff, rw (show (c : ι) = b, from c.2), symmetry, exact d.2, exact hm, apply linear_map.map_injective (projection _ hv ⟨b, hb⟩).ker.ker_subtype, rw submodule.map_subtype_top, rw ←submodule.span_image, symmetry, convert proj_ker hv hb, rw ←set.range_comp, ext m, split, rintro ⟨k, hk⟩, rw ← hk, show _ = _, simpa only [] using congr_arg v k.1.2, intro hm, use b, exact set.mem_singleton _, rw (show _ = _, from hm), refl, }) (submodule.of_le $ @inf_le_right _ _ S (projection _ hv ⟨b, hb⟩).ker).range with ⟨l, hl⟩, cases (classical.em (l = ∅)), exact one_empty hs hv h1 hb ht hl h, let V := (submodule.span R (set.range (v ∘ subtype.val : (s \ ({b} : set ι)) → M))).subtype '' t, let W := (projection (v ∘ subtype.val) hv ⟨b, hb⟩).ker.subtype '' l, use V ∪ W, refine union_is_basis_of_gen_compl S ((submodule.span R (set.range (v ∘ subtype.val : (s \ ({b} : set ι)) → M))).comap S.subtype) V (submodule.comap S.subtype $ linear_map.ker (projection (v ∘ subtype.val) hv ⟨b, hb⟩)) W _ _ _ _ _ _, rw submodule.map_comap_subtype, sorry, rw submodule.map_comap_subtype, sorry, refine linear_independent.image_subtype _ _, exact ht.1, sorry, refine linear_independent.image_subtype _ _, exact hl.1, sorry, rw ←submodule.comap_inf, rw eq_bot_iff, intros x hx, rw submodule.mem_bot, cases hx with hxl hxr, simp at hxr, sorry, sorry, exact free_subm1 ι s h1 M v hv S, end lemma tf_iff {M : Type*} [add_comm_group M] [module R M] : tors R M = ⊥ ↔ ∀ (x : M) (r : R), r • x = 0 → r = 0 ∨ x = 0 := begin split, intro h, rw eq_bot_iff at h, intros x r hx, cases (classical.em (r = 0)), left, assumption, right, exact (submodule.mem_bot R).1 (h ⟨r, h_1, hx⟩), intros h, rw eq_bot_iff, intros x hx, cases hx with r hr, exact (submodule.mem_bot R).2 (or.resolve_left (h x r hr.2) hr.1) end theorem fg_quotient {M : Type*} [add_comm_group M] [module R M] (S : submodule R M) (Hfg : S.fg) (A : submodule R S) : (⊤ : submodule R A.quotient).fg := @is_noetherian.noetherian _ _ _ _ _ (is_noetherian_of_quotient_of_noetherian R S A $ is_noetherian_of_fg_of_noetherian S Hfg) ⊤ lemma span_insert_zero_eq' {s : set M} : submodule.span R (insert (0 : M) s) = submodule.span R s := begin rw ←set.union_singleton, rw submodule.span_union, rw submodule.span_singleton_eq_bot.2 rfl, rw sup_bot_eq, end lemma card_pos_of_ne_bot {M : Type*} [add_comm_group M] [module R M] {s : finset M} {S : submodule R M} (h : S ≠ ⊥) (hs : submodule.span R (↑s : set M) = S) : 0 < (s.erase 0).card := begin rw nat.pos_iff_ne_zero, intro h0, rw finset.card_eq_zero at h0, cases classical.em ((0 : M) ∈ s) with hl hr, rw ←finset.insert_erase hl at hs, rw insert_to_set' at hs, rw span_insert_zero_eq' at hs, rw h0 at hs, erw submodule.span_empty at hs, exact h hs.symm, rw finset.erase_eq_of_not_mem hr at h0, rw h0 at hs, erw submodule.span_empty at hs, exact h hs.symm, end lemma subset_singleton' {c : M} {l : finset M} (h : l ⊆ {c}) : l = ∅ ∨ l = {c} := begin cases (finset.eq_empty_or_nonempty l), left, exact h_1, right, erw finset.eq_singleton_iff_unique_mem, cases h_1 with w hw, have := finset.mem_singleton.1 (h hw), rw ←this, split, exact hw, intros x hx, rw this, exact finset.mem_singleton.1 (h hx), end lemma single_of_singleton_support {α : Type*} {l : α →₀ R} {x : α} (h : l.support = {x}) : l = finsupp.single x (l x) := begin ext, cases classical.em (a = x), rw h_1, simp only [finsupp.single_eq_same], rw finsupp.not_mem_support_iff.1 (by rw h; exact finset.not_mem_singleton.2 h_1), rw finsupp.single_eq_of_ne (ne.symm h_1), end def WHY (s : finset M) : set M := @has_lift.lift _ _ finset.has_lift s noncomputable def finsupp_insert {s : finset M} {x : M} {l : (set.insert x (WHY s)) →₀ R} (hx : x ∉ s) (hl : l.2 (⟨x, set.mem_insert x (WHY s)⟩ : set.insert x (WHY s)) = 0) : WHY s →₀ R := { support := subtype_mk' (finset.image subtype.val l.support) (WHY s) (by {intros y hy, erw finset.mem_image at hy, rcases hy with ⟨z, hzm, hz⟩, rw ←hz, exact or.resolve_left z.2 (by {intro hzx, rw finsupp.mem_support_iff at hzm, apply hzm, rw ←hl, congr, rw subtype.ext_iff, exact hzx})}), to_fun := λ x, l ⟨x, set.subset_insert _ _ x.2⟩, mem_support_to_fun := λ y, by {split, intros h h0, erw finset.mem_image at h, rcases h with ⟨b, hmb, hb⟩, cases b with b1 b2, erw finset.mem_image at b2, rcases b2 with ⟨c, hmc, hc⟩, apply finsupp.mem_support_iff.1 hmc, rw ←subtype.eta c c.2, rw ←h0, congr' 1, rw subtype.mk_eq_mk, rw hc, rw ←hb, refl, intros h0, apply finset.mem_image.2, use (y : M), apply finset.mem_image.2, use ⟨y, set.subset_insert _ _ y.2⟩, split, exact finsupp.mem_support_iff.2 h0, refl, split, exact finset.mem_univ _, rw subtype.ext_iff, refl,} } lemma finsupp_insert_apply {s : finset M} {x : M} {l : (set.insert x (WHY s)) →₀ R} (hx : x ∉ s) (hl : l.2 (⟨x, set.mem_insert x (WHY s)⟩ : set.insert x (WHY s)) = 0) {y : M} (hy : y ∈ s) : finsupp_insert hx hl ⟨y, hy⟩ = l ⟨y, set.subset_insert _ _ hy⟩ := rfl lemma finsupp_insert_total {s : finset M} {x : M} {l : (set.insert x (WHY s)) →₀ R} (hx : x ∉ s) (hl : l.2 (⟨x, set.mem_insert x (WHY s)⟩ : set.insert x (WHY s)) = 0) : finsupp.total (WHY s) M R subtype.val (finsupp_insert hx hl) = finsupp.total (set.insert x (WHY s)) M R subtype.val l := begin rw finsupp.total_apply, rw finsupp.total_apply, unfold finsupp.sum, show (subtype_mk' _ _ _).sum (λ (z : WHY s), l ⟨z, set.subset_insert _ _ z.2⟩ • (z : M)) = _, sorry, end variables (ρ : finset M) (T : set M) instance fucksake2 (s : finset M) : fintype (WHY s) := finset_coe.fintype s noncomputable def dep_coeff_map {M : Type*} [add_comm_group M] [module R M] (s : finset M) (z : M) (h : ¬(finsupp.total (set.insert z (WHY s)) M R subtype.val).ker = ⊥) : (finsupp.total (set.insert z (WHY s)) M R subtype.val).ker := @classical.some (finsupp.total (set.insert z (WHY s)) M R subtype.val).ker (λ f, f ≠ 0) (by { have h' : ¬(finsupp.total (set.insert z (WHY s)) M R subtype.val).ker ≤ ⊥, from λ h', h (eq_bot_iff.2 h'), rcases submodule.not_le_iff_exists.1 h' with ⟨y, hym, hy⟩, use y,exact hym, intro hy0, rw subtype.ext_iff at hy0, exact hy hy0}) noncomputable def dep_coeff {M : Type*} [add_comm_group M] [module R M] (s : finset M) (z : M) (h : ¬(finsupp.total (set.insert z (WHY s)) M R subtype.val).ker = ⊥) : R := dep_coeff_map s z h ⟨z, (set.mem_insert z _)⟩ theorem dep_coeff_spec {M : Type*} [add_comm_group M] [module R M] (s : finset M) (z : M) (h : ¬(finsupp.total (set.insert z (WHY s)) M R subtype.val).ker = ⊥) : dep_coeff_map s z h ≠ 0 := @classical.some_spec (finsupp.total (set.insert z (WHY s)) M R subtype.val).ker (λ f, f ≠ 0) (by { have h' : ¬(finsupp.total (set.insert z (WHY s)) M R subtype.val).ker ≤ ⊥, from λ h', h (eq_bot_iff.2 h'), rcases submodule.not_le_iff_exists.1 h' with ⟨y, hym, hy⟩, use y, exact hym, intro hy0, rw subtype.ext_iff at hy0, exact hy hy0}) lemma prod_ne_zero {M : Type*} [add_comm_group M] [module R M] (Y s : finset M) (h : ∀ z : M, z ∈ Y \ s → ¬(finsupp.total (set.insert (z : M) (WHY s)) M R subtype.val).ker = ⊥) (hli : (finsupp.total (WHY s) M R subtype.val).ker = ⊥) : finset.prod (finset.image (λ w : (WHY (Y \ s)), dep_coeff s (w : M) $ h w w.2) (@finset.univ (WHY (Y \ s)) _)) id ≠ 0 := begin intro hr0, have hr := finset_prod_eq_zero_iff.1 hr0, rw finset.mem_image at hr, rcases hr with ⟨x, hxm, hx⟩, rw eq_bot_iff at hli, have H := classical.not_not.2 hli, apply H, rw submodule.not_le_iff_exists, let F := @finsupp_insert R _ _ _ _ _ s x (dep_coeff_map s x (h x x.2)) (finset.mem_sdiff.1 x.2).2 hx, use F, split, rw linear_map.mem_ker, erw finsupp_insert_total (finset.mem_sdiff.1 x.2).2 hx, have huh := (dep_coeff_map s (x : M) (h x x.2)).2, rw linear_map.mem_ker at huh, exact huh, intro hF0, apply dep_coeff_spec s (x : M) (h x x.2), rw submodule.mem_bot at hF0, rw subtype.ext_iff, rw submodule.coe_zero, ext, cases (set.mem_insert_iff.1 a.2), rw finsupp.zero_apply, rw ←hx, congr, rw subtype.ext_iff, exact h_1, have huh := finsupp.ext_iff.1 hF0 ⟨a, h_1⟩, rw finsupp_insert_apply at huh, rw subtype.coe_eta at huh, rw huh, refl, end lemma prod_smul_mem {M : Type*} [add_comm_group M] [module R M] (Y s : finset M) (h : ∀ z : M, z ∈ Y \ s → ¬(finsupp.total (set.insert (z : M) (WHY s)) M R subtype.val).ker = ⊥) (hli : (finsupp.total (WHY s) M R subtype.val).ker = ⊥) {y} (hy : y ∈ Y) : finset.prod (finset.image (λ w : (WHY (Y \ s)), dep_coeff s (w : M) $ h w w.2) (@finset.univ (WHY (Y \ s)) _)) id • y ∈ submodule.span R (↑s : set M) := begin sorry, end variables {r : R} (S : submodule R M) noncomputable def r_equiv (htf : ∀ (x : S) (r : R), r • x = 0 → r = 0 ∨ x = 0) (r : R) (hr : r ≠ 0) := linear_equiv.of_injective ((r • linear_map.id).comp S.subtype) (by { rw linear_map.ker_eq_bot', intros m hm, exact or.resolve_left (htf m r $ subtype.ext_iff.2 $ by {dsimp at hm, rw ←submodule.coe_smul at hm, rw ←@submodule.coe_zero _ _ _ _ _ S at hm, exact hm}) hr}) lemma equiv_apply (htf : ∀ (x : S) (r : R), r • x = 0 → r = 0 ∨ x = 0) (r : R) (hr : r ≠ 0) {x : S} : (r_equiv S htf r hr x : M) = r • x := rfl theorem free_of_tf (M : Type*) [add_comm_group M] [module R M] (S : submodule R M) (hfg : S.fg) (htf : ∀ (x : S) (r : R), r • x = 0 → r = 0 ∨ x = 0) : ∃ (t : set M), linear_independent R (λ x, x : t → M) ∧ submodule.span R (set.range (λ x, x : t → M)) = S := begin cases (classical.em (S = ⊥)), { use ∅, split, exact linear_independent_empty _ _, rw h, simp only [subtype.range_coe_subtype], exact submodule.span_empty}, cases hfg with X hX, set Y := X.erase 0, have hY : (↑Y : set M) ⊆ S := set.subset.trans (finset.erase_subset 0 X) (hX ▸ submodule.subset_span), set n := nat.find_greatest (λ n, ∃ s : finset M, s ⊆ Y ∧ linear_independent R (λ x, x : (WHY s) → M) ∧ s.card = n) Y.card, cases @nat.find_greatest_spec (λ n, ∃ s : finset M, s ⊆ Y ∧ linear_independent R (λ x, x : (WHY s) → M) ∧ s.card = n) _ Y.card ⟨1, nat.succ_le_of_lt $ card_pos_of_ne_bot h hX, by {cases finset.card_pos.1 (card_pos_of_ne_bot h hX) with c hc, use {c}, split, exact finset.singleton_subset_iff.2 hc, split, rw linear_independent_subtype, intros l hlm hl, cases subset_singleton ((finsupp.mem_supported _ _).1 hlm) with hl0 hlc, rw ←finsupp.support_eq_empty, exact hl0, rw single_of_singleton_support hlc at hl ⊢, rw finsupp.total_single at hl, rw finsupp.single_eq_zero, exact or.resolve_right (htf ⟨c, hY hc⟩ (l c) (subtype.ext_iff.2 $ hl)) (λ h0, (finset.mem_erase.1 hc).1 $ subtype.ext_iff.1 h0), exact finset.card_singleton _, }⟩ with s hs, cases (classical.em (∃ x, x ∈ Y \ s)), cases h_1 with z hz, have hnl : ∀ z, z ∈ Y \ s → ¬(linear_independent R $ (λ y, y : (set.insert z (WHY s) : set M) → M)) := λ x hx hnl, by {have huh := @nat.find_greatest_is_greatest (λ n, ∃ s : finset M, s ⊆ Y ∧ linear_independent R (λ x, x : (WHY s) → M) ∧ s.card = n) _ Y.card ⟨1, nat.succ_le_of_lt $ card_pos_of_ne_bot h hX, by {cases finset.card_pos.1 (card_pos_of_ne_bot h hX) with c hc, use {c}, split, exact finset.singleton_subset_iff.2 hc, split, rw linear_independent_subtype, intros l hlm hl, cases subset_singleton ((finsupp.mem_supported _ _).1 hlm) with hl0 hlc, rw ←finsupp.support_eq_empty, exact hl0, rw single_of_singleton_support hlc at hl ⊢, rw finsupp.total_single at hl, rw finsupp.single_eq_zero, exact or.resolve_right (htf ⟨c, hY hc⟩ (l c) (subtype.ext_iff.2 $ hl)) (λ h0, (finset.mem_erase.1 hc).1 $ subtype.ext_iff.1 h0), exact finset.card_singleton _, }⟩ n.succ (by {split, exact nat.lt_succ_self _, rw nat.succ_le_iff, simp only [n], erw ←hs.2.2, apply finset.card_lt_card, rw finset.ssubset_iff_of_subset, use x, rw ←finset.mem_sdiff, exact hx, exact hs.1}), exact huh ⟨(insert x s), by {split, rw finset.insert_subset,split, exact (finset.mem_sdiff.1 hx).1, exact hs.1, split, simp only [*, not_exists, set.diff_singleton_subset_iff, submodule.mem_coe, finset.coe_erase, not_and, finset.mem_sdiff, ne.def, set.insert_eq_of_mem, submodule.zero_mem, finset.mem_erase] at *, convert hnl, all_goals {try {exact finset.coe_insert _ _}}, rw finset.card_insert_of_not_mem, rw hs.2.2, exact (finset.mem_sdiff.1 hx).2, }⟩, }, unfold linear_independent at hnl, set r : R := finset.prod (finset.image (λ w : (↑(Y \ s) : set M), dep_coeff s (w : M) $ hnl w w.2) (@finset.univ (↑(Y \ s) : set M) _)) id, have hr0 : r ≠ 0 := prod_ne_zero Y s hnl hs.2.1, have hrX : ∀ x, x ∈ X → r • x ∈ submodule.span R (↑s : set M) := sorry, have hrS : ∀ x, x ∈ S → r • x ∈ submodule.span R (↑s : set M) := λ w hw, by {rw ←hX at hw, rw ←set.image_id (↑X : set M) at hw, rcases (finsupp.mem_span_iff_total R).1 hw with ⟨f, hfm, hf⟩, rw ←hf, rw finsupp.total_apply, rw finsupp.smul_sum, apply submodule.sum_mem (submodule.span R (↑s : set M)), intros c hc, dsimp, rw ←mul_smul, rw mul_comm, rw mul_smul, apply submodule.smul_mem (submodule.span R (↑s : set M)) (f c), exact hrX c (hfm hc) }, cases free_subm (↑s : set M) set.univ s.card (by { rw univ_card s, rw finset.card_univ, apply fintype.card_congr, symmetry, exact (equiv.set.univ _).symm, }) (submodule.span R (↑s : set M) : set M) (λ x, ⟨x, submodule.subset_span x.2⟩) ⟨sorry, sorry⟩ (submodule.comap (submodule.span R (↑s : set M)).subtype (submodule.map (r • linear_map.id) S)) with t ht, let T := (λ x, r • x)⁻¹' (subtype.val '' t), use T, split, simp only [], unfold linear_independent at *, rw eq_bot_iff at *, by_contradiction, rcases submodule.not_le_iff_exists.1 a with ⟨f, hfm, hf⟩, refine absurd ht.1 _, apply submodule.not_le_iff_exists.2, let sset : finset t := @finset.preimage _ _ (subtype.val ∘ subtype.val) (finset.image (λ x : T, r • (x : M)) f.1) sorry, let func : t → R := λ x, f.2 ⟨r • x, sorry⟩, let F : t →₀ R := ⟨sset, func, sorry⟩, use F, split, sorry, sorry, ext i, split, intro hmem, sorry, sorry, use (↑s : set M), split, exact hs.2.1, rw ←hX, have hsY : s = Y := le_antisymm hs.1 sorry, rw hsY, sorry, end theorem torsion_decomp {M : Type*} [add_comm_group M] [module R M] (S : submodule R M) (hfg : S.fg) : ∃ t : set S, linear_independent R (λ x, x : t → S) ∧ (tors R S) ⊓ (submodule.span R t) = ⊥ ∧ (tors R S) ⊔ (submodule.span R t) = ⊤ := begin cases free_of_tf (tors R S).quotient ⊤ (fg_quotient S hfg (tors R S)) (tf_iff.1 $ eq_bot_iff.2 $ λ b hb, by {have := eq_bot_iff.1 (tors_free_of_quotient R S), rcases hb with ⟨c, hc⟩, have h0 : c • (b : (tors R S).quotient) = 0 := by {rw ←submodule.coe_smul, rw ←@submodule.coe_zero R (tors R S).quotient _ _ _ ⊤, congr, exact hc.2 }, have ffs := this ⟨c, hc.1, h0⟩, rw submodule.mem_bot at ffs ⊢, rw subtype.ext_iff, rw ffs, refl} ) with t ht, cases (projective_of_has_basis ht S (tors R S).quotient linear_map.id (tors R S).mkq (λ x, quotient.induction_on' x $ λ y, ⟨y, rfl⟩)) with f hf, have HP := split_of_left_inv (tors R S) (tors R S).mkq (by {rw submodule.ker_mkq, rw submodule.range_subtype}) f (linear_map.ext hf) (submodule.range_mkq _), use (set.range ((f : _ → S) ∘ subtype.val : t → S)), split, apply linear_independent.to_subtype_range, apply linear_independent.restrict_of_comp_subtype, rw linear_independent_comp_subtype, intros l hlm hl, apply (linear_independent_subtype.1 ht.1 l hlm), rw finsupp.total_apply at *, apply f.to_add_monoid_hom.injective_iff.1 (function.left_inverse.injective hf), rw ←hl, erw (finset.sum_hom l.support f).symm, apply finset.sum_congr rfl, intros x hx, dsimp, rw linear_map.map_smul, convert HP, all_goals {rw ←set.image_univ, rw set.image_comp, rw submodule.span_image, show _ = (⊤ : submodule R (tors R S).quotient).map f, congr, convert ht.2, rw set.image_univ, refl}, end def tf_basis {M : Type*} [add_comm_group M] [module R M] (S : submodule R M) (hfg : S.fg) := classical.some (torsion_decomp S hfg) theorem tf_basis_is_basis {M : Type*} [add_comm_group M] [module R M] (S : submodule R M) (hfg : S.fg) : linear_independent R (λ x, x : tf_basis S hfg → S) := (classical.some_spec (torsion_decomp S hfg)).1 theorem disjoint_tors_tf {M : Type*} [add_comm_group M] [module R M] {S : submodule R M} (hfg : S.fg) : (tors R S) ⊓ (submodule.span R $ tf_basis S hfg) = ⊥ := (classical.some_spec (torsion_decomp S hfg)).2.1 theorem tors_tf_span {M : Type*} [add_comm_group M] [module R M] {S : submodule R M} (hfg : S.fg) : (tors R S) ⊔ (submodule.span R $ tf_basis S hfg) = ⊤ := (classical.some_spec (torsion_decomp S hfg)).2.2
(* ------------------------------------------------------- *) (** #<hr> <center> <h1># The double time redundancy (DTR) transformation #</h1># - Main properties and theorem Dmitry Burlyaev - Pascal Fradet - 2015 #</center> <hr># *) (* ------------------------------------------------------- *) Add LoadPath "..\..\Common\". Add LoadPath "..\..\TMRProof\". Add LoadPath "..\Transf\". Add LoadPath "..\controlBlock\". Add LoadPath "..\inputBuffers\". Add LoadPath "..\outputBuffers\". Add LoadPath "..\memoryBlocks\". Require Import dtrTransform relationPred. Require Import inputLib controlLib outputLib memoryLib. Require Import globalInv globalStep globalLem1 globalSeqs. Set Implicit Arguments. (* ------------------------------------------------------- *) Lemma stepg_In1: forall S T (i0 i1 i2 i3 i4 i5: {|S|}) (o0 o1 o2 o3 o4 o5: {|T|}) (oo1 oo2 oo3 oo4 oo5 oo6 oo7 oo8 oo9:{|T # (T # T)|}) (c0 c1 c2 c3 c4 c5 c6: circuit S T) (cc1 cc2 cc2' cc3 cc3' cc4 cc4' cc5 cc5' cc6: circuit S (T # (T # T))), pure_bset {i0,i1,i2,i3,i4,i5,o0,o1,o2,o3,o4,o5} -> Dtrs1 (ibs1 i1 i0) (obs1 o1 o0) c0 c1 c2 cc1 -> step c1 i1 o1 c2 -> step c2 i2 o2 c3 -> step c3 i3 o3 c4 -> step c4 i4 o4 c5 -> step c5 i5 o5 c6 -> stepg cc1 i1 oo1 cc2 -> step cc2 i2 oo2 cc2' -> step cc2' i2 oo3 cc3 -> step cc3 i3 oo4 cc3' -> step cc3' i3 oo5 cc4 -> step cc4 i4 oo6 cc4' -> step cc4' i4 oo7 cc5 -> step cc5 i5 oo8 cc5' -> step cc5' i5 oo9 cc6 -> atleast2 o0 oo1 /\ atleast2 o1 oo3 /\ atleast2 o2 oo5 /\ atleast2 o3 oo7 /\ atleast2 o4 oo9 /\ Dtrs0 (ibs0 i5) (obs0 o5 o4) c5 c6 cc6. Proof. introv P D (* S1 *) S2 S3 S4 S5 S6. introv SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9. SimpS. Inverts D. Inverts SS1. Inverts H19. Inverts H21. (* Glitch occuring inside *) - eapply glitch_in_GC. 2:exact H22. 2:exact H18. 2:exact H20. 2:exact H19. 2: exact S2. 2:exact S3. 2:exact S4. 2:exact S5. 2:exact S6. 2:exact SS2. 2:exact SS3. 2:exact SS4. 2:exact SS5. 2:exact SS6. 2:exact SS7. 2:exact SS8. 2:exact SS9. 2:exact H23. CheckPure. (* possible glitch in the triplicated fail signal to control block *) - eapply glitch_in_3fail. 2: exact H22. 2: exact H18. 2: exact H20. 2: exact H23. 2: exact H19. 2: exact S2. 2: exact S3. 2: exact S4. 2: exact S5. 2: exact S6. 2: exact SS2. 2: exact SS3. 2: exact SS4. 2: exact SS5. 2: exact SS6. 2: exact SS7. 2: exact SS8. 2: exact SS9. 2: exact H24. CheckPure. - Inverts H23. eapply invstepcore in H24; try easy. unfold PexInvDTR1 in H24. SimpS. Inverts H20. + eapply step1_tcbv_i in H12; try (solve [constructor]). SimpS. Apply step_ibs in H11; try apply pure_buildBus. SimpS. Purestep H13. Apply step1_mb with H22 S2 in H13. SimpS. Purestep H14. Apply step_obs_sf in H14. SimpS. Apply invstepDTRc in SS2. SimpS. Apply step0_tcbv_C in H14. SimpS. Apply step_ibs in H11; try apply pure_buildBus. SimpS. Apply step0_mb with H20 S3 in H18. SimpS. Apply step0_obs_sbf in H21. SimpS. assert (D: Dtrs1 (ibs1 i2 i1) (obs1 o2 o1) c1 c2 c3 (globcir (false,false,false) cbs1 (ibs1 i2 i1) x43 (obs1 o2 o1))) by (constructor; try easy). Apply step_Dtrs1 with S3 SS3 in D. SimpS. split. easy. split. easy. eapply sixsteps. 2:exact H18. 2:exact S4. 2:exact S5. 2:exact S6. 2:exact SS4. 2:exact SS5. 2:exact SS6. 2:exact SS7. 2:exact SS8. 2:exact SS9. CheckPure. (* no glitch *) + eapply step1_tcbv in H12; try (solve [constructor]). SimpS. Apply step_ibs in H11; try apply pure_buildBus. SimpS. Apply step1_mb with H22 S2 in H13. SimpS. Apply step_obs_sf in H14. assert (X: pure_bset (orS {bool2bset x21, bool2bset (negb (beq_buset_t o1 o0))})) by (Apply pure_orS). SimpS. assert (D: Dtrs0 (ibs0 i1) (obs0 o1 o0) c1 c2 (globcir (b',b',b') cbs0 (ibs0 i1) x42 (obs0 o1 o0))) by (constructor; try easy). split. easy. eapply eightsteps. 2:exact D. 2:exact S3. 2:exact S4. 2:exact S5. 2:exact S6. 2: exact SS2. 2:exact SS3. 2:exact SS4. 2:exact SS5. 2:exact SS6. 2:exact SS7. 2:exact SS8. 2:exact SS9. CheckPure. - Inverts H20. Inverts H23. Apply invstepcore in H24. unfold PexInvDTR1 in H24. SimpS. Inverts H18. + eapply step1_tcbv_i in H12; try (solve [constructor]). SimpS. Apply step_ibs in H11; try apply pure_buildBus. SimpS. Purestep H13. Apply step1_mb with H22 S2 in H13. SimpS. Purestep H14. Apply step_obs_sf in H14. SimpS. Apply invstepDTRc in SS2. SimpS. Apply step0_tcbv_C in H14. SimpS. Apply step_ibs in H11; try apply pure_buildBus. SimpS. Apply step0_mb with H18 S3 in H19. SimpS. Apply step0_obs_sbf in H21. SimpS. assert (D: Dtrs1 (ibs1 i2 i1) (obs1 o2 o1) c1 c2 c3 (globcir (false,false,false) cbs1 (ibs1 i2 i1) x43 (obs1 o2 o1))) by (constructor; try easy). Apply step_Dtrs1 with S3 SS3 in D. SimpS. split. easy. split. easy. eapply sixsteps. 2:exact H19. 2:exact S4. 2:exact S5. 2:exact S6. 2:exact SS4. 2:exact SS5. 2:exact SS6. 2:exact SS7. 2:exact SS8. 2:exact SS9. CheckPure. + (* no glitch *) eapply step1_tcbv in H12; try (solve [constructor]). SimpS. Apply step_ibs in H11; try apply pure_buildBus. SimpS. Apply step1_mb with H22 S2 in H13. SimpS. Apply step_obs_sf in H14. assert (X: pure_bset (orS {bool2bset x21, bool2bset (negb (beq_buset_t o1 o0))})) by (Apply pure_orS). SimpS. assert (D: Dtrs0 (ibs0 i1) (obs0 o1 o0) c1 c2 (globcir (b',b',b') cbs0 (ibs0 i1) x42 (obs0 o1 o0))) by (constructor; try easy). split. easy. eapply eightsteps. 2:exact D. 2:exact S3. 2:exact S4. 2:exact S5. 2:exact S6. 2: exact SS2. 2:exact SS3. 2:exact SS4. 2:exact SS5. 2:exact SS6. 2:exact SS7. 2:exact SS8. 2:exact SS9. CheckPure. Qed.
Formal statement is: theorem Cauchy_integral_formula_convex_simple: assumes "convex S" and holf: "f holomorphic_on S" and "z \<in> interior S" "valid_path \<gamma>" "path_image \<gamma> \<subseteq> S - {z}" "pathfinish \<gamma> = pathstart \<gamma>" shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>" Informal statement is: If $f$ is holomorphic on a convex set $S$ and $z$ is an interior point of $S$, then the Cauchy integral formula holds for $f$ and $z$.
module PowerMethod where import Control.Monad as M import Data.Complex import Data.List as L import Numeric.LinearAlgebra as NL import System.Environment import System.Random import Text.Printf {-# INLINE iterateM #-} iterateM :: Int -> (b -> a -> IO a) -> b -> a -> IO a iterateM 0 _ _ x = return x iterateM n f x y = do z <- f x y iterateM (n - 1) f x $! z {-# INLINE getComplexStr #-} getComplexStr :: (Complex Double) -> String getComplexStr (a :+ b) = printf "%.2f :+ %.2f" a b {-# INLINE getComplexStr' #-} getComplexStr' :: (Complex Double) -> String getComplexStr' x = let (a, b) = polar x in printf "(%.2f, %.2f)" a b {-# INLINE getListStr #-} getListStr :: (a -> String) -> [a] -> String getListStr f (x:xs) = printf "[%s%s]" (f x) . L.concatMap (\x -> " ," L.++ f x) $ xs main = do (nStr:_) <- getArgs let range = (-1, 1) matInit1 <- M.replicateM 4 (randomRIO range) :: IO [Double] matInit2 <- M.replicateM 4 (randomRIO range) :: IO [Double] vecInit1 <- M.replicateM 2 (randomRIO range) :: IO [Double] vecInit2 <- M.replicateM 2 (randomRIO range) :: IO [Double] let n = read nStr :: Int mat' = (2 >< 2) $ L.zipWith (:+) matInit1 matInit2 vec' = NL.fromList $ L.zipWith (:+) vecInit1 vecInit2 (eigVal, eigVec) = eig mat' eigVecs = toColumns eigVec print mat' out <- iterateM n (\mat vec -> do let newVec = mat #> vec maxMag = L.maximum . L.map magnitude . NL.toList $ newVec (a:b:_) = NL.toList newVec phaseNorm x = let (m, p) = polar x in mkPolar 1 p norm = if magnitude a > magnitude b then a else b normalizedNewVec = newVec / (scalar norm) printf "Maximum magnitude: %.2f %s\n" maxMag (getListStr getComplexStr' . NL.toList $ normalizedNewVec) return normalizedNewVec) mat' vec' let s = sqrt . L.sum . L.map (\x -> (magnitude x) ^ 2) . NL.toList $ out printf "%s\n" (getListStr getComplexStr' . L.map (/ (s :+ 0)) . NL.toList $ out) M.zipWithM_ (\val vec -> printf "%.2f %s\n" (magnitude val) (getListStr getComplexStr' . NL.toList $ vec)) (NL.toList eigVal) eigVecs print eigVal print eigVecs
--- author: Nathan Carter ([email protected]) --- This answer assumes you have imported SymPy as follows. ```python from sympy import * # load all math functions init_printing( use_latex='mathjax' ) # use pretty math output ``` Let's consider the example of the unit circle, $x^2+y^2=1$. To plot it, SymPy first expects us to move everything to the left-hand side of the equation, so in this case, we would have $x^2+y^2-1=0$. We then use that left hand side to represent the equation as a single formula, and we can plot it with SymPy's `plot_implicit` function. ```python var( 'x y' ) formula = x**2 + y**2 - 1 # to represent x^2+y^2=1 plot_implicit( formula ) ```
[STATEMENT] lemma if_eval_elim': "\<lbrakk> \<langle>If e c\<^sub>1 c\<^sub>2, mds, mem\<rangle> \<leadsto> \<langle>c', mds', mem'\<rangle> \<rbrakk> \<Longrightarrow> ((c' = c\<^sub>1 \<and> ev\<^sub>B mem e) \<or> (c' = c\<^sub>2 \<and> \<not> ev\<^sub>B mem e)) \<and> mds' = mds \<and> mem' = mem" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<langle>Stmt.If e c\<^sub>1 c\<^sub>2, mds, mem\<rangle> \<leadsto> \<langle>c', mds', mem'\<rangle> \<Longrightarrow> (c' = c\<^sub>1 \<and> ev\<^sub>B mem e \<or> c' = c\<^sub>2 \<and> \<not> ev\<^sub>B mem e) \<and> mds' = mds \<and> mem' = mem [PROOF STEP] using if_eval_elim [where annos = "[]"] [PROOF STATE] proof (prove) using this: \<langle>Stmt.If ?e ?c\<^sub>1 ?c\<^sub>2 \<otimes> [], ?mds, ?mem\<rangle> \<leadsto> \<langle>?c', ?mds', ?mem'\<rangle> \<Longrightarrow> (?c' = ?c\<^sub>1 \<and> ev\<^sub>B ?mem ?e \<or> ?c' = ?c\<^sub>2 \<and> \<not> ev\<^sub>B ?mem ?e) \<and> ?mds' = ?mds \<oplus> [] \<and> ?mem' = ?mem goal (1 subgoal): 1. \<langle>Stmt.If e c\<^sub>1 c\<^sub>2, mds, mem\<rangle> \<leadsto> \<langle>c', mds', mem'\<rangle> \<Longrightarrow> (c' = c\<^sub>1 \<and> ev\<^sub>B mem e \<or> c' = c\<^sub>2 \<and> \<not> ev\<^sub>B mem e) \<and> mds' = mds \<and> mem' = mem [PROOF STEP] by auto
lemma map_poly_map_poly: assumes "f 0 = 0" "g 0 = 0" shows "map_poly f (map_poly g p) = map_poly (f \<circ> g) p"
lemma cball_empty [simp]: "e < 0 \<Longrightarrow> cball x e = {}"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Brief background for derivation of the cable equation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% See \cite{lindsay_2004} for a detailed derivation of the cable equation, and extensions to the one-dimensional model that account for radial variation of potential. The one-dimensional cable equation introduced later in equations~\eq{eq:cable} and~\eq{eq:cable_balance} is based on the following expression in three dimensions (based on Maxwell's equations adapted for neurological modelling) \begin{equation} \nabla \cdot \vv{J} = 0, \label{eq:J} \end{equation} where $\vv{J}$ is current density (units $A/m^2$). Current density is in turn defined in terms of electric field $\vv{E}$ (units $V/m$) \begin{equation} \vv{J} = \sigma \vv{E}, \end{equation} where $\sigma$ is the specific electrical conductivity of intra-cellular fluid (typically 3.3 $S/m$). The derivation of the cable equation is based on two assumptions: \begin{enumerate} \item that charge disperion is effectively instantaneous for the purposes of dendritic modelling. \item that diffusion of magnetic field is instant, i.e. it behaves quasi-statically in the sense that it is determined by the electric field through the Maxwell equations. \end{enumerate} Under these conditions, $\vv{E}$ is conservative, and as such can be expressed in terms of a potential field \begin{equation} \vv{E} = \nabla \phi, \end{equation} where the extra/intra-cellular potential field $\phi$ has units $mV$. The derivation of the one-dimensional conservation equation \eq{eq:cable_balance} is based on the assumption that the intra-cellular potential (i.e. inside the cell) does not vary radially. That is, potential is a function of the axial distance $x$ alone \begin{equation} \vv{E} = \nabla \phi = \pder{V}{x}. \end{equation} This is not strictly true, because a potential field that is a variable of $x$ and $t$ alone can't support the axial gradients required to drive the potential difference over the cell membrane. I am still trying to get my head around the assumptions made in mapping a three-dimensional problem to a pseudo one-dimensional one. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The cable equation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The cable equation is a nonlinear parabolic PDE that can be written in the form \begin{equation} \label{eq:cable} c_m \pder{V}{t} = \frac{1}{2\pi a r_{L}} \pder{}{x} \left( a^2 \pder{V}{x} \right) - i_m + i_e, \end{equation} where \begin{itemize} \item $V$ is the potential relative to the ECM $[mV]$ \item $a$ is the cable radius $(mm)$, and can vary with $x$ \item $c_m$ is the {specific membrane capacitance}, approximately the same for all neurons $\approx 10~nF/mm^2$. Related to \emph{membrane capacitance} $C_m$ by the relationship $C_m=c_{m}A$, where $A$ is the surface area of the cell. \item $i_m$ is the membrane current $[A\cdot/mm^{2}]$ per unit area. The total contribution from ion and synaptic channels is expressed as a the product of current per unit area $i_m$ and the surface area. \item $i_e$ is the electrode current flowing into the cell, divided by surface area, i.e. $i_e=I_e/A$. \item $r_L$ is intracellular resistivity, typical value $1~k\Omega \text{cm}$ \end{itemize} Note that the standard convention is followed, whereby membrane and synapse currents ($i_m$) are positive when outward, and electrod currents ($i_e$) are positive inward. The PDE in (\ref{eq:cable}) is derived by integrating~\eq{eq:J} over the volume of segment $i$: \begin{equation*} \int_{\Omega_i}{\nabla \cdot \vv{J} } \deriv{v} = 0, \end{equation*} Then applying the divergence theorem to turn the volume integral on the lhs into a surface integral \begin{equation} \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} J_{i,j} \deriv{s} } + \int_{\Gamma_{i}} {J_m} \deriv{s} = 0 \label{eq:cable_balance_intermediate} \end{equation} where \begin{itemize} \item $\int_\Omega \cdot \deriv{v}$ is shorthand for the volume integral over the segment $\Omega_i$ \item $\int_\Gamma \cdot \deriv{s}$ is shorthand for the surface integral over the surface $\Gamma$ \item $J_{i,j}=-\frac{1}{r_L}\pder{V}{x} n_{i,j}$ is the flux per unit area of current \emph{from segment $i$ to segment $j$} over the interface $\Gamma_{i,j}$ between the two segments. \item the set $\mathcal{N}_i$ is the set of segments that are neighbours of $\Omega_i$ \end{itemize} The transmembrane current density $J_m=\vv{J}\cdot\vv{n}$ is a function of the membrane potential \begin{equation} J_m = c_m\pder{V}{t} + i_m - i_e, \label{eq:Jm} \end{equation} which has contributions from the ion channels and synapses ($i_m$), electrodes ($i_e$) and capacitive current due to polarization of the membrane whose bi-layer lipid structure causes it to behave locally like a parallel plate capacitor. Substituting~\eq{eq:Jm} into~\eq{eq:cable_balance_intermediate} and rearanging gives \begin{equation} \int_{\Gamma_{i}} {c_m\pder{V}{t}} \deriv{s} = - \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} J_{i,j} \deriv{s} } - \int_{\Gamma_{i}} {(i_m - i_e)} \deriv{s} \label{eq:cable_balance} \end{equation} The surface of the cable segment is sub-divided into the internal and external surfaces. The external surface $\Gamma_{i}$ is the cell membrane at the interface between the extra-cellular and intra-cellular regions. The current, which is the conserved quantity in our conservation law, over the surface is composed of the synapse and ion channel contributions. This is derived from a thin film approximation to the cell membrane, whereby the membrane is treated as an infinitesimally thin interface between the intra and extra cellular regions. Note that some information is lost when going from a three-dimensional description of a neuron to a system of branching one-dimensional cable segments. If the cell is represented by cylinders or frustrums\footnote{a frustrum is a truncated cone, where the truncation plane is parallel to the base of the cone.}, the three-dimensional values for volume and surface area at branch points can't be retrieved from the one-dimensional description. \begin{figure} \begin{center} \includegraphics[width=0.5\textwidth]{./images/cable.pdf} \end{center} \caption{A single segment, or control volume, on an unbranching dendrite.} \label{fig:segment} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Finite volume discretization} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The finite volume method is a natural choice for the solution of the conservation law in~\eq{eq:cable_balance}. \begin{itemize} \item the $x_i$ are spaced uniformly with distance $x_{i+1}-x_{i} = \Delta x$ \item control volumes are formed by locating the boundaries between adjacent points at $(x_{i+1}+x_{i})/2$ \item this discretization differs from the finite differences used in Neuron because the equation is explicitly solved for at the end of cable segments, and because the finite volume discretization is applied to all points. Neuron uses special algebraic \emph{zero area} formulation for nodes at branch points. \end{itemize} %------------------------------------------------------------------------------- \subsubsection{Temporal derivative} %------------------------------------------------------------------------------- The integral on the lhs of~\eq{eq:cable_balance} can be approximated by assuming that the average transmembrane potential $V$ in $\Omega_i$ is equal to the potential $V_i$ defined at the centre of the segment: \begin{equation} \int_{\Gamma_i}{c_m \pder{V}{t} } \deriv{v} \approx \sigma_i \cmi \pder{V_i}{t}, \label{eq:dvdt} \end{equation} where $\sigma_i$ is the surface area, and $\cmi$ is the average specific membrane capacitance, respectively of the surface $\Gamma_i$. Each control volume is composed of \emph{sub control volumes}, which are illustrated as the coloured sub-regions in \fig{fig:segment}. \begin{equation*} \Omega_i = \bigcup_{j\in\mathcal{N}_i}{\Omega_i^j}. \end{equation*} Likewise, the surface $\Gamma_i$ is composed of subsufaces as follows \begin{equation*} \Gamma_i = \bigcup_{j\in\mathcal{N}_i}{\Gamma_i^j}, \end{equation*} where $\Gamma_i^j$ is the surface of each of the sub-control volumes in $\Omega_i$. Thus, the surface area of the CV as \begin{equation*} \sigma_i = \sum_{i\in\mathcal{N}_i}{\sigma_i^j}, \end{equation*} where $\sigma_i^j$ is the area of $\Gamma_i^j$, and the average specific membrane capacitance $\cmi$ is \begin{equation*} \cmi = \frac{1}{\sigma_i}\sum_{i\in\mathcal{N}_i}{\sigma_i^j c_m^{i,j}}. \end{equation*} \todo{This is included as a placeholder, we really need more illustrations to show how CV averages are computed for quantities that vary between sub-control volumes of the same CV.} %------------------------------------------------------------------------------- \subsubsection{Intra-cellular flux} %------------------------------------------------------------------------------- The intracellular flux terms in~\eq{eq:cable_balance} are sum of the flux over the interfaces between compartment $i$ and its set of neighbouring compartments $\mathcal{N}_i$ is \begin{equation} \sum_{j\in\mathcal{N}_i} { \int_{\Gamma_{i,j}} { J_{i,j} \deriv{s} } }. \end{equation} where the flux per unit area from compartment $i$ to compartment $j$ is \begin{align} J_{i,j} = - \frac{1}{r_L}\pder{V}{x} n_{i,j}. \label{eq:J_ij_exact} \end{align} The derivative with respect to the outward-facing normal can be approximated as follows \begin{equation*} \pder{V}{x} n_{i,j} \approx \frac{V_j - V_i}{\Delta x_{i,j}} \end{equation*} where $\Delta x_{i,j}$ is the distance between $x_i$ and $x_j$, i.e. $\Delta x_{i,j}=|x_i-x_j|$. Using this approximation for the derivative, the flux over the surface in~\eq{eq:J_ij_exact} is approximated as \begin{align} J_{i,j} \approx \frac{1}{r_L}\frac{V_i - V_j}{\Delta x_{i,j}}. \label{eq:J_ij_intermediate} \end{align} The terms inside the integral in equation~\eq{eq:J_ij_intermediate} are constant everywhere on the surface $\Gamma_{i,j}$, so the integral becomes \begin{align} J_{i,j} &\approx \int_{\Gamma_{i,j}} \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \deriv{s} \nonumber \\ &= \frac{1}{r_L \Delta x_{i,j}}(V_i-V_j) \int_{\Gamma_{i,j}} 1 \deriv{s} \nonumber \\ &= \frac{\sigma_{ij}}{r_L \Delta x_{i,j}}(V_i-V_j) \nonumber \\ \label{eq:J_ij} \end{align} where $\sigma_{i,j}=\pi a_{i,j}^2$ is the area of the surface $\Gamma_{i,j}$, which is a circle of radius $a_{i,j}$. Some symmetries \begin{itemize} \item $\sigma_{i,j}=\sigma_{j,i}$ : surface area of $\Gamma_{i,j}$ \item $\Delta x_{i,j}=\Delta x_{j,i}$ : distance between $x_i$ and $x_j$ \item $n_{i,j}=-n_{j,i}$ : surface ``norm''/orientation \item $J_{i,j}=n_{j,i}\cdot J_{i,j}=-J_{j,i}$ : charge flux over $\Gamma_{i,j}$ \end{itemize} %------------------------------------------------------------------------------- \subsubsection{Cell membrane flux} %------------------------------------------------------------------------------- The final term in~\eq{eq:cable_balance} with an integral is the cell membrane flux contribution \begin{equation} \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s}, \end{equation} where the current $i_m$ is due to ion channel and synapses, and $i_e$ is any artificial electrode current. The $i_m$ term is dependent on the potential difference over the cell membrane $V_i$. The current terms are an average per unit area, therefore the total flux \begin{equation} \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s} \approx \sigma_i(i_m(V_i) - i_e(x_i)), \label{eq:J_im} \end{equation} where $\sigma_i$ is the surface area the of the exterior of the cable segment, i.e. the surface corresponding to the cell membrane. Each cable segment is a conical frustrum, as illustrated in \fig{fig:segment}. The lateral surface area of a frustrum with height $\Delta x_i$ and radii of is The area of the external surface $\Gamma_{i}$ is \begin{equation} \sigma_i = \pi (a_{i,\ell} + a_{i,r}) \sqrt{\Delta x_i^2 + (a_{i,\ell} - a_{i,r})^2}, \label{eq:cv_volume} \end{equation} where $a_{i,\ell}$ and $a_{i,r}$ are the radii of at the left and right end of the segment respectively (see~\eq{eq:frustrum_area} for derivation of this formula). %------------------------------------------------------------------------------- \subsubsection{Putting it all together} %------------------------------------------------------------------------------- By substituting the volume averaging of the temporal derivative in~\eq{eq:dvdt} approximations for the flux over the surfaces in~\eq{eq:J_ij} and~\eq{eq:cv_volume} respectively into the conservation equation~\eq{eq:cable_balance} we get the following ODE defined for each node in the cell \begin{equation} \sigma_i \cmi \dder{V_i}{t} = -\sum_{j\in\mathcal{N}_i} {\frac{\sigma_{i,j}}{r_L \Delta x_{i,j}} (V_i-V_j)} - \sigma_i\cdot(i_m(V_i) - i_e(x_i)), \label{eq:ode} \end{equation} where \begin{equation} \sigma_{i,j} = \pi a_{i,j}^2 \label{eq:sigma_ij} \end{equation} is the area of the surface between two adjacent segments $i$ and $j$, and \begin{equation} \sigma_{i} = \pi(a_{i,\ell} + a_{i,r}) \sqrt{\Delta x_i^2 + (a_{i,\ell} - a_{i,r})^2}, \label{eq:sigma_i} \end{equation} is the lateral area of the conical frustrum describing segment $i$. %------------------------------------------------------------------------------- \subsubsection{Time Stepping} %------------------------------------------------------------------------------- The finite volume discretization approximates spatial derivatives, reducing the original continuous formulation into the set of ODEs, with one ODE for each compartment, in equation~\eq{eq:ode}. Here we employ an implicit euler temporal integration sheme, wherby the temporal derivative on the lhs is approximated using forward differences \begin{align} \sigma_i c_m \frac{V_i^{k+1}-V_i^{k}}{\Delta t} = & -\sum_{j\in\mathcal{N}_i} {\frac{\sigma_{i,j}}{r_L \Delta x_{i,j}} (V_i^{k+1}-V_j^{k+1})} \nonumber \\ & - \sigma_i\cdot(i_m(V_i^{k}) - i_e), \label{eq:ode_subs} \end{align} Where $V^k$ is the value of $V$ in compartment $i$ at time step $k$. Note that on the rhs the value of $V$ at the target time step $k+1$ is used, with the exception of calculating the ion channel and synaptic currents $i_m$. The current $i_m$ is often a nonlinear function of voltage, so if it was formulated in terms of $V^{k+1}$ the system in~\eq{eq:ode_subs} would be nonlinear, requiring Newton iterations to resolve. The equations can be rearranged to have all unknown voltage values on the lhs, and values that can be calculated directly on the rhs: \begin{align} & \frac{\sigma_i \cmi}{\Delta t} V_i^{k+1} + \sum_{j\in\mathcal{N}_i} {\alpha_{ij} (V_i^{k+1}-V_j^{k+1})} \nonumber \\ = & \frac{\sigma_i \cmi}{\Delta t} V_i^k - \sigma_i(i_m^{k} - i_e), \label{eq:ode_linsys} \end{align} where the value \begin{equation} \alpha_{ij} = \alpha_{ji} = \frac{\sigma_{ij}}{ r_L \Delta x_{ij}} \label{eq:alpha_linsys} \end{equation} is a constant that can be computed for each interface between adjacent compartments during set up. The left hand side of \eq{eq:ode_linsys} can be rearranged \begin{equation} \left[ \frac{\sigma_i \cmi}{\Delta t} + \sum_{j\in\mathcal{N}_i} {\alpha_{ij}} \right] V_i^{k+1} - \sum_{j\in\mathcal{N}_i} { \alpha_{ij} V_j^{k+1}}, \label{eq:rhs_linsys} \end{equation} which gives the coefficients for the linear system. The capacitance of the cell membrane, $\sigma_i \cmi$, varies between control volumes, while the $\alpha_{i,j}$ term in symmetric (i.e. $\alpha_{i,j}=\alpha_{j,i}$.) With this in mind, we can see that when the linear system is written in the form~\eq{eq:ode_linsys}, the matrix is symmetric. Furthermore, because $\alpha_{i,j} > 0$, the linear system is diagonally dominant for sufficiently small $\Delta t$. %------------------------------------------------------------------------------- \subsubsection{The Soma} %------------------------------------------------------------------------------- We model the soma as a sphere with a centre $\vv{x}_s$ and a radius $r_s$. The soma is conceptually treated as the center of the cell: the point from which all other parts of the cell branch. It requires special treatment, because of its size relative to the radius of the dendrites and axons that branch off from it. Though the soma is usually visualized as a sphere, it is \emph{worth noting} that Neuron models the soma as a cylinder \begin{itemize} \item A cylinder that has the same diameter as length ($L=2r$) has the same area as a sphere with radius $r$, i.e. $4\pi r^2$. \item However a sphere has 4/3 times the volume of the cylinder. \end{itemize} If the soma is modelled as a single compartment the potential is assumed constant throughout the cell. This is exactly the same model used to handle branches, with the main difference being how the area and volume of the control volume centred on the soma are calculated as a result of the spherical model. \begin{figure} \begin{center} \includegraphics[width=0.5\textwidth]{./images/soma.pdf} \end{center} \caption{A soma with two dendrites.} \label{fig:soma} \end{figure} \fig{fig:soma} shows a soma that is attached to two unbranched dendrites. In this example the simplest possible compartment model is used, with three compartments: one for the soma and one for each of the dendrites. The soma CV extends to half way along each dendrite. To calculate the flux from the soma compartment to the dendrites the flux over the CV face half way along each dendrite has to be computed. For this we use the voltage defined at each end of the dendrite, which raises the question about what value to use for the end of the dendrite that is attached to the soma. For this we use the voltage as defined for the soma, i.e. we use the same value at the start for each dendrite, as illustrated in \fig{fig:soma}. This effectivly of ``collapses'' the node that defines the start of dendrites attached to the soma onto the soma in the mathematical formulation. This requires a little slight of hand when loading the cell description from file (for example a \verb!.swc! file). In such file formats there would be 5 points used to describe the cell in \fig{fig:soma}: \begin{itemize} \item 1 to describe the center of the soma. \item 2 for each dendrite: 1 describing where the dendrite is attached to the soma, and 1 for the terminal end. \end{itemize} However, in the mathematical formulation there are only 3 values that are solved for: the soma and one for each of the dendrites. On a side note, one possible extension is to model the soma as a set of shells, like an onion. Conceptually this would look like an additional branch from the surface of the soma, with the central core being the terminal of the branch. However, the cable equation would have to be reformulated in spherical coordinates. %------------------------------------------------------------------------------- \subsubsection{Handling Branches} %------------------------------------------------------------------------------- The value of the lateral area $\sigma_i$ in~\eq{eq:sigma_i} is the sum of the areaof each branch at branch points. \todo{a picture of a branching point to illustrate} \todo{a picture of a soma to illustrate the ball and stick model with a sphere for the soma and sticks for the dendrites branching off the soma.} \begin{equation} \sigma_i = \sum_{j\in\mathcal{N}_i} {\dots} \end{equation}
module Js.Json {- import public Lightyear import public Lightyear.Char import public Lightyear.Strings import Pruviloj.Core import public Data.SortedMap public export data JsonValue = JsonString String | JsonNumber Double | JsonBool Bool | JsonNull | JsonArray (List JsonValue) | JsonObject (SortedMap String JsonValue) {- export Eq JsonValue where (==) (JsonString x) (JsonString y) = x == y (==) (JsonNumber x) (JsonNumber y) = x == y (==) JsonNull JsonNull = True (==) (JsonArray x) (JsonArray y) = x == y (==) (JsonObject x) (JsonObject y) = toList x == toList y (==) _ _ = False -} export Show JsonValue where show (JsonString s) = show s show (JsonNumber x) = show x show (JsonBool True ) = "true" show (JsonBool False) = "false" show JsonNull = "null" show (JsonArray xs) = show xs show (JsonObject xs) = "{" ++ intercalate ", " (map fmtItem $ SortedMap.toList xs) ++ "}" where intercalate : String -> List String -> String intercalate sep [] = "" intercalate sep [x] = x intercalate sep (x :: xs) = x ++ sep ++ intercalate sep xs fmtItem (k, v) = show k ++ ": " ++ show v hex : Parser Int hex = do c <- map (ord . toUpper) $ satisfy isHexDigit pure $ if c >= ord '0' && c <= ord '9' then c - ord '0' else 10 + c - ord 'A' hexQuad : Parser Int hexQuad = do a <- hex b <- hex c <- hex d <- hex pure $ a * 4096 + b * 256 + c * 16 + d specialChar : Parser Char specialChar = do c <- satisfy (const True) case c of '"' => pure '"' '\\' => pure '\\' '/' => pure '/' 'b' => pure '\b' 'f' => pure '\f' 'n' => pure '\n' 'r' => pure '\r' 't' => pure '\t' 'u' => map chr hexQuad _ => fail "expected special char" jsonString' : Parser (List Char) jsonString' = (char '"' *!> pure Prelude.List.Nil) <|> do c <- satisfy (/= '"') if (c == '\\') then map (::) specialChar <*> jsonString' else map (c ::) jsonString' jsonString : Parser String jsonString = char '"' *> map pack jsonString' <?> "JSON string" -- inspired by Haskell's Data.Scientific module record Scientific where constructor MkScientific coefficient : Integer exponent : Integer scientificToFloat : Scientific -> Double scientificToFloat (MkScientific c e) = fromInteger c * exp where exp = if e < 0 then 1 / pow 10 (fromIntegerNat (- e)) else pow 10 (fromIntegerNat e) parseScientific : Parser Scientific parseScientific = do sign <- maybe 1 (const (-1)) `map` opt (char '-') digits <- some digit hasComma <- isJust `map` opt (char '.') decimals <- if hasComma then some digit else pure Prelude.List.Nil hasExponent <- isJust `map` opt (char 'e') exponent <- if hasExponent then integer else pure 0 pure $ MkScientific (sign * fromDigits (digits ++ decimals)) (exponent - cast (length decimals)) where fromDigits : List (Fin 10) -> Integer fromDigits = foldl (\a, b => 10 * a + cast b) 0 jsonNumber : Parser Double jsonNumber = map scientificToFloat parseScientific jsonBool : Parser Bool jsonBool = (char 't' >! string "rue" *> pure True) <|> (char 'f' >! string "alse" *> pure False) <?> "JSON Bool" jsonNull : Parser () jsonNull = (char 'n' >! string "ull" >! pure ()) <?> "JSON Null" mutual jsonArray : Parser (List JsonValue) jsonArray = char '[' *!> (jsonValue `sepBy` (char ',')) <* char ']' keyValuePair : Parser (String, JsonValue) keyValuePair = do key <- spaces *> jsonString <* spaces char ':' value <- jsonValue pure (key, value) jsonObject : Parser (SortedMap String JsonValue) jsonObject = map fromList (char '{' >! (keyValuePair `sepBy` char ',') <* char '}') jsonValue' : Parser JsonValue jsonValue' = (map JsonString jsonString) <|> (map JsonNumber jsonNumber) <|> (map JsonBool jsonBool) <|> (pure JsonNull <* jsonNull) <|>| map JsonArray jsonArray <|>| map JsonObject jsonObject jsonValue : Parser JsonValue jsonValue = spaces *> jsonValue' <* spaces jsonToplevelValue : Parser JsonValue jsonToplevelValue = (map JsonArray jsonArray) <|> (map JsonObject jsonObject) export parsJson : String -> Either String JsonValue parsJson s = parse jsonValue s public export interface ToJson a where toJson : a -> JsonValue public export interface FromJson a where fromJson : JsonValue -> Either String a export interface (ToJson a, FromJson a) => BothJson a where export (ToJson a, FromJson a) => BothJson a where export FromJson String where fromJson (JsonString s) = Right s fromJson o = Left $ "fromJson: " ++ show o ++ " is not a String" export ToJson String where toJson s = JsonString s export FromJson JsonValue where fromJson = Right export ToJson JsonValue where toJson = id export FromJson () where fromJson JsonNull = Right () export ToJson () where toJson () = JsonNull export ToJson a => ToJson (List a) where toJson x = JsonArray $ map toJson x export FromJson a => FromJson (List a) where fromJson (JsonArray x) = sequence $ map fromJson x export ToJson a => ToJson (Vect n a) where toJson x = JsonArray $ toList $ map toJson x vectFromJson : FromJson a => JsonValue -> Either String (Vect n a) vectFromJson {n} {a} (JsonArray x) = let p1 = the (List (Either String a)) $ map fromJson x p2 = sequence $ fromList p1 in case exactLength n <$> p2 of Right (Just z) => Right z export FromJson a => FromJson (Vect n a) where fromJson = vectFromJson export (ToJson a, ToJson b) => ToJson (a,b) where toJson (x, y) = JsonArray [toJson x, toJson y] export (FromJson a, FromJson b) => FromJson (a, b) where fromJson (JsonArray [x, y]) = MkPair <$> fromJson x <*> fromJson y export decode : FromJson a => String -> Either String a decode x = parsJson x >>= fromJson export encode : ToJson a => a -> String encode x = show $ toJson x -}
program main implicit none integer :: name integer :: age print *, '==== Enter you're name ====' read(*,*) name print *, '==== Enter you're age ===' read(*,*) age print *, 'Hello there ', name IF (age > 18) THEN print *, 'age => ', age print *, 'you are NOT below 18' ELSE IF (age < 18) print *, 'age => ', age print *, 'you are blow 18' END IF end program main
From discprob.basic Require Import base order. From discprob.prob Require Import prob countable finite stochastic_order. From discprob.monad Require Import monad monad_cost quicksort monad_cost_hoare. From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype. From mathcomp Require Import tuple finfun bigop prime binomial finset. From mathcomp Require Import path. Require Import Coq.omega.Omega Coq.Program.Wf. (* Shocked this is not in the ssreflect library? *) Lemma perm_eq_cat {A: eqType} (l1a l1b l2a l2b: seq A) : perm_eq l1a l2a → perm_eq l1b l2b → perm_eq (l1a ++ l1b) (l2a ++ l2b). Proof. move /perm_eqP => Hpa. move /perm_eqP => Hpb. apply /perm_eqP. intros x. rewrite ?count_cat. rewrite (Hpa x) (Hpb x). done. Qed. Lemma sorted_cat {A: eqType} (l1 l2: seq A) (R: rel A): sorted R l1 → sorted R l2 → (∀ n1 n2, n1 \in l1 → n2 \in l2 → R n1 n2) → sorted R (l1 ++ l2). Proof. revert l2. induction l1 => //=. intros l2 HP Hsorted Hle. rewrite cat_path. apply /andP; split; auto. induction l2 => //=. apply /andP; split; auto. apply Hle. - apply mem_last. - rewrite in_cons eq_refl //. Qed. Lemma quicksort_correct (l: list nat): mspec (qs l) (λ l', (sorted leq l' && perm_eq l l'):Prop). Proof. remember (size l) as k eqn:Heq. revert l Heq. induction k as [k IH] using (well_founded_induction lt_wf) => l Heq. destruct l as [| a l]. - rewrite //= => b. rewrite mem_seq1. move /eqP => -> //=. - destruct l as [| b0 l0]. { rewrite //= => b. rewrite mem_seq1. move /eqP => -> //=. } rewrite qs_unfold. remember (b0 :: l0) as l eqn:Hl0. clear l0 Hl0. tbind (λ x, sval x \in a :: l). { intros (?&?) => //. } intros (pv&Hin) _. tbind (λ x, lower (sval x) = [ seq n <- (a :: l) | ltn n pv] ∧ middle (sval x) = [ seq n <- (a :: l) | n == pv] ∧ upper (sval x) = [ seq n <- (a :: l) | ltn pv n]). { remember (a :: l) as l0 eqn:Heql0. apply mspec_mret => //=. clear. induction l0 as [|a l]; first by rewrite //=. rewrite //=; case (ltngtP a pv) => //= ?; destruct (IHl) as (?&?&?); repeat split; auto; f_equal; done. } remember (a :: l) as l0 eqn:Heql0. intros (spl&Hin'). rewrite //=. intros (Hl&Hm&Hu). tbind (λ x, sorted leq x && perm_eq (lower spl) x). { rewrite //=. (* TODO: should probably just have an induction principle justifying this, we already had to prove that the list was smaller to justify that the defn was terminating *) eapply (IH (size (lower spl))); auto. rewrite Heq. move /andP in Hin'. destruct Hin' as (pf1&pf2); move /implyP in pf2. rewrite -(perm_eq_size pf1) //= ?size_cat -?plusE //; assert (Hlt: (lt O (size (middle spl)))) by ( apply /ltP; apply pf2 => //=; destruct p; eauto; subst; rewrite //=). rewrite //= in Hlt. omega. } intros ll. move /andP => [Hllsorted Hllperm]. tbind (λ x, sorted leq x && perm_eq (upper spl) x). { rewrite //=. eapply (IH (size (upper spl))); auto. rewrite Heq. move /andP in Hin'. destruct Hin' as (pf1&pf2); move /implyP in pf2. rewrite -(perm_eq_size pf1) //= ?size_cat -?plusE //; assert (Hlt: (lt O (size (middle spl)))) by ( apply /ltP; apply pf2 => //=; destruct p; eauto; subst; rewrite //=). rewrite //= in Hlt. omega. } intros lu. move /andP => [Hlusorted Hluperm]. apply mspec_mret => //=. apply /andP; split. * apply sorted_cat; [| apply sorted_cat |]; auto. ** rewrite Hm. clear. induction l0 => //=. case: ifP; auto. move /eqP => ->. rewrite //=. clear IHl0. induction l0 => //=. case: ifP; auto. move /eqP => -> //=. rewrite leqnn IHl0 //. ** rewrite Hm => a' b'; rewrite mem_filter. move /andP => [Heqpv Hin1 Hin2]. move /eqP in Heqpv. move: Hin2. rewrite -(perm_eq_mem Hluperm) Hu mem_filter. move /andP => [Hgtpv ?]. move /ltP in Hgtpv. rewrite Heqpv. apply /leP. omega. ** intros a' b'. rewrite -(perm_eq_mem Hllperm) Hl mem_filter. move /andP => [Hgtpv ?]. move /ltP in Hgtpv. rewrite mem_cat. move /orP => []. *** rewrite Hm; rewrite mem_filter. move /andP => [Heqpv ?]. move /eqP in Heqpv. rewrite Heqpv. apply /leP. omega. *** rewrite -(perm_eq_mem Hluperm) Hu mem_filter. move /andP => [Hltpv ?]. move /ltP in Hltpv. apply /leP. omega. * move /andP in Hin'. destruct Hin' as (Hperm&_). rewrite perm_eq_sym in Hperm. rewrite (perm_eq_trans Hperm) //. repeat apply perm_eq_cat; auto. Qed.
C C $Id: vectd.f,v 1.4 2008-07-27 00:23:03 haley Exp $ C C Copyright (C) 2000 C University Corporation for Atmospheric Research C All Rights Reserved C C The use of this Software is governed by a License Agreement. C SUBROUTINE VECTD (X,Y) C USER ENTRY POINT. CALL FL2INT (X,Y,IIX,IIY) CALL FDVDLD (2,IIX,IIY) RETURN END
! @(#) test some object-related procedures program sobj !(LICENSE:PD) use M_draw character(len=20) :: device write(*,*)"Fortran: Enter output device: " read(*,*)device call prefsize(300, 300) call prefposition(100, 100) call vinit(device) ! set up device call color(7) ! set current color call clear() ! clear screen to current color call makeobj(3) call polyfill(.true.) call color(2) call circle(0.0,0.0,4.0) call closeobj() ! juaspct(-5.0,-5.0,5.0,5.0) call ortho2(-5.1,5.3,-5.2,5.4) call callobj(3) call move2(-5.0,-5.0) call draw2(5.0,5.0) call move2(-5.0,5.0) call draw2(5.0,-5.0) call saveobj(3,"fthree.obj") if(isobj(3))then write(*,*)' 3 is an object (CORRECT)' else write(*,*)' 3 is not an object (ERROR)' endif if(isobj(4))then write(*,*)' 4 is an object (ERROR)' else write(*,*)' 4 is not an object (CORRECT)' endif idum=getkey()! wait for some input call vexit()! set the screen back to its original state end program sobj
# Motor selection *Written by Marc Budinger (INSA Toulouse) and Scott Delbecq (ISAE-SUPAERO), Toulouse, France.* **Sympy** package permits us to work with symbolic calculation. ```python from math import pi from sympy import Symbol from sympy import * ``` ## Design graph The following diagram represents the design graph of the motor’s selection. The mean speed/thrust (Ωmoy & Tmoy), the max speed/thrust (Ωmax & Tmax) and the battery voltage are assumed to be known here. > **Questions:** * Give the 2 main sizing problems you are able to detect here. * Propose one or multiple solutions (which can request equation manipulation, addition of design variables, addition of constraints) * Orientate the arrows and write equations order, inputs/outputs at each step of this part of sizing procedure, additional constraints ### Sizing code and optimization > Exercice: propose a sizing code for the selection of a motor. ```python # Specifications # Reference parameters for scaling laws # Motor reference # Ref : AXI 5325/16 GOLD LINE T_nom_mot_ref = 2.32 # [N.m] rated torque T_max_mot_ref = 85./70.*T_nom_mot_ref # [N.m] max torque R_mot_ref = 0.03 # [Ohm] resistance M_mot_ref = 0.575 # [kg] mass K_mot_ref = 0.03 # [N.m/A] torque coefficient T_mot_fr_ref = 0.03 # [N.m] friction torque (zero load, nominal speed) # Assumption T_pro_to=1.0#[N.m] Propeller Torque during takeoff Omega_pro_to=1.0#[rad/s] Propeller speed during takeoff T_pro_hov=1.0#[N.m] Propeller Torque during hover Omega_pro_hov=1.0#[rad/s] Propeller speed during hover U_bat_est= 4.0#[V] Battery voltage value (estimation) ``` Define the design variables as a symbol under `variableExample= Symbol('variableExample')` ```python #Design variables k_mot=Symbol('k_mot')#[-] over sizing coefficient on the motor torque (1,400) k_speed_mot=Symbol('k_speed_mot')#[-] over sizing coefficient on the motor speed (1,10) ``` ```python #Equations: #----- T_nom_mot = k_mot * T_pro_hov # [N.m] Motor nominal torque per propeller M_mot = M_mot_ref * (T_nom_mot/T_nom_mot_ref)**(3./3.5) # [kg] Motor mass # Selection with take-off speed K_mot = U_bat_est / (k_speed_mot*Omega_pro_to) # [N.m/A] or [V/(rad/s)] Kt motor R_mot = R_mot_ref * (T_nom_mot/T_nom_mot_ref)**(-5./3.5)*(K_mot/K_mot_ref)**2. # [Ohm] motor resistance T_mot_fr = T_mot_fr_ref * (T_nom_mot/T_nom_mot_ref)**(3./3.5) # [N.m] Friction torque T_max_mot = T_max_mot_ref * (T_nom_mot/T_nom_mot_ref) # Hover current and voltage I_mot_hov = (T_pro_hov+T_mot_fr) / K_mot # [I] Current of the motor per propeller U_mot_hov = R_mot*I_mot_hov + Omega_pro_hov*K_mot # [V] Voltage of the motor per propeller P_el_mot_hov = U_mot_hov*I_mot_hov # [W] Hover : electrical power # Takeoff current and voltage I_mot_to = (T_pro_to+T_mot_fr) / K_mot # [I] Current of the motor per propeller U_mot_to = R_mot*I_mot_to + Omega_pro_to*K_mot # [V] Voltage of the motor per propeller P_el_mot_to = U_mot_to*I_mot_to # [W] Takeoff : electrical power ```
import Pkg; Pkg.activate("../..") using StatsPlots import Random Random.seed!(0) X = cumsum(randn(10, 4) .+ 1, dims=1) * .1 .+ [1 2 3 4] plot(X, legendfontsize=10, m=:square, ms=1, msc=:white, legend=:outerright, lw=5, palette=:tab10, msw=0)
[GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R ⊢ StrongRankCondition R [PROOFSTEP] suffices ∀ n, ∀ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R, ¬Injective f by rwa [strongRankCondition_iff_succ R] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R this : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f ⊢ StrongRankCondition R [PROOFSTEP] rwa [strongRankCondition_iff_succ R] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R ⊢ ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f [PROOFSTEP] intro n f [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R ⊢ ¬Injective ↑f [PROOFSTEP] by_contra hf [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f ⊢ False [PROOFSTEP] let g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := (ExtendByZero.linearMap R castSucc).comp f [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f ⊢ False [PROOFSTEP] have hg : Injective g := (extend_injective Fin.strictMono_castSucc.injective _).comp hf [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g ⊢ False [PROOFSTEP] have hnex : ¬∃ i : Fin n, castSucc i = last n := fun ⟨i, hi⟩ => ne_of_lt (castSucc_lt_last i) hi [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n ⊢ False [PROOFSTEP] let a₀ := (minpoly R g).coeff 0 [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 ⊢ False [PROOFSTEP] have : a₀ ≠ 0 := minpoly_coeff_zero_of_injective hg [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 ⊢ False [PROOFSTEP] have : a₀ = 0 := by -- Evaluate `(minpoly R g) g` at the vector `(0,...,0,1)` have heval := LinearMap.congr_fun (minpoly.aeval R g) (Pi.single (Fin.last n) 1) obtain ⟨P, hP⟩ := X_dvd_iff.2 (erase_same (minpoly R g) 0) rw [← monomial_add_erase (minpoly R g) 0, hP] at heval replace heval := congr_fun heval (Fin.last n) -- Porting note: ...it's just that this line gives a timeout without slightly raising heartbeats simpa [hnex] using heval [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 ⊢ a₀ = 0 [PROOFSTEP] have heval := LinearMap.congr_fun (minpoly.aeval R g) (Pi.single (Fin.last n) 1) [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 heval : ↑(↑(aeval g) (minpoly R g)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1) ⊢ a₀ = 0 [PROOFSTEP] obtain ⟨P, hP⟩ := X_dvd_iff.2 (erase_same (minpoly R g) 0) [GOAL] case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 heval : ↑(↑(aeval g) (minpoly R g)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1) P : R[X] hP : erase 0 (minpoly R g) = X * P ⊢ a₀ = 0 [PROOFSTEP] rw [← monomial_add_erase (minpoly R g) 0, hP] at heval [GOAL] case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 P : R[X] heval : ↑(↑(aeval g) (↑(monomial 0) (coeff (minpoly R g) 0) + X * P)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1) hP : erase 0 (minpoly R g) = X * P ⊢ a₀ = 0 [PROOFSTEP] replace heval := congr_fun heval (Fin.last n) -- Porting note: ...it's just that this line gives a timeout without slightly raising heartbeats [GOAL] case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 P : R[X] hP : erase 0 (minpoly R g) = X * P heval : ↑(↑(aeval g) (↑(monomial 0) (coeff (minpoly R g) 0) + X * P)) (Pi.single (last n) 1) (last n) = ↑0 (Pi.single (last n) 1) (last n) ⊢ a₀ = 0 [PROOFSTEP] simpa [hnex] using heval [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this✝ : a₀ ≠ 0 this : a₀ = 0 ⊢ False [PROOFSTEP] contradiction
/- Copyright (c) 2022 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov ! This file was ported from Lean 3 source module topology.bornology.constructions ! leanprover-community/mathlib commit e3d9ab8faa9dea8f78155c6c27d62a621f4c152d ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Topology.Bornology.Basic /-! # Bornology structure on products and subtypes In this file we define `Bornology` and `BoundedSpace` instances on `α × β`, `Π i, π i`, and `{x // p x}`. We also prove basic lemmas about `Bornology.cobounded` and `Bornology.IsBounded` on these types. -/ open Set Filter Bornology Function open Filter variable {α β ι : Type _} {π : ι → Type _} [Fintype ι] [Bornology α] [Bornology β] [∀ i, Bornology (π i)] instance : Bornology (α × β) where cobounded' := (cobounded α).coprod (cobounded β) le_cofinite' := @coprod_cofinite α β ▸ coprod_mono ‹Bornology α›.le_cofinite ‹Bornology β›.le_cofinite instance : Bornology (∀ i, π i) where cobounded' := Filter.coprodᵢ fun i => cobounded (π i) le_cofinite' := @coprodᵢ_cofinite ι π _ ▸ Filter.coprodᵢ_mono fun _ => Bornology.le_cofinite _ /-- Inverse image of a bornology. -/ @[reducible] def Bornology.induced {α β : Type _} [Bornology β] (f : α → β) : Bornology α where cobounded' := comap f (cobounded β) le_cofinite' := (comap_mono (Bornology.le_cofinite β)).trans (comap_cofinite_le _) #align bornology.induced Bornology.induced instance {p : α → Prop} : Bornology (Subtype p) := Bornology.induced (Subtype.val : Subtype p → α) namespace Bornology /-! ### Bounded sets in `α × β` -/ theorem cobounded_prod : cobounded (α × β) = (cobounded α).coprod (cobounded β) := rfl #align bornology.cobounded_prod Bornology.cobounded_prod theorem isBounded_image_fst_and_snd {s : Set (α × β)} : IsBounded (Prod.fst '' s) ∧ IsBounded (Prod.snd '' s) ↔ IsBounded s := compl_mem_coprod.symm #align bornology.is_bounded_image_fst_and_snd Bornology.isBounded_image_fst_and_snd variable {s : Set α} {t : Set β} {S : ∀ i, Set (π i)} theorem IsBounded.fst_of_prod (h : IsBounded (s ×ˢ t)) (ht : t.Nonempty) : IsBounded s := fst_image_prod s ht ▸ (isBounded_image_fst_and_snd.2 h).1 #align bornology.is_bounded.fst_of_prod Bornology.IsBounded.fst_of_prod theorem IsBounded.prod (hs : IsBounded s) (ht : IsBounded t) : IsBounded (s ×ˢ t) := isBounded_image_fst_and_snd.1 ⟨hs.subset <| fst_image_prod_subset _ _, ht.subset <| snd_image_prod_subset _ _⟩ #align bornology.is_bounded.prod Bornology.IsBounded.prod theorem isBounded_prod_of_nonempty (hne : Set.Nonempty (s ×ˢ t)) : IsBounded (s ×ˢ t) ↔ IsBounded s ∧ IsBounded t := ⟨fun h => ⟨h.fst_of_prod hne.snd, h.snd_of_prod hne.fst⟩, fun h => h.1.prod h.2⟩ #align bornology.is_bounded_prod_of_nonempty Bornology.isBounded_prod_of_nonempty theorem isBounded_prod : IsBounded (s ×ˢ t) ↔ s = ∅ ∨ t = ∅ ∨ IsBounded s ∧ IsBounded t := by rcases s.eq_empty_or_nonempty with (rfl | hs); · simp rcases t.eq_empty_or_nonempty with (rfl | ht); · simp simp only [hs.ne_empty, ht.ne_empty, isBounded_prod_of_nonempty (hs.prod ht), false_or_iff] #align bornology.is_bounded_prod Bornology.isBounded_prod theorem isBounded_prod_self : IsBounded (s ×ˢ s) ↔ IsBounded s := by rcases s.eq_empty_or_nonempty with (rfl | hs); · simp exact (isBounded_prod_of_nonempty (hs.prod hs)).trans (and_self_iff _) #align bornology.is_bounded_prod_self Bornology.isBounded_prod_self /-! ### Bounded sets in `Π i, π i` -/ theorem cobounded_pi : cobounded (∀ i, π i) = Filter.coprodᵢ fun i => cobounded (π i) := rfl #align bornology.cobounded_pi Bornology.cobounded_pi theorem forall_isBounded_image_eval_iff {s : Set (∀ i, π i)} : (∀ i, IsBounded (eval i '' s)) ↔ IsBounded s := compl_mem_coprodᵢ.symm #align bornology.forall_is_bounded_image_eval_iff Bornology.forall_isBounded_image_eval_iff theorem IsBounded.pi (h : ∀ i, IsBounded (S i)) : IsBounded (pi univ S) := forall_isBounded_image_eval_iff.1 fun i => (h i).subset eval_image_univ_pi_subset #align bornology.is_bounded.pi Bornology.IsBounded.pi theorem isBounded_pi_of_nonempty (hne : (pi univ S).Nonempty) : IsBounded (pi univ S) ↔ ∀ i, IsBounded (S i) := ⟨fun H i => @eval_image_univ_pi _ _ _ i hne ▸ forall_isBounded_image_eval_iff.2 H i, IsBounded.pi⟩ #align bornology.is_bounded_pi_of_nonempty Bornology.isBounded_pi_of_nonempty theorem isBounded_pi : IsBounded (pi univ S) ↔ (∃ i, S i = ∅) ∨ ∀ i, IsBounded (S i) := by by_cases hne : ∃ i, S i = ∅ · simp [hne, univ_pi_eq_empty_iff.2 hne] · simp only [hne, false_or_iff] simp only [not_exists, ← Ne.def, ← nonempty_iff_ne_empty, ← univ_pi_nonempty_iff] at hne exact isBounded_pi_of_nonempty hne #align bornology.is_bounded_pi Bornology.isBounded_pi /-! ### Bounded sets in `{x // p x}` -/ theorem isBounded_induced {α β : Type _} [Bornology β] {f : α → β} {s : Set α} : @IsBounded α (Bornology.induced f) s ↔ IsBounded (f '' s) := compl_mem_comap #align bornology.is_bounded_induced Bornology.isBounded_induced theorem isBounded_image_subtype_val {p : α → Prop} {s : Set { x // p x }} : IsBounded (Subtype.val '' s) ↔ IsBounded s := isBounded_induced.symm #align bornology.is_bounded_image_subtype_coe Bornology.isBounded_image_subtype_val end Bornology /-! ### Bounded spaces -/ open Bornology instance [BoundedSpace α] [BoundedSpace β] : BoundedSpace (α × β) := by simp [← cobounded_eq_bot_iff, cobounded_prod] instance [∀ i, BoundedSpace (π i)] : BoundedSpace (∀ i, π i) := by simp [← cobounded_eq_bot_iff, cobounded_pi] theorem boundedSpace_induced_iff {α β : Type _} [Bornology β] {f : α → β} : @BoundedSpace α (Bornology.induced f) ↔ IsBounded (range f) := by rw [← @isBounded_univ _ (Bornology.induced f), isBounded_induced, image_univ] -- porting note: had to explicitly provided the bornology to `isBounded_univ`. #align bounded_space_induced_iff boundedSpace_induced_iff theorem boundedSpace_subtype_iff {p : α → Prop} : BoundedSpace (Subtype p) ↔ IsBounded { x | p x } := by rw [boundedSpace_induced_iff, Subtype.range_coe_subtype] #align bounded_space_subtype_iff boundedSpace_subtype_iff theorem boundedSpace_val_set_iff {s : Set α} : BoundedSpace s ↔ IsBounded s := boundedSpace_subtype_iff #align bounded_space_coe_set_iff boundedSpace_val_set_iff alias boundedSpace_subtype_iff ↔ _ Bornology.IsBounded.boundedSpace_subtype #align bornology.is_bounded.bounded_space_subtype Bornology.IsBounded.boundedSpace_subtype alias boundedSpace_val_set_iff ↔ _ Bornology.IsBounded.boundedSpace_val #align bornology.is_bounded.bounded_space_coe Bornology.IsBounded.boundedSpace_val instance [BoundedSpace α] {p : α → Prop} : BoundedSpace (Subtype p) := (IsBounded.all { x | p x }).boundedSpace_subtype /-! ### `Additive`, `Multiplicative` The bornology on those type synonyms is inherited without change. -/ instance : Bornology (Additive α) := ‹Bornology α› instance : Bornology (Multiplicative α) := ‹Bornology α› instance [BoundedSpace α] : BoundedSpace (Additive α) := ‹BoundedSpace α› instance [BoundedSpace α] : BoundedSpace (Multiplicative α) := ‹BoundedSpace α› /-! ### Order dual The bornology on this type synonym is inherited without change. -/ instance : Bornology αᵒᵈ := ‹Bornology α› instance [BoundedSpace α] : BoundedSpace αᵒᵈ := ‹BoundedSpace α›
State Before: α : Type u_1 inst✝ : DivisionRing α n d : ℕ inv✝ : Invertible ↑d ⊢ ↑(Int.negOfNat n) * ⅟↑d = -(↑n / ↑d) State After: no goals Tactic: simp [div_eq_mul_inv]
A_bounds = [-eye(3); 1,1,1]; b_bounds = [0;0;0;1]; lb = [0;0;0]; ub = [1;1;1]; [C, d] = iris.inner_ellipsoid.mosek_nofusion(A_bounds, b_bounds); assert(det(C) > 0.01); iris.drawing.draw_3d(A_bounds, b_bounds, C, d, [], lb, ub);
program demo_repeat implicit none write(*,*) repeat("x", 5) ! "xxxxx" end program demo_repeat
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta ! This file was ported from Lean 3 source module category_theory.closed.functor ! leanprover-community/mathlib commit cea27692b3fdeb328a2ddba6aabf181754543184 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.CategoryTheory.Closed.Cartesian import Mathbin.CategoryTheory.Limits.Preserves.Shapes.BinaryProducts import Mathbin.CategoryTheory.Adjunction.FullyFaithful /-! # Cartesian closed functors Define the exponential comparison morphisms for a functor which preserves binary products, and use them to define a cartesian closed functor: one which (naturally) preserves exponentials. Define the Frobenius morphism, and show it is an isomorphism iff the exponential comparison is an isomorphism. ## TODO Some of the results here are true more generally for closed objects and for closed monoidal categories, and these could be generalised. ## References https://ncatlab.org/nlab/show/cartesian+closed+functor https://ncatlab.org/nlab/show/Frobenius+reciprocity ## Tags Frobenius reciprocity, cartesian closed functor -/ namespace CategoryTheory open Category Limits CartesianClosed universe v u u' variable {C : Type u} [Category.{v} C] variable {D : Type u'} [Category.{v} D] variable [HasFiniteProducts C] [HasFiniteProducts D] variable (F : C ⥤ D) {L : D ⥤ C} noncomputable section /-- The Frobenius morphism for an adjunction `L ⊣ F` at `A` is given by the morphism L(FA ⨯ B) ⟶ LFA ⨯ LB ⟶ A ⨯ LB natural in `B`, where the first morphism is the product comparison and the latter uses the counit of the adjunction. We will show that if `C` and `D` are cartesian closed, then this morphism is an isomorphism for all `A` iff `F` is a cartesian closed functor, i.e. it preserves exponentials. -/ def frobeniusMorphism (h : L ⊣ F) (A : C) : prod.functor.obj (F.obj A) ⋙ L ⟶ L ⋙ prod.functor.obj A := prodComparisonNatTrans L (F.obj A) ≫ whiskerLeft _ (prod.functor.map (h.counit.app _)) #align category_theory.frobenius_morphism CategoryTheory.frobeniusMorphism /-- If `F` is full and faithful and has a left adjoint `L` which preserves binary products, then the Frobenius morphism is an isomorphism. -/ instance frobeniusMorphism_iso_of_preserves_binary_products (h : L ⊣ F) (A : C) [PreservesLimitsOfShape (Discrete WalkingPair) L] [Full F] [Faithful F] : IsIso (frobeniusMorphism F h A) := by apply nat_iso.is_iso_of_is_iso_app _ intro B dsimp [frobenius_morphism] infer_instance #align category_theory.frobenius_morphism_iso_of_preserves_binary_products CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products variable [CartesianClosed C] [CartesianClosed D] variable [PreservesLimitsOfShape (Discrete WalkingPair) F] /-- The exponential comparison map. `F` is a cartesian closed functor if this is an iso for all `A`. -/ def expComparison (A : C) : exp A ⋙ F ⟶ F ⋙ exp (F.obj A) := transferNatTrans (exp.adjunction A) (exp.adjunction (F.obj A)) (prodComparisonNatIso F A).inv #align category_theory.exp_comparison CategoryTheory.expComparison theorem expComparison_ev (A B : C) : Limits.prod.map (𝟙 (F.obj A)) ((expComparison F A).app B) ≫ (exp.ev (F.obj A)).app (F.obj B) = inv (prodComparison F _ _) ≫ F.map ((exp.ev _).app _) := by convert transfer_nat_trans_counit _ _ (prod_comparison_nat_iso F A).inv B ext simp #align category_theory.exp_comparison_ev CategoryTheory.expComparison_ev theorem coev_expComparison (A B : C) : F.map ((exp.coev A).app B) ≫ (expComparison F A).app (A ⨯ B) = (exp.coev _).app (F.obj B) ≫ (exp (F.obj A)).map (inv (prodComparison F A B)) := by convert unit_transfer_nat_trans _ _ (prod_comparison_nat_iso F A).inv B ext dsimp simp #align category_theory.coev_exp_comparison CategoryTheory.coev_expComparison theorem uncurry_expComparison (A B : C) : CartesianClosed.uncurry ((expComparison F A).app B) = inv (prodComparison F _ _) ≫ F.map ((exp.ev _).app _) := by rw [uncurry_eq, exp_comparison_ev] #align category_theory.uncurry_exp_comparison CategoryTheory.uncurry_expComparison /-- The exponential comparison map is natural in `A`. -/ theorem expComparison_whiskerLeft {A A' : C} (f : A' ⟶ A) : expComparison F A ≫ whiskerLeft _ (pre (F.map f)) = whiskerRight (pre f) _ ≫ expComparison F A' := by ext B dsimp apply uncurry_injective rw [uncurry_natural_left, uncurry_natural_left, uncurry_exp_comparison, uncurry_pre, prod.map_swap_assoc, ← F.map_id, exp_comparison_ev, ← F.map_id, ← prod_comparison_inv_natural_assoc, ← prod_comparison_inv_natural_assoc, ← F.map_comp, ← F.map_comp, prod_map_pre_app_comp_ev] #align category_theory.exp_comparison_whisker_left CategoryTheory.expComparison_whiskerLeft /-- The functor `F` is cartesian closed (ie preserves exponentials) if each natural transformation `exp_comparison F A` is an isomorphism -/ class CartesianClosedFunctor where comparison_iso : ∀ A, IsIso (expComparison F A) #align category_theory.cartesian_closed_functor CategoryTheory.CartesianClosedFunctor attribute [instance] cartesian_closed_functor.comparison_iso theorem frobeniusMorphism_mate (h : L ⊣ F) (A : C) : transferNatTransSelf (h.comp (exp.adjunction A)) ((exp.adjunction (F.obj A)).comp h) (frobeniusMorphism F h A) = expComparison F A := by rw [← Equiv.eq_symm_apply] ext B : 2 dsimp [frobenius_morphism, transfer_nat_trans_self, transfer_nat_trans, adjunction.comp] simp only [id_comp, comp_id] rw [← L.map_comp_assoc, prod.map_id_comp, assoc, exp_comparison_ev, prod.map_id_comp, assoc, ← F.map_id, ← prod_comparison_inv_natural_assoc, ← F.map_comp, exp.ev_coev, F.map_id (A ⨯ L.obj B), comp_id] apply prod.hom_ext · rw [assoc, assoc, ← h.counit_naturality, ← L.map_comp_assoc, assoc, inv_prod_comparison_map_fst] simp · rw [assoc, assoc, ← h.counit_naturality, ← L.map_comp_assoc, assoc, inv_prod_comparison_map_snd] simp #align category_theory.frobenius_morphism_mate CategoryTheory.frobeniusMorphism_mate /-- If the exponential comparison transformation (at `A`) is an isomorphism, then the Frobenius morphism at `A` is an isomorphism. -/ theorem frobeniusMorphism_iso_of_expComparison_iso (h : L ⊣ F) (A : C) [i : IsIso (expComparison F A)] : IsIso (frobeniusMorphism F h A) := by rw [← frobenius_morphism_mate F h] at i exact @transfer_nat_trans_self_of_iso _ _ _ _ _ i #align category_theory.frobenius_morphism_iso_of_exp_comparison_iso CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso /-- If the Frobenius morphism at `A` is an isomorphism, then the exponential comparison transformation (at `A`) is an isomorphism. -/ theorem expComparison_iso_of_frobeniusMorphism_iso (h : L ⊣ F) (A : C) [i : IsIso (frobeniusMorphism F h A)] : IsIso (expComparison F A) := by rw [← frobenius_morphism_mate F h] infer_instance #align category_theory.exp_comparison_iso_of_frobenius_morphism_iso CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso /-- If `F` is full and faithful, and has a left adjoint which preserves binary products, then it is cartesian closed. TODO: Show the converse, that if `F` is cartesian closed and its left adjoint preserves binary products, then it is full and faithful. -/ def cartesianClosedFunctorOfLeftAdjointPreservesBinaryProducts (h : L ⊣ F) [Full F] [Faithful F] [PreservesLimitsOfShape (Discrete WalkingPair) L] : CartesianClosedFunctor F where comparison_iso A := expComparison_iso_of_frobeniusMorphism_iso F h _ #align category_theory.cartesian_closed_functor_of_left_adjoint_preserves_binary_products CategoryTheory.cartesianClosedFunctorOfLeftAdjointPreservesBinaryProducts end CategoryTheory
Require Import Coq.Strings.Ascii Coq.Bool.Bool Coq.Lists.List Coq.Structures.OrderedType. Require Import Fiat.BinEncoders.Env.BinLib.Core Fiat.BinEncoders.Env.Common.Specs Fiat.BinEncoders.Env.Common.Compose Fiat.BinEncoders.Env.Common.ComposeOpt Fiat.BinEncoders.Env.Automation.Solver Fiat.BinEncoders.Env.Lib2.WordOpt Fiat.BinEncoders.Env.Lib2.NatOpt Fiat.BinEncoders.Env.Lib2.StringOpt Fiat.BinEncoders.Env.Lib2.EnumOpt Fiat.BinEncoders.Env.Lib2.FixListOpt Fiat.BinEncoders.Env.Lib2.SumTypeOpt. Require Import Fiat.Common.SumType Fiat.Examples.Tutorial.Tutorial Fiat.Examples.DnsServer.DecomposeEnumField Fiat.QueryStructure.Automation.AutoDB Fiat.QueryStructure.Implementation.DataStructures.BagADT.BagADT Fiat.QueryStructure.Automation.IndexSelection Fiat.QueryStructure.Specification.SearchTerms.ListPrefix Fiat.QueryStructure.Automation.SearchTerms.FindPrefixSearchTerms Fiat.Examples.HACMSDemo.DuplicateFree Fiat.QueryStructure.Automation.MasterPlan. Require Import Bedrock.Word Bedrock.Memory. Lemma exists_CompletelyUnConstrFreshIdx: forall (qs_schema : RawQueryStructureSchema) (BagIndexKeys : ilist3 (qschemaSchemas qs_schema)) (r_o : UnConstrQueryStructure qs_schema) (r_n : IndexedQueryStructure qs_schema BagIndexKeys), DelegateToBag_AbsR r_o r_n -> exists bnd : nat, forall idx : Fin.t (numRawQSschemaSchemas qs_schema), UnConstrFreshIdx (GetUnConstrRelation r_o idx) bnd. Proof. intros. generalize (exists_UnConstrFreshIdx H); clear H. remember (GetUnConstrRelation r_o); clear. destruct qs_schema; simpl in *. clear qschemaConstraints. induction numRawQSschemaSchemas; simpl in *; intros. - exists 0; intros; inversion idx. - revert i IHnumRawQSschemaSchemas H. pattern numRawQSschemaSchemas, qschemaSchemas; apply Vector.caseS; simpl; intros. destruct (IHnumRawQSschemaSchemas t (fun idx => i (Fin.FS idx)) (fun idx => H (Fin.FS idx)) ). destruct (H Fin.F1). exists (max x x0). unfold UnConstrFreshIdx in *; simpl in *; intros. pose proof (Max.le_max_l x x0); pose proof (Max.le_max_r x x0). generalize dependent idx; intro; generalize t i x x0 H0 H1 H3 H4; clear; pattern n, idx; apply Fin.caseS; simpl; intros. apply H1 in H2; omega. apply H0 in H2; omega. Qed. Lemma refine_Pick_CompletelyUnConstrFreshIdx : forall (qs_schema : RawQueryStructureSchema) (BagIndexKeys : ilist3 (qschemaSchemas qs_schema)) (r_o : UnConstrQueryStructure qs_schema) (r_n : IndexedQueryStructure qs_schema BagIndexKeys), DelegateToBag_AbsR r_o r_n -> forall (bnd : nat), (forall (idx : Fin.t (numRawQSschemaSchemas qs_schema)), UnConstrFreshIdx (GetUnConstrRelation r_o idx) bnd) -> refine {bnd0 : nat | forall idx, UnConstrFreshIdx (GetUnConstrRelation r_o idx) bnd0} (ret bnd). Proof. intros; refine pick val _; eauto. reflexivity. Qed. Instance Query_eq_word32 : Query_eq (word 32) := {| A_eq_dec := @weq 32 |}. Global Instance GetAttributeRawTermCounter' {A : Type} {qsSchema} {Ridx : Fin.t _} {tup : @RawTuple (Vector.nth _ Ridx)} {BAidx : _ } a : (TermAttributeCounter qsSchema (@GetAttributeRaw {| NumAttr := S _; AttrList := Vector.cons _ A _ _ |} {|prim_fst := a; prim_snd := tup |} (Fin.FS BAidx)) Ridx BAidx) | 0 := Build_TermAttributeCounter qsSchema _ Ridx BAidx. Ltac GetAttributeRawTermCounterTac t ::= lazymatch goal with _ => match goal with |- TermAttributeCounter ?qs_schema (GetAttributeRaw {| prim_fst := ?a; prim_snd := ?tup |} (Fin.FS ?BAidx)) _ _ => match type of tup with | @RawTuple (@GetNRelSchemaHeading _ _ ?Ridx) => apply (@GetAttributeRawTermCounter' _ qs_schema Ridx tup _ a) end end end. Lemma refineEquiv_Query_Where_And {ResultT} : forall P P' bod, (P \/ ~ P) -> refineEquiv (@Query_Where ResultT (P /\ P') bod) (Query_Where P (Query_Where P' bod)). Proof. split; unfold refine, Query_Where; intros; computes_to_inv; computes_to_econstructor; intuition. - computes_to_inv; intuition. - computes_to_inv; intuition. - computes_to_econstructor; intuition. Qed. Corollary refineEquiv_For_Query_Where_And {ResultT} {qs_schema} : forall (r : UnConstrQueryStructure qs_schema) idx P P' bod, (forall tup, P tup \/ ~ P tup) -> refine (For (UnConstrQuery_In r idx (fun tup => @Query_Where ResultT (P tup /\ P' tup) (bod tup)))) (For (UnConstrQuery_In r idx (fun tup => Where (P tup) (Where (P' tup) (bod tup))))). Proof. intros; apply refine_refine_For_Proper. apply refine_UnConstrQuery_In_Proper. intro; apply refineEquiv_Query_Where_And; eauto. Qed. Lemma refine_If_IfOpt {A B} : forall (a_opt : option A) (t e : Comp B), refine (If_Then_Else (If_Opt_Then_Else a_opt (fun _ => false) true) t e) (If_Opt_Then_Else a_opt (fun _ => e) t). Proof. destruct a_opt; simpl; intros; reflexivity. Qed. Global Arguments icons2 _ _ _ _ _ _ _ / . Global Arguments GetAttributeRaw {heading} !tup !attr . Global Arguments ilist2_tl _ _ _ _ !il / . Global Arguments ilist2_hd _ _ _ _ !il / . Global Opaque If_Opt_Then_Else. Ltac implement_DecomposeRawQueryStructure := first [ simplify with monad laws; simpl | rewrite refine_If_IfOpt | match goal with |- refine (b <- If_Opt_Then_Else _ _ _; _) _ => etransitivity; [ apply refine_If_Opt_Then_Else_Bind | simpl; eapply refine_If_Opt_Then_Else_trans; intros; set_refine_evar ] end | match goal with H0 : DecomposeRawQueryStructureSchema_AbsR' _ _ _ _ ?r_o ?r_n |- refine _ ?H => unfold H; apply (refine_UnConstrFreshIdx_DecomposeRawQueryStructureSchema_AbsR_Equiv H0 Fin.F1) end | match goal with H0 : DecomposeRawQueryStructureSchema_AbsR' (qs_schema := ?qs_schema) _ _ _ _ ?r_o ?r_n |- refine (Query_For _ ) _ => rewrite (refineEquiv_For_Query_Where_And r_o Fin.F1); eauto end | match goal with H0 : DecomposeRawQueryStructureSchema_AbsR' (qs_schema := ?qs_schema) _ _ _ _ ?r_o ?r_n |- refine (Query_For _ ) _ => rewrite (@refine_QueryIn_Where _ qs_schema Fin.F1 _ _ _ _ _ H0 _ _ _ ); unfold Tuple_DecomposeRawQueryStructure_inj; simpl end | match goal with H0 : DecomposeRawQueryStructureSchema_AbsR' _ _ _ _ ?r_o ?r_n |- refine { r_n | DecomposeRawQueryStructureSchema_AbsR' _ _ _ _ _ r_n} _ => first [refine pick val _; [ | eassumption ] | refine pick val _; [ | apply (DecomposeRawQueryStructureSchema_Insert_AbsR_eq H0) ] ] end ]. Ltac implement_DecomposeRawQueryStructure' H := first [ simplify with monad laws; simpl | rewrite H | apply refine_pick_eq' | etransitivity; [ apply refine_If_Opt_Then_Else_Bind | simpl; eapply refine_If_Opt_Then_Else_trans; intros; set_refine_evar ] ]. Lemma GetAttributeRaw_FS : forall {A} {heading} (a : A) (tup : @RawTuple heading) n, @GetAttributeRaw {| AttrList := Vector.cons _ A _ (AttrList heading) |} {| prim_fst := a; prim_snd := tup |} (Fin.FS n) = GetAttributeRaw tup n. Proof. unfold GetAttributeRaw; simpl; reflexivity. Qed. Lemma GetAttributeRaw_F1 : forall {A} {heading} (a : A) (tup : @RawTuple heading), @GetAttributeRaw {| AttrList := Vector.cons _ A _ (AttrList heading) |} {| prim_fst := a; prim_snd := tup |} Fin.F1 = a. Proof. unfold GetAttributeRaw; simpl; reflexivity. Qed. Module word_as_OT <: OrderedType. Definition t := word 32. Definition eq (c1 c2 : t) := c1 = c2. Definition lt (c1 c2 : t) := wlt c1 c2. Definition eq_dec : forall l l', {eq l l'} + {~eq l l'} := @weq 32 . Lemma eq_refl : forall x, eq x x. Proof. reflexivity. Qed. Lemma eq_sym : forall x y, eq x y -> eq y x. Proof. intros. symmetry. eauto. Qed. Lemma eq_trans : forall x y z, eq x y -> eq y z -> eq x z. Proof. intros. unfold eq in *. rewrite H. rewrite H0. eauto. Qed. Lemma lt_trans : forall x y z, lt x y -> lt y z -> lt x z. Proof. intros. unfold lt in *. eapply N.lt_trans; eauto. Qed. Lemma lt_not_eq : forall x y, lt x y -> ~eq x y. Proof. intros. unfold eq, lt, wlt in *. intro. rewrite <- N.compare_lt_iff in H. subst; rewrite N.compare_refl in H; discriminate. Qed. Lemma compare : forall x y, Compare lt eq x y. Proof. intros. unfold lt, eq, wlt. destruct (N.compare (wordToN x) (wordToN y)) eqn: eq. - eapply EQ. apply N.compare_eq_iff in eq; apply wordToN_inj; eauto. - eapply LT. abstract (rewrite <- N.compare_lt_iff; eauto). - eapply GT. abstract (rewrite <- N.compare_gt_iff; eauto). Defined. End word_as_OT. Module wordIndexedMap := FMapAVL.Make word_as_OT. Module wordTreeBag := TreeBag wordIndexedMap. Ltac BuildQSIndexedBag heading AttrList BuildEarlyBag BuildLastBag k ::= lazymatch AttrList with | (?Attr :: [ ])%list => let AttrKind := eval simpl in (KindIndexKind Attr) in let AttrIndex := eval simpl in (KindIndexIndex Attr) in let is_equality := eval compute in (string_dec AttrKind "EqualityIndex") in lazymatch is_equality with | left _ => let AttrType := eval compute in (Domain heading AttrIndex) in lazymatch AttrType with | BinNums.N => k (@NTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ (@CountingListAsCorrectBag (@RawTuple heading) (IndexedTreeUpdateTermType heading) (IndexedTreebupdate_transform heading)) (fun x => GetAttributeRaw (heading := heading) x AttrIndex) ) | word 32 => k (@wordTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ (@CountingListAsCorrectBag (@RawTuple heading) (IndexedTreeUpdateTermType heading) (IndexedTreebupdate_transform heading)) (fun x => GetAttributeRaw (heading := heading) x AttrIndex) ) | BinNums.Z => k (@ZTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ (@CountingListAsCorrectBag (@RawTuple heading) (IndexedTreeUpdateTermType heading) (IndexedTreebupdate_transform heading)) (fun x => GetAttributeRaw (heading := heading) x AttrIndex) ) | nat => k (@NatTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ (@CountingListAsCorrectBag (@RawTuple heading) (IndexedTreeUpdateTermType heading) (IndexedTreebupdate_transform heading)) (fun x => GetAttributeRaw (heading := heading) x AttrIndex) ) | string => k (@StringTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ (@CountingListAsCorrectBag (@RawTuple heading) (IndexedTreeUpdateTermType heading) (IndexedTreebupdate_transform heading)) (fun x => GetAttributeRaw (heading := heading) x AttrIndex) ) end | right _ => BuildLastBag heading AttrList AttrKind AttrIndex k end | (?Attr :: ?AttrList')%list => let AttrKind := eval simpl in (KindIndexKind Attr) in let AttrIndex := eval simpl in (KindIndexIndex Attr) in let is_equality := eval compute in (string_dec AttrKind "EqualityIndex") in lazymatch is_equality with | left _ => let AttrType := eval compute in (Domain heading AttrIndex) in lazymatch AttrType with | BinNums.N => BuildQSIndexedBag heading AttrList' BuildEarlyBag BuildLastBag ltac:(fun subtree => k (@NTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ subtree (fun x => GetAttributeRaw (heading := heading) x AttrIndex))) | BinNums.Z => BuildQSIndexedBag heading AttrList' BuildEarlyBag BuildLastBag (fun x => GetAttributeRaw x AttrIndex) ltac:(fun subtree => k (@ZTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ subtree (fun x => GetAttributeRaw (heading := heading) x AttrIndex))) | nat => BuildQSIndexedBag heading AttrList' BuildEarlyBag BuildLastBag ltac:(fun subtree => k (@NatTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ subtree (fun x => GetAttributeRaw (heading := heading) x AttrIndex))) | string => BuildQSIndexedBag heading AttrList' BuildEarlyBag BuildLastBag ltac:(fun subtree => k (@StringTreeBag.IndexedBagAsCorrectBag _ _ _ _ _ _ _ subtree (fun x => GetAttributeRaw (heading := heading) x AttrIndex))) end | right _ => BuildQSIndexedBag heading AttrList' BuildEarlyBag BuildLastBag ltac:(fun subtree => BuildEarlyBag heading AttrList AttrKind AttrIndex subtree k) end | ([ ])%list => k (@CountingListAsCorrectBag (@RawTuple heading) (IndexedTreeUpdateTermType heading) (IndexedTreebupdate_transform heading)) end. Ltac rewrite_drill ::= subst_refine_evar; (first [ match goal with |- refine (b <- If_Opt_Then_Else _ _ _; _) _ => etransitivity; [ apply refine_If_Opt_Then_Else_Bind | simpl; eapply refine_If_Opt_Then_Else_trans; intros; set_refine_evar ] end | eapply refine_under_bind_both; [ set_refine_evar | intros; set_refine_evar ] | eapply refine_If_Then_Else; [ set_refine_evar | set_refine_evar ] ] ). Ltac implement_insert CreateTerm EarlyIndex LastIndex makeClause_dep EarlyIndex_dep LastIndex_dep ::= repeat first [simplify with monad laws; simpl | match goal with |- context [(@GetAttributeRaw ?heading {| prim_fst := ?a; prim_snd := ?tup |} (Fin.FS ?BAidx)) ] => setoid_rewrite (@GetAttributeRaw_FS (Vector.hd (AttrList heading)) {| AttrList := Vector.tl (AttrList heading)|} a _ BAidx) end | match goal with | |- context [(@GetAttributeRaw ?heading {| prim_fst := ?a; prim_snd := ?tup |} Fin.F1) ] => rewrite (@GetAttributeRaw_F1 (Vector.hd (AttrList heading)) {| AttrList := Vector.tl (AttrList heading) |} a) end | setoid_rewrite refine_If_Then_Else_Bind | match goal with H : DelegateToBag_AbsR ?r_o ?r_n |- context[Pick (fun idx => forall Ridx, UnConstrFreshIdx (GetUnConstrRelation ?r_o Ridx) idx)] => let freshIdx := fresh in destruct (exists_CompletelyUnConstrFreshIdx _ _ _ _ H) as [? freshIdx]; rewrite (refine_Pick_CompletelyUnConstrFreshIdx _ _ _ _ H _ freshIdx) end | implement_Query CreateTerm EarlyIndex LastIndex makeClause_dep EarlyIndex_dep LastIndex_dep | progress (rewrite ?refine_BagADT_QSInsert; try setoid_rewrite refine_BagADT_QSInsert); [ | solve [ eauto ] .. ] | progress (rewrite ?refine_Pick_DelegateToBag_AbsR; try setoid_rewrite refine_Pick_DelegateToBag_AbsR); [ | solve [ eauto ] .. ] ]. Ltac choose_data_structures := simpl; pose_string_ids; pose_headings_all; pose_search_term; pose_SearchUpdateTerms; match goal with |- context [ @Build_IndexedQueryStructure_Impl_Sigs _ ?indices ?SearchTerms _ ] => try unfold SearchTerms end; BuildQSIndexedBags' BuildEarlyBag BuildLastBag. Ltac insertOne := insertion CreateTerm EarlyIndex LastIndex makeClause_dep EarlyIndex_dep LastIndex_dep. Global Instance cache : Cache := {| CacheEncode := unit; CacheDecode := unit; Equiv ce cd := True |}. Global Instance cacheAddNat : CacheAdd cache nat := {| addE ce n := tt; addD cd n := tt; add_correct ce cd t m := I |}. Definition transformer : Transformer bin := btransformer. Global Instance transformerUnit : TransformerUnitOpt transformer bool := {| T_measure t := 1; transform_push_opt b t := (b :: t)%list; transform_pop_opt t := match t with | b :: t' => Some (b, t') | _ => None end%list |}. abstract (simpl; intros; omega). abstract (simpl; intros; omega). abstract (destruct b; [ simpl; discriminate | intros; injections; simpl; omega ] ). reflexivity. reflexivity. abstract (destruct b; destruct b'; simpl; intros; congruence). Defined. Definition Empty : CacheEncode := tt. Ltac decompose_EnumField Ridx Fidx := match goal with |- appcontext[ @BuildADT (UnConstrQueryStructure (QueryStructureSchemaRaw ?qs_schema)) ] => let n := eval compute in (NumAttr (GetHeading qs_schema Ridx)) in let AbsR' := constr:(@DecomposeRawQueryStructureSchema_AbsR' n qs_schema ``Ridx ``Fidx id (fun i => ibound (indexb i)) (fun val => {| bindex := _; indexb := {| ibound := val; boundi := @eq_refl _ _ |} |})) in hone representation using AbsR' end; try first [ solve [simplify with monad laws; apply refine_pick_val; apply DecomposeRawQueryStructureSchema_empty_AbsR ] | doAny ltac:(implement_DecomposeRawQueryStructure) rewrite_drill ltac:(cbv beta; simpl; finish honing) ]; simpl; hone representation using (fun r_o r_n => snd r_o = r_n); try first [ solve [simplify with monad laws; apply refine_pick_val; reflexivity ] | match goal with H : snd ?r_o = ?r_n |- _ => doAny ltac:(implement_DecomposeRawQueryStructure' H) ltac:(rewrite_drill; simpl) ltac:(finish honing) end ]; cbv beta; unfold DecomposeRawQueryStructureSchema, DecomposeSchema; simpl. Ltac makeEvar T k := let x := fresh in evar (x : T); let y := eval unfold x in x in clear x; k y. Ltac shelve_inv := let H' := fresh in let data := fresh in intros data H'; repeat destruct H'; match goal with | H : ?P data |- ?P_inv' => is_evar P; let P_inv' := (eval pattern data in P_inv') in let P_inv := match P_inv' with ?P_inv data => P_inv end in let new_P_T := type of P in makeEvar new_P_T ltac:(fun new_P => unify P (fun data => new_P data /\ P_inv data)); apply (Logic.proj2 H) end. Ltac solve_data_inv := first [ intros; exact I | solve [ let data := fresh in let H' := fresh in let H'' := fresh in intros data H' *; match goal with proj : BoundedIndex _ |- _ => instantiate (1 := ibound (indexb proj)); destruct H' as [? H'']; intuition; try (rewrite <- H''; reflexivity); destruct data; simpl; eauto end ] | shelve_inv ]. Ltac apply_compose := intros; match goal with H : cache_inv_Property ?P ?P_inv |- _ => first [eapply (compose_encode_correct_no_dep H); clear H | eapply (compose_encode_correct H); clear H ] end. Ltac build_decoder := first [ solve [eapply Enum_decode_correct; [ repeat econstructor; simpl; intuition; repeat match goal with H : @Vector.In _ _ _ _ |- _ => inversion H; apply_in_hyp Eqdep.EqdepTheory.inj_pair2; subst end | .. ]; eauto ] | solve [eapply Word_decode_correct ] | solve [eapply Nat_decode_correct ] | solve [eapply String_decode_correct ] | eapply (SumType_decode_correct [ _ ]%vector (icons _ inil) (icons _ inil) (@Iterate_Dep_Type_equiv' 1 _ (icons _ inil)) (@Iterate_Dep_Type_equiv' 1 _ (icons _ inil))); [let idx' := fresh in intro idx'; pattern idx'; eapply Iterate_Ensemble_equiv' with (idx := idx'); simpl; repeat (match goal with |- prim_and _ _ => apply Build_prim_and; try exact I end) | .. ] | eapply (SumType_decode_correct [ _; _]%vector (icons _ (icons _ inil)) (icons _ (icons _ inil)) (@Iterate_Dep_Type_equiv' 2 _ (icons _ (icons _ inil))) (@Iterate_Dep_Type_equiv' 2 _ (icons _ (icons _ inil)))); [let idx' := fresh in intro idx'; pattern idx'; eapply Iterate_Ensemble_equiv' with (idx := idx'); simpl; repeat (match goal with |- prim_and _ _ => apply Build_prim_and; try exact I end) | .. ] | eapply (SumType_decode_correct [ _; _; _ ]%vector (icons _ (icons _ (icons _ inil))) (icons _ (icons _ (icons _ inil))) (@Iterate_Dep_Type_equiv' 3 _ (icons _ (icons _ (icons _ inil)))) (@Iterate_Dep_Type_equiv' 3 _ (icons (icons _ (icons _ inil))))); [let idx' := fresh in intro idx'; pattern idx'; eapply Iterate_Ensemble_equiv' with (idx := idx'); simpl; repeat (match goal with |- prim_and _ _ => apply Build_prim_and; try exact I end) | .. ] | intros; match goal with |- encode_decode_correct_f _ _ _ (encode_list_Spec _) _ _ => eapply FixList_decode_correct end | apply_compose ]. Lemma Fin_inv : forall n (idx : Fin.t (S n)), idx = Fin.F1 \/ exists n', idx = Fin.FS n'. Proof. apply Fin.caseS; eauto. Qed. Ltac solve_cache_inv := repeat instantiate (1 := fun _ => True); unfold cache_inv_Property; intuition; repeat match goal with | idx : Fin.t (S _) |- _ => destruct (Fin_inv _ idx) as [? | [? ?] ]; subst; simpl; eauto | idx : Fin.t 0 |- _ => inversion idx end. Ltac finalize_decoder P_inv := (unfold encode_decode_correct_f; intuition eauto); [ computes_to_inv; injections; subst; simpl; match goal with H : Equiv _ ?env |- _ => eexists env; intuition eauto; simpl; match goal with |- ?f ?a ?b ?c = ?P => let P' := (eval pattern a, b, c in P) in let f' := match P' with ?f a b c => f end in unify f f'; reflexivity end end | injections; eauto | eexists _; eexists _; intuition eauto; injections; eauto using idx_ibound_eq; try match goal with |- P_inv ?data => destruct data; simpl in *; eauto end ]. Ltac build_decoder_component := (build_decoder || solve_data_inv).
{-# OPTIONS --without-K #-} module NTypes.Product where open import NTypes open import PathOperations open import PathStructure.Product open import Types ×-isSet : ∀ {a b} {A : Set a} {B : Set b} → isSet A → isSet B → isSet (A × B) ×-isSet A-set B-set x y p q = split-eq p ⁻¹ · ap (λ y → ap₂ _,_ y (ap π₂ p)) (A-set _ _ (ap π₁ p) (ap π₁ q)) · ap (λ y → ap₂ _,_ (ap π₁ q) y) (B-set _ _ (ap π₂ p) (ap π₂ q)) · split-eq q where split-eq : (p : x ≡ y) → ap₂ _,_ (ap π₁ p) (ap π₂ p) ≡ p split-eq = π₂ (π₂ (π₂ split-merge-eq))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin ! This file was ported from Lean 3 source module ring_theory.witt_vector.identities ! leanprover-community/mathlib commit 0798037604b2d91748f9b43925fb7570a5f3256c ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.RingTheory.WittVector.Frobenius import Mathbin.RingTheory.WittVector.Verschiebung import Mathbin.RingTheory.WittVector.MulP /-! ## Identities between operations on the ring of Witt vectors In this file we derive common identities between the Frobenius and Verschiebung operators. ## Main declarations * `frobenius_verschiebung`: the composition of Frobenius and Verschiebung is multiplication by `p` * `verschiebung_mul_frobenius`: the “projection formula”: `V(x * F y) = V x * y` * `iterate_verschiebung_mul_coeff`: an identity from [Haze09] 6.2 ## References * [Hazewinkel, *Witt Vectors*][Haze09] * [Commelin and Lewis, *Formalizing the Ring of Witt Vectors*][CL21] -/ namespace WittVector variable {p : ℕ} {R : Type _} [hp : Fact p.Prime] [CommRing R] -- mathport name: expr𝕎 local notation "𝕎" => WittVector p -- type as `\bbW` include hp noncomputable section /-- The composition of Frobenius and Verschiebung is multiplication by `p`. -/ theorem frobenius_verschiebung (x : 𝕎 R) : frobenius (verschiebung x) = x * p := by ghost_calc x ghost_simp [mul_comm] #align witt_vector.frobenius_verschiebung WittVector.frobenius_verschiebung /-- Verschiebung is the same as multiplication by `p` on the ring of Witt vectors of `zmod p`. -/ theorem verschiebung_zMod (x : 𝕎 (ZMod p)) : verschiebung x = x * p := by rw [← frobenius_verschiebung, frobenius_zmodp] #align witt_vector.verschiebung_zmod WittVector.verschiebung_zMod variable (p R) theorem coeff_p_pow [CharP R p] (i : ℕ) : (p ^ i : 𝕎 R).coeff i = 1 := by induction' i with i h · simp only [one_coeff_zero, Ne.def, pow_zero] · rw [pow_succ', ← frobenius_verschiebung, coeff_frobenius_char_p, verschiebung_coeff_succ, h, one_pow] #align witt_vector.coeff_p_pow WittVector.coeff_p_pow theorem coeff_p_pow_eq_zero [CharP R p] {i j : ℕ} (hj : j ≠ i) : (p ^ i : 𝕎 R).coeff j = 0 := by induction' i with i hi generalizing j · rw [pow_zero, one_coeff_eq_of_pos] exact Nat.pos_of_ne_zero hj · rw [pow_succ', ← frobenius_verschiebung, coeff_frobenius_char_p] cases j · rw [verschiebung_coeff_zero, zero_pow] exact Nat.Prime.pos hp.out · rw [verschiebung_coeff_succ, hi, zero_pow] · exact Nat.Prime.pos hp.out · exact ne_of_apply_ne (fun j : ℕ => j.succ) hj #align witt_vector.coeff_p_pow_eq_zero WittVector.coeff_p_pow_eq_zero theorem coeff_p [CharP R p] (i : ℕ) : (p : 𝕎 R).coeff i = if i = 1 then 1 else 0 := by split_ifs with hi · simpa only [hi, pow_one] using coeff_p_pow p R 1 · simpa only [pow_one] using coeff_p_pow_eq_zero p R hi #align witt_vector.coeff_p WittVector.coeff_p @[simp] theorem coeff_p_zero [CharP R p] : (p : 𝕎 R).coeff 0 = 0 := by rw [coeff_p, if_neg] exact zero_ne_one #align witt_vector.coeff_p_zero WittVector.coeff_p_zero @[simp] theorem coeff_p_one [CharP R p] : (p : 𝕎 R).coeff 1 = 1 := by rw [coeff_p, if_pos rfl] #align witt_vector.coeff_p_one WittVector.coeff_p_one theorem p_nonzero [Nontrivial R] [CharP R p] : (p : 𝕎 R) ≠ 0 := by intro h simpa only [h, zero_coeff, zero_ne_one] using coeff_p_one p R #align witt_vector.p_nonzero WittVector.p_nonzero theorem FractionRing.p_nonzero [Nontrivial R] [CharP R p] : (p : FractionRing (𝕎 R)) ≠ 0 := by simpa using (IsFractionRing.injective (𝕎 R) (FractionRing (𝕎 R))).Ne (p_nonzero _ _) #align witt_vector.fraction_ring.p_nonzero WittVector.FractionRing.p_nonzero variable {p R} /-- The “projection formula” for Frobenius and Verschiebung. -/ theorem verschiebung_mul_frobenius (x y : 𝕎 R) : verschiebung (x * frobenius y) = verschiebung x * y := by ghost_calc x y rintro ⟨⟩ <;> ghost_simp [mul_assoc] #align witt_vector.verschiebung_mul_frobenius WittVector.verschiebung_mul_frobenius theorem mul_charP_coeff_zero [CharP R p] (x : 𝕎 R) : (x * p).coeff 0 = 0 := by rw [← frobenius_verschiebung, coeff_frobenius_char_p, verschiebung_coeff_zero, zero_pow] exact Nat.Prime.pos hp.out #align witt_vector.mul_char_p_coeff_zero WittVector.mul_charP_coeff_zero theorem mul_charP_coeff_succ [CharP R p] (x : 𝕎 R) (i : ℕ) : (x * p).coeff (i + 1) = x.coeff i ^ p := by rw [← frobenius_verschiebung, coeff_frobenius_char_p, verschiebung_coeff_succ] #align witt_vector.mul_char_p_coeff_succ WittVector.mul_charP_coeff_succ theorem verschiebung_frobenius [CharP R p] (x : 𝕎 R) : verschiebung (frobenius x) = x * p := by ext ⟨i⟩ · rw [mul_char_p_coeff_zero, verschiebung_coeff_zero] · rw [mul_char_p_coeff_succ, verschiebung_coeff_succ, coeff_frobenius_char_p] #align witt_vector.verschiebung_frobenius WittVector.verschiebung_frobenius theorem verschiebung_frobenius_comm [CharP R p] : Function.Commute (verschiebung : 𝕎 R → 𝕎 R) frobenius := fun x => by rw [verschiebung_frobenius, frobenius_verschiebung] #align witt_vector.verschiebung_frobenius_comm WittVector.verschiebung_frobenius_comm /-! ## Iteration lemmas -/ open Function theorem iterate_verschiebung_coeff (x : 𝕎 R) (n k : ℕ) : ((verschiebung^[n]) x).coeff (k + n) = x.coeff k := by induction' n with k ih · simp · rw [iterate_succ_apply', Nat.add_succ, verschiebung_coeff_succ] exact ih #align witt_vector.iterate_verschiebung_coeff WittVector.iterate_verschiebung_coeff theorem iterate_verschiebung_mul_left (x y : 𝕎 R) (i : ℕ) : (verschiebung^[i]) x * y = (verschiebung^[i]) (x * (frobenius^[i]) y) := by induction' i with i ih generalizing y · simp · rw [iterate_succ_apply', ← verschiebung_mul_frobenius, ih, iterate_succ_apply'] rfl #align witt_vector.iterate_verschiebung_mul_left WittVector.iterate_verschiebung_mul_left section CharP variable [CharP R p] theorem iterate_verschiebung_mul (x y : 𝕎 R) (i j : ℕ) : (verschiebung^[i]) x * (verschiebung^[j]) y = (verschiebung^[i + j]) ((frobenius^[j]) x * (frobenius^[i]) y) := by calc _ = (verschiebung^[i]) (x * (frobenius^[i]) ((verschiebung^[j]) y)) := _ _ = (verschiebung^[i]) (x * (verschiebung^[j]) ((frobenius^[i]) y)) := _ _ = (verschiebung^[i]) ((verschiebung^[j]) ((frobenius^[i]) y) * x) := _ _ = (verschiebung^[i]) ((verschiebung^[j]) ((frobenius^[i]) y * (frobenius^[j]) x)) := _ _ = (verschiebung^[i + j]) ((frobenius^[i]) y * (frobenius^[j]) x) := _ _ = _ := _ · apply iterate_verschiebung_mul_left · rw [verschiebung_frobenius_comm.iterate_iterate] <;> infer_instance · rw [mul_comm] · rw [iterate_verschiebung_mul_left] · rw [iterate_add_apply] · rw [mul_comm] #align witt_vector.iterate_verschiebung_mul WittVector.iterate_verschiebung_mul theorem iterate_frobenius_coeff (x : 𝕎 R) (i k : ℕ) : ((frobenius^[i]) x).coeff k = x.coeff k ^ p ^ i := by induction' i with i ih · simp · rw [iterate_succ_apply', coeff_frobenius_char_p, ih] ring #align witt_vector.iterate_frobenius_coeff WittVector.iterate_frobenius_coeff /-- This is a slightly specialized form of [Hazewinkel, *Witt Vectors*][Haze09] 6.2 equation 5. -/ theorem iterate_verschiebung_mul_coeff (x y : 𝕎 R) (i j : ℕ) : ((verschiebung^[i]) x * (verschiebung^[j]) y).coeff (i + j) = x.coeff 0 ^ p ^ j * y.coeff 0 ^ p ^ i := by calc _ = ((verschiebung^[i + j]) ((frobenius^[j]) x * (frobenius^[i]) y)).coeff (i + j) := _ _ = ((frobenius^[j]) x * (frobenius^[i]) y).coeff 0 := _ _ = ((frobenius^[j]) x).coeff 0 * ((frobenius^[i]) y).coeff 0 := _ _ = _ := _ · rw [iterate_verschiebung_mul] · convert iterate_verschiebung_coeff _ _ _ using 2 rw [zero_add] · apply mul_coeff_zero · simp only [iterate_frobenius_coeff] #align witt_vector.iterate_verschiebung_mul_coeff WittVector.iterate_verschiebung_mul_coeff end CharP end WittVector
theory Pls_comm_enat imports Main "~~/src/HOL/Library/BNF_Corec" "$HIPSTER_HOME/IsaHipster" begin setup Tactic_Data.set_coinduct_sledgehammer codatatype (sset: 'a) Stream = SCons (shd: 'a) (stl: "'a Stream") codatatype ENat = is_zero: EZ | ESuc (epred: ENat) primcorec eplus :: "ENat \<Rightarrow> ENat \<Rightarrow> ENat" where "eplus m n = (if is_zero m then n else ESuc (eplus (epred m) n))" primcorec pls :: "ENat Stream \<Rightarrow> ENat Stream \<Rightarrow> ENat Stream" where "pls s t = SCons (eplus (shd s) (shd t)) (pls (stl s) (stl t))" datatype 'a Lst = Emp | Cons "'a" "'a Lst" fun obsStream :: "int \<Rightarrow> 'a Stream \<Rightarrow> 'a Lst" where "obsStream n s = (if (n \<le> 0) then Emp else Cons (shd s) (obsStream (n - 1) (stl s)))" hipster_obs Stream Lst obsStream pls lemma lemma_a [thy_expl]: "eplus x EZ = x" apply (coinduction arbitrary: x rule: Pls_comm_enat.ENat.coinduct_strong) by simp lemma lemma_aa [thy_expl]: "eplus EZ x = x" apply (coinduction arbitrary: x rule: Pls_comm_enat.ENat.coinduct_strong) by simp lemma lemma_ab [thy_expl]: "eplus (ESuc x) y = eplus x (ESuc y)" apply (coinduction arbitrary: x y rule: Pls_comm_enat.ENat.coinduct_strong) apply simp by (metis ENat.collapse(2) eplus.code) lemma lemma_ac [thy_expl]: "ESuc (eplus x y) = eplus x (ESuc y)" apply (coinduction arbitrary: x y rule: Pls_comm_enat.ENat.coinduct_strong) apply simp by (metis eplus.code) lemma lemma_ad [thy_expl]: "eplus (eplus x y) z = eplus x (eplus y z)" apply (coinduction arbitrary: x y z rule: Pls_comm_enat.ENat.coinduct_strong) apply simp by auto lemma lemma_ae [thy_expl]: "eplus y x = eplus x y" apply (coinduction arbitrary: x y rule: Pls_comm_enat.ENat.coinduct_strong) apply simp by (metis ENat.collapse(1) ENat.collapse(2) lemma_a lemma_ab) theorem pls_comm: "pls s t = pls t s" by hipster_coinduct_sledgehammer (*by hipster_coinduct_sledgehammer Failed to apply initial proof method*)
module UniverseCollapse (down : Set₁ -> Set) (up : Set → Set₁) (iso : ∀ {A} → down (up A) → A) (osi : ∀ {A} → up (down A) → A) where anything : (A : Set) → A anything = {!!}
Überall & Nirgendwo: Gespenster Geburtstag Spiele With Partyspiele Kindergeburtstag Uploaded by robert carlson on Tuesday, January 22nd, 2019 in category Blog. See also Kindergeburtstag Im Freien Ideen Für Partyspiele Check More At Http Intended For Partyspiele Kindergeburtstag from Blog Topic. Here we have another image Legoparty Kindergeburtstag Lego Spiele Ideen | Legos | Birthday For Partyspiele Kindergeburtstag featured under Überall & Nirgendwo: Gespenster Geburtstag Spiele With Partyspiele Kindergeburtstag. We hope you enjoyed it and if you want to download the pictures in high quality, simply right click the image and choose "Save As". Thanks for reading Überall & Nirgendwo: Gespenster Geburtstag Spiele With Partyspiele Kindergeburtstag.
(* ll_fragments library for yalla *) (* output in Type *) (** * Definitions of various Linear Logic fragments *) Require Import Bool_more. Require Import List_more. Require Import List_Type_more. Require Import Permutation_Type_more. Require Import Permutation_Type_solve. Require Import genperm_Type. Require Export ll_prop. Require Import subs. (** ** Standard linear logic: [ll_ll] (no mix, no axiom, commutative) *) (** cut / axioms / mix0 / mix2 / permutation *) Definition pfrag_ll := mk_pfrag false NoAxioms false false true. (* cut axioms mix0 mix2 perm *) Definition ll_ll := ll pfrag_ll. Lemma cut_ll_r : forall A l1 l2, ll_ll (dual A :: l1) -> ll_ll (A :: l2) -> ll_ll (l2 ++ l1). Proof with myeeasy. intros A l1 l2 pi1 pi2. eapply cut_r_axfree... intros a ; destruct a. Qed. Lemma cut_ll_admissible : forall l, ll (cutupd_pfrag pfrag_ll true) l -> ll_ll l. Proof with myeeasy. intros l pi. induction pi ; try (now econstructor). - eapply ex_r... - eapply ex_wn_r... - eapply cut_ll_r... Qed. (** ** Linear logic with mix0: [ll_mix0] (no mix2, no axiom, commutative) *) (** cut / axioms / mix0 / mix2 / permutation *) Definition pfrag_mix0 := mk_pfrag false NoAxioms true false true. (* cut axioms mix0 mix2 perm *) Definition ll_mix0 := ll pfrag_mix0. Definition mix0add_pfrag P := mk_pfrag (pcut P) (pgax P) true (pmix2 P) (pperm P). Lemma cut_mix0_r : forall A l1 l2, ll_mix0 (dual A :: l1) -> ll_mix0 (A :: l2) -> ll_mix0 (l2 ++ l1). Proof with myeeasy. intros A l1 l2 pi1 pi2. eapply cut_r_axfree... intros a ; destruct a. Qed. Lemma cut_mix0_admissible : forall l, ll (cutupd_pfrag pfrag_mix0 true) l -> ll_mix0 l. Proof with myeeasy. intros l pi. induction pi ; try (now econstructor). - eapply ex_r... - eapply ex_wn_r... - eapply cut_mix0_r... Qed. (** Provability in [ll_mix0] is equivalent to adding [wn one] in [ll] *) Lemma mix0_to_ll {P} : pperm P = true -> forall b0 bp l, ll (mk_pfrag P.(pcut) P.(pgax) b0 P.(pmix2) bp) l -> ll P (wn one :: l). Proof with myeeasy ; try PCperm_Type_solve. intros fp b0 bp l pi. eapply (ext_wn_param _ P fp _ (one :: nil)) in pi. - eapply ex_r... - intros Hcut... - simpl ; intros a. eapply ex_r ; [ | apply PCperm_Type_last ]. apply wk_r. apply gax_r. - intros. eapply de_r. eapply one_r. - intros Hpmix2 Hpmix2'. exfalso. simpl in Hpmix2. rewrite Hpmix2 in Hpmix2'. inversion Hpmix2'. Qed. Lemma ll_to_mix0_axat {P} : (forall a, Forall atomic (projT2 (pgax P) a)) -> pperm P = true -> forall l, ll P (wn one :: l) -> ll (mix0add_pfrag P) l. Proof with myeeasy ; try PCperm_Type_solve. intros Hgax Hperm. enough (forall l, ll P l -> forall l' (l0 l1 : list unit), Permutation_Type l (l' ++ map (fun _ => one) l1 ++ map (fun _ => wn one) l0) -> ll (mix0add_pfrag P) l'). { intros l pi. eapply (X _ pi l (tt :: nil) nil)... } intros l pi. induction pi ; intros l' l0' l1' HP. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. apply Permutation_Type_length_1_inv in HP. apply app_eq_unit_Type in HP. destruct HP as [[Heq1 Heq2] | [Heq1 Heq2]] ; subst ; destruct l' ; inversion Heq ; subst. + destruct l1' ; inversion H0. destruct l0' ; inversion H1. + destruct l' ; inversion H1. * destruct l1' ; inversion H0. destruct l0' ; inversion H2. * destruct l' ; inversion H2. rewrite H3. apply ax_r. + destruct l1' ; inversion H0. destruct l0' ; inversion H1. + destruct l' ; inversion H1. * destruct l1' ; inversion H0. destruct l0' ; inversion H2. * destruct l' ; inversion H2. rewrite H3. eapply ex_r ; [ apply ax_r | ]... - rewrite Hperm in p ; simpl in p. eapply IHpi. etransitivity... - apply (Permutation_Type_map wn) in p. eapply IHpi. etransitivity... - apply Permutation_Type_nil in HP. destruct l' ; inversion HP. rewrite H0. apply mix0_r... - apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply IHpi1 in IHP1. apply IHpi2 in IHP2. symmetry in HP3. eapply ex_r ; [ apply mix2_r | simpl ; rewrite Hperm ; apply HP3 ]... - apply Permutation_Type_length_1_inv in HP. destruct l' ; inversion HP. + apply mix0_r... + apply app_eq_nil in H1 ; destruct H1 ; subst. apply one_r. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply IHpi in HP. eapply ex_r ; [ apply bot_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. remember (l'l ++ l) as l'. apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (@Permutation_Type_cons _ A _ eq_refl) in IHP1. rewrite app_comm_cons in IHP1. apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply (@Permutation_Type_cons _ B _ eq_refl) in IHP2. rewrite app_comm_cons in IHP2. apply IHpi1 in IHP1. apply IHpi2 in IHP2. symmetry in HP3. apply (Permutation_Type_cons_app _ _ (tens A B)) in HP3. eapply ex_r ; [ apply tens_r | simpl ; rewrite Hperm ; apply HP3 ]... + dichot_Type_elt_app_exec Heq1 ; subst. * exfalso. decomp_map_Type Heq0 ; inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ B _ eq_refl) in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite 2 app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply parr_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + eapply ex_r ; [ apply top_r | simpl ; rewrite Hperm ; apply Permutation_Type_middle ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply plus_r1 | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply plus_r2 | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. assert (HP2 := HP). apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi1 in HP. apply (@Permutation_Type_cons _ B _ eq_refl) in HP2. rewrite app_comm_cons in HP2. apply IHpi2 in HP2. eapply ex_r ; [ apply with_r | simpl ; rewrite Hperm ; apply Permutation_Type_middle ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + symmetry in HP. apply Permutation_Type_map_inv in HP. destruct HP as [l' Heq HP]. decomp_map_Type Heq ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; simpl in Heq5 ; subst ; simpl in HP. apply (Permutation_Type_map wn) in HP. list_simpl in HP. rewrite app_assoc in HP. rewrite <- map_app in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. rewrite <- Heq2 in HP. rewrite <- Heq5 in HP. apply IHpi in HP. eapply ex_r ; [ apply oc_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply de_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2 ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; subst ; simpl in HP. inversion Heq2 ; subst. list_simpl in HP ; rewrite <- map_app in HP. apply (@Permutation_Type_cons _ one _ eq_refl) in HP. assert (Permutation_Type (one :: l) (l' ++ map (fun _ : unit => one) (tt :: l1') ++ map (fun _ : unit => wn one) (l1 ++ l4))) as HP' by (etransitivity ; [ apply HP | ] ; perm_Type_solve). apply IHpi in HP'... - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply IHpi in HP. eapply ex_r ; [ apply wk_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2 ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; subst ; simpl in HP. inversion Heq2 ; subst. list_simpl in HP ; rewrite <- map_app in HP. apply IHpi in HP... - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ (wn A) _ eq_refl) in HP. apply (@Permutation_Type_cons _ (wn A) _ eq_refl) in HP. rewrite 2 app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply co_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2 ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; subst ; simpl in HP. inversion Heq2 ; subst. list_simpl in HP ; rewrite <- map_app in HP. apply (@Permutation_Type_cons _ (wn one) _ eq_refl) in HP. apply (@Permutation_Type_cons _ (wn one) _ eq_refl) in HP. assert (Permutation_Type (wn one :: wn one :: l) (l' ++ map (fun _ : unit => one) l1' ++ map (fun _ : unit => wn one) (tt :: tt :: l1 ++ l4))) as HP' by (etransitivity ; [ apply HP | perm_Type_solve ]). apply IHpi in HP'... - apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (@Permutation_Type_cons _ (dual A) _ eq_refl) in IHP1. rewrite app_comm_cons in IHP1. apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply (@Permutation_Type_cons _ A _ eq_refl) in IHP2. rewrite app_comm_cons in IHP2. apply IHpi1 in IHP1. apply IHpi2 in IHP2. symmetry in HP3. eapply ex_r ; [ eapply cut_r | simpl ; rewrite Hperm ; apply HP3 ]... - destruct l1' ; destruct l0' ; simpl in HP. + eapply ex_r ; [ apply gax_r | simpl ; rewrite Hperm ]... + exfalso. apply Permutation_Type_vs_elt_inv in HP. specialize (Hgax a). destruct HP as [[l1 l2] Heq] ; rewrite Heq in Hgax. apply Forall_elt in Hgax. inversion Hgax. + exfalso. apply Permutation_Type_vs_elt_inv in HP. specialize (Hgax a). destruct HP as [[l1 l2] Heq] ; rewrite Heq in Hgax. apply Forall_elt in Hgax. inversion Hgax. + exfalso. apply Permutation_Type_vs_elt_inv in HP. specialize (Hgax a). destruct HP as [[l1 l2] Heq] ; rewrite Heq in Hgax. apply Forall_elt in Hgax. inversion Hgax. Qed. Lemma ll_to_mix0_cut {P} : forall l, ll P (wn one :: l) -> ll (mk_pfrag true P.(pgax) true P.(pmix2) P.(pperm)) l. Proof with myeasy. intros l pi. eapply stronger_pfrag in pi. - rewrite <- (app_nil_r l). eapply cut_r ; [ | | apply pi]... change nil with (map wn nil). apply oc_r. apply bot_r. eapply mix0_r... - nsplit 5... + destruct pcut... + intros a. exists a... + destruct pmix0... Qed. Lemma mix0_wn_one : forall l, ll_mix0 (wn one :: l) -> ll_mix0 l. Proof with myeeasy. intros l pi. (* an alternative proof is by introducing a cut with (oc bot) *) assert (pfrag_mix0 = mk_pfrag pfrag_mix0.(pcut) pfrag_mix0.(pgax) true pfrag_mix0.(pmix2) true) as Heqfrag by reflexivity. apply cut_mix0_admissible. apply ll_to_mix0_cut. apply co_r. eapply mix0_to_ll... Qed. (** Provability in [ll_mix0] is equivalent to provability of [ll] extended with the provability of [bot :: bot :: nil] *) Lemma mix0_to_ll_bot {P} : pcut P = true -> pperm P = true -> forall bc b0 bp l, ll (mk_pfrag bc P.(pgax) b0 P.(pmix2) bp) l -> ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => bot :: bot :: nil end))) l. Proof with myeeasy ; try (unfold PCperm_Type ; PCperm_Type_solve). remember (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => bot :: bot :: nil end))) as P'. intros fc fp bc b0 bp l pi. eapply stronger_pfrag in pi. - eapply mix0_to_ll in pi... assert (pcut P' = true) as fc' by (rewrite HeqP' ; simpl ; assumption). apply (stronger_pfrag _ P') in pi. + assert (ll P' (bot :: map wn nil)) as pi'. { change (bot :: map wn nil) with ((bot :: nil) ++ nil). eapply (@cut_r _ fc' bot). - apply one_r. - assert ({ b | bot :: bot :: nil = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now (exists (inr tt))). rewrite Hgax. apply gax_r. } apply oc_r in pi'. rewrite <- (app_nil_l l). eapply (@cut_r _ fc' (oc bot)) ; [ simpl ; apply pi | apply pi' ]. + nsplit 5 ; rewrite HeqP'... simpl ; intros a ; exists (inl a)... - nsplit 5 ; intros ; simpl... + rewrite fc. destruct bc... + exists a... Qed. Lemma ll_bot_to_mix0 {P} : forall l, ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => bot :: bot :: nil end))) l -> ll (mk_pfrag P.(pcut) P.(pgax) true P.(pmix2) P.(pperm)) l. Proof with myeeasy. intros l pi. remember (mk_pfrag P.(pcut) P.(pgax) true P.(pmix2) P.(pperm)) as P'. apply (stronger_pfrag _ (axupd_pfrag P' (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => bot :: bot :: nil end)))) in pi. - eapply ax_gen... clear - HeqP' ; simpl ; intros a. destruct a. + assert ({ b | projT2 (pgax P) p = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now exists p). rewrite Hgax. apply gax_r. + destruct u. apply bot_r. apply bot_r. apply mix0_r. rewrite HeqP'... - rewrite HeqP' ; nsplit 5 ; simpl ; intros... + exists a... + destruct (pmix0 P)... Qed. (** [mix2] is not valid in [ll_mix0] *) Lemma mix0_not_mix2 : ll_mix0 (one :: one :: nil) -> False. Proof. intros pi. remember (one :: one :: nil) as l. revert Heql ; induction pi ; intros Heql ; subst ; try inversion Heql. - apply IHpi. simpl in p ; apply Permutation_Type_sym in p. apply Permutation_Type_length_2_inv in p. destruct p ; assumption. - destruct l1 ; destruct lw' ; inversion Heql ; subst. + now symmetry in p ; apply Permutation_Type_nil in p ; subst. + now symmetry in p ; apply Permutation_Type_nil in p ; subst. + destruct l1 ; inversion H2. destruct l1 ; inversion H3. - inversion f. - inversion f. - destruct a. Qed. (** ** Linear logic with mix2: [ll_mix2] (no mix0, no axiom, commutative) *) (** cut / axioms / mix0 / mix2 / permutation *) Definition pfrag_mix2 := mk_pfrag false NoAxioms false true true. (* cut axioms mix0 mix2 perm *) Definition ll_mix2 := ll pfrag_mix2. Definition mix2add_pfrag P := mk_pfrag (pcut P) (pgax P) (pmix0 P) true (pperm P). Lemma cut_mix2_r : forall A l1 l2, ll_mix2 (dual A :: l1) -> ll_mix2 (A :: l2) -> ll_mix2 (l2 ++ l1). Proof with myeeasy. intros A l1 l2 pi1 pi2. eapply cut_r_axfree... intros a ; destruct a. Qed. Lemma cut_mix2_admissible : forall l, ll (cutupd_pfrag pfrag_mix2 true) l -> ll_mix2 l. Proof with myeeasy. intros l pi. induction pi ; try (now econstructor). - eapply ex_r... - eapply ex_wn_r... - eapply cut_mix2_r... Qed. (** Provability in [ll_mix2] is equivalent to adding [wn (tens bot bot)] in [ll] *) Lemma mix2_to_ll {P} : pperm P = true -> forall b2 bp l, ll (mk_pfrag P.(pcut) P.(pgax) P.(pmix0) b2 bp) l -> ll P (wn (tens bot bot) :: l). Proof with myeeasy ; try PCperm_Type_solve. intros fp b2 bp l pi. eapply (ext_wn_param _ P fp _ (tens bot bot :: nil)) in pi. - eapply ex_r... - intros Hcut... - simpl ; intros a. eapply ex_r ; [ | apply PCperm_Type_last ]. apply wk_r. apply gax_r. - intros Hpmix0 Hpmix0'. exfalso. simpl in Hpmix0. rewrite Hpmix0 in Hpmix0'. inversion Hpmix0'. - intros _ _ l1 l2 pi1 pi2. apply (ex_r _ (wn (tens bot bot) :: l2 ++ l1))... apply co_r. apply co_r. apply de_r. eapply ex_r. + apply tens_r ; apply bot_r ; [ apply pi1 | apply pi2 ]. + rewrite fp... Qed. Lemma ll_to_mix2_axat {P} : (forall a, Forall atomic (projT2 (pgax P) a)) -> pperm P = true -> forall l, ll P (wn (tens bot bot) :: l) -> ll (mix2add_pfrag P) l. Proof with myeeasy ; try PCperm_Type_solve. intros Hgax Hperm. assert (forall a, In bot (projT2 (pgax P) a) -> False) as Hgaxbot. { intros a Hbot. apply (Forall_In _ _ _ (Hgax a)) in Hbot. inversion Hbot. } enough (forall l, ll P l -> forall l' (l0 l1 : list unit), Permutation_Type l (l' ++ map (fun _ => tens bot bot) l1 ++ map (fun _ => wn (tens bot bot)) l0) -> ll (mix2add_pfrag P) l'). { intros l pi. eapply (X _ pi l (tt :: nil) nil)... } intros l pi. induction pi ; intros l' l0' l1' HP. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. apply Permutation_Type_length_1_inv in HP. apply app_eq_unit_Type in HP. destruct HP as [[Heq1 Heq2] | [Heq1 Heq2]] ; subst ; destruct l' ; inversion Heq ; subst. + destruct l1' ; inversion H0. destruct l0' ; inversion H1. + destruct l' ; inversion H1. * destruct l1' ; inversion H0. destruct l0' ; inversion H2. * destruct l' ; inversion H2. rewrite H3. apply ax_r. + destruct l1' ; inversion H0. destruct l0' ; inversion H1. + destruct l' ; inversion H1. * destruct l1' ; inversion H0. destruct l0' ; inversion H2. * destruct l' ; inversion H2. rewrite H3. eapply ex_r ; [ apply ax_r | ]... - rewrite Hperm in p ; simpl in p. eapply IHpi. etransitivity... - apply (Permutation_Type_map wn) in p. eapply IHpi. etransitivity... - apply Permutation_Type_nil in HP. destruct l' ; inversion HP. rewrite H0. apply mix0_r... - apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply IHpi1 in IHP1. apply IHpi2 in IHP2. symmetry in HP3. eapply ex_r ; [ apply mix2_r | simpl ; rewrite Hperm ; apply HP3 ]... - apply Permutation_Type_length_1_inv in HP. destruct l' ; inversion HP. + destruct l1' ; inversion H0. destruct l0' ; inversion H1. + apply app_eq_nil in H1 ; destruct H1 ; subst. apply one_r. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply IHpi in HP. eapply ex_r ; [ apply bot_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. remember (l'l ++ l) as l'. apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (@Permutation_Type_cons _ A _ eq_refl) in IHP1. rewrite app_comm_cons in IHP1. apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply (@Permutation_Type_cons _ B _ eq_refl) in IHP2. rewrite app_comm_cons in IHP2. apply IHpi1 in IHP1. apply IHpi2 in IHP2. symmetry in HP3. apply (Permutation_Type_cons_app _ _ (tens A B)) in HP3. eapply ex_r ; [ apply tens_r | simpl ; rewrite Hperm ; apply HP3 ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0 ; subst ; list_simpl in HP. rewrite (app_assoc (map _ l4)) in HP. rewrite <- map_app in HP. remember (l4 ++ l6) as l0 ; clear Heql0. apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (@Permutation_Type_cons _ bot _ eq_refl) in IHP1. rewrite app_comm_cons in IHP1. apply IHpi1 in IHP1. rewrite <- app_nil_l in IHP1. eapply bot_rev in IHP1 ; [ | apply Hgaxbot ]. list_simpl in IHP1. apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply (@Permutation_Type_cons _ bot _ eq_refl) in IHP2. rewrite app_comm_cons in IHP2. apply IHpi2 in IHP2. rewrite <- app_nil_l in IHP2. eapply bot_rev in IHP2 ; [ | apply Hgaxbot ]. list_simpl in IHP2. assert (Permutation_Type (l2a ++ l1a) l') as HP' by perm_Type_solve. eapply ex_r ; [ apply mix2_r | simpl ; rewrite Hperm ; apply HP' ]... * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ B _ eq_refl) in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite 2 app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply parr_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + eapply ex_r ; [ apply top_r | simpl ; rewrite Hperm ; apply Permutation_Type_middle ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply plus_r1 | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply plus_r2 | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. assert (HP2 := HP). apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi1 in HP. apply (@Permutation_Type_cons _ B _ eq_refl) in HP2. rewrite app_comm_cons in HP2. apply IHpi2 in HP2. eapply ex_r ; [ apply with_r | simpl ; rewrite Hperm ; apply Permutation_Type_middle ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + symmetry in HP. apply Permutation_Type_map_inv in HP. destruct HP as [l' Heq HP]. decomp_map_Type Heq ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; simpl in Heq5 ; subst ; simpl in HP. apply (Permutation_Type_map wn) in HP. list_simpl in HP. rewrite app_assoc in HP. rewrite <- map_app in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. rewrite <- Heq2 in HP. rewrite <- Heq5 in HP. apply IHpi in HP. eapply ex_r ; [ apply oc_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2. inversion Heq2. - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ A _ eq_refl) in HP. rewrite app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply de_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2 ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; subst ; simpl in HP. inversion Heq2 ; subst. list_simpl in HP ; rewrite <- map_app in HP. apply (@Permutation_Type_cons _ (tens bot bot) _ eq_refl) in HP. assert (Permutation_Type (tens bot bot :: l) (l' ++ map (fun _ : unit => tens bot bot) (tt :: l1') ++ map (fun _ : unit => wn (tens bot bot)) (l1 ++ l4))) as HP' by (etransitivity ; [ apply HP | ] ; perm_Type_solve). apply IHpi in HP'... - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply IHpi in HP. eapply ex_r ; [ apply wk_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2 ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; subst ; simpl in HP. inversion Heq2 ; subst. list_simpl in HP ; rewrite <- map_app in HP. apply IHpi in HP... - assert (HP' := HP). symmetry in HP'. apply Permutation_Type_vs_cons_inv in HP'. destruct HP' as [[l'l l'r] Heq] ; simpl in Heq. rewrite Heq in HP. apply Permutation_Type_cons_app_inv in HP. dichot_Type_elt_app_exec Heq ; subst. + rewrite app_assoc in HP. apply (@Permutation_Type_cons _ (wn A) _ eq_refl) in HP. apply (@Permutation_Type_cons _ (wn A) _ eq_refl) in HP. rewrite 3 app_comm_cons in HP. apply IHpi in HP. eapply ex_r ; [ apply co_r | simpl ; rewrite Hperm ]... + dichot_Type_elt_app_exec Heq1 ; subst. * decomp_map_Type Heq0. inversion Heq0. * decomp_map_Type Heq2 ; simpl in Heq1 ; simpl in Heq2 ; simpl in Heq3 ; subst ; simpl in HP. inversion Heq2 ; subst. list_simpl in HP ; rewrite <- map_app in HP. apply (@Permutation_Type_cons _ (wn (tens bot bot)) _ eq_refl) in HP. apply (@Permutation_Type_cons _ (wn (tens bot bot)) _ eq_refl) in HP. assert (Permutation_Type (wn (tens bot bot) :: wn (tens bot bot) :: l) (l' ++ map (fun _ : unit => tens bot bot) l1' ++ map (fun _ : unit => wn (tens bot bot)) (tt :: tt :: l1 ++ l4))) as HP' by (etransitivity ; [ apply HP | perm_Type_solve ]). apply IHpi in HP'... - apply Permutation_Type_app_app_inv in HP. destruct HP as [[[l1a l2a] [l3a l4a]] [[HP1 HP2] [HP3 HP4]]] ; simpl in HP1 ; simpl in HP2 ; simpl in HP3 ; simpl in HP4. apply Permutation_Type_app_app_inv in HP4. destruct HP4 as [[[l1b l2b] [l3b l4b]] [[HP1b HP2b] [HP3b HP4b]]] ; simpl in HP1b ; simpl in HP2b ; simpl in HP3b ; simpl in HP4b. symmetry in HP1b. apply Permutation_Type_map_inv in HP1b. destruct HP1b as [la Heqa _]. decomp_map_Type Heqa ; simpl in Heqa1 ; simpl in Heqa2 ; subst. symmetry in HP2b. apply Permutation_Type_map_inv in HP2b. destruct HP2b as [lb Heqb _]. decomp_map_Type Heqb ; simpl in Heqb1 ; simpl in Heqb2 ; subst. apply (Permutation_Type_app_head l2a) in HP4b. assert (IHP1 := Permutation_Type_trans HP2 HP4b). apply (@Permutation_Type_cons _ (dual A) _ eq_refl) in IHP1. rewrite app_comm_cons in IHP1. apply (Permutation_Type_app_head l1a) in HP3b. assert (IHP2 := Permutation_Type_trans HP1 HP3b). apply (@Permutation_Type_cons _ A _ eq_refl) in IHP2. rewrite app_comm_cons in IHP2. apply IHpi1 in IHP1. apply IHpi2 in IHP2. symmetry in HP3. eapply ex_r ; [ eapply cut_r | simpl ; rewrite Hperm ; apply HP3 ]... - destruct l1' ; destruct l0' ; simpl in HP. + eapply ex_r ; [ apply gax_r | simpl ; rewrite Hperm ]... + exfalso. apply Permutation_Type_vs_elt_inv in HP. specialize (Hgax a). destruct HP as [[l1 l2] Heq] ; rewrite Heq in Hgax. apply Forall_elt in Hgax. inversion Hgax. + exfalso. apply Permutation_Type_vs_elt_inv in HP. specialize (Hgax a). destruct HP as [[l1 l2] Heq] ; rewrite Heq in Hgax. apply Forall_elt in Hgax. inversion Hgax. + exfalso. apply Permutation_Type_vs_elt_inv in HP. specialize (Hgax a). destruct HP as [[l1 l2] Heq] ; rewrite Heq in Hgax. apply Forall_elt in Hgax. inversion Hgax. Qed. Lemma ll_to_mix2_cut {P} : forall l, ll P (wn (tens bot bot) :: l) -> ll (mk_pfrag true P.(pgax) P.(pmix0) true P.(pperm)) l. Proof with myeasy. intros l pi. eapply stronger_pfrag in pi. - rewrite <- (app_nil_r l). eapply cut_r ; [ | | apply pi]... change nil with (map wn nil). apply oc_r. apply parr_r. change (one :: one :: map wn nil) with ((one :: nil) ++ one :: nil). eapply mix2_r... + apply one_r. + apply one_r. - nsplit 5... + destruct pcut... + intros a. exists a... + destruct pmix2... Qed. (** Provability in [ll_mix2] is equivalent to provability of [ll] extended with the provability of [one :: one :: nil] and to provability of [ll] extended with the provability of [parr (dual B) (dual A) :: tens A B :: nil] for all [A] and [B] *) Lemma mix2_to_ll_one_one {P} : pcut P = true -> pperm P = true -> forall bc b2 bp l, ll (mk_pfrag bc P.(pgax) P.(pmix0) b2 bp) l -> ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => one :: one :: nil end))) l. Proof with myeeasy ; try (unfold PCperm_Type ; PCperm_Type_solve). remember (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => one :: one :: nil end))) as P'. intros fc fp bc b2 bp l pi. eapply stronger_pfrag in pi. - eapply mix2_to_ll in pi... assert (pcut P' = true) as fc' by (rewrite HeqP' ; simpl ; assumption). apply (stronger_pfrag _ P') in pi. + assert (ll P' (parr one one :: map wn nil)) as pi'. { change (parr one one :: map wn nil) with ((parr one one :: nil) ++ nil). eapply (@cut_r _ fc' bot). - apply one_r. - apply bot_r. apply parr_r. assert ({ b | one :: one :: nil = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now (exists (inr tt))). rewrite Hgax. apply gax_r. } apply oc_r in pi'. rewrite <- (app_nil_l l). eapply (@cut_r _ fc' (oc (parr one one))) ; [ simpl ; apply pi | apply pi' ]. + nsplit 5 ; rewrite HeqP'... simpl ; intros a ; exists (inl a)... - nsplit 5 ; intros ; simpl... + rewrite fc. destruct bc... + exists a... Qed. Lemma ll_one_one_to_ll_tens_parr_one_one_cut {P} : (pcut P = true) -> ll P (parr one one :: parr bot bot :: nil) -> ll P (one :: one :: nil). Proof. intros Hcut pi. assert (ll P (dual (parr (parr one one) (parr bot bot)) :: one :: one :: nil)) as pi'. { simpl. rewrite <- (app_nil_r _) ; rewrite <- app_comm_cons. apply tens_r. - rewrite <- (app_nil_r _) ; rewrite <- app_comm_cons. apply tens_r ; apply one_r. - rewrite <- (app_nil_l (one :: nil)). rewrite (app_comm_cons _ _ one). apply tens_r ; apply ax_exp. } rewrite <- (app_nil_l _). eapply cut_r ; [ assumption | apply pi' | ]. apply parr_r ; apply pi. Qed. Lemma ll_tens_parr_one_one_to_ll_tens_parr {P} : forall l, ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => parr one one :: parr bot bot :: nil end))) l -> ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr (A,B) => parr (dual B) (dual A) :: parr A B :: nil end))) l. Proof with myeeasy. intros l pi. remember (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => parr one one :: parr bot bot :: nil end))) as P'. apply (ax_gen P') ; (try now (rewrite HeqP' ; simpl ; reflexivity))... clear - HeqP' ; simpl ; intros a. revert a ; rewrite HeqP' ; intros a ; destruct a ; simpl. - assert ({ b | projT2 (pgax P) p = projT2 (pgax (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr (A,B) => parr (dual B) (dual A) :: parr A B :: nil end)))) b }) as [b Hgax] by (now exists (inl p)). rewrite Hgax. apply gax_r. - destruct u. assert ({ b | parr one one :: parr bot bot :: nil = projT2 (pgax (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr (A,B) => parr (dual B) (dual A) :: parr A B :: nil end)))) b }) as [b Hgax] by (exists (inr (bot,bot)) ; reflexivity). rewrite Hgax. apply gax_r. Qed. Lemma ll_tens_parr_to_mix2 {P} : forall l, ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr (A,B) => parr (dual B) (dual A) :: parr A B :: nil end))) l -> ll (mk_pfrag P.(pcut) P.(pgax) P.(pmix0) true P.(pperm)) l. Proof with myeeasy. intros l pi. remember (mk_pfrag P.(pcut) P.(pgax) P.(pmix0) true P.(pperm)) as P'. apply (stronger_pfrag _ (axupd_pfrag P' (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr (A,B) => parr (dual B) (dual A) :: parr A B :: nil end)))) in pi. - eapply ax_gen... clear - HeqP' ; simpl ; intros a. destruct a. + assert ({ b | projT2 (pgax P) p = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now exists p). rewrite Hgax. apply gax_r. + destruct p as [A B]. apply parr_r. apply (ex_r _ (parr A B :: (dual B :: nil) ++ (dual A) :: nil)) ; [ |etransitivity ; [ apply PCperm_Type_last | reflexivity ] ]. apply parr_r. eapply ex_r ; [ | symmetry ; apply PCperm_Type_last ]. list_simpl. rewrite <- (app_nil_l (dual A :: _)). rewrite 2 app_comm_cons. apply mix2_r. * rewrite HeqP'... * eapply ex_r ; [ | apply PCperm_Type_swap ]. apply ax_exp. * apply ax_exp. - rewrite HeqP' ; nsplit 5 ; simpl ; intros... + exists a... + destruct (pmix2 P)... Qed. Lemma ll_one_one_to_mix2 {P} : forall l, ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => one :: one :: nil end))) l -> ll (mk_pfrag P.(pcut) P.(pgax) P.(pmix0) true P.(pperm)) l. Proof with myeeasy. intros l pi. remember (mk_pfrag P.(pcut) P.(pgax) P.(pmix0) true P.(pperm)) as P'. apply (stronger_pfrag _ (axupd_pfrag P' (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr tt => one :: one :: nil end)))) in pi. - eapply ax_gen... clear - HeqP' ; simpl ; intros a. destruct a. + assert ({ b | projT2 (pgax P) p = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now exists p). rewrite Hgax. apply gax_r. + destruct u. change (one :: one :: nil) with ((one :: nil) ++ one :: nil). rewrite HeqP'. apply mix2_r... * apply one_r. * apply one_r. - rewrite HeqP' ; nsplit 5 ; simpl ; intros... + exists a... + destruct (pmix2 P)... Qed. (** [mix0] is not valid in [ll_mix2] *) Lemma mix2_not_mix0 : ll_mix2 nil -> False. Proof. intros pi. remember nil as l. revert Heql ; induction pi ; intros Heql ; subst ; try inversion Heql. - apply IHpi. simpl in p ; apply Permutation_Type_sym in p. apply Permutation_Type_nil in p. assumption. - apply app_eq_nil in Heql ; destruct Heql as [Heql Heql2]. apply app_eq_nil in Heql2 ; destruct Heql2 as [Heql2 _] ; subst. destruct lw' ; inversion Heql2. symmetry in p ; apply Permutation_Type_nil in p ; subst. intuition. - inversion f. - apply IHpi2. apply app_eq_nil in Heql. apply Heql. - inversion f. - destruct a. Qed. (** ** Linear logic with both mix0 and mix2: [ll_mix02] (no axiom, commutative) *) (** cut / axioms / mix0 / mix2 / permutation *) Definition pfrag_mix02 := mk_pfrag false NoAxioms true true true. (* cut axioms mix0 mix2 perm *) Definition ll_mix02 := ll pfrag_mix02. Lemma cut_mix02_r : forall A l1 l2, ll_mix02 (dual A :: l1) -> ll_mix02 (A :: l2) -> ll_mix02 (l2 ++ l1). Proof with myeeasy. intros A l1 l2 pi1 pi2. eapply cut_r_axfree... intros a ; destruct a. Qed. Lemma cut_mix02_admissible : forall l, ll (cutupd_pfrag pfrag_mix02 true) l -> ll_mix02 l. Proof with myeeasy. intros l pi. induction pi ; try (now econstructor). - eapply ex_r... - eapply ex_wn_r... - eapply cut_mix02_r... Qed. (** Provability in [ll_mix02] is equivalent to adding [wn (tens (wn one) (wn one))] in [ll] *) Lemma mix02_to_ll {P} : pperm P = true -> forall b1 b2 bp l, ll (mk_pfrag P.(pcut) P.(pgax) b1 b2 bp) l -> ll P (wn (tens (wn one) (wn one)) :: l). Proof with myeeasy ; try PCperm_Type_solve. intros fp b1 b2 bp l pi. eapply (ext_wn_param _ P fp _ (tens (wn one) (wn one) :: nil)) in pi. - eapply ex_r... - intros Hcut... - simpl ; intros a. eapply ex_r ; [ | apply PCperm_Type_last ]. apply wk_r. apply gax_r. - intros Hpmix0 Hpmix0'. apply de_r... rewrite <- (app_nil_l nil). apply tens_r ; apply de_r ; apply one_r. - intros _ _ l1 l2 pi1 pi2. apply (ex_r _ (wn (tens (wn one) (wn one)) :: l2 ++ l1))... apply co_r. apply co_r. apply de_r. eapply ex_r. + apply tens_r ; apply wk_r ; [ apply pi1 | apply pi2 ]. + rewrite fp... Qed. Lemma ll_to_mix02_cut {P} : forall l, ll P (wn (tens (wn one) (wn one)) :: l) -> ll (mk_pfrag true P.(pgax) true true P.(pperm)) l. Proof with myeasy. intros l pi. eapply stronger_pfrag in pi. - rewrite <- (app_nil_r l). eapply cut_r ; [ | | apply pi]... change nil with (map wn nil). apply oc_r. apply parr_r. change (oc bot :: oc bot :: map wn nil) with ((oc bot :: map wn nil) ++ oc bot :: map wn nil). eapply mix2_r... + apply oc_r. apply bot_r. apply mix0_r... + apply oc_r. apply bot_r. apply mix0_r... - nsplit 5... + destruct pcut... + intros a. exists a... + destruct pmix0... + destruct pmix2... Qed. (** Provability in [ll_mix02] is equivalent to adding other stuff in [ll] *) Lemma mix02_to_ll' {P} : pperm P = true -> forall b0 b2 bp l, ll (mk_pfrag P.(pcut) P.(pgax) b0 b2 bp) l -> ll P (wn one :: wn (tens bot bot) :: l). Proof with myeasy. intros Hperm b0 b2 bp l pi. eapply mix0_to_ll... eapply mix2_to_ll... apply pi. Qed. Lemma ll_to_mix02'_axat {P} : (forall a, Forall atomic (projT2 (pgax P) a)) -> pperm P = true -> forall l, ll P (wn one :: wn (tens bot bot) :: l) -> ll (mix2add_pfrag (mix0add_pfrag P)) l. Proof with myeasy. intros Hgax Hperm l pi. apply ll_to_mix2_axat... apply ll_to_mix0_axat... Qed. Lemma mix02_to_ll'' {P} : pperm P = true -> forall b0 b2 bp l, ll (mk_pfrag P.(pcut) P.(pgax) b0 b2 bp) l -> ll P (wn one :: wn (tens (wn one) bot) :: l). Proof with myeeasy ; try PCperm_Type_solve. intros Hperm b0 b2 bp l pi. eapply (ext_wn_param _ _ _ _ (one :: tens (wn one) bot :: nil)) in pi. - eapply ex_r... - intros Hcut... - simpl ; intros a. eapply ex_r ; [ | apply PCperm_Type_app_comm ] ; list_simpl. apply wk_r. apply wk_r. apply gax_r. - intros Hpmix0 Hpmix0'. apply de_r... eapply ex_r ; [ | apply PCperm_Type_swap ]. apply wk_r. apply one_r. - intros _ _ l1 l2 pi1 pi2. apply (ex_r _ (wn (tens (wn one) bot) :: (wn one :: l2) ++ l1)) ; [ | rewrite Hperm ]... apply co_r. apply co_r. apply de_r. apply (ex_r _ (tens (wn one) bot :: (wn (tens (wn one) bot) :: wn one :: l2) ++ (wn (tens (wn one) bot) :: l1))) ; [ | rewrite Hperm ]... apply tens_r. + eapply ex_r ; [ apply pi1 | ]... + apply bot_r ; eapply ex_r ; [ apply pi2 | rewrite Hperm ]... Unshelve. assumption. Qed. (* Hgax_cut is here only to allow the use of cut_admissible the more general result without Hgax_cut should be provable by induction as for [ll_to_mix2] *) Lemma ll_to_mix02''_axcut {P} : (forall a, Forall atomic (projT2 (pgax P) a)) -> (forall a b x l1 l2 l3 l4, projT2 (pgax P) a = (l1 ++ dual x :: l2) -> projT2 (pgax P) b = (l3 ++ x :: l4) -> { c | projT2 (pgax P) c = l3 ++ l2 ++ l1 ++ l4 }) -> pperm P = true -> forall l, ll P (wn one :: wn (tens (wn one) bot) :: l) -> ll (mix2add_pfrag (mix0add_pfrag P)) l. Proof with myeasy. intros Hgax_at Hgax_cut Hperm l pi. apply (stronger_pfrag (cutrm_pfrag (cutupd_pfrag (mix2add_pfrag (mix0add_pfrag P)) true))). { nsplit 5... intros a ; exists a... } eapply cut_admissible... eapply stronger_pfrag in pi. - rewrite <- (app_nil_r l). eapply (cut_r _ (wn (tens (wn one) bot))) ; simpl. + change nil with (map wn nil). apply oc_r. apply parr_r. change (one :: oc bot :: map wn nil) with ((one :: nil) ++ oc bot :: map wn nil). eapply mix2_r... * apply oc_r. apply bot_r. apply mix0_r... * apply one_r. + rewrite <- app_nil_r. eapply cut_r ; [ | | apply pi ] ; simpl... change nil with (map wn nil). apply oc_r. apply bot_r. apply mix0_r... - etransitivity ; [ apply cutupd_pfrag_true| ]. nsplit 5... + intros a ; exists a... + apply leb_true. + apply leb_true. Unshelve. reflexivity. Qed. (* Hgax_cut is here only to allow the use of cut_admissible the more general result without Hgax_cut should be provable by induction as for [ll_to_mix2] *) Lemma ll_to_mix02'''_axcut {P} : (forall a, Forall atomic (projT2 (pgax P) a)) -> (forall a b x l1 l2 l3 l4, projT2 (pgax P) a = (l1 ++ dual x :: l2) -> projT2 (pgax P) b = (l3 ++ x :: l4) -> { c | projT2 (pgax P) c = l3 ++ l2 ++ l1 ++ l4 }) -> pperm P = true -> forall l (l0 : list unit), ll P (wn one :: map (fun _ => wn (tens (wn one) bot)) l0 ++ l) -> ll (mix2add_pfrag (mix0add_pfrag P)) l. Proof with try assumption. intros Hgax_at Hgax_cut Hperm l l0 pi. apply ll_to_mix02''_axcut... revert l pi ; induction l0 ; intros l pi. - cons2app. eapply ex_r ; [ | rewrite Hperm ; apply Permutation_Type_app_comm ]. simpl ; apply wk_r. eapply ex_r ; [ | rewrite Hperm ; apply Permutation_Type_app_comm ]... - cons2app. eapply ex_r ; [ | rewrite Hperm ; apply Permutation_Type_app_comm ]. simpl ; apply co_r. rewrite 2 app_comm_cons. eapply ex_r ; [ | rewrite Hperm ; apply Permutation_Type_app_comm ]. list_simpl ; apply IHl0. list_simpl in pi. eapply ex_r ; [ apply pi | rewrite Hperm ; PCperm_Type_solve ]. Qed. (** Provability in [ll_mix02] is equivalent to provability of [ll] extended with the provability of both [bot :: bot :: nil] and [one :: one :: nil] *) Lemma mix02_to_ll_one_eq_bot {P} : pcut P = true -> pperm P = true -> forall bc b0 b2 bp l, ll (mk_pfrag bc P.(pgax) b0 b2 bp) l -> ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr true => one :: one :: nil | inr false => bot :: bot :: nil end))) l. Proof with myeeasy ; try (unfold PCperm_Type ; PCperm_Type_solve). remember (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr true => one :: one :: nil | inr false => bot :: bot :: nil end))) as P'. intros fc fp bc b0 b2 bp l pi. eapply stronger_pfrag in pi. - eapply mix02_to_ll in pi... assert (pcut P' = true) as fc' by (rewrite HeqP' ; simpl ; assumption). apply (stronger_pfrag _ P') in pi. + assert (ll P' (parr (oc bot) (oc bot) :: map wn nil)) as pi'. { apply parr_r. change (oc bot :: oc bot :: map wn nil) with ((oc bot :: nil) ++ oc bot :: map wn nil). eapply (@cut_r _ fc' one). - apply bot_r. apply oc_r. change (bot :: map wn nil) with ((bot :: nil) ++ nil). eapply (@cut_r _ fc' bot). + apply one_r. + assert ({ b | bot :: bot :: nil = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now (exists (inr false))). rewrite Hgax. apply gax_r. - change (one :: oc bot :: nil) with ((one :: nil) ++ oc bot :: map wn nil). eapply (@cut_r _ fc' one). + apply bot_r. apply oc_r. change (bot :: map wn nil) with ((bot :: nil) ++ nil). eapply (@cut_r _ fc' bot). * apply one_r. * assert ({ b | bot :: bot :: nil = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now (exists (inr false))). rewrite Hgax. apply gax_r. + assert ({ b | one :: one :: nil = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now (exists (inr true))). rewrite Hgax. apply gax_r. } apply oc_r in pi'. rewrite <- (app_nil_l l). eapply (@cut_r _ fc' (oc (parr (oc bot) (oc bot)))) ; [ simpl ; apply pi | apply pi' ]. + nsplit 5 ; rewrite HeqP'... simpl ; intros a ; exists (inl a)... - nsplit 5 ; intros ; simpl... + rewrite fc. destruct bc... + exists a... Qed. Lemma ll_one_eq_bot_to_mix02 {P} : forall l, ll (axupd_pfrag P (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr true => one :: one :: nil | inr false => bot :: bot :: nil end))) l -> ll (mk_pfrag P.(pcut) P.(pgax) true true P.(pperm)) l. Proof with myeeasy. intros l pi. remember (mk_pfrag P.(pcut) P.(pgax) true true P.(pperm)) as P'. apply (stronger_pfrag _ (axupd_pfrag P' (existT (fun x => x -> list formula) _ (fun a => match a with | inl x => projT2 (pgax P) x | inr true => one :: one :: nil | inr false => bot :: bot :: nil end)))) in pi. - eapply ax_gen... clear - HeqP' ; simpl ; intros a. destruct a. + assert ({ b | projT2 (pgax P) p = projT2 (pgax P') b }) as [b Hgax] by (rewrite HeqP' ; now exists p). rewrite Hgax. apply gax_r. + destruct b. * change (one :: one :: nil) with ((one :: nil) ++ one :: nil). rewrite HeqP'. apply mix2_r... -- apply one_r. -- apply one_r. * apply bot_r. apply bot_r. rewrite HeqP'. apply mix0_r... - rewrite HeqP' ; nsplit 5 ; simpl ; intros... + exists a... + destruct (pmix0 P)... + destruct (pmix2 P)... Qed. (* llR *) (** ** Linear logic extended with [R] = [bot]: [llR] *) (** cut / axioms / mix0 / mix2 / permutation *) Definition pfrag_llR R := mk_pfrag true (existT (fun x => x -> list formula) _ (fun a => match a with | true => dual R :: nil | false => R :: one :: nil end)) false false true. (* cut axioms mix0 mix2 perm *) Definition llR R := ll (pfrag_llR R). Lemma llR1_R2 : forall R1 R2, llR R2 (dual R1 :: R2 :: nil) -> llR R2 (dual R2 :: R1 :: nil) -> forall l, llR R1 l-> llR R2 l. Proof with myeeasy. intros R1 R2 HR1 HR2 l Hll. induction Hll ; try (now constructor). - eapply ex_r... - eapply ex_wn_r... - eapply cut_r... - destruct a. + rewrite <- (app_nil_l _). apply (@cut_r (pfrag_llR R2) eq_refl (dual R2)). * rewrite bidual. eapply ex_r. apply HR1. apply PCperm_Type_swap. * assert ({ b | dual R2 :: nil = projT2 (pgax (pfrag_llR R2)) b }) as [b Hgax] by (now exists true). rewrite Hgax. apply gax_r. + eapply (@cut_r (pfrag_llR R2) eq_refl R2) in HR2. * eapply ex_r ; [ apply HR2 | ]. unfold PCperm_Type. simpl. apply Permutation_Type_sym. apply Permutation_Type_cons_app. rewrite app_nil_r. apply Permutation_Type_refl. * assert ({ b | R2 :: one :: nil = projT2 (pgax (pfrag_llR R2)) b }) as [b Hgax] by (now exists false). rewrite Hgax. apply gax_r. Qed. Lemma ll_to_llR : forall R l, ll_ll l -> llR R l. Proof with myeeasy. intros R l pi. induction pi ; try (now econstructor). - eapply ex_r... - eapply ex_wn_r... Qed. Lemma subs_llR : forall R C x l, llR R l -> llR (subs C x R) (map (subs C x) l). Proof with myeeasy. intros R C x l pi. apply (subs_ll C x) in pi. eapply stronger_pfrag in pi... nsplit 5... simpl ; intros a. destruct a ; simpl. - exists true. rewrite subs_dual... - exists false... Qed. Lemma llR_to_ll : forall R l, llR R l-> ll_ll (l ++ wn R :: wn (tens (dual R) bot) :: nil). Proof with myeasy. intros R l pi. apply cut_ll_admissible. replace (wn R :: wn (tens (dual R) bot) :: nil) with (map wn (map dual (dual R :: parr one R :: nil))) by (simpl ; rewrite bidual ; reflexivity). apply deduction_list... eapply ax_gen ; [ | | | | | apply pi ]... simpl ; intros a. destruct a ; simpl. - assert ({ b | dual R :: nil = projT2 (pgax (axupd_pfrag (cutupd_pfrag pfrag_ll true) (existT (fun x => x -> list formula) (sum _ {k : nat | k < 2}) (fun a => match a with | inl x => Empty_fun x | inr x => match proj1_sig x with | 0 => dual R | 1 => parr one R | 2 => one | S (S (S _)) => one end :: nil end)))) b }) as [b Hgax] by (now exists (inr (exist _ 0 (le_n_S _ _ (le_S _ _ (le_n 0)))))). rewrite Hgax. apply gax_r. - rewrite <- (app_nil_r nil). rewrite_all app_comm_cons. eapply (cut_r _ (dual (parr one R))). + rewrite bidual. assert ({ b | parr one R :: nil = projT2 (pgax (axupd_pfrag (cutupd_pfrag pfrag_ll true) (existT (fun x => x -> list formula) (sum _ {k : nat | k < 2}) (fun a => match a with | inl x => Empty_fun x | inr x => match proj1_sig x with | 0 => dual R | 1 => parr one R | 2 => one | S (S (S _)) => one end :: nil end)))) b }) as [b Hgax] by (now exists (inr (exist _ 1 (le_n 2)))). erewrite Hgax. apply gax_r. + apply (ex_r _ (tens (dual R) bot :: (one :: nil) ++ R :: nil)) ; [ | PCperm_Type_solve ]. apply tens_r. * eapply ex_r ; [ | apply PCperm_Type_swap ]. eapply stronger_pfrag ; [ | apply ax_exp ]. nsplit 5... simpl ; intros a. destruct a as [a | a]. -- destruct a. -- destruct a as [n Hlt]. destruct n ; simpl. ++ exists (inr (exist _ 0 Hlt))... ++ destruct n ; simpl. ** exists (inr (exist _ 1 Hlt))... ** exfalso. inversion Hlt ; subst. inversion H0 ; subst. inversion H1. * apply bot_r. apply one_r. Unshelve. reflexivity. Qed. Lemma llwnR_to_ll : forall R l, llR (wn R) l -> ll_ll (l ++ wn R :: nil). Proof with myeeasy. intros R l pi. apply llR_to_ll in pi. eapply (ex_r _ _ (wn (tens (dual (wn R)) bot) :: l ++ wn (wn R) :: nil)) in pi ; [ | PCperm_Type_solve ]. eapply (cut_ll_r _ nil) in pi. - eapply (cut_ll_r (wn (wn R))). + simpl. change (wn R :: nil) with (map wn (R :: nil)). apply oc_r ; simpl. replace (wn R) with (dual (oc (dual R))) by (simpl ; rewrite bidual ; reflexivity). apply ax_exp. + eapply ex_r ; [ apply pi | PCperm_Type_solve ]. - simpl ; rewrite bidual. change nil with (map wn nil). apply oc_r. apply parr_r. eapply ex_r ; [ apply wk_r ; apply one_r | PCperm_Type_solve ]. Qed. Lemma ll_wn_wn_to_llR : forall R l, ll_ll (l ++ wn R :: wn (tens (dual R) bot) :: nil) -> llR R l. Proof with myeasy. intros R l pi. apply (ll_to_llR R) in pi. rewrite <- (app_nil_l l). eapply (cut_r _ (oc (dual R))). - rewrite <- (app_nil_l (dual _ :: l)). eapply (cut_r _ (oc (parr one R))). + simpl ; rewrite bidual ; eapply ex_r ; [apply pi | PCperm_Type_solve ]. + change nil with (map wn nil). apply oc_r. apply parr_r. apply (ex_r _ (R :: one :: nil)). * assert ({ b | R :: one :: nil = projT2 (pgax (pfrag_llR R)) b }) as [b Hgax] by (now exists false). rewrite Hgax. apply gax_r. * PCperm_Type_solve. - change nil with (map wn nil). apply oc_r. assert ({ b | dual R :: map wn nil = projT2 (pgax (pfrag_llR R)) b }) as [b Hgax] by (now exists true). rewrite Hgax. apply gax_r. Unshelve. all : reflexivity. Qed. Lemma ll_wn_to_llwnR : forall R l, ll_ll (l ++ wn R :: nil) -> llR (wn R) l. Proof with myeasy. intros R l pi. eapply ll_wn_wn_to_llR. eapply (ex_r _ (wn (tens (dual (wn R)) bot) :: wn (wn R) :: l)) ; [ | PCperm_Type_solve ]. apply wk_r. apply de_r. eapply ex_r ; [ apply pi | PCperm_Type_solve ]. Qed.
# ATW relaxation notebook ```python import numpy as np import matplotlib.pyplot as plt import warnings from copy import deepcopy # Global constants f = 1e-4 # [s-1] g = 9.81 # [m s-2] %matplotlib inline plt.rcParams['font.size'] = 14 warnings.simplefilter('ignore') ``` ### Analytical solution Start with the linearized, steady state shallow water equations with linear friction and longshore windstress. Assume cross-shore geostrophic balance. \begin{align} f\mathbf{k}\times\mathbf{u} & = -g\nabla\eta + \frac{1}{h}\left(\tau_y - \mu v\right)\hat{\jmath} \tag{1a} \\ 0 & = \nabla\cdot h\mathbf{u} \tag{1b} \end{align} Taking the curl of (1a) and solving for $\eta$ gives the the Arrested Topography Wave (ATW) of Csanady (1978 *JPO*). I have oriented the problem to $x\to-\infty$ offshore such that $\frac{\partial h}{\partial x} = -s$. $$\frac{\partial^2\eta}{\partial x^2} - \frac{1}{\kappa}\frac{\partial\eta}{\partial y} = 0, \hspace{0.5cm} \frac{1}{\kappa} = \frac{fs}{\mu}\tag{2}$$ The coastal boundary condition (obtained from 1a) requires $u \to 0$ and $h \to 0$ $$\frac{\partial\eta}{\partial x}(0, y) = \frac{\tau_yf}{\mu g} = q_0 \tag{3}$$ Equation (2) is analogous to a constant heat flux boundary condition. The solution is given by Carslaw and Jaeger 1959 (p. 112) $$\eta(x, y) = \frac{\kappa q_0y}{L} + q_0L\left\{\frac{3(x + L)^2 - L^2}{6L^2} - \frac{2}{\pi^2}\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\exp\left(\frac{-\kappa n^2\pi^2y}{L^2}\right)\cos\left(\frac{n\pi(x + L)}{L}\right)\right\} \tag{4}$$ which, as $y\to\infty$, reduces to $$\eta(x, y) = \frac{\kappa q_0y}{L} + q_0L\frac{3(x + L)^2 - L^2}{6L^2} \tag{5}$$ Calculate $\eta$ according to equation (5) ```python def calc_eta(x, y, L, kappa, q_0): """Calculate eta according to equation 5 """ return kappa * q_0 * y / L + q_0 * L * (3 * (x + L)**2 - L**2) / (6 * L**2) ``` Find $\eta$ given problem parameters ```python # Constants L = 1e3 # Slope width [m] tau_y = -1e-4 # Kinematic wind stress [m2 s-2] mu = 1e-2 # Linear friction coefficient [s-1] s = 1 # Shelf slope [dimensionless] # Terms (heat equation analogues) kappa = mu / (f * s) # 'Diffusivity' of eta q_0 = tau_y * f / (mu * g) # 'Flux' of eta through boundary # Coordinates dL = L * 1e-2 xi = np.arange(-L, 0, dL) yi = np.arange(0, L, dL) x, y = np.meshgrid(xi, yi) # Solution eta = calc_eta(x, y, L, kappa, q_0) ``` Plot $\eta$ solution ```python # Plot eta fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.contour(xi/L, yi/L, eta, colors='k') for tick in np.arange(0, 1, 0.015): ax.plot([0, 0.005], [tick, tick+0.005], 'k-', clip_on=False) ax.set_xlabel('$\longleftarrow$ $X/L$') ax.set_ylabel('$\longleftarrow$ $Y/L$') ax.xaxis.set_ticks([-1, 0]) ax.yaxis.set_ticks([0, 1]) ax.xaxis.set_ticklabels(['$-L$', 0]) ax.yaxis.set_ticklabels([0, '$L$']) ax.tick_params(direction='out', pad=8) ax.set_xlim([0, -1]) ax.set_ylim([1, 0]) ax.text(0.02, 0.05, 'Low $\eta$', transform=ax.transAxes) ax.text(0.85, 0.9, 'High $\eta$', transform=ax.transAxes) ax.text(0.03, 0.46, '$\\tau_y$', transform=ax.transAxes) ax.arrow(0.04, 0.5, 0, 0.1, transform=ax.transAxes, head_width=0.01, facecolor='k') ax.set_title('Cross-shelf bottom slope (ATW) solution') plt.show() ``` ### Relaxation solution Three schemes: Centered difference $$r_{i, j}^{(n)} = \frac{\eta_{i, j+1}^{(n)} - \eta_{i, j-1}^{(n)}}{2\Delta y} - \kappa\frac{\eta_{i+1, j}^{(n)} - 2\eta_{i, j}^{(n)} + \eta_{i-1, j}^{(n)}}{\Delta x^2}$$ $$\eta_{i, j}^{(n+1)} = \eta_{i, j}^{(n)} - \frac{\mu\Delta x^2}{2\kappa}r_{i, j}^{(n)}$$ Upstream Euler $$r_{i, j}^{(n)} = \frac{\eta_{i, j+1}^{(n)} - \eta_{i, j}^{(n)}}{\Delta y} - \kappa\frac{\eta_{i+1, j}^{(n)} - 2\eta_{i, j}^{(n)} + \eta_{i-1, j}^{(n)}}{\Delta x^2}$$ $$\eta_{i, j}^{(n+1)} = \eta_{i, j}^{(n)} - \frac{\mu}{\left(\frac{2\kappa}{\Delta x} - 1\right)}r_{i, j}^{(n)}$$ Downstream Euler $$r_{i, j}^{(n)} = \frac{\eta_{i, j}^{(n)} - \eta_{i, j-1}^{(n)}}{\Delta y} - \kappa\frac{\eta_{i+1, j}^{(n)} - 2\eta_{i, j}^{(n)} + \eta_{i-1, j}^{(n)}}{\Delta x^2}$$ $$\eta_{i, j}^{(n+1)} = \eta_{i, j}^{(n)} - \frac{\mu}{\left(\frac{2\kappa}{\Delta x} + 1\right)}r_{i, j}^{(n)}$$ Only the downstream Euler is stable. Find $\eta$ by relaxation ```python # Find phi by relaxation # Parameters M = eta.shape[0] # matrix size mu = 1 # SOR convergence parameter TOL = 1e-4 # Convergence tolerance N = 100000 # Max iterations Ci = int(M / 2) # Cape i position Cj = int(2 * M / 3) # Cape j position # Allocate arrays eta_next = deepcopy(eta) res = np.zeros(eta.shape) # Reset eta (equation 37) eta = kappa * q_0 * y / L + q_0 * L * (3 * (x + L)**2 - L**2) / (6 * L**2) # Relaxation loop for n in range(N): for i in range(1, M-1): # Longshore step for j in range(2, M-1): # Cross-shore step #Downstream Euler res[i, j] = (eta[i, j] - eta[i-1, j]) / dL - kappa * (eta[i, j+1] - 2 * eta[i, j] + eta[i, j-1]) / dL**2 eta_next[i, j] = eta[i, j] - mu / (2 * kappa / dL + 1) * res[i, j] eta = eta_next eta[Ci, Cj:] = eta[Ci, -1] # Reset eta along cape equal to eta at coast #if dL**2 * np.max(abs(res)) / np.max(abs(eta)) < TOL: # break ``` ```python # Plot results fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.contour(xi/L, yi/L, eta, colors='k') ax.set_xlim([0, -1]) ax.set_ylim([1, 0]) ``` ```python ```
{- Copyright © 1992–2002 The University of Glasgow Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Monad where import Category.Monad import Data.List import Data.Maybe open import Function using (const) open Category.Monad using (RawMonad) public open Category.Monad.RawMonad ⦃...⦄ using (_>>=_; _>>_; return) public instance Monad-List : ∀ {ℓ} → RawMonad (Data.List.List {ℓ}) Monad-List = Data.List.monad Monad-Maybe : ∀ {ℓ} → RawMonad (Data.Maybe.Maybe {ℓ}) Monad-Maybe = Data.Maybe.monad Monad-Function : ∀ {ℓ} {r : Set ℓ} → RawMonad (λ s → (r → s)) Monad-Function {r} = record { return = const {r} ; _>>=_ = λ f k → λ r → k (f r) r }
lemma (in function_ring_on) one: assumes U: "open U" and t0: "t0 \<in> S" "t0 \<in> U" and t1: "t1 \<in> S-U" shows "\<exists>V. open V \<and> t0 \<in> V \<and> S \<inter> V \<subseteq> U \<and> (\<forall>e>0. \<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>t \<in> S \<inter> V. f t < e) \<and> (\<forall>t \<in> S - U. f t > 1 - e))"
import sli.sli model_checking.mc_bridge namespace rmd_bridge universe u /-! **S** the type of a specification (the model that is interpreted by the STR) - if it is a string, then we have an inject function String → STR C A that will parse the string and instantiate the STR - if it is an program AST, the we have an inject function AST → STR C A that will instantiate the STR with the program AST - more generaly it can be any object type S for which we have an inject function S → STR C A -/ variables (S C A E R V α : Type) open sli open sli.toTR open model_checking /-! # Debug semantics -/ mutual inductive TraceEntry , DebugAction with TraceEntry: Type | root (c: C) (a: DebugAction) | child (c: C) (a: DebugAction) (parent : TraceEntry) with DebugAction : Type | init | step : A → DebugAction | select : C → DebugAction | jump : TraceEntry → DebugAction | run_to_breakpoint : DebugAction structure DebugConfig := (current : option (TraceEntry C A)) (history : set (TraceEntry C A)) (options : option(DebugAction C A × set C)) /-! **BE** breakpoint expression type, which can be mapped to the semantics and the emptiness checking algorithm needed **Cp** configuration product, a configuration type, which in general is different from C. In practice it is the tuple (C, C₂), where C₂ is the configuration type needed by the breakpoint semantics -/ def Finder (BE: Type) := STR C A → set C → BE → R → list C def ote2c {C A : Type} : option (TraceEntry C A) → option C | none := none | (some (TraceEntry.root c _)) := c | (some (TraceEntry.child c _ _)) := c def rmdInitial (o : STR C A) : set (DebugConfig C A) := { { current := none, history := ∅, options := some (DebugAction.init, o.initial) } } open DebugAction def rmdActions (o : STR C A) : DebugConfig C A → set (DebugAction C A) | ⟨ current, history, options ⟩ := let oa := { x : DebugAction C A | ∀ c, (options = none) → (ote2c current) = some c → ∀ a ∈ (o.actions c), x = step a }, sa := { x : DebugAction C A | match options with | some (_, configs) := ∀ c ∈ configs, x = select c | none := false end }, ja := { x : DebugAction C A | ∀ te ∈ history, x = jump te }, rtb := { x : DebugAction C A | match current with | some te := x = run_to_breakpoint | none := false end } in oa ∪ sa ∪ ja ∪ rtb def same_configuration [decidable_eq C]: TraceEntry C A → C → bool | (TraceEntry.root c₁ _ ) c₂ := c₁ = c₂ | (TraceEntry.child c₁ _ _) c₂ := c₁ = c₂ /-! Attention: - to the order of configurations in the counter example (start .. end) vs (end .. start). Here we suppose **(start .. end)** - does the counter exemple contain the start configuration ? The same_configuration check removes the consecutive duplicates -/ def trace2history {C A : Type} [decidable_eq C] : TraceEntry C A → DebugAction C A → list C → set (TraceEntry C A) → TraceEntry C A × set (TraceEntry C A) | te da [] history := (te, history) | te da (head::tail) history := let te' := if (same_configuration C A te head) then te else (TraceEntry.child head da te), h := history ∪ { te' } in trace2history te' da tail h def te2c {C A : Type} : TraceEntry C A → C | (TraceEntry.root c _) := c | (TraceEntry.child c _ _):= c def rmdExecute {BE: Type} [decidable_eq C] (o : STR C A) (finder : Finder C A R BE) (breakpoint : BE) (reduction : R) : DebugAction C A → DebugConfig C A → set (DebugConfig C A) | (init) _ := ∅ -- cannot get here | (step a) ⟨ (some (TraceEntry.root c da)), history, _ ⟩ := { ⟨ (TraceEntry.root c da), history, some (step a, o.execute a c) ⟩ } | (step a) ⟨ (some (TraceEntry.child c da p)), history, _⟩ := { ⟨ (TraceEntry.child c da p), history, some (step a, o.execute a c) ⟩ } | (step a) ⟨ _, _, _ ⟩ := ∅ -- cannot get here due to debugActions which produce steps only of current=some c | (select c) ⟨ none, history, some (da, _)⟩ := (let te := (TraceEntry.root c da) in { ⟨ te , { te } ∪ history, none ⟩ }) | (select c) ⟨ some te, history, some(da, _)⟩ := (let te₁ := (TraceEntry.child c da te) in { ⟨ te₁, { te₁ } ∪ history, none ⟩ }) | (select c) ⟨ _, _, _ ⟩ := ∅ --cannot get here | (jump te) ⟨ _, history, _⟩ := { ⟨ some te, history, none ⟩ } | (run_to_breakpoint) ⟨ some te, history, opts ⟩ := let trace := finder o { (te2c te) } breakpoint reduction, patch := trace2history te run_to_breakpoint trace ∅ in match patch with | (te, ch) := { ⟨ some te, history ∪ ch, none ⟩ } end | (run_to_breakpoint) ⟨ _, _, _ ⟩ := ∅ --cannot get here def ReducedMultiverseDebuggerBridge {BE: Type} [decidable_eq C] (o : STR C A) (finder : Finder C A R BE) (breakpoint : BE) (reduction : R) : STR (DebugConfig C A) (DebugAction C A) := { initial := rmdInitial C A o, actions := λ dc, rmdActions C A o dc, execute := λ da dc, rmdExecute C A R o finder breakpoint reduction da dc } /-! # Replace the initial states of a STR, to make it start somewhere else -/ def ReplaceInitial (o : STR C A) (initial : set C) : STR C A := { initial := initial, actions := o.actions, execute := o.execute, } def ReducedMultiverseDebugger {BE: Type} [decidable_eq C] (finder : Finder C A R BE) (inject: S → STR C A) (specification: S) (breakpoint : BE) (reduction : R) : STR (DebugConfig C A) (DebugAction C A) := ReducedMultiverseDebuggerBridge C A R (inject specification) finder breakpoint reduction end rmd_bridge
[GOAL] A : Type u_1 B : Type u_2 i : SetLike A B p q : A ⊢ p < q ↔ p ≤ q ∧ ∃ x, x ∈ q ∧ ¬x ∈ p [PROOFSTEP] rw [lt_iff_le_not_le, not_le_iff_exists]
module LibVulkan import Libdl paths = String[] const libvulkan = Libdl.find_library(["libvulkan", "vulkan", "vulkan-1", "libvulkan.so.1"], paths) @assert libvulkan != "" using CEnum const Ctm = Base.Libc.TmStruct const Ctime_t = UInt const Cclock_t = UInt export Ctm, Ctime_t, Cclock_t include(joinpath(@__DIR__, "..", "gen", "vk_common.jl")) include(joinpath(@__DIR__, "..", "gen", "vk_api.jl")) # export everything foreach(names(@__MODULE__, all=true)) do s if startswith(string(s), "VK_") || startswith(string(s), "vk") || startswith(string(s), "VULKAN") @eval export $s end end end # module
[STATEMENT] lemma compact_space: "compact_space X \<longleftrightarrow> (\<forall>\<U>. (\<forall>U \<in> \<U>. openin X U) \<and> \<Union>\<U> = topspace X \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> \<Union>\<F> = topspace X))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. compact_space X = (\<forall>\<U>. (\<forall>U\<in>\<U>. openin X U) \<and> \<Union> \<U> = topspace X \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> \<Union> \<F> = topspace X)) [PROOF STEP] unfolding compact_space_alt [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<forall>\<U>. Ball \<U> (openin X) \<and> topspace X \<subseteq> \<Union> \<U> \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> topspace X \<subseteq> \<Union> \<F>)) = (\<forall>\<U>. (\<forall>U\<in>\<U>. openin X U) \<and> \<Union> \<U> = topspace X \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> \<Union> \<F> = topspace X)) [PROOF STEP] using openin_subset [PROOF STATE] proof (prove) using this: openin ?U ?S \<Longrightarrow> ?S \<subseteq> topspace ?U goal (1 subgoal): 1. (\<forall>\<U>. Ball \<U> (openin X) \<and> topspace X \<subseteq> \<Union> \<U> \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> topspace X \<subseteq> \<Union> \<F>)) = (\<forall>\<U>. (\<forall>U\<in>\<U>. openin X U) \<and> \<Union> \<U> = topspace X \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> \<Union> \<F> = topspace X)) [PROOF STEP] by fastforce
From Categories Require Import Essentials.Notations. From Categories Require Import Essentials.Types. From Categories Require Import Essentials.Facts_Tactics. From Categories Require Import Category.Main. From Categories Require Import Functor.Main. From Categories Require Import Cat.Cat. From Categories Require Import Ext_Cons.Prod_Cat.Prod_Cat Ext_Cons.Prod_Cat.Operations. From Categories Require Import Basic_Cons.Product. From Categories Require Import Basic_Cons.Exponential. From Categories Require Import NatTrans.NatTrans NatTrans.Func_Cat NatTrans.NatIso. From Categories Require Import Cat.Product Cat.Exponential. (** Facts about exponentials in Cat. *) Local Open Scope functor_scope. Section Exp_Cat_morph_ex_compose. Context {C C' C'' : Category} (F : (C'' × C) –≻ C') {B : Category} (G : B –≻ C'') . (** This is the more specific case of curry_compose. Proven separately for cat because of universe polymorphism issues that prevent cat to both have expoenentials and type_cat in it. *) Theorem Exp_Cat_morph_ex_compose : Exp_Cat_morph_ex (F ∘ (Prod_Functor G (Functor_id C))) = (Exp_Cat_morph_ex F) ∘ G. Proof. Func_eq_simpl. { FunExt. apply NatTrans_eq_simplify. apply JMeq_eq. ElimEq; trivial. } { FunExt; cbn. Func_eq_simpl. FunExt. cbn; auto. } Qed. End Exp_Cat_morph_ex_compose. Section Exp_Cat_morph_ex_compose_Iso. Context {C C' C'' : Category} (F : (C'' × C) –≻ C') {B : Category} (G : B –≻ C''). Local Hint Extern 1 => apply NatTrans_eq_simplify; cbn. Program Definition Exp_Cat_morph_ex_compose_Iso_RL : ((Exp_Cat_morph_ex (F ∘ (Prod_Functor G (Functor_id C)))) –≻ ((Exp_Cat_morph_ex F) ∘ G))%nattrans := {| Trans := fun c => {| Trans := fun d => id |} |}. Program Definition Exp_Cat_morph_ex_compose_Iso_LR : (((Exp_Cat_morph_ex F) ∘ G) –≻ (Exp_Cat_morph_ex (F ∘ (Prod_Functor G (Functor_id C)))))%nattrans := {| Trans := fun c => {| Trans := fun d => id |} |}. (** This is the isomorphic form of the theorem above. *) Program Definition Exp_Cat_morph_ex_compose_Iso : (((Exp_Cat_morph_ex (F ∘ (Prod_Functor G (Functor_id C))))%functor) ≃ ((Exp_Cat_morph_ex F) ∘ G)%functor)%natiso := {| iso_morphism := Exp_Cat_morph_ex_compose_Iso_RL; inverse_morphism := Exp_Cat_morph_ex_compose_Iso_LR |}. End Exp_Cat_morph_ex_compose_Iso. Section Exp_Cat_morph_ex_NT. Context {C C' C'' : Category} {F F' : (C'' × C) –≻ C'} (N : (F –≻ F')%nattrans). (** If we have a natural transformation from F to F' then we have a natural transformation from (curry F) to (curry F'). *) Program Definition Exp_Cat_morph_ex_NT : ((Exp_Cat_morph_ex F) –≻ (Exp_Cat_morph_ex F'))%nattrans := {| Trans := fun d => {| Trans := fun c => Trans N (d, c); Trans_com := fun c c' h => @Trans_com _ _ _ _ N (d, c) (d ,c') (id, h); Trans_com_sym := fun c c' h => @Trans_com_sym _ _ _ _ N (d, c) (d ,c') (id, h) |} |}. Next Obligation. Proof. apply NatTrans_eq_simplify; FunExt; cbn. apply Trans_com. Qed. Next Obligation. Proof. symmetry. apply Exp_Cat_morph_ex_NT_obligation_1. Qed. End Exp_Cat_morph_ex_NT. Section Exp_Cat_morph_ex_Iso. Context {C C' C'' : Category} {F F' : (C'' × C) –≻ C'} (N : (F ≃ F')%natiso) . (** If F is naturally isomorphic to F' then (curry F) is naturally isomorphic to (curry F'). *) Program Definition Exp_Cat_morph_ex_Iso : (Exp_Cat_morph_ex F ≃ Exp_Cat_morph_ex F')%natiso := {| iso_morphism := Exp_Cat_morph_ex_NT (iso_morphism N); inverse_morphism := Exp_Cat_morph_ex_NT (inverse_morphism N) |}. Next Obligation. Proof. apply NatTrans_eq_simplify; extensionality x; cbn. apply NatTrans_eq_simplify; extensionality y; cbn. change (Trans (N⁻¹) (x, y) ∘ Trans (iso_morphism N) (x, y))%morphism with (Trans (N⁻¹ ∘ N)%morphism (x, y)). rewrite left_inverse; trivial. Qed. Next Obligation. Proof. apply NatTrans_eq_simplify; extensionality x; cbn. apply NatTrans_eq_simplify; extensionality y; cbn. change (Trans (iso_morphism N) (x, y) ∘ Trans (N⁻¹) (x, y))%morphism with (Trans (N ∘ (N⁻¹))%morphism (x, y)). rewrite right_inverse; trivial. Qed. End Exp_Cat_morph_ex_Iso. Section Exp_Cat_morph_ex_inverse_NT. Context {C C' C'' : Category} {F F' : (C'' × C) –≻ C'} (N : ((Exp_Cat_morph_ex F) –≻ (Exp_Cat_morph_ex F'))%nattrans). (** If we have a natural transformation from (curry F) to (curry F') then we have a natural transformation from F to F'. *) Program Definition Exp_Cat_morph_ex_inverse_NT : (F –≻ F')%nattrans := {| Trans := fun d => Trans (Trans N (fst d)) (snd d) |}. Local Obligation Tactic := idtac. Next Obligation. Proof. intros [d1 d2] [d1' d2'] [h1 h2]; cbn in *. replace (F @_a (_, _) (_, _) (h1, h2))%morphism with ((F @_a (_, _) (_, _) (id d1', h2)) ∘ (F @_a (_, _) (_, _) (h1, id d2)))%morphism by auto. rewrite assoc_sym. cbn_rewrite (Trans_com (Trans N d1') h2). rewrite assoc. cbn_rewrite (f_equal (fun w => Trans w d2) (Trans_com N h1)). rewrite assoc_sym. rewrite <- F_compose. cbn; auto. Qed. Next Obligation. Proof. symmetry. apply Exp_Cat_morph_ex_inverse_NT_obligation_1. Qed. End Exp_Cat_morph_ex_inverse_NT. Section Exp_Cat_morph_ex_inverse_Iso. Context {C C' C'' : Category} {F F' : (C'' × C) –≻ C'} (N : (Exp_Cat_morph_ex F ≃ Exp_Cat_morph_ex F')%natiso) . (** If (curry F) is naturally isomorphic to (curry F') then we have that F is naturally isomorphic to F'. *) Program Definition Exp_Cat_morph_ex_inverse_Iso : (F ≃ F')%natiso := {| iso_morphism := Exp_Cat_morph_ex_inverse_NT (iso_morphism N); inverse_morphism := Exp_Cat_morph_ex_inverse_NT (inverse_morphism N) |}. Next Obligation. Proof. apply NatTrans_eq_simplify; extensionality x; cbn. match goal with [|- ?U = _] => match U with (Trans (Trans ?A ?X) ?Y ∘ Trans (Trans ?B ?X) ?Y)%morphism => change U with (Trans (Trans (A ∘ B) X) Y) end end. cbn_rewrite (left_inverse N); trivial. Qed. Next Obligation. Proof. apply NatTrans_eq_simplify; extensionality x; cbn. match goal with [|- ?U = _] => match U with (Trans (Trans ?A ?X) ?Y ∘ Trans (Trans ?B ?X) ?Y)%morphism => change U with (Trans (Trans (NatTrans_compose B A) X) Y) end end. cbn_rewrite (right_inverse N); trivial. Qed. End Exp_Cat_morph_ex_inverse_Iso.
[STATEMENT] lemma nonzero_bl2wc[simp]: "\<forall>m. b \<noteq> Bk\<up>(m) \<Longrightarrow> 0 < bl2wc b" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> 0 < bl2wc b [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> 0 < bl2wc b [PROOF STEP] have "\<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> bl2wc b = 0 \<Longrightarrow> False" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False [PROOF STEP] proof(induct b) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<lbrakk>\<forall>m. [] \<noteq> Bk \<up> m; bl2wc [] = 0\<rbrakk> \<Longrightarrow> False 2. \<And>a b. \<lbrakk>\<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False; \<forall>m. a # b \<noteq> Bk \<up> m; bl2wc (a # b) = 0\<rbrakk> \<Longrightarrow> False [PROOF STEP] case (Cons a b) [PROOF STATE] proof (state) this: \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False \<forall>m. a # b \<noteq> Bk \<up> m bl2wc (a # b) = 0 goal (2 subgoals): 1. \<lbrakk>\<forall>m. [] \<noteq> Bk \<up> m; bl2wc [] = 0\<rbrakk> \<Longrightarrow> False 2. \<And>a b. \<lbrakk>\<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False; \<forall>m. a # b \<noteq> Bk \<up> m; bl2wc (a # b) = 0\<rbrakk> \<Longrightarrow> False [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False \<forall>m. a # b \<noteq> Bk \<up> m bl2wc (a # b) = 0 [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False \<forall>m. a # b \<noteq> Bk \<up> m bl2wc (a # b) = 0 goal (1 subgoal): 1. False [PROOF STEP] apply(simp add: bl2wc.simps, case_tac a, simp_all add: bl2nat.simps bl2nat_double) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; \<forall>m. Bk # b \<noteq> Bk \<up> m; bl2nat b 0 = 0; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; bl2wc b = 0; a = Bk; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False\<rbrakk> \<Longrightarrow> False [PROOF STEP] apply(case_tac "\<exists> m. b = Bk\<up>(m)", erule exE) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<And>m. \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; \<forall>m. Bk # b \<noteq> Bk \<up> m; bl2nat b 0 = 0; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; bl2wc b = 0; a = Bk; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; b = Bk \<up> m\<rbrakk> \<Longrightarrow> False 2. \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; \<forall>m. Bk # b \<noteq> Bk \<up> m; bl2nat b 0 = 0; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; bl2wc b = 0; a = Bk; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; \<nexists>m. b = Bk \<up> m\<rbrakk> \<Longrightarrow> False [PROOF STEP] apply(metis append_Nil2 replicate_Suc_iff_anywhere) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; \<forall>m. Bk # b \<noteq> Bk \<up> m; bl2nat b 0 = 0; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; bl2wc b = 0; a = Bk; \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> False; \<nexists>m. b = Bk \<up> m\<rbrakk> \<Longrightarrow> False [PROOF STEP] by simp [PROOF STATE] proof (state) this: False goal (1 subgoal): 1. \<lbrakk>\<forall>m. [] \<noteq> Bk \<up> m; bl2wc [] = 0\<rbrakk> \<Longrightarrow> False [PROOF STEP] qed auto [PROOF STATE] proof (state) this: \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False goal (1 subgoal): 1. \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> 0 < bl2wc b [PROOF STEP] thus "\<forall>m. b \<noteq> Bk\<up>(m) \<Longrightarrow> 0 < bl2wc b" [PROOF STATE] proof (prove) using this: \<lbrakk>\<forall>m. b \<noteq> Bk \<up> m; bl2wc b = 0\<rbrakk> \<Longrightarrow> False goal (1 subgoal): 1. \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> 0 < bl2wc b [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<forall>m. b \<noteq> Bk \<up> m \<Longrightarrow> 0 < bl2wc b goal: No subgoals! [PROOF STEP] qed
From iris.algebra Require Import auth gmap excl. From aneris.algebra Require Import monotone. From aneris.aneris_lang Require Import network resources proofmode. From aneris.aneris_lang.lib Require Import list_proof lock_proof. From aneris.examples.ccddb.spec Require Import base time events resources. (** Specifications for read and write operations. *) Section Specification. Context `{!anerisG Mdl Σ, !DB_params, !DB_time, !Maximals_Computing, !DB_events, !DB_resources Mdl Σ}. (** General specifications for read & write *) Definition read_spec (rd : val) (i: nat) (z : socket_address) : iProp Σ := Eval simpl in □ (∀ (k : Key) (s : lhst), ⌜DB_addresses !! i = Some z⌝ -∗ {{{ Seen i s }}} rd #k @[ip_of_address z] {{{ vo, RET vo; ∃ (s': lhst), ⌜s ⊆ s'⌝ ∗ Seen i s' ∗ ((⌜vo = NONEV⌝ ∗ ⌜restrict_key k s' = ∅⌝) ∨ (∃ (v: val) (e : ae), ⌜vo = SOMEV v⌝ ∗ ⌜AE_val e = v⌝ ∗ ⌜e ∈ Maximals (restrict_key k s')⌝ ∗ OwnMemSnapshot k {[erasure e]} ∗ ⌜e = Observe (restrict_key k s')⌝)) }}})%I. Definition write_spec (wr : val) (i: nat) (z : socket_address) : iProp Σ := Eval simpl in □ (∀ (E : coPset) (k : Key) (v : SerializableVal) (s: lhst) (P : iProp Σ) (Q : ae → gmem → lhst → iProp Σ), ⌜DB_addresses !! i = Some z⌝ -∗ ⌜↑DB_InvName ⊆ E⌝ -∗ □ (∀ (s1: lhst) (e: ae), let s' := s1 ∪ {[ e ]} in ⌜s ⊆ s1⌝ → ⌜e ∉ s1⌝ → ⌜AE_key e = k⌝ → ⌜AE_val e = v⌝ → P ={⊤, E}=∗ ∀ (h : gmem), let a := erasure e in let h' := h ∪ {[ a ]} in ⌜a ∉ h⌝ → ⌜a ∈ Maximals h'⌝ → ⌜Maximum s' = Some e⌝ → Seen i s' -∗ k ↦ₛ h ={E∖↑DB_InvName}=∗ k ↦ₛ h' ∗ |={E, ⊤}=> Q e h s1) -∗ {{{ ⌜k ∈ DB_keys⌝ ∗ P ∗ Seen i s }}} wr #k v @[ip_of_address z] {{{ RET #(); ∃ (h: gmem) (s1: lhst) (e: ae), ⌜s ⊆ s1⌝ ∗ Q e h s1 }}})%I. Definition init_spec (init : val) : iProp Σ := □ ∀ (i : nat) (z : socket_address) (v : val), ⌜is_list DB_addresses v⌝ → ⌜DB_addresses !! i = Some z⌝ → {{{ ([∗ list] i ↦ z ∈ DB_addresses, z ⤇ DB_socket_proto) ∗ z ⤳ (∅, ∅) ∗ free_ports (ip_of_address z) {[port_of_address z]} ∗ init_token i}}} init v #i @[ip_of_address z] {{{ rd wr, RET (rd, wr); Seen i ∅ ∗ read_spec rd i z ∗ write_spec wr i z}}}. Definition simplified_write_spec (wr : val) (i: nat) (z : socket_address) (k : Key) (v : SerializableVal) (h : gmem) (s : lhst) : iProp Σ := (⌜DB_addresses !! i = Some z⌝ -∗ ⌜k ∈ DB_keys⌝ -∗ {{{ k ↦ᵤ h ∗ Seen i s }}} wr #k v @[ip_of_address z] {{{ RET #(); ∃ (s1: lhst) (e: ae), ⌜s ⊆ s1⌝ ∗ ⌜e ∉ s1⌝ ∗ ⌜AE_key e = k⌝ ∗ ⌜AE_val e = v⌝ ∗ ⌜erasure e ∉ h⌝ ∗ ⌜Maximum (s1 ∪ {[ e ]}) = Some e⌝ ∗ ⌜erasure e ∈ Maximals (h ∪ {[ erasure e ]})⌝ ∗ Seen i (s1 ∪ {[ e ]}) ∗ k ↦ᵤ (h ∪ {[ erasure e ]}) }}})%I. Lemma write_spec_implies_simplified_write_spec wr i z : write_spec wr i z ⊢ ∀ k v h s, simplified_write_spec wr i z k v h s. Proof. iIntros "#Hwr" (k v h s). iIntros (Hi Hk) "!#". iIntros (Φ) "[Hk Hseen] HΦ". set (P := k ↦ᵤ h). set (Q e1 h1 s1 := (⌜h1 = h⌝ ∗ ⌜s ⊆ s1⌝ ∗ ⌜e1 ∉ s1⌝ ∗ ⌜AE_key e1 = k⌝ ∗ ⌜AE_val e1 = v⌝ ∗ ⌜erasure e1 ∉ h1⌝ ∗ ⌜Maximum (s1 ∪ {[e1]}) = Some e1⌝ ∗ ⌜erasure e1 ∈ Maximals (h1 ∪ {[erasure e1]})⌝ ∗ Seen i (s1 ∪ {[e1]}) ∗ k ↦ᵤ (h1 ∪ {[erasure e1]}))%I). iSpecialize ("Hwr" $! ⊤ k v s P Q with "[] []"); [done|done|]. iApply ("Hwr" with "[] [$Hk $Hseen]"); [|done|]. - iModIntro. iIntros (s1 e Hs1 Hes1 Hek Hev) "Hkh". unfold P, Q. iModIntro. iIntros (h' Hh' He'h' Hmax) "Hseen Hsys". iDestruct (User_Sys_agree with "Hkh Hsys") as %<-. iMod (OwnMem_update _ _ (h ∪ {[erasure e]}) with "Hkh Hsys") as "[Hkh Hsys]"; first set_solver. iModIntro; eauto with iFrame. - iNext. unfold Q. iDestruct 1 as (h1 s1 e2 Hse) "(->&%&%&%&%&%&%&%&?&?)". iApply "HΦ"; iExists _, _; eauto with iFrame. Qed. End Specification. (** Modular specification for causal memory vector-clock based implementation. *) Class DBG `{!DB_time, !DB_events} Σ := { DBG_Global_mem_excl :> inG Σ (authUR (gmapUR Key (exclR (gsetO we)))); DBG_Global_mem_mono :> inG Σ (authUR (gmapUR Key (gsetUR we))); DBG_local_history_mono :> inG Σ (authUR (monotoneUR seen_relation)); DBG_local_history_gset :> inG Σ (authUR (gsetUR ae)); DBG_lockG :> lockG Σ; }. Definition DBΣ `{!DB_time, !DB_events} : gFunctors := #[GFunctor (authUR (gmapUR Key (exclR (gsetO we)))); GFunctor (authUR (gmapUR Key (gsetUR we))); GFunctor (authUR (monotoneUR seen_relation)); GFunctor (authUR (gsetUR ae)); lockΣ]. Instance subG_DBΣ `{!DB_time, !DB_events} {Σ} : subG DBΣ Σ → DBG Σ. Proof. econstructor; solve_inG. Qed. Class DB_init_function := { init : val }. Section Init. Context `{!anerisG Mdl Σ, !DB_params, !DB_time, !Maximals_Computing, !DB_events, !DBG Σ, !DB_init_function}. Class DB_init := { DB_init_time :> DB_time; DB_init_events :> DB_events; DB_init_setup E : True ⊢ |={E}=> ∃ (DBRS : DB_resources Mdl Σ), GlobalInv ∗ ([∗ list] i ↦ _ ∈ DB_addresses, init_token i) ∗ ([∗ set] k ∈ DB_keys, OwnMemUser k ∅) ∗ init_spec init; }. End Init.
> module PNat.Operations > import PNat.PNat > import Nat.Positive > import Nat.Operations > import Nat.OperationsProperties > import Pairs.Operations > %default total > %access public export > ||| The predecessor of a PNat > pred : PNat -> Nat > pred (Element _ (MkPositive {n})) = n > ||| > fromNat : (m : Nat) -> Z `LT` m -> PNat > {- > fromNat Z zLTz = absurd zLTz > fromNat (S m) _ = Element (S m) (MkPositive {n = m}) > ----} > --{- > fromNat m prf = Element m pm where > pm : Positive m > pm = fromSucc (pred m prf) m (predLemma m prf) > ---} > ||| > toNat : PNat -> Nat > toNat = getWitness > ||| > plus : PNat -> PNat -> PNat > plus (Element m pm) (Element n pn) = Element (m + n) (plusPreservesPositivity pm pn) > ||| > (+) : PNat -> PNat -> PNat > (+) = plus > ||| > mult : PNat -> PNat -> PNat > mult (Element m pm) (Element n pn) = Element (m * n) (multPreservesPositivity pm pn) > ||| > (*) : PNat -> PNat -> PNat > (*) = mult > {- > ---}
# includet("D:\\projects\\vsCode\\MedPipe\\MedPipe\\src\\structs\\distinctColorsSaved.jl") # includet("D:\\projects\\vsCode\\MedPipe\\MedPipe\\src\\visualizationUtils\\visualizationFromHdf5.jl") # includet("D:\\projects\\vsCode\\MedPipe\\MedPipe\\src\\HDF5Utils\\HDF5saveUtils.jl") # includet("D:\\projects\\vsCode\\MedPipe\\MedPipe\\src\\fromMonai\\LoadFromMonai.jl")
\section{Research Goal} This research will show how generating comment is important to identify fake news on social media. Fake news constitutes a grave menace to the safety of our world. Therefore, it is important to detect news credibility before spreading on social media. We aim to detect fake news more precisely by generating comments from articles that are only available after they have spread. In computer science, computer security is the protection of computer systems. Likewise, countering to fake news prevent people from exposing to malicious information on social media. This is similar to computer security for the purpose of protecting the safety of society.
# Kinematik-Berechnung 3. Arm KAS5 # Beschreibung # # Modell ohne Zwangsbedingungen. Diese Definitionsdatei erzeugt Dummy-Variablen, damit die Code-Generierung funktioniert. # # Die Gelenkvariablen der Schnittgelenke sollen nicht berechnet werden und sind als konstante Ausdrücke in kintmp_s vorgegeben und werden später mit Null ersetzt. # # Autor # Moritz Schappler, [email protected], 2018-02 # Institut fuer mechatronische Systeme, Leibniz Universitaet Hannover # Initialisierung restart: kin_constraints_exist := true: # Für Speicherung ; with(LinearAlgebra): with(StringTools): # Für Zeitausgabe ; read "../helper/proc_convert_s_t": read "../helper/proc_convert_t_s": read "../helper/proc_MatlabExport": codegen_act := true: read "../robot_codegen_constraints/proc_subs_kintmp_exp": read "../robot_codegen_definitions/robot_env": read sprintf("../codeexport/%s/tmp/tree_floatb_definitions", robot_name): kintmp_subsexp := Matrix(2*RowDimension(kintmp_s),2): kin_constraints_exist := true: # Dummy-Einträge für Schnitt-Gelenke # Die Winkel der Schnittgelenke sind egal, daher keine Berechnung. # Ersetze alle mit Null kintmp_qs := kintmp_s*0: kintmp_qt := kintmp_t*0: # Speichern der Ergebnisse save kin_constraints_exist, kintmp_qs, kintmp_qt, kintmp_subsexp, sprintf("../codeexport/%s/tmp/kinematic_constraints_maple_inert", robot_name): save kin_constraints_exist, kintmp_qs, kintmp_qt, kintmp_subsexp, sprintf("../codeexport/%s/tmp/kinematic_constraints_maple_inert.m", robot_name): # Liste der Parameter speichern # Liste mit abhängigen konstanten Kinematikparametern erstellen (wichtig für Matlab-Funktionsgenerierung) read "../helper/proc_list_constant_expressions"; kc_symbols := Matrix(list_constant_expressions( kintmp_subsexp(..,2) )): save kc_symbols, sprintf("../codeexport/%s/tmp/kinematic_constraints_symbols_list_maple", robot_name): kintmp_s:
function varargout = arg_guidialog(func,varargin) % Create an input dialog that displays input fields for a Function and Parameters. % Parameters = arg_guidialog(Function, Options...) % % The Parameters that are passed to the function can be used to override some of its defaults. The % function must declare its arguments via arg_define. In addition, only a Subset of the function's % specified arguments can be displayed. % % If this function is called with no arguments from within a function that uses arg_define it brings % up a dialog for the function's defined arguments, with values assigned based on the function's % inputs (contents of in varargin) and returns an argument struct if the dialog was confirmed with a % click on OK, and an empty value otherwise. The calling function can exit on empty, or otherwise % resume with entered parameters. % % In: % Function : the function for which to display arguments % % Options... : optional name-value pairs; possible names are: % 'Parameters' : cell array of parameters to the Function to override some of its % defaults. % % 'Subset' : Cell array of argument names to which the dialog shall be restricted; % these arguments may contain . notation to index into arg_sub and the % selected branch(es) of arg_subswitch/arg_subtoggle specifiers. Empty % cells show up in the dialog as empty rows. % % 'Title' : title of the dialog (by default: functionname()) % % 'Invoke' : whether to invoke the function directly; in this case, the output % arguments are those of the function (default: true, unless called in % the form g = arg_guidialog; from within some function) % % 'ShowGuru' : whether to show parameters marked as guru-level. (default: according % to env_startup setting) % % Out: % Parameters : If Invoke was set to true, this is either the results of the function call or empty % (if the dialog was cancelled). If Invoke was set to false, this is either a struct % that is a valid input to the Function, or an empty value if cancel was clicked. % % Examples: % % bring up a configuration dialog for the given function % settings = arg_guidialog(@myfunction) % % % bring up a config dialog with some pre-specified defaults % settings = arg_guidialog(@myfunction,'Parameters',{4,20,'test'}) % % % bring up a config dialog which displays only a subset of the function's arguments (in a particular order) % settings = arg_guidialog(@myfunction,'Subset',{'blah','xyz',[],'flag'}) % % % bring up a dialog, and invoke the function with the selected settings after the user clicks OK % settings = arg_guidialog(@myfunction,'Invoke',true) % % % from within a function % args = arg_define(varargin, ...); % if nargin < 1 % % optionally allow the user to enter arguments via a GUI % args = arg_guidialog; % % user clicked cancel? % if isempty(args), return; end % end % % See also: % arg_guidialog_ex, arg_guipanel, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA global tracking; if ~exist('func','var') % called with no arguments, from inside a function: open function dialog func = hlp_getcaller; varargin = {'Parameters',evalin('caller','varargin'),'Invoke',nargout==0}; end if ischar(func) func = str2func(func); end % parse arguments... hlp_varargin2struct(varargin, ... {'params','Parameters','parameters'},{}, ... {'subset','Subset'},{}, ... {'dialogtitle','title','Title'}, [char(func) '()'], ... {'buttons','Buttons'},[], ... {'invoke','Invoke'},true, ... {'show_guru','ShowGuru'},tracking.gui.show_guru); oldparams = params; % obtain the argument specification for the function rawspec = arg_report('rich', func, params); %#ok<*NODEF> % extract a list of sub arguments... if ~isempty(subset) && subset{1}==-1 % user specified a set of items to *exclude* % convert subset to setdiff(all-arguments,subset) allnames = fieldnames(arg_tovals(rawspec)); subset(1) = []; subset = allnames(~ismember(allnames,[subset 'arg_direct'])); end [spec,subset] = obtain_items(rawspec,subset,'',show_guru); % trim unnecessary blank margins at the beginning and end while isempty(spec{1}) && isempty(subset{1}) spec = spec(2:end); subset = subset(2:end); end while isempty(spec{end}) && isempty(subset{end}) spec = spec(1:end-1); subset = subset(1:end-1); end % create an inputgui() dialog... geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2); geomvert = ones(1,length(spec)+length(buttons)/2); % turn the spec into a UI list... uilist = {}; for k = 1:length(spec) s = spec{k}; if isempty(s) uilist(end+1:end+2) = {{} {}}; else if isempty(s.help) error(['Cannot display the argument ' subset{k} ' because it contains no description.']); else tag = subset{k}; uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'}; % depending on the type, we introduce different types of input widgets here... if iscell(s.range) && strcmp(s.type,'char') % string popup menu uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag}; elseif strcmp(s.type,'logical') if iscell(s.range) % length(s.range)>1 % multiselect uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(ismember(s.range,s.value)),'tag',tag,'min',1,'max',100000}; geomvert(k) = min(3.5,length(s.range)); else % checkbox uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag}; end elseif strcmp(s.type,'char') % string edit uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag}; else % expression edit if isinteger(s.value) s.value = double(s.value); end uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag}; end % append the tooltip string if length(s.help) > 1 uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end end end if ~isempty(buttons) && k==buttons{1} % render a command button uilist(end+1:end+2) = {{} buttons{2}}; buttons(1:2) = []; end end % invoke the GUI, obtaining a list of output values... helptopic = char(func); try if helptopic(1) == '@' fn = functions(func); tmp = struct2cell(fn.workspace{1}); helptopic = class(tmp{1}); end catch disp('Cannot deduce help topic.'); end [outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom',['env_doc ' helptopic], 'title',dialogtitle,'geomvert',geomvert); %#ok<ASGLU> if ~isempty(okpressed) % remove blanks from the spec spec = spec(~cellfun('isempty',spec)); subset = subset(~cellfun('isempty',subset)); % turn the raw specification into a parameter struct (a non-direct one, since we will mess with % it) params = arg_tovals(rawspec); % for each parameter produced by the GUI... for k = 1:length(outs) s = spec{k}; % current specifier v = outs{k}; % current raw value % do type conversion according to spec if iscell(s.range) && strcmp(s.type,'char') v = s.range{v}; elseif strcmp(s.type,'expression') v = eval(v); elseif strcmp(s.type,'logical') if length(s.range)>1 v = s.range(v); else v = logical(v); end elseif strcmp(s.type,'char') % noting to do elseif ~isempty(v) && ischar(v) v = eval(v); end % assign the converted value to params struct... params = assign(params,subset{k},v); end % now send the result through the function to check for errors and obtain a values structure... params = arg_report('rich',func,{params}); params = arg_tovals(params); % invoke the function, if so desired if ischar(func) func = str2func(func); end if invoke [varargout{1:nargout(func)}] = func(oldparams{:},params); else varargout = {params}; end else varargout = {[]}; end % obtain a cell array of spec entries by name from the given specification function [items,ids] = obtain_items(rawspec,requested,prefix,show_guru) if ~exist('prefix','var') prefix = ''; end items = {}; ids = {}; % determine what subset of (possibly nested) items is requested if isempty(requested) % look for a special argument/property arg_dialogsel, which defines the standard dialog % representation for the given specification dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names})); if ~isempty(dialog_sel) requested = rawspec(dialog_sel).value; end end if isempty(requested) % empty means that all items are requested for k=1:length(rawspec) items{k} = rawspec(k); ids{k} = [prefix rawspec(k).names{1}]; end else % otherwise we need to obtain those items for k=1:length(requested) if ~isempty(requested{k}) try [items{k},subid] = obtain(rawspec,requested{k}); catch error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']); end ids{k} = [prefix subid]; end end end % splice items that have children (recursively) into this list for k = length(items):-1:1 % special case: switch arguments are not spliced, but instead the argument that defines the % option popupmenu will be retained if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested)) [subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.'],show_guru); if ~isempty(subitems) % and introduce blank rows around them items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)]; ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)]; end end end % remove items that cannot be displayed retain = cellfun(@(x)isempty(x)||x.displayable&&(show_guru||~x.guru),items); items = items(retain); ids = ids(retain); % remove double blank rows empties = cellfun('isempty',ids); items(empties(1:end-1) & empties(2:end)) = []; ids(empties(1:end-1) & empties(2:end)) = []; % obtain a spec entry by name from the given specification function [item,id] = obtain(rawspec,identifier,prefix) if ~exist('prefix','var') prefix = ''; end % parse the . notation dot = find(identifier=='.',1); if ~isempty(dot) [head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end)); else head = identifier; rest = []; end % search for the identifier at this level names = {rawspec.names}; for k=1:length(names) if any(strcmp(names{k},head)) % found a match! if isempty(rest) % return it item = rawspec(k); id = [prefix names{k}{1}]; else % obtain the rest of the identifier [item,id] = obtain(rawspec(k).children,rest,[prefix names{k}{1} '.']); end return; end end error(['The given identifier (' head ') was not found among the function''s declared arguments.']); % assign a field with dot notation in a struct function s = assign(s,id,v) % parse the . notation dot = find(id=='.',1); if ~isempty(dot) [head,rest] = deal(id(1:dot-1), id(dot+1:end)); if ~isfield(s,head) s.(head) = struct(); end s.(head) = assign(s.(head),rest,v); else s.(id) = v; end
section \<open>Sepref-Definition Command\<close> theory Sepref_Definition imports Sepref_Rules "Lib/Pf_Mono_Prover" "Lib/Term_Synth" keywords "sepref_definition" :: thy_goal and "sepref_thm" :: thy_goal begin subsection \<open>Setup of Extraction-Tools\<close> declare [[cd_patterns "hn_refine _ ?f _ _ _"]] lemma heap_fixp_codegen: assumes DEF: "f \<equiv> heap.fixp_fun cB" assumes M: "(\<And>x. mono_Heap (\<lambda>f. cB f x))" shows "f x = cB f x" unfolding DEF apply (rule fun_cong[of _ _ x]) apply (rule heap.mono_body_fixp) apply fact done ML \<open> structure Sepref_Extraction = struct val heap_extraction: Refine_Automation.extraction = { pattern = Logic.varify_global @{term "heap.fixp_fun x"}, gen_thm = @{thm heap_fixp_codegen}, gen_tac = (fn ctxt => Pf_Mono_Prover.mono_tac ctxt ) } val setup = I (*#> Refine_Automation.add_extraction "trivial" triv_extraction*) #> Refine_Automation.add_extraction "heap" heap_extraction end \<close> setup Sepref_Extraction.setup subsection \<open>Synthesis setup for sepref-definition goals\<close> (* TODO: The UNSPEC are an ad-hoc hack to specify the synthesis goal *) consts UNSPEC::'a abbreviation hfunspec :: "('a \<Rightarrow> 'b \<Rightarrow> assn) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> assn)\<times>('a \<Rightarrow> 'b \<Rightarrow> assn)" ("(_\<^sup>?)" [1000] 999) where "R\<^sup>? \<equiv> hf_pres R UNSPEC" definition SYNTH :: "('a \<Rightarrow> 'r nres) \<Rightarrow> (('ai \<Rightarrow>'ri Heap) \<times> ('a \<Rightarrow> 'r nres)) set \<Rightarrow> bool" where "SYNTH f R \<equiv> True" definition [simp]: "CP_UNCURRY _ _ \<equiv> True" definition [simp]: "INTRO_KD _ _ \<equiv> True" definition [simp]: "SPEC_RES_ASSN _ _ \<equiv> True" lemma [synth_rules]: "\<lbrakk>INTRO_KD R1 R1'; INTRO_KD R2 R2'\<rbrakk> \<Longrightarrow> INTRO_KD (R1*\<^sub>aR2) (R1'*\<^sub>aR2')" by simp lemma [synth_rules]: "INTRO_KD (R\<^sup>?) (hf_pres R k)" by simp lemma [synth_rules]: "INTRO_KD (R\<^sup>k) (R\<^sup>k)" by simp lemma [synth_rules]: "INTRO_KD (R\<^sup>d) (R\<^sup>d)" by simp lemma [synth_rules]: "SPEC_RES_ASSN R R" by simp lemma [synth_rules]: "SPEC_RES_ASSN UNSPEC R" by simp lemma synth_hnrI: "\<lbrakk>CP_UNCURRY fi f; INTRO_KD R R'; SPEC_RES_ASSN S S'\<rbrakk> \<Longrightarrow> SYNTH_TERM (SYNTH f ([P]\<^sub>a R\<rightarrow>S)) ((fi,SDUMMY)\<in>SDUMMY,(fi,f)\<in>([P]\<^sub>a R'\<rightarrow>S'))" by (simp add: SYNTH_def) term starts_with ML \<open> structure Sepref_Definition = struct fun make_hnr_goal t ctxt = let val ctxt = Variable.declare_term t ctxt val (pat,goal) = case Term_Synth.synth_term @{thms synth_hnrI} ctxt t of @{mpat "(?pat,?goal)"} => (pat,goal) | t => raise TERM("Synthesized term does not match",[t]) val pat = Thm.cterm_of ctxt pat |> Refine_Automation.prepare_cd_pattern ctxt val goal = HOLogic.mk_Trueprop goal in ((pat,goal),ctxt) end val cfg_prep_code = Attrib.setup_config_bool @{binding sepref_definition_prep_code} (K true) local open Refine_Util val flags = parse_bool_config' "prep_code" cfg_prep_code val parse_flags = parse_paren_list' flags in val sd_parser = parse_flags -- Parse.binding -- Parse.opt_attribs --| @{keyword "is"} -- Parse.term --| @{keyword "::"} -- Parse.term end fun mk_synth_term ctxt t_raw r_raw = let val t = Syntax.parse_term ctxt t_raw val r = Syntax.parse_term ctxt r_raw val t = Const (@{const_name SYNTH},dummyT)$t$r in Syntax.check_term ctxt t end fun sd_cmd ((((flags,name),attribs),t_raw),r_raw) lthy = let local val ctxt = Refine_Util.apply_configs flags lthy in val flag_prep_code = Config.get ctxt cfg_prep_code end val t = mk_synth_term lthy t_raw r_raw val ((pat,goal),ctxt) = make_hnr_goal t lthy fun after_qed [[thm]] ctxt = let val thm = singleton (Variable.export ctxt lthy) thm val (_,lthy) = Local_Theory.note ((Refine_Automation.mk_qualified (Binding.name_of name) "refine_raw",[]),[thm]) lthy; val ((dthm,rthm),lthy) = Refine_Automation.define_concrete_fun NONE name attribs [] thm [pat] lthy val lthy = lthy |> flag_prep_code ? Refine_Automation.extract_recursion_eqs [Sepref_Extraction.heap_extraction] (Binding.name_of name) dthm val _ = Thm.pretty_thm lthy dthm |> Pretty.string_of |> writeln val _ = Thm.pretty_thm lthy rthm |> Pretty.string_of |> writeln in lthy end | after_qed thmss _ = raise THM ("After-qed: Wrong thmss structure",~1,flat thmss) in Proof.theorem NONE after_qed [[ (goal,[]) ]] ctxt end val _ = Outer_Syntax.local_theory_to_proof @{command_keyword "sepref_definition"} "Synthesis of imperative program" (sd_parser >> sd_cmd) val st_parser = Parse.binding --| @{keyword "is"} -- Parse.term --| @{keyword "::"} -- Parse.term fun st_cmd ((name,t_raw),r_raw) lthy = let val t = mk_synth_term lthy t_raw r_raw val ((_,goal),ctxt) = make_hnr_goal t lthy fun after_qed [[thm]] ctxt = let val thm = singleton (Variable.export ctxt lthy) thm val _ = Thm.pretty_thm lthy thm |> Pretty.string_of |> tracing val (_,lthy) = Local_Theory.note ((Refine_Automation.mk_qualified (Binding.name_of name) "refine_raw",[]),[thm]) lthy; in lthy end | after_qed thmss _ = raise THM ("After-qed: Wrong thmss structure",~1,flat thmss) in Proof.theorem NONE after_qed [[ (goal,[]) ]] ctxt end val _ = Outer_Syntax.local_theory_to_proof @{command_keyword "sepref_thm"} "Synthesis of imperative program: Only generate raw refinement theorem" (st_parser >> st_cmd) end \<close> end
Require Import OrderedType. Require Import ProjectedOrderedType. Inductive accessRight := | wk : accessRight | rd : accessRight | wr : accessRight | tx : accessRight. Module ProjectedAccessRight <: ProjectedToNat. Definition t := accessRight. Definition project_to_nat r:= match r with | wk => 0 | rd => 1 | wr => 2 | tx => 3 end. Theorem project_to_nat_unique: forall x y:t, (project_to_nat x) = (project_to_nat y) <-> x = y. Proof. intros x y; split; intros H; unfold project_to_nat in *; destruct x; destruct y; auto; discriminate. Qed. End ProjectedAccessRight. Module AccessRight := POT_to_OT ProjectedAccessRight. (* Module AccessRightOT : OrderedType := AccessRight. *)
open import Agda.Primitive open import Semigroup module Monoid where record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b) Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∈ A ] B record Monoid {A : Set} (_∙_ : A → A → A) (ε : A) : Set where field semigroup : Semigroup _∙_ identity : (∀ x → ε ∙ x ≡ x) × (∀ x → x ∙ ε ≡ x)
gap>List(SymmetricGroup(4), p -> Permuted([1 .. 4], p)); perms(4); [ [ 1, 2, 3, 4 ], [ 4, 2, 3, 1 ], [ 2, 4, 3, 1 ], [ 3, 2, 4, 1 ], [ 1, 4, 3, 2 ], [ 4, 1, 3, 2 ], [ 2, 1, 3, 4 ], [ 3, 1, 4, 2 ], [ 1, 3, 4, 2 ], [ 4, 3, 1, 2 ], [ 2, 3, 1, 4 ], [ 3, 4, 1, 2 ], [ 1, 2, 4, 3 ], [ 4, 2, 1, 3 ], [ 2, 4, 1, 3 ], [ 3, 2, 1, 4 ], [ 1, 4, 2, 3 ], [ 4, 1, 2, 3 ], [ 2, 1, 4, 3 ], [ 3, 1, 2, 4 ], [ 1, 3, 2, 4 ], [ 4, 3, 2, 1 ], [ 2, 3, 4, 1 ], [ 3, 4, 2, 1 ] ]
#pragma once #include <errno.h> // errno #include <fcntl.h> // open, write #include <unistd.h> // getpid #include <sstream> #include <boost/filesystem.hpp> #include <gsl/gsl_util> #include "do_persistence.h" #include "error_macros.h" // RAII wrapper for creating, writing and deleting the file that will // contain the port number for the REST interface. class RestPortAdvertiser { public: RestPortAdvertiser(uint16_t port) { // We cannot remove the port file on shutdown because we have already dropped permissions. // Clean it up now when we are still running as root. _DeleteOlderPortFiles(); std::stringstream ss; ss << docli::GetRuntimeDirectory() << '/' << _restPortFileNamePrefix << '.' << getpid(); _outFilePath = ss.str(); // If file already exists, it is truncated. Probably from an old instance that terminated abnormally. // Allow file to only be read by others. int fd = open(_outFilePath.data(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IRGRP | S_IROTH); if (fd == -1) { THROW_HR_MSG(E_FAIL, "Failed to open file %s, errno: %d", _outFilePath.data(), errno); } try { const auto writeStr = std::to_string(port) + '\n'; const auto cbWrite = gsl::narrow_cast<ssize_t>(writeStr.size() * sizeof(char)); const ssize_t written = write(fd, writeStr.data(), cbWrite); if (written != cbWrite) { THROW_HR_MSG(E_FAIL, "Failed to write port, written: %zd, errno: %d", written, errno); } } catch (...) { (void)close(fd); throw; } (void)close(fd); } const std::string& OutFilePath() const { return _outFilePath; } private: void _DeleteOlderPortFiles() try { auto& runtimeDirectory = docli::GetRuntimeDirectory(); for (boost::filesystem::directory_iterator itr(runtimeDirectory); itr != boost::filesystem::directory_iterator(); ++itr) { auto& dirEntry = itr->path(); if (dirEntry.filename().string().find(_restPortFileNamePrefix) != std::string::npos) { boost::system::error_code ec; boost::filesystem::remove(dirEntry, ec); if (ec) { DoLogWarning("Failed to delete old port file (%d, %s) %s", ec.value(), ec.message().data(), dirEntry.string().data()); } } } } CATCH_LOG() std::string _outFilePath; static constexpr const char* const _restPortFileNamePrefix = "restport"; };
open list -- Exercise: 1 star (snd_fst_is_swap) def swap : ℕ × ℕ → ℕ × ℕ | (a, b) := (b, a) lemma snd_fst_is_swap : ∀ p : ℕ × ℕ, (p.snd, p.fst) = swap p | (a, b) := rfl -- Exercise: 1 star, optional (fst_swap_is_snd) theorem fst_swap_is_snd : ∀ p : ℕ × ℕ, (swap p).fst = p.snd | (a, b) := rfl -- Exercise: 2 stars, recommended (list_funs) def nonzeros : list ℕ → list ℕ | nil := nil | (cons x xs) := if x ≠ 0 then [x] ++ nonzeros xs else nonzeros xs lemma test_nonzeros : nonzeros [0, 1, 0, 2, 3, 0, 0] = [1, 2, 3] := rfl def oddmembers : list ℕ → list ℕ | nil := nil | (cons x xs) := if nat.bodd x then [x] ++ oddmembers xs else oddmembers xs lemma test_oddmembers : oddmembers [0, 1, 0, 2, 3, 0, 0] = [1, 3] := rfl def countoddmembers (l : list ℕ) : ℕ := length (oddmembers l) lemma test_countoddmembers1 : countoddmembers [1, 0, 3, 1, 4, 5] = 4 := rfl lemma test_countoddmembers2 : countoddmembers [0, 2, 4] = 0 := rfl lemma test_countoddmembers3 : countoddmembers nil = 0 := rfl -- Exercise: 3 stars, advanced (alternate) def alternate : list ℕ → list ℕ → list ℕ | [] [] := [] | [] (y :: ys) := [y] ++ alternate [] ys | (x :: xs) [] := [x] ++ alternate xs [] | (x :: xs) (y :: ys) := [x, y] ++ alternate xs ys lemma test_alternate1 : alternate [1,2,3] [4,5,6] = [1,4,2,5,3,6] := rfl lemma test_alternate2 : alternate [1] [4, 5, 6] = [1,4,5,6] := rfl lemma test_alternate3 : alternate [1,2,3] [4] = [1,4,2,3] := rfl lemma test_alternate4 : alternate [] [20,30] = [20, 30] := rfl -- Exercise: 3 stars, recommended (bag_functions) def bag : Type := list ℕ def count : ℕ → bag → ℕ | n [] := 0 | n (x::xs) := if x = n then 1 + count n xs else count n xs lemma test_count1 : count 1 [1,2,3,1,4,1] = 3 := rfl lemma test_count2 : count 6 [1,2,3,1,4,1] = 0 := rfl def bag.sum : bag → bag → bag := λ a b, @list.append ℕ a b lemma test_sum1 : count 1 (bag.sum [1,2,3] [1,4,1]) = 3 := rfl def bag.add : ℕ → bag → bag := λ a b, list.append b [a] lemma test_add1 : count 1 (bag.add 1 [1,4,1]) = 3 := rfl lemma test_add2 : count 5 (bag.add 1 [1,4,1]) = 0 := rfl def bag.mem : ℕ → bag → bool | n [] := ff | n (x::xs) := if n = x then tt else bag.mem n xs lemma test_mem1 : bag.mem 1 [1,4,1] = tt := rfl lemma test_mem2 : bag.mem 2 [1,4,1] = ff := rfl -- Exercise: 3 stars, optional (bag_more_functions) def remove_one : ℕ → bag → bag | n [] := [] | n (x::xs) := if n = x then xs else x :: (remove_one n xs) lemma test_remove_one1 : count 5 (remove_one 5 [2,1,5,4,1]) = 0 := rfl lemma test_remove_one2 : count 5 (remove_one 5 [2,1,4,1]) = 0 := rfl lemma test_remove_one3 : count 4 (remove_one 5 [2,1,4,5,1,4]) = 2 := rfl lemma test_remove_one4 : count 5 (remove_one 5 [2,1,5,4,5,1,4]) = 1 := rfl def remove_all : ℕ → bag → bag | n [] := [] | n (x::xs) := if n = x then remove_all n xs else x :: remove_all n xs lemma test_remove_all1 : count 5 (remove_all 5 [2,1,5,4,1]) = 0 := rfl lemma test_remove_all2 : count 5 (remove_all 5 [2,1,4,1]) = 0 := rfl lemma test_remove_all3 : count 4 (remove_all 5 [2,1,4,5,1,4]) = 2 := rfl lemma test_remove_all4 : count 5 (remove_all 5 [2,1,5,4,5,1,4,5,1,4]) = 0 := rfl def bag.subset : bag → bag → bool | [] [] := tt | [] (y::ys) := tt | (x::xs) [] := ff | (x::xs) y := if bag.mem x y then bag.subset xs (remove_one x y) else ff lemma test_subset1 : bag.subset [1,2] [2,1,4,1] = tt := rfl lemma test_subset2 : bag.subset [1,2,2] [2,1,4,1] = ff := rfl -- Exercise: 4 stars, advanced (rev_injective) def rev : list ℕ → list ℕ | nil := nil | (x::xs) := (rev xs) ++ [x] lemma test_rev1 : rev [3,2,1] = [1,2,3] := rfl lemma test_rev2 : rev [] = [] := rfl lemma rev_step : ∀ (hd : ℕ) (tl : list ℕ), rev (hd :: tl) = rev tl ++ [hd] := by intros; refl lemma rev_distrib : ∀ l1 l2 : list ℕ, rev (l1 ++ l2) = rev l2 ++ rev l1 := begin intros, induction l1 with x xs ihl1, induction l2 with y ys ihl2, refl, simp [rev], induction l2 with y ys ihl2, simp [rev], { simp [rev], rw [ihl1, rev_step, ←cons_append], simp * } end lemma rev_involutive : ∀ l : list ℕ, rev (rev l) = l | nil := rfl | (x::xs) := by simp [*, rev, rev_step, rev_distrib] lemma rev_nil : rev nil = nil := rfl lemma rev_singleton : ∀ n : ℕ, rev [n] = [n] := λ n, rfl lemma ceqa (hd : ℕ) (tl : list ℕ) : hd :: tl = [hd] ++ tl := rfl theorem rev_injective : function.injective rev := λ a b h, by rw [←rev_involutive a, ←rev_involutive b, h]
// Copyright (c) 2014, Alexey Ivanov #include "stdafx.h" #include "rpc/request_handler.h" #include "http_server/request_handler.h" #include "rpc/value.h" #include "rpc/method.h" #include "rpc/exception.h" #include "rpc/frontend.h" #include "rpc/request_parser.h" #include "rpc/response_serializer.h" #include "utils/util.h" #include <boost/foreach.hpp> #include "plugin/logger.h" namespace Rpc { namespace { using namespace ControlPlugin::PluginLogger; ModuleLoggerType& logger() { return getLogManager().getModuleLogger<Rpc::RequestHandler>(); } } const int kGENERAL_ERROR_CODE = -1; void RequestHandler::addFrontend(std::auto_ptr<Frontend> frontend) { frontends_.push_back( frontend.release() ); } Frontend* RequestHandler::getFrontEnd(const std::string& uri) { BOOST_FOREACH(Frontend& frontend, frontends_) { if ( frontend.canHandleRequest(uri) ) { return &frontend; } } return nullptr; } Method* RequestHandler::getMethodByName(const std::string& name) { auto method_iterator = rpc_methods_.find(name); if ( method_iterator != rpc_methods_.end() ) { return method_iterator->second; } return nullptr; } void RequestHandler::addMethod(std::auto_ptr<Method> method) { std::string key( method->name() ); // boost::ptr_map::insert() needs reference to non-constant. rpc_methods_.insert( key, method.release() ); } boost::tribool RequestHandler::handleRequest(const std::string& request_uri, const std::string& request_content, Http::DelayedResponseSender_ptr delayed_response_sender, Frontend& frontend, std::string* response, std::string* response_content_type ) { assert(response); assert(response_content_type); *response_content_type = frontend.responseSerializer().mimeType(); Value root_request; if ( frontend.requestParser().parse(request_uri, request_content, &root_request) ) { if ( !root_request.isMember("id") ) { // for example xmlrpc does not use request id, so add null value since Rpc methods rely on it. root_request["id"] = Value::Null(); } return callMethod(root_request, delayed_response_sender, frontend.responseSerializer(), response ); } else { frontend.responseSerializer().serializeFault(root_request, "Request parsing error", Rpc::REQUEST_PARSING_ERROR, response); return false; } } boost::tribool RequestHandler::callMethod(const Value& root_request, Http::DelayedResponseSender_ptr delayed_response_sender, ResponseSerializer& response_serializer, std::string* response ) { assert(response); try { const std::string& method_name = root_request["method"]; Method* method = getMethodByName(method_name); if (method == nullptr) { response_serializer.serializeFault(root_request, method_name + ": method not found", METHOD_NOT_FOUND_ERROR, response); return false; } { // execute method //PROFILE_EXECUTION_TIME( method_name.c_str() ); active_delayed_response_sender_ = delayed_response_sender; // save current http request handler ref in weak ptr to use in delayed response. active_response_serializer_ = &response_serializer; Value root_response; root_response["id"] = root_request["id"]; // currently all methods set id of response, so set it here. Method can set it to null if needed. ResponseType response_type = method->execute(root_request, root_response); if (RESPONSE_DELAYED == response_type) { return boost::indeterminate; // method execution is delayed, say to http response handler not to send answer immediately. } else { assert( root_response.valid() ); ///??? Return empty string if execute() method did not set result. if ( !root_response.valid() ) { root_response = ""; } response_serializer.serializeSuccess(root_response, response); return true; } } } catch (const Exception& e) { response_serializer.serializeFault(root_request, e.message(), e.code(), response); return false; } catch (const std::exception& e) { const char* method_name = root_request.isMember("method") && root_request["method"].type() == Rpc::Value::TYPE_STRING ? static_cast<const std::string&>(root_request["method"]).c_str() : "unknown"; BOOST_LOG_SEV(logger(), error) << "RequestHandler::callMethod: call " << method_name << " method error. Reason: " << e.what(); response_serializer.serializeFault(root_request, "internal error", Rpc::INTERNAL_ERROR, response); return false; } } boost::shared_ptr<DelayedResponseSender> RequestHandler::getDelayedResponseSender() const { boost::shared_ptr<Http::DelayedResponseSender> ptr = active_delayed_response_sender_.lock(); if (ptr) { return boost::make_shared<DelayedResponseSender>(ptr, *active_response_serializer_); } else { return boost::shared_ptr<DelayedResponseSender>(); } } void DelayedResponseSender::sendResponseSuccess(const Value& root_response) { std::string response; response_serializer_.serializeSuccess(root_response, &response); comet_http_response_sender_->send(response, response_serializer_.mimeType() ); } void DelayedResponseSender::sendResponseFault(const Value& root_request, const std::string& error_msg, int error_code) { std::string response_string; response_serializer_.serializeFault(root_request, error_msg, error_code, &response_string); comet_http_response_sender_->send(response_string, response_serializer_.mimeType() ); } } // namespace XmlRpc
import Data.Array.CArray import Data.Complex import Data.List (tails) import Math.FFT (dft, idft) convolution :: (Num a) => [a] -> [a] -> [a] convolution x = map (sum . zipWith (*) (reverse x)) . spread where spread = init . tails . (replicate (length x - 1) 0 ++) convolutionFFT :: [Complex Double] -> [Complex Double] -> [Complex Double] convolutionFFT x y = elems $ idft $ liftArray2 (*) (fft x) (fft y) where fft a = dft $ listArray (1, length a) a main :: IO () main = do let x = [1, 2, 1, 2, 1] y = [2, 1, 2, 1, 2] print $ convolution x y print $ convolutionFFT x y
-- Andreas, 2018-06-09, issue #2513, parsing attributes postulate fail : ∀ @0 A → A → A -- Should fail.
module PCA.GPExample where import Universum hiding (transpose, Vector) import Data.Vector.Unboxed as V (fromList) import Data.Array.Repa import Numeric.LinearAlgebra.Repa hiding (Matrix, Vector) import PCA.GaussianProcess import PCA.Types import PCA.Util testList :: [Double] testList = [ -5.0 , -4.79591837 , -4.59183673 , -4.3877551 , -4.18367347 , -3.97959184 , -3.7755102 , -3.57142857 , -3.36734694 , -3.16326531 , -2.95918367 , -2.75510204 , -2.55102041 , -2.34693878 , -2.14285714 , -1.93877551 , -1.73469388 , -1.53061224 , -1.32653061 , -1.12244898 , -0.91836735 , -0.71428571 , -0.51020408 , -0.30612245 , -0.10204082 , 0.10204082 , 0.30612245 , 0.51020408 , 0.71428571 , 0.91836735 , 1.12244898 , 1.32653061 , 1.53061224 , 1.73469388 , 1.93877551 , 2.14285714 , 2.34693878 , 2.55102041 , 2.75510204 , 2.95918367 , 3.16326531 , 3.36734694 , 3.57142857 , 3.7755102 , 3.97959184 , 4.18367347 , 4.3877551 , 4.59183673 , 4.79591837 , 5.0 ] xTest :: Vector D Double xTest = delay $ fromUnboxed (Z :. 50) (V.fromList testList) inputObserve :: InputObservations Double inputObserve = InputObservations xTest computeSD :: Shape sh => Array D sh Double -> Array U sh Double computeSD = computeS @D @_ @_ @U sqDist :: Vector D Double -> Vector D Double -> Matrix D Double sqDist vec1 vec2 = matrixSquare vec1 ++^ (transposeMatrix matrix2') where matrix2' = matrixSquare vec2 --^ ((delay . smap ((*) 2)) $ matrix1 `mulS` matrix2) matrixSquare matrix = smap flipExp matrix flipExp = (flip (^)) 2 matrix1 = toMatrix' $ vec1 matrix2 = transposeMatrix . toMatrix' $ vec2 kernelFunction :: Vector D Double -> Vector D Double -> Matrix D Double kernelFunction matrix1 matrix2 = smap fun $ sqDist matrix1 matrix2 where fun = exp . ((*) (-0.5)) . ((*) (1/0.1)) xTrainList :: [Double] xTrainList = [ -4 , -3 , -2 , -1 , 1 ] xTrain :: Vector D Double xTrain = delay $ fromUnboxed (Z :. 5) (V.fromList xTrainList) yTrain :: Vector D Double yTrain = smap sin xTrain testTrainingData :: GPTrainingData Double testTrainingData = GPTrainingData xTrain yTrain k, kS, l, lK :: Matrix D Double k = kernelFunction xTrain xTrain kS = kernelFunction xTrain xTest l = cholSH (k +^ (delay . smap (* 0.0005) $ identD 50)) lK = fromMaybe (error "izviniti") (delay <$> linearSolveS l kS) testGaussianProcess :: GaussianProcess Double testGaussianProcess = GaussianProcess kernelFunction
** Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. ** See https://llvm.org/LICENSE.txt for license information. ** SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * PARAMETER statements for LOGICAL constants. Also, * constant folding of logical expressions. implicit logical (a, o) logical t1, t2, f1, f2 parameter (t1 = .true.) parameter (f1 = .false., t2 = .not..false., f2 = .not.t1) parameter (a1 = f1 .and. .false., + a2 = a1 .and. .true. , + a3 = .true..and..false., + a4 = .true..and..true. ) parameter (o1 = f1 .or. f1, + o2 = f1 .or. t1, + o3 = t1 .or. f1, + o4 = t1 .or. t1 ) logical e1, e2, e3, e4, n1, n2, n3, n4 parameter (e1 = f1 .eqv. f1, + e2 = f1 .eqv. t1, + e3 = t1 .eqv. f1, + e4 = t1 .eqv. t1 ) parameter (n1 = f1 .neqv. f1, + n2 = f1 .neqv. t1, + n3 = t1 .neqv. f1, + n4 = t1 .neqv. t1 ) logical x1, x2, x3, x4 parameter(N = 24) logical rslts(N), expect(N) parameter( x1 = (.true. .and. .false.) .or. (.false. .eqv. f1) ) parameter(x2 = 3 .gt. 4 .or. 6 .eq. 1) parameter(x3 = .not.f1.and.t1 .neqv. f1.or..false..or..false.) parameter(x4 = .not. (2 .le. 3 .eqv. 78 .eq. 78) ) data expect / .true., .false., .true., .false., c tests 5 - 8: AND operation + .false., .false., .false., .true., c tests 9 - 12: OR operation + .false., .true., .true., .true., c tests 13 - 16: EQV operation + .true., .false., .false., .true., c tests 17 - 20: NEQV operation + .false., .true., .true., .false., c tests 21 - 24: miscellaneous combinations + .true., .false., .true., .false. / data (rslts(i), i = 1, 16) / t1, f1, t2, f2, + a1, a2, a3, a4, + o1, o2, o3, o4, + e1, e2, e3, e4 / data (rslts(i), i = 17, 20)/ n1, n2, n3, n4 / rslts(21) = x1 rslts(22) = x2 rslts(23) = x3 rslts(24) = x4 if (x4) rslts(24) = .true. call check(rslts, expect, N) end
Formal statement is: lemma monom_eq_1 [simp]: "monom 1 0 = 1" Informal statement is: The monomial $x^0$ is equal to $1$.
function [perimeterEdges,eulerCondition] = findLegalPerimeters2(mesh,perimDist) % Calculate edges that on distinct perimeters perimDist mm from startVertex % % [perimeterEdges,eulerCondition] = findLegalPerimeters2(mesh,perimDist) % % Given a mesh structure (nodes, edges, distances from start point) and a % threshold distance return a list of edges that constitute separate % perimeters at a distance of perimDist from the start point. % % Note that because of intrinsic curvature, there can be more than one % perimeter at the required distance. This routine makes sure that it % returns separate perimeters (ones with no common nodes). % % Find perims with simple threshold insideNodes = find(mesh.dist<=perimDist); insideNodes = insideNodes(:); % Some triangles have one or two vertices outside the perimeter. These % triangles will not be included; any nodes that are within the perimeter % but only part of these excluded triangles are removed here. insideNodes = removeHangingNodes2(mesh,insideNodes); % We could write a short piece of code that verifies these new nodes have % no hanging nodes ... numBadNodes = 1; while (numBadNodes>0) [perimeterEdges,eulerCondition] = findGroupPerimeter2(mesh,insideNodes); length(perimeterEdges); length(unique(perimeterEdges,'rows')); fprintf('Euler number=%d\n',eulerCondition); badPerimNodes = findBadPerimNodes2(mesh,perimeterEdges); numBadNodes = length(badPerimNodes); fprintf('There are %d bad perim nodes.\n',numBadNodes); if(numBadNodes) % Splits up joined perimeters [insideNodes] = correctBadNodes2(mesh,insideNodes,badPerimNodes); % Cleans up mesh again insideNodes = removeHangingNodes2(mesh,insideNodes); end end return;
import json import numpy as np #import cv2 cats = ['Car','DontCare'] cat_ids = {'DontCare':0,'Car':2} DATASET_PATH = '/home/ubuntu/xwp/datasets/multi_view_dataset/new/fuse_test/cam9+cam21/' DEBUG = False # VAL_PATH = DATA_PATH + 'training/label_val/' import os ann_dir = DATASET_PATH + 'global_filtered/' output_dir = DATASET_PATH + 'label_global_tracking/' if not os.path.exists(output_dir): os.makedirs(output_dir) ann_list = os.listdir(ann_dir) ann_list.sort(key=lambda x:int(x[:-4])) #calib_dir = DATASET_PATH + 'calib/' # splits = ['trainval', 'test'] #calib_path = calib_dir + '000000.txt' #calib = read_clib(calib_path) out_path = output_dir + '{}'.format('0000.txt') f = open(out_path, 'w') for label_file in ann_list: ann_path = ann_dir + '{}'.format(label_file) anns = open(ann_path, 'r') frame = int(label_file[:-4]) if frame < 901: continue frame = frame - 901 for ann_ind, txt in enumerate(anns): tmp = txt[:-1].split(' ') cat_id = cat_ids[tmp[0]] truncated = int(float(tmp[1])) occluded = int(tmp[2]) alpha = float(tmp[3]) bbox = [float(tmp[4]), float(tmp[5]), float(tmp[6]), float(tmp[7])] dim = [float(tmp[8]), float(tmp[9]), float(tmp[10])] location = [float(tmp[11]), float(tmp[12]), float(tmp[13])] rotation_y = float(tmp[14]) car_id = int(tmp[15]) #rotation = rotation_y * np.pi / 180 #box_3d = compute_box_3d(dim, location, rotation_y) #box_2d = project_to_image(box_3d, calib) #bbox = (np.min(box_2d[:,0]), np.min(box_2d[:,1]), np.max(box_2d[:,0]), np.max(box_2d[:,1])) txt="{} {} {} {} {} {} {} {} {} {} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {}\n".format(frame,car_id,'Car', 0, 0,0, 0, 0, 0,0, dim[0], dim[1], dim[2],location[1], -location[2], location[0], rotation_y) # txt="{},{},{},{},{},{},{},{:.4f},{:.4f},{:.4f},{:.4f},{:.4f},{:.4f},{},{} \n".format(frame,2,0,0,0,0,score, # dim[0],dim[1],dim[2],location[1],-location[2],location[0],rotation_y,0) f.write(txt) #f.write('\n') f.close() print('finish!')
(* Title: The Relational Method with Message Anonymity for the Verification of Cryptographic Protocols Author: Pasquale Noce Software Engineer at HID Global, Italy pasquale dot noce dot lavoro at gmail dot com pasquale dot noce at hidglobal dot com *) section "The relational method and message anonymity" theory Definitions imports Main begin text \<open> \null \emph{This paper is dedicated to my mother, my favourite chess opponent -- in addition to being many other wonderful things!} \<close> subsection "Introduction" text \<open> As Bertrand Russell says in the last pages of \emph{A History of Western Philosophy}, a distinctive feature of science is that "we can make successive approximations to the truth, in which each new stage results from an improvement, not a rejection, of what has gone before". When dealing with a formal verification method for information processing systems, such as Paulson's inductive method for the verification of cryptographic protocols (cf. @{cite "Paulson98"}, @{cite "Paulson20"}), a more modest goal for this iterative improvement process, yet of significant practical importance, is to streamline the definitions and proofs needed to model such a system and verify its properties. With this aim, specially when it comes to verifying protocols using public key cryptography, this paper proposes an enhancement of the inductive method, named \emph{relational method} for reasons clarified in what follows, and puts it into practice by verifying a sample protocol. This new method is the result of some changes to the way how events, states, spy's capabilities, and the protocol itself are formalized in the inductive method. Here below is a description of these changes, along with a rationale for them. \<^descr>[Events.] In the inductive method, the fundamental building blocks of cryptographic protocols are events of the form @{text "Says A B X"}, where @{text X} is a message being exchanged, @{text A} is the agent that sends it, and @{text B} is the agent to which it is addressed. \\However, any exchanged message can be intercepted by the spy and forwarded to any other agent, so its intended recipient is not relevant for the protocol \emph{security} correctness -- though of course being relevant for the protocol \emph{functional} correctness. Moreover, a legitimate agent may also generate messages, e.g. ephemeral private keys, that she will never exchange with any other agent. To model such an event, a datatype constructor other than @{text Says} should be used. How to make things simpler? \\The solution adopted in the relational method is to model events just as ordered pairs of the form @{text "(A, X)"}, where @{text A} is an agent and @{text X} is a message. If event @{text "(A, X)"} stands for @{text A}'s sending of @{text X} to another agent, where @{text A} is a legitimate agent, then this event will be accompanied by event @{text "(Spy, X)"}, representing the spy's interception of @{text X}. If event @{text "(A, X)"} rather stands for @{text A}'s generation of private message @{text X}, e.g. an ephemeral private key, for her own exclusive use -- and if the spy has not hacked @{text A} so as to steal her private messages as well --, then no companion event @{text "(Spy, X)"} will occur instead. \<^descr>[States.] In the inductive method, the possible states of a cryptographic protocol are modeled as event \emph{traces}, i.e. lists, and the protocol itself is formalized as a set of such traces. Consequently, the protocol rules and security properties are expressed as formulae satisfied by any event trace @{text evs} belonging to this set. \\However, these formulae are such that their truth values depend only on the events contained in @{text evs}, rather than on the actual order in which they occur -- in fact, robust protocol rules and security properties cannot depend on the exact sequence of message exchanges in a scenario where the spy can freely intercept and forward messages, or even generate and send her own ones. Thus, one library function, @{const set}, and two custom recursive functions, @{text used} and @{text knows}, are needed to convert event traces into event sets and message sets, respectively. \\In the relational method, protocol states are simply modeled as event sets, so that the occurrence of event @{text "(A, X)"} in state @{text s} can be expressed as the transition to the augmented state @{term "insert (A, X) s"}. Hence, states consist of relations between agents and messages. As a result, function @{const set} need not be used any longer, whereas functions @{text used} and @{text spied} -- the latter one being a replacement for @{text "knows Spy"} --, which take a state @{text s} as input, are mere abbreviations for @{term "Range s"} and @{term "s `` {Spy}"}. \<^descr>[Spy's capabilities.] In the inductive method, the spy's attack capabilities are formalized via two inductively defined functions, @{text analz} and @{text synth}, used to construct the sets of all the messages that the spy can learn -- @{text "analz (knows Spy evs)"} -- and send to legitimate agents -- @{text "synth (analz (knows Spy evs))"} -- downstream of event trace @{text evs}. \\Indeed, the introduction of these functions goes in the direction of decoupling the formalization of the spy's capabilities from that of the protocol itself, consistently with the fact that what the spy can do is independent of how the protocol works -- which only matters when it comes to verifying protocol security. \\In principle, this promises to provide a relevant benefit: these functions need to be defined, and their properties to be proven, just once, whereupon such definitions and properties can be reused in the formalization and verification of whatever protocol. \\In practice, since both functions are of type @{text "msg set \<Rightarrow> msg set"}, where @{text msg} is the datatype defining all possible message formats, this benefit only applies as long as message formats remain unchanged. However, when it comes to verifying a protocol making use of public key cryptography, some new message format, and consequently some new related spy's capability as well, are likely to be required. An example of this will be provided right away by the protocol considered in this paper. \\In the relational method, the representation of events as agent-message pairs offers a simpler way to model the spy's capabilities, namely as supplementary protocol rules, analogous to the inductive method's @{text Fake} rule, augmenting a state by one or more events of the form @{text "(Spy, X)"}. In addition to eliminating the need for functions @{text analz} and @{text synth} -- which, in light of the above considerations, does not significantly harm reusability --, this choice also abolishes any distinction between what the spy can learn and what she can send. In fact, a state containing event @{text "(Spy, X)"} is interpreted as one where the spy both knows message @{text X} and may have sent it to whatever legitimate agent. Actually, this formalizes the facts that a real-world attacker is free to send any message she has learned to any other party, and conversely to use any message she has generated to further augment her knowledge. \\In the inductive method, the former fact is modeled by property @{term "H \<subseteq> synth H"} of function @{text synth}, but the latter one has no formal counterpart, as in general @{term "H \<subset> synth H"}. This limitation on the spy's capabilities is not significant as long as the protocol makes use of static keys only, but it is if session keys or ephemeral key pairs are generated -- as happens in key establishment protocols, even in those using symmetric cryptography alone. In any such case, a realistic spy must also be able to learn from anything she herself has generated, such as a nonce or an ephemeral private key -- a result achieved without effort in the relational method. \\An additional, nontrivial problem for the inductive method is that many protocols, including key establishment ones, require the spy to be able to generate \emph{fresh} ephemeral messages only, as otherwise the spy could succeed in breaking the protocol by just guessing the ephemeral messages already generated at random by some legitimate agent -- a quite unrealistic attack pattern, provided that such messages vary in a sufficiently wide range. At first glance, this need could be addressed by extending the inductive definition of function @{text synth} with introduction rules of the form @{term "Nonce n \<notin> H \<Longrightarrow> Nonce n \<in> synth H"} or @{term "PriKey A \<notin> H \<Longrightarrow> PriKey A \<in> synth H"}. However, private ephemeral messages are not in general included in @{text "analz (knows Spy evs)"}, since nonces may be encrypted with uncompromised keys when exchanged and private keys are usually not exchanged at all, so this approach would not work. The only satisfactory alternative would be to change the signature of function @{text synth}, e.g. by adding a second input message set @{text H'} standing for @{text "used evs"}, or else by replacing @{text H} with event trace @{text evs} itself, but this would render the function definition much more convoluted -- a problem easily bypassed in the relational method. \<^descr>[Protocol.] In the inductive method, a cryptographic protocol consists of an inductively defined set of event traces. This enables to prove the protocol security properties by induction using the induction rule automatically generated as a result of such an inductive definition, i.e. by means of \emph{rule induction}. Actually, this feature is exactly what gives the method its very name. Hence, a consistent way to name a protocol verification method using some other form of induction would be to replace adjective "inductive" with another one referring to that form of induction. \\The relational method owes its name to this consideration. In this method, the introduction rules defining \emph{protocol rules}, i.e. the possible transitions between protocol states, are replaced with \emph{relations} between states, henceforth named \emph{protocol relations}. That is, for any two states @{text s} and @{text s'}, there exists a transition leading from @{text s} to @{text s'} just in case the ordered pair @{term "(s, s')"} is contained in at least one protocol relation -- a state of affairs denoted using infix notation @{text "s \<turnstile> s'"}. Then, the inductively defined set itself is replaced with the \emph{reflexive transitive closure} of the union of protocol relations. Namely, any state @{text s} may be reached from \emph{initial state} @{text s\<^sub>0}, viz. is a possible protocol state, just in case pair @{term "(s\<^sub>0, s)"} lies within this reflexive transitive closure -- a state of affairs denoted using infix notation @{text "s\<^sub>0 \<Turnstile> s"}. As a result, rule induction is replaced with induction over reflexive transitive closures via rule @{thm [source] rtrancl_induct}, which is the circumstance that originates the method name. \\These changes provide the following important benefits. \<^item> Inserting and modifying the formal definition of a protocol is much more comfortable. In fact, any change even to a single introduction rule within a monolithic inductive set definition entails a re-evaluation of the whole definition, whereas each protocol relation will have its own stand-alone definition, which also makes it easier to find errors. This advantage may go almost unnoticed for a very simple protocol providing for just a few protocol rules, but gets evident in case of a complex protocol. An example of this will be provided by the protocol considered in this paper: when looking at the self-contained abbreviations used to define protocol relations, the reader will easily grasp how much more convoluted an equivalent inductive set definition would have been. \<^item> In addition to induction via rule @{thm [source] rtrancl_induct}, a further powerful reasoning pattern turns out to be available. It is based on the following general rule applying to reflexive transitive closures (indeed, a rule so general and useful that it could rightfully become part of the standard library), later on proven and assigned the name @{text rtrancl_start}: @{prop [display] "\<lbrakk>(x, y) \<in> r\<^sup>*; P y; \<not> P x\<rbrakk> \<Longrightarrow> \<exists>u v. (x, u) \<in> r\<^sup>* \<and> (u, v) \<in> r \<and> (v, y) \<in> r\<^sup>* \<and> \<not> P u \<and> P v"} In natural language, this rule states that for any chain of elements linked by a relation, if some predicate is false for the first element of the chain and true for the last one, there must exist a link in the chain where the predicate becomes true. \\This rule can be used to prove propositions of the form @{text "\<lbrakk>s \<Turnstile> s'; P s'[; Q]\<rbrakk> \<Longrightarrow> R s'"} for any state @{text s} and predicate @{text P} such that @{term "\<not> P s"}, with an optional additional assumption @{text Q}, without resorting to induction. Notably, \emph{regularity lemmas} have exactly this form, where @{term "s = s\<^sub>0"}, @{term "P = (\<lambda>s. X \<in> parts (used s))"} for some term @{text X} of type @{text msg}, and @{text Q}, if present, puts some constraint on @{text X} or its components. \\Such a proof consists of two steps. First, lemma @{text "\<lbrakk>s \<turnstile> s'; P s'; \<not> P s[; Q]\<rbrakk> \<Longrightarrow> R s'"} is proven by simplification, using the definitions of protocol relations. Then, the target proposition is proven by applying rule @{text rtrancl_start} as a destruction rule (cf. @{cite "Paulson20"}) and proving @{term "P s'"} by assumption, @{term "\<not> P s"} by simplification, and the residual subgoal by means of the previous lemma. In addition to the relational method, this paper is aimed at introducing still another enhancement: besides message confidentiality and authenticity, it takes into consideration a further important security property, \emph{message anonymity}. Being legitimate agents identified via natural numbers, the fact that in state @{text s} the spy ignores that message @{text X\<^sub>n} is associated with agent @{text n}, viz. @{text X\<^sub>n}'s property of being \emph{anonymous} in state @{text s}, can be expressed as @{text "\<langle>n, X\<^sub>n\<rangle> \<notin> spied s"}, where notation @{text "\<langle>n, X\<^sub>n\<rangle>"} refers to a new constructor added to datatype @{text msg} precisely for this purpose. A basic constraint upon any protocol relation augmenting the spy's knowledge with @{text "\<langle>n, X\<rangle>"} is that the spy must know message @{text X} in the current state, as it is impossible to identify the agent associated with an unknown message. There is also an additional, more subtle constraint. Any such protocol relation either augments a state in which the spy knows @{text "\<langle>n, C X\<^sub>1 \<dots> X\<^sub>m\<rangle>"}, i.e. containing event @{text "(Spy, \<langle>n, C X\<^sub>1 \<dots> X\<^sub>m\<rangle>)"}, with event @{text "(Spy, \<langle>n, X\<^sub>i\<rangle>)"}, where $1 \leq i \leq m$ and @{text C} is some constructor of datatype @{text msg}, or conversely augments a state containing event @{text "(Spy, \<langle>n, X\<^sub>i\<rangle>)"} with @{text "(Spy, \<langle>n, C X\<^sub>1 \<dots> X\<^sub>m\<rangle>)"}. However, the latter spy's inference is justified only if the compound message @{text "C X\<^sub>1 \<dots> X\<^sub>m"} is part of a message generated or accepted by some legitimate agent according to the protocol rules. Otherwise, that is, if @{text "C X\<^sub>1 \<dots> X\<^sub>m"} were just a message generated at random by the spy, her inference would be as sound as those of most politicians and all advertisements: even if the conclusion were true, it would be so by pure chance. This problem can be solved as follows. \<^item> A further constructor @{text Log}, taking a message as input, is added to datatype @{text msg}, and every protocol relation modeling the generation or acceptance of a message @{text X} by some legitimate agent must augment the current state with event @{term "(Spy, Log X)"}. \\In this way, the set of all the messages that have been generated or accepted by some legitimate agent in state @{text s} matches @{term "Log -` spied s"}. \<^item> A function @{text crypts} is defined inductively. It takes a message set @{text H} as input, and returns the least message set @{text H'} such that @{term "H \<subseteq> H'"} and for any (even empty) list of keys @{text KS}, if the encryption of @{text "\<lbrace>X, Y\<rbrace>"}, @{text "\<lbrace>Y, X\<rbrace>"}, or @{text "Hash X"} with @{text KS} is contained in @{text H'}, then the encryption of @{text X} with @{text KS} is contained in @{text H'} as well. \\In this way, the set of all the messages that are part of messages exchanged by legitimate agents, viz. that may be mapped to agents, in state @{text s} matches @{term "crypts (Log -` spied s)"}. \<^item> Another function @{text key_sets} is defined, too. It takes two inputs, a message @{text X} and a message set @{text H}, and returns the set of the sets of @{text KS}' inverse keys for any list of keys @{text KS} such that the encryption of @{text X} with @{text KS} is included in @{text H}. \\In this way, the fact that in state @{text s} the spy can map a compound message @{text X} to some agent, provided that she knows all the keys in set @{text U}, can be expressed through conditions @{term "U \<in> key_sets X (crypts (Log -` spied s))"} and @{term "U \<subseteq> spied s"}. \\The choice to define @{text key_sets} so as to collect the inverse keys of encryption keys, viz. decryption ones, depends on the fact that the sample protocol verified in this paper uses symmetric keys alone -- which match their own inverse keys -- for encryption, whereas asymmetric key pairs are used in cryptograms only for signature generation -- so that the inverse keys are public ones. In case of a protocol (also) using public keys for encryption, encryption keys themselves should (also) be collected, since the corresponding decryption keys, i.e. private keys, would be unknown to the spy by default. This would formalize the fact that encrypted messages can be mapped to agents not only by decrypting them, but also by recomputing the cryptograms (provided that the plaintexts are known) and checking whether they match the exchanged ones. \<close> subsection "A sample protocol" text \<open> As previously mentioned, this paper tries the relational method, including message anonymity, by applying it to the verification of a sample authentication protocol in which Password Authenticated Connection Establishment (PACE) with Chip Authentication Mapping (cf. @{cite "ICAO15"}) is first used by an \emph{owner} to establish a secure channel with her own \emph{asset} and authenticate it, and then the owner sends a password (other than the PACE one) to the asset over that channel so as to authenticate herself. This enables to achieve a reliable mutual authentication even if the PACE key is shared by multiple owners or is weak, as happens in electronic passports. Although the PACE mechanism is specified for use in electronic documents, nothing prevents it in principle from being used in other kinds of smart cards or even outside of the smart card world, which is the reason why this paper uses the generic names \emph{asset} and \emph{owner} for the card and the cardholder, respectively. In more detail, this protocol provides for the following steps. In this list, messages are specified using the same syntax that will be adopted in the formal text (for further information about PACE with Chip Authentication Mapping, cf. @{cite "ICAO15"}). \<^enum> \emph{Asset n} $\rightarrow$ \emph{Owner n}: \\\hspace*{1em}@{text "Crypt (Auth_ShaKey n) (PriKey S)"} \<^enum> \emph{Owner n} $\rightarrow$ \emph{Asset n}: \\\hspace*{1em}@{text "\<lbrace>Num 1, PubKey A\<rbrace>"} \<^enum> \emph{Asset n} $\rightarrow$ \emph{Owner n}: \\\hspace*{1em}@{text "\<lbrace>Num 2, PubKey B\<rbrace>"} \<^enum> \emph{Owner n} $\rightarrow$ \emph{Asset n}: \\\hspace*{1em}@{text "\<lbrace>Num 3, PubKey C\<rbrace>"} \<^enum> \emph{Asset n} $\rightarrow$ \emph{Owner n}: \\\hspace*{1em}@{text "\<lbrace>Num 4, PubKey D\<rbrace>"} \<^enum> \emph{Owner n} $\rightarrow$ \emph{Asset n}: \\\hspace*{1em}@{text "Crypt (SesK SK) (PubKey D)"} \<^enum> \emph{Asset n} $\rightarrow$ \emph{Owner n}: \\\hspace*{1em}@{text "\<lbrace>Crypt (SesK SK) (PubKey C),"} \\\hspace*{1.5em}@{text "Crypt (SesK SK) (Auth_PriK n \<otimes> B),"} \\\hspace*{1.5em}@{text "Crypt (SesK SK) (Crypt SigK"} \\\hspace*{2em}@{text "\<lbrace>Hash (Agent n), Hash (Auth_PubKey n)\<rbrace>)\<rbrace>"} \<^enum> \emph{Owner n} $\rightarrow$ \emph{Asset n}: \\\hspace*{1em}@{text "Crypt (SesK SK) (Pwd n)"} \<^enum> \emph{Asset n} $\rightarrow$ \emph{Owner n}: \\\hspace*{1em}@{text "Crypt (SesK SK) (Num 0)"} Legitimate agents consist of an infinite population of assets and owners. For each natural number @{text n}, @{text "Owner n"} is an owner and @{text "Asset n"} is her own asset, and these agents are assigned the following authentication data. \<^item> @{text "Key (Auth_ShaKey n)"}: static symmetric PACE key shared by both agents. \<^item> @{text "Auth_PriKey n"}, @{text "Auth_PubKey n"}: static private and public keys stored on @{text "Asset n"} and used for @{text "Asset n"}'s authentication via Chip Authentication Mapping. \<^item> @{text "Pwd n"}: unique password (other than the PACE one) shared by both agents and used for @{text "Owner n"}'s authentication. Function @{text Pwd} is defined as a constructor of datatype @{text msg} and then is injective, which formalizes the assumption that each asset-owner pair has a distinct password, whereas no such constraint is put on functions @{text Auth_ShaKey}, @{text Auth_PriKey}, and @{text Auth_PubKey}, which allows multiple asset-owner pairs to be assigned the same keys. On the other hand, function @{text Auth_PriKey} is constrained to be such that the complement of its range is infinite. As each protocol run requires the generation of fresh ephemeral private keys, this constraint ensures that an unbounded number of protocol runs can be carried out. All assumptions are formalized by applying the definitional approach, viz. without introducing any axiom, and so is this constraint, expressed by defining function @{text Auth_PriKey} using the indefinite description operator @{text SOME}. The protocol starts with @{text "Asset n"} sending an ephemeral private key encrypted with the PACE key to @{text "Owner n"}. Actually, if @{text "Asset n"} is a smart card, the protocol should rather start with @{text "Owner n"} sending a plain request for such encrypted nonce, but this preliminary step is omitted here as it is irrelevant for protocol security. After that, @{text "Owner n"} and @{text "Asset n"} generate two ephemeral key pairs each and send the respective public keys to the other party. Then, both parties agree on the same session key by deriving it from the ephemeral keys generated previously (actually, two distinct session keys would be derived, one for encryption and the other one for MAC computation, but such a level of detail is unnecessary for protocol verification). The session key is modeled as @{text "Key (SesK SK)"}, where @{text SesK} is an apposite constructor added to datatype @{text key} and @{term "SK = (Some S, {A, B}, {C, D})"}. The adoption of type @{typ "nat option"} for the first component enables to represent as @{term "(None, {A, B}, {C, D})"} the wrong session key derived from @{text "Owner n"} if @{text "PriKey S"} was encrypted using a key other than @{text "Key (Auth_ShaKey n)"} -- which reflects the fact that the protocol goes on even without the two parties sharing the same session key. The use of type @{typ "nat set"} for the other two components enables the spy to compute @{text "Key (SesK SK)"} if she knows \emph{either} private key and the other public key referenced by each set, as long as she also knows @{text "PriKey S"} -- which reflects the fact that given two key pairs, Diffie-Hellman key agreement generates the same shared secret independently of which of the respective private keys is used for computation. This session key is used by both parties to compute their authentication tokens. Both encrypt the other party's second ephemeral public key, but @{text "Asset n"} appends two further fields: the Encrypted Chip Authentication Data, as provided for by Chip Authentication Mapping, and an encrypted signature of the hash values of @{text "Agent n"} and @{text "Auth_PubKey n"}. Infix notation @{text "Auth_PriK n \<otimes> B"} refers to a constructor of datatype @{text msg} standing for plain Chip Authentication Data, and @{text Agent} is another such constructor standing for agent identification data. @{text "Owner n"} is expected to validate this signature by also checking @{text "Agent n"}'s hash value against reference identification data known by other means -- otherwise, the spy would not be forced to know @{text "Auth_PriKey n"} to masquerade as @{text "Asset n"}, since she could do that by just knowing @{text "Auth_PriKey m"} for some other @{text m}, even if @{term "Auth_PriKey m \<noteq> Auth_PriKey n"}. If @{text "Asset n"} is an electronic passport, the owner, i.e. the inspection system, could get cardholder's identification data by reading her personal data on the booklet, and such a signature could be retrieved from the chip (actually through a distinct message, but this is irrelevant for protocol security as long as the password is sent after the signature's validation) by reading the Document Security Object -- provided that @{text "Auth_PubKey n"} is included within Data Group 14. The protocol ends with @{text "Owner n"} sending her password, encrypted with the session key, to @{text "Asset n"}, who validates it and replies with an encrypted acknowledgment. Here below are some concluding remarks about the way how this sample protocol is formalized. \<^item> A single signature private key, unknown to the spy, is assumed to be used for all legitimate agents. Similarly, the spy might have hacked some legitimate agent so as to steal her ephemeral private keys as soon as they are generated, but here all legitimate agents are assumed to be out of the spy's reach in this respect. Of course, this is just the choice of one of multiple possible scenarios, and nothing prevents these assumptions from being dropped. \<^item> In the real world, a legitimate agent would use any one of her ephemeral private keys just once, after which the key would be destroyed. On the contrary, no such constraint is enforced here, since it turns out to be unnecessary for protocol verification. There is a single exception, required for the proof of a unicity lemma: after @{text "Asset n"} has used @{text "PriKey B"} to compute her authentication token, she must discard @{text "PriKey B"} so as not to use this key any longer. The way how this requirement is expressed emphasizes once more the flexibility of the modeling of events in the relational method: @{text "Asset n"} may use @{text "PriKey B"} in this computation only if event @{text "(Asset n, PubKey B)"} is not yet contained in the current state @{text s}, and then @{text s} is augmented with that event. Namely, events can also be used to model garbage collection! \<^item> The sets of the legitimate agents whose authentication data have been identified in advance (or equivalently, by means other than attacking the protocol, e.g. by social engineering) by the spy are defined consistently with the constraint that known data alone can be mapped to agents, as well as with the definition of initial state @{text s\<^sub>0}. For instance, the set @{text bad_id_prikey} of the agents whose Chip Authentication private keys have been identified is defined as a subset of the set @{text bad_prikey} of the agents whose Chip Authentication private keys have been stolen. Moreover, all the signatures included in assets' authentication tokens are assumed to be already known to the spy in state @{text s\<^sub>0}, so that @{text bad_id_prikey} includes also any agent whose identification data or Chip Authentication public key have been identified in advance. \<^item> The protocol rules augmenting the spy's knowledge with some message of the form @{text "\<langle>n, X\<rangle>"} generally require the spy to already know some other message of the same form. There is just one exception: the spy can infer @{text "\<langle>n, Agent n\<rangle>"} from @{text "Agent n"}. This expresses the fact that the detection of identification data within a message generated or accepted by some legitimate agent is in itself sufficient to map any known component of that message to the identified agent, regardless of whether any data were already mapped to that agent in advance. \<^item> As opposed to what happens for constructors @{text "(\<otimes>)"} and @{text "MPair"}, there do not exist two protocol rules enabling the spy to infer @{text "\<langle>n, Crypt K X\<rangle>"} from @{text "\<langle>n, X\<rangle>"} or @{text "\<langle>n, Key K\<rangle>"} and vice versa. A single protocol rule is rather defined, which enables the spy to infer @{text "\<langle>n, X\<rangle>"} from @{text "\<langle>n, Key K\<rangle>"} or vice versa, provided that @{text "Crypt K X"} has been exchanged by some legitimate agent. In fact, the protocol provides for just one compound message made up of cryptograms, i.e. the asset's authentication token, and all these cryptograms are generated using the same encryption key @{text "Key (SesK SK)"}. Thus, if two such cryptograms have plaintexts @{text X\<^sub>1}, @{text X\<^sub>2} and the spy knows @{text "\<langle>n, X\<^sub>1\<rangle>"}, she can infer @{text "\<langle>n, X\<^sub>2\<rangle>"} by inferring @{text "\<langle>n, Key (SesK SK)\<rangle>"}, viz. she need not know @{text "\<langle>n, Crypt (SesK SK) X\<^sub>1\<rangle>"} to do that. The formal content is split into the following sections. \<^item> Section \ref{Definitions}, \emph{Definitions}, contains all the definitions needed to formalize the sample protocol by means of the relational method, including message anonymity. \<^item> Section \ref{Authentication}, \emph{Confidentiality and authenticity properties}, proves that the following theorems hold under appropriate assumptions. \<^enum> Theorem @{text sigkey_secret}: the signature private key is secret. \<^enum> Theorem @{text auth_shakey_secret}: an asset-owner pair's PACE key is secret. \<^enum> Theorem @{text auth_prikey_secret}: an asset's Chip Authentication private key is secret. \<^enum> Theorem @{text owner_seskey_unique}: an owner's session key is unknown to other owners. \<^enum> Theorem @{text owner_seskey_secret}: an owner's session key is secret. \<^enum> Theorem @{text owner_num_genuine}: the encrypted acknowledgment received by an owner has been sent by the respective asset. \<^enum> Theorem @{text owner_token_genuine}: the PACE authentication token received by an owner has been generated by the respective asset, using her Chip Authentication private key and the same ephemeral keys used to derive the session key. \<^enum> Theorem @{text pwd_secret}: an asset-owner pair's password is secret. \<^enum> Theorem @{text asset_seskey_unique}: an asset's session key is unknown to other assets, and may be used by that asset to compute just one PACE authentication token. \<^enum> Theorem @{text asset_seskey_secret}: an asset's session key is secret. \<^enum> Theorem @{text asset_pwd_genuine}: the encrypted password received by an asset has been sent by the respective owner. \<^enum> Theorem @{text asset_token_genuine}: the PACE authentication token received by an asset has been generated by the respective owner, using the same ephemeral key used to derive the session key. Particularly, these proofs confirm that the mutual authentication between an owner and her asset is reliable even if their PACE key is compromised, unless either their Chip Authentication private key or their password also is -- namely, the protocol succeeds in implementing a two-factor mutual authentication. \<^item> Section \ref{Anonymity}, \emph{Anonymity properties}, proves that the following theorems hold under appropriate assumptions. \<^enum> Theorem @{text pwd_anonymous}: an asset-owner pair's password is anonymous. \<^enum> Theorem @{text auth_prikey_anonymous}: an asset's Chip Authentication private key is anonymous. \<^enum> Theorem @{text auth_shakey_anonymous}: an asset-owner pair's PACE key is anonymous. \<^item> Section \ref{Possibility}, \emph{Possibility properties}, shows how possibility properties (cf. @{cite "Paulson98"}) can be proven by constructing sample protocol runs, either ordinary or attack ones. Two such properties are proven: \<^enum> Theorem @{text runs_unbounded}: for any possible protocol state @{text s} and any asset-owner pair, there exists a state @{text s'} reachable from @{text s} in which a protocol run has been completed by those agents using an ephemeral private key @{text "PriKey S"} not yet exchanged in @{text s} -- namely, an unbounded number of protocol runs can be carried out by legitimate agents. \<^enum> Theorem @{text pwd_compromised}: in a scenario not satisfying the assumptions of theorem @{text pwd_anonymous}, the spy can steal an asset-owner pair's password and even identify those agents. The latter is an example of a possibility property aimed at confirming that the assumptions of a given confidentiality, authenticity, or anonymity property are necessary for it to hold. For further information about the formal definitions and proofs contained in these sections, see Isabelle documentation, particularly @{cite "Paulson20"}, @{cite "Nipkow20"}, @{cite "Krauss20"}, and @{cite "Nipkow11"}. \textbf{Important note.} This sample protocol was already considered in a former paper of mine (cf. @{cite "Noce17"}). For any purpose, that paper should be regarded as being obsolete and superseded by the present paper. \<close> subsection "Definitions" text \<open> \label{Definitions} \<close> type_synonym agent_id = nat type_synonym key_id = nat type_synonym seskey_in = "key_id option \<times> key_id set \<times> key_id set" datatype agent = Asset agent_id | Owner agent_id | Spy datatype key = SigK | VerK | PriK key_id | PubK key_id | ShaK key_id | SesK seskey_in datatype msg = Num nat | Agent agent_id | Pwd agent_id | Key key | Mult key_id key_id (infixl "\<otimes>" 70) | Hash msg | Crypt key msg | MPair msg msg | IDInfo agent_id msg | Log msg syntax "_MPair" :: "['a, args] \<Rightarrow> 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") "_IDInfo" :: "[agent_id, msg] \<Rightarrow> msg" ("(2\<langle>_,/ _\<rangle>)") translations "\<lbrace>X, Y, Z\<rbrace>" \<rightleftharpoons> "\<lbrace>X, \<lbrace>Y, Z\<rbrace>\<rbrace>" "\<lbrace>X, Y\<rbrace>" \<rightleftharpoons> "CONST MPair X Y" "\<langle>n, X\<rangle>" \<rightleftharpoons> "CONST IDInfo n X" abbreviation SigKey :: "msg" where "SigKey \<equiv> Key SigK" abbreviation VerKey :: "msg" where "VerKey \<equiv> Key VerK" abbreviation PriKey :: "key_id \<Rightarrow> msg" where "PriKey \<equiv> Key \<circ> PriK" abbreviation PubKey :: "key_id \<Rightarrow> msg" where "PubKey \<equiv> Key \<circ> PubK" abbreviation ShaKey :: "key_id \<Rightarrow> msg" where "ShaKey \<equiv> Key \<circ> ShaK" abbreviation SesKey :: "seskey_in \<Rightarrow> msg" where "SesKey \<equiv> Key \<circ> SesK" primrec InvK :: "key \<Rightarrow> key" where "InvK SigK = VerK" | "InvK VerK = SigK" | "InvK (PriK A) = PubK A" | "InvK (PubK A) = PriK A" | "InvK (ShaK SK) = ShaK SK" | "InvK (SesK SK) = SesK SK" abbreviation InvKey :: "key \<Rightarrow> msg" where "InvKey \<equiv> Key \<circ> InvK" inductive_set parts :: "msg set \<Rightarrow> msg set" for H :: "msg set" where parts_used [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" | parts_crypt [intro]: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H" | parts_fst [intro]: "\<lbrace>X, Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" | parts_snd [intro]: "\<lbrace>X, Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" inductive_set crypts :: "msg set \<Rightarrow> msg set" for H :: "msg set" where crypts_used [intro]: "X \<in> H \<Longrightarrow> X \<in> crypts H" | crypts_hash [intro]: "foldr Crypt KS (Hash X) \<in> crypts H \<Longrightarrow> foldr Crypt KS X \<in> crypts H" | crypts_fst [intro]: "foldr Crypt KS \<lbrace>X, Y\<rbrace> \<in> crypts H \<Longrightarrow> foldr Crypt KS X \<in> crypts H" | crypts_snd [intro]: "foldr Crypt KS \<lbrace>X, Y\<rbrace> \<in> crypts H \<Longrightarrow> foldr Crypt KS Y \<in> crypts H" definition key_sets :: "msg \<Rightarrow> msg set \<Rightarrow> msg set set" where "key_sets X H \<equiv> {InvKey ` set KS | KS. foldr Crypt KS X \<in> H}" definition parts_msg :: "msg \<Rightarrow> msg set" where "parts_msg X \<equiv> parts {X}" definition crypts_msg :: "msg \<Rightarrow> msg set" where "crypts_msg X \<equiv> crypts {X}" definition key_sets_msg :: "msg \<Rightarrow> msg \<Rightarrow> msg set set" where "key_sets_msg X Y \<equiv> key_sets X {Y}" fun seskey_set :: "seskey_in \<Rightarrow> key_id set" where "seskey_set (Some S, U, V) = insert S (U \<union> V)" | "seskey_set (None, U, V) = U \<union> V" definition Auth_PriK :: "agent_id \<Rightarrow> key_id" where "Auth_PriK \<equiv> SOME f. infinite (- range f)" abbreviation Auth_PriKey :: "agent_id \<Rightarrow> msg" where "Auth_PriKey \<equiv> PriKey \<circ> Auth_PriK" abbreviation Auth_PubKey :: "agent_id \<Rightarrow> msg" where "Auth_PubKey \<equiv> PubKey \<circ> Auth_PriK" consts Auth_ShaK :: "agent_id \<Rightarrow> key_id" abbreviation Auth_ShaKey :: "agent_id \<Rightarrow> key" where "Auth_ShaKey \<equiv> ShaK \<circ> Auth_ShaK" abbreviation Sign :: "agent_id \<Rightarrow> key_id \<Rightarrow> msg" where "Sign n A \<equiv> Crypt SigK \<lbrace>Hash (Agent n), Hash (PubKey A)\<rbrace>" abbreviation Token :: "agent_id \<Rightarrow> key_id \<Rightarrow> key_id \<Rightarrow> key_id \<Rightarrow> seskey_in \<Rightarrow> msg" where "Token n A B C SK \<equiv> \<lbrace>Crypt (SesK SK) (PubKey C), Crypt (SesK SK) (A \<otimes> B), Crypt (SesK SK) (Sign n A)\<rbrace>" consts bad_agent :: "agent_id set" consts bad_pwd :: "agent_id set" consts bad_shak :: "key_id set" consts bad_id_pwd :: "agent_id set" consts bad_id_prik :: "agent_id set" consts bad_id_pubk :: "agent_id set" consts bad_id_shak :: "agent_id set" definition bad_prik :: "key_id set" where "bad_prik \<equiv> SOME U. U \<subseteq> range Auth_PriK" abbreviation bad_prikey :: "agent_id set" where "bad_prikey \<equiv> Auth_PriK -` bad_prik" abbreviation bad_shakey :: "agent_id set" where "bad_shakey \<equiv> Auth_ShaK -` bad_shak" abbreviation bad_id_password :: "agent_id set" where "bad_id_password \<equiv> bad_id_pwd \<inter> bad_pwd" abbreviation bad_id_prikey :: "agent_id set" where "bad_id_prikey \<equiv> (bad_agent \<union> bad_id_pubk \<union> bad_id_prik) \<inter> bad_prikey" abbreviation bad_id_pubkey :: "agent_id set" where "bad_id_pubkey \<equiv> bad_agent \<union> bad_id_pubk \<union> bad_id_prik \<inter> bad_prikey" abbreviation bad_id_shakey :: "agent_id set" where "bad_id_shakey \<equiv> bad_id_shak \<inter> bad_shakey" type_synonym event = "agent \<times> msg" type_synonym state = "event set" abbreviation used :: "state \<Rightarrow> msg set" where "used s \<equiv> Range s" abbreviation spied :: "state \<Rightarrow> msg set" where "spied s \<equiv> s `` {Spy}" abbreviation s\<^sub>0 :: state where "s\<^sub>0 \<equiv> range (\<lambda>n. (Asset n, Auth_PriKey n)) \<union> {Spy} \<times> insert VerKey (range Num \<union> range Auth_PubKey \<union> range (\<lambda>n. Sign n (Auth_PriK n)) \<union> Agent ` bad_agent \<union> Pwd ` bad_pwd \<union> PriKey ` bad_prik \<union> ShaKey ` bad_shak \<union> (\<lambda>n. \<langle>n, Pwd n\<rangle>) ` bad_id_password \<union> (\<lambda>n. \<langle>n, Auth_PriKey n\<rangle>) ` bad_id_prikey \<union> (\<lambda>n. \<langle>n, Auth_PubKey n\<rangle>) ` bad_id_pubkey \<union> (\<lambda>n. \<langle>n, Key (Auth_ShaKey n)\<rangle>) ` bad_id_shakey)" abbreviation rel_asset_i :: "(state \<times> state) set" where "rel_asset_i \<equiv> {(s, s') | s s' n S. s' = insert (Asset n, PriKey S) s \<union> {Asset n, Spy} \<times> {Crypt (Auth_ShaKey n) (PriKey S)} \<union> {(Spy, Log (Crypt (Auth_ShaKey n) (PriKey S)))} \<and> PriKey S \<notin> used s}" abbreviation rel_owner_ii :: "(state \<times> state) set" where "rel_owner_ii \<equiv> {(s, s') | s s' n S A K. s' = insert (Owner n, PriKey A) s \<union> {Owner n, Spy} \<times> {\<lbrace>Num 1, PubKey A\<rbrace>} \<union> {Spy} \<times> Log ` {Crypt K (PriKey S), \<lbrace>Num 1, PubKey A\<rbrace>} \<and> Crypt K (PriKey S) \<in> used s \<and> PriKey A \<notin> used s}" abbreviation rel_asset_ii :: "(state \<times> state) set" where "rel_asset_ii \<equiv> {(s, s') | s s' n A B. s' = insert (Asset n, PriKey B) s \<union> {Asset n, Spy} \<times> {\<lbrace>Num 2, PubKey B\<rbrace>} \<union> {Spy} \<times> Log ` {\<lbrace>Num 1, PubKey A\<rbrace>, \<lbrace>Num 2, PubKey B\<rbrace>} \<and> \<lbrace>Num 1, PubKey A\<rbrace> \<in> used s \<and> PriKey B \<notin> used s}" abbreviation rel_owner_iii :: "(state \<times> state) set" where "rel_owner_iii \<equiv> {(s, s') | s s' n B C. s' = insert (Owner n, PriKey C) s \<union> {Owner n, Spy} \<times> {\<lbrace>Num 3, PubKey C\<rbrace>} \<union> {Spy} \<times> Log ` {\<lbrace>Num 2, PubKey B\<rbrace>, \<lbrace>Num 3, PubKey C\<rbrace>} \<and> \<lbrace>Num 2, PubKey B\<rbrace> \<in> used s \<and> PriKey C \<notin> used s}" abbreviation rel_asset_iii :: "(state \<times> state) set" where "rel_asset_iii \<equiv> {(s, s') | s s' n C D. s' = insert (Asset n, PriKey D) s \<union> {Asset n, Spy} \<times> {\<lbrace>Num 4, PubKey D\<rbrace>} \<union> {Spy} \<times> Log ` {\<lbrace>Num 3, PubKey C\<rbrace>, \<lbrace>Num 4, PubKey D\<rbrace>} \<and> \<lbrace>Num 3, PubKey C\<rbrace> \<in> used s \<and> PriKey D \<notin> used s}" abbreviation rel_owner_iv :: "(state \<times> state) set" where "rel_owner_iv \<equiv> {(s, s') | s s' n S A B C D K SK. s' = insert (Owner n, SesKey SK) s \<union> {Owner n, Spy} \<times> {Crypt (SesK SK) (PubKey D)} \<union> {Spy} \<times> Log ` {\<lbrace>Num 4, PubKey D\<rbrace>, Crypt (SesK SK) (PubKey D)} \<and> {Crypt K (PriKey S), \<lbrace>Num 2, PubKey B\<rbrace>, \<lbrace>Num 4, PubKey D\<rbrace>} \<subseteq> used s \<and> {Owner n} \<times> {\<lbrace>Num 1, PubKey A\<rbrace>, \<lbrace>Num 3, PubKey C\<rbrace>} \<subseteq> s \<and> SK = (if K = Auth_ShaKey n then Some S else None, {A, B}, {C, D})}" abbreviation rel_asset_iv :: "(state \<times> state) set" where "rel_asset_iv \<equiv> {(s, s') | s s' n S A B C D SK. s' = s \<union> {Asset n} \<times> {SesKey SK, PubKey B} \<union> {Asset n, Spy} \<times> {Token n (Auth_PriK n) B C SK} \<union> {Spy} \<times> Log ` {Crypt (SesK SK) (PubKey D), Token n (Auth_PriK n) B C SK} \<and> {Asset n} \<times> {Crypt (Auth_ShaKey n) (PriKey S), \<lbrace>Num 2, PubKey B\<rbrace>, \<lbrace>Num 4, PubKey D\<rbrace>} \<subseteq> s \<and> {\<lbrace>Num 1, PubKey A\<rbrace>, \<lbrace>Num 3, PubKey C\<rbrace>, Crypt (SesK SK) (PubKey D)} \<subseteq> used s \<and> (Asset n, PubKey B) \<notin> s \<and> SK = (Some S, {A, B}, {C, D})}" abbreviation rel_owner_v :: "(state \<times> state) set" where "rel_owner_v \<equiv> {(s, s') | s s' n A B C SK. s' = s \<union> {Owner n, Spy} \<times> {Crypt (SesK SK) (Pwd n)} \<union> {Spy} \<times> Log ` {Token n A B C SK, Crypt (SesK SK) (Pwd n)} \<and> Token n A B C SK \<in> used s \<and> (Owner n, SesKey SK) \<in> s \<and> B \<in> fst (snd SK)}" abbreviation rel_asset_v :: "(state \<times> state) set" where "rel_asset_v \<equiv> {(s, s') | s s' n SK. s' = s \<union> {Asset n, Spy} \<times> {Crypt (SesK SK) (Num 0)} \<union> {Spy} \<times> Log ` {Crypt (SesK SK) (Pwd n), Crypt (SesK SK) (Num 0)} \<and> (Asset n, SesKey SK) \<in> s \<and> Crypt (SesK SK) (Pwd n) \<in> used s}" abbreviation rel_prik :: "(state \<times> state) set" where "rel_prik \<equiv> {(s, s') | s s' A. s' = insert (Spy, PriKey A) s \<and> PriKey A \<notin> used s}" abbreviation rel_pubk :: "(state \<times> state) set" where "rel_pubk \<equiv> {(s, s') | s s' A. s' = insert (Spy, PubKey A) s \<and> PriKey A \<in> spied s}" abbreviation rel_sesk :: "(state \<times> state) set" where "rel_sesk \<equiv> {(s, s') | s s' A B C D S. s' = insert (Spy, SesKey (Some S, {A, B}, {C, D})) s \<and> {PriKey S, PriKey A, PubKey B, PriKey C, PubKey D} \<subseteq> spied s}" abbreviation rel_fact :: "(state \<times> state) set" where "rel_fact \<equiv> {(s, s') | s s' A B. s' = s \<union> {Spy} \<times> {PriKey A, PriKey B} \<and> A \<otimes> B \<in> spied s \<and> (PriKey A \<in> spied s \<or> PriKey B \<in> spied s)}" abbreviation rel_mult :: "(state \<times> state) set" where "rel_mult \<equiv> {(s, s') | s s' A B. s' = insert (Spy, A \<otimes> B) s \<and> {PriKey A, PriKey B} \<subseteq> spied s}" abbreviation rel_hash :: "(state \<times> state) set" where "rel_hash \<equiv> {(s, s') | s s' X. s' = insert (Spy, Hash X) s \<and> X \<in> spied s}" abbreviation rel_dec :: "(state \<times> state) set" where "rel_dec \<equiv> {(s, s') | s s' K X. s' = insert (Spy, X) s \<and> {Crypt K X, InvKey K} \<subseteq> spied s}" abbreviation rel_enc :: "(state \<times> state) set" where "rel_enc \<equiv> {(s, s') | s s' K X. s' = insert (Spy, Crypt K X) s \<and> {X, Key K} \<subseteq> spied s}" abbreviation rel_sep :: "(state \<times> state) set" where "rel_sep \<equiv> {(s, s') | s s' X Y. s' = s \<union> {Spy} \<times> {X, Y} \<and> \<lbrace>X, Y\<rbrace> \<in> spied s}" abbreviation rel_con :: "(state \<times> state) set" where "rel_con \<equiv> {(s, s') | s s' X Y. s' = insert (Spy, \<lbrace>X, Y\<rbrace>) s \<and> {X, Y} \<subseteq> spied s}" abbreviation rel_id_agent :: "(state \<times> state) set" where "rel_id_agent \<equiv> {(s, s') | s s' n. s' = insert (Spy, \<langle>n, Agent n\<rangle>) s \<and> Agent n \<in> spied s}" abbreviation rel_id_invk :: "(state \<times> state) set" where "rel_id_invk \<equiv> {(s, s') | s s' n K. s' = insert (Spy, \<langle>n, InvKey K\<rangle>) s \<and> {InvKey K, \<langle>n, Key K\<rangle>} \<subseteq> spied s}" abbreviation rel_id_sesk :: "(state \<times> state) set" where "rel_id_sesk \<equiv> {(s, s') | s s' n A SK X U. s' = s \<union> {Spy} \<times> {\<langle>n, PubKey A\<rangle>, \<langle>n, SesKey SK\<rangle>} \<and> {PubKey A, SesKey SK} \<subseteq> spied s \<and> (\<langle>n, PubKey A\<rangle> \<in> spied s \<or> \<langle>n, SesKey SK\<rangle> \<in> spied s) \<and> A \<in> seskey_set SK \<and> SesKey SK \<in> U \<and> U \<in> key_sets X (crypts (Log -` spied s))}" abbreviation rel_id_fact :: "(state \<times> state) set" where "rel_id_fact \<equiv> {(s, s') | s s' n A B. s' = s \<union> {Spy} \<times> {\<langle>n, PriKey A\<rangle>, \<langle>n, PriKey B\<rangle>} \<and> {PriKey A, PriKey B, \<langle>n, A \<otimes> B\<rangle>} \<subseteq> spied s}" abbreviation rel_id_mult :: "(state \<times> state) set" where "rel_id_mult \<equiv> {(s, s') | s s' n A B U. s' = insert (Spy, \<langle>n, A \<otimes> B\<rangle>) s \<and> U \<union> {PriKey A, PriKey B, A \<otimes> B} \<subseteq> spied s \<and> (\<langle>n, PriKey A\<rangle> \<in> spied s \<or> \<langle>n, PriKey B\<rangle> \<in> spied s) \<and> U \<in> key_sets (A \<otimes> B) (crypts (Log -` spied s))}" abbreviation rel_id_hash :: "(state \<times> state) set" where "rel_id_hash \<equiv> {(s, s') | s s' n X U. s' = s \<union> {Spy} \<times> {\<langle>n, X\<rangle>, \<langle>n, Hash X\<rangle>} \<and> U \<union> {X, Hash X} \<subseteq> spied s \<and> (\<langle>n, X\<rangle> \<in> spied s \<or> \<langle>n, Hash X\<rangle> \<in> spied s) \<and> U \<in> key_sets (Hash X) (crypts (Log -` spied s))}" abbreviation rel_id_crypt :: "(state \<times> state) set" where "rel_id_crypt \<equiv> {(s, s') | s s' n X U. s' = s \<union> {Spy} \<times> IDInfo n ` insert X U \<and> insert X U \<subseteq> spied s \<and> (\<langle>n, X\<rangle> \<in> spied s \<or> (\<exists>K \<in> U. \<langle>n, K\<rangle> \<in> spied s)) \<and> U \<in> key_sets X (crypts (Log -` spied s))}" abbreviation rel_id_sep :: "(state \<times> state) set" where "rel_id_sep \<equiv> {(s, s') | s s' n X Y. s' = s \<union> {Spy} \<times> {\<langle>n, X\<rangle>, \<langle>n, Y\<rangle>} \<and> {X, Y, \<langle>n, \<lbrace>X, Y\<rbrace>\<rangle>} \<subseteq> spied s}" abbreviation rel_id_con :: "(state \<times> state) set" where "rel_id_con \<equiv> {(s, s') | s s' n X Y U. s' = insert (Spy, \<langle>n, \<lbrace>X, Y\<rbrace>\<rangle>) s \<and> U \<union> {X, Y, \<lbrace>X, Y\<rbrace>} \<subseteq> spied s \<and> (\<langle>n, X\<rangle> \<in> spied s \<or> \<langle>n, Y\<rangle> \<in> spied s) \<and> U \<in> key_sets \<lbrace>X, Y\<rbrace> (crypts (Log -` spied s))}" definition rel :: "(state \<times> state) set" where "rel \<equiv> rel_asset_i \<union> rel_owner_ii \<union> rel_asset_ii \<union> rel_owner_iii \<union> rel_asset_iii \<union> rel_owner_iv \<union> rel_asset_iv \<union> rel_owner_v \<union> rel_asset_v \<union> rel_prik \<union> rel_pubk \<union> rel_sesk \<union> rel_fact \<union> rel_mult \<union> rel_hash \<union> rel_dec \<union> rel_enc \<union> rel_sep \<union> rel_con \<union> rel_id_agent \<union> rel_id_invk \<union> rel_id_sesk \<union> rel_id_fact \<union> rel_id_mult \<union> rel_id_hash \<union> rel_id_crypt \<union> rel_id_sep \<union> rel_id_con" abbreviation in_rel :: "state \<Rightarrow> state \<Rightarrow> bool" (infix "\<turnstile>" 60) where "s \<turnstile> s' \<equiv> (s, s') \<in> rel" abbreviation in_rel_rtrancl :: "state \<Rightarrow> state \<Rightarrow> bool" (infix "\<Turnstile>" 60) where "s \<Turnstile> s' \<equiv> (s, s') \<in> rel\<^sup>*" end
[STATEMENT] lemma "rel_fun (=) (\<le>) (const (0::nat)) x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. rel_fun (=) (\<le>) (pure 0) x [PROOF STEP] by applicative_lifting simp
postulate Name : Set {-# BUILTIN QNAME Name #-} data ⊤ : Set where tt : ⊤ data Term : Set where con : Name → Term → Term data X : ⊤ → Set where x : {t : ⊤} → X t data Y : Set where y : Y -- this type checks g : {t : ⊤} → Term → X t g {t} (con nm args) = x {t} -- this doesn't f : {t : ⊤} → Term → X t f {t} (con (quote Y.y) args) = x {t} -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -- offending line is above f t = x -- t != args of type ⊤ -- when checking that the expression x {t} has type X args
#include "client.h" #include <boost/tokenizer.hpp> #include "mylogger.h" #include "protos/account.pb.h" static LoggerPtr logger(Logger::getLogger("myclient"));
The multiplicity of a prime $p$ in the number $1$ is $0$.
[STATEMENT] lemma DmdRec2: "\<And>sigma. \<lbrakk> sigma \<Turnstile> \<diamond>P; sigma \<Turnstile> \<box>\<not>P` \<rbrakk> \<Longrightarrow> sigma \<Turnstile> Init P" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>sigma. \<lbrakk>sigma \<Turnstile> \<diamond>P; sigma \<Turnstile> \<box>\<not> P$\<rbrakk> \<Longrightarrow> sigma \<Turnstile> Init P [PROOF STEP] apply (force simp: DmdRec [temp_rewrite] dmd_def) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
The UITS Central Web Server 2 provides hosting for University web sites. Currently, only UConn Departmental web pages are supported. Faculty, staff, graduate students, and student organizations must use the Homepages Web Server . Please see the Contact page for whom to contact for an account.
theory Result imports Main "HOL-Library.Monad_Syntax" begin datatype ('err, 'a) result = is_err: Error 'err | is_ok: Ok 'a section \<open>Monadic bind\<close> context begin qualified fun bind :: "('a, 'b) result \<Rightarrow> ('b \<Rightarrow> ('a, 'c) result) \<Rightarrow> ('a, 'c) result" where "bind (Error x) _ = Error x" | "bind (Ok x) f = f x" end adhoc_overloading bind Result.bind context begin qualified lemma bind_Ok[simp]: "x \<bind> Ok = x" by (cases x) simp_all qualified lemma bind_eq_Ok_conv: "(x \<bind> f = Ok z) = (\<exists>y. x = Ok y \<and> f y = Ok z)" by (cases x) simp_all qualified lemmas bind_eq_OkD[dest!] = bind_eq_Ok_conv[THEN iffD1] qualified lemmas bind_eq_OkE = bind_eq_OkD[THEN exE] qualified lemmas bind_eq_OkI[intro] = conjI[THEN exI[THEN bind_eq_Ok_conv[THEN iffD2]]] qualified lemma bind_eq_Error_conv: "x \<bind> f = Error z \<longleftrightarrow> x = Error z \<or> (\<exists>y. x = Ok y \<and> f y = Error z)" by (cases x) simp_all qualified lemmas bind_eq_ErrorD[dest!] = bind_eq_Error_conv[THEN iffD1] qualified lemmas bind_eq_ErrorE = bind_eq_ErrorD[THEN disjE] qualified lemmas bind_eq_ErrorI = disjI1[THEN bind_eq_Error_conv[THEN iffD2]] conjI[THEN exI[THEN disjI2[THEN bind_eq_Error_conv[THEN iffD2]]]] lemma if_then_else_Ok[simp]: "(if a then b else Error c) = Ok d \<longleftrightarrow> a \<and> b = Ok d" "(if a then Error c else b) = Ok d \<longleftrightarrow> \<not> a \<and> b = Ok d" by (cases a) simp_all qualified lemma if_then_else_Error[simp]: "(if a then Ok b else c) = Error d \<longleftrightarrow> \<not> a \<and> c = Error d" "(if a then c else Ok b) = Error d \<longleftrightarrow> a \<and> c = Error d" by (cases a) simp_all qualified lemma map_eq_Ok_conv: "map_result f g x = Ok y \<longleftrightarrow> (\<exists>x'. x = Ok x' \<and> y = g x')" by (cases x; auto) qualified lemma map_eq_Error_conv: "map_result f g x = Error y \<longleftrightarrow> (\<exists>x'. x = Error x' \<and> y = f x')" by (cases x; auto) qualified lemmas map_eq_OkD[dest!] = iffD1[OF map_eq_Ok_conv] qualified lemmas map_eq_ErrorD[dest!] = iffD1[OF map_eq_Error_conv] end section \<open>Conversion functions\<close> context begin qualified fun of_option where "of_option e None = Error e" | "of_option e (Some x) = Ok x" qualified lemma of_option_injective[simp]: "(of_option e x = of_option e y) = (x = y)" by (cases x; cases y; simp) qualified lemma of_option_eq_Ok[simp]: "(of_option x y = Ok z) = (y = Some z)" by (cases y) simp_all qualified fun to_option where "to_option (Error _) = None" | "to_option (Ok x) = Some x" qualified lemma to_option_Some[simp]: "(to_option r = Some x) = (r = Ok x)" by (cases r) simp_all qualified fun those :: "('err, 'ok) result list \<Rightarrow> ('err, 'ok list) result" where "those [] = Ok []" | "those (x # xs) = do { y \<leftarrow> x; ys \<leftarrow> those xs; Ok (y # ys) }" qualified lemma those_Cons_OkD: "those (x # xs) = Ok ys \<Longrightarrow> \<exists>y ys'. ys = y # ys' \<and> x = Ok y \<and> those xs = Ok ys'" by auto end end
import data.nat.basic example (n : ℕ) (h : n < 2) : n = 0 ∨ n = 1 := by dec_trivial! example (n : ℕ) (h : n < 3) : true := begin let k : ℕ := n - 1, have : ∀ i < k, i = 0 ∨ i = 1, by dec_trivial!, trivial end example (b : bool) (h : b = tt) : true := begin let b₁ : bool := b, have : ∀ b₂ : bool, b₂ ≠ b₁ → b₂ = ff, by dec_trivial!, trivial end example (n : ℕ) : (0 : fin (n+1)) + 0 = 0 := begin success_if_fail { dec_trivial! }, dec_trivial end
-- {-# OPTIONS --allow-unsolved-metas #-} module Issue2369.OpenIP where test : Set test = {!!} -- unsolved interaction point -- postulate A : {!!}
# m4_3t.jl using Pkg, DrWatson @quickactivate "StatisticalRethinkingTuring" using Turing using StatisticalRethinking Turing.setprogress!(false) begin df = CSV.read(sr_datadir("Howell1.csv"), DataFrame) df = df[df.age .>= 18, :] x̄ = mean(df.weight) x = range(minimum(df.weight), maximum(df.weight), length = 100) end; @model function ppl4_3(weights, heights) a ~ Normal(178, 20) b ~ LogNormal(0, 1) σ ~ Uniform(0, 50) μ = a .+ b .* (weights .- x̄) for i in eachindex(heights) heights[i] ~ Normal(μ[i], σ) end end m4_3t = ppl4_3(df.weight, df.height) q4_3t = quap(m4_3t, NelderMead()) nchains = 4; sampler = NUTS(0.65); nsamples=2000 chns4_3t = mapreduce(c -> sample(m4_3t, sampler, nsamples), chainscat, 1:nchains) chns4_3t_df = DataFrame(chns4_3t) quap4_3t_df = DataFrame(rand(q4_3t.distr, 10_000)', q4_3t.params) part4_3t = Particles(chns4_3t[[:a, :b, :σ]]) # End of m4.3t.jl
SUBROUTINE GBYTEC(IN,IOUT,ISKIP,NBYTE) character*1 in(*) integer iout(*) CALL GBYTESC(IN,IOUT,ISKIP,NBYTE,0,1) RETURN END
{-# LANGUAGE ForeignFunctionInterface #-} module Grenade.Layers.Internal.Pad ( pad , crop ) where import qualified Data.Vector.Storable as U (unsafeFromForeignPtr0, unsafeToForeignPtr0) import Foreign (mallocForeignPtrArray, withForeignPtr) import Foreign.Ptr (Ptr) import Numeric.LinearAlgebra (Matrix, flatten) import qualified Numeric.LinearAlgebra.Devel as U import System.IO.Unsafe (unsafePerformIO) import Grenade.Types pad :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Matrix RealNum -> Matrix RealNum pad channels padLeft padTop padRight padBottom rows cols rows' cols' m = let outMatSize = rows' * cols' * channels vec = flatten m in unsafePerformIO $ do outPtr <- mallocForeignPtrArray outMatSize let (inPtr, _) = U.unsafeToForeignPtr0 vec withForeignPtr inPtr $ \inPtr' -> withForeignPtr outPtr $ \outPtr' -> pad_cpu inPtr' channels rows cols padLeft padTop padRight padBottom outPtr' let matVec = U.unsafeFromForeignPtr0 outPtr outMatSize return (U.matrixFromVector U.RowMajor (rows' * channels) cols' matVec) {-# INLINE pad #-} foreign import ccall unsafe pad_cpu :: Ptr RealNum -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Ptr RealNum -> IO () crop :: Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Matrix RealNum -> Matrix RealNum crop channels padLeft padTop padRight padBottom rows cols _ _ m = let outMatSize = rows * cols * channels vec = flatten m in unsafePerformIO $ do outPtr <- mallocForeignPtrArray outMatSize let (inPtr, _) = U.unsafeToForeignPtr0 vec withForeignPtr inPtr $ \inPtr' -> withForeignPtr outPtr $ \outPtr' -> crop_cpu inPtr' channels rows cols padLeft padTop padRight padBottom outPtr' let matVec = U.unsafeFromForeignPtr0 outPtr outMatSize return (U.matrixFromVector U.RowMajor (rows * channels) cols matVec) foreign import ccall unsafe crop_cpu :: Ptr RealNum -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Ptr RealNum -> IO ()
\maketitle \section*{Motivation: Why covering spaces?} \todo[inline]{Topologists have a love-hate relationship with topological spaces.} One way to understand spaces is to associate an algebraic invariant to them. \begin{equation*} \begin{tikzcd} \mbox{Topological Space} \ar[rr] && \mbox{Algebraic invariant} \\ \mbox{For example: Knot} \ar[r] & \mbox{Knot projection} \ar[r] & \mbox{Knot invariant} \end{tikzcd} \end{equation*} where a knot invariant can be a number, polynomial, vector space, chain complex, etc. It is rarely possible to compute an invariant directly using definition. Instead, there are two main strategies in algebraic topology to compute these algebraic invariants: \begin{enumerate} \item Break a space $X$ up into smaller spaces, \begin{align*} X = X_1 \cup \dots \cup X_n. \end{align*} This is called \emph{excision}. \item Map another space $Y$ into $X$ and recover information about $X$ using $Y$. \begin{align*} Y \longrightarrow X \end{align*} This is where covering spaces come in. A covering map $Y \rightarrow X$ provides us information about the fundamental group/first homotopy group $\pi_1(X)$. We will show later on that if $\pi_1(Y) \triangleleft \pi_1(X)$ then there is a short exact sequence of groups \begin{equation*} 1 \rightarrow \pi_1(Y) \rightarrow \pi_1(X) \rightarrow \Gal(Y|X) \rightarrow 1 \end{equation*} \end{enumerate}