Datasets:
AI4M
/

text
stringlengths
0
3.34M
INTEGER FUNCTION IDAMAX(N,DX,INCX) C C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C DOUBLE PRECISION DX(1),DMAX INTEGER I,INCX,IX,N C IDAMAX = 0 IF( N .LT. 1 ) RETURN IDAMAX = 1 IF(N.EQ.1)RETURN IF(INCX.EQ.1)GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 DMAX = DABS(DX(1)) IX = IX + INCX DO 10 I = 2,N IF(DABS(DX(IX)).LE.DMAX) GO TO 5 IDAMAX = I DMAX = DABS(DX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 DMAX = DABS(DX(1)) DO 30 I = 2,N IF(DABS(DX(I)).LE.DMAX) GO TO 30 IDAMAX = I DMAX = DABS(DX(I)) 30 CONTINUE RETURN END
[GOAL] M : Type u inst✝ : Monoid M X x✝¹ x✝ : Discrete M f : x✝¹ ⟶ x✝ ⊢ (fun X Y => { as := X.as * Y.as }) X x✝¹ = (fun X Y => { as := X.as * Y.as }) X x✝ [PROOFSTEP] dsimp [GOAL] M : Type u inst✝ : Monoid M X x✝¹ x✝ : Discrete M f : x✝¹ ⟶ x✝ ⊢ { as := X.as * x✝¹.as } = { as := X.as * x✝.as } [PROOFSTEP] rw [eq_of_hom f] [GOAL] M : Type u inst✝ : Monoid M X₁✝ X₂✝ : Discrete M f : X₁✝ ⟶ X₂✝ X : Discrete M ⊢ (fun X Y => { as := X.as * Y.as }) X₁✝ X = (fun X Y => { as := X.as * Y.as }) X₂✝ X [PROOFSTEP] dsimp [GOAL] M : Type u inst✝ : Monoid M X₁✝ X₂✝ : Discrete M f : X₁✝ ⟶ X₂✝ X : Discrete M ⊢ { as := X₁✝.as * X.as } = { as := X₂✝.as * X.as } [PROOFSTEP] rw [eq_of_hom f] [GOAL] M : Type u inst✝ : Monoid M X₁✝ Y₁✝ X₂✝ Y₂✝ : Discrete M f : X₁✝ ⟶ Y₁✝ g : X₂✝ ⟶ Y₂✝ ⊢ (fun X Y => { as := X.as * Y.as }) X₁✝ X₂✝ = (fun X Y => { as := X.as * Y.as }) Y₁✝ Y₂✝ [PROOFSTEP] dsimp [GOAL] M : Type u inst✝ : Monoid M X₁✝ Y₁✝ X₂✝ Y₂✝ : Discrete M f : X₁✝ ⟶ Y₁✝ g : X₂✝ ⟶ Y₂✝ ⊢ { as := X₁✝.as * X₂✝.as } = { as := Y₁✝.as * Y₂✝.as } [PROOFSTEP] rw [eq_of_hom f, eq_of_hom g]
/* * Copyright (c) 2014, Stanislav Vorobiov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "SpawnerComponent.h" #include "Scene.h" #include "SceneObjectFactory.h" #include "Settings.h" #include "Utils.h" #include "Const.h" #include "SequentialTweening.h" #include "SingleTweening.h" #include <boost/make_shared.hpp> namespace af { SpawnerComponent::SpawnerComponent(const b2Vec2& pos, float glowRadius) : PhasedComponent(phaseThink), pos_(pos), glowRadius_(glowRadius), tweenTime_(0.0f), sndDone_(audio.createSound("spawner_done.ogg")) { } SpawnerComponent::~SpawnerComponent() { } void SpawnerComponent::accept(ComponentVisitor& visitor) { visitor.visitPhasedComponent(shared_from_this()); } void SpawnerComponent::update(float dt) { if (parent()->life() <= 0) { SceneObjectPtr explosion = sceneObjectFactory.createExplosion1(zOrderExplosion); explosion->setTransform(parent()->getTransform()); scene()->addObject(explosion); parent()->removeFromParent(); return; } if (!tweening_) { return; } float value = tweening_->getValue(tweenTime_); lineLight_->setDistance(value * 2.0f); pointLight_->setDistance(value * glowRadius_); tweenTime_ += dt; if (tweening_->finished(tweenTime_)) { cleanupSpawn(); } } void SpawnerComponent::startSpawn(const b2Vec2& dest) { cleanupSpawn(); beamAnimation_ = sceneObjectFactory.createLightningAnimation(); beamAnimation_->startAnimation(AnimationDefault); float angle = vec2angle(dest - pos_); beam_ = boost::make_shared<RenderBeamComponent>(pos_, angle, 4.0f, beamAnimation_->drawable(), zOrderEffects - 1); beam_->setLength((dest - pos_).Length()); lineLight_ = boost::make_shared<LineLight>(); lineLight_->setDiffuse(false); lineLight_->setColor(Color(0.0f, 0.0f, 1.0f, 1.0f)); lineLight_->setXray(true); lineLight_->setDistance(0.0f); lineLight_->setBothWays(true); lineLight_->setAngle((b2_pi / 2.0f) + angle); lineLight_->setPos(pos_ + angle2vec(angle, (dest - pos_).Length() / 2)); lineLight_->setLength((dest - pos_).Length() / 2); pointLight_ = boost::make_shared<PointLight>(); pointLight_->setColor(Color(0.0f, 0.0f, 1.0f, 1.0f)); pointLight_->setDistance(0.0f); pointLight_->setXray(true); pointLight_->setPos(pos_); lightC_ = boost::make_shared<LightComponent>(); lightC_->attachLight(lineLight_); lightC_->attachLight(pointLight_); parent()->addComponent(beam_); parent()->addComponent(beamAnimation_); parent()->addComponent(lightC_); SequentialTweeningPtr tweening = boost::make_shared<SequentialTweening>(); tweening->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseOutQuad, 0.0f, 4.0f / 3.0f)); SequentialTweeningPtr tweening2 = boost::make_shared<SequentialTweening>(true); tweening2->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInOutQuad, (4.0f / 3.0f), (3.0f / 4.0f))); tweening2->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInOutQuad, (3.0f / 4.0f), (4.0f / 3.0f))); tweening->addTweening(tweening2); tweening_ = tweening; tweenTime_ = 0.0f; } void SpawnerComponent::finishSpawn() { if (tweening_) { SequentialTweeningPtr tweening = boost::make_shared<SequentialTweening>(); float t = std::fmod(tweenTime_, 0.6f); if (t >= 0.3f) { tweening->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInOutQuad, (4.0f / 3.0f), (3.0f / 4.0f))); tweening->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInOutQuad, (3.0f / 4.0f), (4.0f / 3.0f))); tweening->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInQuad, (4.0f / 3.0f), 0.0f)); tweenTime_ = t - 0.3f; } else { tweening->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInOutQuad, (3.0f / 4.0f), (4.0f / 3.0f))); tweening->addTweening(boost::make_shared<SingleTweening>(0.3f, EaseInQuad, (4.0f / 3.0f), 0.0f)); tweenTime_ = t; } tweening_ = tweening; sndDone_->play(); } } void SpawnerComponent::cleanupSpawn() { if (beam_) { beam_->removeFromParent(); beam_.reset(); beamAnimation_->removeFromParent(); beamAnimation_.reset(); lightC_->removeFromParent(); lightC_.reset(); lineLight_.reset(); pointLight_.reset(); tweening_.reset(); } } void SpawnerComponent::onRegister() { } void SpawnerComponent::onUnregister() { cleanupSpawn(); } }
SUBROUTINE CPRODP (ND,BD,NM1,BM1,NM2,BM2,NA,AA,X,YY,M,A,B,C,D,U,Y) C C PRODP APPLIES A SEQUENCE OF MATRIX OPERATIONS TO THE VECTOR X AND C STORES THE RESULT IN YY PERIODIC BOUNDARY CONDITIONS C AND COMPLEX CASE C C BD,BM1,BM2 ARE ARRAYS CONTAINING ROOTS OF CERTIAN B POLYNOMIALS C ND,NM1,NM2 ARE THE LENGTHS OF THE ARRAYS BD,BM1,BM2 RESPECTIVELY C AA ARRAY CONTAINING SCALAR MULTIPLIERS OF THE VECTOR X C NA IS THE LENGTH OF THE ARRAY AA C X,YY THE MATRIX OPERATIONS ARE APPLIED TO X AND THE RESULT IS YY C A,B,C ARE ARRAYS WHICH CONTAIN THE TRIDIAGONAL MATRIX C M IS THE ORDER OF THE MATRIX C D,U,Y ARE WORKING ARRAYS C ISGN DETERMINES WHETHER OR NOT A CHANGE IN SIGN IS MADE C COMPLEX Y ,D ,U ,V , 1 DEN ,BH ,YM ,AM , 2 Y1 ,Y2 ,YH ,BD , 3 CRT DIMENSION A(1) ,B(1) ,C(1) ,X(1) , 1 Y(1) ,D(1) ,U(1) ,BD(1) , 2 BM1(1) ,BM2(1) ,AA(1) ,YY(1) DO 101 J=1,M Y(J) = CMPLX(X(J),0.) 101 CONTINUE MM = M-1 MM2 = M-2 ID = ND M1 = NM1 M2 = NM2 IA = NA 102 IFLG = 0 IF (ID) 111,111,103 103 CRT = BD(ID) ID = ID-1 IFLG = 1 C C BEGIN SOLUTION TO SYSTEM C BH = B(M)-CRT YM = Y(M) DEN = B(1)-CRT D(1) = C(1)/DEN U(1) = A(1)/DEN Y(1) = Y(1)/DEN V = CMPLX(C(M),0.) IF (MM2-2) 106,104,104 104 DO 105 J=2,MM2 DEN = B(J)-CRT-A(J)*D(J-1) D(J) = C(J)/DEN U(J) = -A(J)*U(J-1)/DEN Y(J) = (Y(J)-A(J)*Y(J-1))/DEN BH = BH-V*U(J-1) YM = YM-V*Y(J-1) V = -V*D(J-1) 105 CONTINUE 106 DEN = B(M-1)-CRT-A(M-1)*D(M-2) D(M-1) = (C(M-1)-A(M-1)*U(M-2))/DEN Y(M-1) = (Y(M-1)-A(M-1)*Y(M-2))/DEN AM = A(M)-V*D(M-2) BH = BH-V*U(M-2) YM = YM-V*Y(M-2) DEN = BH-AM*D(M-1) IF (CABS(DEN)) 107,108,107 107 Y(M) = (YM-AM*Y(M-1))/DEN GO TO 109 108 Y(M) = (1.,0.) 109 Y(M-1) = Y(M-1)-D(M-1)*Y(M) DO 110 J=2,MM K = M-J Y(K) = Y(K)-D(K)*Y(K+1)-U(K)*Y(M) 110 CONTINUE 111 IF (M1) 112,112,114 112 IF (M2) 123,123,113 113 RT = BM2(M2) M2 = M2-1 GO TO 119 114 IF (M2) 115,115,116 115 RT = BM1(M1) M1 = M1-1 GO TO 119 116 IF (ABS(BM1(M1))-ABS(BM2(M2))) 118,118,117 117 RT = BM1(M1) M1 = M1-1 GO TO 119 118 RT = BM2(M2) M2 = M2-1 C C MATRIX MULTIPLICATION C 119 YH = Y(1) Y1 = (B(1)-RT)*Y(1)+C(1)*Y(2)+A(1)*Y(M) IF (MM-2) 122,120,120 120 DO 121 J=2,MM Y2 = A(J)*Y(J-1)+(B(J)-RT)*Y(J)+C(J)*Y(J+1) Y(J-1) = Y1 Y1 = Y2 121 CONTINUE 122 Y(M) = A(M)*Y(M-1)+(B(M)-RT)*Y(M)+C(M)*YH Y(M-1) = Y1 IFLG = 1 GO TO 102 123 IF (IA) 126,126,124 124 RT = AA(IA) IA = IA-1 IFLG = 1 C C SCALAR MULTIPLICATION C DO 125 J=1,M Y(J) = RT*Y(J) 125 CONTINUE 126 IF (IFLG) 127,127,102 127 DO 128 J=1,M YY(J) = REAL(Y(J)) 128 CONTINUE RETURN END
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import group_theory.quotient_group import order.filter.pointwise import topology.algebra.monoid import topology.compact_open import topology.sets.compacts import topology.algebra.constructions /-! # Topological groups This file defines the following typeclasses: * `topological_group`, `topological_add_group`: multiplicative and additive topological groups, i.e., groups with continuous `(*)` and `(⁻¹)` / `(+)` and `(-)`; * `has_continuous_sub G` means that `G` has a continuous subtraction operation. There is an instance deducing `has_continuous_sub` from `topological_group` but we use a separate typeclass because, e.g., `ℕ` and `ℝ≥0` have continuous subtraction but are not additive groups. We also define `homeomorph` versions of several `equiv`s: `homeomorph.mul_left`, `homeomorph.mul_right`, `homeomorph.inv`, and prove a few facts about neighbourhood filters in groups. ## Tags topological space, group, topological group -/ open classical set filter topological_space function open_locale classical topological_space filter pointwise universes u v w x variables {α : Type u} {β : Type v} {G : Type w} {H : Type x} section continuous_mul_group /-! ### Groups with continuous multiplication In this section we prove a few statements about groups with continuous `(*)`. -/ variables [topological_space G] [group G] [has_continuous_mul G] /-- Multiplication from the left in a topological group as a homeomorphism. -/ @[to_additive "Addition from the left in a topological additive group as a homeomorphism."] protected def homeomorph.mul_left (a : G) : G ≃ₜ G := { continuous_to_fun := continuous_const.mul continuous_id, continuous_inv_fun := continuous_const.mul continuous_id, .. equiv.mul_left a } @[simp, to_additive] lemma homeomorph.coe_mul_left (a : G) : ⇑(homeomorph.mul_left a) = (*) a := rfl @[to_additive] lemma homeomorph.mul_left_symm (a : G) : (homeomorph.mul_left a).symm = homeomorph.mul_left a⁻¹ := by { ext, refl } @[to_additive] lemma is_open_map_mul_left (a : G) : is_open_map (λ x, a * x) := (homeomorph.mul_left a).is_open_map @[to_additive is_open.left_add_coset] lemma is_open.left_coset {U : set G} (h : is_open U) (x : G) : is_open (left_coset x U) := is_open_map_mul_left x _ h @[to_additive] lemma is_closed_map_mul_left (a : G) : is_closed_map (λ x, a * x) := (homeomorph.mul_left a).is_closed_map @[to_additive is_closed.left_add_coset] lemma is_closed.left_coset {U : set G} (h : is_closed U) (x : G) : is_closed (left_coset x U) := is_closed_map_mul_left x _ h /-- Multiplication from the right in a topological group as a homeomorphism. -/ @[to_additive "Addition from the right in a topological additive group as a homeomorphism."] protected def homeomorph.mul_right (a : G) : G ≃ₜ G := { continuous_to_fun := continuous_id.mul continuous_const, continuous_inv_fun := continuous_id.mul continuous_const, .. equiv.mul_right a } @[simp, to_additive] lemma homeomorph.coe_mul_right (a : G) : ⇑(homeomorph.mul_right a) = λ g, g * a := rfl @[to_additive] lemma homeomorph.mul_right_symm (a : G) : (homeomorph.mul_right a).symm = homeomorph.mul_right a⁻¹ := by { ext, refl } @[to_additive] lemma is_open_map_mul_right (a : G) : is_open_map (λ x, x * a) := (homeomorph.mul_right a).is_open_map @[to_additive is_open.right_add_coset] lemma is_open.right_coset {U : set G} (h : is_open U) (x : G) : is_open (right_coset U x) := is_open_map_mul_right x _ h @[to_additive] lemma is_closed_map_mul_right (a : G) : is_closed_map (λ x, x * a) := (homeomorph.mul_right a).is_closed_map @[to_additive is_closed.right_add_coset] lemma is_closed.right_coset {U : set G} (h : is_closed U) (x : G) : is_closed (right_coset U x) := is_closed_map_mul_right x _ h @[to_additive] lemma discrete_topology_of_open_singleton_one (h : is_open ({1} : set G)) : discrete_topology G := begin rw ← singletons_open_iff_discrete, intro g, suffices : {g} = (λ (x : G), g⁻¹ * x) ⁻¹' {1}, { rw this, exact (continuous_mul_left (g⁻¹)).is_open_preimage _ h, }, simp only [mul_one, set.preimage_mul_left_singleton, eq_self_iff_true, inv_inv, set.singleton_eq_singleton_iff], end @[to_additive] lemma discrete_topology_iff_open_singleton_one : discrete_topology G ↔ is_open ({1} : set G) := ⟨λ h, forall_open_iff_discrete.mpr h {1}, discrete_topology_of_open_singleton_one⟩ end continuous_mul_group /-! ### Topological operations on pointwise sums and products A few results about interior and closure of the pointwise addition/multiplication of sets in groups with continuous addition/multiplication. See also `submonoid.top_closure_mul_self_eq` in `topology.algebra.monoid`. -/ section pointwise variables [topological_space α] [group α] [has_continuous_mul α] {s t : set α} @[to_additive] lemma is_open.mul_left (ht : is_open t) : is_open (s * t) := begin rw ←Union_mul_left_image, exact is_open_Union (λ a, is_open_Union $ λ ha, is_open_map_mul_left a t ht), end @[to_additive] lemma is_open.mul_right (hs : is_open s) : is_open (s * t) := begin rw ←Union_mul_right_image, exact is_open_Union (λ a, is_open_Union $ λ ha, is_open_map_mul_right a s hs), end @[to_additive] lemma subset_interior_mul_left : interior s * t ⊆ interior (s * t) := interior_maximal (set.mul_subset_mul_right interior_subset) is_open_interior.mul_right @[to_additive] lemma subset_interior_mul_right : s * interior t ⊆ interior (s * t) := interior_maximal (set.mul_subset_mul_left interior_subset) is_open_interior.mul_left @[to_additive] lemma subset_interior_mul : interior s * interior t ⊆ interior (s * t) := (set.mul_subset_mul_left interior_subset).trans subset_interior_mul_left end pointwise /-! ### `has_continuous_inv` and `has_continuous_neg` -/ /-- Basic hypothesis to talk about a topological additive group. A topological additive group over `M`, for example, is obtained by requiring the instances `add_group M` and `has_continuous_add M` and `has_continuous_neg M`. -/ class has_continuous_neg (G : Type u) [topological_space G] [has_neg G] : Prop := (continuous_neg : continuous (λ a : G, -a)) /-- Basic hypothesis to talk about a topological group. A topological group over `M`, for example, is obtained by requiring the instances `group M` and `has_continuous_mul M` and `has_continuous_inv M`. -/ @[to_additive] class has_continuous_inv (G : Type u) [topological_space G] [has_inv G] : Prop := (continuous_inv : continuous (λ a : G, a⁻¹)) export has_continuous_inv (continuous_inv) export has_continuous_neg (continuous_neg) section continuous_inv variables [topological_space G] [has_inv G] [has_continuous_inv G] @[to_additive] lemma continuous_on_inv {s : set G} : continuous_on has_inv.inv s := continuous_inv.continuous_on @[to_additive] lemma continuous_within_at_inv {s : set G} {x : G} : continuous_within_at has_inv.inv s x := continuous_inv.continuous_within_at @[to_additive] lemma continuous_at_inv {x : G} : continuous_at has_inv.inv x := continuous_inv.continuous_at @[to_additive] lemma tendsto_inv (a : G) : tendsto has_inv.inv (𝓝 a) (𝓝 (a⁻¹)) := continuous_at_inv /-- If a function converges to a value in a multiplicative topological group, then its inverse converges to the inverse of this value. For the version in normed fields assuming additionally that the limit is nonzero, use `tendsto.inv'`. -/ @[to_additive] lemma filter.tendsto.inv {f : α → G} {l : filter α} {y : G} (h : tendsto f l (𝓝 y)) : tendsto (λ x, (f x)⁻¹) l (𝓝 y⁻¹) := (continuous_inv.tendsto y).comp h variables [topological_space α] {f : α → G} {s : set α} {x : α} @[continuity, to_additive] lemma continuous.inv (hf : continuous f) : continuous (λx, (f x)⁻¹) := continuous_inv.comp hf @[to_additive] lemma continuous_at.inv (hf : continuous_at f x) : continuous_at (λ x, (f x)⁻¹) x := continuous_at_inv.comp hf @[to_additive] lemma continuous_on.inv (hf : continuous_on f s) : continuous_on (λx, (f x)⁻¹) s := continuous_inv.comp_continuous_on hf @[to_additive] lemma continuous_within_at.inv (hf : continuous_within_at f s x) : continuous_within_at (λ x, (f x)⁻¹) s x := hf.inv @[to_additive] instance [topological_space H] [has_inv H] [has_continuous_inv H] : has_continuous_inv (G × H) := ⟨(continuous_inv.comp continuous_fst).prod_mk (continuous_inv.comp continuous_snd)⟩ variable {ι : Type*} @[to_additive] instance pi.has_continuous_inv {C : ι → Type*} [∀ i, topological_space (C i)] [∀ i, has_inv (C i)] [∀ i, has_continuous_inv (C i)] : has_continuous_inv (Π i, C i) := { continuous_inv := continuous_pi (λ i, continuous.inv (continuous_apply i)) } /-- A version of `pi.has_continuous_inv` for non-dependent functions. It is needed because sometimes Lean fails to use `pi.has_continuous_inv` for non-dependent functions. -/ @[to_additive "A version of `pi.has_continuous_neg` for non-dependent functions. It is needed because sometimes Lean fails to use `pi.has_continuous_neg` for non-dependent functions."] instance pi.has_continuous_inv' : has_continuous_inv (ι → G) := pi.has_continuous_inv @[priority 100, to_additive] instance has_continuous_inv_of_discrete_topology [topological_space H] [has_inv H] [discrete_topology H] : has_continuous_inv H := ⟨continuous_of_discrete_topology⟩ section pointwise_limits variables (G₁ G₂ : Type*) [topological_space G₂] [t2_space G₂] @[to_additive] lemma is_closed_set_of_map_inv [has_inv G₁] [has_inv G₂] [has_continuous_inv G₂] : is_closed {f : G₁ → G₂ | ∀ x, f x⁻¹ = (f x)⁻¹ } := begin simp only [set_of_forall], refine is_closed_Inter (λ i, is_closed_eq (continuous_apply _) (continuous_apply _).inv), end end pointwise_limits instance additive.has_continuous_neg [h : topological_space H] [has_inv H] [has_continuous_inv H] : @has_continuous_neg (additive H) h _ := { continuous_neg := @continuous_inv H _ _ _ } instance multiplicative.has_continuous_inv [h : topological_space H] [has_neg H] [has_continuous_neg H] : @has_continuous_inv (multiplicative H) h _ := { continuous_inv := @continuous_neg H _ _ _ } end continuous_inv @[to_additive] lemma is_compact.inv [topological_space G] [has_involutive_inv G] [has_continuous_inv G] {s : set G} (hs : is_compact s) : is_compact (s⁻¹) := by { rw [← image_inv], exact hs.image continuous_inv } section lattice_ops variables {ι' : Sort*} [has_inv G] [has_inv H] {ts : set (topological_space G)} (h : Π t ∈ ts, @has_continuous_inv G t _) {ts' : ι' → topological_space G} (h' : Π i, @has_continuous_inv G (ts' i) _) {t₁ t₂ : topological_space G} (h₁ : @has_continuous_inv G t₁ _) (h₂ : @has_continuous_inv G t₂ _) {t : topological_space H} [has_continuous_inv H] @[to_additive] lemma has_continuous_inv_Inf : @has_continuous_inv G (Inf ts) _ := { continuous_inv := continuous_Inf_rng (λ t ht, continuous_Inf_dom ht (@has_continuous_inv.continuous_inv G t _ (h t ht))) } include h' @[to_additive] lemma has_continuous_inv_infi : @has_continuous_inv G (⨅ i, ts' i) _ := by {rw ← Inf_range, exact has_continuous_inv_Inf (set.forall_range_iff.mpr h')} omit h' include h₁ h₂ @[to_additive] lemma has_continuous_inv_inf : @has_continuous_inv G (t₁ ⊓ t₂) _ := by {rw inf_eq_infi, refine has_continuous_inv_infi (λ b, _), cases b; assumption} end lattice_ops section topological_group /-! ### Topological groups A topological group is a group in which the multiplication and inversion operations are continuous. Topological additive groups are defined in the same way. Equivalently, we can require that the division operation `λ x y, x * y⁻¹` (resp., subtraction) is continuous. -/ /-- A topological (additive) group is a group in which the addition and negation operations are continuous. -/ class topological_add_group (G : Type u) [topological_space G] [add_group G] extends has_continuous_add G, has_continuous_neg G : Prop /-- A topological group is a group in which the multiplication and inversion operations are continuous. When you declare an instance that does not already have a `uniform_space` instance, you should also provide an instance of `uniform_space` and `uniform_group` using `topological_group.to_uniform_space` and `topological_group_is_uniform`. -/ @[to_additive] class topological_group (G : Type*) [topological_space G] [group G] extends has_continuous_mul G, has_continuous_inv G : Prop section conj /-- we slightly weaken the type class assumptions here so that it will also apply to `ennreal`, but we nevertheless leave it in the `topological_group` namespace. -/ variables [topological_space G] [has_inv G] [has_mul G] [has_continuous_mul G] /-- Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are continuous. -/ @[to_additive "Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are continuous."] lemma topological_group.continuous_conj_prod [has_continuous_inv G] : continuous (λ g : G × G, g.fst * g.snd * g.fst⁻¹) := continuous_mul.mul (continuous_inv.comp continuous_fst) /-- Conjugation by a fixed element is continuous when `mul` is continuous. -/ @[to_additive "Conjugation by a fixed element is continuous when `add` is continuous."] lemma topological_group.continuous_conj (g : G) : continuous (λ (h : G), g * h * g⁻¹) := (continuous_mul_right g⁻¹).comp (continuous_mul_left g) /-- Conjugation acting on fixed element of the group is continuous when both `mul` and `inv` are continuous. -/ @[to_additive "Conjugation acting on fixed element of the additive group is continuous when both `add` and `neg` are continuous."] lemma topological_group.continuous_conj' [has_continuous_inv G] (h : G) : continuous (λ (g : G), g * h * g⁻¹) := (continuous_mul_right h).mul continuous_inv end conj variables [topological_space G] [group G] [topological_group G] [topological_space α] {f : α → G} {s : set α} {x : α} section zpow @[continuity, to_additive] lemma continuous_zpow : ∀ z : ℤ, continuous (λ a : G, a ^ z) | (int.of_nat n) := by simpa using continuous_pow n | -[1+n] := by simpa using (continuous_pow (n + 1)).inv instance add_group.has_continuous_const_smul_int {A} [add_group A] [topological_space A] [topological_add_group A] : has_continuous_const_smul ℤ A := ⟨continuous_zsmul⟩ instance add_group.has_continuous_smul_int {A} [add_group A] [topological_space A] [topological_add_group A] : has_continuous_smul ℤ A := ⟨continuous_uncurry_of_discrete_topology continuous_zsmul⟩ @[continuity, to_additive] lemma continuous.zpow {f : α → G} (h : continuous f) (z : ℤ) : continuous (λ b, (f b) ^ z) := (continuous_zpow z).comp h @[to_additive] lemma continuous_on_zpow {s : set G} (z : ℤ) : continuous_on (λ x, x ^ z) s := (continuous_zpow z).continuous_on @[to_additive] lemma continuous_at_zpow (x : G) (z : ℤ) : continuous_at (λ x, x ^ z) x := (continuous_zpow z).continuous_at @[to_additive] lemma filter.tendsto.zpow {α} {l : filter α} {f : α → G} {x : G} (hf : tendsto f l (𝓝 x)) (z : ℤ) : tendsto (λ x, f x ^ z) l (𝓝 (x ^ z)) := (continuous_at_zpow _ _).tendsto.comp hf @[to_additive] lemma continuous_within_at.zpow {f : α → G} {x : α} {s : set α} (hf : continuous_within_at f s x) (z : ℤ) : continuous_within_at (λ x, f x ^ z) s x := hf.zpow z @[to_additive] lemma continuous_at.zpow {f : α → G} {x : α} (hf : continuous_at f x) (z : ℤ) : continuous_at (λ x, f x ^ z) x := hf.zpow z @[to_additive continuous_on.zsmul] lemma continuous_on.zpow {f : α → G} {s : set α} (hf : continuous_on f s) (z : ℤ) : continuous_on (λ x, f x ^ z) s := λ x hx, (hf x hx).zpow z end zpow section ordered_comm_group variables [topological_space H] [ordered_comm_group H] [topological_group H] @[to_additive] lemma tendsto_inv_nhds_within_Ioi {a : H} : tendsto has_inv.inv (𝓝[>] a) (𝓝[<] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Iio {a : H} : tendsto has_inv.inv (𝓝[<] a) (𝓝[>] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Ioi_inv {a : H} : tendsto has_inv.inv (𝓝[>] (a⁻¹)) (𝓝[<] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ioi _ _ _ _ (a⁻¹) @[to_additive] lemma tendsto_inv_nhds_within_Iio_inv {a : H} : tendsto has_inv.inv (𝓝[<] (a⁻¹)) (𝓝[>] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iio _ _ _ _ (a⁻¹) @[to_additive] lemma tendsto_inv_nhds_within_Ici {a : H} : tendsto has_inv.inv (𝓝[≥] a) (𝓝[≤] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Iic {a : H} : tendsto has_inv.inv (𝓝[≤] a) (𝓝[≥] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Ici_inv {a : H} : tendsto has_inv.inv (𝓝[≥] (a⁻¹)) (𝓝[≤] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ici _ _ _ _ (a⁻¹) @[to_additive] lemma tendsto_inv_nhds_within_Iic_inv {a : H} : tendsto has_inv.inv (𝓝[≤] (a⁻¹)) (𝓝[≥] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iic _ _ _ _ (a⁻¹) end ordered_comm_group @[instance, to_additive] instance [topological_space H] [group H] [topological_group H] : topological_group (G × H) := { continuous_inv := continuous_inv.prod_map continuous_inv } @[to_additive] instance pi.topological_group {C : β → Type*} [∀ b, topological_space (C b)] [∀ b, group (C b)] [∀ b, topological_group (C b)] : topological_group (Π b, C b) := { continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) } open mul_opposite @[to_additive] instance [group α] [has_continuous_inv α] : has_continuous_inv αᵐᵒᵖ := { continuous_inv := continuous_induced_rng $ (@continuous_inv α _ _ _).comp continuous_unop } /-- If multiplication is continuous in `α`, then it also is in `αᵐᵒᵖ`. -/ @[to_additive "If addition is continuous in `α`, then it also is in `αᵃᵒᵖ`."] instance [group α] [topological_group α] : topological_group αᵐᵒᵖ := { } variable (G) /-- Inversion in a topological group as a homeomorphism. -/ @[to_additive "Negation in a topological group as a homeomorphism."] protected def homeomorph.inv : G ≃ₜ G := { continuous_to_fun := continuous_inv, continuous_inv_fun := continuous_inv, .. equiv.inv G } @[to_additive] lemma nhds_one_symm : comap has_inv.inv (𝓝 (1 : G)) = 𝓝 (1 : G) := ((homeomorph.inv G).comap_nhds_eq _).trans (congr_arg nhds one_inv) /-- The map `(x, y) ↦ (x, xy)` as a homeomorphism. This is a shear mapping. -/ @[to_additive "The map `(x, y) ↦ (x, x + y)` as a homeomorphism. This is a shear mapping."] protected def homeomorph.shear_mul_right : G × G ≃ₜ G × G := { continuous_to_fun := continuous_fst.prod_mk continuous_mul, continuous_inv_fun := continuous_fst.prod_mk $ continuous_fst.inv.mul continuous_snd, .. equiv.prod_shear (equiv.refl _) equiv.mul_left } @[simp, to_additive] lemma homeomorph.shear_mul_right_coe : ⇑(homeomorph.shear_mul_right G) = λ z : G × G, (z.1, z.1 * z.2) := rfl @[simp, to_additive] lemma homeomorph.shear_mul_right_symm_coe : ⇑(homeomorph.shear_mul_right G).symm = λ z : G × G, (z.1, z.1⁻¹ * z.2) := rfl variables {G} @[to_additive] lemma is_open.inv {s : set G} (hs : is_open s) : is_open s⁻¹ := hs.preimage continuous_inv @[to_additive] lemma is_closed.inv {s : set G} (hs : is_closed s) : is_closed s⁻¹ := hs.preimage continuous_inv @[to_additive] lemma inv_closure (s : set G) : (closure s)⁻¹ = closure s⁻¹ := (homeomorph.inv G).preimage_closure s @[to_additive] lemma is_open.mul_closure {U : set G} (hU : is_open U) (s : set G) : U * closure s = U * s := begin refine subset.antisymm _ (mul_subset_mul subset.rfl subset_closure), rintro _ ⟨a, b, ha, hb, rfl⟩, rw mem_closure_iff at hb, have hbU : b ∈ U⁻¹ * {a * b}, from ⟨a⁻¹, a * b, inv_mem_inv.2 ha, rfl, inv_mul_cancel_left _ _⟩, rcases hb _ hU.inv.mul_right hbU with ⟨_, ⟨c, d, hc, (rfl : d = _), rfl⟩, hcs⟩, exact ⟨c⁻¹, _, hc, hcs, inv_mul_cancel_left _ _⟩ end @[to_additive] lemma is_open.closure_mul {U : set G} (hU : is_open U) (s : set G) : closure s * U = s * U := by rw [← inv_inv (closure s * U), set.mul_inv_rev, inv_closure, hU.inv.mul_closure, set.mul_inv_rev, inv_inv, inv_inv] namespace subgroup @[to_additive] instance (S : subgroup G) : topological_group S := { continuous_inv := begin rw embedding_subtype_coe.to_inducing.continuous_iff, exact continuous_subtype_coe.inv end, ..S.to_submonoid.has_continuous_mul } end subgroup /-- The (topological-space) closure of a subgroup of a space `M` with `has_continuous_mul` is itself a subgroup. -/ @[to_additive "The (topological-space) closure of an additive subgroup of a space `M` with `has_continuous_add` is itself an additive subgroup."] def subgroup.topological_closure (s : subgroup G) : subgroup G := { carrier := closure (s : set G), inv_mem' := λ g m, by simpa [←mem_inv, inv_closure] using m, ..s.to_submonoid.topological_closure } @[simp, to_additive] lemma subgroup.topological_closure_coe {s : subgroup G} : (s.topological_closure : set G) = closure s := rfl @[to_additive] instance subgroup.topological_closure_topological_group (s : subgroup G) : topological_group (s.topological_closure) := { continuous_inv := begin apply continuous_induced_rng, change continuous (λ p : s.topological_closure, (p : G)⁻¹), continuity, end ..s.to_submonoid.topological_closure_has_continuous_mul} @[to_additive] lemma subgroup.subgroup_topological_closure (s : subgroup G) : s ≤ s.topological_closure := subset_closure @[to_additive] lemma subgroup.is_closed_topological_closure (s : subgroup G) : is_closed (s.topological_closure : set G) := by convert is_closed_closure @[to_additive] lemma subgroup.topological_closure_minimal (s : subgroup G) {t : subgroup G} (h : s ≤ t) (ht : is_closed (t : set G)) : s.topological_closure ≤ t := closure_minimal h ht @[to_additive] lemma dense_range.topological_closure_map_subgroup [group H] [topological_space H] [topological_group H] {f : G →* H} (hf : continuous f) (hf' : dense_range f) {s : subgroup G} (hs : s.topological_closure = ⊤) : (s.map f).topological_closure = ⊤ := begin rw set_like.ext'_iff at hs ⊢, simp only [subgroup.topological_closure_coe, subgroup.coe_top, ← dense_iff_closure_eq] at hs ⊢, exact hf'.dense_image hf hs end /-- The topological closure of a normal subgroup is normal.-/ @[to_additive "The topological closure of a normal additive subgroup is normal."] lemma subgroup.is_normal_topological_closure {G : Type*} [topological_space G] [group G] [topological_group G] (N : subgroup G) [N.normal] : (subgroup.topological_closure N).normal := { conj_mem := λ n hn g, begin apply mem_closure_of_continuous (topological_group.continuous_conj g) hn, intros m hm, exact subset_closure (subgroup.normal.conj_mem infer_instance m hm g), end } @[to_additive] lemma mul_mem_connected_component_one {G : Type*} [topological_space G] [mul_one_class G] [has_continuous_mul G] {g h : G} (hg : g ∈ connected_component (1 : G)) (hh : h ∈ connected_component (1 : G)) : g * h ∈ connected_component (1 : G) := begin rw connected_component_eq hg, have hmul: g ∈ connected_component (g*h), { apply continuous.image_connected_component_subset (continuous_mul_left g), rw ← connected_component_eq hh, exact ⟨(1 : G), mem_connected_component, by simp only [mul_one]⟩ }, simpa [← connected_component_eq hmul] using (mem_connected_component) end @[to_additive] lemma inv_mem_connected_component_one {G : Type*} [topological_space G] [group G] [topological_group G] {g : G} (hg : g ∈ connected_component (1 : G)) : g⁻¹ ∈ connected_component (1 : G) := begin rw ← one_inv, exact continuous.image_connected_component_subset continuous_inv _ ((set.mem_image _ _ _).mp ⟨g, hg, rfl⟩) end /-- The connected component of 1 is a subgroup of `G`. -/ @[to_additive "The connected component of 0 is a subgroup of `G`."] def subgroup.connected_component_of_one (G : Type*) [topological_space G] [group G] [topological_group G] : subgroup G := { carrier := connected_component (1 : G), one_mem' := mem_connected_component, mul_mem' := λ g h hg hh, mul_mem_connected_component_one hg hh, inv_mem' := λ g hg, inv_mem_connected_component_one hg } /-- If a subgroup of a topological group is commutative, then so is its topological closure. -/ @[to_additive "If a subgroup of an additive topological group is commutative, then so is its topological closure."] def subgroup.comm_group_topological_closure [t2_space G] (s : subgroup G) (hs : ∀ (x y : s), x * y = y * x) : comm_group s.topological_closure := { ..s.topological_closure.to_group, ..s.to_submonoid.comm_monoid_topological_closure hs } @[to_additive exists_nhds_half_neg] lemma exists_nhds_split_inv {s : set G} (hs : s ∈ 𝓝 (1 : G)) : ∃ V ∈ 𝓝 (1 : G), ∀ (v ∈ V) (w ∈ V), v / w ∈ s := have ((λp : G × G, p.1 * p.2⁻¹) ⁻¹' s) ∈ 𝓝 ((1, 1) : G × G), from continuous_at_fst.mul continuous_at_snd.inv (by simpa), by simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage] using this @[to_additive] lemma nhds_translation_mul_inv (x : G) : comap (λ y : G, y * x⁻¹) (𝓝 1) = 𝓝 x := ((homeomorph.mul_right x⁻¹).comap_nhds_eq 1).trans $ show 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x, by simp @[simp, to_additive] lemma map_mul_left_nhds (x y : G) : map ((*) x) (𝓝 y) = 𝓝 (x * y) := (homeomorph.mul_left x).map_nhds_eq y @[to_additive] lemma map_mul_left_nhds_one (x : G) : map ((*) x) (𝓝 1) = 𝓝 x := by simp @[to_additive] lemma topological_group.ext {G : Type*} [group G] {t t' : topological_space G} (tg : @topological_group G t _) (tg' : @topological_group G t' _) (h : @nhds G t 1 = @nhds G t' 1) : t = t' := eq_of_nhds_eq_nhds $ λ x, by rw [← @nhds_translation_mul_inv G t _ _ x , ← @nhds_translation_mul_inv G t' _ _ x , ← h] @[to_additive] lemma topological_group.of_nhds_aux {G : Type*} [group G] [topological_space G] (hinv : tendsto (λ (x : G), x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ (x₀ : G), 𝓝 x₀ = map (λ (x : G), x₀ * x) (𝓝 1)) (hconj : ∀ (x₀ : G), map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) ≤ 𝓝 1) : continuous (λ x : G, x⁻¹) := begin rw continuous_iff_continuous_at, rintros x₀, have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹), by {ext ; simp[mul_assoc] }, calc map (λ x, x⁻¹) (𝓝 x₀) = map (λ x, x⁻¹) (map (λ x, x₀*x) $ 𝓝 1) : by rw hleft ... = map (λ x, (x₀*x)⁻¹) (𝓝 1) : by rw filter.map_map ... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) (𝓝 1) : by rw key ... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map ... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv ... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map ... ≤ map (λ x, x₀⁻¹ * x) (𝓝 1) : map_mono (hconj x₀) ... = 𝓝 x₀⁻¹ : (hleft _).symm end @[to_additive] lemma topological_group.of_nhds_one' {G : Type u} [group G] [topological_space G] (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) (hright : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1)) : topological_group G := begin refine { continuous_mul := (has_continuous_mul.of_nhds_one hmul hleft hright).continuous_mul, continuous_inv := topological_group.of_nhds_aux hinv hleft _ }, intros x₀, suffices : map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1, by simp [this, le_refl], rw [show (λ x, x₀ * x * x₀⁻¹) = (λ x, x₀ * x) ∘ λ x, x*x₀⁻¹, by {ext, simp [mul_assoc] }, ← filter.map_map, ← hright, hleft x₀⁻¹, filter.map_map], convert map_id, ext, simp end @[to_additive] lemma topological_group.of_nhds_one {G : Type u} [group G] [topological_space G] (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) (hconj : ∀ x₀ : G, tendsto (λ x, x₀*x*x₀⁻¹) (𝓝 1) (𝓝 1)) : topological_group G := { continuous_mul := begin rw continuous_iff_continuous_at, rintros ⟨x₀, y₀⟩, have key : (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) = ((λ x, x₀*y₀*x) ∘ (uncurry (*)) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id)), by { ext, simp [uncurry, prod.map, mul_assoc] }, specialize hconj y₀⁻¹, rw inv_inv at hconj, calc map (λ (p : G × G), p.1 * p.2) (𝓝 (x₀, y₀)) = map (λ (p : G × G), p.1 * p.2) ((𝓝 x₀) ×ᶠ 𝓝 y₀) : by rw nhds_prod_eq ... = map (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map] ... = map (((λ x, x₀*y₀*x) ∘ (uncurry (*))) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id))((𝓝 1) ×ᶠ (𝓝 1)) : by rw key ... = map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((map (λ x, y₀⁻¹*x*y₀) $ 𝓝 1) ×ᶠ (𝓝 1)) : by rw [← filter.map_map, ← prod_map_map_eq', map_id] ... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((𝓝 1) ×ᶠ (𝓝 1)) : map_mono (filter.prod_mono hconj $ le_rfl) ... = map (λ x, x₀*y₀*x) (map (uncurry (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map ... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul ... = 𝓝 (x₀*y₀) : (hleft _).symm end, continuous_inv := topological_group.of_nhds_aux hinv hleft hconj} @[to_additive] lemma topological_group.of_comm_of_nhds_one {G : Type u} [comm_group G] [topological_space G] (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) : topological_group G := topological_group.of_nhds_one hmul hinv hleft (by simpa using tendsto_id) end topological_group section quotient_topological_group variables [topological_space G] [group G] [topological_group G] (N : subgroup G) (n : N.normal) @[to_additive] instance quotient_group.quotient.topological_space {G : Type*} [group G] [topological_space G] (N : subgroup G) : topological_space (G ⧸ N) := quotient.topological_space open quotient_group @[to_additive] lemma quotient_group.is_open_map_coe : is_open_map (coe : G → G ⧸ N) := begin intros s s_op, change is_open ((coe : G → G ⧸ N) ⁻¹' (coe '' s)), rw quotient_group.preimage_image_coe N s, exact is_open_Union (λ n, (continuous_mul_right _).is_open_preimage s s_op) end @[to_additive] instance topological_group_quotient [N.normal] : topological_group (G ⧸ N) := { continuous_mul := begin have cont : continuous ((coe : G → G ⧸ N) ∘ (λ (p : G × G), p.fst * p.snd)) := continuous_quot_mk.comp continuous_mul, have quot : quotient_map (λ p : G × G, ((p.1 : G ⧸ N), (p.2 : G ⧸ N))), { apply is_open_map.to_quotient_map, { exact (quotient_group.is_open_map_coe N).prod (quotient_group.is_open_map_coe N) }, { exact continuous_quot_mk.prod_map continuous_quot_mk }, { exact (surjective_quot_mk _).prod_map (surjective_quot_mk _) } }, exact (quotient_map.continuous_iff quot).2 cont, end, continuous_inv := begin have : continuous ((coe : G → G ⧸ N) ∘ (λ (a : G), a⁻¹)) := continuous_quot_mk.comp continuous_inv, convert continuous_quotient_lift _ this, end } end quotient_topological_group /-- A typeclass saying that `λ p : G × G, p.1 - p.2` is a continuous function. This property automatically holds for topological additive groups but it also holds, e.g., for `ℝ≥0`. -/ class has_continuous_sub (G : Type*) [topological_space G] [has_sub G] : Prop := (continuous_sub : continuous (λ p : G × G, p.1 - p.2)) /-- A typeclass saying that `λ p : G × G, p.1 / p.2` is a continuous function. This property automatically holds for topological groups. Lemmas using this class have primes. The unprimed version is for `group_with_zero`. -/ @[to_additive] class has_continuous_div (G : Type*) [topological_space G] [has_div G] : Prop := (continuous_div' : continuous (λ p : G × G, p.1 / p.2)) @[priority 100, to_additive] -- see Note [lower instance priority] instance topological_group.to_has_continuous_div [topological_space G] [group G] [topological_group G] : has_continuous_div G := ⟨by { simp only [div_eq_mul_inv], exact continuous_fst.mul continuous_snd.inv }⟩ export has_continuous_sub (continuous_sub) export has_continuous_div (continuous_div') section has_continuous_div variables [topological_space G] [has_div G] [has_continuous_div G] @[to_additive sub] lemma filter.tendsto.div' {f g : α → G} {l : filter α} {a b : G} (hf : tendsto f l (𝓝 a)) (hg : tendsto g l (𝓝 b)) : tendsto (λ x, f x / g x) l (𝓝 (a / b)) := (continuous_div'.tendsto (a, b)).comp (hf.prod_mk_nhds hg) @[to_additive const_sub] lemma filter.tendsto.const_div' (b : G) {c : G} {f : α → G} {l : filter α} (h : tendsto f l (𝓝 c)) : tendsto (λ k : α, b / f k) l (𝓝 (b / c)) := tendsto_const_nhds.div' h @[to_additive sub_const] lemma filter.tendsto.div_const' (b : G) {c : G} {f : α → G} {l : filter α} (h : tendsto f l (𝓝 c)) : tendsto (λ k : α, f k / b) l (𝓝 (c / b)) := h.div' tendsto_const_nhds variables [topological_space α] {f g : α → G} {s : set α} {x : α} @[continuity, to_additive sub] lemma continuous.div' (hf : continuous f) (hg : continuous g) : continuous (λ x, f x / g x) := continuous_div'.comp (hf.prod_mk hg : _) @[to_additive continuous_sub_left] lemma continuous_div_left' (a : G) : continuous (λ b : G, a / b) := continuous_const.div' continuous_id @[to_additive continuous_sub_right] lemma continuous_div_right' (a : G) : continuous (λ b : G, b / a) := continuous_id.div' continuous_const @[to_additive sub] lemma continuous_at.div' {f g : α → G} {x : α} (hf : continuous_at f x) (hg : continuous_at g x) : continuous_at (λx, f x / g x) x := hf.div' hg @[to_additive sub] lemma continuous_within_at.div' (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) : continuous_within_at (λ x, f x / g x) s x := hf.div' hg @[to_additive sub] lemma continuous_on.div' (hf : continuous_on f s) (hg : continuous_on g s) : continuous_on (λx, f x / g x) s := λ x hx, (hf x hx).div' (hg x hx) end has_continuous_div section div_in_topological_group variables [group G] [topological_space G] [topological_group G] /-- A version of `homeomorph.mul_left a b⁻¹` that is defeq to `a / b`. -/ @[to_additive /-" A version of `homeomorph.add_left a (-b)` that is defeq to `a - b`. "-/, simps {simp_rhs := tt}] def homeomorph.div_left (x : G) : G ≃ₜ G := { continuous_to_fun := continuous_const.div' continuous_id, continuous_inv_fun := continuous_inv.mul continuous_const, .. equiv.div_left x } /-- A version of `homeomorph.mul_right a⁻¹ b` that is defeq to `b / a`. -/ @[to_additive /-" A version of `homeomorph.add_right (-a) b` that is defeq to `b - a`. "-/, simps {simp_rhs := tt}] def homeomorph.div_right (x : G) : G ≃ₜ G := { continuous_to_fun := continuous_id.div' continuous_const, continuous_inv_fun := continuous_id.mul continuous_const, .. equiv.div_right x } @[to_additive] lemma is_open_map_div_right (a : G) : is_open_map (λ x, x / a) := (homeomorph.div_right a).is_open_map @[to_additive] lemma is_closed_map_div_right (a : G) : is_closed_map (λ x, x / a) := (homeomorph.div_right a).is_closed_map end div_in_topological_group @[to_additive] lemma nhds_translation_div [topological_space G] [group G] [topological_group G] (x : G) : comap (λy:G, y / x) (𝓝 1) = 𝓝 x := by simpa only [div_eq_mul_inv] using nhds_translation_mul_inv x /-- additive group with a neighbourhood around 0. Only used to construct a topology and uniform space. This is currently only available for commutative groups, but it can be extended to non-commutative groups too. -/ class add_group_with_zero_nhd (G : Type u) extends add_comm_group G := (Z [] : filter G) (zero_Z : pure 0 ≤ Z) (sub_Z : tendsto (λp:G×G, p.1 - p.2) (Z ×ᶠ Z) Z) section filter_mul section variables (G) [topological_space G] [group G] [topological_group G] @[to_additive] lemma topological_group.t1_space (h : @is_closed G _ {1}) : t1_space G := ⟨assume x, by { convert is_closed_map_mul_right x _ h, simp }⟩ @[to_additive] lemma topological_group.regular_space [t1_space G] : regular_space G := ⟨assume s a hs ha, let f := λ p : G × G, p.1 * (p.2)⁻¹ in have hf : continuous f := continuous_fst.mul continuous_snd.inv, -- a ∈ -s implies f (a, 1) ∈ -s, and so (a, 1) ∈ f⁻¹' (-s); -- and so can find t₁ t₂ open such that a ∈ t₁ × t₂ ⊆ f⁻¹' (-s) let ⟨t₁, t₂, ht₁, ht₂, a_mem_t₁, one_mem_t₂, t_subset⟩ := is_open_prod_iff.1 ((is_open_compl_iff.2 hs).preimage hf) a (1:G) (by simpa [f]) in begin use [s * t₂, ht₂.mul_left, λ x hx, ⟨x, 1, hx, one_mem_t₂, mul_one _⟩], rw [nhds_within, inf_principal_eq_bot, mem_nhds_iff], refine ⟨t₁, _, ht₁, a_mem_t₁⟩, rintros x hx ⟨y, z, hy, hz, yz⟩, have : x * z⁻¹ ∈ sᶜ := (prod_subset_iff.1 t_subset) x hx z hz, have : x * z⁻¹ ∈ s, rw ← yz, simpa, contradiction end⟩ local attribute [instance] topological_group.regular_space @[to_additive] lemma topological_group.t2_space [t1_space G] : t2_space G := regular_space.t2_space G end section /-! Some results about an open set containing the product of two sets in a topological group. -/ variables [topological_space G] [group G] [topological_group G] /-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1` such that `K * V ⊆ U`. -/ @[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `0` such that `K + V ⊆ U`."] lemma compact_open_separated_mul_right {K U : set G} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), K * V ⊆ U := begin apply hK.induction_on, { exact ⟨univ, by simp⟩ }, { rintros s t hst ⟨V, hV, hV'⟩, exact ⟨V, hV, (mul_subset_mul_right hst).trans hV'⟩ }, { rintros s t ⟨V, V_in, hV'⟩ ⟨W, W_in, hW'⟩, use [V ∩ W, inter_mem V_in W_in], rw union_mul, exact union_subset ((mul_subset_mul_left (V.inter_subset_left W)).trans hV') ((mul_subset_mul_left (V.inter_subset_right W)).trans hW') }, { intros x hx, have := tendsto_mul (show U ∈ 𝓝 (x * 1), by simpa using hU.mem_nhds (hKU hx)), rw [nhds_prod_eq, mem_map, mem_prod_iff] at this, rcases this with ⟨t, ht, s, hs, h⟩, rw [← image_subset_iff, image_mul_prod] at h, exact ⟨t, mem_nhds_within_of_mem_nhds ht, s, hs, h⟩ } end open mul_opposite /-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1` such that `V * K ⊆ U`. -/ @[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `0` such that `V + K ⊆ U`."] lemma compact_open_separated_mul_left {K U : set G} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), V * K ⊆ U := begin rcases compact_open_separated_mul_right (hK.image continuous_op) (op_homeomorph.is_open_map U hU) (image_subset op hKU) with ⟨V, (hV : V ∈ 𝓝 (op (1 : G))), hV' : op '' K * V ⊆ op '' U⟩, refine ⟨op ⁻¹' V, continuous_op.continuous_at hV, _⟩, rwa [← image_preimage_eq V op_surjective, ← image_op_mul, image_subset_iff, preimage_image_eq _ op_injective] at hV' end /-- A compact set is covered by finitely many left multiplicative translates of a set with non-empty interior. -/ @[to_additive "A compact set is covered by finitely many left additive translates of a set with non-empty interior."] lemma compact_covered_by_mul_left_translates {K V : set G} (hK : is_compact K) (hV : (interior V).nonempty) : ∃ t : finset G, K ⊆ ⋃ g ∈ t, (λ h, g * h) ⁻¹' V := begin obtain ⟨t, ht⟩ : ∃ t : finset G, K ⊆ ⋃ x ∈ t, interior (((*) x) ⁻¹' V), { refine hK.elim_finite_subcover (λ x, interior $ ((*) x) ⁻¹' V) (λ x, is_open_interior) _, cases hV with g₀ hg₀, refine λ g hg, mem_Union.2 ⟨g₀ * g⁻¹, _⟩, refine preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _, rwa [mem_preimage, inv_mul_cancel_right] }, exact ⟨t, subset.trans ht $ Union₂_mono $ λ g hg, interior_subset⟩ end /-- Every locally compact separable topological group is σ-compact. Note: this is not true if we drop the topological group hypothesis. -/ @[priority 100, to_additive separable_locally_compact_add_group.sigma_compact_space] instance separable_locally_compact_group.sigma_compact_space [separable_space G] [locally_compact_space G] : sigma_compact_space G := begin obtain ⟨L, hLc, hL1⟩ := exists_compact_mem_nhds (1 : G), refine ⟨⟨λ n, (λ x, x * dense_seq G n) ⁻¹' L, _, _⟩⟩, { intro n, exact (homeomorph.mul_right _).compact_preimage.mpr hLc }, { refine Union_eq_univ_iff.2 (λ x, _), obtain ⟨_, ⟨n, rfl⟩, hn⟩ : (range (dense_seq G) ∩ (λ y, x * y) ⁻¹' L).nonempty, { rw [← (homeomorph.mul_left x).apply_symm_apply 1] at hL1, exact (dense_range_dense_seq G).inter_nhds_nonempty ((homeomorph.mul_left x).continuous.continuous_at $ hL1) }, exact ⟨n, hn⟩ } end /-- Every separated topological group in which there exists a compact set with nonempty interior is locally compact. -/ @[to_additive] lemma topological_space.positive_compacts.locally_compact_space_of_group [t2_space G] (K : positive_compacts G) : locally_compact_space G := begin refine locally_compact_of_compact_nhds (λ x, _), obtain ⟨y, hy⟩ := K.interior_nonempty, let F := homeomorph.mul_left (x * y⁻¹), refine ⟨F '' K, _, K.compact.image F.continuous⟩, suffices : F.symm ⁻¹' K ∈ 𝓝 x, by { convert this, apply equiv.image_eq_preimage }, apply continuous_at.preimage_mem_nhds F.symm.continuous.continuous_at, have : F.symm x = y, by simp [F, homeomorph.mul_left_symm], rw this, exact mem_interior_iff_mem_nhds.1 hy end end section variables [topological_space G] [comm_group G] [topological_group G] @[to_additive] lemma nhds_mul (x y : G) : 𝓝 (x * y) = 𝓝 x * 𝓝 y := filter_eq $ set.ext $ assume s, begin rw [← nhds_translation_mul_inv x, ← nhds_translation_mul_inv y, ← nhds_translation_mul_inv (x*y)], split, { rintros ⟨t, ht, ts⟩, rcases exists_nhds_one_split ht with ⟨V, V1, h⟩, refine ⟨(λa, a * x⁻¹) ⁻¹' V, (λa, a * y⁻¹) ⁻¹' V, ⟨V, V1, subset.refl _⟩, ⟨V, V1, subset.refl _⟩, _⟩, rintros a ⟨v, w, v_mem, w_mem, rfl⟩, apply ts, simpa [mul_comm, mul_assoc, mul_left_comm] using h (v * x⁻¹) v_mem (w * y⁻¹) w_mem }, { rintros ⟨a, c, ⟨b, hb, ba⟩, ⟨d, hd, dc⟩, ac⟩, refine ⟨b ∩ d, inter_mem hb hd, assume v, _⟩, simp only [preimage_subset_iff, mul_inv_rev, mem_preimage] at *, rintros ⟨vb, vd⟩, refine ac ⟨v * y⁻¹, y, _, _, _⟩, { rw ← mul_assoc _ _ _ at vb, exact ba _ vb }, { apply dc y, rw mul_right_inv, exact mem_of_mem_nhds hd }, { simp only [inv_mul_cancel_right] } } end /-- On a topological group, `𝓝 : G → filter G` can be promoted to a `mul_hom`. -/ @[to_additive "On an additive topological group, `𝓝 : G → filter G` can be promoted to an `add_hom`.", simps] def nhds_mul_hom : mul_hom G (filter G) := { to_fun := 𝓝, map_mul' := λ_ _, nhds_mul _ _ } end end filter_mul instance additive.topological_add_group {G} [h : topological_space G] [group G] [topological_group G] : @topological_add_group (additive G) h _ := { continuous_neg := @continuous_inv G _ _ _ } instance multiplicative.topological_group {G} [h : topological_space G] [add_group G] [topological_add_group G] : @topological_group (multiplicative G) h _ := { continuous_inv := @continuous_neg G _ _ _ } section quotient variables [group G] [topological_space G] [topological_group G] {Γ : subgroup G} @[to_additive] instance quotient_group.has_continuous_const_smul : has_continuous_const_smul G (G ⧸ Γ) := { continuous_const_smul := λ g₀, begin apply continuous_coinduced_dom, change continuous (λ g : G, quotient_group.mk (g₀ * g)), exact continuous_coinduced_rng.comp (continuous_mul_left g₀), end } @[to_additive] lemma quotient_group.continuous_smul₁ (x : G ⧸ Γ) : continuous (λ g : G, g • x) := begin obtain ⟨g₀, rfl⟩ : ∃ g₀, quotient_group.mk g₀ = x, { exact @quotient.exists_rep _ (quotient_group.left_rel Γ) x }, change continuous (λ g, quotient_group.mk (g * g₀)), exact continuous_coinduced_rng.comp (continuous_mul_right g₀) end @[to_additive] instance quotient_group.has_continuous_smul [locally_compact_space G] : has_continuous_smul G (G ⧸ Γ) := { continuous_smul := begin let F : G × G ⧸ Γ → G ⧸ Γ := λ p, p.1 • p.2, change continuous F, have H : continuous (F ∘ (λ p : G × G, (p.1, quotient_group.mk p.2))), { change continuous (λ p : G × G, quotient_group.mk (p.1 * p.2)), refine continuous_coinduced_rng.comp continuous_mul }, exact quotient_map.continuous_lift_prod_right quotient_map_quotient_mk H, end } end quotient namespace units open mul_opposite (continuous_op continuous_unop) variables [monoid α] [topological_space α] [has_continuous_mul α] [monoid β] [topological_space β] [has_continuous_mul β] @[to_additive] instance : topological_group αˣ := { continuous_inv := continuous_induced_rng ((continuous_unop.comp (@continuous_embed_product α _ _).snd).prod_mk (continuous_op.comp continuous_coe)) } /-- The topological group isomorphism between the units of a product of two monoids, and the product of the units of each monoid. -/ def homeomorph.prod_units : homeomorph (α × β)ˣ (αˣ × βˣ) := { continuous_to_fun := begin show continuous (λ i : (α × β)ˣ, (map (monoid_hom.fst α β) i, map (monoid_hom.snd α β) i)), refine continuous.prod_mk _ _, { refine continuous_induced_rng ((continuous_fst.comp units.continuous_coe).prod_mk _), refine mul_opposite.continuous_op.comp (continuous_fst.comp _), simp_rw units.inv_eq_coe_inv, exact units.continuous_coe.comp continuous_inv, }, { refine continuous_induced_rng ((continuous_snd.comp units.continuous_coe).prod_mk _), simp_rw units.coe_map_inv, exact continuous_op.comp (continuous_snd.comp (units.continuous_coe.comp continuous_inv)), } end, continuous_inv_fun := begin refine continuous_induced_rng (continuous.prod_mk _ _), { exact (units.continuous_coe.comp continuous_fst).prod_mk (units.continuous_coe.comp continuous_snd), }, { refine continuous_op.comp (units.continuous_coe.comp $ continuous_induced_rng $ continuous.prod_mk _ _), { exact (units.continuous_coe.comp (continuous_inv.comp continuous_fst)).prod_mk (units.continuous_coe.comp (continuous_inv.comp continuous_snd)) }, { exact continuous_op.comp ((units.continuous_coe.comp continuous_fst).prod_mk (units.continuous_coe.comp continuous_snd)) }} end, ..mul_equiv.prod_units } end units section lattice_ops variables {ι : Sort*} [group G] [group H] {ts : set (topological_space G)} (h : ∀ t ∈ ts, @topological_group G t _) {ts' : ι → topological_space G} (h' : ∀ i, @topological_group G (ts' i) _) {t₁ t₂ : topological_space G} (h₁ : @topological_group G t₁ _) (h₂ : @topological_group G t₂ _) {t : topological_space H} [topological_group H] {F : Type*} [monoid_hom_class F G H] (f : F) @[to_additive] lemma topological_group_Inf : @topological_group G (Inf ts) _ := { continuous_inv := @has_continuous_inv.continuous_inv G (Inf ts) _ (@has_continuous_inv_Inf _ _ _ (λ t ht, @topological_group.to_has_continuous_inv G t _ (h t ht))), continuous_mul := @has_continuous_mul.continuous_mul G (Inf ts) _ (@has_continuous_mul_Inf _ _ _ (λ t ht, @topological_group.to_has_continuous_mul G t _ (h t ht))) } include h' @[to_additive] lemma topological_group_infi : @topological_group G (⨅ i, ts' i) _ := by {rw ← Inf_range, exact topological_group_Inf (set.forall_range_iff.mpr h')} omit h' include h₁ h₂ @[to_additive] lemma topological_group_inf : @topological_group G (t₁ ⊓ t₂) _ := by {rw inf_eq_infi, refine topological_group_infi (λ b, _), cases b; assumption} omit h₁ h₂ @[to_additive] lemma topological_group_induced : @topological_group G (t.induced f) _ := { continuous_inv := begin letI : topological_space G := t.induced f, refine continuous_induced_rng _, simp_rw [function.comp, map_inv], exact continuous_inv.comp (continuous_induced_dom : continuous f) end, continuous_mul := @has_continuous_mul.continuous_mul G (t.induced f) _ (@has_continuous_mul_induced G H _ _ t _ _ _ f) } end lattice_ops /-! ### Lattice of group topologies We define a type class `group_topology α` which endows a group `α` with a topology such that all group operations are continuous. Group topologies on a fixed group `α` are ordered, by reverse inclusion. They form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. Any function `f : α → β` induces `coinduced f : topological_space α → group_topology β`. The additive version `add_group_topology α` and corresponding results are provided as well. -/ /-- A group topology on a group `α` is a topology for which multiplication and inversion are continuous. -/ structure group_topology (α : Type u) [group α] extends topological_space α, topological_group α : Type u /-- An additive group topology on an additive group `α` is a topology for which addition and negation are continuous. -/ structure add_group_topology (α : Type u) [add_group α] extends topological_space α, topological_add_group α : Type u attribute [to_additive] group_topology namespace group_topology variables [group α] /-- A version of the global `continuous_mul` suitable for dot notation. -/ @[to_additive] lemma continuous_mul' (g : group_topology α) : by haveI := g.to_topological_space; exact continuous (λ p : α × α, p.1 * p.2) := begin letI := g.to_topological_space, haveI := g.to_topological_group, exact continuous_mul, end /-- A version of the global `continuous_inv` suitable for dot notation. -/ @[to_additive] lemma continuous_inv' (g : group_topology α) : by haveI := g.to_topological_space; exact continuous (has_inv.inv : α → α) := begin letI := g.to_topological_space, haveI := g.to_topological_group, exact continuous_inv, end @[to_additive] lemma to_topological_space_injective : function.injective (to_topological_space : group_topology α → topological_space α):= λ f g h, by { cases f, cases g, congr' } @[ext, to_additive] lemma ext' {f g : group_topology α} (h : f.is_open = g.is_open) : f = g := to_topological_space_injective $ topological_space_eq h /-- The ordering on group topologies on the group `γ`. `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ @[to_additive] instance : partial_order (group_topology α) := partial_order.lift to_topological_space to_topological_space_injective @[simp, to_additive] lemma to_topological_space_le {x y : group_topology α} : x.to_topological_space ≤ y.to_topological_space ↔ x ≤ y := iff.rfl @[to_additive] instance : has_top (group_topology α) := ⟨{to_topological_space := ⊤, continuous_mul := continuous_top, continuous_inv := continuous_top}⟩ @[simp, to_additive] lemma to_topological_space_top : (⊤ : group_topology α).to_topological_space = ⊤ := rfl @[to_additive] instance : has_bot (group_topology α) := ⟨{to_topological_space := ⊥, continuous_mul := by continuity, continuous_inv := continuous_bot}⟩ @[simp, to_additive] lemma to_topological_space_bot : (⊥ : group_topology α).to_topological_space = ⊥ := rfl @[to_additive] instance : bounded_order (group_topology α) := { top := ⊤, le_top := λ x, show x.to_topological_space ≤ ⊤, from le_top, bot := ⊥, bot_le := λ x, show ⊥ ≤ x.to_topological_space, from bot_le } @[to_additive] instance : has_inf (group_topology α) := { inf := λ x y, { to_topological_space := x.to_topological_space ⊓ y.to_topological_space, continuous_mul := continuous_inf_rng (continuous_inf_dom_left₂ x.continuous_mul') (continuous_inf_dom_right₂ y.continuous_mul'), continuous_inv := continuous_inf_rng (continuous_inf_dom_left x.continuous_inv') (continuous_inf_dom_right y.continuous_inv') } } @[simp, to_additive] lemma to_topological_space_inf (x y : group_topology α) : (x ⊓ y).to_topological_space = x.to_topological_space ⊓ y.to_topological_space := rfl @[to_additive] instance : semilattice_inf (group_topology α) := to_topological_space_injective.semilattice_inf _ to_topological_space_inf @[to_additive] instance : inhabited (group_topology α) := ⟨⊤⟩ local notation `cont` := @continuous _ _ @[to_additive "Infimum of a collection of additive group topologies"] instance : has_Inf (group_topology α) := { Inf := λ S, { to_topological_space := Inf (to_topological_space '' S), continuous_mul := continuous_Inf_rng begin rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI, exact continuous_Inf_dom₂ (set.mem_image_of_mem to_topological_space haS) (set.mem_image_of_mem to_topological_space haS) continuous_mul, end, continuous_inv := continuous_Inf_rng begin rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI, exact continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_inv, end, } } @[simp, to_additive] lemma to_topological_space_Inf (s : set (group_topology α)) : (Inf s).to_topological_space = Inf (to_topological_space '' s) := rfl @[simp, to_additive] lemma to_topological_space_infi {ι} (s : ι → group_topology α) : (⨅ i, s i).to_topological_space = ⨅ i, (s i).to_topological_space := congr_arg Inf (range_comp _ _).symm /-- Group topologies on `γ` form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. The infimum of a collection of group topologies is the topology generated by all their open sets (which is a group topology). The supremum of two group topologies `s` and `t` is the infimum of the family of all group topologies contained in the intersection of `s` and `t`. -/ @[to_additive] instance : complete_semilattice_Inf (group_topology α) := { Inf_le := λ S a haS, to_topological_space_le.1 $ Inf_le ⟨a, haS, rfl⟩, le_Inf := begin intros S a hab, apply topological_space.complete_lattice.le_Inf, rintros _ ⟨b, hbS, rfl⟩, exact hab b hbS, end, ..group_topology.has_Inf, ..group_topology.partial_order } @[to_additive] instance : complete_lattice (group_topology α) := { inf := (⊓), top := ⊤, bot := ⊥, ..group_topology.bounded_order, ..group_topology.semilattice_inf, ..complete_lattice_of_complete_semilattice_Inf _ } /-- Given `f : α → β` and a topology on `α`, the coinduced group topology on `β` is the finest topology such that `f` is continuous and `β` is a topological group. -/ @[to_additive "Given `f : α → β` and a topology on `α`, the coinduced additive group topology on `β` is the finest topology such that `f` is continuous and `β` is a topological additive group."] def coinduced {α β : Type*} [t : topological_space α] [group β] (f : α → β) : group_topology β := Inf {b : group_topology β | (topological_space.coinduced f t) ≤ b.to_topological_space} @[to_additive] lemma coinduced_continuous {α β : Type*} [t : topological_space α] [group β] (f : α → β) : cont t (coinduced f).to_topological_space f := begin rw continuous_iff_coinduced_le, refine le_Inf _, rintros _ ⟨t', ht', rfl⟩, exact ht', end end group_topology
/- Copyright (c) 2021 Vladimir Goryachev. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Vladimir Goryachev, Kyle Miller, Scott Morrison, Eric Rodriguez -/ import set_theory.cardinal.basic import tactic.ring /-! # Counting on ℕ > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines the `count` function, which gives, for any predicate on the natural numbers, "how many numbers under `k` satisfy this predicate?". We then prove several expected lemmas about `count`, relating it to the cardinality of other objects, and helping to evaluate it for specific `k`. -/ open finset namespace nat variable (p : ℕ → Prop) section count variable [decidable_pred p] /-- Count the number of naturals `k < n` satisfying `p k`. -/ def count (n : ℕ) : ℕ := (list.range n).countp p @[simp] lemma count_zero : count p 0 = 0 := by rw [count, list.range_zero, list.countp] /-- A fintype instance for the set relevant to `nat.count`. Locally an instance in locale `count` -/ def count_set.fintype (n : ℕ) : fintype {i // i < n ∧ p i} := begin apply fintype.of_finset ((finset.range n).filter p), intro x, rw [mem_filter, mem_range], refl, end localized "attribute [instance] nat.count_set.fintype" in count lemma count_eq_card_filter_range (n : ℕ) : count p n = ((range n).filter p).card := by { rw [count, list.countp_eq_length_filter], refl, } /-- `count p n` can be expressed as the cardinality of `{k // k < n ∧ p k}`. -/ lemma count_eq_card_fintype (n : ℕ) : count p n = fintype.card {k : ℕ // k < n ∧ p k} := by { rw [count_eq_card_filter_range, ←fintype.card_of_finset, ←count_set.fintype], refl, } lemma count_succ (n : ℕ) : count p (n + 1) = count p n + (if p n then 1 else 0) := by split_ifs; simp [count, list.range_succ, h] @[mono] lemma count_monotone : monotone (count p) := monotone_nat_of_le_succ $ λ n, by by_cases h : p n; simp [count_succ, h] lemma count_add (a b : ℕ) : count p (a + b) = count p a + count (λ k, p (a + k)) b := begin have : disjoint ((range a).filter p) (((range b).map $ add_left_embedding a).filter p), { apply disjoint_filter_filter, rw finset.disjoint_left, simp_rw [mem_map, mem_range, add_left_embedding_apply], rintro x hx ⟨c, _, rfl⟩, exact (self_le_add_right _ _).not_lt hx }, simp_rw [count_eq_card_filter_range, range_add, filter_union, card_disjoint_union this, filter_map, add_left_embedding, card_map], refl, end lemma count_add' (a b : ℕ) : count p (a + b) = count (λ k, p (k + b)) a + count p b := by { rw [add_comm, count_add, add_comm], simp_rw [add_comm b] } lemma count_one : count p 1 = if p 0 then 1 else 0 := by simp [count_succ] lemma count_succ' (n : ℕ) : count p (n + 1) = count (λ k, p (k + 1)) n + if p 0 then 1 else 0 := by rw [count_add', count_one] variables {p} @[simp] lemma count_lt_count_succ_iff {n : ℕ} : count p n < count p (n + 1) ↔ p n := by by_cases h : p n; simp [count_succ, h] lemma count_succ_eq_succ_count_iff {n : ℕ} : count p (n + 1) = count p n + 1 ↔ p n := by by_cases h : p n; simp [h, count_succ] lemma count_succ_eq_count_iff {n : ℕ} : count p (n + 1) = count p n ↔ ¬p n := by by_cases h : p n; simp [h, count_succ] alias count_succ_eq_succ_count_iff ↔ _ count_succ_eq_succ_count alias count_succ_eq_count_iff ↔ _ count_succ_eq_count lemma count_le_cardinal (n : ℕ) : (count p n : cardinal) ≤ cardinal.mk {k | p k} := begin rw [count_eq_card_fintype, ← cardinal.mk_fintype], exact cardinal.mk_subtype_mono (λ x hx, hx.2), end lemma lt_of_count_lt_count {a b : ℕ} (h : count p a < count p b) : a < b := (count_monotone p).reflect_lt h lemma count_strict_mono {m n : ℕ} (hm : p m) (hmn : m < n) : count p m < count p n := (count_lt_count_succ_iff.2 hm).trans_le $ count_monotone _ (nat.succ_le_iff.2 hmn) lemma count_injective {m n : ℕ} (hm : p m) (hn : p n) (heq : count p m = count p n) : m = n := begin by_contra' h : m ≠ n, wlog hmn : m < n, { exact this hn hm heq.symm h.symm (h.lt_or_lt.resolve_left hmn) }, { simpa [heq] using count_strict_mono hm hmn } end lemma count_le_card (hp : (set_of p).finite) (n : ℕ) : count p n ≤ hp.to_finset.card := begin rw count_eq_card_filter_range, exact finset.card_mono (λ x hx, hp.mem_to_finset.2 (mem_filter.1 hx).2) end lemma count_lt_card {n : ℕ} (hp : (set_of p).finite) (hpn : p n) : count p n < hp.to_finset.card := (count_lt_count_succ_iff.2 hpn).trans_le (count_le_card hp _) variable {q : ℕ → Prop} variable [decidable_pred q] end count end nat
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Scott Morrison ! This file was ported from Lean 3 source module category_theory.pi.basic ! leanprover-community/mathlib commit e97cf15cd1aec9bd5c193b2ffac5a6dc9118912b ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.CategoryTheory.NaturalIsomorphism import Mathbin.CategoryTheory.EqToHom import Mathbin.Data.Sum.Basic /-! # Categories of indexed families of objects. > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We define the pointwise category structure on indexed families of objects in a category (and also the dependent generalization). -/ namespace CategoryTheory universe w₀ w₁ w₂ v₁ v₂ u₁ u₂ variable {I : Type w₀} (C : I → Type u₁) [∀ i, Category.{v₁} (C i)] #print CategoryTheory.pi /- /-- `pi C` gives the cartesian product of an indexed family of categories. -/ instance pi : Category.{max w₀ v₁} (∀ i, C i) where Hom X Y := ∀ i, X i ⟶ Y i id X i := 𝟙 (X i) comp X Y Z f g i := f i ≫ g i #align category_theory.pi CategoryTheory.pi -/ #print CategoryTheory.pi' /- /-- This provides some assistance to typeclass search in a common situation, which otherwise fails. (Without this `category_theory.pi.has_limit_of_has_limit_comp_eval` fails.) -/ abbrev pi' {I : Type v₁} (C : I → Type u₁) [∀ i, Category.{v₁} (C i)] : Category.{v₁} (∀ i, C i) := CategoryTheory.pi C #align category_theory.pi' CategoryTheory.pi' -/ attribute [instance] pi' namespace Pi #print CategoryTheory.Pi.id_apply /- @[simp] theorem id_apply (X : ∀ i, C i) (i) : (𝟙 X : ∀ i, X i ⟶ X i) i = 𝟙 (X i) := rfl #align category_theory.pi.id_apply CategoryTheory.Pi.id_apply -/ #print CategoryTheory.Pi.comp_apply /- @[simp] theorem comp_apply {X Y Z : ∀ i, C i} (f : X ⟶ Y) (g : Y ⟶ Z) (i) : (f ≫ g : ∀ i, X i ⟶ Z i) i = f i ≫ g i := rfl #align category_theory.pi.comp_apply CategoryTheory.Pi.comp_apply -/ #print CategoryTheory.Pi.eval /- /-- The evaluation functor at `i : I`, sending an `I`-indexed family of objects to the object over `i`. -/ @[simps] def eval (i : I) : (∀ i, C i) ⥤ C i where obj f := f i map f g α := α i #align category_theory.pi.eval CategoryTheory.Pi.eval -/ section variable {J : Type w₁} #print CategoryTheory.Pi.comap /- /-- Pull back an `I`-indexed family of objects to an `J`-indexed family, along a function `J → I`. -/ @[simps] def comap (h : J → I) : (∀ i, C i) ⥤ ∀ j, C (h j) where obj f i := f (h i) map f g α i := α (h i) #align category_theory.pi.comap CategoryTheory.Pi.comap -/ variable (I) #print CategoryTheory.Pi.comapId /- /-- The natural isomorphism between pulling back a grading along the identity function, and the identity functor. -/ @[simps] def comapId : comap C (id : I → I) ≅ 𝟭 (∀ i, C i) where Hom := { app := fun X => 𝟙 X } inv := { app := fun X => 𝟙 X } #align category_theory.pi.comap_id CategoryTheory.Pi.comapId -/ variable {I} variable {K : Type w₂} #print CategoryTheory.Pi.comapComp /- /-- The natural isomorphism comparing between pulling back along two successive functions, and pulling back along their composition -/ @[simps] def comapComp (f : K → J) (g : J → I) : comap C g ⋙ comap (C ∘ g) f ≅ comap C (g ∘ f) where Hom := { app := fun X b => 𝟙 (X (g (f b))) } inv := { app := fun X b => 𝟙 (X (g (f b))) } #align category_theory.pi.comap_comp CategoryTheory.Pi.comapComp -/ #print CategoryTheory.Pi.comapEvalIsoEval /- /-- The natural isomorphism between pulling back then evaluating, and just evaluating. -/ @[simps] def comapEvalIsoEval (h : J → I) (j : J) : comap C h ⋙ eval (C ∘ h) j ≅ eval C (h j) := NatIso.ofComponents (fun f => Iso.refl _) (by tidy) #align category_theory.pi.comap_eval_iso_eval CategoryTheory.Pi.comapEvalIsoEval -/ end section variable {J : Type w₀} {D : J → Type u₁} [∀ j, Category.{v₁} (D j)] /- warning: category_theory.pi.sum_elim_category -> CategoryTheory.Pi.sumElimCategoryₓ is a dubious translation: lean 3 declaration is forall {I : Type.{u1}} (C : I -> Type.{u3}) [_inst_1 : forall (i : I), CategoryTheory.Category.{u2, u3} (C i)] {J : Type.{u1}} {D : J -> Type.{u3}} [_inst_2 : forall (j : J), CategoryTheory.Category.{u2, u3} (D j)] (s : Sum.{u1, u1} I J), CategoryTheory.Category.{u2, u3} (Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) but is expected to have type forall {I : Type.{u3}} (C : I -> Type.{u1}) [_inst_1 : forall (i : I), CategoryTheory.Category.{u2, u1} (C i)] {J : Type.{u3}} {D : J -> Type.{u1}} [_inst_2 : forall (j : J), CategoryTheory.Category.{u2, u1} (D j)] (s : Sum.{u3, u3} I J), CategoryTheory.Category.{u2, u1} (Sum.elim.{u3, u3, succ (succ u1)} I J Type.{u1} C D s) Case conversion may be inaccurate. Consider using '#align category_theory.pi.sum_elim_category CategoryTheory.Pi.sumElimCategoryₓₓ'. -/ instance sumElimCategory : ∀ s : Sum I J, Category.{v₁} (Sum.elim C D s) | Sum.inl i => by dsimp infer_instance | Sum.inr j => by dsimp infer_instance #align category_theory.pi.sum_elim_category CategoryTheory.Pi.sumElimCategoryₓ /- warning: category_theory.pi.sum -> CategoryTheory.Pi.sum is a dubious translation: lean 3 declaration is forall {I : Type.{u1}} (C : I -> Type.{u3}) [_inst_1 : forall (i : I), CategoryTheory.Category.{u2, u3} (C i)] {J : Type.{u1}} {D : J -> Type.{u3}} [_inst_2 : forall (j : J), CategoryTheory.Category.{u2, u3} (D j)], CategoryTheory.Functor.{max u1 u2, max (max u1 u3) u1 u2, max u1 u3, max (max u1 u2) u1 u3} (forall (i : I), C i) (CategoryTheory.pi.{u1, u2, u3} I (fun (i : I) => C i) (fun (i : I) => _inst_1 i)) (CategoryTheory.Functor.{max u1 u2, max u1 u2, max u1 u3, max u1 u3} (forall (j : J), D j) (CategoryTheory.pi.{u1, u2, u3} J (fun (j : J) => D j) (fun (i : J) => _inst_2 i)) (forall (s : Sum.{u1, u1} I J), Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (CategoryTheory.pi.{u1, u2, u3} (Sum.{u1, u1} I J) (fun (s : Sum.{u1, u1} I J) => Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (fun (i : Sum.{u1, u1} I J) => CategoryTheory.Pi.sumElimCategoryₓ.{u1, u2, u3} I C (fun (i : I) => _inst_1 i) J D (fun (j : J) => _inst_2 j) i))) (CategoryTheory.Functor.category.{max u1 u2, max u1 u2, max u1 u3, max u1 u3} (forall (j : J), D j) (CategoryTheory.pi.{u1, u2, u3} J (fun (j : J) => D j) (fun (i : J) => _inst_2 i)) (forall (s : Sum.{u1, u1} I J), Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (CategoryTheory.pi.{u1, u2, u3} (Sum.{u1, u1} I J) (fun (s : Sum.{u1, u1} I J) => Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (fun (i : Sum.{u1, u1} I J) => CategoryTheory.Pi.sumElimCategoryₓ.{u1, u2, u3} I C (fun (i : I) => _inst_1 i) J D (fun (j : J) => _inst_2 j) i))) but is expected to have type forall {I : Type.{u1}} (C : I -> Type.{u3}) [_inst_1 : forall (i : I), CategoryTheory.Category.{u2, u3} (C i)] {J : Type.{u1}} {D : J -> Type.{u3}} [_inst_2 : forall (j : J), CategoryTheory.Category.{u2, u3} (D j)], CategoryTheory.Functor.{max u2 u1, max (max u3 u2) u1, max u3 u1, max (max u3 u1) u2 u1} (forall (i : I), C i) (CategoryTheory.pi.{u1, u2, u3} I (fun (i : I) => C i) (fun (i : I) => _inst_1 i)) (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u3 u1, max u3 u1} (forall (j : J), D j) (CategoryTheory.pi.{u1, u2, u3} J (fun (j : J) => D j) (fun (i : J) => _inst_2 i)) (forall (s : Sum.{u1, u1} I J), Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (CategoryTheory.pi.{u1, u2, u3} (Sum.{u1, u1} I J) (fun (s : Sum.{u1, u1} I J) => Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (fun (i : Sum.{u1, u1} I J) => CategoryTheory.Pi.sumElimCategory.{u1, u2, u3} I C (fun (i : I) => (fun (i : I) => _inst_1 i) i) J D (fun (j : J) => (fun (j : J) => _inst_2 j) j) i))) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u3 u1, max u3 u1} (forall (j : J), D j) (CategoryTheory.pi.{u1, u2, u3} J (fun (j : J) => D j) (fun (i : J) => _inst_2 i)) (forall (s : Sum.{u1, u1} I J), Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (CategoryTheory.pi.{u1, u2, u3} (Sum.{u1, u1} I J) (fun (s : Sum.{u1, u1} I J) => Sum.elim.{u1, u1, succ (succ u3)} I J Type.{u3} C D s) (fun (i : Sum.{u1, u1} I J) => CategoryTheory.Pi.sumElimCategory.{u1, u2, u3} I C (fun (i : I) => (fun (i : I) => _inst_1 i) i) J D (fun (j : J) => (fun (j : J) => _inst_2 j) j) i))) Case conversion may be inaccurate. Consider using '#align category_theory.pi.sum CategoryTheory.Pi.sumₓ'. -/ /-- The bifunctor combining an `I`-indexed family of objects with a `J`-indexed family of objects to obtain an `I ⊕ J`-indexed family of objects. -/ @[simps] def sum : (∀ i, C i) ⥤ (∀ j, D j) ⥤ ∀ s : Sum I J, Sum.elim C D s where obj f := { obj := fun g s => Sum.rec f g s map := fun g g' α s => Sum.rec (fun i => 𝟙 (f i)) α s } map f f' α := { app := fun g s => Sum.rec α (fun j => 𝟙 (g j)) s } #align category_theory.pi.sum CategoryTheory.Pi.sum end variable {C} #print CategoryTheory.Pi.isoApp /- /-- An isomorphism between `I`-indexed objects gives an isomorphism between each pair of corresponding components. -/ @[simps] def isoApp {X Y : ∀ i, C i} (f : X ≅ Y) (i : I) : X i ≅ Y i := ⟨f.Hom i, f.inv i, by dsimp rw [← comp_apply, iso.hom_inv_id, id_apply], by dsimp rw [← comp_apply, iso.inv_hom_id, id_apply]⟩ #align category_theory.pi.iso_app CategoryTheory.Pi.isoApp -/ #print CategoryTheory.Pi.isoApp_refl /- @[simp] theorem isoApp_refl (X : ∀ i, C i) (i : I) : isoApp (Iso.refl X) i = Iso.refl (X i) := rfl #align category_theory.pi.iso_app_refl CategoryTheory.Pi.isoApp_refl -/ #print CategoryTheory.Pi.isoApp_symm /- @[simp] theorem isoApp_symm {X Y : ∀ i, C i} (f : X ≅ Y) (i : I) : isoApp f.symm i = (isoApp f i).symm := rfl #align category_theory.pi.iso_app_symm CategoryTheory.Pi.isoApp_symm -/ #print CategoryTheory.Pi.isoApp_trans /- @[simp] theorem isoApp_trans {X Y Z : ∀ i, C i} (f : X ≅ Y) (g : Y ≅ Z) (i : I) : isoApp (f ≪≫ g) i = isoApp f i ≪≫ isoApp g i := rfl #align category_theory.pi.iso_app_trans CategoryTheory.Pi.isoApp_trans -/ end Pi namespace Functor variable {C} variable {D : I → Type u₁} [∀ i, Category.{v₁} (D i)] {A : Type u₁} [Category.{u₁} A] #print CategoryTheory.Functor.pi /- /-- Assemble an `I`-indexed family of functors into a functor between the pi types. -/ @[simps] def pi (F : ∀ i, C i ⥤ D i) : (∀ i, C i) ⥤ ∀ i, D i where obj f i := (F i).obj (f i) map f g α i := (F i).map (α i) #align category_theory.functor.pi CategoryTheory.Functor.pi -/ #print CategoryTheory.Functor.pi' /- /-- Similar to `pi`, but all functors come from the same category `A` -/ @[simps] def pi' (f : ∀ i, A ⥤ C i) : A ⥤ ∀ i, C i where obj a i := (f i).obj a map a₁ a₂ h i := (f i).map h #align category_theory.functor.pi' CategoryTheory.Functor.pi' -/ section EqToHom #print CategoryTheory.Functor.eqToHom_proj /- @[simp] theorem eqToHom_proj {x x' : ∀ i, C i} (h : x = x') (i : I) : (eqToHom h : x ⟶ x') i = eqToHom (Function.funext_iff.mp h i) := by subst h rfl #align category_theory.functor.eq_to_hom_proj CategoryTheory.Functor.eqToHom_proj -/ end EqToHom #print CategoryTheory.Functor.pi'_eval /- -- One could add some natural isomorphisms showing -- how `functor.pi` commutes with `pi.eval` and `pi.comap`. @[simp] theorem pi'_eval (f : ∀ i, A ⥤ C i) (i : I) : pi' f ⋙ Pi.eval C i = f i := by apply Functor.ext <;> intros · simp; · rfl #align category_theory.functor.pi'_eval CategoryTheory.Functor.pi'_eval -/ #print CategoryTheory.Functor.pi_ext /- /-- Two functors to a product category are equal iff they agree on every coordinate. -/ theorem pi_ext (f f' : A ⥤ ∀ i, C i) (h : ∀ i, f ⋙ Pi.eval C i = f' ⋙ Pi.eval C i) : f = f' := by apply Functor.ext; swap · intro X ext i specialize h i have := congr_obj h X simpa · intro x y p ext i specialize h i have := congr_hom h p simpa #align category_theory.functor.pi_ext CategoryTheory.Functor.pi_ext -/ end Functor namespace NatTrans variable {C} variable {D : I → Type u₁} [∀ i, Category.{v₁} (D i)] variable {F G : ∀ i, C i ⥤ D i} #print CategoryTheory.NatTrans.pi /- /-- Assemble an `I`-indexed family of natural transformations into a single natural transformation. -/ @[simps] def pi (α : ∀ i, F i ⟶ G i) : Functor.pi F ⟶ Functor.pi G where app f i := (α i).app (f i) #align category_theory.nat_trans.pi CategoryTheory.NatTrans.pi -/ end NatTrans end CategoryTheory
(* Author: Tobias Nipkow, 2007 *) theory QElin_opt imports QElin begin subsubsection{*An optimization*} text{* Atoms are simplified asap. *} definition "asimp a = (case a of Less r cs \<Rightarrow> (if \<forall>c\<in> set cs. c = 0 then if r<0 then TrueF else FalseF else Atom a) | Eq r cs \<Rightarrow> (if \<forall>c\<in> set cs. c = 0 then if r=0 then TrueF else FalseF else Atom a))" lemma asimp_pretty: "asimp (Less r cs) = (if \<forall>c\<in> set cs. c = 0 then if r<0 then TrueF else FalseF else Atom(Less r cs))" "asimp (Eq r cs) = (if \<forall>c\<in> set cs. c = 0 then if r=0 then TrueF else FalseF else Atom(Eq r cs))" by(auto simp:asimp_def) definition qe_FMo\<^sub>1 :: "atom list \<Rightarrow> atom fm" where "qe_FMo\<^sub>1 as = list_conj [asimp(combine p q). p\<leftarrow>lbounds as, q\<leftarrow>ubounds as]" lemma I_asimp: "R.I (asimp a) xs = I\<^sub>R a xs" by(simp add:asimp_def iprod0_if_coeffs0 split:atom.split) lemma I_qe_FMo\<^sub>1: "R.I (qe_FMo\<^sub>1 as) xs = R.I (qe_FM\<^sub>1 as) xs" by(simp add:qe_FM\<^sub>1_def qe_FMo\<^sub>1_def I_asimp) definition "qe_FMo = R\<^sub>e.lift_dnfeq_qe qe_FMo\<^sub>1" lemma qfree_qe_FMo\<^sub>1: "qfree (qe_FMo\<^sub>1 as)" by(auto simp:qe_FM\<^sub>1_def qe_FMo\<^sub>1_def asimp_def intro!:qfree_list_conj split:atom.split) corollary I_qe_FMo: "R.I (qe_FMo \<phi>) xs = R.I \<phi> xs" unfolding qe_FMo_def apply(rule R\<^sub>e.I_lift_dnfeq_qe) apply(rule qfree_qe_FMo\<^sub>1) apply(rule allI) apply(subst I_qe_FMo\<^sub>1) apply(rule I_qe_FM\<^sub>1) prefer 2 apply blast apply(clarify) apply(drule_tac x=a in bspec) apply simp apply(simp add: depends\<^sub>R_def split:atom.splits list.splits) done theorem qfree_qe_FMo: "qfree (qe_FMo f)" by(simp add:qe_FMo_def R\<^sub>e.qfree_lift_dnfeq_qe qfree_qe_FMo\<^sub>1) end
open import Data.Bool as Bool using (Bool; false; true; if_then_else_; not) open import Data.String using (String) open import Data.Nat using (ℕ; _+_; _≟_; suc; _>_; _<_; _∸_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.List as l using (List; filter; map; take; foldl; length; []; _∷_) open import Data.List.Properties -- open import Data.List.Extrema using (max) open import Data.Maybe using (to-witness) open import Data.Fin using (fromℕ; _-_; zero; Fin) open import Data.Fin.Properties using (≤-totalOrder) open import Data.Product as Prod using (∃; ∃₂; _×_; _,_; Σ) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import Level using (Level) open import Data.Vec as v using (Vec; fromList; toList; last; length; []; _∷_; [_]; _∷ʳ_; _++_; lookup; head; initLast; filter; map) open import Data.Vec.Bounded as vb using ([]; _∷_; fromVec; filter; Vec≤) open import Agda.Builtin.Nat public using () renaming (_==_ to _≡ᵇ_) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; _≗_; cong₂; inspect; [_]) open import Data.Nat.Properties using (+-comm) open import Relation.Unary using (Pred; Decidable) open import Relation.Nullary using (does) open import Data.Vec.Bounded.Base using (padRight; ≤-cast) import Data.Nat.Properties as ℕₚ open import Relation.Nullary.Decidable.Core using (dec-false) open import Function using (_∘_) open import Data.List.Extrema ℕₚ.≤-totalOrder open import Data.Empty using (⊥) -- TODO add to std-lib open import Relation.Nullary dec-¬ : ∀ {a} {P : Set a} → Dec P → Dec (¬ P) dec-¬ (yes p) = no λ prf → prf p dec-¬ (no ¬p) = yes ¬p -- TODO switch to Vec init? allButLast : ∀ {a} {A : Set a} → List A → List A allButLast [] = l.[] allButLast (_ ∷ []) = l.[] allButLast (x ∷ x₁ ∷ l) = x l.∷ (allButLast (x₁ l.∷ l)) allButLast-∷ʳ : ∀ {a} {A : Set a} {l : List A} {x} → allButLast (l l.∷ʳ x) ≡ l allButLast-∷ʳ {l = []} = refl allButLast-∷ʳ {l = _ ∷ []} = refl allButLast-∷ʳ {l = x ∷ x₁ ∷ l} = cong (x l.∷_) (allButLast-∷ʳ {l = x₁ l.∷ l}) filter' : {A : Set} → (A → Bool) → List A → List A filter' p [] = l.[] filter' p (x ∷ xs) with (p x) ... | true = x l.∷ filter' p xs ... | false = filter' p xs record Todo : Set where field text : String completed : Bool id : ℕ -- can't define this for (List any) since (last []) must be defined for each carrier type TodoListLast : List Todo → Todo TodoListLast [] = record {} TodoListLast (x ∷ []) = x TodoListLast (_ ∷ y ∷ l) = TodoListLast (y l.∷ l) AddTodo : List Todo → String → List Todo AddTodo todos text = todos l.∷ʳ record { id = 1 ; completed = false ; text = text } -- AddTodo is well-defined AddTodoAddsNewListItem : (todos : List Todo) (text : String) → l.length (AddTodo todos text) ≡ l.length todos + 1 AddTodoAddsNewListItem todos text = length-++ todos AddTodoSetsNewCompletedToFalse : (todos : List Todo) (text : String) → Todo.completed (TodoListLast (AddTodo todos text)) ≡ false AddTodoSetsNewCompletedToFalse [] text = refl AddTodoSetsNewCompletedToFalse (_ ∷ []) text = refl AddTodoSetsNewCompletedToFalse (_ ∷ _ ∷ l) text = AddTodoSetsNewCompletedToFalse (_ l.∷ l) text -- TODO can't prove this until AddTodo definition changed AddTodoSetsNewIdToNonExistingId : (todos : List Todo) (text : String) → l.length (l.filter (λ todo → dec-¬ (Todo.id todo ≟ Todo.id (TodoListLast (AddTodo todos text)))) (AddTodo todos text)) ≡ 1 AddTodoSetsNewIdToNonExistingId todos text = {! !} AddTodoSetsNewTextToText : (todos : List Todo) (text : String) → Todo.text (TodoListLast (AddTodo todos text)) ≡ text AddTodoSetsNewTextToText [] text = refl AddTodoSetsNewTextToText (_ ∷ []) text = refl AddTodoSetsNewTextToText (_ ∷ _ ∷ l) text = AddTodoSetsNewTextToText (_ l.∷ l) text AddTodoDoesntChangeOtherTodos : (todos : List Todo) (text : String) → l.length todos > 0 → allButLast (AddTodo todos text) ≡ todos AddTodoDoesntChangeOtherTodos (x l.∷ xs) text _<_ = allButLast-∷ʳ -- END AddTodo is well-defined -- TODO text1 ≠ text2 AddTodo-not-comm : (todos : List Todo) → (text1 : String) → (text2 : String) → (AddTodo (AddTodo todos text1) text2 ≢ AddTodo (AddTodo todos text2) text1) AddTodo-not-comm todos text1 text2 = {! !} -- {-# COMPILE JS AddTodo = -- function (todos) { -- return function (text) { -- return [ -- ...todos, -- { -- id: todos.reduce((maxId, todo) => Math.max(todo.id, maxId), -1) + 1, -- completed: false, -- text: text -- } -- ] -- } -- } -- #-} DeleteTodo : (List Todo) → ℕ → (List Todo) DeleteTodo todos id = l.filter (λ todo → dec-¬ (Todo.id todo ≟ id)) todos DeleteTodo' : (List Todo) → ℕ → (List Todo) DeleteTodo' todos id = filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos DeleteTodo'RemoveTodoWithId : (todos : List Todo) (id : ℕ) → filter' (λ todo → Todo.id todo ≡ᵇ id) (DeleteTodo' todos id) ≡ l.[] DeleteTodo'RemoveTodoWithId [] id = refl DeleteTodo'RemoveTodoWithId (x ∷ xs) id with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] = DeleteTodo'RemoveTodoWithId xs id ... | false | P.[ eq ] rewrite eq = DeleteTodo'RemoveTodoWithId xs id -- TODO this one needs Todo to specify that it can only have one unique id DeleteTodo'Removes1Element : (todos : List Todo) (id : ℕ) → l.length (DeleteTodo' todos id) ≡ l.length todos ∸ 1 DeleteTodo'Removes1Element [] id = refl DeleteTodo'Removes1Element (x ∷ xs) id with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] rewrite eq = {! !} -- DeleteTodo'Removes1Element xs id ... | false | P.[ eq ] rewrite eq = {! !} DeleteTodoDoesntChangeOtherTodos : (todos : List Todo) (id : ℕ) → DeleteTodo todos id ≡ l.filter (λ todo → dec-¬ (Todo.id todo ≟ id)) todos DeleteTodoDoesntChangeOtherTodos todos id = refl -- END DeleteTodo is well-defined DeleteTodo-idem : (todos : List Todo) (id : ℕ) → DeleteTodo (DeleteTodo todos id) id ≡ DeleteTodo todos id DeleteTodo-idem todos id = filter-idem (λ e → dec-¬ (Todo.id e ≟ id)) todos -- {-# COMPILE JS DeleteTodo = -- function (todos) { -- return function (id) { -- return todos.filter(function (todo) { -- return todo.id !== id -- }); -- } -- } -- #-} -- EditTodo: can't use updateAt since id doesn't necessarily correspond to Vec index EditTodo : (List Todo) → ℕ → String → (List Todo) EditTodo todos id text = l.map (λ todo → if (⌊ Todo.id todo ≟ id ⌋) then record todo { text = text } else todo) todos EditTodo' : (List Todo) → ℕ → String → (List Todo) EditTodo' todos id text = l.map (λ todo → if (Todo.id todo ≡ᵇ id) then record todo { text = text } else todo) todos -- EditTodo is well-defined -- EditTodoChangesText : -- (todos : List Todo) (id : ℕ) (text : String) → -- l.map Todo.text (l.filter (λ todo → Todo.id todo ≟ id) (EditTodo todos id text)) ≡ l.[ text ] -- EditTodoChangesText todos id text = {! !} -- -- TODO not necessarily true -- EditTodo'ChangesText : -- (todos : List Todo) (id : ℕ) (text : String) → -- l.map Todo.text (EditTodo' (filter' (λ todo → Todo.id todo ≡ᵇ id) todos) id text) ≡ l.map Todo.text (filter' (λ todo → Todo.id todo ≡ᵇ id) todos) -- EditTodo'ChangesText [] id text = refl -- EditTodo'ChangesText (x ∷ xs) id text with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x) -- ... | true | P.[ eq ] rewrite eq = {! !} -- cong (Todo.text x l.∷_) (EditTodo'ChangesText xs id text) -- ... | false | P.[ eq ] rewrite eq = EditTodo'ChangesText xs id text EditTodo'DoesntChangeId : (todos : List Todo) (id : ℕ) (text : String) → l.map Todo.id (EditTodo' todos id text) ≡ l.map Todo.id todos EditTodo'DoesntChangeId [] id text = refl EditTodo'DoesntChangeId (x ∷ xs) id text with (Todo.id x ≡ᵇ id) ... | true = cong ((Todo.id x) l.∷_) (EditTodo'DoesntChangeId xs id text) ... | false = cong ((Todo.id x) l.∷_) (EditTodo'DoesntChangeId xs id text) EditTodo'DoesntChangeCompleted : (todos : List Todo) (id : ℕ) (text : String) → l.map Todo.completed (EditTodo' todos id text) ≡ l.map Todo.completed todos EditTodo'DoesntChangeCompleted [] id text = refl EditTodo'DoesntChangeCompleted (x ∷ xs) id text with (Todo.id x ≡ᵇ id) ... | true = cong ((Todo.completed x) l.∷_) (EditTodo'DoesntChangeCompleted xs id text) ... | false = cong ((Todo.completed x) l.∷_) (EditTodo'DoesntChangeCompleted xs id text) EditTodo'DoesntChangeOtherTodos : (todos : List Todo) (id : ℕ) (text : String) → filter' (λ todo → not (Todo.id todo ≡ᵇ id)) (EditTodo' todos id text) ≡ filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos EditTodo'DoesntChangeOtherTodos [] id text = refl EditTodo'DoesntChangeOtherTodos (x ∷ xs) id text with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] rewrite eq = EditTodo'DoesntChangeOtherTodos xs id text ... | false | P.[ eq ] rewrite eq = cong (x l.∷_) (EditTodo'DoesntChangeOtherTodos xs id text) EditTodoLengthUnchanged : (todos : List Todo) (id' : ℕ) (text : String) → l.length (EditTodo todos id' text) ≡ l.length todos EditTodoLengthUnchanged todos id' text = length-map (λ todo → if (⌊ Todo.id todo ≟ id' ⌋) then record todo { text = text } else todo) todos -- END EditTodo is well-defined EditTodo'-idem : (todos : List Todo) (id : ℕ) (text : String) → EditTodo' (EditTodo' todos id text) id text ≡ EditTodo' todos id text EditTodo'-idem [] id text = refl EditTodo'-idem (x ∷ xs) id text with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] rewrite eq = cong (record x { text = text } List.∷_) (EditTodo'-idem xs id text) ... | false | P.[ eq ] rewrite eq = cong (x List.∷_) (EditTodo'-idem xs id text) -- {-# COMPILE JS EditTodo = -- function (todos) { -- return function (id) { -- return function (text) { -- return todos.map(function (todo) { -- if (todo.id === id) { -- todo.text = text; -- } -- return todo; -- }); -- } -- } -- } -- #-} CompleteTodo : (List Todo) → ℕ → (List Todo) CompleteTodo todos id = l.map (λ todo → if (⌊ Todo.id todo ≟ id ⌋) then record todo { completed = true } else todo) todos CompleteTodo' : (List Todo) → ℕ → (List Todo) CompleteTodo' todos id = l.map (λ todo → if (Todo.id todo ≡ᵇ id) then record todo { completed = true } else todo) todos -- CompleteTodo is well-defined -- TODO don't know if there is only one instance of Todo with that id CompleteTodo'ChangesCompleted : (todos : List Todo) (id : ℕ) → l.map Todo.completed (filter' (λ todo → Todo.id todo ≡ᵇ id) (CompleteTodo' todos id)) ≡ l.map (λ todo → true) (filter' (λ todo → Todo.id todo ≡ᵇ id) todos) CompleteTodo'ChangesCompleted [] id = refl CompleteTodo'ChangesCompleted (x ∷ xs) id with Todo.id x ≡ᵇ id | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] rewrite eq = cong (true l.∷_) (CompleteTodo'ChangesCompleted xs id) ... | false | P.[ eq ] rewrite eq = CompleteTodo'ChangesCompleted xs id CompleteTodoDoesntChangeIds : (todos : List Todo) (id : ℕ) → l.map Todo.id (CompleteTodo todos id) ≡ l.map Todo.id todos CompleteTodoDoesntChangeIds [] id = refl CompleteTodoDoesntChangeIds (x ∷ []) id = cong (l._∷ l.[]) (helper x id) where helper : (x : Todo) (id : ℕ) → Todo.id (if ⌊ Todo.id x ≟ id ⌋ then record { text = Todo.text x ; completed = true ; id = Todo.id x } else x) ≡ Todo.id x helper x id with (⌊ Todo.id x ≟ id ⌋) ... | true = refl ... | false = refl CompleteTodoDoesntChangeIds (x ∷ xs) id = begin l.map Todo.id (CompleteTodo (x l.∷ xs) id) ≡⟨⟩ (l.map Todo.id (CompleteTodo l.[ x ] id)) l.++ l.map Todo.id (CompleteTodo xs id) ≡⟨ cong (l._++ l.map Todo.id (CompleteTodo xs id)) (CompleteTodoDoesntChangeIds (x l.∷ l.[]) id) ⟩ l.map Todo.id (l.[ x ]) l.++ l.map Todo.id (CompleteTodo xs id) ≡⟨⟩ l.[ Todo.id x ] l.++ l.map Todo.id (CompleteTodo xs id) ≡⟨⟩ Todo.id x l.∷ l.map Todo.id (CompleteTodo xs id) ≡⟨ cong (Todo.id x l.∷_) (CompleteTodoDoesntChangeIds xs id) ⟩ Todo.id x l.∷ l.map Todo.id xs ≡⟨⟩ l.map Todo.id (x l.∷ xs) ∎ CompleteTodoDoesntChangeText : (todos : List Todo) (id : ℕ) → l.map Todo.text (CompleteTodo todos id) ≡ l.map Todo.text todos CompleteTodoDoesntChangeText [] id = refl CompleteTodoDoesntChangeText (x ∷ []) id = cong (l._∷ l.[]) (helper x id) where helper : (x : Todo) (id : ℕ) → Todo.text (if ⌊ Todo.id x ≟ id ⌋ then record { text = Todo.text x ; completed = true ; id = Todo.id x } else x) ≡ Todo.text x helper x id with (⌊ Todo.id x ≟ id ⌋) ... | true = refl ... | false = refl CompleteTodoDoesntChangeText (x ∷ xs) id = begin l.map Todo.text (CompleteTodo (x l.∷ xs) id) ≡⟨⟩ (l.map Todo.text (CompleteTodo l.[ x ] id)) l.++ l.map Todo.text (CompleteTodo xs id) ≡⟨ cong (l._++ l.map Todo.text (CompleteTodo xs id)) (CompleteTodoDoesntChangeText (x l.∷ l.[]) id) ⟩ l.map Todo.text (l.[ x ]) l.++ l.map Todo.text (CompleteTodo xs id) ≡⟨⟩ l.[ Todo.text x ] l.++ l.map Todo.text (CompleteTodo xs id) ≡⟨⟩ Todo.text x l.∷ l.map Todo.text (CompleteTodo xs id) ≡⟨ cong (Todo.text x l.∷_) (CompleteTodoDoesntChangeText xs id) ⟩ Todo.text x l.∷ l.map Todo.text xs ≡⟨⟩ l.map Todo.text (x l.∷ xs) ∎ CompleteTodo'DoesntChangeOthersCompleted : (todos : List Todo) (id : ℕ) → l.map Todo.completed (CompleteTodo' (filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos) id) ≡ l.map Todo.completed (filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos) CompleteTodo'DoesntChangeOthersCompleted [] id = refl CompleteTodo'DoesntChangeOthersCompleted (x ∷ xs) id with Todo.id x ≡ᵇ id | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] rewrite eq = CompleteTodo'DoesntChangeOthersCompleted xs id -- ... | false | P.[ eq ] rewrite eq = cong (Todo.completed x l.∷_) (CompleteTodo'DoesntChangeOthersCompleted xs id) CompleteTodoLengthUnchanged : (todos : List Todo) (id : ℕ) → l.length (CompleteTodo todos id) ≡ l.length todos CompleteTodoLengthUnchanged todos id = length-map (λ todo → if (⌊ Todo.id todo ≟ id ⌋) then record todo { completed = true } else todo) todos -- END CompleteTodo is well-defined CompleteTodo'-idem : (todos : List Todo) (id : ℕ) → CompleteTodo' (CompleteTodo' todos id) id ≡ CompleteTodo' todos id CompleteTodo'-idem [] id = refl CompleteTodo'-idem (x ∷ xs) id with Todo.id x ≡ᵇ id | inspect (_≡ᵇ id) (Todo.id x) ... | true | P.[ eq ] rewrite eq = cong (record x { completed = true } l.∷_) (CompleteTodo'-idem xs id) ... | false | P.[ eq ] rewrite eq = cong (x l.∷_) (CompleteTodo'-idem xs id) -- {-# COMPILE JS CompleteTodo = -- function (todos) { -- return function (id) { -- return todos.map(function (todo) { -- if (todo.id === id) { -- todo.completed = true; -- } -- return todo; -- }); -- } -- } -- #-} CompleteAllTodos : List Todo → List Todo CompleteAllTodos todos = l.map (λ todo → record todo { completed = true }) todos -- CompleteAllTodos is well-defined CompleteAllTodosAllCompleted : (todos : List Todo) → l.filter (λ todo → (Todo.completed todo) Bool.≟ false) (CompleteAllTodos todos) ≡ l.[] CompleteAllTodosAllCompleted [] = refl CompleteAllTodosAllCompleted (x ∷ xs) = CompleteAllTodosAllCompleted xs CompleteAllTodosDoesntChangeIds : (todos : List Todo) → l.map Todo.id (CompleteAllTodos todos) ≡ l.map Todo.id todos CompleteAllTodosDoesntChangeIds [] = refl CompleteAllTodosDoesntChangeIds (x ∷ []) = cong (l._∷ l.[]) (helper x) where helper : (x : Todo) → Todo.id (record x { completed = true }) ≡ Todo.id x helper x = refl CompleteAllTodosDoesntChangeIds (x ∷ xs) = begin l.map Todo.id (CompleteAllTodos (x l.∷ xs)) ≡⟨⟩ (l.map Todo.id (CompleteAllTodos l.[ x ])) l.++ l.map Todo.id (CompleteAllTodos xs) ≡⟨ cong (l._++ l.map Todo.id (CompleteAllTodos xs)) (CompleteAllTodosDoesntChangeIds (x l.∷ l.[])) ⟩ l.map Todo.id (l.[ x ]) l.++ l.map Todo.id (CompleteAllTodos xs) ≡⟨⟩ l.[ Todo.id x ] l.++ l.map Todo.id (CompleteAllTodos xs) ≡⟨⟩ Todo.id x l.∷ l.map Todo.id (CompleteAllTodos xs) ≡⟨ cong (Todo.id x l.∷_) (CompleteAllTodosDoesntChangeIds xs) ⟩ Todo.id x l.∷ l.map Todo.id xs ≡⟨⟩ l.map Todo.id (x l.∷ xs) ∎ CompleteAllTodosDoesntChangeText : (todos : List Todo) → l.map Todo.text (CompleteAllTodos todos) ≡ l.map Todo.text todos CompleteAllTodosDoesntChangeText [] = refl CompleteAllTodosDoesntChangeText (x ∷ []) = cong (l._∷ l.[]) (helper x) where helper : (x : Todo) → Todo.text (record x { completed = true }) ≡ Todo.text x helper x = refl CompleteAllTodosDoesntChangeText (x ∷ xs) = begin l.map Todo.text (CompleteAllTodos (x l.∷ xs)) ≡⟨⟩ (l.map Todo.text (CompleteAllTodos l.[ x ])) l.++ l.map Todo.text (CompleteAllTodos xs) ≡⟨ cong (l._++ l.map Todo.text (CompleteAllTodos xs)) (CompleteAllTodosDoesntChangeText (x l.∷ l.[])) ⟩ l.map Todo.text (l.[ x ]) l.++ l.map Todo.text (CompleteAllTodos xs) ≡⟨⟩ l.[ Todo.text x ] l.++ l.map Todo.text (CompleteAllTodos xs) ≡⟨⟩ Todo.text x l.∷ l.map Todo.text (CompleteAllTodos xs) ≡⟨ cong (Todo.text x l.∷_) (CompleteAllTodosDoesntChangeText xs) ⟩ Todo.text x l.∷ l.map Todo.text xs ≡⟨⟩ l.map Todo.text (x l.∷ xs) ∎ CompleteAllTodosLengthUnchanged : (todos : List Todo) → l.length (CompleteAllTodos todos) ≡ l.length todos CompleteAllTodosLengthUnchanged todos = length-map (λ todo → record todo { completed = true }) todos -- END CompleteAllTodos is well-defined -- CompleteAllTodos-idem -- {-# COMPILE JS CompleteAllTodos = -- function (todos) { -- return todos.map(function(todo) { -- todo.completed = true; -- return todo; -- }); -- } -- #-} ClearCompleted : (List Todo) → (List Todo) ClearCompleted todos = (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) -- ClearCompleted is well-defined ClearCompletedRemovesOnlyCompleted : (todos : List Todo) → l.map Todo.completed (ClearCompleted todos) ≡ l.map Todo.completed (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) ClearCompletedRemovesOnlyCompleted todos = refl ClearCompletedDoesntChangeCompleted : (todos : List Todo) → l.map Todo.completed (ClearCompleted todos) ≡ l.map Todo.completed (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) ClearCompletedDoesntChangeCompleted todos = refl ClearCompletedDoesntChangeIds : (todos : List Todo) → l.map Todo.id (ClearCompleted todos) ≡ l.map Todo.id (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) ClearCompletedDoesntChangeIds todos = refl ClearCompletedDoesntChangeText : (todos : List Todo) → l.map Todo.text (ClearCompleted todos) ≡ l.map Todo.text (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) ClearCompletedDoesntChangeText todos = refl -- END ClearCompleted is well-defined ClearCompleted-idem : (todos : List Todo) → ClearCompleted (ClearCompleted todos) ≡ ClearCompleted todos ClearCompleted-idem todos = filter-idem (λ e → dec-¬ (Todo.completed e Bool.≟ true)) todos -- {-# COMPILE JS ClearCompleted = -- function (todos) { -- return todos.filter(function(todo) { -- return !todo.completed; -- }); -- } -- #-} -- interactions -- AddTodo-AddTodo -- DeleteTodo-DeleteTodo -- AddTodo-DeleteTodo -- DeleteTodo-AddTodo -- EditTodo-EditTodo -- AddTodo-EditTodo -- EditTodo-AddTodo -- ...
Formal statement is: lemma fixes f g :: "complex fps" and r :: ereal defines "R \<equiv> Min {r, fps_conv_radius f, fps_conv_radius g}" assumes "subdegree g \<le> subdegree f" assumes "fps_conv_radius f > 0" "fps_conv_radius g > 0" "r > 0" assumes "\<And>z. z \<in> eball 0 r \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> eval_fps g z \<noteq> 0" shows fps_conv_radius_divide: "fps_conv_radius (f / g) \<ge> R" and eval_fps_divide: "ereal (norm z) < R \<Longrightarrow> c = fps_nth f (subdegree g) / fps_nth g (subdegree g) \<Longrightarrow> eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)" Informal statement is: If $f$ and $g$ are power series with $g$ having a lower degree than $f$, and $g$ has a nonzero constant term, then the power series $f/g$ has a radius of convergence at least as large as the minimum of the radii of convergence of $f$ and $g$.
dataFile <- read.csv('/Users/saugat/Downloads/2008.csv') head(dataFile) head(dataFile$Origin) sum(dataFile$Origin == 'ORD') sum(dataFile$Dest == 'ORD') sum(dataFile$Origin == 'IND' & dataFile$Dest == 'ORD') sum(dataFile$Origin == 'TUP' & dataFile$Year == 2008) head(dataFile$Origin == 'TUP') tup2008 <- subset(dataFile, dataFile$Origin == 'TUP' & dataFile$Year == 2008) sum(tup2008$DepDelay) sum(dataFile$Dest == 'LAX' & dataFile$Year == 2008) atlToLax <- subset(dataFile, dataFile$Origin == 'ATL' & dataFile$Dest == 'LAX') sum(atlToLax$DepTime < 1200, na.rm = TRUE) brk = seq(0,2400,by=100) hist(atlToLax$DepTime, brk, plot=TRUE)
Formal statement is: lemma components_eq_sing_iff: "components s = {s} \<longleftrightarrow> connected s \<and> s \<noteq> {}" Informal statement is: A set $s$ is connected if and only if the set of components of $s$ is equal to $\{s\}$.
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017. Some proofs were added by Yutaka Nagashima.*) theory TIP_prop_70 imports "../../Test_Base" begin datatype Nat = Z | S "Nat" fun t2 :: "Nat => Nat => bool" where "t2 (Z) y = True" | "t2 (S z) (Z) = False" | "t2 (S z) (S x2) = t2 z x2" theorem property0 : "((t2 m n) ==> (t2 m (S n)))" oops end
context("lambda") test_that("simple mult", { fx = function(x) x*2 x = array(1:10) re = lambda(~ fx(x), along=c(x=1)) expect_equal(re, c(x*2)) }) test_that("matrix mult", { dot = function(x, y) sum(x * y) a = matrix(1:6, ncol=2) b = t(a) re = lambda(~ dot(a, b), along=c(a=1, b=2)) dimnames(re) = NULL #FIXME: expect_equal(re, a %*% b) })
/- Eulerian circuits -/ /- We provide you with a formalization of some facts about lists being equal up to permutation and lists being sublists of their permutation -/ import TBA.Eulerian.List open List namespace Eulerian -- We model graphs as lists of pairs on a type with decidable equality. variable {α : Type} (E : List (α × α)) [DecidableEq α] def isNonEmpty : Prop := E.length > 0 -- Now it's your turn to fill out the following definitions and prove the characterization! def isStronglyConnected (E : List (α × α)) : Prop := _ def hasEqualInOutDegrees (E : List (α × α)) : Prop := _ def isEulerian (E : List (α × α)) : Prop := _ theorem eulerian_degrees (hne : isNonEmpty E) (sc : isStronglyConnected E) (ed : hasEqualInOutDegrees E) : isEulerian E := _ end Eulerian
Jay Chapman, a native of Birmingham, Ala., joined Georgia’s football operations staff in January, 2016. Chapman spent the previous five seasons at Samford University where he served as the director of football operations. In that role, Chapman was responsible for day-to-day operations of the program and oversaw and coordinated all aspects of team travel. Before joining the staff at Samford, Chapman worked as the director of player development at UAB from 2008 to 2010. He also served as the Blazers’ associate director of recruiting for his last two years in Birmingham. In 2007, Chapman was a coordinator for Team Alabama in the All-American Football League. A graduate of Samford, Chapman earned his bachelor’s degree in general studies. In addition, he received a bachelor’s degree in animal and dairy science from Auburn, as well as a master’s in public and private management from Birmingham-Southern.
[STATEMENT] lemma NSDERIV_inverse_fun: "NSDERIV f x :> d \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> NSDERIV (\<lambda>x. inverse (f x)) x :> (- (d * inverse (f x ^ Suc (Suc 0))))" for x :: "'a::{real_normed_field}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>NSDERIV f x :> d; f x \<noteq> (0::'a)\<rbrakk> \<Longrightarrow> NSDERIV (\<lambda>x. inverse (f x)) x :> - (d * inverse (f x ^ Suc (Suc 0))) [PROOF STEP] by (simp add: NSDERIV_DERIV_iff DERIV_inverse_fun del: power_Suc)
[GOAL] α : Type u_1 inst✝ : DivisionRing α src✝² : DivisionSemiring αᵐᵒᵖ := divisionSemiring α src✝¹ : Ring αᵐᵒᵖ := ring α src✝ : RatCast αᵐᵒᵖ := ratCast α a : ℤ b : ℕ hb : b ≠ 0 h : Nat.coprime (Int.natAbs a) b ⊢ unop ↑(Rat.mk' a b) = unop (↑a * (↑b)⁻¹) [PROOFSTEP] rw [unop_ratCast, Rat.cast_def, unop_mul, unop_inv, unop_natCast, unop_intCast, Int.commute_cast, div_eq_mul_inv] [GOAL] α : Type ?u.3697 inst✝ : DivisionRing α src✝² : Ring αᵃᵒᵖ := ring α src✝¹ : GroupWithZero αᵃᵒᵖ := groupWithZero α src✝ : RatCast αᵃᵒᵖ := ratCast α a : ℤ b : ℕ hb : b ≠ 0 h : Nat.coprime (Int.natAbs a) b ⊢ unop ↑(Rat.mk' a b) = unop (↑a * (↑b)⁻¹) [PROOFSTEP] rw [unop_ratCast, Rat.cast_def, unop_mul, unop_inv, unop_natCast, unop_intCast, div_eq_mul_inv]
(* Title: HOL/Auth/n_germanSymIndex_lemma_inv__43_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSymIndex Protocol Case Study*} theory n_germanSymIndex_lemma_inv__43_on_rules imports n_germanSymIndex_lemma_on_inv__43 begin section{*All lemmas on causal relation between inv__43*} lemma lemma_inv__43_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv2. p__Inv2\<le>N\<and>f=inv__43 p__Inv2)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqSVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__0Vsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__1Vsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqEVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__43) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__43) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Definitions) -- Definition of the "Twisted Arrow" Category of a Category 𝒞 module Categories.Category.Construction.TwistedArrow {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Data.Product using (_,_; _×_; map; zip) open import Function.Base using (_$_; flip) open import Relation.Binary.Core using (Rel) import Categories.Morphism as M open M 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open Definitions 𝒞 open HomReasoning private variable A B C : Obj record Morphism : Set (o ⊔ ℓ) where field {dom} : Obj {cod} : Obj arr : dom ⇒ cod record Morphism⇒ (f g : Morphism) : Set (ℓ ⊔ e) where constructor mor⇒ private module f = Morphism f module g = Morphism g field {dom⇐} : g.dom ⇒ f.dom {cod⇒} : f.cod ⇒ g.cod square : cod⇒ ∘ f.arr ∘ dom⇐ ≈ g.arr TwistedArrow : Category (o ⊔ ℓ) (ℓ ⊔ e) e TwistedArrow = record { Obj = Morphism ; _⇒_ = Morphism⇒ ; _≈_ = λ f g → dom⇐ f ≈ dom⇐ g × cod⇒ f ≈ cod⇒ g ; id = mor⇒ (identityˡ ○ identityʳ) ; _∘_ = λ {A} {B} {C} m₁ m₂ → mor⇒ {A} {C} (∘′ m₁ m₂ ○ square m₁) ; assoc = sym-assoc , assoc ; sym-assoc = assoc , sym-assoc ; identityˡ = identityʳ , identityˡ ; identityʳ = identityˡ , identityʳ ; identity² = identity² , identity² ; equiv = record { refl = refl , refl ; sym = map sym sym ; trans = zip trans trans } ; ∘-resp-≈ = zip (flip ∘-resp-≈) ∘-resp-≈ } where open Morphism⇒ open Equiv open HomReasoning ∘′ : ∀ {A B C} (m₁ : Morphism⇒ B C) (m₂ : Morphism⇒ A B) → (cod⇒ m₁ ∘ cod⇒ m₂) ∘ Morphism.arr A ∘ (dom⇐ m₂ ∘ dom⇐ m₁) ≈ cod⇒ m₁ ∘ Morphism.arr B ∘ dom⇐ m₁ ∘′ {A} {B} {C} m₁ m₂ = begin (cod⇒ m₁ ∘ cod⇒ m₂) ∘ Morphism.arr A ∘ (dom⇐ m₂ ∘ dom⇐ m₁) ≈⟨ pullʳ sym-assoc ⟩ cod⇒ m₁ ∘ (cod⇒ m₂ ∘ Morphism.arr A) ∘ (dom⇐ m₂ ∘ dom⇐ m₁) ≈⟨ refl⟩∘⟨ (pullˡ assoc) ⟩ cod⇒ m₁ ∘ (cod⇒ m₂ ∘ Morphism.arr A ∘ dom⇐ m₂) ∘ dom⇐ m₁ ≈⟨ (refl⟩∘⟨ square m₂ ⟩∘⟨refl) ⟩ cod⇒ m₁ ∘ Morphism.arr B ∘ dom⇐ m₁ ∎
theory PrimeRec imports Main begin datatype nati = Zero | Suc nati primrec add :: "nati \<Rightarrow> nati \<Rightarrow> nati" where "add Zero n = n" | "add (Suc m) n = Suc(add m n)" primrec mult :: "nati \<Rightarrow> nati \<Rightarrow> nati" where "mult Zero n = Zero" | "mult (Suc m) n = add (mult m n) m" primrec pow :: "nati => nati => nati" where "pow Zero x = Suc Zero" | "pow (Suc n) x = mult x (pow n x)" primrec pow :: "nat => nat => nat" where "pow x 0 = Suc 0" | "pow x (Suc n) = x * pow x n" lemma add_02[simp]: "add a Zero = a" apply(induction a) apply(auto) done lemma add_Associativ[simp]: "add(add a b) c = add a (add b c)" apply(induction a) apply(auto) done lemma add_suc[simp]: "add a (Suc b) = Suc( add a b)" apply(induction a) apply(simp) apply(simp) done lemma add_com[simp]: "add a b= add b a" apply(induction a) apply(simp) apply(simp) done lemma a1: "(a + a) = 2*a" apply(arith) done lemma mult_a0: "add a a = mult(a Suc(Suc(Zero)))" done end
module CoinToss import Data.Vect import QStateT import QuantumOp import LinearTypes ||| A fair coin toss (as an IO effect) via quantum resources. ||| ||| first create a new qubit in state |0> ||| then apply a hadamard gate to it, thereby preparing state |+> ||| and finally measure the qubit and return this as the result export coin : QuantumOp t => IO Bool coin = do [b] <- run (do q <- newQubit {t = t} q <- applyH q r <- measure [q] pure r ) pure b testCoin : IO Bool testCoin = coin {t = SimulatedOp}
open import Agda.Primitive using (lzero; lsuc; _⊔_) import SecondOrder.Arity import SecondOrder.VContext module SecondOrder.Signature ℓ (𝔸 : SecondOrder.Arity.Arity) where open SecondOrder.Arity.Arity 𝔸 -- a second-order algebraic signature record Signature : Set (lsuc ℓ) where -- a signature consists of a set of sorts and a set of operations -- e.g. sorts A, B, C, ... and operations f, g, h field sort : Set ℓ -- sorts oper : Set ℓ -- operations open SecondOrder.VContext sort public -- each operation has arity and a sort (the sort of its codomain) field oper-arity : oper → arity -- the arity of an operation oper-sort : oper → sort -- the operation sort arg-sort : ∀ (f : oper) → arg (oper-arity f) → sort -- the sorts of arguments -- a second order operation can bind some free variables that occur as its arguments -- e.g. the lambda operation binds one type and one term arg-bind : ∀ (f : oper) → arg (oper-arity f) → VContext -- the argument bindings -- the arguments of an operation oper-arg : oper → Set oper-arg f = arg (oper-arity f)
If $f$ is uniformly continuous on $S$, then for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x, x' \in S$, if $|x - x'| < \delta$, then $|f(x) - f(x')| < \epsilon$.
Formal statement is: lemma has_contour_integral_lmul: "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. c * (f x)) has_contour_integral (c*i)) g" Informal statement is: If $f$ has a contour integral $i$ along $g$, then $cf$ has a contour integral $ci$ along $g$.
(* generated by Ott 0.28, locally-nameless from: ett.ott *) Require Import Metatheory. (** syntax *) Definition tmvar := var. (*r variables *) Definition covar := var. (*r coercion variables *) Definition datacon := atom. Definition const := atom. Definition index := nat. (*r indices *) Inductive relflag : Set := (*r relevance flag *) | Rel : relflag | Irrel : relflag. Inductive role : Set := (*r Role *) | Nom : role | Rep : role. Inductive appflag : Set := (*r applicative flag *) | Role (R:role) | Rho (rho:relflag). Inductive App : Set := | A_Tm (nu:appflag) | A_Co : App. Inductive Apps : Set := | A_nil : Apps | A_cons (App5:App) (Apps5:Apps). Inductive constraint : Set := (*r props *) | Eq (a:tm) (b:tm) (A:tm) (R:role) with tm : Set := (*r types and kinds *) | a_Star : tm | a_Var_b (_:nat) | a_Var_f (x:tmvar) | a_Abs (rho:relflag) (A:tm) (b:tm) | a_UAbs (rho:relflag) (b:tm) | a_App (a:tm) (nu:appflag) (b:tm) | a_Pi (rho:relflag) (A:tm) (B:tm) | a_CAbs (phi:constraint) (b:tm) | a_UCAbs (b:tm) | a_CApp (a:tm) (g:co) | a_CPi (phi:constraint) (B:tm) | a_Conv (a:tm) (R:role) (g:co) | a_Fam (F:const) | a_Bullet : tm | a_Pattern (R:role) (a:tm) (F:const) (Apps5:Apps) (b1:tm) (b2:tm) | a_DataCon (K:datacon) | a_Case (a:tm) (brs5:brs) | a_Sub (R:role) (a:tm) | a_Coerce : tm | a_SrcApp (a:tm) (b:tm) with brs : Set := (*r case branches *) | br_None : brs | br_One (K:datacon) (a:tm) (brs5:brs) with co : Set := (*r explicit coercions *) | g_Triv : co | g_Var_b (_:nat) | g_Var_f (c:covar) | g_Beta (a:tm) (b:tm) | g_Refl (a:tm) | g_Refl2 (a:tm) (b:tm) (g:co) | g_Sym (g:co) | g_Trans (g1:co) (g2:co) | g_Sub (g:co) | g_PiCong (rho:relflag) (R:role) (g1:co) (g2:co) | g_AbsCong (rho:relflag) (R:role) (g1:co) (g2:co) | g_AppCong (g1:co) (rho:relflag) (R:role) (g2:co) | g_PiFst (g:co) | g_CPiFst (g:co) | g_IsoSnd (g:co) | g_PiSnd (g1:co) (g2:co) | g_CPiCong (g1:co) (g3:co) | g_CAbsCong (g1:co) (g3:co) (g4:co) | g_CAppCong (g:co) (g1:co) (g2:co) | g_CPiSnd (g:co) (g1:co) (g2:co) | g_Cast (g1:co) (R:role) (g2:co) | g_EqCong (g1:co) (A:tm) (g2:co) | g_IsoConv (phi1:constraint) (phi2:constraint) (g:co) | g_Eta (a:tm) | g_Left (g:co) (g':co) | g_Right (g:co) (g':co). Definition roles : Set := list role. Inductive sort : Set := (*r binding classifier *) | Tm (A:tm) | Co (phi:constraint). Inductive sig_sort : Set := (*r signature classifier *) | Cs (A:tm) (Rs:roles) | Ax (p:tm) (a:tm) (A:tm) (R:role) (Rs:roles). Inductive pattern_arg : Set := (*r Pattern arguments *) | p_Tm (nu:appflag) (a:tm) | p_Co (g:co). Definition role_context : Set := list ( atom * role ). Definition context : Set := list ( atom * sort ). Definition available_props : Type := atoms. Definition sig : Set := list (atom * sig_sort). Definition atom_list : Set := list atom. Definition pattern_args : Set := list pattern_arg. Definition Nat : Set := nat. Definition theta : Set := list ( atom * pattern_arg ). (* EXPERIMENTAL *) (** auxiliary functions on the new list types *) (** library functions *) (** subrules *) (** arities *) (** opening up abstractions *) Fixpoint open_co_wrt_co_rec (k:nat) (g_5:co) (g__6:co) {struct g__6}: co := match g__6 with | g_Triv => g_Triv | (g_Var_b nat) => if (k === nat) then g_5 else (g_Var_b nat) | (g_Var_f c) => g_Var_f c | (g_Beta a b) => g_Beta (open_tm_wrt_co_rec k g_5 a) (open_tm_wrt_co_rec k g_5 b) | (g_Refl a) => g_Refl (open_tm_wrt_co_rec k g_5 a) | (g_Refl2 a b g) => g_Refl2 (open_tm_wrt_co_rec k g_5 a) (open_tm_wrt_co_rec k g_5 b) (open_co_wrt_co_rec k g_5 g) | (g_Sym g) => g_Sym (open_co_wrt_co_rec k g_5 g) | (g_Trans g1 g2) => g_Trans (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec k g_5 g2) | (g_Sub g) => g_Sub (open_co_wrt_co_rec k g_5 g) | (g_PiCong rho R g1 g2) => g_PiCong rho R (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec k g_5 g2) | (g_AbsCong rho R g1 g2) => g_AbsCong rho R (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec k g_5 g2) | (g_AppCong g1 rho R g2) => g_AppCong (open_co_wrt_co_rec k g_5 g1) rho R (open_co_wrt_co_rec k g_5 g2) | (g_PiFst g) => g_PiFst (open_co_wrt_co_rec k g_5 g) | (g_CPiFst g) => g_CPiFst (open_co_wrt_co_rec k g_5 g) | (g_IsoSnd g) => g_IsoSnd (open_co_wrt_co_rec k g_5 g) | (g_PiSnd g1 g2) => g_PiSnd (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec k g_5 g2) | (g_CPiCong g1 g3) => g_CPiCong (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec (S k) g_5 g3) | (g_CAbsCong g1 g3 g4) => g_CAbsCong (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec (S k) g_5 g3) (open_co_wrt_co_rec k g_5 g4) | (g_CAppCong g g1 g2) => g_CAppCong (open_co_wrt_co_rec k g_5 g) (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec k g_5 g2) | (g_CPiSnd g g1 g2) => g_CPiSnd (open_co_wrt_co_rec k g_5 g) (open_co_wrt_co_rec k g_5 g1) (open_co_wrt_co_rec k g_5 g2) | (g_Cast g1 R g2) => g_Cast (open_co_wrt_co_rec k g_5 g1) R (open_co_wrt_co_rec k g_5 g2) | (g_EqCong g1 A g2) => g_EqCong (open_co_wrt_co_rec k g_5 g1) (open_tm_wrt_co_rec k g_5 A) (open_co_wrt_co_rec k g_5 g2) | (g_IsoConv phi1 phi2 g) => g_IsoConv (open_constraint_wrt_co_rec k g_5 phi1) (open_constraint_wrt_co_rec k g_5 phi2) (open_co_wrt_co_rec k g_5 g) | (g_Eta a) => g_Eta (open_tm_wrt_co_rec k g_5 a) | (g_Left g g') => g_Left (open_co_wrt_co_rec k g_5 g) (open_co_wrt_co_rec k g_5 g') | (g_Right g g') => g_Right (open_co_wrt_co_rec k g_5 g) (open_co_wrt_co_rec k g_5 g') end with open_brs_wrt_co_rec (k:nat) (g5:co) (brs_6:brs) {struct brs_6}: brs := match brs_6 with | br_None => br_None | (br_One K a brs5) => br_One K (open_tm_wrt_co_rec k g5 a) (open_brs_wrt_co_rec k g5 brs5) end with open_tm_wrt_co_rec (k:nat) (g5:co) (a5:tm) {struct a5}: tm := match a5 with | a_Star => a_Star | (a_Var_b nat) => a_Var_b nat | (a_Var_f x) => a_Var_f x | (a_Abs rho A b) => a_Abs rho (open_tm_wrt_co_rec k g5 A) (open_tm_wrt_co_rec k g5 b) | (a_UAbs rho b) => a_UAbs rho (open_tm_wrt_co_rec k g5 b) | (a_App a nu b) => a_App (open_tm_wrt_co_rec k g5 a) nu (open_tm_wrt_co_rec k g5 b) | (a_Pi rho A B) => a_Pi rho (open_tm_wrt_co_rec k g5 A) (open_tm_wrt_co_rec k g5 B) | (a_CAbs phi b) => a_CAbs (open_constraint_wrt_co_rec k g5 phi) (open_tm_wrt_co_rec (S k) g5 b) | (a_UCAbs b) => a_UCAbs (open_tm_wrt_co_rec (S k) g5 b) | (a_CApp a g) => a_CApp (open_tm_wrt_co_rec k g5 a) (open_co_wrt_co_rec k g5 g) | (a_CPi phi B) => a_CPi (open_constraint_wrt_co_rec k g5 phi) (open_tm_wrt_co_rec (S k) g5 B) | (a_Conv a R g) => a_Conv (open_tm_wrt_co_rec k g5 a) R (open_co_wrt_co_rec k g5 g) | (a_Fam F) => a_Fam F | a_Bullet => a_Bullet | (a_Pattern R a F Apps5 b1 b2) => a_Pattern R (open_tm_wrt_co_rec k g5 a) F Apps5 (open_tm_wrt_co_rec k g5 b1) (open_tm_wrt_co_rec k g5 b2) | (a_DataCon K) => a_DataCon K | (a_Case a brs5) => a_Case (open_tm_wrt_co_rec k g5 a) (open_brs_wrt_co_rec k g5 brs5) | (a_Sub R a) => a_Sub R (open_tm_wrt_co_rec k g5 a) | a_Coerce => a_Coerce | (a_SrcApp a b) => a_SrcApp (open_tm_wrt_co_rec k g5 a) (open_tm_wrt_co_rec k g5 b) end with open_constraint_wrt_co_rec (k:nat) (g5:co) (phi5:constraint) : constraint := match phi5 with | (Eq a b A R) => Eq (open_tm_wrt_co_rec k g5 a) (open_tm_wrt_co_rec k g5 b) (open_tm_wrt_co_rec k g5 A) R end. Fixpoint open_co_wrt_tm_rec (k:nat) (a5:tm) (g_5:co) {struct g_5}: co := match g_5 with | g_Triv => g_Triv | (g_Var_b nat) => g_Var_b nat | (g_Var_f c) => g_Var_f c | (g_Beta a b) => g_Beta (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec k a5 b) | (g_Refl a) => g_Refl (open_tm_wrt_tm_rec k a5 a) | (g_Refl2 a b g) => g_Refl2 (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec k a5 b) (open_co_wrt_tm_rec k a5 g) | (g_Sym g) => g_Sym (open_co_wrt_tm_rec k a5 g) | (g_Trans g1 g2) => g_Trans (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec k a5 g2) | (g_Sub g) => g_Sub (open_co_wrt_tm_rec k a5 g) | (g_PiCong rho R g1 g2) => g_PiCong rho R (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec (S k) a5 g2) | (g_AbsCong rho R g1 g2) => g_AbsCong rho R (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec (S k) a5 g2) | (g_AppCong g1 rho R g2) => g_AppCong (open_co_wrt_tm_rec k a5 g1) rho R (open_co_wrt_tm_rec k a5 g2) | (g_PiFst g) => g_PiFst (open_co_wrt_tm_rec k a5 g) | (g_CPiFst g) => g_CPiFst (open_co_wrt_tm_rec k a5 g) | (g_IsoSnd g) => g_IsoSnd (open_co_wrt_tm_rec k a5 g) | (g_PiSnd g1 g2) => g_PiSnd (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec k a5 g2) | (g_CPiCong g1 g3) => g_CPiCong (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec k a5 g3) | (g_CAbsCong g1 g3 g4) => g_CAbsCong (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec k a5 g3) (open_co_wrt_tm_rec k a5 g4) | (g_CAppCong g g1 g2) => g_CAppCong (open_co_wrt_tm_rec k a5 g) (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec k a5 g2) | (g_CPiSnd g g1 g2) => g_CPiSnd (open_co_wrt_tm_rec k a5 g) (open_co_wrt_tm_rec k a5 g1) (open_co_wrt_tm_rec k a5 g2) | (g_Cast g1 R g2) => g_Cast (open_co_wrt_tm_rec k a5 g1) R (open_co_wrt_tm_rec k a5 g2) | (g_EqCong g1 A g2) => g_EqCong (open_co_wrt_tm_rec k a5 g1) (open_tm_wrt_tm_rec k a5 A) (open_co_wrt_tm_rec k a5 g2) | (g_IsoConv phi1 phi2 g) => g_IsoConv (open_constraint_wrt_tm_rec k a5 phi1) (open_constraint_wrt_tm_rec k a5 phi2) (open_co_wrt_tm_rec k a5 g) | (g_Eta a) => g_Eta (open_tm_wrt_tm_rec k a5 a) | (g_Left g g') => g_Left (open_co_wrt_tm_rec k a5 g) (open_co_wrt_tm_rec k a5 g') | (g_Right g g') => g_Right (open_co_wrt_tm_rec k a5 g) (open_co_wrt_tm_rec k a5 g') end with open_brs_wrt_tm_rec (k:nat) (a5:tm) (brs_6:brs) {struct brs_6}: brs := match brs_6 with | br_None => br_None | (br_One K a brs5) => br_One K (open_tm_wrt_tm_rec k a5 a) (open_brs_wrt_tm_rec k a5 brs5) end with open_tm_wrt_tm_rec (k:nat) (a5:tm) (a_6:tm) {struct a_6}: tm := match a_6 with | a_Star => a_Star | (a_Var_b nat) => if (k === nat) then a5 else (a_Var_b nat) | (a_Var_f x) => a_Var_f x | (a_Abs rho A b) => a_Abs rho (open_tm_wrt_tm_rec k a5 A) (open_tm_wrt_tm_rec (S k) a5 b) | (a_UAbs rho b) => a_UAbs rho (open_tm_wrt_tm_rec (S k) a5 b) | (a_App a nu b) => a_App (open_tm_wrt_tm_rec k a5 a) nu (open_tm_wrt_tm_rec k a5 b) | (a_Pi rho A B) => a_Pi rho (open_tm_wrt_tm_rec k a5 A) (open_tm_wrt_tm_rec (S k) a5 B) | (a_CAbs phi b) => a_CAbs (open_constraint_wrt_tm_rec k a5 phi) (open_tm_wrt_tm_rec k a5 b) | (a_UCAbs b) => a_UCAbs (open_tm_wrt_tm_rec k a5 b) | (a_CApp a g) => a_CApp (open_tm_wrt_tm_rec k a5 a) (open_co_wrt_tm_rec k a5 g) | (a_CPi phi B) => a_CPi (open_constraint_wrt_tm_rec k a5 phi) (open_tm_wrt_tm_rec k a5 B) | (a_Conv a R g) => a_Conv (open_tm_wrt_tm_rec k a5 a) R (open_co_wrt_tm_rec k a5 g) | (a_Fam F) => a_Fam F | a_Bullet => a_Bullet | (a_Pattern R a F Apps5 b1 b2) => a_Pattern R (open_tm_wrt_tm_rec k a5 a) F Apps5 (open_tm_wrt_tm_rec k a5 b1) (open_tm_wrt_tm_rec k a5 b2) | (a_DataCon K) => a_DataCon K | (a_Case a brs5) => a_Case (open_tm_wrt_tm_rec k a5 a) (open_brs_wrt_tm_rec k a5 brs5) | (a_Sub R a) => a_Sub R (open_tm_wrt_tm_rec k a5 a) | a_Coerce => a_Coerce | (a_SrcApp a b) => a_SrcApp (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec k a5 b) end with open_constraint_wrt_tm_rec (k:nat) (a5:tm) (phi5:constraint) : constraint := match phi5 with | (Eq a b A R) => Eq (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec k a5 b) (open_tm_wrt_tm_rec k a5 A) R end. Definition open_sort_wrt_co_rec (k:nat) (g5:co) (sort5:sort) : sort := match sort5 with | (Tm A) => Tm (open_tm_wrt_co_rec k g5 A) | (Co phi) => Co (open_constraint_wrt_co_rec k g5 phi) end. Definition open_pattern_arg_wrt_tm_rec (k:nat) (a5:tm) (pattern_arg5:pattern_arg) : pattern_arg := match pattern_arg5 with | (p_Tm nu a) => p_Tm nu (open_tm_wrt_tm_rec k a5 a) | (p_Co g) => p_Co (open_co_wrt_tm_rec k a5 g) end. Definition open_sig_sort_wrt_co_rec (k:nat) (g5:co) (sig_sort5:sig_sort) : sig_sort := match sig_sort5 with | (Cs A Rs) => Cs (open_tm_wrt_co_rec k g5 A) Rs | (Ax p a A R Rs) => Ax (open_tm_wrt_co_rec k g5 p) (open_tm_wrt_co_rec k g5 a) (open_tm_wrt_co_rec k g5 A) R Rs end. Definition open_sig_sort_wrt_tm_rec (k:nat) (a5:tm) (sig_sort5:sig_sort) : sig_sort := match sig_sort5 with | (Cs A Rs) => Cs (open_tm_wrt_tm_rec k a5 A) Rs | (Ax p a A R Rs) => Ax (open_tm_wrt_tm_rec k a5 p) (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec k a5 A) R Rs end. Definition open_pattern_arg_wrt_co_rec (k:nat) (g5:co) (pattern_arg5:pattern_arg) : pattern_arg := match pattern_arg5 with | (p_Tm nu a) => p_Tm nu (open_tm_wrt_co_rec k g5 a) | (p_Co g) => p_Co (open_co_wrt_co_rec k g5 g) end. Definition open_sort_wrt_tm_rec (k:nat) (a5:tm) (sort5:sort) : sort := match sort5 with | (Tm A) => Tm (open_tm_wrt_tm_rec k a5 A) | (Co phi) => Co (open_constraint_wrt_tm_rec k a5 phi) end. Definition open_brs_wrt_co g5 brs_6 := open_brs_wrt_co_rec 0 brs_6 g5. Definition open_tm_wrt_co g5 a5 := open_tm_wrt_co_rec 0 a5 g5. Definition open_brs_wrt_tm a5 brs_6 := open_brs_wrt_tm_rec 0 brs_6 a5. Definition open_sort_wrt_co g5 sort5 := open_sort_wrt_co_rec 0 sort5 g5. Definition open_pattern_arg_wrt_tm a5 pattern_arg5 := open_pattern_arg_wrt_tm_rec 0 pattern_arg5 a5. Definition open_sig_sort_wrt_co g5 sig_sort5 := open_sig_sort_wrt_co_rec 0 sig_sort5 g5. Definition open_co_wrt_co g_5 g__6 := open_co_wrt_co_rec 0 g__6 g_5. Definition open_sig_sort_wrt_tm a5 sig_sort5 := open_sig_sort_wrt_tm_rec 0 sig_sort5 a5. Definition open_pattern_arg_wrt_co g5 pattern_arg5 := open_pattern_arg_wrt_co_rec 0 pattern_arg5 g5. Definition open_constraint_wrt_co g5 phi5 := open_constraint_wrt_co_rec 0 phi5 g5. Definition open_constraint_wrt_tm a5 phi5 := open_constraint_wrt_tm_rec 0 phi5 a5. Definition open_co_wrt_tm a5 g_5 := open_co_wrt_tm_rec 0 g_5 a5. Definition open_sort_wrt_tm a5 sort5 := open_sort_wrt_tm_rec 0 sort5 a5. Definition open_tm_wrt_tm a5 a_6 := open_tm_wrt_tm_rec 0 a_6 a5. (** terms are locally-closed pre-terms *) (** definitions *) (* defns LC_co_brs_tm_constraint *) Inductive lc_co : co -> Prop := (* defn lc_co *) | lc_g_Triv : (lc_co g_Triv) | lc_g_Var_f : forall (c:covar), (lc_co (g_Var_f c)) | lc_g_Beta : forall (a b:tm), (lc_tm a) -> (lc_tm b) -> (lc_co (g_Beta a b)) | lc_g_Refl : forall (a:tm), (lc_tm a) -> (lc_co (g_Refl a)) | lc_g_Refl2 : forall (a b:tm) (g:co), (lc_tm a) -> (lc_tm b) -> (lc_co g) -> (lc_co (g_Refl2 a b g)) | lc_g_Sym : forall (g:co), (lc_co g) -> (lc_co (g_Sym g)) | lc_g_Trans : forall (g1 g2:co), (lc_co g1) -> (lc_co g2) -> (lc_co (g_Trans g1 g2)) | lc_g_Sub : forall (g:co), (lc_co g) -> (lc_co (g_Sub g)) | lc_g_PiCong : forall (L:vars) (rho:relflag) (R:role) (g1 g2:co), (lc_co g1) -> ( forall x , x \notin L -> lc_co ( open_co_wrt_tm g2 (a_Var_f x) ) ) -> (lc_co (g_PiCong rho R g1 g2)) | lc_g_AbsCong : forall (L:vars) (rho:relflag) (R:role) (g1 g2:co), (lc_co g1) -> ( forall x , x \notin L -> lc_co ( open_co_wrt_tm g2 (a_Var_f x) ) ) -> (lc_co (g_AbsCong rho R g1 g2)) | lc_g_AppCong : forall (g1:co) (rho:relflag) (R:role) (g2:co), (lc_co g1) -> (lc_co g2) -> (lc_co (g_AppCong g1 rho R g2)) | lc_g_PiFst : forall (g:co), (lc_co g) -> (lc_co (g_PiFst g)) | lc_g_CPiFst : forall (g:co), (lc_co g) -> (lc_co (g_CPiFst g)) | lc_g_IsoSnd : forall (g:co), (lc_co g) -> (lc_co (g_IsoSnd g)) | lc_g_PiSnd : forall (g1 g2:co), (lc_co g1) -> (lc_co g2) -> (lc_co (g_PiSnd g1 g2)) | lc_g_CPiCong : forall (L:vars) (g1 g3:co), (lc_co g1) -> ( forall c , c \notin L -> lc_co ( open_co_wrt_co g3 (g_Var_f c) ) ) -> (lc_co (g_CPiCong g1 g3)) | lc_g_CAbsCong : forall (L:vars) (g1 g3 g4:co), (lc_co g1) -> ( forall c , c \notin L -> lc_co ( open_co_wrt_co g3 (g_Var_f c) ) ) -> (lc_co g4) -> (lc_co (g_CAbsCong g1 g3 g4)) | lc_g_CAppCong : forall (g g1 g2:co), (lc_co g) -> (lc_co g1) -> (lc_co g2) -> (lc_co (g_CAppCong g g1 g2)) | lc_g_CPiSnd : forall (g g1 g2:co), (lc_co g) -> (lc_co g1) -> (lc_co g2) -> (lc_co (g_CPiSnd g g1 g2)) | lc_g_Cast : forall (g1:co) (R:role) (g2:co), (lc_co g1) -> (lc_co g2) -> (lc_co (g_Cast g1 R g2)) | lc_g_EqCong : forall (g1:co) (A:tm) (g2:co), (lc_co g1) -> (lc_tm A) -> (lc_co g2) -> (lc_co (g_EqCong g1 A g2)) | lc_g_IsoConv : forall (phi1 phi2:constraint) (g:co), (lc_constraint phi1) -> (lc_constraint phi2) -> (lc_co g) -> (lc_co (g_IsoConv phi1 phi2 g)) | lc_g_Eta : forall (a:tm), (lc_tm a) -> (lc_co (g_Eta a)) | lc_g_Left : forall (g g':co), (lc_co g) -> (lc_co g') -> (lc_co (g_Left g g')) | lc_g_Right : forall (g g':co), (lc_co g) -> (lc_co g') -> (lc_co (g_Right g g')) with lc_brs : brs -> Prop := (* defn lc_brs *) | lc_br_None : (lc_brs br_None) | lc_br_One : forall (K:datacon) (a:tm) (brs5:brs), (lc_tm a) -> (lc_brs brs5) -> (lc_brs (br_One K a brs5)) with lc_tm : tm -> Prop := (* defn lc_tm *) | lc_a_Star : (lc_tm a_Star) | lc_a_Var_f : forall (x:tmvar), (lc_tm (a_Var_f x)) | lc_a_Abs : forall (L:vars) (rho:relflag) (A b:tm), (lc_tm A) -> ( forall x , x \notin L -> lc_tm ( open_tm_wrt_tm b (a_Var_f x) ) ) -> (lc_tm (a_Abs rho A b)) | lc_a_UAbs : forall (L:vars) (rho:relflag) (b:tm), ( forall x , x \notin L -> lc_tm ( open_tm_wrt_tm b (a_Var_f x) ) ) -> (lc_tm (a_UAbs rho b)) | lc_a_App : forall (a:tm) (nu:appflag) (b:tm), (lc_tm a) -> (lc_tm b) -> (lc_tm (a_App a nu b)) | lc_a_Pi : forall (L:vars) (rho:relflag) (A B:tm), (lc_tm A) -> ( forall x , x \notin L -> lc_tm ( open_tm_wrt_tm B (a_Var_f x) ) ) -> (lc_tm (a_Pi rho A B)) | lc_a_CAbs : forall (L:vars) (phi:constraint) (b:tm), (lc_constraint phi) -> ( forall c , c \notin L -> lc_tm ( open_tm_wrt_co b (g_Var_f c) ) ) -> (lc_tm (a_CAbs phi b)) | lc_a_UCAbs : forall (L:vars) (b:tm), ( forall c , c \notin L -> lc_tm ( open_tm_wrt_co b (g_Var_f c) ) ) -> (lc_tm (a_UCAbs b)) | lc_a_CApp : forall (a:tm) (g:co), (lc_tm a) -> (lc_co g) -> (lc_tm (a_CApp a g)) | lc_a_CPi : forall (L:vars) (phi:constraint) (B:tm), (lc_constraint phi) -> ( forall c , c \notin L -> lc_tm ( open_tm_wrt_co B (g_Var_f c) ) ) -> (lc_tm (a_CPi phi B)) | lc_a_Conv : forall (a:tm) (R:role) (g:co), (lc_tm a) -> (lc_co g) -> (lc_tm (a_Conv a R g)) | lc_a_Fam : forall (F:const), (lc_tm (a_Fam F)) | lc_a_Bullet : (lc_tm a_Bullet) | lc_a_Pattern : forall (R:role) (a:tm) (F:const) (Apps5:Apps) (b1 b2:tm), (lc_tm a) -> (lc_tm b1) -> (lc_tm b2) -> (lc_tm (a_Pattern R a F Apps5 b1 b2)) | lc_a_DataCon : forall (K:datacon), (lc_tm (a_DataCon K)) | lc_a_Case : forall (a:tm) (brs5:brs), (lc_tm a) -> (lc_brs brs5) -> (lc_tm (a_Case a brs5)) | lc_a_Sub : forall (R:role) (a:tm), (lc_tm a) -> (lc_tm (a_Sub R a)) | lc_a_Coerce : (lc_tm a_Coerce) | lc_a_SrcApp : forall (a b:tm), (lc_tm a) -> (lc_tm b) -> (lc_tm (a_SrcApp a b)) with lc_constraint : constraint -> Prop := (* defn lc_constraint *) | lc_Eq : forall (a b A:tm) (R:role), (lc_tm a) -> (lc_tm b) -> (lc_tm A) -> (lc_constraint (Eq a b A R)). (* defns LC_sort *) Inductive lc_sort : sort -> Prop := (* defn lc_sort *) | lc_Tm : forall (A:tm), (lc_tm A) -> (lc_sort (Tm A)) | lc_Co : forall (phi:constraint), (lc_constraint phi) -> (lc_sort (Co phi)). (* defns LC_sig_sort *) Inductive lc_sig_sort : sig_sort -> Prop := (* defn lc_sig_sort *) | lc_Cs : forall (A:tm) (Rs:roles), (lc_tm A) -> (lc_sig_sort (Cs A Rs)) | lc_Ax : forall (p a A:tm) (R:role) (Rs:roles), (lc_tm p) -> (lc_tm a) -> (lc_tm A) -> (lc_sig_sort (Ax p a A R Rs)). (* defns LC_pattern_arg *) Inductive lc_pattern_arg : pattern_arg -> Prop := (* defn lc_pattern_arg *) | lc_p_Tm : forall (nu:appflag) (a:tm), (lc_tm a) -> (lc_pattern_arg (p_Tm nu a)) | lc_p_Co : forall (g:co), (lc_co g) -> (lc_pattern_arg (p_Co g)). (** free variables *) Fixpoint fv_tm_tm_co (g_5:co) : vars := match g_5 with | g_Triv => {} | (g_Var_b nat) => {} | (g_Var_f c) => {} | (g_Beta a b) => (fv_tm_tm_tm a) \u (fv_tm_tm_tm b) | (g_Refl a) => (fv_tm_tm_tm a) | (g_Refl2 a b g) => (fv_tm_tm_tm a) \u (fv_tm_tm_tm b) \u (fv_tm_tm_co g) | (g_Sym g) => (fv_tm_tm_co g) | (g_Trans g1 g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_Sub g) => (fv_tm_tm_co g) | (g_PiCong rho R g1 g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_AbsCong rho R g1 g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_AppCong g1 rho R g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_PiFst g) => (fv_tm_tm_co g) | (g_CPiFst g) => (fv_tm_tm_co g) | (g_IsoSnd g) => (fv_tm_tm_co g) | (g_PiSnd g1 g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_CPiCong g1 g3) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g3) | (g_CAbsCong g1 g3 g4) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g3) \u (fv_tm_tm_co g4) | (g_CAppCong g g1 g2) => (fv_tm_tm_co g) \u (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_CPiSnd g g1 g2) => (fv_tm_tm_co g) \u (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_Cast g1 R g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_co g2) | (g_EqCong g1 A g2) => (fv_tm_tm_co g1) \u (fv_tm_tm_tm A) \u (fv_tm_tm_co g2) | (g_IsoConv phi1 phi2 g) => (fv_tm_tm_constraint phi1) \u (fv_tm_tm_constraint phi2) \u (fv_tm_tm_co g) | (g_Eta a) => (fv_tm_tm_tm a) | (g_Left g g') => (fv_tm_tm_co g) \u (fv_tm_tm_co g') | (g_Right g g') => (fv_tm_tm_co g) \u (fv_tm_tm_co g') end with fv_tm_tm_brs (brs_6:brs) : vars := match brs_6 with | br_None => {} | (br_One K a brs5) => (fv_tm_tm_tm a) \u (fv_tm_tm_brs brs5) end with fv_tm_tm_tm (a5:tm) : vars := match a5 with | a_Star => {} | (a_Var_b nat) => {} | (a_Var_f x) => {{x}} | (a_Abs rho A b) => (fv_tm_tm_tm A) \u (fv_tm_tm_tm b) | (a_UAbs rho b) => (fv_tm_tm_tm b) | (a_App a nu b) => (fv_tm_tm_tm a) \u (fv_tm_tm_tm b) | (a_Pi rho A B) => (fv_tm_tm_tm A) \u (fv_tm_tm_tm B) | (a_CAbs phi b) => (fv_tm_tm_constraint phi) \u (fv_tm_tm_tm b) | (a_UCAbs b) => (fv_tm_tm_tm b) | (a_CApp a g) => (fv_tm_tm_tm a) \u (fv_tm_tm_co g) | (a_CPi phi B) => (fv_tm_tm_constraint phi) \u (fv_tm_tm_tm B) | (a_Conv a R g) => (fv_tm_tm_tm a) \u (fv_tm_tm_co g) | (a_Fam F) => {} | a_Bullet => {} | (a_Pattern R a F Apps5 b1 b2) => (fv_tm_tm_tm a) \u (fv_tm_tm_tm b1) \u (fv_tm_tm_tm b2) | (a_DataCon K) => {} | (a_Case a brs5) => (fv_tm_tm_tm a) \u (fv_tm_tm_brs brs5) | (a_Sub R a) => (fv_tm_tm_tm a) | a_Coerce => {} | (a_SrcApp a b) => (fv_tm_tm_tm a) \u (fv_tm_tm_tm b) end with fv_tm_tm_constraint (phi5:constraint) : vars := match phi5 with | (Eq a b A R) => (fv_tm_tm_tm a) \u (fv_tm_tm_tm b) \u (fv_tm_tm_tm A) end. Fixpoint fv_co_co_co (g_5:co) : vars := match g_5 with | g_Triv => {} | (g_Var_b nat) => {} | (g_Var_f c) => {{c}} | (g_Beta a b) => (fv_co_co_tm a) \u (fv_co_co_tm b) | (g_Refl a) => (fv_co_co_tm a) | (g_Refl2 a b g) => (fv_co_co_tm a) \u (fv_co_co_tm b) \u (fv_co_co_co g) | (g_Sym g) => (fv_co_co_co g) | (g_Trans g1 g2) => (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_Sub g) => (fv_co_co_co g) | (g_PiCong rho R g1 g2) => (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_AbsCong rho R g1 g2) => (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_AppCong g1 rho R g2) => (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_PiFst g) => (fv_co_co_co g) | (g_CPiFst g) => (fv_co_co_co g) | (g_IsoSnd g) => (fv_co_co_co g) | (g_PiSnd g1 g2) => (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_CPiCong g1 g3) => (fv_co_co_co g1) \u (fv_co_co_co g3) | (g_CAbsCong g1 g3 g4) => (fv_co_co_co g1) \u (fv_co_co_co g3) \u (fv_co_co_co g4) | (g_CAppCong g g1 g2) => (fv_co_co_co g) \u (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_CPiSnd g g1 g2) => (fv_co_co_co g) \u (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_Cast g1 R g2) => (fv_co_co_co g1) \u (fv_co_co_co g2) | (g_EqCong g1 A g2) => (fv_co_co_co g1) \u (fv_co_co_tm A) \u (fv_co_co_co g2) | (g_IsoConv phi1 phi2 g) => (fv_co_co_constraint phi1) \u (fv_co_co_constraint phi2) \u (fv_co_co_co g) | (g_Eta a) => (fv_co_co_tm a) | (g_Left g g') => (fv_co_co_co g) \u (fv_co_co_co g') | (g_Right g g') => (fv_co_co_co g) \u (fv_co_co_co g') end with fv_co_co_brs (brs_6:brs) : vars := match brs_6 with | br_None => {} | (br_One K a brs5) => (fv_co_co_tm a) \u (fv_co_co_brs brs5) end with fv_co_co_tm (a5:tm) : vars := match a5 with | a_Star => {} | (a_Var_b nat) => {} | (a_Var_f x) => {} | (a_Abs rho A b) => (fv_co_co_tm A) \u (fv_co_co_tm b) | (a_UAbs rho b) => (fv_co_co_tm b) | (a_App a nu b) => (fv_co_co_tm a) \u (fv_co_co_tm b) | (a_Pi rho A B) => (fv_co_co_tm A) \u (fv_co_co_tm B) | (a_CAbs phi b) => (fv_co_co_constraint phi) \u (fv_co_co_tm b) | (a_UCAbs b) => (fv_co_co_tm b) | (a_CApp a g) => (fv_co_co_tm a) \u (fv_co_co_co g) | (a_CPi phi B) => (fv_co_co_constraint phi) \u (fv_co_co_tm B) | (a_Conv a R g) => (fv_co_co_tm a) \u (fv_co_co_co g) | (a_Fam F) => {} | a_Bullet => {} | (a_Pattern R a F Apps5 b1 b2) => (fv_co_co_tm a) \u (fv_co_co_tm b1) \u (fv_co_co_tm b2) | (a_DataCon K) => {} | (a_Case a brs5) => (fv_co_co_tm a) \u (fv_co_co_brs brs5) | (a_Sub R a) => (fv_co_co_tm a) | a_Coerce => {} | (a_SrcApp a b) => (fv_co_co_tm a) \u (fv_co_co_tm b) end with fv_co_co_constraint (phi5:constraint) : vars := match phi5 with | (Eq a b A R) => (fv_co_co_tm a) \u (fv_co_co_tm b) \u (fv_co_co_tm A) end. Definition fv_tm_tm_sort (sort5:sort) : vars := match sort5 with | (Tm A) => (fv_tm_tm_tm A) | (Co phi) => (fv_tm_tm_constraint phi) end. Definition fv_co_co_pattern_arg (pattern_arg5:pattern_arg) : vars := match pattern_arg5 with | (p_Tm nu a) => (fv_co_co_tm a) | (p_Co g) => (fv_co_co_co g) end. Definition fv_co_co_sig_sort (sig_sort5:sig_sort) : vars := match sig_sort5 with | (Cs A Rs) => (fv_co_co_tm A) | (Ax p a A R Rs) => (fv_co_co_tm p) \u (fv_co_co_tm a) \u (fv_co_co_tm A) end. Definition fv_co_co_sort (sort5:sort) : vars := match sort5 with | (Tm A) => (fv_co_co_tm A) | (Co phi) => (fv_co_co_constraint phi) end. Definition fv_tm_tm_pattern_arg (pattern_arg5:pattern_arg) : vars := match pattern_arg5 with | (p_Tm nu a) => (fv_tm_tm_tm a) | (p_Co g) => (fv_tm_tm_co g) end. Definition fv_tm_tm_sig_sort (sig_sort5:sig_sort) : vars := match sig_sort5 with | (Cs A Rs) => (fv_tm_tm_tm A) | (Ax p a A R Rs) => (fv_tm_tm_tm p) \u (fv_tm_tm_tm a) \u (fv_tm_tm_tm A) end. (** substitutions *) Fixpoint co_subst_co_constraint (g5:co) (c5:covar) (phi5:constraint) {struct phi5} : constraint := match phi5 with | (Eq a b A R) => Eq (co_subst_co_tm g5 c5 a) (co_subst_co_tm g5 c5 b) (co_subst_co_tm g5 c5 A) R end with co_subst_co_co (g_5:co) (c5:covar) (g__6:co) {struct g__6} : co := match g__6 with | g_Triv => g_Triv | (g_Var_b nat) => g_Var_b nat | (g_Var_f c) => (if eq_var c c5 then g_5 else (g_Var_f c)) | (g_Beta a b) => g_Beta (co_subst_co_tm g_5 c5 a) (co_subst_co_tm g_5 c5 b) | (g_Refl a) => g_Refl (co_subst_co_tm g_5 c5 a) | (g_Refl2 a b g) => g_Refl2 (co_subst_co_tm g_5 c5 a) (co_subst_co_tm g_5 c5 b) (co_subst_co_co g_5 c5 g) | (g_Sym g) => g_Sym (co_subst_co_co g_5 c5 g) | (g_Trans g1 g2) => g_Trans (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g2) | (g_Sub g) => g_Sub (co_subst_co_co g_5 c5 g) | (g_PiCong rho R g1 g2) => g_PiCong rho R (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g2) | (g_AbsCong rho R g1 g2) => g_AbsCong rho R (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g2) | (g_AppCong g1 rho R g2) => g_AppCong (co_subst_co_co g_5 c5 g1) rho R (co_subst_co_co g_5 c5 g2) | (g_PiFst g) => g_PiFst (co_subst_co_co g_5 c5 g) | (g_CPiFst g) => g_CPiFst (co_subst_co_co g_5 c5 g) | (g_IsoSnd g) => g_IsoSnd (co_subst_co_co g_5 c5 g) | (g_PiSnd g1 g2) => g_PiSnd (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g2) | (g_CPiCong g1 g3) => g_CPiCong (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g3) | (g_CAbsCong g1 g3 g4) => g_CAbsCong (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g3) (co_subst_co_co g_5 c5 g4) | (g_CAppCong g g1 g2) => g_CAppCong (co_subst_co_co g_5 c5 g) (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g2) | (g_CPiSnd g g1 g2) => g_CPiSnd (co_subst_co_co g_5 c5 g) (co_subst_co_co g_5 c5 g1) (co_subst_co_co g_5 c5 g2) | (g_Cast g1 R g2) => g_Cast (co_subst_co_co g_5 c5 g1) R (co_subst_co_co g_5 c5 g2) | (g_EqCong g1 A g2) => g_EqCong (co_subst_co_co g_5 c5 g1) (co_subst_co_tm g_5 c5 A) (co_subst_co_co g_5 c5 g2) | (g_IsoConv phi1 phi2 g) => g_IsoConv (co_subst_co_constraint g_5 c5 phi1) (co_subst_co_constraint g_5 c5 phi2) (co_subst_co_co g_5 c5 g) | (g_Eta a) => g_Eta (co_subst_co_tm g_5 c5 a) | (g_Left g g') => g_Left (co_subst_co_co g_5 c5 g) (co_subst_co_co g_5 c5 g') | (g_Right g g') => g_Right (co_subst_co_co g_5 c5 g) (co_subst_co_co g_5 c5 g') end with co_subst_co_brs (g5:co) (c5:covar) (brs_6:brs) {struct brs_6} : brs := match brs_6 with | br_None => br_None | (br_One K a brs5) => br_One K (co_subst_co_tm g5 c5 a) (co_subst_co_brs g5 c5 brs5) end with co_subst_co_tm (g5:co) (c5:covar) (a5:tm) {struct a5} : tm := match a5 with | a_Star => a_Star | (a_Var_b nat) => a_Var_b nat | (a_Var_f x) => a_Var_f x | (a_Abs rho A b) => a_Abs rho (co_subst_co_tm g5 c5 A) (co_subst_co_tm g5 c5 b) | (a_UAbs rho b) => a_UAbs rho (co_subst_co_tm g5 c5 b) | (a_App a nu b) => a_App (co_subst_co_tm g5 c5 a) nu (co_subst_co_tm g5 c5 b) | (a_Pi rho A B) => a_Pi rho (co_subst_co_tm g5 c5 A) (co_subst_co_tm g5 c5 B) | (a_CAbs phi b) => a_CAbs (co_subst_co_constraint g5 c5 phi) (co_subst_co_tm g5 c5 b) | (a_UCAbs b) => a_UCAbs (co_subst_co_tm g5 c5 b) | (a_CApp a g) => a_CApp (co_subst_co_tm g5 c5 a) (co_subst_co_co g5 c5 g) | (a_CPi phi B) => a_CPi (co_subst_co_constraint g5 c5 phi) (co_subst_co_tm g5 c5 B) | (a_Conv a R g) => a_Conv (co_subst_co_tm g5 c5 a) R (co_subst_co_co g5 c5 g) | (a_Fam F) => a_Fam F | a_Bullet => a_Bullet | (a_Pattern R a F Apps5 b1 b2) => a_Pattern R (co_subst_co_tm g5 c5 a) F Apps5 (co_subst_co_tm g5 c5 b1) (co_subst_co_tm g5 c5 b2) | (a_DataCon K) => a_DataCon K | (a_Case a brs5) => a_Case (co_subst_co_tm g5 c5 a) (co_subst_co_brs g5 c5 brs5) | (a_Sub R a) => a_Sub R (co_subst_co_tm g5 c5 a) | a_Coerce => a_Coerce | (a_SrcApp a b) => a_SrcApp (co_subst_co_tm g5 c5 a) (co_subst_co_tm g5 c5 b) end. Fixpoint tm_subst_tm_co (a5:tm) (x5:tmvar) (g_5:co) {struct g_5} : co := match g_5 with | g_Triv => g_Triv | (g_Var_b nat) => g_Var_b nat | (g_Var_f c) => g_Var_f c | (g_Beta a b) => g_Beta (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_tm a5 x5 b) | (g_Refl a) => g_Refl (tm_subst_tm_tm a5 x5 a) | (g_Refl2 a b g) => g_Refl2 (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_tm a5 x5 b) (tm_subst_tm_co a5 x5 g) | (g_Sym g) => g_Sym (tm_subst_tm_co a5 x5 g) | (g_Trans g1 g2) => g_Trans (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g2) | (g_Sub g) => g_Sub (tm_subst_tm_co a5 x5 g) | (g_PiCong rho R g1 g2) => g_PiCong rho R (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g2) | (g_AbsCong rho R g1 g2) => g_AbsCong rho R (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g2) | (g_AppCong g1 rho R g2) => g_AppCong (tm_subst_tm_co a5 x5 g1) rho R (tm_subst_tm_co a5 x5 g2) | (g_PiFst g) => g_PiFst (tm_subst_tm_co a5 x5 g) | (g_CPiFst g) => g_CPiFst (tm_subst_tm_co a5 x5 g) | (g_IsoSnd g) => g_IsoSnd (tm_subst_tm_co a5 x5 g) | (g_PiSnd g1 g2) => g_PiSnd (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g2) | (g_CPiCong g1 g3) => g_CPiCong (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g3) | (g_CAbsCong g1 g3 g4) => g_CAbsCong (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g3) (tm_subst_tm_co a5 x5 g4) | (g_CAppCong g g1 g2) => g_CAppCong (tm_subst_tm_co a5 x5 g) (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g2) | (g_CPiSnd g g1 g2) => g_CPiSnd (tm_subst_tm_co a5 x5 g) (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_co a5 x5 g2) | (g_Cast g1 R g2) => g_Cast (tm_subst_tm_co a5 x5 g1) R (tm_subst_tm_co a5 x5 g2) | (g_EqCong g1 A g2) => g_EqCong (tm_subst_tm_co a5 x5 g1) (tm_subst_tm_tm a5 x5 A) (tm_subst_tm_co a5 x5 g2) | (g_IsoConv phi1 phi2 g) => g_IsoConv (tm_subst_tm_constraint a5 x5 phi1) (tm_subst_tm_constraint a5 x5 phi2) (tm_subst_tm_co a5 x5 g) | (g_Eta a) => g_Eta (tm_subst_tm_tm a5 x5 a) | (g_Left g g') => g_Left (tm_subst_tm_co a5 x5 g) (tm_subst_tm_co a5 x5 g') | (g_Right g g') => g_Right (tm_subst_tm_co a5 x5 g) (tm_subst_tm_co a5 x5 g') end with tm_subst_tm_brs (a5:tm) (x5:tmvar) (brs_6:brs) {struct brs_6} : brs := match brs_6 with | br_None => br_None | (br_One K a brs5) => br_One K (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_brs a5 x5 brs5) end with tm_subst_tm_tm (a5:tm) (x5:tmvar) (a_6:tm) {struct a_6} : tm := match a_6 with | a_Star => a_Star | (a_Var_b nat) => a_Var_b nat | (a_Var_f x) => (if eq_var x x5 then a5 else (a_Var_f x)) | (a_Abs rho A b) => a_Abs rho (tm_subst_tm_tm a5 x5 A) (tm_subst_tm_tm a5 x5 b) | (a_UAbs rho b) => a_UAbs rho (tm_subst_tm_tm a5 x5 b) | (a_App a nu b) => a_App (tm_subst_tm_tm a5 x5 a) nu (tm_subst_tm_tm a5 x5 b) | (a_Pi rho A B) => a_Pi rho (tm_subst_tm_tm a5 x5 A) (tm_subst_tm_tm a5 x5 B) | (a_CAbs phi b) => a_CAbs (tm_subst_tm_constraint a5 x5 phi) (tm_subst_tm_tm a5 x5 b) | (a_UCAbs b) => a_UCAbs (tm_subst_tm_tm a5 x5 b) | (a_CApp a g) => a_CApp (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_co a5 x5 g) | (a_CPi phi B) => a_CPi (tm_subst_tm_constraint a5 x5 phi) (tm_subst_tm_tm a5 x5 B) | (a_Conv a R g) => a_Conv (tm_subst_tm_tm a5 x5 a) R (tm_subst_tm_co a5 x5 g) | (a_Fam F) => a_Fam F | a_Bullet => a_Bullet | (a_Pattern R a F Apps5 b1 b2) => a_Pattern R (tm_subst_tm_tm a5 x5 a) F Apps5 (tm_subst_tm_tm a5 x5 b1) (tm_subst_tm_tm a5 x5 b2) | (a_DataCon K) => a_DataCon K | (a_Case a brs5) => a_Case (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_brs a5 x5 brs5) | (a_Sub R a) => a_Sub R (tm_subst_tm_tm a5 x5 a) | a_Coerce => a_Coerce | (a_SrcApp a b) => a_SrcApp (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_tm a5 x5 b) end with tm_subst_tm_constraint (a5:tm) (x5:tmvar) (phi5:constraint) {struct phi5} : constraint := match phi5 with | (Eq a b A R) => Eq (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_tm a5 x5 b) (tm_subst_tm_tm a5 x5 A) R end. Definition co_subst_co_sort (g5:co) (c5:covar) (sort5:sort) : sort := match sort5 with | (Tm A) => Tm (co_subst_co_tm g5 c5 A) | (Co phi) => Co (co_subst_co_constraint g5 c5 phi) end. Definition tm_subst_tm_pattern_arg (a5:tm) (x5:tmvar) (pattern_arg5:pattern_arg) : pattern_arg := match pattern_arg5 with | (p_Tm nu a) => p_Tm nu (tm_subst_tm_tm a5 x5 a) | (p_Co g) => p_Co (tm_subst_tm_co a5 x5 g) end. Definition tm_subst_tm_sig_sort (a5:tm) (x5:tmvar) (sig_sort5:sig_sort) : sig_sort := match sig_sort5 with | (Cs A Rs) => Cs (tm_subst_tm_tm a5 x5 A) Rs | (Ax p a A R Rs) => Ax (tm_subst_tm_tm a5 x5 p) (tm_subst_tm_tm a5 x5 a) (tm_subst_tm_tm a5 x5 A) R Rs end. Definition tm_subst_tm_sort (a5:tm) (x5:tmvar) (sort5:sort) : sort := match sort5 with | (Tm A) => Tm (tm_subst_tm_tm a5 x5 A) | (Co phi) => Co (tm_subst_tm_constraint a5 x5 phi) end. Definition co_subst_co_pattern_arg (g5:co) (c5:covar) (pattern_arg5:pattern_arg) : pattern_arg := match pattern_arg5 with | (p_Tm nu a) => p_Tm nu (co_subst_co_tm g5 c5 a) | (p_Co g) => p_Co (co_subst_co_co g5 c5 g) end. Definition co_subst_co_sig_sort (g5:co) (c5:covar) (sig_sort5:sig_sort) : sig_sort := match sig_sort5 with | (Cs A Rs) => Cs (co_subst_co_tm g5 c5 A) Rs | (Ax p a A R Rs) => Ax (co_subst_co_tm g5 c5 p) (co_subst_co_tm g5 c5 a) (co_subst_co_tm g5 c5 A) R Rs end. Definition min (r1 : role) (r2 : role) : role := match r1 , r2 with | Nom, _ => Nom | _ , Nom => Nom | Rep, Rep => Rep end. Parameter str : bool. Definition param (r1 : role) (r2 : role) := min r1 r2. Definition app_role (rr : appflag) (r1 : role) : role := match rr with | Rho _ => Nom | Role r => param r r1 end. Definition app_rho (rr : appflag) : relflag := match rr with | Rho p => p | Role _ => Rel end. Definition nu_rho (nu : appflag) : Prop := match nu with | Rho _ => True | Role _ => False end. Definition max (r1 : role) (r2 : role) : role := match r1 , r2 with | _, Rep => Rep | Rep, _ => Rep | Nom, Nom => Nom end. Definition lte_role (r1 : role) (r2 : role) : bool := match r1 , r2 with | Nom, _ => true | Rep, Nom => false | Rep, Rep => true end. Fixpoint erase_tm (a : tm) (r : role) : tm := match a with | a_Star => a_Star | a_Var_b n => a_Var_b n | a_Var_f x => a_Var_f x | a_Abs rho A b => a_UAbs rho (erase_tm b r) | a_UAbs rho b => a_UAbs rho (erase_tm b r) | a_App a (Role R) b => a_App (erase_tm a r) (Role R) (erase_tm b r) | a_App a (Rho Rel) b => a_App (erase_tm a r) (Rho Rel) (erase_tm b r) | a_App a (Rho Irrel) b => a_App (erase_tm a r) (Rho Irrel) a_Bullet | a_Fam F => a_Fam F | a_Pi rho A B => a_Pi rho (erase_tm A r) (erase_tm B r) | a_Conv a r1 g => if (lte_role r1 r) then erase_tm a r else a_Conv (erase_tm a r) r1 g_Triv | a_CPi phi B => a_CPi (erase_constraint phi r) (erase_tm B r) | a_CAbs phi b => a_UCAbs (erase_tm b r) | a_UCAbs b => a_UCAbs (erase_tm b r) | a_CApp a g => a_CApp (erase_tm a r) g_Triv | a_DataCon K => a_Star (* a_DataCon K *) | a_Case a brs => a_Star (* a_Case (erase_tm a) (erase_brs brs) *) | a_Bullet => a_Bullet | a_Pattern R a1 F Apps b1 b2 => a_Pattern R (erase_tm a1 r) F Apps (erase_tm b1 r) (erase_tm b2 r) | a => a end with erase_brs (x : brs) (r:role): brs := match x with | br_None => br_None | br_One k a y => br_One k (erase_tm a r) (erase_brs y r) end with erase_constraint (phi : constraint) (r:role): constraint := match phi with | Eq A B A1 R => Eq (erase_tm A R) (erase_tm B R) (erase_tm A1 R) R end. Definition erase_sort s r := match s with | Tm a => Tm (erase_tm a r) | Co p => Co (erase_constraint p r) end. Definition erase_csort s r := match s with | Cs a Rs => Cs (erase_tm a r) Rs | Ax p a A R Rs => Ax (erase_tm p r) (erase_tm a r) (erase_tm A r) R Rs end. Definition erase_context G r := map (fun s => erase_sort s r) G. Definition erase_sig S r := map (fun s => erase_csort s r) S. Fixpoint pattern_length (a : tm) : nat := match a with a_Fam F => 0 | a_App a nu b => pattern_length a + 1 | a_CApp a g_Triv => pattern_length a + 1 | _ => 0 end. Fixpoint vars_Pattern (p : tm) := match p with | a_Fam F => nil | a_App p1 (Role _) (a_Var_f x) => vars_Pattern p1 ++ [ x ] | a_App p1 (Rho Irrel) a_Bullet => vars_Pattern p1 | a_CApp p1 g_Triv => vars_Pattern p1 | _ => nil end. Fixpoint apply_pattern_args (a : tm) (args : pattern_args) : tm := match args with | nil => a | (p_Tm nu b :: rest) => apply_pattern_args (a_App a nu b) rest | (p_Co g :: rest) => apply_pattern_args (a_CApp a g) rest end. Fixpoint A_snoc (xs : Apps) (x : App) : Apps := match xs with | A_nil => A_cons x A_nil | A_cons y ys => (A_cons y (A_snoc ys x)) end. Fixpoint range (L : role_context) : roles := match L with | nil => nil | (x,R) :: L' => range(L') ++ [ R ] end. (* -------------- A specific signature with Fix ------------ *) Definition constants : { Star : atom & { Fix : atom & { FixVar1 : atom & { FixVar2 : atom & Fix `notin` singleton Star /\ FixVar1 `notin` singleton Star \u (singleton Fix) /\ FixVar2 `notin` singleton Star \u singleton Fix \u singleton FixVar1 } } } }. Proof. pick fresh Star. pick fresh Fix. pick fresh FixVar1. pick fresh FixVar2. exists Star. exists Fix. exists FixVar1. exists FixVar2. repeat split; auto. Defined. Definition Star : atom. destruct constants as [s _]. exact s. Defined. Definition Fix : atom. destruct constants as [_ [f _] ]. exact f. Defined. Lemma noteq : Star <> Fix. Proof. unfold Star, Fix. destruct constants as [s [f [f1 [f2 h] ] ] ]. destruct h as [g _]. fsetdec. Qed. Definition FixVar1 : atom. destruct constants as [_ [_ [f1 _] ] ]. exact f1. Defined. Definition FixVar2 : atom. destruct constants as [_ [_ [_ [f2 _] ] ] ]. exact f2. Defined. Definition FixPat : tm := a_App (a_App (a_Fam Fix) (Rho Irrel) a_Bullet) (Rho Rel) (a_Var_f FixVar2). Definition FixDef : tm := a_App (a_Var_f FixVar2) (Rho Rel) (a_App (a_App (a_Fam Fix) (Rho Irrel) a_Bullet) (Rho Rel) (a_Var_f FixVar2)). Definition FixTy : tm := a_Pi Irrel a_Star (a_Pi Rel (a_Pi Rel (a_Var_b 0) (a_Var_b 1)) (a_Var_b 1)). Definition toplevel : sig := Fix ~ Ax FixPat FixDef FixTy Rep (Nom :: [Nom]). (** definitions *) (* defns JSubRole *) Inductive SubRole : role -> role -> Prop := (* defn SubRole *) | NomBot : forall (R:role), SubRole Nom R | RepTop : forall (R:role), SubRole R Rep | Refl : forall (R:role), SubRole R R | Trans : forall (R1 R3 R2:role), SubRole R1 R2 -> SubRole R2 R3 -> SubRole R1 R3. (* defns JRolePath *) Inductive RolePath : tm -> roles -> Prop := (* defn RolePath *) | RolePath_AbsConst : forall (F:const) (Rs:roles) (A:tm), binds F ( (Cs A Rs) ) toplevel -> RolePath (a_Fam F) Rs | RolePath_Const : forall (F:const) (Rs:roles) (p a A:tm) (R1:role), binds F ( (Ax p a A R1 Rs) ) toplevel -> RolePath (a_Fam F) Rs | RolePath_TApp : forall (a:tm) (R1:role) (b:tm) (Rs:roles), lc_tm b -> RolePath a ( R1 :: Rs ) -> RolePath (a_App a (Role R1) b) Rs | RolePath_App : forall (a b:tm) (Rs:roles), lc_tm b -> RolePath a ( Nom :: Rs ) -> RolePath (a_App a (Rho Rel) b) Rs | RolePath_IApp : forall (a:tm) (Rs:roles), RolePath a Rs -> RolePath (a_App a (Rho Irrel) a_Bullet) Rs | RolePath_CApp : forall (a:tm) (Rs:roles), RolePath a Rs -> RolePath (a_CApp a g_Triv) Rs. (* defns JAppsPath *) Inductive AppsPath : role -> tm -> const -> Apps -> Prop := (* defn AppsPath *) | AppsPath_AbsConst : forall (R:role) (F:const) (A:tm) (Rs:roles), binds F ( (Cs A Rs) ) toplevel -> AppsPath R (a_Fam F) F A_nil | AppsPath_Const : forall (R:role) (F:const) (p a A:tm) (R1:role) (Rs:roles), binds F ( (Ax p a A R1 Rs) ) toplevel -> not ( ( SubRole R1 R ) ) -> AppsPath R (a_Fam F) F A_nil | AppsPath_App : forall (R:role) (a:tm) (R1:role) (b':tm) (F:const) (Apps5:Apps), lc_tm b' -> AppsPath R a F Apps5 -> AppsPath R ( (a_App a (Role R1) b') ) F ( (A_snoc Apps5 (A_Tm (Role R1)) ) ) | AppsPath_IApp : forall (R:role) (a b:tm) (F:const) (Apps5:Apps), lc_tm b -> AppsPath R a F Apps5 -> AppsPath R ( (a_App a (Rho Irrel) b) ) F ( (A_snoc Apps5 (A_Tm (Rho Irrel)) ) ) | AppsPath_CApp : forall (R:role) (a:tm) (F:const) (Apps5:Apps), AppsPath R a F Apps5 -> AppsPath R ( (a_CApp a g_Triv) ) F ( (A_snoc Apps5 A_Co ) ) . (* defns JSat *) Inductive AppRoles : Apps -> roles -> Prop := (* defn AppRoles *) | AR_nil : AppRoles A_nil nil | AR_consTApp : forall (R1:role) (Apps5:Apps) (Rs:roles), AppRoles Apps5 Rs -> AppRoles (A_cons (A_Tm (Role R1)) Apps5) ( R1 :: Rs ) | AR_consApp : forall (Apps5:Apps) (Rs:roles), AppRoles Apps5 Rs -> AppRoles (A_cons (A_Tm (Rho Rel)) Apps5) ( Nom :: Rs ) | AR_consIApp : forall (Apps5:Apps) (Rs:roles), AppRoles Apps5 Rs -> AppRoles (A_cons (A_Tm (Rho Irrel)) Apps5) Rs | AR_consCApp : forall (Apps5:Apps) (Rs:roles), AppRoles Apps5 Rs -> AppRoles (A_cons A_Co Apps5) Rs with SatApp : const -> Apps -> Prop := (* defn SatApp *) | Sat_Const : forall (F:const) (Apps5:Apps) (A:tm) (Rs:roles), binds F ( (Cs A Rs) ) toplevel -> AppRoles Apps5 Rs -> SatApp F Apps5 | Sat_Axiom : forall (F:const) (Apps5:Apps) (p a0 A1:tm) (R1:role) (Rs:roles), binds F ( (Ax p a0 A1 R1 Rs) ) toplevel -> not ( ( SubRole R1 Nom ) ) -> AppRoles Apps5 Rs -> SatApp F Apps5. (* defns JPatCtx *) Inductive PatternContexts : role_context -> context -> atom_list -> const -> tm -> tm -> tm -> Prop := (* defn PatternContexts *) | PatCtx_Const : forall (F:const) (A:tm), lc_tm A -> PatternContexts nil nil nil F A (a_Fam F) A | PatCtx_PiRel : forall (L:vars) (W:role_context) (R:role) (G:context) (A':tm) (V:atom_list) (F:const) (B p A:tm), PatternContexts W G V F B p (a_Pi Rel A' A) -> ( forall x , x \notin L -> PatternContexts (( x ~ R ) ++ W ) (( x ~ Tm A' ) ++ G ) V F B (a_App p (Role R) (a_Var_f x)) ( open_tm_wrt_tm A (a_Var_f x) ) ) | PatCtx_PiIrr : forall (L:vars) (W:role_context) (G:context) (A':tm) (V:atom_list) (F:const) (B p A:tm), PatternContexts W G V F B p (a_Pi Irrel A' A) -> ( forall x , x \notin L -> PatternContexts W (( x ~ Tm A' ) ++ G ) x :: V F B (a_App p (Rho Irrel) a_Bullet) ( open_tm_wrt_tm A (a_Var_f x) ) ) | PatCtx_CPi : forall (L:vars) (W:role_context) (G:context) (phi:constraint) (V:atom_list) (F:const) (B p A:tm), PatternContexts W G V F B p (a_CPi phi A) -> ( forall c , c \notin L -> PatternContexts W (( c ~ Co phi ) ++ G ) V F B (a_CApp p g_Triv) ( open_tm_wrt_co A (g_Var_f c) ) ) . (* defns JRename *) Inductive Rename : tm -> tm -> tm -> tm -> available_props -> available_props -> Prop := (* defn Rename *) | Rename_Base : forall (F:const) (a:tm) (D:available_props), lc_tm a -> Rename (a_Fam F) a (a_Fam F) a D AtomSetImpl.empty | Rename_AppRel : forall (p1:tm) (R:role) (x:tmvar) (a1 p2:tm) (y:tmvar) (a2:tm) (D D':available_props), Rename p1 a1 p2 a2 D D' -> ~ AtomSetImpl.In y ( ( D `union` D' ) ) -> Rename ( (a_App p1 (Role R) (a_Var_f x)) ) a1 ( (a_App p2 (Role R) (a_Var_f y)) ) ( (tm_subst_tm_tm (a_Var_f y) x a2 ) ) D ( (singleton y \u D' ) ) | Rename_AppIrrel : forall (p1 a1 p2 a2:tm) (D D':available_props), Rename p1 a1 p2 a2 D D' -> Rename ( (a_App p1 (Rho Irrel) a_Bullet) ) a1 ( (a_App p2 (Rho Irrel) a_Bullet) ) a2 D D' | Rename_CApp : forall (p1 a1 p2 a2:tm) (D D':available_props), Rename p1 a1 p2 a2 D D' -> Rename ( (a_CApp p1 g_Triv) ) a1 ( (a_CApp p2 g_Triv) ) a2 D D'. (* defns JMatchSubst *) Inductive MatchSubst : tm -> tm -> tm -> tm -> Prop := (* defn MatchSubst *) | MatchSubst_Const : forall (F:const) (b:tm), lc_tm b -> MatchSubst (a_Fam F) (a_Fam F) b b | MatchSubst_AppRelR : forall (a1:tm) (R:role) (a p1:tm) (x:tmvar) (b1 b2:tm), lc_tm a -> MatchSubst a1 p1 b1 b2 -> MatchSubst ( (a_App a1 (Role R) a) ) ( (a_App p1 (Role R) (a_Var_f x)) ) b1 ( (tm_subst_tm_tm a x b2 ) ) | MatchSubst_AppIrrel : forall (a1 a p1 b1 b2:tm), lc_tm a -> MatchSubst a1 p1 b1 b2 -> MatchSubst ( (a_App a1 (Rho Irrel) a) ) ( (a_App p1 (Rho Irrel) a_Bullet) ) b1 b2 | MatchSubst_CApp : forall (a1 a2 b1 b2:tm), MatchSubst a1 a2 b1 b2 -> MatchSubst ( (a_CApp a1 g_Triv) ) ( (a_CApp a2 g_Triv) ) b1 b2. (* defns JIsPattern *) Inductive Pattern : tm -> Prop := (* defn Pattern *) | Pattern_Head : forall (F:const), Pattern (a_Fam F) | Pattern_Rel : forall (p:tm) (R:role) (a:tm), lc_tm a -> Pattern p -> Pattern ( (a_App p (Role R) a) ) | Pattern_Irrel : forall (p a:tm), lc_tm a -> Pattern p -> Pattern ( (a_App p (Rho Irrel) a) ) | Pattern_Co : forall (p:tm) (g:co), lc_co g -> Pattern p -> Pattern ( (a_CApp p g) ) . (* defns JSubPat *) Inductive SubPat : tm -> tm -> Prop := (* defn SubPat *) | SubPat_Refl : forall (p:tm), Pattern p -> SubPat p p | SubPat_Rel : forall (p' p:tm) (R:role) (x:tmvar), SubPat p' p -> SubPat p' ( (a_App p (Role R) (a_Var_f x)) ) | SubPat_Irrel : forall (p' p:tm), SubPat p' p -> SubPat p' ( (a_App p (Rho Irrel) a_Bullet) ) | SubPat_Co : forall (p' p:tm), SubPat p' p -> SubPat p' ( (a_CApp p g_Triv) ) . (* defns JTmPatternAgree *) Inductive tm_pattern_agree : tm -> tm -> Prop := (* defn tm_pattern_agree *) | tm_pattern_agree_Const : forall (F:const), tm_pattern_agree (a_Fam F) (a_Fam F) | tm_pattern_agree_AppRelR : forall (a1:tm) (R:role) (a2 p1:tm) (x:tmvar), lc_tm a2 -> tm_pattern_agree a1 p1 -> tm_pattern_agree ( (a_App a1 (Role R) a2) ) ( (a_App p1 (Role R) (a_Var_f x)) ) | tm_pattern_agree_AppIrrel : forall (a1 a p1:tm), lc_tm a -> tm_pattern_agree a1 p1 -> tm_pattern_agree ( (a_App a1 (Rho Irrel) a) ) ( (a_App p1 (Rho Irrel) a_Bullet) ) | tm_pattern_agree_CApp : forall (a1 p1:tm), tm_pattern_agree a1 p1 -> tm_pattern_agree ( (a_CApp a1 g_Triv) ) ( (a_CApp p1 g_Triv) ) . (* defns JTmSubPatternAgree *) Inductive tm_subpattern_agree : tm -> tm -> Prop := (* defn tm_subpattern_agree *) | tm_subpattern_agree_Base : forall (a p:tm), tm_pattern_agree a p -> tm_subpattern_agree a p | tm_subpattern_agree_AppRelR : forall (a p:tm) (R:role) (x:tmvar), tm_subpattern_agree a p -> tm_subpattern_agree a ( (a_App p (Role R) (a_Var_f x)) ) | tm_subpattern_agree_AppIrrel : forall (a p:tm), tm_subpattern_agree a p -> tm_subpattern_agree a ( (a_App p (Rho Irrel) a_Bullet) ) | tm_subpattern_agree_CAppp : forall (a p:tm), tm_subpattern_agree a p -> tm_subpattern_agree a ( (a_CApp p g_Triv) ) . (* defns JSubTmPatternAgree *) Inductive subtm_pattern_agree : tm -> tm -> Prop := (* defn subtm_pattern_agree *) | subtm_pattern_agree_Base : forall (a p:tm), tm_pattern_agree a p -> subtm_pattern_agree a p | subtm_pattern_agree_App : forall (a:tm) (nu:appflag) (a2 p:tm), lc_tm a2 -> subtm_pattern_agree a p -> subtm_pattern_agree (a_App a nu a2) p | subtm_pattern_agree_CAppp : forall (a p:tm), subtm_pattern_agree a p -> subtm_pattern_agree (a_CApp a g_Triv) p. (* defns JValuePath *) Inductive ValuePath : tm -> const -> Prop := (* defn ValuePath *) | ValuePath_AbsConst : forall (F:const) (A:tm) (Rs:roles), binds F ( (Cs A Rs) ) toplevel -> ValuePath (a_Fam F) F | ValuePath_Const : forall (F:const) (p a A:tm) (R1:role) (Rs:roles), binds F ( (Ax p a A R1 Rs) ) toplevel -> ValuePath (a_Fam F) F | ValuePath_App : forall (a:tm) (nu:appflag) (b':tm) (F:const), lc_tm b' -> ValuePath a F -> ValuePath ( (a_App a nu b') ) F | ValuePath_CApp : forall (a:tm) (F:const), ValuePath a F -> ValuePath ( (a_CApp a g_Triv) ) F. (* defns JCasePath *) Inductive CasePath : role -> tm -> const -> Prop := (* defn CasePath *) | CasePath_AbsConst : forall (R:role) (a:tm) (F:const) (A:tm) (Rs:roles), ValuePath a F -> binds F ( (Cs A Rs) ) toplevel -> CasePath R a F | CasePath_Const : forall (R:role) (a:tm) (F:const) (p b A:tm) (R1:role) (Rs:roles), ValuePath a F -> binds F ( (Ax p b A R1 Rs) ) toplevel -> not ( ( SubRole R1 R ) ) -> CasePath R a F | CasePath_UnMatch : forall (R:role) (a:tm) (F:const) (p b A:tm) (R1:role) (Rs:roles), ValuePath a F -> binds F ( (Ax p b A R1 Rs) ) toplevel -> not ( ( subtm_pattern_agree a p ) ) -> CasePath R a F. (* defns JApplyArgs *) Inductive ApplyArgs : tm -> tm -> tm -> Prop := (* defn ApplyArgs *) | ApplyArgs_Const : forall (F:const) (b:tm), lc_tm b -> ApplyArgs (a_Fam F) b b | ApplyArgs_AppRole : forall (a:tm) (R:role) (a' b b':tm), lc_tm a' -> ApplyArgs a b b' -> ApplyArgs ( (a_App a (Role R) a') ) b ( (a_App b' (Rho Rel) a') ) | ApplyArgs_AppRho : forall (a:tm) (rho:relflag) (a' b b':tm), lc_tm a' -> ApplyArgs a b b' -> ApplyArgs ( (a_App a (Rho rho) a') ) b ( (a_App b' (Rho rho) a') ) | ApplyArgs_CApp : forall (a b b':tm), ApplyArgs a b b' -> ApplyArgs (a_CApp a g_Triv) b (a_CApp b' g_Triv). (* defns JValue *) Inductive Value : role -> tm -> Prop := (* defn Value *) | Value_Star : forall (R:role), Value R a_Star | Value_Pi : forall (R:role) (rho:relflag) (A B:tm), lc_tm A -> lc_tm (a_Pi rho A B) -> Value R (a_Pi rho A B) | Value_CPi : forall (R:role) (phi:constraint) (B:tm), lc_constraint phi -> lc_tm (a_CPi phi B) -> Value R (a_CPi phi B) | Value_AbsRel : forall (R:role) (A a:tm), lc_tm A -> lc_tm (a_Abs Rel A a) -> Value R (a_Abs Rel A a) | Value_UAbsRel : forall (R:role) (a:tm), lc_tm (a_UAbs Rel a) -> Value R (a_UAbs Rel a) | Value_UAbsIrrel : forall (L:vars) (R:role) (a:tm), ( forall x , x \notin L -> Value R ( open_tm_wrt_tm a (a_Var_f x) ) ) -> Value R (a_UAbs Irrel a) | Value_CAbs : forall (R:role) (phi:constraint) (a:tm), lc_constraint phi -> lc_tm (a_CAbs phi a) -> Value R (a_CAbs phi a) | Value_UCAbs : forall (R:role) (a:tm), lc_tm (a_UCAbs a) -> Value R (a_UCAbs a) | Value_Path : forall (R:role) (a:tm) (F:const), CasePath R a F -> Value R a. (* defns JValueType *) Inductive value_type : role -> tm -> Prop := (* defn value_type *) | value_type_Star : forall (R:role), value_type R a_Star | value_type_Pi : forall (R:role) (rho:relflag) (A B:tm), lc_tm A -> lc_tm (a_Pi rho A B) -> value_type R (a_Pi rho A B) | value_type_CPi : forall (R:role) (phi:constraint) (B:tm), lc_constraint phi -> lc_tm (a_CPi phi B) -> value_type R (a_CPi phi B) | value_type_ValuePath : forall (R:role) (a:tm) (F:const), CasePath R a F -> value_type R a. (* defns Jconsistent *) Inductive consistent : tm -> tm -> role -> Prop := (* defn consistent *) | consistent_a_Star : forall (R:role), consistent a_Star a_Star R | consistent_a_Pi : forall (rho:relflag) (A1 B1 A2 B2:tm) (R':role), lc_tm A1 -> lc_tm (a_Pi rho A1 B1) -> lc_tm A2 -> lc_tm (a_Pi rho A2 B2) -> consistent ( (a_Pi rho A1 B1) ) ( (a_Pi rho A2 B2) ) R' | consistent_a_CPi : forall (phi1:constraint) (A1:tm) (phi2:constraint) (A2:tm) (R:role), lc_constraint phi1 -> lc_tm (a_CPi phi1 A1) -> lc_constraint phi2 -> lc_tm (a_CPi phi2 A2) -> consistent ( (a_CPi phi1 A1) ) ( (a_CPi phi2 A2) ) R | consistent_a_CasePath : forall (a1 a2:tm) (R:role) (F:const), CasePath R a1 F -> CasePath R a2 F -> consistent a1 a2 R | consistent_a_Step_R : forall (a b:tm) (R:role), lc_tm a -> not ( value_type R b ) -> consistent a b R | consistent_a_Step_L : forall (a b:tm) (R:role), lc_tm b -> not ( value_type R a ) -> consistent a b R. (* defns Jroleing *) Inductive roleing : role_context -> tm -> role -> Prop := (* defn roleing *) | role_a_Bullet : forall (W:role_context) (R:role), uniq W -> roleing W a_Bullet R | role_a_Star : forall (W:role_context) (R:role), uniq W -> roleing W a_Star R | role_a_Var : forall (W:role_context) (x:tmvar) (R1 R:role), uniq W -> binds x R W -> SubRole R R1 -> roleing W (a_Var_f x) R1 | role_a_Abs : forall (L:vars) (W:role_context) (rho:relflag) (a:tm) (R:role), ( forall x , x \notin L -> roleing (( x ~ Nom ) ++ W ) ( open_tm_wrt_tm a (a_Var_f x) ) R ) -> roleing W ( (a_UAbs rho a) ) R | role_a_App : forall (W:role_context) (a:tm) (rho:relflag) (b:tm) (R:role), roleing W a R -> roleing W b Nom -> roleing W ( (a_App a (Rho rho) b) ) R | role_a_TApp : forall (W:role_context) (a:tm) (R1:role) (b:tm) (R:role), roleing W a R -> roleing W b (param R1 R ) -> roleing W (a_App a (Role R1) b) R | role_a_Pi : forall (L:vars) (W:role_context) (rho:relflag) (A B:tm) (R:role), roleing W A R -> ( forall x , x \notin L -> roleing (( x ~ Nom ) ++ W ) ( open_tm_wrt_tm B (a_Var_f x) ) R ) -> roleing W ( (a_Pi rho A B) ) R | role_a_CPi : forall (L:vars) (W:role_context) (a b A:tm) (R1:role) (B:tm) (R:role), roleing W a R1 -> roleing W b R1 -> roleing W A Rep -> ( forall c , c \notin L -> roleing W ( open_tm_wrt_co B (g_Var_f c) ) R ) -> roleing W ( (a_CPi (Eq a b A R1) B) ) R | role_a_CAbs : forall (L:vars) (W:role_context) (b:tm) (R:role), ( forall c , c \notin L -> roleing W ( open_tm_wrt_co b (g_Var_f c) ) R ) -> roleing W ( (a_UCAbs b) ) R | role_a_CApp : forall (W:role_context) (a:tm) (R:role), roleing W a R -> roleing W ( (a_CApp a g_Triv) ) R | role_a_Const : forall (W:role_context) (F:const) (R:role) (A:tm) (Rs:roles), uniq W -> binds F ( (Cs A Rs) ) toplevel -> roleing W (a_Fam F) R | role_a_Fam : forall (W:role_context) (F:const) (R1:role) (p a A:tm) (R:role) (Rs:roles), uniq W -> binds F ( (Ax p a A R Rs) ) toplevel -> roleing W (a_Fam F) R1 | role_a_Pattern : forall (W:role_context) (a:tm) (F:const) (Apps5:Apps) (b1 b2:tm) (R1:role), roleing W a Nom -> roleing W b1 R1 -> roleing W b2 R1 -> roleing W (a_Pattern Nom a F Apps5 b1 b2) R1. (* defns JChk *) Inductive RhoCheck : relflag -> tmvar -> tm -> Prop := (* defn RhoCheck *) | Rho_Rel : forall (x:tmvar) (A:tm), True -> RhoCheck Rel x A | Rho_IrrRel : forall (x:tmvar) (A:tm), ~ AtomSetImpl.In x (fv_tm_tm_tm A ) -> RhoCheck Irrel x A. (* defns Jpar *) Inductive Par : role_context -> tm -> tm -> role -> Prop := (* defn Par *) | Par_Refl : forall (W:role_context) (a:tm) (R:role), roleing W a R -> Par W a a R | Par_Beta : forall (W:role_context) (a:tm) (rho:relflag) (b a' b':tm) (R:role), Par W a ( (a_UAbs rho a') ) R -> Par W b b' Nom -> Par W (a_App a (Rho rho) b) (open_tm_wrt_tm a' b' ) R | Par_App : forall (W:role_context) (a:tm) (nu:appflag) (b a' b':tm) (R:role), Par W a a' R -> Par W b b' ( app_role nu R ) -> Par W (a_App a nu b) (a_App a' nu b') R | Par_CBeta : forall (W:role_context) (a a':tm) (R:role), Par W a ( (a_UCAbs a') ) R -> Par W (a_CApp a g_Triv) (open_tm_wrt_co a' g_Triv ) R | Par_CApp : forall (W:role_context) (a a':tm) (R:role), Par W a a' R -> Par W (a_CApp a g_Triv) (a_CApp a' g_Triv) R | Par_Abs : forall (L:vars) (W:role_context) (rho:relflag) (a a':tm) (R:role), ( forall x , x \notin L -> Par (( x ~ Nom ) ++ W ) ( open_tm_wrt_tm a (a_Var_f x) ) ( open_tm_wrt_tm a' (a_Var_f x) ) R ) -> Par W (a_UAbs rho a) (a_UAbs rho a') R | Par_Pi : forall (L:vars) (W:role_context) (rho:relflag) (A B A' B':tm) (R:role), Par W A A' R -> ( forall x , x \notin L -> Par (( x ~ Nom ) ++ W ) ( open_tm_wrt_tm B (a_Var_f x) ) ( open_tm_wrt_tm B' (a_Var_f x) ) R ) -> Par W (a_Pi rho A B) (a_Pi rho A' B') R | Par_CAbs : forall (L:vars) (W:role_context) (a a':tm) (R:role), ( forall c , c \notin L -> Par W ( open_tm_wrt_co a (g_Var_f c) ) ( open_tm_wrt_co a' (g_Var_f c) ) R ) -> Par W (a_UCAbs a) (a_UCAbs a') R | Par_CPi : forall (L:vars) (W:role_context) (a b A:tm) (R1:role) (B a' b' A' B':tm) (R:role), Par W A A' Rep -> Par W a a' R1 -> Par W b b' R1 -> ( forall c , c \notin L -> Par W ( open_tm_wrt_co B (g_Var_f c) ) ( open_tm_wrt_co B' (g_Var_f c) ) R ) -> Par W (a_CPi (Eq a b A R1) B) (a_CPi (Eq a' b' A' R1) B') R | Par_AxiomBase : forall (W:role_context) (F:const) (b:tm) (R:role) (A:tm) (R1:role) (Rs:roles), binds F ( (Ax (a_Fam F) b A R1 Rs) ) toplevel -> SubRole R1 R -> uniq W -> Par W (a_Fam F) b R | Par_AxiomApp : forall (W:role_context) (a:tm) (nu:appflag) (a1 a2:tm) (R:role) (F:const) (p b A:tm) (R1:role) (Rs:roles) (a' a1' p' b':tm) (D':available_props), binds F ( (Ax p b A R1 Rs) ) toplevel -> tm_subpattern_agree a p /\ not ( ( tm_pattern_agree a p ) ) -> Par W a a' R -> Par W a1 a1' ( app_role nu R ) -> Rename p b p' b' ( ( (dom W ) `union` (fv_tm_tm_tm p ) ) ) D' -> MatchSubst ( (a_App a' nu a1') ) p' b' a2 -> SubRole R1 R -> Par W (a_App a nu a1) a2 R | Par_AxiomCApp : forall (W:role_context) (a a2:tm) (R:role) (F:const) (p b A:tm) (R1:role) (Rs:roles) (a' p' b':tm) (D':available_props), binds F ( (Ax p b A R1 Rs) ) toplevel -> tm_subpattern_agree a p /\ not ( ( tm_pattern_agree a p ) ) -> Par W a a' R -> Rename p b p' b' ( ( (dom W ) `union` (fv_tm_tm_tm p ) ) ) D' -> MatchSubst ( (a_CApp a' g_Triv) ) p' b' a2 -> SubRole R1 R -> Par W (a_CApp a g_Triv) a2 R | Par_Pattern : forall (W:role_context) (a:tm) (F:const) (Apps5:Apps) (b1 b2 a' b1' b2':tm) (R0:role), Par W a a' Nom -> Par W b1 b1' R0 -> Par W b2 b2' R0 -> Par W ( (a_Pattern Nom a F Apps5 b1 b2) ) ( (a_Pattern Nom a' F Apps5 b1' b2') ) R0 | Par_PatternTrue : forall (W:role_context) (a:tm) (F:const) (Apps5:Apps) (b1 b2 b:tm) (R0:role) (a' b1' b2':tm) (Apps':Apps), Par W a a' Nom -> Par W b1 b1' R0 -> Par W b2 b2' R0 -> AppsPath Nom a' F Apps5 -> ApplyArgs a' b1' b -> SatApp F Apps' -> Par W ( (a_Pattern Nom a F Apps5 b1 b2) ) (a_CApp b g_Triv) R0 | Par_PatternFalse : forall (W:role_context) (a:tm) (F:const) (Apps5:Apps) (b1 b2 b2':tm) (R0:role) (a' b1':tm), Par W a a' Nom -> Par W b1 b1' R0 -> Par W b2 b2' R0 -> Value Nom a' -> not ( ( AppsPath Nom a' F Apps5 ) ) -> Par W ( (a_Pattern Nom a F Apps5 b1 b2) ) b2' R0 with MultiPar : role_context -> tm -> tm -> role -> Prop := (* defn MultiPar *) | MP_Refl : forall (W:role_context) (a:tm) (R:role), lc_tm a -> MultiPar W a a R | MP_Step : forall (W:role_context) (a a':tm) (R:role) (b:tm), Par W a b R -> MultiPar W b a' R -> MultiPar W a a' R with joins : role_context -> tm -> tm -> role -> Prop := (* defn joins *) | join : forall (W:role_context) (a1 a2:tm) (R:role) (b:tm), MultiPar W a1 b R -> MultiPar W a2 b R -> joins W a1 a2 R. (* defns Jbeta *) Inductive Beta : tm -> tm -> role -> Prop := (* defn Beta *) | Beta_AppAbs : forall (rho:relflag) (v b:tm) (R1:role), lc_tm b -> Value R1 ( (a_UAbs rho v) ) -> Beta (a_App ( (a_UAbs rho v) ) (Rho rho) b) (open_tm_wrt_tm v b ) R1 | Beta_CAppCAbs : forall (a':tm) (R:role), lc_tm (a_UCAbs a') -> Beta (a_CApp ( (a_UCAbs a') ) g_Triv) (open_tm_wrt_co a' g_Triv ) R | Beta_Axiom : forall (a b':tm) (R:role) (F:const) (p b A:tm) (R1:role) (Rs:roles) (p1 b1:tm) (D':available_props), binds F ( (Ax p b A R1 Rs) ) toplevel -> Rename p b p1 b1 ( ( (fv_tm_tm_tm a ) `union` (fv_tm_tm_tm p ) ) ) D' -> MatchSubst a p1 b1 b' -> SubRole R1 R -> Beta a b' R | Beta_PatternTrue : forall (a:tm) (F:const) (Apps5:Apps) (b1 b2 b1':tm) (R0:role) (Apps':Apps), lc_tm b2 -> AppsPath Nom a F Apps5 -> ApplyArgs a b1 b1' -> SatApp F Apps' -> Beta (a_Pattern Nom a F Apps5 b1 b2) (a_CApp b1' g_Triv) R0 | Beta_PatternFalse : forall (a:tm) (F:const) (Apps5:Apps) (b1 b2:tm) (R0:role), lc_tm b1 -> lc_tm b2 -> Value Nom a -> not ( ( AppsPath Nom a F Apps5 ) ) -> Beta (a_Pattern Nom a F Apps5 b1 b2) b2 R0 with reduction_in_one : tm -> tm -> role -> Prop := (* defn reduction_in_one *) | E_AbsTerm : forall (L:vars) (a a':tm) (R1:role), ( forall x , x \notin L -> reduction_in_one ( open_tm_wrt_tm a (a_Var_f x) ) ( open_tm_wrt_tm a' (a_Var_f x) ) R1 ) -> reduction_in_one (a_UAbs Irrel a) (a_UAbs Irrel a') R1 | E_AppLeft : forall (a:tm) (nu:appflag) (b a':tm) (R1:role), lc_tm b -> reduction_in_one a a' R1 -> reduction_in_one (a_App a nu b) (a_App a' nu b) R1 | E_CAppLeft : forall (a a':tm) (R:role), reduction_in_one a a' R -> reduction_in_one (a_CApp a g_Triv) (a_CApp a' g_Triv) R | E_Pattern : forall (a:tm) (F:const) (Apps5:Apps) (b1 b2 a':tm) (R0:role), lc_tm b1 -> lc_tm b2 -> reduction_in_one a a' Nom -> reduction_in_one (a_Pattern Nom a F Apps5 b1 b2) (a_Pattern Nom a' F Apps5 b1 b2) R0 | E_Prim : forall (a b:tm) (R:role), Beta a b R -> reduction_in_one a b R with reduction : tm -> tm -> role -> Prop := (* defn reduction *) | Equal : forall (a:tm) (R:role), lc_tm a -> reduction a a R | Step : forall (a a':tm) (R:role) (b:tm), reduction_in_one a b R -> reduction b a' R -> reduction a a' R. (* defns JBranchTyping *) Inductive BranchTyping : context -> Apps -> role -> tm -> tm -> tm -> pattern_args -> tm -> tm -> tm -> Prop := (* defn BranchTyping *) | BranchTyping_Base : forall (G:context) (a A b:tm) (pattern_args5:pattern_args) (C1 C2:tm), lc_tm a -> lc_tm b -> lc_tm A -> uniq G -> ( (open_tm_wrt_co C1 g_Triv ) = C2 ) -> BranchTyping G A_nil Nom a A b pattern_args5 A (a_CPi ( (Eq a (apply_pattern_args b pattern_args5 ) A Nom) ) C1) C2 | BranchTyping_PiRole : forall (L:vars) (G:context) (R:role) (Apps5:Apps) (a A1 b:tm) (pattern_args5:pattern_args) (A B C C':tm), ( forall x , x \notin L -> BranchTyping (( x ~ Tm A ) ++ G ) Apps5 Nom a A1 b ( pattern_args5 ++ [ (p_Tm (Role R) (a_Var_f x)) ]) ( open_tm_wrt_tm B (a_Var_f x) ) ( open_tm_wrt_tm C (a_Var_f x) ) C' ) -> BranchTyping G ( (A_cons (A_Tm (Role R)) Apps5) ) Nom a A1 b pattern_args5 (a_Pi Rel A B) (a_Pi Rel A C) C' | BranchTyping_PiRel : forall (L:vars) (G:context) (Apps5:Apps) (a A1 b:tm) (pattern_args5:pattern_args) (A B C C':tm), ( forall x , x \notin L -> BranchTyping (( x ~ Tm A ) ++ G ) Apps5 Nom a A1 b ( pattern_args5 ++ [ (p_Tm (Rho Rel) (a_Var_f x)) ]) ( open_tm_wrt_tm B (a_Var_f x) ) ( open_tm_wrt_tm C (a_Var_f x) ) C' ) -> BranchTyping G ( (A_cons (A_Tm (Rho Rel)) Apps5) ) Nom a A1 b pattern_args5 (a_Pi Rel A B) (a_Pi Rel A C) C' | BranchTyping_PiIrrel : forall (L:vars) (G:context) (Apps5:Apps) (a A1 b:tm) (pattern_args5:pattern_args) (A B C C':tm), ( forall x , x \notin L -> BranchTyping (( x ~ Tm A ) ++ G ) Apps5 Nom a A1 b ( pattern_args5 ++ [ (p_Tm (Rho Irrel) a_Bullet) ]) ( open_tm_wrt_tm B (a_Var_f x) ) ( open_tm_wrt_tm C (a_Var_f x) ) C' ) -> BranchTyping G ( (A_cons (A_Tm (Rho Irrel)) Apps5) ) Nom a A1 b pattern_args5 (a_Pi Irrel A B) (a_Pi Irrel A C) C' | BranchTyping_CPi : forall (L:vars) (G:context) (Apps5:Apps) (a A b:tm) (pattern_args5:pattern_args) (phi:constraint) (B C C':tm), ( forall c , c \notin L -> BranchTyping (( c ~ Co phi ) ++ G ) Apps5 Nom a A b ( pattern_args5 ++ [ (p_Co g_Triv) ]) ( open_tm_wrt_co B (g_Var_f c) ) ( open_tm_wrt_co C (g_Var_f c) ) C' ) -> BranchTyping G ( (A_cons A_Co Apps5) ) Nom a A b pattern_args5 (a_CPi phi B) (a_CPi phi C) C'. (* defns Jett *) Inductive PropWff : context -> constraint -> Prop := (* defn PropWff *) | E_Wff : forall (G:context) (a b A:tm) (R:role), Typing G a A -> Typing G b A -> ( Typing G A a_Star ) -> PropWff G (Eq a b A R) with Typing : context -> tm -> tm -> Prop := (* defn Typing *) | E_Star : forall (G:context), Ctx G -> Typing G a_Star a_Star | E_Var : forall (G:context) (x:tmvar) (A:tm), Ctx G -> binds x (Tm A ) G -> Typing G (a_Var_f x) A | E_Pi : forall (L:vars) (G:context) (rho:relflag) (A B:tm), ( forall x , x \notin L -> Typing (( x ~ Tm A ) ++ G ) ( open_tm_wrt_tm B (a_Var_f x) ) a_Star ) -> Typing G A a_Star -> Typing G (a_Pi rho A B) a_Star | E_Abs : forall (L:vars) (G:context) (rho:relflag) (a A B:tm), ( forall x , x \notin L -> Typing (( x ~ Tm A ) ++ G ) ( open_tm_wrt_tm a (a_Var_f x) ) ( open_tm_wrt_tm B (a_Var_f x) ) ) -> ( Typing G A a_Star ) -> ( forall x , x \notin L -> RhoCheck rho x ( open_tm_wrt_tm a (a_Var_f x) ) ) -> Typing G (a_UAbs rho a) ( (a_Pi rho A B) ) | E_App : forall (G:context) (b a B A:tm), Typing G b (a_Pi Rel A B) -> Typing G a A -> Typing G (a_App b (Rho Rel) a) (open_tm_wrt_tm B a ) | E_TApp : forall (G:context) (b:tm) (R:role) (a B A:tm) (Rs:roles), Typing G b (a_Pi Rel A B) -> Typing G a A -> RolePath b ( R :: Rs ) -> Typing G (a_App b (Role R) a) (open_tm_wrt_tm B a ) | E_IApp : forall (G:context) (b B a A:tm), Typing G b (a_Pi Irrel A B) -> Typing G a A -> Typing G (a_App b (Rho Irrel) a_Bullet) (open_tm_wrt_tm B a ) | E_Conv : forall (G:context) (a B A:tm), Typing G a A -> DefEq G (dom G ) A B a_Star Rep -> ( Typing G B a_Star ) -> Typing G a B | E_CPi : forall (L:vars) (G:context) (phi:constraint) (B:tm), ( forall c , c \notin L -> Typing (( c ~ Co phi ) ++ G ) ( open_tm_wrt_co B (g_Var_f c) ) a_Star ) -> ( PropWff G phi ) -> Typing G (a_CPi phi B) a_Star | E_CAbs : forall (L:vars) (G:context) (a:tm) (phi:constraint) (B:tm), ( forall c , c \notin L -> Typing (( c ~ Co phi ) ++ G ) ( open_tm_wrt_co a (g_Var_f c) ) ( open_tm_wrt_co B (g_Var_f c) ) ) -> ( PropWff G phi ) -> Typing G (a_UCAbs a) (a_CPi phi B) | E_CApp : forall (G:context) (a1 B1 a b A:tm) (R:role), Typing G a1 (a_CPi ( (Eq a b A R) ) B1) -> DefEq G (dom G ) a b A R -> Typing G (a_CApp a1 g_Triv) (open_tm_wrt_co B1 g_Triv ) | E_Const : forall (G:context) (F:const) (A:tm) (Rs:roles), Ctx G -> binds F ( (Cs A Rs) ) toplevel -> ( Typing nil A a_Star ) -> Typing G (a_Fam F) A | E_Fam : forall (G:context) (F:const) (A p a:tm) (R1:role) (Rs:roles), Ctx G -> binds F ( (Ax p a A R1 Rs) ) toplevel -> ( Typing nil A a_Star ) -> Typing G (a_Fam F) A | E_Case : forall (G:context) (a:tm) (F:const) (Apps5:Apps) (b1 b2 C A B A1:tm), Typing G a A -> Typing G b1 B -> Typing G b2 C -> BranchTyping G Apps5 Nom a A (a_Fam F) nil A1 B C -> Typing G (a_Fam F) A1 -> SatApp F Apps5 -> Typing G (a_Pattern Nom a F Apps5 b1 b2) C with Iso : context -> available_props -> constraint -> constraint -> Prop := (* defn Iso *) | E_PropCong : forall (G:context) (D:available_props) (A1 B1 A:tm) (R:role) (A2 B2:tm), DefEq G D A1 A2 A R -> DefEq G D B1 B2 A R -> Iso G D (Eq A1 B1 A R) (Eq A2 B2 A R) | E_IsoConv : forall (G:context) (D:available_props) (A1 A2 A:tm) (R:role) (B:tm) (R0:role), DefEq G D A B a_Star R0 -> PropWff G (Eq A1 A2 A R) -> PropWff G (Eq A1 A2 B R) -> Iso G D (Eq A1 A2 A R) (Eq A1 A2 B R) | E_CPiFst : forall (G:context) (D:available_props) (a1 a2 A:tm) (R1:role) (b1 b2 B:tm) (R2:role) (B1 B2:tm) (R':role), DefEq G D (a_CPi ( (Eq a1 a2 A R1) ) B1) (a_CPi ( (Eq b1 b2 B R2) ) B2) a_Star R' -> Iso G D (Eq a1 a2 A R1) (Eq b1 b2 B R2) with DefEq : context -> available_props -> tm -> tm -> tm -> role -> Prop := (* defn DefEq *) | E_Assn : forall (G:context) (D:available_props) (a b A:tm) (R:role) (c:covar), Ctx G -> binds c (Co ( (Eq a b A R) ) ) G -> AtomSetImpl.In c D -> DefEq G D a b A R | E_Refl : forall (G:context) (D:available_props) (a A:tm) (R:role), Typing G a A -> DefEq G D a a A R | E_Sym : forall (G:context) (D:available_props) (a b A:tm) (R:role), DefEq G D b a A R -> DefEq G D a b A R | E_Trans : forall (G:context) (D:available_props) (a b A:tm) (R:role) (a1:tm), DefEq G D a a1 A R -> DefEq G D a1 b A R -> DefEq G D a b A R | E_Sub : forall (G:context) (D:available_props) (a b A:tm) (R2 R1:role), DefEq G D a b A R1 -> SubRole R1 R2 -> DefEq G D a b A R2 | E_Beta : forall (G:context) (D:available_props) (a1 a2 B:tm) (R:role), Typing G a1 B -> ( Typing G a2 B ) -> Beta a1 a2 R -> DefEq G D a1 a2 B R | E_PiCong : forall (L:vars) (G:context) (D:available_props) (rho:relflag) (A1 B1 A2 B2:tm) (R':role), DefEq G D A1 A2 a_Star R' -> ( forall x , x \notin L -> DefEq (( x ~ Tm A1 ) ++ G ) D ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) a_Star R' ) -> ( Typing G A1 a_Star ) -> ( Typing G (a_Pi rho A1 B1) a_Star ) -> ( Typing G (a_Pi rho A2 B2) a_Star ) -> DefEq G D ( (a_Pi rho A1 B1) ) ( (a_Pi rho A2 B2) ) a_Star R' | E_AbsCong : forall (L:vars) (G:context) (D:available_props) (rho:relflag) (b1 b2 A1 B:tm) (R':role), ( forall x , x \notin L -> DefEq (( x ~ Tm A1 ) ++ G ) D ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ( open_tm_wrt_tm B (a_Var_f x) ) R' ) -> ( Typing G A1 a_Star ) -> ( forall x , x \notin L -> RhoCheck rho x ( open_tm_wrt_tm b1 (a_Var_f x) ) ) -> ( forall x , x \notin L -> RhoCheck rho x ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> DefEq G D ( (a_UAbs rho b1) ) ( (a_UAbs rho b2) ) ( (a_Pi rho A1 B) ) R' | E_AppCong : forall (G:context) (D:available_props) (a1 a2 b1 b2 B:tm) (R':role) (A:tm), DefEq G D a1 b1 ( (a_Pi Rel A B) ) R' -> DefEq G D a2 b2 A Nom -> DefEq G D (a_App a1 (Rho Rel) a2) (a_App b1 (Rho Rel) b2) ( (open_tm_wrt_tm B a2 ) ) R' | E_TAppCong : forall (G:context) (D:available_props) (a1:tm) (R:role) (a2 b1 b2 B:tm) (R':role) (A:tm) (Rs:roles), DefEq G D a1 b1 ( (a_Pi Rel A B) ) R' -> DefEq G D a2 b2 A (param R R' ) -> RolePath a1 ( R :: Rs ) -> RolePath b1 ( R :: Rs ) -> Typing G (a_App b1 (Role R) b2) (open_tm_wrt_tm B a2 ) -> DefEq G D (a_App a1 (Role R) a2) (a_App b1 (Role R) b2) ( (open_tm_wrt_tm B a2 ) ) R' | E_IAppCong : forall (G:context) (D:available_props) (a1 b1 B a:tm) (R':role) (A:tm), DefEq G D a1 b1 ( (a_Pi Irrel A B) ) R' -> Typing G a A -> DefEq G D (a_App a1 (Rho Irrel) a_Bullet) (a_App b1 (Rho Irrel) a_Bullet) ( (open_tm_wrt_tm B a ) ) R' | E_PiFst : forall (G:context) (D:available_props) (A1 A2:tm) (R':role) (rho:relflag) (B1 B2:tm), DefEq G D (a_Pi rho A1 B1) (a_Pi rho A2 B2) a_Star R' -> DefEq G D A1 A2 a_Star R' | E_PiSnd : forall (G:context) (D:available_props) (B1 a1 B2 a2:tm) (R':role) (rho:relflag) (A1 A2:tm), DefEq G D (a_Pi rho A1 B1) (a_Pi rho A2 B2) a_Star R' -> DefEq G D a1 a2 A1 Nom -> DefEq G D (open_tm_wrt_tm B1 a1 ) (open_tm_wrt_tm B2 a2 ) a_Star R' | E_CPiCong : forall (L:vars) (G:context) (D:available_props) (a1 b1 A1:tm) (R:role) (A a2 b2 A2 B:tm) (R':role), Iso G D (Eq a1 b1 A1 R) (Eq a2 b2 A2 R) -> ( forall c , c \notin L -> DefEq (( c ~ Co (Eq a1 b1 A1 R) ) ++ G ) D ( open_tm_wrt_co A (g_Var_f c) ) ( open_tm_wrt_co B (g_Var_f c) ) a_Star R' ) -> ( PropWff G (Eq a1 b1 A1 R) ) -> ( Typing G (a_CPi (Eq a1 b1 A1 R) A) a_Star ) -> ( Typing G (a_CPi (Eq a2 b2 A2 R) B) a_Star ) -> DefEq G D (a_CPi (Eq a1 b1 A1 R) A) (a_CPi (Eq a2 b2 A2 R) B) a_Star R' | E_CAbsCong : forall (L:vars) (G:context) (D:available_props) (a b:tm) (phi1:constraint) (B:tm) (R:role), ( forall c , c \notin L -> DefEq (( c ~ Co phi1 ) ++ G ) D ( open_tm_wrt_co a (g_Var_f c) ) ( open_tm_wrt_co b (g_Var_f c) ) ( open_tm_wrt_co B (g_Var_f c) ) R ) -> ( PropWff G phi1 ) -> DefEq G D ( (a_UCAbs a) ) ( (a_UCAbs b) ) (a_CPi phi1 B) R | E_CAppCong : forall (G:context) (D:available_props) (a1 b1 B:tm) (R':role) (a b A:tm) (R:role), DefEq G D a1 b1 ( (a_CPi ( (Eq a b A R) ) B) ) R' -> DefEq G (dom G ) a b A R -> DefEq G D (a_CApp a1 g_Triv) (a_CApp b1 g_Triv) ( (open_tm_wrt_co B g_Triv ) ) R' | E_CPiSnd : forall (G:context) (D:available_props) (B1 B2:tm) (R0:role) (a1 a2 A:tm) (R:role) (a1' a2' A':tm) (R':role), DefEq G D (a_CPi ( (Eq a1 a2 A R) ) B1) (a_CPi ( (Eq a1' a2' A' R') ) B2) a_Star R0 -> DefEq G (dom G ) a1 a2 A R -> DefEq G (dom G ) a1' a2' A' R' -> DefEq G D (open_tm_wrt_co B1 g_Triv ) (open_tm_wrt_co B2 g_Triv ) a_Star R0 | E_Cast : forall (G:context) (D:available_props) (a' b' A':tm) (R':role) (a b A:tm) (R:role), DefEq G D a b A R -> Iso G D (Eq a b A R) (Eq a' b' A' R') -> DefEq G D a' b' A' R' | E_EqConv : forall (G:context) (D:available_props) (a b B:tm) (R:role) (A:tm), DefEq G D a b A R -> DefEq G (dom G ) A B a_Star Rep -> ( Typing G B a_Star ) -> DefEq G D a b B R | E_IsoSnd : forall (G:context) (D:available_props) (A A' a b:tm) (R1:role) (a' b':tm), Iso G D (Eq a b A R1) (Eq a' b' A' R1) -> DefEq G D A A' a_Star Rep | E_PatCong : forall (G:context) (D:available_props) (a:tm) (F:const) (Apps5:Apps) (b1 b2 a' b1' b2' C:tm) (R0:role) (A B A1 B':tm), DefEq G D a a' A Nom -> DefEq G D b1 b1' B R0 -> DefEq G D b2 b2' C R0 -> BranchTyping G Apps5 Nom a A (a_Fam F) nil A1 B C -> BranchTyping G Apps5 Nom a' A (a_Fam F) nil A1 B' C -> DefEq G D B B' a_Star Rep -> SatApp F Apps5 -> Typing G (a_Fam F) A1 -> DefEq G D (a_Pattern Nom a F Apps5 b1 b2) (a_Pattern Nom a' F Apps5 b1' b2') C R0 | E_LeftRel : forall (G:context) (D:available_props) (a a' A B:tm) (R' R1:role) (b:tm) (F:const) (b':tm), CasePath R' ( (a_App a (Role R1) b) ) F -> CasePath R' ( (a_App a' (Role R1) b') ) F -> Typing G a (a_Pi Rel A B) -> Typing G b A -> Typing G a' (a_Pi Rel A B) -> Typing G b' A -> DefEq G D (a_App a (Role R1) b) (a_App a' (Role R1) b') (open_tm_wrt_tm B b ) R' -> DefEq G (dom G ) (open_tm_wrt_tm B b ) (open_tm_wrt_tm B b' ) a_Star Rep -> DefEq G D a a' (a_Pi Rel A B) R' | E_LeftIrrel : forall (G:context) (D:available_props) (a a' A B:tm) (R':role) (F:const) (b b':tm), CasePath R' ( (a_App a (Rho Irrel) a_Bullet) ) F -> CasePath R' ( (a_App a' (Rho Irrel) a_Bullet) ) F -> Typing G a (a_Pi Irrel A B) -> Typing G b A -> Typing G a' (a_Pi Irrel A B) -> Typing G b' A -> DefEq G D (a_App a (Rho Irrel) a_Bullet) (a_App a' (Rho Irrel) a_Bullet) (open_tm_wrt_tm B b ) R' -> DefEq G (dom G ) (open_tm_wrt_tm B b ) (open_tm_wrt_tm B b' ) a_Star Rep -> DefEq G D a a' (a_Pi Irrel A B) R' | E_Right : forall (G:context) (D:available_props) (b b' A:tm) (R1 R':role) (a:tm) (F:const) (a' B:tm), CasePath R' ( (a_App a (Role R1) b) ) F -> CasePath R' ( (a_App a' (Role R1) b') ) F -> Typing G a (a_Pi Rel A B) -> Typing G b A -> Typing G a' (a_Pi Rel A B) -> Typing G b' A -> DefEq G D (a_App a (Role R1) b) (a_App a' (Role R1) b') (open_tm_wrt_tm B b ) R' -> DefEq G (dom G ) (open_tm_wrt_tm B b ) (open_tm_wrt_tm B b' ) a_Star Rep -> DefEq G D b b' A (param R1 R' ) | E_CLeft : forall (G:context) (D:available_props) (a a' a1 a2 A:tm) (R1:role) (B:tm) (R':role) (F:const), CasePath R' ( (a_CApp a g_Triv) ) F -> CasePath R' ( (a_CApp a' g_Triv) ) F -> Typing G a (a_CPi ( (Eq a1 a2 A R1) ) B) -> Typing G a' (a_CPi ( (Eq a1 a2 A R1) ) B) -> DefEq G (dom G ) a1 a2 A (param R1 R' ) -> DefEq G D (a_CApp a g_Triv) (a_CApp a' g_Triv) (open_tm_wrt_co B g_Triv ) R' -> DefEq G D a a' (a_CPi ( (Eq a1 a2 A R1) ) B) R' with Ctx : context -> Prop := (* defn Ctx *) | E_Empty : Ctx nil | E_ConsTm : forall (G:context) (x:tmvar) (A:tm), Ctx G -> Typing G A a_Star -> ~ AtomSetImpl.In x (dom G ) -> Ctx (( x ~ Tm A ) ++ G ) | E_ConsCo : forall (G:context) (c:covar) (phi:constraint), Ctx G -> PropWff G phi -> ~ AtomSetImpl.In c (dom G ) -> Ctx (( c ~ Co phi ) ++ G ) . (* defns Jsig *) Inductive Sig : sig -> Prop := (* defn Sig *) | Sig_Empty : Sig nil | Sig_ConsConst : forall (S:sig) (F:const) (A:tm) (Rs:roles), Sig S -> Typing nil A a_Star -> ~ AtomSetImpl.In F (dom S ) -> Sig (( F ~ (Cs A Rs) )++ S ) | Sig_ConsAx : forall (S:sig) (F:const) (p a A:tm) (R:role) (W:role_context) (G:context) (V:atom_list) (B:tm), Sig S -> ~ AtomSetImpl.In F (dom S ) -> Typing nil A a_Star -> PatternContexts W G V F A p B -> Typing G a B -> (forall x, In x V -> x `notin` (fv_tm_tm_tm a ) ) -> roleing W a R -> Sig (( F ~ (Ax p a A R (range( W )) ) )++ S ) . (* defns Jhiding *) Inductive RoleWeaken : roles -> roles -> Prop := (* defn RoleWeaken *) | R_Nil : RoleWeaken nil nil | R_Cons : forall (R1:role) (Rs1:roles) (R2:role) (Rs2:roles), SubRole R2 R1 -> RoleWeaken Rs1 Rs2 -> RoleWeaken ( R1 :: Rs1 ) ( R2 :: Rs2 ) with SigWeaken : sig -> sig -> Prop := (* defn SigWeaken *) | S_Forget : forall (S1 S2:sig) (F:const) (sig_sort5:sig_sort), lc_sig_sort sig_sort5 -> SigWeaken S1 S2 -> SigWeaken S1 (( F ~ sig_sort5 )++ S2 ) | S_Hide : forall (S1:sig) (F:const) (A:tm) (Rs1:roles) (S2:sig) (p a:tm) (R:role) (Rs2:roles), lc_tm p -> lc_tm a -> lc_tm A -> SigWeaken S1 S2 -> RoleWeaken Rs1 Rs2 -> SigWeaken (( F ~ (Cs A Rs1) )++ S1 ) (( F ~ (Ax p a A R Rs2) )++ S2 ) | S_WeakenConst : forall (S1:sig) (F:const) (A:tm) (Rs1:roles) (S2:sig) (Rs2:roles), lc_tm A -> SigWeaken S1 S2 -> RoleWeaken Rs1 Rs2 -> SigWeaken (( F ~ (Cs A Rs1) )++ S1 ) (( F ~ (Cs A Rs2) )++ S2 ) | S_WeakenAxiom : forall (S1:sig) (F:const) (p' a A:tm) (R:role) (Rs1:roles) (S2:sig) (p:tm) (Rs2:roles), lc_tm p' -> lc_tm p -> lc_tm a -> lc_tm A -> SigWeaken S1 S2 -> RoleWeaken Rs1 Rs2 -> SigWeaken (( F ~ (Ax p' a A R Rs1) )++ S1 ) (( F ~ (Ax p a A R Rs2) )++ S2 ) | S_Empty : SigWeaken nil nil | S_Same : forall (S1:sig) (F:const) (sig_sort5:sig_sort) (S2:sig), lc_sig_sort sig_sort5 -> SigWeaken S1 S2 -> SigWeaken (( F ~ sig_sort5 )++ S1 ) (( F ~ sig_sort5 )++ S2 ) . (* defns JSrc *) Inductive SrcTyping : context -> tm -> tm -> Prop := (* defn SrcTyping *) | S_Star : forall (G:context), Ctx G -> SrcTyping G a_Star a_Star | S_Var : forall (G:context) (x:tmvar) (A:tm), Ctx G -> binds x (Tm A ) G -> SrcTyping G (a_Var_f x) A | S_Pi : forall (L:vars) (G:context) (rho:relflag) (A B A':tm), SrcTyping G A a_Star -> SrcTrans G A A' a_Star -> ( forall x , x \notin L -> SrcTyping (( x ~ Tm A' ) ++ G ) ( open_tm_wrt_tm B (a_Var_f x) ) a_Star ) -> SrcTyping G ( (a_Pi rho A B) ) a_Star | S_Abs : forall (L:vars) (G:context) (a A B:tm), ( forall x , x \notin L -> SrcTyping (( x ~ Tm A ) ++ G ) a ( open_tm_wrt_tm B (a_Var_f x) ) ) -> SrcTyping G (a_UAbs Rel a ) ( (a_Pi Rel A B) ) | S_IAbs : forall (L:vars) (G:context) (a A B:tm), ( forall x , x \notin L -> SrcTyping (( x ~ Tm A ) ++ G ) a ( open_tm_wrt_tm B (a_Var_f x) ) ) -> SrcTyping G a ( (a_Pi Irrel A B) ) | S_Conv : forall (G:context) (a B A:tm), SrcTyping G a A -> DefEq G (dom G ) A B a_Star Nom -> SrcTyping G a B | S_Coerce : forall (G:context) (a B A:tm), SrcTyping G a A -> DefEq G (dom G ) A B a_Star Rep -> SrcTyping G (a_SrcApp a_Coerce a) B | S_App : forall (G:context) (b a B a' A:tm), SrcTyping G b (a_Pi Rel A B) -> SrcTrans G a a' A -> SrcTyping G (a_SrcApp b a) (open_tm_wrt_tm B a' ) | S_IApp : forall (G:context) (b B a' A:tm), SrcTyping G b (a_Pi Irrel A B) -> Typing G a' A -> SrcTyping G b (open_tm_wrt_tm B a' ) | S_CPi : forall (L:vars) (G:context) (phi:constraint) (B:tm) (phi':constraint), SrcPropWff G phi phi' -> ( forall c , c \notin L -> SrcTyping (( c ~ Co phi' ) ++ G ) ( open_tm_wrt_co B (g_Var_f c) ) a_Star ) -> SrcTyping G (a_CPi phi B) a_Star | S_CAbs : forall (L:vars) (G:context) (a:tm) (phi:constraint) (B:tm) (phi':constraint), lc_constraint phi -> ( forall c , c \notin L -> SrcTyping (( c ~ Co phi' ) ++ G ) a ( open_tm_wrt_co B (g_Var_f c) ) ) -> SrcTyping G a (a_CPi phi B) | S_CApp : forall (G:context) (a1 B1 a b A:tm) (R:role), SrcTyping G a1 (a_CPi ( (Eq a b A R) ) B1) -> DefEq G (dom G ) a b A R -> SrcTyping G a1 (open_tm_wrt_co B1 g_Triv ) | S_Const : forall (G:context) (F:const) (A:tm) (Rs:roles), Ctx G -> binds F ( (Cs A Rs) ) toplevel -> SrcTyping G (a_Fam F) A | S_Fam : forall (G:context) (F:const) (A:tm), lc_tm A -> Ctx G -> SrcTyping G (a_Fam F) A | S_Case : forall (G:context) (a:tm) (F:const) (Apps5:Apps) (b1 b2 C A b1' B b2':tm), lc_tm b1 -> lc_tm b2 -> SrcTyping G a A -> SrcTyping G b1' B -> SrcTyping G b2' C -> SrcTyping G (a_Pattern Nom a F Apps5 b1 b2) C with SrcTrans : context -> tm -> tm -> tm -> Prop := (* defn SrcTrans *) | ST_Star : forall (G:context), Ctx G -> SrcTrans G a_Star a_Star a_Star | ST_Var : forall (G:context) (x:tmvar) (A:tm), Ctx G -> binds x (Tm A ) G -> SrcTrans G (a_Var_f x) (a_Var_f x) A | ST_Pi : forall (L:vars) (G:context) (rho:relflag) (A B A' B':tm), SrcTrans G A A' a_Star -> ( forall x , x \notin L -> SrcTrans (( x ~ Tm A' ) ++ G ) ( open_tm_wrt_tm B (a_Var_f x) ) ( open_tm_wrt_tm B' (a_Var_f x) ) a_Star ) -> SrcTrans G ( (a_Pi rho A B) ) ( (a_Pi rho A' B') ) a_Star | ST_Abs : forall (L:vars) (G:context) (a a' A B:tm), ( forall x , x \notin L -> SrcTrans (( x ~ Tm A ) ++ G ) a ( open_tm_wrt_tm a' (a_Var_f x) ) ( open_tm_wrt_tm B (a_Var_f x) ) ) -> SrcTrans G (a_UAbs Rel a ) (a_UAbs Rel a') ( (a_Pi Rel A B) ) | ST_IAbs : forall (L:vars) (G:context) (a A B a':tm), ( forall x , x \notin L -> SrcTrans (( x ~ Tm A ) ++ G ) ( open_tm_wrt_tm a (a_Var_f x) ) a' ( open_tm_wrt_tm B (a_Var_f x) ) ) -> ( forall x , x \notin L -> ~ AtomSetImpl.In x (fv_tm_tm_tm ( open_tm_wrt_tm a (a_Var_f x) ) ) ) -> ( forall x , x \notin L -> SrcTrans G ( open_tm_wrt_tm a (a_Var_f x) ) (a_UAbs Irrel a) ( (a_Pi Irrel A B) ) ) | ST_App : forall (G:context) (b a b' a' B A:tm), SrcTrans G b b' (a_Pi Rel A B) -> SrcTrans G a a' A -> SrcTrans G (a_SrcApp b a) (a_App b' (Rho Rel) a') (open_tm_wrt_tm B a' ) | ST_TApp : forall (G:context) (b a b':tm) (R:role) (a' B A:tm) (Rs:roles), SrcTrans G b b' (a_Pi Rel A B) -> SrcTrans G a a' A -> RolePath b ( R :: Rs ) -> SrcTrans G (a_SrcApp b a) (a_App b' (Role R) a') (open_tm_wrt_tm B a ) | ST_IApp : forall (G:context) (b b' B a A:tm), SrcTrans G b b' (a_Pi Irrel A B) -> Typing G a A -> SrcTrans G b (a_App b' (Rho Irrel) a_Bullet) (open_tm_wrt_tm B a ) | ST_Conv : forall (G:context) (a a' B A:tm), SrcTrans G a a' A -> DefEq G (dom G ) A B a_Star Nom -> SrcTrans G a a' B | ST_Coerce : forall (G:context) (a a' B A:tm), SrcTrans G a a' A -> DefEq G (dom G ) A B a_Star Rep -> SrcTrans G (a_SrcApp a_Coerce a) a' B | ST_CPi : forall (L:vars) (G:context) (phi:constraint) (B B':tm) (phi':constraint), SrcPropWff G phi phi' -> ( forall c , c \notin L -> SrcTrans (( c ~ Co phi' ) ++ G ) ( open_tm_wrt_co B (g_Var_f c) ) ( open_tm_wrt_co B' (g_Var_f c) ) a_Star ) -> SrcTrans G (a_CPi phi B) (a_CPi phi B') a_Star | ST_CAbs : forall (L:vars) (G:context) (a a':tm) (phi:constraint) (B:tm), ( forall c , c \notin L -> SrcTrans (( c ~ Co phi ) ++ G ) a ( open_tm_wrt_co a' (g_Var_f c) ) ( open_tm_wrt_co B (g_Var_f c) ) ) -> SrcTrans G a (a_UCAbs a') (a_CPi phi B) | ST_CApp : forall (G:context) (a1 a1' B1 a b A:tm) (R:role), SrcTrans G a1 a1' (a_CPi ( (Eq a b A R) ) B1) -> DefEq G (dom G ) a b A R -> SrcTrans G a1 (a_CApp a1' g_Triv) (open_tm_wrt_co B1 g_Triv ) | ST_Const : forall (G:context) (F:const) (A:tm) (Rs:roles), Ctx G -> binds F ( (Cs A Rs) ) toplevel -> SrcTrans G (a_Fam F) (a_Fam F) A | ST_Fam : forall (G:context) (F:const) (A:tm), lc_tm A -> Ctx G -> SrcTrans G (a_Fam F) (a_Fam F) A | ST_Case : forall (G:context) (a:tm) (F:const) (Apps5:Apps) (b1 b2 a' b1' b2' C A B:tm), SrcTrans G a a' A -> SrcTrans G b1 b1' B -> SrcTrans G b2 b2' C -> SrcTrans G (a_Pattern Nom a F Apps5 b1 b2) (a_Pattern Nom a' F Apps5 b1' b2') C with SrcPropWff : context -> constraint -> constraint -> Prop := (* defn SrcPropWff *) | S_Wff : forall (G:context) (a b A a' b':tm), SrcTrans G a a' A -> SrcTrans G b b' A -> SrcPropWff G ( (Eq a b A Nom) ) ( (Eq a' b' A Nom) ) . (* defns Jann *) Inductive AnnPropWff : context -> constraint -> Prop := (* defn AnnPropWff *) with AnnTyping : context -> tm -> tm -> role -> Prop := (* defn AnnTyping *) with AnnIso : context -> available_props -> co -> constraint -> constraint -> Prop := (* defn AnnIso *) with AnnDefEq : context -> available_props -> co -> tm -> tm -> role -> Prop := (* defn AnnDefEq *) with AnnCtx : context -> Prop := (* defn AnnCtx *). (* defns Jred *) Inductive head_reduction : context -> tm -> tm -> role -> Prop := (* defn head_reduction *). (** infrastructure *) Hint Constructors SubRole RolePath AppsPath AppRoles SatApp PatternContexts Rename MatchSubst Pattern SubPat tm_pattern_agree tm_subpattern_agree subtm_pattern_agree ValuePath CasePath ApplyArgs Value value_type consistent roleing RhoCheck Par MultiPar joins Beta reduction_in_one reduction BranchTyping PropWff Typing Iso DefEq Ctx Sig RoleWeaken SigWeaken SrcTyping SrcTrans SrcPropWff AnnPropWff AnnTyping AnnIso AnnDefEq AnnCtx head_reduction lc_co lc_brs lc_tm lc_constraint lc_sort lc_sig_sort lc_pattern_arg.
CoInductive CoNat : Set := | Zero : CoNat | Succ : CoNat -> CoNat. CoInductive CoEq : CoNat -> CoNat -> Prop := | coeq_base : CoEq Zero Zero | coeq_next : forall x y, CoEq x y -> CoEq (Succ x) (Succ y). (* assists with deconstruction in proofs *) Definition decomp (x : CoNat) : CoNat := match x with | Zero => Zero | Succ x' => Succ x' end. Lemma decomp_eql : forall x, x = decomp x. intro x. case x. simpl. auto. intros. simpl. auto. Defined. CoFixpoint plus (x: CoNat) (y: CoNat) : CoNat := match x with | Zero => y | Succ x' => Succ (plus x' y) end. Require Import List. Fixpoint sum (xs:list CoNat) : CoNat := match xs with | nil => Zero | cons x xs' => plus x (sum xs') end. CoInductive CoList : Set := | CoNil : CoList | CoCons : CoNat -> CoList -> CoList. Definition decompl (xs : CoList) : CoList := match xs with | CoNil => CoNil | CoCons x' xs' => CoCons x' xs' end. Lemma decompl_eql : forall x, x = decompl x. intro x. case x. simpl. auto. intros. simpl. auto. Defined. (* CoFixpoint sumlen (xs: CoList) : CoNat := match xs with | CoNil => Zero | CoCons x' xs' => Succ (plus x' (sumlen xs')) end. *) CoFixpoint f (x : CoNat) (xs : CoList) := match x with | Zero => match xs with | CoNil => Zero | CoCons x' xs' => Succ (f x' xs') end | Succ x' => Succ (f x' xs) end. Definition sumlen (xs : CoList) := match xs with | CoNil => Zero | CoCons x' xs' => Succ (f x' xs') end. CoFixpoint f (x : CoNat) (xs : CoList) := match x with | Zero => match xs with | CoNil => Zero | CoCons x' xs' => Succ (f x' xs') end | Succ x' => Succ (f x' xs) end. Definition sum (xs : List) := match xs with | CoNil => Zero | CoCons x' xs' => Succ (f x' xs') end. Infix "::" := CoCons (at level 60, right associativity). Lemma test : sumlen (Zero::Zero::(Succ((Succ(Zero))))::CoNil) = Succ(Succ(Succ(Zero))). Proof. intros. rewrite (decomp_eql (sumlen (Zero :: Zero :: Succ (Succ Zero) ::CoNil))). simpl. rewrite (decomp_eql (f Zero (Zero :: Succ (Succ Zero) :: CoNil))). simpl. rewrite (decomp_eql (f Zero (Succ (Succ Zero) :: CoNil))). simpl. rewrite (decomp_eql (f (Succ (Succ Zero)) CoNil)). simpl. rewrite (decomp_eql (f (Succ Zero) CoNil)). simpl. rewrite (decomp_eql (f Zero CoNil)). simpl. g = (% x'. (% xs'. (case x' of | Succ(x') => Succ(((g x') xs')) | Zero => (f xs')))); f = (% xs. (case xs of | Cons(x',xs') => case x' of | Zero => Succ(f xs') | Succ(x') => Succ(Succ(g x' xs')) | Nil => Zero));
Formal statement is: proposition Lim_within: "(f \<longlongrightarrow> l) (at a within S) \<longleftrightarrow> (\<forall>e >0. \<exists>d>0. \<forall>x \<in> S. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e)" Informal statement is: A function $f$ converges to $l$ at $a$ within $S$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in S$, if $0 < |x - a| < \delta$, then $|f(x) - l| < \epsilon$.
lemma continuous_ge_on_closure: fixes a::real assumes f: "continuous_on (closure s) f" and x: "x \<in> closure(s)" and xlo: "\<And>x. x \<in> s ==> f(x) \<ge> a" shows "f(x) \<ge> a"
[STATEMENT] lemma f_fold_merge: "(\<And>y. y \<in> set xs \<Longrightarrow> f y = f x) \<Longrightarrow> f (fold merge xs x) = f x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>y. y \<in> set xs \<Longrightarrow> f y = f x) \<Longrightarrow> f (fold merge xs x) = f x [PROOF STEP] by (induction xs rule: rev_induct) (auto simp: f_merge)
lemma complete_Int_closed: fixes S :: "'a::metric_space set" assumes "complete S" and "closed t" shows "complete (S \<inter> t)"
using Random """ Arguments: - `f`: Function to be optimized - `g`: Gradient function for `f` - `c`: Constraints function. Evaluates all the constraint equations and return a Vector of values - `x0`: (Vector) Initial position to start from - `n`: (Int) Number of evaluations allowed. Remember `g` costs twice of `f` - `prob`: (String) Name of the problem. So you can use a different strategy for each problem """ function optimize(f, g, c, x0, n, prob) p = squared_sum_penalty_function(c) x_best, xlist = penalty_method(f, p, x0, n) return x_best end function sum_penalty_function(c) f = function(x) ceval = c(x) sum(ceval[ceval .> 0]) end return f end function squared_sum_penalty_function(c) f = function(x) ceval = c(x) sum(ceval[ceval .> 0].^2) end return f end function penalty_method(f, p, x, n; ρ=1, γ=2) numEvalsLeft = n hj_max_eval = 10; xlist = Array{Float64}[] push!(xlist, x) while numEvalsLeft >= hj_max_eval x, evalsUsed, feasFound = hooke_jeeves(f, ρ, p, x, hj_max_eval) push!(xlist, x) numEvalsLeft = numEvalsLeft - evalsUsed ρ *= γ end return x,xlist end function last_feasible_x(currXFeas, x, feasFound, last_x_feas) if currXFeas return x else if !feasFound return x else return last_x_feas end end end basis(i, n) = [k == i ? 1.0 : 0.0 for k in 1 : n] function hooke_jeeves(f, ρ, p, x, maxEval; α=1, γ=0.5) xf = f(x) xp = p(x) y, m = xf + ρ*xp, length(x) evalsUsed = 1 last_x_feas = x if xp==0 feasFound = true currXFeas = true else feasFound = false currXFeas = false end while evalsUsed < maxEval improved = false for i in 1 : m x′ = x + α*basis(i, m) if evalsUsed >= maxEval return last_feasible_x(currXFeas, x, feasFound, last_x_feas), evalsUsed, feasFound end xf′ = f(x′) xp′ = p(x′) y′ = xf′ + ρ*xp′ evalsUsed = evalsUsed + 1 if y′ < y x, y, improved = x′, y′, true if xp′==0 last_x_feas = x feasFound = true currXFeas = true else currXFeas = false end else x′ = x - α*basis(i, m) if evalsUsed >= maxEval return last_feasible_x(currXFeas, x, feasFound, last_x_feas), evalsUsed, feasFound end xf′ = f(x′) xp′ = p(x′) y′ = xf′ + ρ*xp′ evalsUsed = evalsUsed + 1 if y′ < y x, y, improved = x′, y′, true if xp′==0 last_x_feas = x feasFound = true currXFeas = true else currXFeas = false end end end end if !improved α *= γ end end return last_x_feas, evalsUsed, feasFound end
On the morning of February 8 , 1861 , Rector and Totten signed an agreement placing the arsenal in the hands of state officials . That afternoon , the citizen militia marched to the arsenal with Governor Rector at its head . All of the federal troops had left at this point , except Totten who had stayed behind to listen to the Governor 's speech and to hand the arsenal over in person .
% % BUS 314: Resourcing New Ventures - A Course Overview % Section: % % Author: Jeffrey Leung % \section{} \label{sec:} \begin{easylist} & \textbf{:} \end{easylist} \clearpage
import torch from torch import nn from torch import Tensor from collections import OrderedDict import numpy as np class GetDensity(torch.nn.Module): def __init__(self,rs,inta,cutoff,nipsin,norbit): super(GetDensity,self).__init__() ''' rs: tensor[ntype,nwave] float inta: tensor[ntype,nwave] float nipsin: np.array/list int cutoff: float ''' self.rs=nn.parameter.Parameter(rs) self.inta=nn.parameter.Parameter(inta) self.register_buffer('cutoff', torch.Tensor([cutoff])) self.register_buffer('nipsin', torch.tensor([nipsin])) npara=[1] index_para=torch.tensor([0],dtype=torch.long) for i in range(1,nipsin): npara.append(int(3**i)) index_para=torch.cat((index_para,torch.ones((npara[i]),dtype=torch.long)*i)) self.register_buffer('index_para',index_para) # index_para: Type: longTensor,index_para was used to expand the dim of params # in nn with para(l) # will have the form index_para[0,|1,1,1|,2,2,2,2,2,2,2,2,2|...npara[l]..\...] self.params=nn.parameter.Parameter(torch.ones_like(self.rs)) def gaussian(self,distances,species_): # Tensor: rs[nwave],inta[nwave] # Tensor: distances[neighbour*numatom*nbatch,1] # return: radial[neighbour*numatom*nbatch,nwave] distances=distances.view(-1,1) radial=torch.empty((distances.shape[0],self.rs.shape[1]),dtype=distances.dtype,device=distances.device) for itype in range(self.rs.shape[0]): mask = (species_ == itype) ele_index = torch.nonzero(mask).view(-1) if ele_index.shape[0]>0: part_radial=torch.exp(-self.inta[itype:itype+1]*torch.square \ (distances.index_select(0,ele_index)-self.rs[itype:itype+1])) radial.masked_scatter_(mask.view(-1,1),part_radial) return radial def cutoff_cosine(self,distances): # assuming all elements in distances are smaller than cutoff # return cutoff_cosine[neighbour*numatom*nbatch] return torch.square(0.5 * torch.cos(distances * (np.pi / self.cutoff)) + 0.5) def angular(self,dist_vec,f_cut): # Tensor: dist_vec[neighbour*numatom*nbatch,3] # return: angular[neighbour*numatom*nbatch,npara[0]+npara[1]+...+npara[ipsin]] totneighbour=dist_vec.shape[0] dist_vec=dist_vec.permute(1,0).contiguous() orbital=f_cut.view(1,-1) angular=torch.empty(self.index_para.shape[0],totneighbour,dtype=dist_vec.dtype,device=dist_vec.device) angular[0]=f_cut num=1 for ipsin in range(1,int(self.nipsin[0])): orbital=torch.einsum("ji,ki -> jki",orbital,dist_vec).reshape(-1,totneighbour) angular[num:num+orbital.shape[0]]=orbital num+=orbital.shape[0] return angular def forward(self,cart,neigh_list,shifts,species): """ # input cart: coordinates (nbatch*numatom,3) # input shifts: coordinates shift values (unit cell) # input numatoms: number of atoms for each configuration # atom_index: neighbour list indice # species: indice for element of each atom """ numatom=cart.shape[0] neigh_species=species.index_select(0,neigh_list[1]) selected_cart = cart.index_select(0, neigh_list.view(-1)).view(2, -1, 3) dist_vec = selected_cart[0] - selected_cart[1]-shifts distances = torch.linalg.norm(dist_vec,dim=-1) orbital = torch.einsum("ji,ik -> ijk",self.angular(dist_vec,self.cutoff_cosine(distances)),self.gaussian(distances,neigh_species)) orb_coeff=self.params.index_select(0,species) density=self.obtain_orb_coeff(0,numatom,orbital,neigh_list,orb_coeff) return density def obtain_orb_coeff(self,iteration:int,numatom:int,orbital,neigh_list,orb_coeff): expandpara=orb_coeff.index_select(0,neigh_list[1]) worbital=torch.einsum("ijk,ik ->ijk", orbital,expandpara) sum_worbital=torch.zeros((numatom,orbital.shape[1],self.rs.shape[1]),dtype=orb_coeff.dtype,device=orb_coeff.device) sum_worbital=torch.index_add(sum_worbital,0,neigh_list[0],worbital) density=torch.zeros(numatom,self.nipsin[0],self.rs.shape[1],dtype=orbital.dtype,device=orbital.device) density=torch.index_add(density,1,self.index_para,torch.square(sum_worbital)).view(numatom,-1) return density
This internet site contains data about Hobart Sheds Garages Kit Properties. By ticking this box I confirm I wish to get communications and promotional provides from Sheds and Residences. Design and style freedom, to easily make optimum architectural types to suit client demands and nearby developing situations. Our large range of sheds, kit homes and industrial buildings are created from excellent BlueScope Steel and are versatile in style making certain you get the most effective steel developing for your property. In the back pages of the 1921 Sears Contemporary Properties catalog, you will locate a web page devoted to their garages. Our sheds incorporate structural members created from GALVASPAN® with a minimum of 450MPa cold-rolled sections and our steel framed properties are manufactured from TRUECORE® steel. While secrets of the mattress industry how to save 50 or more we presently do not have a shop on the ground in this location, our nearest Sheds n Houses team can function with you more than the telephone to design and style a steel developing to suit your application. Quotes can be produced in a matter of minutes, and this will be for a developing that is engineered to suit your property and certified by ShedSafe. Some constructing departments demand therapy to your foundation for termites just before building, but section R202 of the International Residential Code states that steel framing is a termite resistant material”. If it really is a high quality steel building you are looking for your house in Warwick, then get in touch with Sheds n Properties. We provide only the highest top quality steel structures made from BlueScope Steel. Notice that the reduced left garage is developed to match the Sears Alhambra. Two of the Sears garages” shown under are almost certainly custom-built structures, created (and constructed) just after negotiating your carpet worth the property, and intended to mirror the design components of the existing property. Call 1800 764 764 and to begin the design process for your new steel shed, garage or kit dwelling for your web site in Warwick. This 1919 specialty catalog was devoted to the kit garages sold by Sears. This website includes facts about Hobart Sheds Garages Kit Houses. Sheds n Houses is a single of Australia’s leading suppliers of premium BlueScope Steel steel kit buildings, houses, garages and sheds. This indicates we can design and style the finest sheds and steel structures for your site. Sturdy, light-weight: GreenTerraHomes uses 16-18 gauge steel, 30% thicker than most other steel frames in Canadian structures. This 1919 specialty catalog was devoted to the kit garages sold by Sears. The look of their kit garages had changed pretty a bit by the 1938 Sears Contemporary Homes catalog. This saves time and money, and some trades actually choose to work on steel frames for the reason that they do not have to pack out, or plane off and compensate for warps, twists and knots. Identifying a Sears kit garage” is far a lot more complicated than identifying kit properties, since they are such basic structures. In the back pages of the 1921 Sears Modern day Residences catalog, you are going to come across a page devoted to their garages. Our sheds incorporate structural members made from GALVASPAN® with a minimum of 450MPa cold-rolled sections and our steel framed homes are manufactured from TRUECORE® steel. Whilst we currently do not have a store on the ground in this region, our nearest Sheds n Properties group can operate with you more than the phone to style a steel constructing to suit your application. By ticking this box I confirm I wish to receive communications and promotional presents from Sheds and Homes. Design freedom, to simply create optimum architectural types to suit client wants and local developing circumstances. Our big variety of sheds, kit residences and industrial buildings are made from quality BlueScope Steel and are flexible in design and style guaranteeing you get the very best steel constructing for your home. Strong, light-weight: GreenTerraHomes utilizes 16-18 gauge steel, 30% thicker than most other steel frames in Canadian structures. Notice that the reduce left garage is developed to match the Sears Alhambra.
The degree of an integer is zero.
def test_perfect_model(): import numpy as np from pysad.models import PerfectModel from pysad.utils import fix_seed fix_seed(61) model = PerfectModel() y1 = np.random.randint(0, 2, 100) y = np.random.randint(0, 2, 100) X = np.random.rand(100) y_pred = model.fit_score(X, y) print(y_pred) assert np.all(np.isclose(y, y_pred)) assert not np.all(np.isclose(y1, y_pred))
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.NatMinusOne.Base where open import Cubical.Core.Primitives open import Cubical.Data.Nat open import Cubical.Data.Empty open import Cubical.Data.Int.Base using (ℤ; pos; negsuc; -_) record ℕ₋₁ : Type₀ where constructor -1+_ field n : ℕ pattern neg1 = -1+ zero pattern ℕ→ℕ₋₁ n = -1+ (suc n) 1+_ : ℕ₋₁ → ℕ 1+_ (-1+ n) = n suc₋₁ : ℕ₋₁ → ℕ₋₁ suc₋₁ (-1+ n) = -1+ (suc n) -- Natural number and negative integer literals for ℕ₋₁ open import Cubical.Data.Nat.Literals public instance fromNatℕ₋₁ : FromNat ℕ₋₁ fromNatℕ₋₁ = record { Constraint = λ _ → ⊤ ; fromNat = ℕ→ℕ₋₁ } instance negativeℕ₋₁ : Negative ℕ₋₁ negativeℕ₋₁ = record { Constraint = λ { (suc (suc _)) → ⊥ ; _ → ⊤ } ; fromNeg = λ { zero → 0 ; (suc zero) → neg1 } }
Anderson is known for films set in the San Fernando Valley with realistically flawed and desperate characters . Among the themes dealt with in Anderson 's films are dysfunctional familial relationships , alienation , surrogate families , regret , loneliness , destiny , the power of forgiveness , and ghosts of the past . Anderson makes frequent use of repetition to build emphasis and thematic consistency . In Boogie Nights , Magnolia , Punch Drunk Love and The Master , the phrase " I didn 't do anything " is used at least once , developing themes of responsibility and denial . Anderson 's films are known for their bold visual style which includes stylistic trademarks such as constantly moving camera , steadicam @-@ based long takes , memorable use of music , and multilayered audiovisual imagery . Anderson also tends to reference the Book of Exodus , either explicitly or subtly , such as in recurring references to Exodus 8 : 2 in Magnolia , which chronicles the plague of frogs , culminating with the literal raining of frogs in the film 's climax , or the title and themes in There Will Be Blood , a phrase that can be found in Exodus 7 : 19 , which details the plague of blood .
program gw_params c c used to calculate gwflow_coef and gwstor_init parameters for PRMS c real qobs(100,366),qn(100,366) real bQ0(3,100),bQ1(3,100) real ra(1000),flow,flowlow(100),lowflow real darea(100) integer tlow(100),qdate(44000),k,iro,itmx,itmn,ipan,isol integer gagebeg(100),gageend(100) integer WY(100),flag(100) character header*60,input*25,nme*8,abbrev(100)*8 real KK,t,gwflow_coef(100),gwstor_init(100),Q0(100),Q1(100) real t0(100),t1(100),qmth(100,12) real base_gwflow(3,100),base_gwstor(3,100) real X(400),Y(400),qall(44000),baseOBS(44000,3) integer qnum(44000),numq(100,12),YRbeg(100),YRend(100) character state(100)*2,name(100)*20,prms_file*20 real QdayMEAN(3,366),QdayNUM(366) real ppt(100),tmax(100),tmin(100),qdat(100,40000) real sol(100),pan(100) integer year(40000),month(40000),day(40000),ngage c-------------------------------------------------------------------- iro=0 open(59,file='gwflow_params',status='replace') open(58,file='gwstor_params',status='replace') open(89,file='gw_params.LUCA',status='replace') write(89,164) 164 format('abbrev gwflow_coef MIN MAX', . ' gwstor_init MIN MAX') c ---------------- close(40) print *,'Enter name of PRMS input data file>' read(*,*)prms_file print *,'PRMS data file is: ',prms_file open(40,file=prms_file,status='old') 54 read(40,4)header 4 format(a60) if(header(1:10).eq.'##########')go to 55 if(header(28:33).eq.'runoff')then print *,header(3:60) iro=iro+1 abbrev(iro)=header(19:26) end if if(header(1:4).eq.'tmax')print *,header if(header(1:4).eq.'tmin')print *,header if(header(1:4).eq.'prec')print *,header if(header(1:4).eq.'solr')print *,header if(header(1:4).eq.'pan_')print *,header if(header(1:4).eq.'form')print *,header if(header(1:4).eq.'runo')print *,header if(header(1:4).eq.'rain')print *,header go to 54 55 continue print *,'Enter # tmax>' read(*,*)ntmx print *,'Enter # tmin>' read(*,*)ntmn print *,'Enter # precip>' read(*,*)nppt print *,'Enter # solrad>' read(*,*)nsol print *,'Enter # pan_evap>' read(*,*)npan print *,'Enter # runoff>' read(*,*)ngage do i=1,ngage print *,'Gage ',i,' ',abbrev(i),' Enter area (in km**2)>' read(*,*)darea(i) end do do i=1,ngage print *,'Gage ',i,' ',abbrev(i),' area (km**2)=',darea(i) gagebeg(i)=0 gageend(i)=0 end do j=1 56 read(40,*,end=57)year(j),month(j),day(j),i1,i2,i3, . (tmax(i),i=1,ntmx), . (tmin(i),i=1,ntmn), . (ppt(i),i=1,nppt), . (sol(i),i=1,nsol), . (pan(i),i=1,npan), . (qdat(i,j),i=1,ngage) do i=1,ngage if(qdat(i,j).gt.0.0)then if(gagebeg(i).eq.0)gagebeg(i)=j gageend(i)=j end if end do j=j+1 go to 56 57 idays=j-1 close(40) do i=1,ngage i1=gagebeg(i) i2=gageend(i) print *,'Gage ',i,' ',abbrev(i),year(i1),month(i1),day(i1), . ' - ',year(i2),month(i2),day(i2) end do c ================ c =============================================== do ibas=1,ngage i1=gagebeg(ibas) i2=gageend(ibas) print *,'abbrev=',abbrev(ibas) c =============================================== do i=1,100 WY(i)=0 YRbeg(i)=0 YRend(i)=0 tlow(i)=-999 flowlow(i)=-999.0 do j=1,366 qobs(i,j)=-999. qn(i,j)=0. end do end do do i=1,100 do m=1,12 qmth(i,m)=0.0 numq(i,m)=0 end do end do do i=1,366 QdayMEAN(1,i)=99999999. QdayMEAN(2,i)=0.0 QdayMEAN(3,i)=-999. QdayNUM(i)=0.0 end do c ================ c drainage area is in km**2 -- convert to ft**2 area=darea(ibas)*10760000.0 c----------------------------------------------------- c----------------------------------------------------- c----------------------------------------------------- ibeg=1001 c ny=0 n=0 nyr=0 iflag=0 do 11 j=i1,i2 qo=qdat(ibas,j) iy=year(j) im=month(j) nd=day(j) idate=(im*100)+nd if(iflag.eq.0)then if(idate.eq.ibeg)iflag=1 end if if(iflag.eq.0)go to 11 c if(qo.lt.0.0)then print *,abbrev(ibas),iy,im,nd,qo end if c n=n+1 if(idate.eq.ibeg)then nyr=nyr+1 YRbeg(nyr)=n ny=0 end if if(idate.eq.0930)then YRend(nyr)=n WY(nyr)=iy end if c if(nyr.eq.0)then print *,'nyr=0' stop end if c ny=ny+1 c if(qo.ge.0.0)then QdayMEAN(2,ny)=QdayMEAN(2,ny)+qo if(QdayMEAN(1,ny).gt.qo)QdayMEAN(1,ny)=qo if(QdayMEAN(3,ny).lt.qo)QdayMEAN(3,ny)=qo QdayNUM(ny)=QdayNUM(ny)+1. c numq(nyr,im)=numq(nyr,im)+1 qmth(nyr,im)=qmth(nyr,im)+qo end if c qobs(nyr,ny)=qo qn(nyr,ny)=n qall(n)=qo qnum(n)=ny c qdate(n)=idate+(iy*10000) c c ---------------- 11 continue ndays=n print *,qdate(n),' =final DATE' c do i=1,366 QdayMEAN(2,i)=QdayMEAN(2,i)/QdayNUM(i) end do c do n=1,nyr do m=1,12 qmth(n,m)=qmth(n,m)/float(numq(n,m)) end do end do c c ---------------------------------------------- c sort and find low flow values for year: do i=1,nyr n=0 c do j=20,366 if(qobs(i,j).gt.0.0)then n=n+1 ra(n)=qobs(i,j) end if end do ny=n if(ny.gt.30)then call sort(ny,ra) flowlow(i)=ra(1) else flowlow(i)=-9.8 tlow(i)=0 end if end do c do i=1,nyr ijk=0 do j=20,366 if(qobs(i,j).eq.flowlow(i))then tlow(i)=qn(i,j) ijk=1 c ---------------------------------------- if(j.ge.365)then print *,'look into next year for low flow' n=i+1 if(n.gt.nyr)go to 333 q=flowlow(i) c do ij=1,100 if(qobs(n,ij).le.0.0)go to 333 if(qobs(n,ij).le.q)then tlow(i)=qn(n,ij) q=qobs(n,ij) else go to 333 end if end do c 333 continue print *,'#=',ij-1,flowlow(i),(qobs(n,ii),ii=1,ij-1) end if c ---------------------------------------- end if end do print *,flowlow(i),i end do c c ---------------------------------------------- c get base flow separation using hysep (part) program DA=darea(ibas) call PART(qall,ndays,baseOBS,DA) c c c================================================================== c now go thru each year and find lowest flow (Qlow) c and count backward until flow is greater than Qlow*2 do i=1,nyr Q0(i)=-999.9 Q1(i)=-999.9 t0(i)=-999. t1(i)=-999. do k=1,3 bQ0(k,i)=-999. bQ1(k,i)=-999. end do gwflow_coef(i)=-999.9 gwstor_init(i)=-999.9 do k=1,3 base_gwflow(k,i)=-999.9 base_gwstor(k,i)=-999.9 end do end do c xcoef=0.0 xinit=0.0 nump=0 c ------------ do 5555 i=1,nyr n=tlow(i) Qt=qall(n) if(Qt.le.0.0)go to 5555 c ------------ num=0 nn=n-100 if(nn.lt.0)nn=1 c look for point where baseflow is no longer increasing c do j=n,nn,-1 c if((baseOBS(j,1)*2.0).lt.baseOBS(j+1,1))go to 444 if((baseOBS(j,2)*2.0).lt.baseOBS(j+1,2))go to 444 if((baseOBS(j,3)*2.0).lt.baseOBS(j+1,3))go to 444 c if(qall(j).gt.(baseOBS(j,1)*1.65))go to 444 if(qall(j).gt.(baseOBS(j,2)*1.65))go to 444 if(qall(j).gt.(baseOBS(j,3)*1.65))go to 444 c num=num+1 X(num)=j Y(num)=qall(j) end do 444 continue print *,'num=',num if(num.lt.15)go to 555 c MWT=0 NDATA=num c call FIT(X,Y,NDATA,MWT,A,B,SIGA,SIGB,CHI2,Q) c Y = A + BX c c now use line to get Qo and Qt iflag=0 t0(i)=X(num) t1(i)=X(1) Q0(i)=A + (B*t0(i)) Q1(i)=A + (B*t1(i)) if(Q0(i).le.0.0)Q0(i)=0.000001 if(Q1(i).le.0.0)Q1(i)=0.000001 c if(Q1(i).gt.Q0(i))iflag=3 if(iflag.eq.0)then t = t1(i)-t0(i)+1 KK = (log(Q0(i)/Q1(i)))/(t) gwflow_coef(i) = KK xcoef=xcoef+gwflow_coef(i) Qinches=Q0(i)*(86400.0/area)*12.0 gwstor_init(i) = Qinches/gwflow_coef(i) xinit=xinit+gwstor_init(i) nump=nump+1 c now figure out params based on baseflow calc's n1=X(1) n0=X(num) c ================= c ================= do k=1,3 bQ0(k,i)=baseOBS(n0,k) bQ1(k,i)=baseOBS(n1,k) nflag=0 c ............................................ if(bQ1(k,i).gt.bQ0(k,i))then nflag=1 print *,'k=',k print *,(baseOBS(nn,k),nn=n0,n1) xx=float(num)/3.0 nx=xx do nn=1,nx if(baseOBS(n0+nn,k).gt.bQ1(k,i))then bQ0(k,i)=baseOBS(n0+nn,k) t=t-nn print *,'Found new bQ0 ',k,i,nn nflag=2 end if if(nflag.eq.2)go to 543 end do print *,'never figured it out',num,nx,bQ1(k,i) 543 continue end if c ............................................ if(nflag.eq.1)then base_gwflow(k,i)=-99. base_gwstor(k,i)=-99. else bQ0(k,i)=bQ0(k,i)+0.000011 bQ1(k,i)=bQ1(k,i)+0.00001 base_gwflow(k,i)=(log(bQ0(k,i)/bQ1(k,i)))/(t) Qinches=bQ0(k,i)*(86400.0/area)*12.0 base_gwstor(k,i)=Qinches/base_gwflow(k,i) end if c end do c ================= c ================= end if c ================= c 555 continue c ------------ 5555 continue c ------------ c if(nump.gt.0)then xgwflow=xcoef/float(nump) xgwstor=xinit/float(nump) else print *,'No calc made ',abbrev(ibas) stop xgwflow=0.001 xgwstor=1.0 do i=1,nyr do k=1,3 base_gwflow(k,i)=0.001 base_gwstor(k,i)=1.0 end do end do end if c c if the baseflow parameters differ greatly from the i c observed -- don't use that year. do i=1,nyr flag(i)=0 do k=1,3 c if((gwflow_coef(i)*2.0).lt.base_gwflow(k,i))flag(i)=flag(i)+1 if((base_gwflow(k,i)*2.0).lt.gwflow_coef(i))flag(i)=flag(i)+1 c end do end do c c find the year that is the closest to the mean c and print the output to a file c xdiff=10000. do i=1,nyr diff=abs(gwflow_coef(i)-xgwflow) if(xdiff.gt.diff)then xdiff=diff numyr=i end if end do c c write out the data for chosen year qmax=0.0 i=numyr idate=qdate(tlow(i)) nx1=YRbeg(i) nx2=YRend(i) if(nx1.lt.0)nx1=1 nn=0 do j=nx1,nx2 nn=nn+1 c write(49,149)abbrev(ibas),j,qall(j), c . QdayMEAN(1,nn),QdayMEAN(2,nn),QdayMEAN(3,nn), c . (baseOBS(j,k),k=1,3) 149 format(a5,i5,1x,8(f9.1,1x)) if(qmax.lt.qall(j))qmax=qall(j) end do c write(79,139)abbrev(ibas),qmax,gwflow_coef(i),gwstor_init(i), c . nx1,nx2,idate,WY(i) 139 format('./basinGW-plots.sc ', . a5,1x,f9.0,1x,f7.4,1x,f7.3,1x,2i6,1x, . i8,1x,i4) c cwrite(69,*)abbrev(ibas),t0(numyr),Q0(numyr) c write(69,*)abbrev(ibas),t1(numyr),Q1(numyr) do k=1,3 c write(68,*)abbrev(ibas),k,t0(numyr),bQ0(k,numyr) c write(68,*)abbrev(ibas),k,t1(numyr),bQ1(k,numyr) end do c xmnGW=0.0 xmaxGW=0.0 xminGW=1.0 xmnST=0.0 xmaxST=0.0 xminST=20.0 nGW=0 nST=0 do i=1,nyr if(flag(i).lt.3)then if(gwflow_coef(i).ge.0.0)then c ---------------------------- write(59,122)abbrev(ibas),WY(i),gwflow_coef(i), . (base_gwflow(k,i),k=1,3),flag(i) write(58,122)abbrev(ibas),WY(i),gwstor_init(i), . (base_gwstor(k,i),k=1,3) if(gwflow_coef(i).lt.xminGW)xminGW=gwflow_coef(i) if(gwstor_init(i).lt.xminST)xminST=gwstor_init(i) xmnGW=xmnGW+gwflow_coef(i) xmnST=xmnST+gwstor_init(i) nGW=nGW+1 nST=nST+1 do k=1,3 if(base_gwflow(k,i).ge.0.0)then if(base_gwflow(k,i).lt.xminGW) . xminGW=base_gwflow(k,i) if(base_gwflow(k,i).gt.xmaxGW)xmaxGW=base_gwflow(k,i) xmnGW=xmnGW+base_gwflow(k,i) nGW=nGW+1 end if c if(base_gwstor(k,i).ge.0.0)then if(base_gwstor(k,i).lt.xminST)xminST=base_gwstor(k,i) if(base_gwstor(k,i).gt.xmaxST)xmaxST=base_gwstor(k,i) xmnST=xmnST+base_gwstor(k,i) nST=nST+1 end if end do c ---------------------------- end if end if end do xmnGW=xmnGW/float(nGW) xmnST=xmnST/float(nGW) if(xmaxST.gt.20.0)xmaxST=20.0 write(89,165)abbrev(ibas),xmnGW,xminGW,xmaxGW, . xmnST,xminST,xmaxST 165 format(a8,1x,6f11.5) 122 format(a8,1x,i4,1x,4(f10.5,1x),i2) c--------------------------------------- c--------------------------------------- c end do close(49) close(59) close(69) c stop 177 format(i8,1x,12(f7.0,1x)) end SUBROUTINE sort(N,RA) real RA(1000) L=N/2+1 IR=N 10 CONTINUE IF(L.GT.1)THEN L=L-1 RRA=RA(L) ELSE RRA=RA(IR) RA(IR)=RA(1) IR=IR-1 IF(IR.EQ.1)THEN RA(1)=RRA RETURN ENDIF ENDIF I=L J=L+L 20 IF(J.LE.IR)THEN IF(J.LT.IR)THEN IF(RA(J).LT.RA(J+1))J=J+1 ENDIF IF(RRA.LT.RA(J))THEN RA(I)=RA(J) I=J J=J+J ELSE J=IR+1 ENDIF GO TO 20 ENDIF RA(I)=RRA GO TO 10 END c SUBROUTINE FIT(X,Y,NDATA,MWT,A,B,SIGA,SIGB,CHI2,Q) real X(400),Y(400),SIG(400) SX=0. SY=0. ST2=0. B=0. IF(MWT.NE.0) THEN SS=0. DO 11 I=1,NDATA WT=1./(SIG(I)**2) SS=SS+WT SX=SX+X(I)*WT SY=SY+Y(I)*WT 11 CONTINUE ELSE DO 12 I=1,NDATA SX=SX+X(I) SY=SY+Y(I) 12 CONTINUE SS=FLOAT(NDATA) ENDIF SXOSS=SX/SS IF(MWT.NE.0) THEN DO 13 I=1,NDATA T=(X(I)-SXOSS)/SIG(I) ST2=ST2+T*T B=B+T*Y(I)/SIG(I) 13 CONTINUE ELSE DO 14 I=1,NDATA T=X(I)-SXOSS ST2=ST2+T*T B=B+T*Y(I) 14 CONTINUE ENDIF B=B/ST2 A=(SY-SX*B)/SS SIGA=SQRT((1.+SX*SX/(SS*ST2))/SS) SIGB=SQRT(1./ST2) CHI2=0. IF(MWT.EQ.0) THEN DO 15 I=1,NDATA CHI2=CHI2+(Y(I)-A-B*X(I))**2 15 CONTINUE Q=1. SIGDAT=SQRT(CHI2/(NDATA-2)) SIGA=SIGA*SIGDAT SIGB=SIGB*SIGDAT ELSE DO 16 I=1,NDATA CHI2=CHI2+((Y(I)-A-B*X(I))/SIG(I))**2 16 CONTINUE Q=GAMMQ(0.5*(NDATA-2),0.5*CHI2) ENDIF RETURN END c FUNCTION GAMMQ(A,X) IF(X.LT.0..OR.A.LE.0.)stop IF(X.LT.A+1.)THEN CALL GSER(GAMSER,A,X,GLN) GAMMQ=1.-GAMSER ELSE CALL GCF(GAMMCF,A,X,GLN) GAMMQ=GAMMCF ENDIF RETURN END c SUBROUTINE GCF(GAMMCF,A,X,GLN) PARAMETER (ITMAX=100,EPS=3.E-7) GLN=GAMMLN(A) GOLD=0. A0=1. A1=X B0=0. B1=1. FAC=1. DO 11 N=1,ITMAX AN=FLOAT(N) ANA=AN-A A0=(A1+A0*ANA)*FAC B0=(B1+B0*ANA)*FAC ANF=AN*FAC A1=X*A0+ANF*A1 B1=X*B0+ANF*B1 IF(A1.NE.0.)THEN FAC=1./A1 G=B1*FAC IF(ABS((G-GOLD)/G).LT.EPS)GO TO 1 GOLD=G ENDIF 11 CONTINUE print *,'A too large, ITMAX too small' stop 1 GAMMCF=EXP(-X+A*ALOG(X)-GLN)*G RETURN END c SUBROUTINE GSER(GAMSER,A,X,GLN) PARAMETER (ITMAX=100,EPS=3.E-7) GLN=GAMMLN(A) IF(X.LE.0.)THEN IF(X.LT.0.)stop GAMSER=0. RETURN ENDIF AP=A SUM=1./A DEL=SUM DO 11 N=1,ITMAX AP=AP+1. DEL=DEL*X/AP SUM=SUM+DEL IF(ABS(DEL).LT.ABS(SUM)*EPS)GO TO 1 11 CONTINUE print *,'A too large, ITMAX too small' stop 1 GAMSER=SUM*EXP(-X+A*LOG(X)-GLN) RETURN END c FUNCTION GAMMLN(XX) REAL*8 COF(6),STP,HALF,ONE,FPF,X,TMP,SER DATA COF,STP/76.18009173D0,-86.50532033D0,24.01409822D0, * -1.231739516D0,.120858003D-2,-.536382D-5,2.50662827465D0/ DATA HALF,ONE,FPF/0.5D0,1.0D0,5.5D0/ X=XX-ONE TMP=X+FPF TMP=(X+HALF)*LOG(TMP)-TMP SER=ONE DO 11 J=1,6 X=X+ONE SER=SER+COF(J)/X 11 CONTINUE GAMMLN=TMP+LOG(STP*SER) RETURN END c subroutine PART(Q1D,ndays,B1D,DA) C BY AL RUTLEDGE, USGS 2002 VERSION c modified by L. Hay March 2003 c C THIS PROGRAM PERFORMS STREAMFLOW PARTITIONING (A FORM OF HYDROGRAPH C SEPARATION) USING A DAILY-VALUES RECORD OF STREAMFLOW. THIS AND C OTHER PROGRAMS ARE DOCUMENTED IN USGS WRIR 98-4148. THIS 2002 C VERSION OF THE PROGRAM READS DAILY-VALUES FROM AN MMS output file C real Q1D(44000) real B1D(44000,3) INTEGER ITBASE INTEGER TBASE1 REAL QMININT CHARACTER*1 ALLGW(44000) REAL DA C C-------------------------- INITIALIZE VARIABLES : ------------------- ICOUNT=ndays C DO 11 I=1,44000 ALLGW(I)= ' ' DO 11 IBASE=1,3 B1D(I,IBASE)= -888.0 11 CONTINUE C 15 FORMAT (1I5,4F11.2,5X,3I4) C C C OBTAIN DRAINAGE AREA(DA), THEN CALCULATE THE REQUIREMENT OF ANTECEDENT C RECESSION (DA**0.2) C c convert DA from km**2 to miles**2 DA=DA*0.3861 C ----DETERMINE THREE INTEGER VALUES FOR THE REQMT. OF ANTEC. RECESSION ---- C -----(ONE THAT IS LESS THAN, AND TWO THAT ARE MORE THAN DA**0.2 )--------- C TBASE1= INT(DA**0.2) IF(TBASE1.GT.DA**0.2) THEN TBASE1=TBASE1-1 END IF IF(DA**0.2-TBASE1.GT.1.0) THEN WRITE (*,*) 'PROBLEMS WITH CALCULATION OF REQUIREMENT OF ' WRITE (*,*) 'ANTECEDENT RECESSION. ' GO TO 1500 END IF C THRESH= 0.1 C C -------- REPEAT FOR EACH OF THE 3 VALUES ---------- C -------- FOR THE REQUIREMENT OF ANTECEDENT RECESSION -------------- C ITBASE= TBASE1-1 DO 500 IBASE=1,3 ITBASE= ITBASE+1 DO 185 I=1,ICOUNT 185 ALLGW(I)= ' ' C C---DESIGNATE BASEFLOW=STREAMFLOW ON DATES PRECEEDED BY A RECESSION PERIOD --- C---AND ON DATES OF ZERO STREAMFLOW. SET VARIABLE ALLGW='*' ON THESE DATES.--- C DO 200 I= ITBASE+1, ICOUNT INDICAT=1 IBACK= 0 190 IBACK= IBACK + 1 IF(Q1D(I-IBACK).LT.Q1D(I-IBACK+1)) INDICAT=0 IF(IBACK.LT.ITBASE) GO TO 190 IF(INDICAT.EQ.1) THEN B1D(I,IBASE)= Q1D(I) ALLGW(I)= '*' ELSE B1D(I,IBASE)= -888.0 ALLGW(I)= ' ' END IF 200 CONTINUE DO 220 I=1,ITBASE IF(Q1D(I).EQ.0.0) THEN B1D(I,IBASE)= 0.0 ALLGW(I)= '*' END IF 220 CONTINUE C C ------ DURING THESE RECESSION PERIODS, SET ALLGW = ' ' IF THE DAILY ------ C ---------- DECLINE OF LOG Q EXCEEDS THE THRESHOLD VALUE: ----------------- C I=1 221 I=I+1 IF (I.EQ.ICOUNT) GO TO 224 IF (ALLGW(I).NE.'*') GO TO 221 IF (ALLGW(I+1).NE.'*') GO TO 221 IF (Q1D(I).EQ.0.0.OR.Q1D(I+1).EQ.0.0) GO TO 221 IF (ALLGW(I+1).NE.'*') GO TO 221 IF(Q1D(I).LT.0.0.OR.Q1D(I+1).LT.0.0) GO TO 221 DIFF= ( LOG(Q1D(I)) - LOG(Q1D(I+1)) ) / 2.3025851 IF (DIFF.GT.THRESH) ALLGW(I)= ' ' IF (I+1.LE.ICOUNT) GO TO 221 224 CONTINUE 225 CONTINUE C C ----EXTRAPOLATE BASEFLOW IN THE FIRST FEW DAYS OF THE PERIOD OF INTEREST:---- C J=0 230 J=J+1 IF(ALLGW(J).EQ.' ') GO TO 230 STARTBF= B1D(J,IBASE) DO 240 I=1,J 240 B1D(I,IBASE)= STARTBF C C ---- EXTRAPOLATE BASEFLOW IN LAST FEW DAYS OF PERIOD OF INTEREST: ---------- C J=ICOUNT+1 250 J=J-1 IF(ALLGW(J).EQ.' ') GO TO 250 ENDBF= B1D(J,IBASE) DO 260 I=J,ICOUNT 260 B1D(I,IBASE)= ENDBF C C --------- INTERPOLATE DAILY VALUES OF BASEFLOW FOR PERIODS WHEN ---------- C ------------------------- BASEFLOW IS NOT KNOWN: ------------------------- C C FIND VERY FIRST INCIDENT OF BASEFLOW DATA: 280 CONTINUE I= 0 290 CONTINUE I=I + 1 IF(ALLGW(I).EQ.' ') GO TO 290 C NOW THAT A DAILY BASEFLOW IS FOUND, MARCH C AHEAD TO FIRST GAP IN DATA: 300 CONTINUE IF(B1D(I,IBASE).EQ.0.0) THEN BASE1= -999.0 ELSE IF (B1D(I,IBASE).LT.0.0) THEN C WRITE (*,*) '(B)ARG OF LOG FUNC<0 AT I=', I BASE1= -999.0 ELSE BASE1= LOG(B1D(I,IBASE)) / 2.3025851 END IF END IF I= I + 1 IF(I.GT.ICOUNT) GO TO 350 IF(ALLGW(I).NE.' ') GO TO 300 ITSTART= I-1 C C MARCH THROUGH GAP IN BASEFLOW DATA: ITIME= 1 320 ITIME= ITIME + 1 IF(ITIME+ITSTART.GT.ICOUNT) GO TO 350 IF(ALLGW(ITSTART+ITIME).EQ.' ') GO TO 320 IDAYS= ITIME-1 T2= ITIME IF (B1D(I+IDAYS,IBASE).EQ.0.0) THEN BASE2= -999.0 ELSE IF(B1D(I+IDAYS,IBASE).LT.0.0) THEN C WRITE (*,*) '(C)ARG OF LOG FUNC<0 AT I=', I+DAYS BASE2= -999.0 ELSE BASE2= LOG(B1D(I+IDAYS,IBASE)) / 2.3025851 END IF END IF C C FILL IN ESTIMATED BASEFLOW DATA: C IF(BASE1.EQ.-999.0.OR.BASE2.EQ.-999.0) THEN DO 330 J=1,IDAYS B1D(J+ITSTART,IBASE)=0.0 330 CONTINUE ELSE DO 340 J=1,IDAYS T=J Y= BASE1 + (BASE2-BASE1) * T / T2 B1D(J+ITSTART,IBASE)= 10**Y 340 CONTINUE END IF C I= I + IDAYS IF(I.LE.ICOUNT) GO TO 300 C 350 CONTINUE C C ------ TEST TO FIND OUT IF BASE FLOW EXCEEDS STREAMFLOW ON ANY DAY: ----- C QLOW=0 DO 395 I=1,ICOUNT IF(B1D(I,IBASE).GT.Q1D(I)) QLOW=1 395 CONTINUE IF(QLOW.EQ.0) GO TO 420 C C ------- IF ANY DAYS EXIST WHEN BASE FLOW > STREAMFLOW AND SF=0, ASSIGN C ------- BF=SF, THEN RUN THROUGH INTERPOLATION (ABOVE): C QLOW2=0 DO 397 I=1,ICOUNT IF (B1D(I,IBASE).GT.Q1D(I).AND.Q1D(I).EQ.0.0) THEN QLOW2=1 B1D(I,IBASE)= 0.0 ALLGW(I)= '*' END IF 397 CONTINUE IF (QLOW2.EQ.1) GO TO 225 C C -------- LOCATE INTERVALS OF INTERPOLATED BASEFLOW IN WHICH AT LEAST ------ C -------- ONE BASEFLOW EXCEEDS STREAMFLOW ON THE CORRESPONDING DAY. -------- C -------- LOCATE THE DAY ON THIS INTERVAL OF THE MAXIMUM "BF MINUS SF", ---- C -------- AND ASSIGN BASEFLOW=STREAMFLOW ON THIS DAY. THEN RUN THROUGH ----- C -------- THE INTERPOLATION SCHEME (ABOVE) AGAIN. ------------------------- C I=0 400 CONTINUE I=I+1 IF(B1D(I,IBASE).GT.Q1D(I)) THEN QMININT= Q1D(I) IF (B1D(I,IBASE).LT.0.0.OR.Q1D(I).LT.0.0) THEN C WRITE (*,*) '(D)ARG OF LOG FUNC<0 AT I=', I DELMAX=-999.0 ELSE DELMAX= LOG(B1D(I,IBASE)) - LOG(Q1D(I)) END IF ISEARCH= I IMIN=I 402 CONTINUE ISEARCH= ISEARCH + 1 IF(ALLGW(ISEARCH).NE.' '.OR.B1D(ISEARCH,IBASE).LE. $ Q1D(ISEARCH).OR.ISEARCH.GT.ICOUNT) GO TO 405 IF (B1D(ISEARCH,IBASE).LT.0.0.OR.Q1D(ISEARCH).LT.0.0) THEN C WRITE (*,*) '(E)ARG OF LOG FUNC<0 AT I=', ISEARCH DEL= -999.0 ELSE DEL= LOG(B1D(ISEARCH,IBASE)) - LOG(Q1D(ISEARCH)) END IF IF(DEL.GT.DELMAX) THEN DELMAX=DEL QMININT= Q1D(ISEARCH) IMIN= ISEARCH END IF IF(ALLGW(ISEARCH).EQ.' ') GO TO 402 405 CONTINUE B1D(IMIN,IBASE)= QMININT ALLGW(IMIN)= '*' I= ISEARCH+1 END IF IF(I.LT.ICOUNT) GO TO 400 IF(QLOW.EQ.1) GO TO 225 420 CONTINUE C C C ---------- DETERMINE RANGE OF VALUES FOR STREAMFLOW AND BASEFLOW: ---------- C QMINPI= Q1D(1) QMAXPI= Q1D(1) BMINPI= B1D(1,IBASE) BMAXPI= B1D(1,IBASE) DO 470 I=1,ICOUNT IF(Q1D(I).LT.QMINPI) QMINPI=Q1D(I) IF(Q1D(I).GT.QMAXPI) QMAXPI=Q1D(I) IF(B1D(I,IBASE).LT.BMINPI) BMINPI= B1D(I,IBASE) IF(B1D(I,IBASE).GT.BMAXPI) BMAXPI= B1D(I,IBASE) 470 CONTINUE C 500 CONTINUE C C ------- WRITE DAILY STREAMFLOW AND BASEFLOW FOR ONE OR MORE YEARS: --- c WRITE (12,*)' BASE FLOW FOR EACH' c WRITE (12,*)' REQUIREMENT OF ' c WRITE (12,*)' STREAM ANTECEDENT RECESSION ' c WRITE (12,*)' DAY # FLOW #1 #2 #3' ICNT=0 c DO 840 I=1,ndays c WRITE (12,15) I,Q1D(I),B1D(I,1), c $ B1D(I,2), B1D(I,3) c 840 CONTINUE 845 CONTINUE 1500 CONTINUE CLOSE (10,STATUS='KEEP') CLOSE (12,STATUS='KEEP') CLOSE (13,STATUS='KEEP') CLOSE (15,STATUS='KEEP') CLOSE (16,STATUS='KEEP') RETURN END
theory Unification imports Main begin type_synonym var = nat datatype 'a expression = VAR var | CON 'a "'a expression list" fun vars :: "'a expression \<Rightarrow> var set" where "vars (VAR x) = {x}" | "vars (CON s es) = \<Union> (vars ` set es)" datatype 'a substitution = EMPTY | EXTEND var "'a expression" "'a substitution" primrec subst\<^sub>e :: "var \<Rightarrow> 'a expression \<Rightarrow> 'a expression \<Rightarrow> 'a expression" where "subst\<^sub>e x e' (VAR y) = (if x = y then e' else VAR y)" | "subst\<^sub>e x e' (CON s es) = CON s (map (subst\<^sub>e x e') es)" primrec subst\<^sub>\<Theta> :: "'a substitution \<Rightarrow> var \<Rightarrow> 'a expression" where "subst\<^sub>\<Theta> EMPTY x = VAR x" | "subst\<^sub>\<Theta> (EXTEND y e \<Theta>) x = (if x = y then e else subst\<^sub>e y e (subst\<^sub>\<Theta> \<Theta> x))" primrec subst\<^sub>e\<^sub>\<Theta> :: "'a substitution \<Rightarrow> 'a expression \<Rightarrow> 'a expression" where "subst\<^sub>e\<^sub>\<Theta> \<Theta> (VAR x) = subst\<^sub>\<Theta> \<Theta> x" | "subst\<^sub>e\<^sub>\<Theta> \<Theta> (CON s es) = CON s (map (subst\<^sub>e\<^sub>\<Theta> \<Theta>) es)" type_synonym 'a equation = "'a expression \<times> 'a expression" primrec subst\<^sub>e\<^sub>q\<^sub>n :: "var \<Rightarrow> 'a expression \<Rightarrow> 'a equation \<Rightarrow> 'a equation" where "subst\<^sub>e\<^sub>q\<^sub>n x e' (e\<^sub>1, e\<^sub>2) = (subst\<^sub>e x e' e\<^sub>1, subst\<^sub>e x e' e\<^sub>2)" primrec subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s :: "var \<Rightarrow> 'a expression \<Rightarrow> 'a equation list \<Rightarrow> 'a equation list" where "subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x e' [] = []" | "subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x e' (eq # eqs) = subst\<^sub>e\<^sub>q\<^sub>n x e' eq # subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x e' eqs" function unify' :: "'a equation list \<Rightarrow> 'a substitution option" where "unify' [] = Some EMPTY" | "unify' ((CON s es\<^sub>1, CON t es\<^sub>2) # eqs) = ( if s = t \<and> length es\<^sub>1 = length es\<^sub>2 then unify' (zip es\<^sub>1 es\<^sub>2 @ eqs) else None)" | "unify' ((CON s es, VAR x) # eqs) = unify' ((VAR x, CON s es) # eqs)" | "unify' ((VAR x, t) # eqs) = ( if t = VAR x then unify' eqs else if x \<in> vars t then None else case unify' (subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x t eqs) of None \<Rightarrow> None | Some \<Theta> \<Rightarrow> Some (EXTEND x (subst\<^sub>e\<^sub>\<Theta> \<Theta> t) \<Theta>))" by pat_completeness auto definition unify :: "'a expression \<Rightarrow> 'a expression \<Rightarrow> 'a substitution option" where "unify e\<^sub>1 e\<^sub>2 = unify' [(e\<^sub>1, e\<^sub>2)]" (* unification termination *) (* useless function, useful induction pattern: expression_complete.induct *) fun expression_complete :: "'a expression \<Rightarrow> bool" where "expression_complete (VAR y) = True" | "expression_complete (CON s []) = True" | "expression_complete (CON s (e # es)) = (expression_complete e \<and> expression_complete (CON s es))" (* useless function, useful induction pattern: two_lists.induct *) fun two_lists :: "'a list \<Rightarrow> 'b list \<Rightarrow> bool" where "two_lists [] [] = True" | "two_lists [] (b # bs) = True" | "two_lists (a # as) [] = True" | "two_lists (a # as) (b # bs) = two_lists as bs" fun vars_first :: "'a equation list \<Rightarrow> nat" where "vars_first [] = 0" | "vars_first ((VAR x, t) # eqs) = 1" | "vars_first ((CON s es, t) # eqs) = 2" primrec cons :: "'a expression \<Rightarrow> nat" and conss :: "'a expression list \<Rightarrow> nat" where "cons (VAR x) = 0" | "cons (CON s es) = Suc (conss es)" | "conss [] = 0" | "conss (e # es) = cons e + conss es" primrec vars\<^sub>e\<^sub>q\<^sub>n :: "'a equation \<Rightarrow> var set" where "vars\<^sub>e\<^sub>q\<^sub>n (e\<^sub>1, e\<^sub>2) = vars e\<^sub>1 \<union> vars e\<^sub>2" primrec vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s :: "'a equation list \<Rightarrow> var set" where "vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s [] = {}" | "vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s (eq # eqs) = vars\<^sub>e\<^sub>q\<^sub>n eq \<union> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs" primrec cons\<^sub>e\<^sub>q\<^sub>n :: "'a equation \<Rightarrow> nat" where "cons\<^sub>e\<^sub>q\<^sub>n (e\<^sub>1, e\<^sub>2) = cons e\<^sub>1 + cons e\<^sub>2" primrec cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s :: "'a equation list \<Rightarrow> nat" where "cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s [] = 0" | "cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s (eq # eqs) = cons\<^sub>e\<^sub>q\<^sub>n eq + cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs" lemma [simp]: "x \<notin> vars t \<Longrightarrow> vars (subst\<^sub>e x t e) = (if x \<in> vars e then vars e - {x} \<union> vars t else vars e - {x})" by (induction e rule: expression_complete.induct) auto lemma [simp]: "x \<notin> vars e \<Longrightarrow> subst\<^sub>e x t e = e" by (induction e rule: expression_complete.induct) simp_all lemma [simp]: "vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s (eqs @ eqs') = vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs \<union> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs'" by (induction eqs arbitrary: eqs') auto lemma [simp]: "length es1 = length es2 \<Longrightarrow> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s (zip es1 es2) = \<Union> (vars ` set (es1 @ es2))" by (induction es1 es2 rule: two_lists.induct) auto lemma [simp]: "cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s (eqs @ eqs') = cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs + cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs'" by (induction eqs arbitrary: eqs') auto lemma [simp]: "length es1 = length es2 \<Longrightarrow> cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s (zip es1 es2) = conss es1 + conss es2" by (induction es1 es2 rule: two_lists.induct) auto lemma [simp]: "finite (vars\<^sub>e\<^sub>q\<^sub>n eq)" by (induction eq) simp_all lemma [simp]: "finite (vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs)" by (induction eqs) simp_all lemma [simp]: "x \<notin> vars t \<Longrightarrow> vars\<^sub>e\<^sub>q\<^sub>n (subst\<^sub>e\<^sub>q\<^sub>n x t eq) = (if x \<in> vars\<^sub>e\<^sub>q\<^sub>n eq then vars\<^sub>e\<^sub>q\<^sub>n eq - {x} \<union> vars t else vars\<^sub>e\<^sub>q\<^sub>n eq - {x})" by (induction eq) auto lemma unfold_vars_subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s: "x \<notin> vars t \<Longrightarrow> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s (subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x t eqs) = (if x \<in> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs then vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs - {x} \<union> vars t else vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs - {x})" by (induction eqs) auto lemma [simp]: "x \<notin> vars t \<Longrightarrow> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s (subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x t eqs) \<subset> insert x (vars t \<union> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs)" by (auto simp add: unfold_vars_subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s) lemma [simp]: "x \<notin> vars t \<Longrightarrow> card (vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s (subst\<^sub>e\<^sub>q\<^sub>n\<^sub>s x t eqs)) < card (insert x (vars t \<union> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs))" by (simp add: psubset_card_mono) lemma [simp]: "card (vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs) < card (insert x (vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs)) \<or> card (vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs) = card (insert x (vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs))" by (cases "x \<in> vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s eqs") (simp_all add: insert_absorb) termination unify' by (relation "measures [card o vars\<^sub>e\<^sub>q\<^sub>n\<^sub>s, cons\<^sub>e\<^sub>q\<^sub>n\<^sub>s, length, vars_first]") simp_all end
%% ppval_extrapVal % Below is a demonstration of the features of the |ppval_extrapVal| function %% clear; close all; clc; %% Syntax % |v=ppval_extrapVal(pp,xx,interpLim,extrapVal);| %% Description % UNDOCUMENTED %% Examples % %% % % <<gibbVerySmall.gif>> % % _*GIBBON*_ % <www.gibboncode.org> % % _Kevin Mattheus Moerman_, <[email protected]> %% % _*GIBBON footer text*_ % % License: <https://github.com/gibbonCode/GIBBON/blob/master/LICENSE> % % GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for % image segmentation, image-based modeling, meshing, and finite element % analysis. % % Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>.
/* MIT License Copyright (c) 2021 Shunji Uno <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #include <stdint.h> #include <math.h> #include <float.h> #ifdef MKL #include <mkl.h> #ifdef MKL_SBLAS #include <mkl_spblas.h> #endif /* MKL_SBLAS */ #else #include <cblas.h> #endif /* MKL */ #ifdef SXAT #include <sblas.h> #endif #define DNRM2(N,X) cblas_dnrm2(N,X,1) #define DDOT(N,X,Y) cblas_ddot(N,X,1,Y,1) #define MATRIX_TYPE_INDEX0 (0) #define MATRIX_TYPE_INDEX1 (1) #define MATRIX_TYPE_ASYMMETRIC (0<<4) #define MATRIX_TYPE_SYMMETRIC (1<<4) #define MATRIX_TYPE_LOWER (1<<5) #define MATRIX_TYPE_UPPER (0) #define MATRIX_TYPE_UNIT (1<<6) #define MATRIX_TYPE_NON_UNIT (0) #define MATRIX_TYPE_CSC (0<<8) #define MATRIX_TYPE_CSR (1<<8) #define MATRIX_TYPE_ELLPACK (2<<8) #define MATRIX_TYPE_JAD (3<<8) #define MATRIX_TYPE_DCSC (8<<8) #define MATRIX_TYPE_DCSR (9<<8) #define MATRIX_TYPE_MASK (0xf<<8) #define MATRIX_INDEX_TYPE(A) (((A)->flags)&0xf) #define MATRIX_IS_SYMMETRIC(A) (((A)->flags)&MATRIX_TYPE_SYMMETRIC) #define MATRIX_IS_LOWER(A) (((A)->flags)&MATRIX_TYPE_LOWER) #define MATRIX_IS_UNIT(A) (((A)->flags)&MATRIX_TYPE_UNIT) #define MATRIX_IS_CSC(A) ((((A)->flags)&MATRIX_TYPE_MASK) == MATRIX_TYPE_CSC) #define MATRIX_IS_CSR(A) ((((A)->flags)&MATRIX_TYPE_MASK) == MATRIX_TYPE_CSR) #ifdef __cplusplus extern "C" { #endif typedef struct ellpack_info { int32_t nw; double* COEF; int32_t* ICOL; } ellpack_info_t; typedef struct jad_info { int32_t* perm; int32_t* ptr; int32_t* index; double* value; int32_t maxnzr; } jad_info_t; typedef struct Matrix { int NROWS; int NNZ; uint32_t flags; int* pointers; int* indice; double* values; ellpack_info_t _ellpack; jad_info_t _jad; void* info; #ifdef MKL sparse_matrix_t hdl; #endif #ifdef SXAT sblas_handle_t hdl; #endif #ifdef SSL2 double *w; int *iw; #endif int optimized; } Matrix_t; /* * Generic Matrix operations */ void Matrix_init_generic(Matrix_t *A); void Matrix_free_generic(Matrix_t *A); int Matrix_optimize_generic(Matrix_t *A); int Matrix_MV_generic(const Matrix_t *A, const double alpha, const double* x, const double beta, const double* y, double* z); /* * Architecture dependent Matrix operations (prototype for override) */ void Matrix_init(Matrix_t *A); void Matrix_free(Matrix_t *A); int Matrix_optimize(Matrix_t *A); int Matrix_MV(const Matrix_t *A, const double alpha, const double* x, const double beta, const double* y, double* z); /* * Architecture independent functions */ void Matrix_setMatrixCSR(Matrix_t *A, const int nrows, const int nnz, const int *aptr, const int *aind, const double *aval, const uint32_t flags); Matrix_t* Matrix_duplicate(const Matrix_t* A); int Matrix_convert_index(Matrix_t* A, int base); int Matrix_transpose(Matrix_t* A); int Matrix_extract_symmetric(Matrix_t* A); int Matrix_create_ellpack(Matrix_t* A); int Matrix_create_jad(Matrix_t* A); #ifdef __cplusplus } #endif
From Coq Require Import ZArith. Require Import coqutil.Z.Lia. Require Import coqutil.Z.Lia. Require Import Coq.Lists.List. Import ListNotations. Require Import coqutil.Map.Interface coqutil.Map.Properties. Require Import coqutil.Word.Interface coqutil.Word.Properties. Require Import riscv.Utility.Monads. Require Import riscv.Utility.Utility. Require Import riscv.Spec.Decode. Require Import riscv.Platform.Memory. Require Import riscv.Spec.Machine. Require Import riscv.Platform.RiscvMachine. Require Import riscv.Platform.MetricRiscvMachine. Require Import riscv.Platform.MetricLogging. Require Import riscv.Spec.Primitives. Require Import riscv.Spec.MetricPrimitives. Require Import riscv.Platform.Run. Require Import riscv.Spec.Execute. Require Import riscv.Proofs.DecodeEncode. Require Import coqutil.Tactics.Tactics. Require Import compiler.SeparationLogic. Require Import bedrock2.ptsto_bytes. Require Import bedrock2.Scalars. Require Import riscv.Utility.Encode. Require Import riscv.Utility.RegisterNames. Require Import riscv.Proofs.EncodeBound. Require Import coqutil.Decidable. Require Import compiler.GoFlatToRiscv. Require Import riscv.Utility.InstructionCoercions. Local Open Scope ilist_scope. Require Export coqutil.Word.SimplWordExpr. Require Import coqutil.Tactics.Simp. Require Import compiler.DivisibleBy4. Require Import compiler.ZLemmas. Import Utility. Notation Register0 := 0%Z (only parsing). (* R: evar to be instantiated to goal but with valid_machine replaced by True *) Ltac replace_valid_machine_by_True R := let mach' := fresh "mach'" in let D := fresh "D" in let Pm := fresh "Pm" in intros mach' D V Pm; match goal with | H: valid_machine mach' |- context C[valid_machine mach'] => let G := context C[True] in let P := eval pattern mach' in G in lazymatch P with | ?F _ => instantiate (R := F) end end; subst R; clear -V Pm; cbv beta in *; simp; solve [eauto 30]. (* if we have valid_machine for the current machine, and need to prove a run1 with valid_machine in the postcondition, this tactic can replace the valid_machine in the postcondition by True *) Ltac get_run1_valid_for_free := let R := fresh "R" in evar (R: MetricRiscvMachine -> Prop); eapply run1_get_sane with (P := R); [ (* valid_machine *) assumption | (* the simpler run1 goal, left open *) idtac | (* the implication, needs to replace valid_machine by True *) replace_valid_machine_by_True R ]; subst R. (* if we have valid_machine for the current machine, and need to prove a runsTo with valid_machine in the postcondition, this tactic can replace the valid_machine in the postcondition by True *) Ltac get_runsTo_valid_for_free := let R := fresh "R" in evar (R: MetricRiscvMachine -> Prop); eapply runsTo_get_sane with (P := R); [ (* valid_machine *) assumption | (* the simpler runsTo goal, left open *) idtac | (* the implication, needs to replace valid_machine by True *) replace_valid_machine_by_True R ]; subst R. Section Run. Context {width} {BW: Bitwidth width} {word: word.word width} {word_ok: word.ok word}. Context {Registers: map.map Z word}. Context {mem: map.map word byte}. Context {mem_ok: map.ok mem}. Add Ring wring : (word.ring_theory (word := word)) (preprocess [autorewrite with rew_word_morphism], morphism (word.ring_morph (word := word)), constants [word_cst]). Local Notation RiscvMachineL := MetricRiscvMachine. Context {M: Type -> Type}. Context {MM: Monad M}. Context {RVM: RiscvProgram M word}. Context {PRParams: PrimitivesParams M MetricRiscvMachine}. Context {PR: MetricPrimitives PRParams}. Ltac simulate'_step := first [ eapply go_loadByte_sep ; simpl; [sidecondition..|] | eapply go_storeByte_sep; simpl; [sidecondition..|intros] | eapply go_loadHalf_sep ; simpl; [sidecondition..|] | eapply go_storeHalf_sep; simpl; [sidecondition..|intros] | eapply go_loadWord_sep ; simpl; [sidecondition..|] | eapply go_storeWord_sep; simpl; [sidecondition..|intros] | eapply go_loadDouble_sep ; simpl; [sidecondition..|] | eapply go_storeDouble_sep; simpl; [sidecondition..|intros] | simpl_modu4_0 | simulate_step ]. Ltac simulate' := repeat simulate'_step. Context (iset: InstructionSet). Definition run_Jalr0_spec := forall (rs1: Z) (oimm12: Z) (initialL: RiscvMachineL) (Exec R Rexec: mem -> Prop) (dest: word), (* [verify] (and decode-encode-id) only enforces divisibility by 2 because there could be compressed instructions, but we don't support them so we require divisibility by 4: *) oimm12 mod 4 = 0 -> (word.unsigned dest) mod 4 = 0 -> (* valid_register almost follows from verify (or decode-encode-id) except for when the register is Register0 *) valid_register rs1 -> map.get initialL.(getRegs) rs1 = Some dest -> initialL.(getNextPc) = word.add initialL.(getPc) (word.of_Z 4) -> subset (footpr Exec) (of_list (initialL.(getXAddrs))) -> iff1 Exec (program iset initialL.(getPc) [[Jalr RegisterNames.zero rs1 oimm12]] * Rexec)%sep -> (Exec * R)%sep initialL.(getMem) -> valid_machine initialL -> mcomp_sat (run1 iset) initialL (fun (finalL: RiscvMachineL) => finalL.(getRegs) = initialL.(getRegs) /\ finalL.(getLog) = initialL.(getLog) /\ finalL.(getMem) = initialL.(getMem) /\ finalL.(getXAddrs) = initialL.(getXAddrs) /\ finalL.(getPc) = word.add dest (word.of_Z oimm12) /\ finalL.(getNextPc) = word.add finalL.(getPc) (word.of_Z 4) /\ finalL.(getMetrics) = addMetricInstructions 1 (addMetricJumps 1 (addMetricLoads 1 initialL.(getMetrics))) /\ valid_machine finalL). Definition run_Jal_spec := forall (rd: Z) (jimm20: Z) (initialL: RiscvMachineL) (Exec R Rexec: mem -> Prop), jimm20 mod 4 = 0 -> valid_register rd -> initialL.(getNextPc) = word.add initialL.(getPc) (word.of_Z 4) -> subset (footpr Exec) (of_list (initialL.(getXAddrs))) -> iff1 Exec (program iset initialL.(getPc) [[Jal rd jimm20]] * Rexec)%sep -> (Exec * R)%sep initialL.(getMem) -> valid_machine initialL -> mcomp_sat (run1 iset) initialL (fun finalL => finalL.(getRegs) = map.put initialL.(getRegs) rd initialL.(getNextPc) /\ finalL.(getLog) = initialL.(getLog) /\ finalL.(getMem) = initialL.(getMem) /\ finalL.(getXAddrs) = initialL.(getXAddrs) /\ finalL.(getPc) = word.add initialL.(getPc) (word.of_Z jimm20) /\ finalL.(getNextPc) = word.add finalL.(getPc) (word.of_Z 4) /\ finalL.(getMetrics) = addMetricInstructions 1 (addMetricJumps 1 (addMetricLoads 1 initialL.(getMetrics))) /\ valid_machine finalL). Definition run_Jal0_spec := forall (jimm20: Z) (initialL: RiscvMachineL) (Exec R Rexec: mem -> Prop), jimm20 mod 4 = 0 -> subset (footpr Exec) (of_list (initialL.(getXAddrs))) -> iff1 Exec (program iset initialL.(getPc) [[Jal Register0 jimm20]] * Rexec)%sep -> (Exec * R)%sep initialL.(getMem) -> valid_machine initialL -> mcomp_sat (run1 iset) initialL (fun finalL => finalL.(getRegs) = initialL.(getRegs) /\ finalL.(getLog) = initialL.(getLog) /\ finalL.(getMem) = initialL.(getMem) /\ finalL.(getXAddrs) = initialL.(getXAddrs) /\ finalL.(getPc) = word.add initialL.(getPc) (word.of_Z jimm20) /\ finalL.(getNextPc) = word.add finalL.(getPc) (word.of_Z 4) /\ finalL.(getMetrics) = addMetricInstructions 1 (addMetricJumps 1 (addMetricLoads 1 initialL.(getMetrics))) /\ valid_machine finalL). Definition run_ImmReg_spec(Op: Z -> Z -> Z -> Instruction) (f: word -> word -> word): Prop := forall (rd rs: Z) rs_val imm (initialL: RiscvMachineL) (Exec R Rexec: mem -> Prop), valid_register rd -> valid_register rs -> initialL.(getNextPc) = word.add initialL.(getPc) (word.of_Z 4) -> map.get initialL.(getRegs) rs = Some rs_val -> subset (footpr Exec) (of_list (initialL.(getXAddrs))) -> iff1 Exec (program iset initialL.(getPc) [[Op rd rs imm]] * Rexec)%sep -> (Exec * R)%sep initialL.(getMem) -> valid_machine initialL -> mcomp_sat (run1 iset) initialL (fun finalL => finalL.(getRegs) = map.put initialL.(getRegs) rd (f rs_val (word.of_Z imm)) /\ finalL.(getLog) = initialL.(getLog) /\ finalL.(getMem) = initialL.(getMem) /\ finalL.(getXAddrs) = initialL.(getXAddrs) /\ finalL.(getPc) = initialL.(getNextPc) /\ finalL.(getNextPc) = word.add finalL.(getPc) (word.of_Z 4) /\ finalL.(getMetrics) = addMetricInstructions 1 (addMetricLoads 1 initialL.(getMetrics)) /\ valid_machine finalL). Definition run_Load_spec(n: nat)(L: Z -> Z -> Z -> Instruction) (opt_sign_extender: Z -> Z): Prop := forall (base addr: word) (v: HList.tuple byte n) (rd rs: Z) (ofs: Z) (initialL: RiscvMachineL) (Exec R Rexec: mem -> Prop), (* valid_register almost follows from verify except for when the register is Register0 *) valid_register rd -> valid_register rs -> initialL.(getNextPc) = word.add initialL.(getPc) (word.of_Z 4) -> map.get initialL.(getRegs) rs = Some base -> addr = word.add base (word.of_Z ofs) -> subset (footpr Exec) (of_list (initialL.(getXAddrs))) -> iff1 Exec (program iset initialL.(getPc) [[L rd rs ofs]] * Rexec)%sep -> (Exec * ptsto_bytes n addr v * R)%sep initialL.(getMem) -> valid_machine initialL -> mcomp_sat (run1 iset) initialL (fun finalL => finalL.(getRegs) = map.put initialL.(getRegs) rd (word.of_Z (opt_sign_extender (LittleEndian.combine n v))) /\ finalL.(getLog) = initialL.(getLog) /\ finalL.(getMem) = initialL.(getMem) /\ finalL.(getXAddrs) = initialL.(getXAddrs) /\ finalL.(getPc) = initialL.(getNextPc) /\ finalL.(getNextPc) = word.add finalL.(getPc) (word.of_Z 4) /\ finalL.(getMetrics) = addMetricInstructions 1 (addMetricLoads 2 initialL.(getMetrics)) /\ valid_machine finalL). Definition run_Store_spec(n: nat)(S: Z -> Z -> Z -> Instruction): Prop := forall (base addr v_new: word) (v_old: HList.tuple byte n) (rs1 rs2: Z) (ofs: Z) (initialL: RiscvMachineL) (Exec R Rexec: mem -> Prop), (* valid_register almost follows from verify except for when the register is Register0 *) valid_register rs1 -> valid_register rs2 -> initialL.(getNextPc) = word.add initialL.(getPc) (word.of_Z 4) -> map.get initialL.(getRegs) rs1 = Some base -> map.get initialL.(getRegs) rs2 = Some v_new -> addr = word.add base (word.of_Z ofs) -> subset (footpr Exec) (of_list (initialL.(getXAddrs))) -> iff1 Exec (program iset initialL.(getPc) [[S rs1 rs2 ofs]] * Rexec)%sep -> (Exec * ptsto_bytes n addr v_old * R)%sep initialL.(getMem) -> valid_machine initialL -> mcomp_sat (run1 iset) initialL (fun finalL => finalL.(getRegs) = initialL.(getRegs) /\ finalL.(getLog) = initialL.(getLog) /\ subset (footpr Exec) (of_list (finalL.(getXAddrs))) /\ (Exec * ptsto_bytes n addr (LittleEndian.split n (word.unsigned v_new)) * R)%sep finalL.(getMem) /\ finalL.(getPc) = initialL.(getNextPc) /\ finalL.(getNextPc) = word.add finalL.(getPc) (word.of_Z 4) /\ finalL.(getMetrics) = addMetricInstructions 1 (addMetricStores 1 (addMetricLoads 1 initialL.(getMetrics))) /\ valid_machine finalL). Ltac inline_iff1 := match goal with | H: iff1 ?x _ |- _ => is_var x; apply iff1ToEq in H; subst x end. Ltac t0 := match goal with | initialL: RiscvMachineL |- _ => destruct_RiscvMachine initialL end; simpl in *; subst; simulate'; simpl; repeat match goal with | |- _ /\ _ => split | |- _ => solve [auto] | |- _ => ecancel_assumption | |- _ => solve_MetricLog end. Ltac t := repeat intro; inline_iff1; get_run1_valid_for_free; t0. Lemma run_Jalr0: run_Jalr0_spec. Proof. repeat intro. inline_iff1. get_run1_valid_for_free. match goal with | H: (?P * ?Q * ?R)%sep ?m |- _ => assert ((P * (Q * R))%sep m) as A by ecancel_assumption end. destruct (invert_ptsto_program1 iset A) as (DE & ?). clear A. (* execution of Jalr clears lowest bit *) assert (word.and (word.add dest (word.of_Z oimm12)) (word.xor (word.of_Z 1) (word.of_Z (2 ^ width - 1))) = word.add dest (word.of_Z oimm12)) as A. { assert (word.unsigned (word.add dest (word.of_Z oimm12)) mod 4 = 0) as C by solve_divisibleBy4. generalize dependent (word.add dest (word.of_Z oimm12)). clear -BW word_ok. intros. apply word.unsigned_inj. rewrite word.unsigned_and, word.unsigned_xor, !word.unsigned_of_Z. unfold word.wrap. assert (0 <= width) by (destruct width_cases as [E | E]; rewrite E; blia). replace (2 ^ width - 1) with (Z.ones width); cycle 1. { rewrite Z.ones_equiv. reflexivity. } change 1 with (Z.ones 1). transitivity (word.unsigned r mod (2 ^ width)); cycle 1. { rewrite word.wrap_unsigned. reflexivity. } rewrite <-! Z.land_ones by assumption. change 4 with (2 ^ 2) in C. prove_Zeq_bitwise.Zbitwise. } assert (word.unsigned (word.and (word.add dest (word.of_Z oimm12)) (word.xor (word.of_Z 1) (word.of_Z (2 ^ width - 1)))) mod 4 = 0) as B. { rewrite A. solve_divisibleBy4. } t0. Qed. Lemma run_Jal: run_Jal_spec. Proof. repeat intro. inline_iff1. get_run1_valid_for_free. match goal with | H: (?P * ?Q * ?R)%sep ?m |- _ => assert ((P * (Q * R))%sep m) as A by ecancel_assumption end. destruct (invert_ptsto_program1 iset A) as (DE & ?). t0. Qed. Local Arguments Z.pow: simpl never. Local Arguments Z.opp: simpl never. Lemma run_Jal0: run_Jal0_spec. Proof. repeat intro. inline_iff1. get_run1_valid_for_free. match goal with | H: (?P * ?Q * ?R)%sep ?m |- _ => assert ((P * (Q * R))%sep m) as A by ecancel_assumption end. destruct (invert_ptsto_program1 iset A) as (DE & ?). t0. Qed. Lemma run_Addi: run_ImmReg_spec Addi word.add. Proof. t. Qed. Lemma run_Lb: run_Load_spec 1 Lb (signExtend 8). Proof. t. Qed. Lemma run_Lbu: run_Load_spec 1 Lbu id. Proof. t. Qed. Lemma run_Lh: run_Load_spec 2 Lh (signExtend 16). Proof. t. Qed. Lemma run_Lhu: run_Load_spec 2 Lhu id. Proof. t. Qed. Lemma run_Lw: run_Load_spec 4 Lw (signExtend 32). Proof. t. Qed. Lemma run_Lw_unsigned: width = 32 -> run_Load_spec 4 Lw id. Proof. change width with (id width). t. rewrite sextend_width_nop; [reflexivity|symmetry;assumption]. Qed. Lemma run_Lwu: run_Load_spec 4 Lwu id. Proof. t. Qed. Lemma run_Ld: run_Load_spec 8 Ld (signExtend 64). Proof. t. Qed. (* Note: there's no Ldu instruction, because Ld does the same *) Lemma run_Ld_unsigned: width = 64 -> run_Load_spec 8 Ld id. Proof. change width with (id width). t. rewrite sextend_width_nop; [reflexivity|symmetry;assumption]. Qed. Lemma iff1_emp: forall P Q, (P <-> Q) -> @iff1 mem (emp P) (emp Q). Proof. unfold iff1, emp. clear. firstorder idtac. Qed. Lemma removeXAddr_diff: forall (a1 a2: word) xaddrs, a1 <> a2 -> isXAddr1 a1 xaddrs -> isXAddr1 a1 (removeXAddr a2 xaddrs). Proof. unfold isXAddr1, removeXAddr. intros. apply filter_In. split; [assumption|]. rewrite word.eqb_ne by congruence. reflexivity. Qed. Lemma removeXAddr_bw: forall (a1 a2: word) xaddrs, isXAddr1 a1 (removeXAddr a2 xaddrs) -> isXAddr1 a1 xaddrs. Proof. unfold isXAddr1, removeXAddr. intros. eapply filter_In. eassumption. Qed. Lemma sep_ptsto_to_addr_neq: forall a1 v1 a2 v2 (m : mem) R, (ptsto a1 v1 * ptsto a2 v2 * R)%sep m -> a1 <> a2. Proof. intros. intro E. subst a2. unfold ptsto in *. destruct H as (? & ? & ? & (? & ? & ? & ? & ?) & ?). subst. destruct H0 as [? D]. unfold map.disjoint in D. eapply D; apply map.get_put_same. Qed. Local Arguments invalidateWrittenXAddrs: simpl never. Lemma run_Sb: run_Store_spec 1 Sb. Proof. t. Qed. Lemma run_Sh: run_Store_spec 2 Sh. Proof. t. Qed. Lemma run_Sw: run_Store_spec 4 Sw. Proof. t. Qed. Lemma run_Sd: run_Store_spec 8 Sd. Proof. t. Qed. End Run.
# Project: GBS Tool # Author: Jeremy VanderMeer, [email protected] Alaska Center for Energy and Power # Date: February 1, 2018 --> # License: MIT License (see LICENSE file of this package for more information) # *** General Imports *** from scipy.interpolate import interp2d import numpy as np class esLossMap: ''' This class contains methods to build a dense loss map for energy storage units based on sparser information provided in `esDescriptor.xml`. There ... ''' # TODO: write # Constructor def __init__(self): # ******* INPUT VARIABLES ******* # list of tuples for a loss map. (power [pu], SOC [pu], loss [pu of power], ambient temperature [K]) self.lossMapDataPoints = [] # Maximum output power [kW]. This is the will be the upper limit of the power axis self.pInMax = 0 # Maximum input power [kW]. This is the will be the upper limit of the power axis self.pOutMax = 0 # Maximum energy capacity in kWs self.eMax = 0 # ******* INTERNAL VARIABLES ******* # Coordinates for interpolation self.coords = [] # ******* OUTPUT VARIABLES ******* # The dense lossMap with units [kW, kg/s] self.lossMap = [] # The dense lossMap, but with integer values only. self.lossMapInt = [] # loss map array power vector self.P = [] # loss map array energy vector self.E = [] # loss map array temperature vector self.Temp = [] # loss map array with dimensions power x energy self.loss = np.array([]) # an array, with same dimensions as the loss map, with the max amount of time that the es can charge or discharge # at a given power for starting at a given state of charge self.maxDischTime = np.array([]) def checkInputs(self): ''' Makes sure data inputs are self-consistent. **Does not** check for physical validity of data. :raises ValueError: for various data inconsistencies or missing values. :return: ''' # make copy of the input inptDataPoints = self.lossMapDataPoints # Check if data was initialized at all. if not inptDataPoints: raise ValueError('Loss map is empty list.') # remove these checks, since having the option to run a simulation with a zero EES is needed #elif self.pInMax == 0: # raise ValueError('Maximum input power is not configured, or set to 0.') #elif self.pOutMax == 0: # raise ValueError('Maximum output power is not configured, or set to 0.') #elif self.eMax == 0: # raise ValueError('Maximum energy capacoty is not configured, or set to 0.') # Check for negative values in loss, temperature and soc - there shouldn't be any for tpls in inptDataPoints: if any(n < 0 for n in tpls[1:]): raise ValueError('SOC, Loss or temperature inputs contain negative values.') # Make a copy of the input # Sort the new list of tuples based on power levels. #inptDataPoints.sort() # Check for duplicates and clean up if possible. # TODO: implement self.coords = inptDataPoints def linearInterpolation(self,chargeRate, pStep = 1, eStep = 3600, tStep = 1): # chargeRate is the maximum fraction of the remaining energy storage capacity that can be charged in 1 second, # or remaining energy storage capacity that can be discharged in 1 second, units are pu/sec # pStep, eStep and tStep are the steps to be used in the loss map for power, energy and temperature. Units are # kW, kWs and K. # unzip into individual arrays pDataPoints, eDataPoints, lossDataPoints, tempAmbDataPoints = zip(*self.coords) if len(set(tempAmbDataPoints)) < 2: # if not more than one temperature defined, only 2d array (power and energy) # create interpolation function fn = interp2d(eDataPoints,pDataPoints,lossDataPoints) # create filled power and energy arrays if self.pInMax > 0: # check if a positive value was given usePinMax = - self.pInMax else: usePinMax = self.pInMax self.P = range(int(usePinMax), int(self.pOutMax + pStep), int(pStep)) self.E = range(0, int(self.eMax + eStep), int(eStep)) self.Temp = tempAmbDataPoints # create new filled loss array. self.loss = np.array(fn(self.E,self.P)) # array with size power x energy # create another array with the maximum amount of time that can be spent charging or discharging at a power # given a state of charge # first, create an array with the time it takes to reach the next energy bin, taking into account losses self.nextBinTime = np.zeros([len(self.P), len(self.E)]) # initiate array #self.nextBinTime[:] = np.nan # to nan for idxE, E in enumerate(self.E): # for every energy level for idxP, P in enumerate(self.P): # for every power # if the power is within the chargeRate bounds if (P >= (E - self.eMax) * chargeRate) & (P <= E * chargeRate): if P > 0: # if discharging # find the amount of time to get to the next energy bin self.nextBinTime[idxP, idxE] = (eStep) / (P + self.loss[idxP, idxE]) elif P < 0: # if charging # find the amount of time to get to the next energy bin self.nextBinTime[idxP, idxE] = -(eStep) / (P + self.loss[idxP, idxE]) # now use the array of the time it takes to get to the next bin and calculate array of the max amount of # time the ES can charge or discharge at a certain power, starting at a certain energy level self.maxDischTime = np.zeros([len(self.P), len(self.E)]) # initiate array #self.maxDischTime[:] = np.nan # to nan for idxE, E in enumerate(self.E): # for every energy level for idxP, P in enumerate(self.P): # for every power if P > 0: # if discharging # the total discharge time is the sum of the time taken to get to each consecutive bin. self.maxDischTime[idxP,idxE] = np.nansum(self.nextBinTime[idxP,:idxE+1]) elif P < 0: # if charging # the total charge time is the sum of the time taken to get to each consecutive bin. self.maxDischTime[idxP,idxE] = np.nansum(self.nextBinTime[idxP,idxE:]) else: # if power is zero self.maxDischTime[idxP, idxE] = np.inf else: # if more than one temperature defined # TODO: implement self.P = [] self.E = [] self.Temp = [] self.loss = np.array([])
#pragma once //=====================================================================// /*! @file @brief イグナイター・サーバー・クラス @n ※エミュレーション、テスト用、実際のサーバーは、外部マイコン @author 平松邦仁 ([email protected]) @copyright Copyright (C) 2017 Kunihito Hiramatsu @n Released under the MIT license @n https://github.com/hirakuni45/RX/blob/master/LICENSE */ //=====================================================================// #include <iostream> #include <boost/asio.hpp> #include <boost/bind.hpp> #include "utils/string_utils.hpp" namespace asio = boost::asio; namespace ip = asio::ip; namespace net { //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++// /*! @brief Ignitor Server クラス */ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++// class ign_server { asio::io_service& io_service_; ip::tcp::acceptor acceptor_; ip::tcp::socket socket_; asio::streambuf recv_; bool connect_; bool read_trg_; void on_recv_(const boost::system::error_code& error, size_t bytes_transferred) { if(error && error != boost::asio::error::eof) { std::cout << "receive failed: " << error.message() << std::endl; } else { const char* data = asio::buffer_cast<const char*>(recv_.data()); std::cout << "response(" << bytes_transferred << "): "; std::cout << data << std::endl; recv_.consume(recv_.size()); read_trg_ = true; } } void on_accept_(const boost::system::error_code& error) { if(error) { auto out = utils::sjis_to_utf8(error.message()); std::cout << "accept failed: " << out << std::endl; } else { std::cout << "accept correct!" << std::endl; connect_ = true; read_trg_ = true; } } public: //-----------------------------------------------------------------// /*! @brief コンストラクター */ //-----------------------------------------------------------------// ign_server(asio::io_service& ios) : io_service_(ios), acceptor_(ios, ip::tcp::endpoint(ip::address::from_string("127.0.0.1"), 31400)), socket_(ios), recv_(), connect_(false), read_trg_(false) { } //-----------------------------------------------------------------// /*! @brief 開始 */ //-----------------------------------------------------------------// void start() { connect_ = false; acceptor_.async_accept(socket_, boost::bind(&ign_server::on_accept_, this, asio::placeholders::error)); } //-----------------------------------------------------------------// /*! @brief サービス */ //-----------------------------------------------------------------// void service() { if(connect_) { // boost::asio::async_read(socket_, recv_, asio::transfer_all(), if(read_trg_) { boost::asio::async_read(socket_, recv_, asio::transfer_at_least(4), boost::bind(&ign_server::on_recv_, this, asio::placeholders::error, asio::placeholders::bytes_transferred)); read_trg_ = false; } } } }; }
[STATEMENT] lemma below_trans_cong[trans]: "a \<sqsubseteq> f x \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> cont f \<Longrightarrow> a \<sqsubseteq> f y " [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>a \<sqsubseteq> f x; x \<sqsubseteq> y; cont f\<rbrakk> \<Longrightarrow> a \<sqsubseteq> f y [PROOF STEP] by (metis below_trans cont2monofunE)
In addition to the reactions originally reported by Johnson , Corey , and Chaykovsky , sulfur ylides have been used for a number of related homologation reactions that tend to be grouped under the same name .
module KrylovSolver use AbstractOperators private public :: pcg !! Derived type decscribing the operator !! y=(~A)^{-1} x !! with (~A)^{-1} is the approximate inverse via !! Preconditoned Conjugate Gradient type, public, extends(abstract_operator) :: pcg_solver !! set main controls integer :: max_iterations real(kind=double) :: tolerance !! pointers for matrix and precontioner class(abstract_operator), pointer :: matrix class(abstract_operator), pointer :: preconditioner !! scratch vector real(kind=double), allocatable :: aux(:) contains procedure, public, pass :: init => init_solver procedure, public, pass :: kill => kill_solver !! procedure overrided procedure, public, pass :: apply => apply_pcg_solver end type pcg_solver contains subroutine pcg(matrix,rhs,sol,ierr,& tolerance,max_iterations,preconditioner,aux_passed) use AbstractOperators use SimpleVectors implicit none class(abstract_operator), intent(inout) :: matrix real(kind=double), intent(in ) :: rhs(matrix%ncol) real(kind=double), intent(inout) :: sol(matrix%nrow) integer, intent(inout) :: ierr real(kind=double), optional, intent(in ) :: tolerance integer, optional, intent(in ) :: max_iterations class(abstract_operator), target,optional, intent(inout) :: preconditioner real(kind=double), target,optional, intent(inout) :: aux_passed(6*matrix%ncol) ! ! local vars ! ! logical logical :: exit_test ! string character(len=256) :: msg ! integer integer :: i integer :: lun_err, lun_out integer :: iprt,max_iter integer :: nequ,dim_ker,ndir=0 integer :: iort integer :: info_prec integer :: iter ! real real(kind=double), pointer :: aux(:) real(kind=double), target, allocatable :: aux_local(:) real(kind=double), pointer :: axp(:), pres(:), ainv(:), resid(:), pk(:),scr(:) real(kind=double) :: alpha, beta, presnorm,resnorm,bnorm real(kind=double) :: ptap real(kind=double) :: normres real(kind=double) :: tol,rort real(kind=double) :: inverse_residum_weight ! type(eye), target :: identity class(abstract_operator), pointer :: prec => null() !! checks if (.not. matrix%is_symmetric) then ierr = 998 return end if if (matrix%nrow .ne. matrix%ncol ) then ierr = 999 return end if nequ=matrix%nrow if (present(tolerance)) then tol=tolerance else tol=1.0d-6 end if if (present(max_iterations)) then max_iter=max_iterations else max_iter=200 end if !! handle preconditing if (present(preconditioner)) then if (.not. preconditioner%is_symmetric) then ierr = 999 return end if if ( preconditioner%nrow .ne. preconditioner%ncol ) then ierr = 999 return end if prec => preconditioner else call identity%init(nequ) prec => identity end if ! allocate memory if required and set pointers for scratch arrays if (present(aux_passed)) then aux=>aux_passed else allocate(aux_local(6*nequ)) aux=>aux_local end if axp => aux( 1 : nequ) pres => aux( nequ+1 : 2*nequ) ainv => aux(2*nequ+1 : 3*nequ) resid => aux(3*nequ+1 : 4*nequ) pk => aux(4*nequ+1 : 5*nequ) scr => aux(5*nequ+1 : 6*nequ) ! set tolerance if (present (tolerance)) then tol = tolerance else tol = 1.0d-6 end if ! set max iterations number if (present (max_iterations)) then max_iter = max_iterations else max_iter = 100 end if exit_test = .false. ! compute rhs norm and break cycle bnorm = d_norm(nequ,rhs) if (bnorm<1.0d-16) then ierr=0 sol=zero ! free memory aux=>null() if (allocated(aux_local)) deallocate(aux_local) return end if ! calculate initial residual (res = rhs-M*sol) call matrix%apply(sol,resid,ierr) resid = rhs - resid resnorm = d_norm(nequ,resid)/bnorm ! ! cycle ! iter=0 do while (.not. exit_test) iter = iter + 1 ! compute pres = PREC (r_{k+1}) call prec%apply(resid,pres,ierr) ! calculates beta_k if (iter.eq.1) then beta = zero else beta = -d_scalar_product(nequ,pres,axp)/ptap end if ! calculates p_{k+1}:=pres_{k}+beta_{k}*p_{k} call d_axpby(nequ,one,pres,beta,pk) ! calculates axp_{k+1}:= matrix * p_{k+1} call matrix%apply(pk,axp,ierr) ! calculates \alpha_k ptap = d_scalar_product(nequ,pk,axp) alpha = d_scalar_product(nequ,pk,resid)/ptap ! calculates x_k+1 and r_k+1 call d_axpby(nequ,alpha,pk,one,sol) call d_axpby(nequ,-alpha,axp,one,resid) ! compute residum resnorm = d_norm(nequ,resid)/bnorm ! checks exit_test = (& iter .gt. max_iter .or.& resnorm .le. tol) if (iter.ge. max_iter) ierr = 1 end do ! free memory aux=>null() if (allocated(aux_local)) deallocate(aux_local) end subroutine pcg subroutine init_solver(this,& matrix, max_iter, tolerance, precondtioner) class(pcg_solver), intent(inout) :: this class(abstract_operator), target, intent(in ) :: matrix integer, intent(in ) :: max_iter real(kind=double), intent(in ) :: tolerance class(abstract_operator), target, intent(in ) :: precondtioner !! the set domain/codomain operator dimension this%nrow = matrix%nrow this%ncol = matrix%ncol !! the inverse of a symmetric matrix is symmetric but the !! approximiate inverse it is not in general. !! We set that that the operator is symmettric if !! if the require tolerance is below 1e-13 if (tolerance < 1e-13) then this%is_symmetric=.True. else this%is_symmetric=.False. end if !! the non-linearity will be (approximately) the tolerance of the !! pcg solver this%nonlinearity = tolerance !! set controls this%max_iterations = max_iter this%tolerance = tolerance !! set pointer this%matrix => matrix this%preconditioner => precondtioner !! set work arrays allocate(this%aux(6*matrix%nrow)) aux = zero end subroutine init_solver subroutine kill_solver(this) class(pcg_solver), intent(inout) :: this this%max_iterations = 0 this% tolerance = zero !! the non-linearity will be approximately the tolerance of the !! pcg solver this%nonlinearity = zero this%matrix => null() this%preconditioner => null() !! free memory deallocate(this%aux) end subroutine kill_solver subroutine apply_pcg_solver(this,vec_in,vec_out,ierr) implicit none class(pcg_solver), intent(inout) :: this real(kind=double), intent(in ) :: vec_in(this%ncol) real(kind=double), intent(inout) :: vec_out(this%nrow) integer, intent(inout) :: ierr call pcg(this%matrix, vec_in, vec_out, ierr,& tolerance=this%tolerance,& max_iterations=this%max_iterations,& preconditioner=this%preconditioner,& aux_passed=this%aux) end subroutine apply_pcg_solver end module KrylovSolver
from typing import Dict, List import numpy as np from rb.complexity.complexity_index import ComplexityIndex from rb.core.document import Document from rb.processings.pipeline.dataset import Dataset, Task from sklearn.base import BaseEstimator from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score, make_scorer, mean_squared_error class Estimator: def __init__(self, dataset: Dataset, tasks: List[Task], params: Dict[str, str]): self.dataset = dataset self.tasks = tasks self.model: BaseEstimator = None self.scoring = "accuracy" def predict(self, indices: Dict[ComplexityIndex, float]): return self.model.predict(self.construct_input(indices)) def construct_input(self, indices: Dict[ComplexityIndex, float]) -> np.ndarray: result = [indices[feature] for i, feature in enumerate(self.dataset.features) if self.tasks[0].mask[i]] return np.array(result) def cross_validation(self, n=5) -> float: x = [self.construct_input(indices) for indices in self.dataset.normalized_train_features] y = self.tasks[0].get_train_targets() scores = cross_val_score(self.model, x, y, scoring=make_scorer(self.scoring), cv=n) return scores.mean() def evaluate(self) -> float: x = [self.construct_input(indices) for indices in self.dataset.normalized_train_features] y = self.tasks[0].get_train_targets() self.model.fit(x, y) x = [self.construct_input(indices) for indices in self.dataset.normalized_dev_features] y = self.tasks[0].get_dev_targets() predicted = self.model.predict(x) return self.scoring(y, predicted) @classmethod def parameters(cls) -> Dict[str, List]: return {} @classmethod def valid_config(cls, config) -> bool: return True class Classifier(Estimator): def __init__(self, dataset: Dataset, tasks: List[Task], params: Dict[str, str]): super().__init__(dataset, tasks, params) self.scoring = accuracy_score class Regressor(Estimator): def __init__(self, dataset: Dataset, tasks: List[Task], params: Dict[str, str]): super().__init__(dataset, tasks, params) self.scoring = mean_squared_error
(* Title: HOL/Auth/n_germanSimp_lemma_inv__31_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSimp Protocol Case Study*} theory n_germanSimp_lemma_inv__31_on_rules imports n_germanSimp_lemma_on_inv__31 begin section{*All lemmas on causal relation between inv__31*} lemma lemma_inv__31_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv3 p__Inv4. p__Inv3\<le>N\<and>p__Inv4\<le>N\<and>p__Inv3~=p__Inv4\<and>f=inv__31 p__Inv3 p__Inv4)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqE__part__0Vsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqE__part__1Vsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__31) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__31) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
module Main where import Numeric.LinearAlgebra import Control.Arrow import Common import Forward import BackProp import AutoEncoder import ActivFunc import Other import Mnist main :: IO () main = do tm <- parseCsvToMatrixR "data/mnist_test_100.csv" let (ty, tx) = tr *** tr $ mnistRead 10 tm m <- parseCsvToMatrixR "data/mnist_train_600.csv" let (y, x) = tr *** tr $ mnistRead 10 m ws <- genWeights [784, 10] -- let pws = preTrains 0.5 1000 ramps x ws nws <- last . take 1000 $ iterateM (sgdMethod 100 (x, y) $ backPropClassification 0.5 ramps) ws -- putStrLn "not trained outputs" -- print . tr . classesToLabels . tr . forwardClassification rampC ws $ tx -- TODO: use function let o = tr . classesToLabels . tr . forwardClassification rampC nws $ tx let t = tr . classesToLabels . tr $ ty let l = head . toLists $ t - o let a = length l let s = length . filter (==0) $ l print $ fromIntegral s / fromIntegral a -- putStrLn "pretrainined outputs" -- print . classesToLabels . tr . forwardClassification rampC npws $ x
module Main data Cat = Cas | Luna | Sherlock f : (cat: Cat) -> String getName : (cat: Cat) -> String getName Cas = "Cas" getName Luna = "Luna" plusTwo : (n: Nat) -> Nat plusTwo n = plus 2 n g : (n: Nat) -> (b: Bool) -> String g n b = ?g_rhs n : Nat n = ?n_rhs
-- Andreas, 2017-10-17, issue #2807 -- -- Refining with an extended lambda gave internal error. -- Seemed to be triggered only when giving resulted in an error. {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v scope.extendedLambda:60 #-} -- {-# OPTIONS -v impossible:10 #-} data ⊥ : Set where actuallyNotEmpty : ⊥ data D : Set where c : ⊥ → D test : D → ⊥ test = {! λ{ (c ()) }!} -- C-c C-r -- WAS: internal error in ConcreteToAbstract (insertApp) -- -- Expected: -- Succeed with unsolved constraints and metas.
\<^marker>\<open>creator Bilel Ghorbel, Florian Kessler\<close> section "Small step semantics of IMP-- " subsection "IMP-- Small step semantics definition" theory IMP_Minus_Minus_Small_StepT imports Main IMP_Minus_Minus_Com "IMP_Minus.Rel_Pow" begin paragraph "Summary" text\<open>We give small step semantics with time for IMP--. Based on the small step semantics definition time for IMP-. In contrast to IMP-, we use partial maps to represent states. That has the simple reason the we designed this with translation to SAS++ in mind, which also uses partial states. \<close> type_synonym state = "vname \<rightharpoonup> bit" inductive small_step :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" ("_ \<rightarrow> _" 55) where Assign: "(x ::= v, s) \<rightarrow> (SKIP, s(x \<mapsto> v))" | Seq1: "(SKIP;;c\<^sub>2,s) \<rightarrow> (c\<^sub>2,s)" | Seq2: "(c\<^sub>1,s) \<rightarrow> (c\<^sub>1',s') \<Longrightarrow> (c\<^sub>1;;c\<^sub>2,s) \<rightarrow> (c\<^sub>1';;c\<^sub>2,s')" | IfTrue: "\<exists>b \<in> set bs. s b \<noteq> Some Zero \<Longrightarrow> (IF bs \<noteq>0 THEN c\<^sub>1 ELSE c\<^sub>2,s) \<rightarrow> (c\<^sub>1,s)" | IfFalse: "\<forall>b \<in> set bs. s b = Some Zero \<Longrightarrow> (IF bs \<noteq>0 THEN c\<^sub>1 ELSE c\<^sub>2,s) \<rightarrow> (c\<^sub>2,s)" | WhileTrue: "(\<exists>b \<in> set bs. s b \<noteq> Some Zero) \<Longrightarrow> (WHILE bs \<noteq>0 DO c,s) \<rightarrow> (c ;; (WHILE bs \<noteq>0 DO c), s)" | WhileFalse: "(\<forall>b \<in> set bs. s b = Some Zero) \<Longrightarrow> (WHILE bs \<noteq>0 DO c,s) \<rightarrow> (SKIP,s)" subsection "Transitive Closure" abbreviation small_step_pow :: "com * state \<Rightarrow> nat \<Rightarrow> com * state \<Rightarrow> bool" ("_ \<rightarrow>\<^bsup>_\<^esup> _" 55) where "x \<rightarrow>\<^bsup>t\<^esup> y == (rel_pow small_step t) x y" bundle small_step_syntax begin notation small_step (infix "\<rightarrow>" 55) and small_step_pow ("_ \<rightarrow>\<^bsup>_\<^esup> _" 55) end bundle no_small_step_syntax begin no_notation small_step (infix "\<rightarrow>" 55) and small_step_pow ("_ \<rightarrow>\<^bsup>_\<^esup> _" 55) end subsection\<open>Executability\<close> code_pred small_step . subsection\<open>Proof infrastructure\<close> subsubsection\<open>Induction rules\<close> text\<open>The default induction rule @{thm[source] small_step.induct} only works for lemmas of the form \<open>a \<rightarrow> b \<Longrightarrow> \<dots>\<close> where \<open>a\<close> and \<open>b\<close> are not already pairs \<open>(DUMMY,DUMMY)\<close>. We can generate a suitable variant of @{thm[source] small_step.induct} for pairs by ``splitting'' the arguments \<open>\<rightarrow>\<close> into pairs:\<close> lemmas small_step_induct = small_step.induct[split_format(complete)] subsubsection\<open>Proof automation\<close> declare small_step.intros[simp,intro] text\<open>Rule inversion:\<close> inductive_cases SkipE[elim!]: "(SKIP,s) \<rightarrow> ct" inductive_cases Assign[elim!]: "(x ::= v,s) \<rightarrow> ct" inductive_cases SeqE[elim]: "(c1;;c2,s) \<rightarrow> ct" inductive_cases IfE[elim!]: "(IF b\<noteq>0 THEN c1 ELSE c2,s) \<rightarrow> ct" inductive_cases WhileE[elim]: "(WHILE b\<noteq>0 DO c, s) \<rightarrow> ct" subsection "Sequence properties" declare rel_pow_intros[simp,intro] text\<open>A simple property:\<close> lemma deterministic: "cs \<rightarrow> cs' \<Longrightarrow> cs \<rightarrow> cs'' \<Longrightarrow> cs'' = cs'" apply(induction arbitrary: cs'' rule: small_step.induct) by blast+ text "sequence property" lemma star_seq2: "(c1,s) \<rightarrow>\<^bsup>t\<^esup> (c1',s') \<Longrightarrow> (c1;;c2,s) \<rightarrow>\<^bsup> t \<^esup> (c1';;c2,s')" proof(induction t arbitrary: c1 c1' s s') case (Suc t) then obtain c1'' s'' where "(c1,s) \<rightarrow> (c1'', s'')" and "(c1'', s'') \<rightarrow>\<^bsup> t \<^esup> (c1', s')" by auto moreover then have "(c1'';;c2, s'') \<rightarrow>\<^bsup> t \<^esup> (c1';;c2, s')" using Suc by simp ultimately show ?case by auto qed auto lemma if_trueI[intro]: "is1 v = Some One \<Longrightarrow> v \<in> set x1 \<Longrightarrow> (IF x1\<noteq>0 THEN c11 ELSE c12, is1) \<rightarrow> (c11, is1)" by force lemma if_falseI[intro]: "map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) \<subseteq>\<^sub>m is1 \<Longrightarrow> (IF x1\<noteq>0 THEN c11 ELSE c12, is1) \<rightarrow> (c12, is1)" proof - assume "map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) \<subseteq>\<^sub>m is1" have "v \<in> set (remdups x1) \<Longrightarrow> map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) v = Some Zero" for v by(induction x1) (auto split: if_splits) hence "\<forall>v \<in> set x1. is1 v = Some Zero" apply(auto simp: map_le_def dom_map_of_conv_image_fst) by (metis (mono_tags, lifting) \<open>map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) \<subseteq>\<^sub>m is1\<close> domI map_le_def) thus ?thesis by simp qed lemma while_trueI[intro]: "is1 v = Some One \<Longrightarrow> v \<in> set x1 \<Longrightarrow> (WHILE x1\<noteq>0 DO c1, is1) \<rightarrow> (c1 ;; WHILE x1\<noteq>0 DO c1, is1)" by force lemma while_falseI[intro]: "map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) \<subseteq>\<^sub>m is1 \<Longrightarrow> (WHILE x1\<noteq>0 DO c1, is1) \<rightarrow> (SKIP, is1)" proof - assume "map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) \<subseteq>\<^sub>m is1" have "v \<in> set (remdups x1) \<Longrightarrow> map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) v = Some Zero" for v by(induction x1) (auto split: if_splits) hence "\<forall>v \<in> set x1. is1 v = Some Zero" apply(auto simp: map_le_def dom_map_of_conv_image_fst) by (metis (mono_tags, lifting) \<open>map_of (map (\<lambda>v. (v, Zero)) (remdups x1)) \<subseteq>\<^sub>m is1\<close> domI map_le_def) thus ?thesis by simp qed subsection \<open>Functional definition\<close> text \<open>We also give a definition of small step semantics as a function rather than as a relation. We show the equivalence between the two definitions. We also give some useful Lemmas to show that IMP-- terminates in some state. \<close> fun small_step_fun:: "com * state \<Rightarrow> com * state" where "small_step_fun (SKIP, s) = (SKIP, s)" | "small_step_fun (x ::= v, s) = (SKIP, s(x \<mapsto> v))" | "small_step_fun (c\<^sub>1;;c\<^sub>2,s) = (if c\<^sub>1 = SKIP then (c\<^sub>2,s) else (fst (small_step_fun (c\<^sub>1, s)) ;;c\<^sub>2, snd (small_step_fun (c\<^sub>1, s))))" | "small_step_fun (IF bs \<noteq>0 THEN c\<^sub>1 ELSE c\<^sub>2,s) = (if \<exists>b \<in> set bs. s b \<noteq> Some Zero then (c\<^sub>1,s) else (c\<^sub>2,s))" | "small_step_fun (WHILE bs \<noteq>0 DO c,s) = (if \<exists>b \<in> set bs. s b \<noteq> Some Zero then (c ;; (WHILE bs \<noteq>0 DO c), s) else (SKIP,s))" fun t_small_step_fun:: "nat \<Rightarrow> com * state \<Rightarrow> com * state" where "t_small_step_fun 0 = id" | "t_small_step_fun (Suc t) = (t_small_step_fun t) \<circ> small_step_fun" lemma t_small_step_fun_ge_0: "t > 0 \<Longrightarrow> t_small_step_fun t (c, s) = t_small_step_fun (t - 1) (small_step_fun (c, s))" proof- assume "t > 0" then obtain t' where "t = Suc t'" using lessE by blast thus ?thesis by simp qed lemma t_small_step_fun_small_step_fun: "t_small_step_fun t (small_step_fun cs) = t_small_step_fun (t + 1) cs" by simp lemma small_step_fun_t_small_step_fun: "small_step_fun (t_small_step_fun t (c, s)) = t_small_step_fun (t + 1) (c, s)" proof(induction t arbitrary: c s) case (Suc t) let ?c' = "fst (small_step_fun (c, s))" let ?s' = "snd (small_step_fun (c, s))" have "small_step_fun (t_small_step_fun t (?c', ?s')) = t_small_step_fun t (small_step_fun (?c', ?s'))" using Suc t_small_step_fun_small_step_fun by presburger thus ?case by auto qed auto lemma t_small_step_fun_SKIP[simp]: "t_small_step_fun t (SKIP, s) = (SKIP, s)" apply(induction t) by auto lemma t_small_step_fun_terminate_iff: "t_small_step_fun t (c1, s1) = (SKIP, s2) \<longleftrightarrow> ((c1 = SKIP \<and> s1 = s2) \<or> (t > 0 \<and> t_small_step_fun (t - 1) (small_step_fun (c1, s1)) = (SKIP, s2)))" apply(auto simp: t_small_step_fun_ge_0) apply (metis One_nat_def id_apply less_Suc_eq_0_disj prod.inject t_small_step_fun.elims t_small_step_fun_ge_0) by (metis One_nat_def Pair_inject id_apply less_Suc_eq_0_disj t_small_step_fun.elims t_small_step_fun_ge_0) lemma t_small_step_fun_decomposition: "t_small_step_fun (a + b) cs = t_small_step_fun a (t_small_step_fun b cs)" apply(induction a arbitrary: cs) by(auto simp: small_step_fun_t_small_step_fun) lemma t_small_step_fun_increase_time: "t \<le> t' \<Longrightarrow> t_small_step_fun t (c1, s1) = (SKIP, s2) \<Longrightarrow> t_small_step_fun t' (c1, s1) = (SKIP, s2)" using t_small_step_fun_decomposition[where ?a="t' - t" and ?b="t"] by simp lemma exists_terminating_iff: "(\<exists>t < Suc t'. t_small_step_fun t (c, s) = (SKIP, s')) \<longleftrightarrow> t_small_step_fun t' (c, s) = (SKIP, s')" using t_small_step_fun_increase_time by (auto simp: less_Suc_eq_le) lemma terminates_then_can_reach_SKIP_in_seq: "t_small_step_fun t (c1, s1) = (SKIP, s2) \<Longrightarrow> (\<exists>t' \<le> t. t_small_step_fun t' (c1 ;; c2, s1) = (SKIP ;; c2, s2))" proof(induction t arbitrary: c1 s1) case (Suc t) have "c1 = SKIP \<or> c1 \<noteq> SKIP" by auto thus ?case using Suc proof (elim disjE) assume *: "c1 \<noteq> SKIP" let ?c1' = "fst (small_step_fun (c1, s1))" let ?s1' = "snd (small_step_fun (c1, s1))" have "t_small_step_fun t (?c1', ?s1') = (SKIP, s2)" using * by (metis Suc.prems Suc_eq_plus1 prod.collapse t_small_step_fun_small_step_fun) then obtain t' where "t' \<le> t \<and> t_small_step_fun t' (?c1' ;; c2, ?s1') = (SKIP ;; c2, s2)" using Suc by blast thus ?case using * by auto qed auto qed auto lemma seq_terminates_iff: "t_small_step_fun t (a ;; b, s1) = (SKIP, s2) \<longleftrightarrow> (\<exists>t' s3. t' < t \<and> t_small_step_fun t' (a, s1) = (SKIP, s3) \<and> t_small_step_fun (t - (t' + 1)) (b, s3) = (SKIP, s2))" proof(induction t arbitrary: a s1) case (Suc t) show ?case proof assume *: "t_small_step_fun (Suc t) (a;; b, s1) = (SKIP, s2)" have "a = SKIP \<or> a \<noteq> SKIP" by auto thus "\<exists>t' s3. t' < Suc t \<and> t_small_step_fun t' (a, s1) = (SKIP, s3) \<and> t_small_step_fun (Suc t - (t' + 1)) (b, s3) = (SKIP, s2)" using * proof (elim disjE) assume **: "a \<noteq> SKIP" let ?a' = "fst (small_step_fun (a, s1))" let ?s1' = "snd (small_step_fun (a, s1))" have "t_small_step_fun t (?a' ;; b, ?s1') = (SKIP, s2)" using * ** by (auto simp: t_small_step_fun_terminate_iff) then obtain t' s3 where "t' < t \<and> t_small_step_fun t' (?a', ?s1') = (SKIP, s3) \<and> t_small_step_fun (t - (t' + 1)) (b, s3) = (SKIP, s2)" using Suc by auto hence "t' + 1 < t + 1 \<and> t_small_step_fun (t' + 1) (a, s1) = (SKIP, s3) \<and> t_small_step_fun (t - (t' + 1)) (b, s3) = (SKIP, s2)" by(auto) thus ?thesis by auto qed auto next assume "\<exists>t' s3. t' < Suc t \<and> t_small_step_fun t' (a, s1) = (SKIP, s3) \<and> t_small_step_fun (Suc t - (t' + 1)) (b, s3) = (SKIP, s2)" then obtain t' s3 where t'_def: "t' < Suc t \<and> t_small_step_fun t' (a, s1) = (SKIP, s3) \<and> t_small_step_fun (Suc t - (t' + 1)) (b, s3) = (SKIP, s2)" by blast then obtain t'' where t''_def: "t'' \<le> t' \<and> t_small_step_fun t'' (a ;; b, s1) = (SKIP ;; b, s3)" using terminates_then_can_reach_SKIP_in_seq by blast hence "t_small_step_fun (t'' + ((Suc t - (t' + 1)) + 1)) (a ;; b, s1) = t_small_step_fun (Suc t - (t' + 1) + 1) (SKIP ;; b, s3)" using t_small_step_fun_decomposition[where ?b="t''"] t'_def by (metis add.commute) also have "... = t_small_step_fun (Suc t - (t' + 1)) (b, s3)" using t'_def by(auto simp: t_small_step_fun_ge_0) also have "... = (SKIP, s2)" using t'_def by simp ultimately show "t_small_step_fun (Suc t) (a ;; b, s1) = (SKIP, s2)" apply - apply(rule t_small_step_fun_increase_time[where ?t="t'' + ((Suc t - (t' + 1)) + 1)"]) using t'_def t''_def by(auto) qed qed auto lemma seq_terminates_when: "t1 + t2 < t \<Longrightarrow> t_small_step_fun t1 (a, s1) = (SKIP, s3) \<Longrightarrow> t_small_step_fun t2 (b, s3) = (SKIP, s2) \<Longrightarrow> t_small_step_fun t (a ;; b, s1) = (SKIP, s2)" apply(auto simp: seq_terminates_iff) by (metis Nat.add_diff_assoc2 add_lessD1 diff_Suc_Suc diff_add_inverse le_add_same_cancel1 less_natE t_small_step_fun_increase_time zero_le) lemma seq_terminates_when': "t_small_step_fun t1 (a, s1) = (SKIP, s3) \<Longrightarrow> t_small_step_fun t2 (b, s3) = (SKIP, s2) \<Longrightarrow> t1 + t2 < t \<Longrightarrow> t_small_step_fun t (a ;; b, s1) = (SKIP, s2)" apply(auto simp: seq_terminates_iff) by (metis Nat.add_diff_assoc2 add_lessD1 diff_Suc_Suc diff_add_inverse le_add_same_cancel1 less_natE t_small_step_fun_increase_time zero_le) lemma small_step_fun_small_step: "c1 \<noteq> SKIP \<Longrightarrow> small_step_fun (c1, s1) = (c2, s2) \<longleftrightarrow> (c1, s1) \<rightarrow> (c2, s2)" apply(induction c1 arbitrary: s1 c2 s2) apply auto apply fastforce by (metis SeqE fstI eq_snd_iff)+ lemma small_step_fun_small_step': "c1 \<noteq> SKIP \<Longrightarrow> (c1, s1) \<rightarrow> small_step_fun (c1, s1)" apply(induction c1 arbitrary: s1) by auto lemma t_small_step_fun_t_small_step_equivalence: "(t_small_step_fun t (c1, s1) = (SKIP, s2)) \<longleftrightarrow> (\<exists>t' \<le> t. (c1, s1) \<rightarrow>\<^bsup>t'\<^esup> (SKIP, s2))" proof(induction t arbitrary: c1 s1 rule: nat_less_induct) case (1 n) hence IH: "t'' < n \<Longrightarrow> (t_small_step_fun t'' (c1, s1) = (SKIP, s2)) \<longleftrightarrow> (\<exists>t'\<le>t''. (c1, s1) \<rightarrow>\<^bsup>t'\<^esup> (SKIP, s2))" for t'' c1 s1 by simp show ?case proof(cases n) case (Suc t) have "c1 = SKIP \<or> c1 \<noteq> SKIP" by auto thus ?thesis proof(elim disjE) assume "c1 \<noteq> SKIP" show ?thesis proof assume "t_small_step_fun n (c1, s1) = (SKIP, s2)" hence "(c1, s1) \<rightarrow> small_step_fun (c1, s1) \<and> (\<exists>t' \<le> t. small_step_fun (c1, s1) \<rightarrow>\<^bsup>t'\<^esup> (SKIP, s2))" using IH[where ?c1.0="fst (small_step_fun (c1, s1))" and ?s1.0="snd (small_step_fun (c1, s1))" and ?t''=t] \<open>c1 \<noteq> SKIP\<close> small_step_fun_small_step' Suc by auto thus "\<exists>t' \<le> n. (c1, s1) \<rightarrow>\<^bsup>t'\<^esup> (SKIP, s2)" using Suc by auto next assume "\<exists>t' \<le> n. (c1, s1) \<rightarrow>\<^bsup>t'\<^esup> (SKIP, s2)" then obtain t' where t'_def: "t' \<le> n \<and> (c1, s1) \<rightarrow>\<^bsup>t'\<^esup> (SKIP, s2)" by blast then obtain t'' where t''_def: "t' = Suc t''" using \<open>c1 \<noteq> SKIP\<close> by (metis prod.inject rel_pow.cases) then obtain c3 s3 where "(c1, s1) \<rightarrow> (c3, s3) \<and> (c3, s3) \<rightarrow>\<^bsup>t''\<^esup> (SKIP, s2)" using t'_def by auto hence "small_step_fun (c1, s1) = (c3, s3) \<and> t_small_step_fun t'' (c3, s3) = (SKIP, s2)" using IH[where ?c1.0=c3 and ?s1.0=s3 and ?t''=t''] small_step_fun_small_step \<open>c1 \<noteq> SKIP\<close> t'_def t''_def by auto hence "t_small_step_fun (Suc t'') (c1, s1) = (SKIP, s2)" by simp thus "t_small_step_fun n (c1, s1) = (SKIP, s2)" using t'_def t''_def t_small_step_fun_increase_time by blast qed next assume "c1 = SKIP" thus ?thesis using rel_pow.cases by fastforce qed qed auto qed end
(* Title: ZF/Resid/Residuals.thy Author: Ole Rasmussen Copyright 1995 University of Cambridge *) theory Residuals imports Substitution begin consts Sres :: "i" abbreviation "residuals(u,v,w) == <u,v,w> \<in> Sres" inductive domains "Sres" \<subseteq> "redexes*redexes*redexes" intros Res_Var: "n \<in> nat ==> residuals(Var(n),Var(n),Var(n))" Res_Fun: "[|residuals(u,v,w)|]==> residuals(Fun(u),Fun(v),Fun(w))" Res_App: "[|residuals(u1,v1,w1); residuals(u2,v2,w2); b \<in> bool|]==> residuals(App(b,u1,u2),App(0,v1,v2),App(b,w1,w2))" Res_redex: "[|residuals(u1,v1,w1); residuals(u2,v2,w2); b \<in> bool|]==> residuals(App(b,Fun(u1),u2),App(1,Fun(v1),v2),w2/w1)" type_intros subst_type nat_typechecks redexes.intros bool_typechecks definition res_func :: "[i,i]=>i" (infixl "|>" 70) where "u |> v == THE w. residuals(u,v,w)" subsection\<open>Setting up rule lists\<close> declare Sres.intros [intro] declare Sreg.intros [intro] declare subst_type [intro] inductive_cases [elim!]: "residuals(Var(n),Var(n),v)" "residuals(Fun(t),Fun(u),v)" "residuals(App(b, u1, u2), App(0, v1, v2),v)" "residuals(App(b, u1, u2), App(1, Fun(v1), v2),v)" "residuals(Var(n),u,v)" "residuals(Fun(t),u,v)" "residuals(App(b, u1, u2), w,v)" "residuals(u,Var(n),v)" "residuals(u,Fun(t),v)" "residuals(w,App(b, u1, u2),v)" inductive_cases [elim!]: "Var(n) \<Longleftarrow> u" "Fun(n) \<Longleftarrow> u" "u \<Longleftarrow> Fun(n)" "App(1,Fun(t),a) \<Longleftarrow> u" "App(0,t,a) \<Longleftarrow> u" inductive_cases [elim!]: "Fun(t) \<in> redexes" declare Sres.intros [simp] subsection\<open>residuals is a partial function\<close> lemma residuals_function [rule_format]: "residuals(u,v,w) ==> \<forall>w1. residuals(u,v,w1) \<longrightarrow> w1 = w" by (erule Sres.induct, force+) lemma residuals_intro [rule_format]: "u \<sim> v ==> regular(v) \<longrightarrow> (\<exists>w. residuals(u,v,w))" by (erule Scomp.induct, force+) lemma comp_resfuncD: "[| u \<sim> v; regular(v) |] ==> residuals(u, v, THE w. residuals(u, v, w))" apply (frule residuals_intro, assumption, clarify) apply (subst the_equality) apply (blast intro: residuals_function)+ done subsection\<open>Residual function\<close> lemma res_Var [simp]: "n \<in> nat ==> Var(n) |> Var(n) = Var(n)" by (unfold res_func_def, blast) lemma res_Fun [simp]: "[|s \<sim> t; regular(t)|]==> Fun(s) |> Fun(t) = Fun(s |> t)" apply (unfold res_func_def) apply (blast intro: comp_resfuncD residuals_function) done lemma res_App [simp]: "[|s \<sim> u; regular(u); t \<sim> v; regular(v); b \<in> bool|] ==> App(b,s,t) |> App(0,u,v) = App(b, s |> u, t |> v)" apply (unfold res_func_def) apply (blast dest!: comp_resfuncD intro: residuals_function) done lemma res_redex [simp]: "[|s \<sim> u; regular(u); t \<sim> v; regular(v); b \<in> bool|] ==> App(b,Fun(s),t) |> App(1,Fun(u),v) = (t |> v)/ (s |> u)" apply (unfold res_func_def) apply (blast elim!: redexes.free_elims dest!: comp_resfuncD intro: residuals_function) done lemma resfunc_type [simp]: "[|s \<sim> t; regular(t)|]==> regular(t) \<longrightarrow> s |> t \<in> redexes" by (erule Scomp.induct, auto) subsection\<open>Commutation theorem\<close> lemma sub_comp [simp]: "u \<Longleftarrow> v \<Longrightarrow> u \<sim> v" by (erule Ssub.induct, simp_all) lemma sub_preserve_reg [rule_format, simp]: "u \<Longleftarrow> v \<Longrightarrow> regular(v) \<longrightarrow> regular(u)" by (erule Ssub.induct, auto) lemma residuals_lift_rec: "[|u \<sim> v; k \<in> nat|]==> regular(v)\<longrightarrow> (\<forall>n \<in> nat. lift_rec(u,n) |> lift_rec(v,n) = lift_rec(u |> v,n))" apply (erule Scomp.induct, safe) apply (simp_all add: lift_rec_Var subst_Var lift_subst) done lemma residuals_subst_rec: "u1 \<sim> u2 ==> \<forall>v1 v2. v1 \<sim> v2 \<longrightarrow> regular(v2) \<longrightarrow> regular(u2) \<longrightarrow> (\<forall>n \<in> nat. subst_rec(v1,u1,n) |> subst_rec(v2,u2,n) = subst_rec(v1 |> v2, u1 |> u2,n))" apply (erule Scomp.induct, safe) apply (simp_all add: lift_rec_Var subst_Var residuals_lift_rec) apply (drule_tac psi = "\<forall>x. P(x)" for P in asm_rl) apply (simp add: substitution) done lemma commutation [simp]: "[|u1 \<sim> u2; v1 \<sim> v2; regular(u2); regular(v2)|] ==> (v1/u1) |> (v2/u2) = (v1 |> v2)/(u1 |> u2)" by (simp add: residuals_subst_rec) subsection\<open>Residuals are comp and regular\<close> lemma residuals_preserve_comp [rule_format, simp]: "u \<sim> v ==> \<forall>w. u \<sim> w \<longrightarrow> v \<sim> w \<longrightarrow> regular(w) \<longrightarrow> (u|>w) \<sim> (v|>w)" by (erule Scomp.induct, force+) lemma residuals_preserve_reg [rule_format, simp]: "u \<sim> v ==> regular(u) \<longrightarrow> regular(v) \<longrightarrow> regular(u|>v)" apply (erule Scomp.induct, auto) done subsection\<open>Preservation lemma\<close> lemma union_preserve_comp: "u \<sim> v ==> v \<sim> (u \<squnion> v)" by (erule Scomp.induct, simp_all) lemma preservation [rule_format]: "u \<sim> v ==> regular(v) \<longrightarrow> u|>v = (u \<squnion> v)|>v" apply (erule Scomp.induct, safe) apply (drule_tac [3] psi = "Fun (u) |> v = w" for u v w in asm_rl) apply (auto simp add: union_preserve_comp comp_sym_iff) done declare sub_comp [THEN comp_sym, simp] subsection\<open>Prism theorem\<close> (* Having more assumptions than needed -- removed below *) lemma prism_l [rule_format]: "v \<Longleftarrow> u \<Longrightarrow> regular(u) \<longrightarrow> (\<forall>w. w \<sim> v \<longrightarrow> w \<sim> u \<longrightarrow> w |> u = (w|>v) |> (u|>v))" by (erule Ssub.induct, force+) lemma prism: "[|v \<Longleftarrow> u; regular(u); w \<sim> v|] ==> w |> u = (w|>v) |> (u|>v)" apply (rule prism_l) apply (rule_tac [4] comp_trans, auto) done subsection\<open>Levy's Cube Lemma\<close> lemma cube: "[|u \<sim> v; regular(v); regular(u); w \<sim> u|]==> (w|>u) |> (v|>u) = (w|>v) |> (u|>v)" apply (subst preservation [of u], assumption, assumption) apply (subst preservation [of v], erule comp_sym, assumption) apply (subst prism [symmetric, of v]) apply (simp add: union_r comp_sym_iff) apply (simp add: union_preserve_regular comp_sym_iff) apply (erule comp_trans, assumption) apply (simp add: prism [symmetric] union_l union_preserve_regular comp_sym_iff union_sym) done subsection\<open>paving theorem\<close> lemma paving: "[|w \<sim> u; w \<sim> v; regular(u); regular(v)|]==> \<exists>uv vu. (w|>u) |> vu = (w|>v) |> uv & (w|>u) \<sim> vu \<and> regular(vu) & (w|>v) \<sim> uv \<and> regular(uv)" apply (subgoal_tac "u \<sim> v") apply (safe intro!: exI) apply (rule cube) apply (simp_all add: comp_sym_iff) apply (blast intro: residuals_preserve_comp comp_trans comp_sym)+ done end
(* Author: Tobias Nipkow *) section "Deterministic Online and Offline Algorithms" theory On_Off imports Complex_Main begin type_synonym ('s,'r,'a) alg_off = "'s \<Rightarrow> 'r list \<Rightarrow> 'a list" type_synonym ('s,'is,'r,'a) alg_on = "('s \<Rightarrow> 'is) * ('s * 'is \<Rightarrow> 'r \<Rightarrow> 'a * 'is)" locale On_Off = fixes step :: "'state \<Rightarrow> 'request \<Rightarrow> 'answer \<Rightarrow> 'state" fixes t :: "'state \<Rightarrow> 'request \<Rightarrow> 'answer \<Rightarrow> nat" fixes wf :: "'state \<Rightarrow> 'request list \<Rightarrow> bool" begin fun T :: "'state \<Rightarrow> 'request list \<Rightarrow> 'answer list \<Rightarrow> nat" where "T s [] [] = 0" | "T s (r#rs) (a#as) = t s r a + T (step s r a) rs as" definition Step :: "('state , 'istate, 'request, 'answer)alg_on \<Rightarrow> 'state * 'istate \<Rightarrow> 'request \<Rightarrow> 'state * 'istate" where "Step A s r = (let (a,is') = snd A s r in (step (fst s) r a, is'))" fun config' :: "('state,'is,'request,'answer) alg_on \<Rightarrow> ('state*'is) \<Rightarrow> 'request list \<Rightarrow> ('state * 'is)" where "config' A s [] = s" | "config' A s (r#rs) = config' A (Step A s r) rs" lemma config'_snoc: "config' A s (rs@[r]) = Step A (config' A s rs) r" apply(induct rs arbitrary: s) by simp_all lemma config'_append2: "config' A s (xs@ys) = config' A (config' A s xs) ys" apply(induct xs arbitrary: s) by simp_all lemma config'_induct: "P (fst init) \<Longrightarrow> (\<And>s q a. P s \<Longrightarrow> P (step s q a)) \<Longrightarrow> P (fst (config' A init rs))" apply (induct rs arbitrary: init) by(simp_all add: Step_def split: prod.split) abbreviation config where "config A s0 rs == config' A (s0, fst A s0) rs" lemma config_snoc: "config A s (rs@[r]) = Step A (config A s rs) r" using config'_snoc by metis lemma config_append: "config A s (xs@ys) = config' A (config A s xs) ys" using config'_append2 by metis lemma config_induct: "P s0 \<Longrightarrow> (\<And>s q a. P s \<Longrightarrow> P (step s q a)) \<Longrightarrow> P (fst (config A s0 qs))" using config'_induct[of P "(s0, fst A s0)" ] by auto fun T_on' :: "('state,'is,'request,'answer) alg_on \<Rightarrow> ('state*'is) \<Rightarrow> 'request list \<Rightarrow> nat" where "T_on' A s [] = 0" | "T_on' A s (r#rs) = (t (fst s) r (fst (snd A s r))) + T_on' A (Step A s r) rs" lemma T_on'_append: "T_on' A s (xs@ys) = T_on' A s xs + T_on' A (config' A s xs) ys" apply(induct xs arbitrary: s) by simp_all abbreviation T_on'' :: "('state,'is,'request,'answer) alg_on \<Rightarrow> 'state \<Rightarrow> 'request list \<Rightarrow> nat" where "T_on'' A s rs == T_on' A (s,fst A s) rs" lemma T_on_append: "T_on'' A s (xs@ys) = T_on'' A s xs + T_on' A (config A s xs) ys" by(rule T_on'_append) abbreviation "T_on_n A s0 xs n == T_on' A (config A s0 (take n xs)) [xs!n]" lemma T_on__as_sum: "T_on'' A s0 rs = sum (T_on_n A s0 rs) {..<length rs} " apply(induct rs rule: rev_induct) by(simp_all add: T_on'_append nth_append) fun off2 :: "('state,'is,'request,'answer) alg_on \<Rightarrow> ('state * 'is,'request,'answer) alg_off" where "off2 A s [] = []" | "off2 A s (r#rs) = fst (snd A s r) # off2 A (Step A s r) rs" abbreviation off :: "('state,'is,'request,'answer) alg_on \<Rightarrow> ('state,'request,'answer) alg_off" where "off A s0 \<equiv> off2 A (s0, fst A s0)" abbreviation T_off :: "('state,'request,'answer) alg_off \<Rightarrow> 'state \<Rightarrow> 'request list \<Rightarrow> nat" where "T_off A s0 rs == T s0 rs (A s0 rs)" abbreviation T_on :: "('state,'is,'request,'answer) alg_on \<Rightarrow> 'state \<Rightarrow> 'request list \<Rightarrow> nat" where "T_on A == T_off (off A)" lemma T_on_on': "T_off (\<lambda>s0. (off2 A (s0, x))) s0 qs = T_on' A (s0,x) qs" apply(induct qs arbitrary: s0 x) by(simp_all add: Step_def split: prod.split) lemma T_on_on'': "T_on A s0 qs = T_on'' A s0 qs" using T_on_on'[where x="fst A s0", of s0 qs A] by(auto) lemma T_on_as_sum: "T_on A s0 rs = sum (T_on_n A s0 rs) {..<length rs} " using T_on__as_sum T_on_on'' by metis definition T_opt :: "'state \<Rightarrow> 'request list \<Rightarrow> nat" where "T_opt s rs = Inf {T s rs as | as. size as = size rs}" definition compet :: "('state,'is,'request,'answer) alg_on \<Rightarrow> real \<Rightarrow> 'state set \<Rightarrow> bool" where "compet A c S = (\<forall>s\<in>S. \<exists>b \<ge> 0. \<forall>rs. wf s rs \<longrightarrow> real(T_on A s rs) \<le> c * T_opt s rs + b)" lemma length_off[simp]: "length(off2 A s rs) = length rs" by (induction rs arbitrary: s) (auto split: prod.split) lemma compet_mono: assumes "compet A c S0" and "c \<le> c'" shows "compet A c' S0" proof (unfold compet_def, auto) let ?compt = "\<lambda>s0 rs b (c::real). T_on A s0 rs \<le> c * T_opt s0 rs + b" fix s0 assume "s0 \<in> S0" with assms(1) obtain b where "b \<ge> 0" and 1: "\<forall>rs. wf s0 rs \<longrightarrow> ?compt s0 rs b c" by(auto simp: compet_def) have "\<forall>rs. wf s0 rs \<longrightarrow> ?compt s0 rs b c'" proof safe fix rs assume wf: "wf s0 rs" from 1 wf have "?compt s0 rs b c" by blast thus "?compt s0 rs b c'" using 1 mult_right_mono[OF assms(2) of_nat_0_le_iff[of "T_opt s0 rs"]] by arith qed thus "\<exists>b\<ge>0. \<forall>rs. wf s0 rs \<longrightarrow> ?compt s0 rs b c'" using \<open>b\<ge>0\<close> by(auto) qed lemma competE: fixes c :: real assumes "compet A c S0" "c \<ge> 0" "\<forall>s0 rs. size(aoff s0 rs) = length rs" "s0\<in>S0" shows "\<exists>b\<ge>0. \<forall>rs. wf s0 rs \<longrightarrow> T_on A s0 rs \<le> c * T_off aoff s0 rs + b" proof - from assms(1,4) obtain b where "b\<ge>0" and 1: "\<forall>rs. wf s0 rs \<longrightarrow> T_on A s0 rs \<le> c * T_opt s0 rs + b" by(auto simp add: compet_def) { fix rs assume "wf s0 rs" then have 2: "real(T_on A s0 rs) \<le> c * Inf {T s0 rs as | as. size as = size rs} + b" (is "_ \<le> _ * real(Inf ?T) + _") using 1 by(auto simp add: T_opt_def) have "Inf ?T \<le> T_off aoff s0 rs" using assms(3) by (intro cInf_lower) auto from mult_left_mono[OF of_nat_le_iff[THEN iffD2, OF this] assms(2)] have "T_on A s0 rs \<le> c * T_off aoff s0 rs + b" using 2 by arith } thus ?thesis using \<open>b\<ge>0\<close> by(auto simp: compet_def) qed end end
SUBROUTINE IN_SKYC ( skysym, condtn, iret ) C************************************************************************ C* IN_SKYC * C* * C* This subroutine decodes the input for the sky coverage symbol. * C* The input must be in the form: * C* : size : width : type * C* If the user has entered a condition, it must precede the first : * C* * C* IN_SKYC ( SKYSYM, CONDTN, IRET ) * C* * C* Input parameters: * C* SKYSYM CHAR* Sky coverage symbol input * C* * C* Output parameters: * C* CONDTN CHAR* Condition * C* IRET INTEGER Return code * C* 0 = normal return * C* * C** * C* Log: * C* S. Schotz/GSC 4/90 GEMPAK5 * C* S. Schotz/GSC 7/90 Changed order of parts * C* M. desJardins/NMC 10/91 Clean up; elim calls with substrings * C* M. desJardins/NMC 11/91 Change * to : and retufn condition * C************************************************************************ CHARACTER*(*) skysym, condtn C* REAL rarr (3) CHARACTER symbol*24 C------------------------------------------------------------------------ iret = 0 C C* Check for colon. C ipos = INDEX ( skysym, ':' ) IF ( ipos .eq. 0 ) THEN condtn = skysym RETURN ELSE condtn = skysym ( 1:ipos-1 ) symbol = skysym ( ipos+1: ) END IF C C* Decode size, width, and type. C CALL ST_RLST ( symbol, ':', 0. , 3, rarr, num, ier ) size = rarr (1) iwidth = NINT ( rarr (2) ) itype = rarr (3) CALL GSSKY ( size, itype, iwidth, ier ) C* RETURN END
function b = triangulation_isequal(face,faced) % triangulation_isequal - true if two triangulations are equals % % b = triangulation_isequal(face,faced) % % Copyright (c) 2008 Gabriel Peyre I = setdiff(sort(face)',sort(faced)', 'rows'); b = isempty(I);
Require Import List Morphisms Lia. Require Import Undecidability.Synthetic.DecidabilityFacts Undecidability.Synthetic.EnumerabilityFacts Undecidability.Shared.partial Undecidability.Shared.embed_nat Undecidability.Synthetic.FinitenessFacts. Export EmbedNatNotations. (** ** Semi-decidability *) Definition equiv_sdec {X} := fun (f g : X -> nat -> bool) => forall x, (exists n, f x n = true) <-> exists n, g x n = true. Instance Proper_semi_decider {X} : Proper (@equiv_sdec X ==> pointwise_relation X iff ==> iff ) (@semi_decider X). Proof. intros f g H1 p q H2. red in H1, H2. unfold semi_decider. split; intros H x; cbn in H1. - now rewrite <- H2, H, H1. - now rewrite H2, H, H1. Qed. Instance Proper_semi_decidable {X} : Proper (pointwise_relation X iff ==> iff) (@semi_decidable X). Proof. intros p q H2. split; intros [f H]; exists f; red. - intros x. now rewrite <- (H2 x). - intros x. now rewrite H2. Qed. Lemma semi_decider_ext {X} {p q : X -> Prop} {f g} : semi_decider f p -> semi_decider g q -> equiv_sdec f g -> p ≡{_} q. Proof. unfold semi_decider. cbn. intros Hp Hq E x. red in E. now rewrite Hp, E, Hq. Qed. Lemma semi_decidable_part_iff {X} {p : X -> Prop} {Part : partiality}: semi_decidable p <-> exists Y (f : X -> part Y), forall x, p x <-> exists y, f x =! y. Proof. split. - intros [f Hf]. exists nat, (fun x => mu_tot (f x)). intros x. rewrite (Hf x). split; intros [n H]. + eapply mu_tot_ter in H as [y H]. eauto. + eapply mu_tot_hasvalue in H as [H _]. eauto. - intros (Y & f & Hf). exists (fun x n => if seval (f x) n is Some _ then true else false). intros x. rewrite Hf. split. + intros [y H]. eapply seval_hasvalue in H as [n H]. exists n. now rewrite H. + intros [n H]. destruct seval eqn:E; inversion H. eexists. eapply seval_hasvalue. eauto. Qed. Lemma forall_neg_exists_iff (f : nat -> bool) : (forall n, f n = false) <-> ~ exists n, f n = true. Proof. split. - intros H [n Hn]. rewrite H in Hn. congruence. - intros H n. destruct (f n) eqn:E; try reflexivity. destruct H. eauto. Qed. Lemma semi_decider_co_semi_decider {X} (p : X -> Prop) f : semi_decider f p -> co_semi_decider f (complement p). Proof. intros Hf. red in Hf. unfold complement. intros x. rewrite Hf. now rewrite forall_neg_exists_iff. Qed. Lemma semi_decidable_co_semi_decidable {X} (p : X -> Prop) : semi_decidable p -> co_semi_decidable (complement p). Proof. intros [f Hf]. eapply ex_intro, semi_decider_co_semi_decider, Hf. Qed. Lemma co_semi_decidable_stable : forall X (p : X -> Prop), co_semi_decidable p -> stable p. Proof. intros X p [f Hf] x Hx. eapply Hf. eapply forall_neg_exists_iff. red in Hf. rewrite Hf, forall_neg_exists_iff in Hx. tauto. Qed. Lemma decider_semi_decider {X} {p : X -> Prop} f : decider f p -> semi_decider (fun x n => f x) p. Proof. intros H x. unfold decider, reflects in H. rewrite H. now firstorder; econstructor. Qed. Lemma decider_co_semi_decider {X} {p : X -> Prop} f : decider f p -> co_semi_decider (fun x n => negb (f x)) p. Proof. intros H x. unfold decider, reflects in H. rewrite H. split. - now intros -> _. - intros H0. destruct (f x); cbn in *; now try rewrite (H0 0). Qed. Lemma decidable_semi_decidable {X} {p : X -> Prop} : decidable p -> semi_decidable p. Proof. intros [f H]. eapply ex_intro, decider_semi_decider, H. Qed. Lemma decidable_compl_semi_decidable {X} {p : X -> Prop} : decidable p -> semi_decidable (complement p). Proof. intros H. now eapply decidable_semi_decidable, decidable_complement. Qed. Lemma decidable_co_semi_decidable {X} {p : X -> Prop} : decidable p -> co_semi_decidable p. Proof. intros [f H]. eapply ex_intro, decider_co_semi_decider, H. Qed. Lemma semi_decidable_projection_iff X (p : X -> Prop) : semi_decidable p <-> exists (q : nat * X -> Prop), decidable q /\ forall x, p x <-> exists n, q (n, x). Proof. split. - intros [d Hd]. exists (fun '(n, x) => d x n = true). split. + exists (fun '(n,x) => d x n). intros [n x]. firstorder congruence. + intros x. eapply Hd. - intros (q & [f Hf] & Hq). exists (fun x n => f (n, x)). unfold semi_decider, decider, reflects in *. intros x. rewrite Hq. now setoid_rewrite Hf. Qed. Lemma semi_decider_and {X} {p q : X -> Prop} f g : semi_decider f p -> semi_decider g q -> semi_decider (fun x n => andb (existsb (f x) (seq 0 n)) (existsb (g x) (seq 0 n))) (fun x => p x /\ q x). Proof. intros Hf Hg x. red in Hf, Hg |- *. rewrite Hf, Hg. setoid_rewrite Bool.andb_true_iff. setoid_rewrite existsb_exists. repeat setoid_rewrite in_seq. cbn. clear. split. - intros [[n1 Hn1] [n2 Hn2]]. exists (1 + n1 + n2). firstorder lia. - firstorder. Qed. Lemma semi_decidable_and {X} {p q : X -> Prop} : semi_decidable p -> semi_decidable q -> semi_decidable (fun x => p x /\ q x). Proof. intros [f Hf] [g Hg]. eapply ex_intro, semi_decider_and; eauto. Qed. Lemma reflects_cases {P} {b} : reflects b P -> b = true /\ P \/ b = false /\ ~ P. Proof. destruct b; firstorder congruence. Qed. Lemma semi_decider_or {X} {p q : X -> Prop} f g : semi_decider f p -> semi_decider g q -> semi_decider (fun x n => orb (f x n) (g x n)) (fun x => p x \/ q x). Proof. intros Hf Hg. red in Hf, Hg |- *. intros x. rewrite Hf, Hg. setoid_rewrite Bool.orb_true_iff. clear. firstorder. Qed. Lemma semi_decidable_or {X} {p q : X -> Prop} : semi_decidable p -> semi_decidable q -> semi_decidable (fun x => p x \/ q x). Proof. intros [f Hf] [g Hg]. eapply ex_intro, semi_decider_or; eauto. Qed. Lemma semi_decidable_ex {X} {p : nat -> X -> Prop} : semi_decidable (fun pa => p (fst pa) (snd pa)) -> semi_decidable (fun x => exists n, p n x). Proof. intros [f Hf]. eapply semi_decidable_projection_iff. exists (fun '(n,x) => (fun! ⟨n1,n2⟩ => f (n1, x) n2 = true) n). split. - eapply dec_decidable. intros (n, x). destruct unembed. exact _. - intros x. setoid_rewrite (Hf (_, x)). split. + intros (n1 & n2 & H). exists ⟨n1, n2⟩. now rewrite embedP. + intros (n & H). destruct unembed as [n1 n2]. exists n1, n2. eauto. Qed. Lemma co_semi_decider_and {X} {p q : X -> Prop} f g : co_semi_decider f p -> co_semi_decider g q -> co_semi_decider (fun x n => orb (f x n) (g x n)) (fun x => p x /\ q x). Proof. intros Hf Hg x. red in Hf, Hg. rewrite Hf, Hg. setoid_rewrite Bool.orb_false_iff. clear. firstorder. Qed. Lemma co_semi_decidable_and {X} {p q : X -> Prop} : co_semi_decidable p -> co_semi_decidable q -> co_semi_decidable (fun x => p x /\ q x). Proof. intros [f Hf] [g Hg]. eapply ex_intro, co_semi_decider_and; eauto. Qed. Lemma semi_decider_AC X g (R : X -> nat -> Prop) : semi_decider g (uncurry R) -> (forall x, exists y, R x y) -> ∑ f : X -> nat, forall x, R x (f x). Proof. intros Hg Htot'. red in Hg. unfold uncurry in *. pose (R' x := fun! ⟨n,m⟩ => g (x,n) m = true). assert (Htot : forall x, exists n, R' x n). { subst R'. intros x. destruct (Htot' x) as (n & [m H] % (Hg (_, _))). exists ⟨n,m⟩. now rewrite embedP. } assert (Hdec : decider (fun '(x, nm) => let (n, m) := unembed nm in g (x, n) m) (uncurry R')). { unfold R'. unfold uncurry. intros (x, nm). destruct (unembed nm) as (n, m). destruct g; firstorder congruence. } eapply (decider_AC _ _ _ Hdec) in Htot as [f' Hf']. exists (fun x => (fun! ⟨n, m⟩ => n) (f' x)). intros x. subst R'. specialize (Hf' x). cbn in Hf'. destruct (unembed (f' x)). eapply (Hg (_, _)). eauto. Qed. (* Lemma sdec_compute_lor {X} {p q : X -> Prop} : semi_decidable p -> semi_decidable q -> (forall x, p x \/ q x) -> exists f : X -> bool, forall x, if f x then p x else q x. Proof. intros [f_p Hp] [f_q Hq] Ho. unshelve eexists. - refine (fun x => let (n, H) := mu_nat (P := fun n => orb (f_p x n) (f_q x n) = true) (ltac:(cbn; decide equality)) _ in f_p x n). destruct (Ho x) as [[n H] % Hp | [n H] % Hq]. + exists n. now rewrite H. + exists n. rewrite H. now destruct f_p. - intros x. cbn -[mu_nat]. destruct mu_nat. specialize (Hp x). specialize (Hq x). destruct (f_p) eqn:E1. eapply Hp. eauto. destruct (f_q) eqn:E2. eapply Hq. eauto. inversion e. Qed. *) (* ** Other *) Lemma d_semi_decidable_impl {X} {p q : X -> Prop} : decidable p -> semi_decidable q -> semi_decidable (fun x => p x -> q x). Proof. intros [f Hf] [g Hg]. exists (fun x n => if f x then g x n else true). intros x. split. - intros H. destruct (reflects_cases (Hf x)) as [ [-> H2] | [-> H2] ]. + firstorder. + now exists 0. - intros [n H]. revert H. destruct (reflects_cases (Hf x)) as [ [-> H2] | [-> H2]]; intros H. + firstorder. + firstorder. Qed. Lemma d_co_semi_decidable_impl {X} {p q : X -> Prop} : decidable p -> semi_decidable (complement q) -> semi_decidable (complement (fun x => p x -> q x)). Proof. intros [f Hf] [g Hg]. exists (fun x n => if f x then g x n else false). intros x. split. - intros H. destruct (reflects_cases (Hf x)) as [ [-> H2] | [-> H2] ]. + red in H. firstorder. + firstorder. - intros [n H]. revert H. destruct (reflects_cases (Hf x)) as [ [-> H2] | [-> H2]]; intros H. + firstorder. + firstorder congruence. Qed. Lemma co_semi_decidable_impl {X} {p q : X -> Prop} : (* (forall x, ~~ p x -> p x) -> *) semi_decidable (complement (complement p)) -> decidable q -> semi_decidable (complement (fun x => p x -> q x)). Proof. intros [f Hf] [g Hg]. exists (fun x n => if g x then false else f x n). intros x. split. - intros H. destruct (reflects_cases (Hg x)) as [ [-> H2] | [-> H2] ]. + firstorder. + eapply Hf. firstorder. - intros [n H]. revert H. destruct (reflects_cases (Hg x)) as [ [-> H2] | [-> H2]]; intros H. + congruence. + intros ?. firstorder. Qed. Lemma semi_decidable_impl {X} {p q : X -> Prop} : semi_decidable (complement p) -> decidable q -> semi_decidable (fun x => p x -> q x). Proof. intros [f Hf] [g Hg]. exists (fun x n => if g x then true else f x n). intros x. split. - intros H. destruct (reflects_cases (Hg x)) as [ [-> H2] | [-> H2] ]. + now exists 0. + eapply Hf. firstorder. - intros [n H]. revert H. destruct (reflects_cases (Hg x)) as [ [-> H2] | [-> H2]]; intros H. + eauto. + intros. firstorder. Qed. Lemma enumerator_semi_decider {X} {p : X -> Prop} d f : decider d (eq_on X) -> enumerator f p -> semi_decider (fun x n => if f n is Some y then d (x,y) else false) p. Proof. intros Hd Hf x. red in Hf. rewrite Hf. split. - intros [n Hn]. exists n. rewrite Hn. now eapply Hd. - intros [n Hn]. exists n. destruct (f n); inversion Hn. eapply Hd in Hn. now subst. Qed. Lemma enumerable_semi_decidable {X} {p : X -> Prop} : discrete X -> enumerable p -> semi_decidable p. Proof. unfold enumerable, enumerator. intros [d Hd] [f Hf]. eexists. eapply enumerator_semi_decider; eauto. Qed. Lemma semi_decider_enumerator {X} {p : X -> Prop} e f : enumeratorᵗ e X -> semi_decider f p -> enumerator (fun! ⟨n,m⟩ => if e n is Some x then if f x m then Some x else None else None) p. Proof. intros He Hf x. rewrite (Hf x). split. - intros [n Hn]. destruct (He x) as [m Hm]. exists (embed (m,n)). now rewrite embedP, Hm, Hn. - intros [mn Hmn]. destruct (unembed mn) as (m, n). destruct (e m) as [x'|]; try congruence. destruct (f x' n) eqn:E; inversion Hmn. subst. exists n. exact E. Qed. Lemma semi_decidable_enumerable {X} {p : X -> Prop} : enumerableᵗ X -> semi_decidable p -> enumerable p. Proof. unfold semi_decidable, semi_decider. intros [e He] [f Hf]. now eapply ex_intro, semi_decider_enumerator. Qed.
module ExactLengthDec import Data.Vect import Decidable.Equality %default total {- interface DecEq ty where decEq : (val1 : ty) -> (val2 : ty) -> Dec (val1 = val2) data Dec: (prop : Type) -> Type where Yes : (prf : prop) -> Dec prop No : (contra : prop -> Void) -> Dec prop -} exactLength : { m : _ } -> (len : Nat) -> Vect m a -> Maybe (Vect len a) exactLength len input = case decEq m len of Yes Refl => Just input No contra => Nothing
function circle_trajectory %(p1, p2, p3) close all p1=rand(1,3);p2=rand(1,3);p3=rand(1,3); [pc,r,v1,v2] = circlefit3d(p1,p2,p3); plot3(p1(:,1),p1(:,2),p1(:,3),'ro');hold on;plot3(p2(:,1),p2(:,2),p2(:,3),'go');plot3(p3(:,1),p3(:,2),p3(:,3),'bo'); x1 = (p1-pc); x1 = x1/norm(x1); phi1 = dot(v1,x1); x2 = (p2-pc); x2 = x2/norm(x2); phi2 = dot(v1,x2); angle = [phi1 phi2]; %angle = 0:0.1:2*pi; %angle = pi/4:0.1:pi/2; for i=1:length(angle) a = angle(i); x = pc(:,1)+cos(a)*r.*v1(:,1)+sin(a)*r.*v2(:,1); y = pc(:,2)+cos(a)*r.*v1(:,2)+sin(a)*r.*v2(:,2); z = pc(:,3)+cos(a)*r.*v1(:,3)+sin(a)*r.*v2(:,3); plot3(x,y,z,'r+'); end axis equal;grid on;rotate3d on; % fit a circle with three points %[pm, r, v1, v2] = circlefit3d(p1', p2', p3');
/- Copyright (c) 2021 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Anne Baanen -/ import logic.function.iterate import order.galois_connection import order.hom.basic /-! # Lattice structure on order homomorphisms This file defines the lattice structure on order homomorphisms, which are bundled monotone functions. ## Main definitions * `order_hom.complete_lattice`: if `β` is a complete lattice, so is `α →o β` ## Tags monotone map, bundled morphism -/ namespace order_hom variables {α β : Type*} section preorder variables [preorder α] @[simps] instance [semilattice_sup β] : has_sup (α →o β) := { sup := λ f g, ⟨λ a, f a ⊔ g a, f.mono.sup g.mono⟩ } instance [semilattice_sup β] : semilattice_sup (α →o β) := { sup := has_sup.sup, le_sup_left := λ a b x, le_sup_left, le_sup_right := λ a b x, le_sup_right, sup_le := λ a b c h₀ h₁ x, sup_le (h₀ x) (h₁ x), .. (_ : partial_order (α →o β)) } @[simps] instance [semilattice_inf β] : has_inf (α →o β) := { inf := λ f g, ⟨λ a, f a ⊓ g a, f.mono.inf g.mono⟩ } instance [semilattice_inf β] : semilattice_inf (α →o β) := { inf := (⊓), .. (_ : partial_order (α →o β)), .. (dual_iso α β).symm.to_galois_insertion.lift_semilattice_inf } instance [lattice β] : lattice (α →o β) := { .. (_ : semilattice_sup (α →o β)), .. (_ : semilattice_inf (α →o β)) } @[simps] instance [preorder β] [order_bot β] : has_bot (α →o β) := { bot := const α ⊥ } instance [preorder β] [order_bot β] : order_bot (α →o β) := { bot := ⊥, bot_le := λ a x, bot_le } @[simps] instance [preorder β] [order_top β] : has_top (α →o β) := { top := const α ⊤ } instance [preorder β] [order_top β] : order_top (α →o β) := { top := ⊤, le_top := λ a x, le_top } instance [complete_lattice β] : has_Inf (α →o β) := { Inf := λ s, ⟨λ x, ⨅ f ∈ s, (f : _) x, λ x y h, binfi_le_binfi (λ f _, f.mono h)⟩ } @[simp] lemma Inf_apply [complete_lattice β] (s : set (α →o β)) (x : α) : Inf s x = ⨅ f ∈ s, (f : _) x := rfl lemma infi_apply {ι : Sort*} [complete_lattice β] (f : ι → α →o β) (x : α) : (⨅ i, f i) x = ⨅ i, f i x := (Inf_apply _ _).trans infi_range @[simp, norm_cast] lemma coe_infi {ι : Sort*} [complete_lattice β] (f : ι → α →o β) : ((⨅ i, f i : α →o β) : α → β) = ⨅ i, f i := funext $ λ x, (infi_apply f x).trans (@_root_.infi_apply _ _ _ _ (λ i, f i) _).symm instance [complete_lattice β] : has_Sup (α →o β) := { Sup := λ s, ⟨λ x, ⨆ f ∈ s, (f : _) x, λ x y h, bsupr_le_bsupr (λ f _, f.mono h)⟩ } @[simp] lemma Sup_apply [complete_lattice β] (s : set (α →o β)) (x : α) : Sup s x = ⨆ f ∈ s, (f : _) x := rfl lemma supr_apply {ι : Sort*} [complete_lattice β] (f : ι → α →o β) (x : α) : (⨆ i, f i) x = ⨆ i, f i x := (Sup_apply _ _).trans supr_range @[simp, norm_cast] lemma coe_supr {ι : Sort*} [complete_lattice β] (f : ι → α →o β) : ((⨆ i, f i : α →o β) : α → β) = ⨆ i, f i := funext $ λ x, (supr_apply f x).trans (@_root_.supr_apply _ _ _ _ (λ i, f i) _).symm instance [complete_lattice β] : complete_lattice (α →o β) := { Sup := Sup, le_Sup := λ s f hf x, le_supr_of_le f (le_supr _ hf), Sup_le := λ s f hf x, bsupr_le (λ g hg, hf g hg x), Inf := Inf, le_Inf := λ s f hf x, le_binfi (λ g hg, hf g hg x), Inf_le := λ s f hf x, infi_le_of_le f (infi_le _ hf), .. (_ : lattice (α →o β)), .. order_hom.order_top, .. order_hom.order_bot } lemma iterate_sup_le_sup_iff {α : Type*} [semilattice_sup α] (f : α →o α) : (∀ n₁ n₂ a₁ a₂, f^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (f^[n₁] a₁) ⊔ (f^[n₂] a₂)) ↔ (∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ (f a₁) ⊔ a₂) := begin split; intros h, { exact h 1 0, }, { intros n₁ n₂ a₁ a₂, have h' : ∀ n a₁ a₂, f^[n] (a₁ ⊔ a₂) ≤ (f^[n] a₁) ⊔ a₂, { intros n, induction n with n ih; intros a₁ a₂, { refl, }, { calc f^[n + 1] (a₁ ⊔ a₂) = (f^[n] (f (a₁ ⊔ a₂))) : function.iterate_succ_apply f n _ ... ≤ (f^[n] ((f a₁) ⊔ a₂)) : f.mono.iterate n (h a₁ a₂) ... ≤ (f^[n] (f a₁)) ⊔ a₂ : ih _ _ ... = (f^[n + 1] a₁) ⊔ a₂ : by rw ← function.iterate_succ_apply, }, }, calc f^[n₁ + n₂] (a₁ ⊔ a₂) = (f^[n₁] (f^[n₂] (a₁ ⊔ a₂))) : function.iterate_add_apply f n₁ n₂ _ ... = (f^[n₁] (f^[n₂] (a₂ ⊔ a₁))) : by rw sup_comm ... ≤ (f^[n₁] ((f^[n₂] a₂) ⊔ a₁)) : f.mono.iterate n₁ (h' n₂ _ _) ... = (f^[n₁] (a₁ ⊔ (f^[n₂] a₂))) : by rw sup_comm ... ≤ (f^[n₁] a₁) ⊔ (f^[n₂] a₂) : h' n₁ a₁ _, }, end end preorder end order_hom
Formal statement is: lemma filterlim_tendsto_pos_mult_at_bot: fixes c :: real assumes "(f \<longlongrightarrow> c) F" "0 < c" "filterlim g at_bot F" shows "LIM x F. f x * g x :> at_bot" Informal statement is: If $f$ tends to $c > 0$ and $g$ tends to $0$, then $f \cdot g$ tends to $0$.
-- Categories with objects parameterised by a sort module SOAS.Sorting {T : Set} where open import SOAS.Common import Categories.Category.CartesianClosed.Canonical as Canonical import Categories.Category.CartesianClosed as CCC open import Categories.Category.Cocartesian open import Categories.Category.BicartesianClosed import Categories.Category.Monoidal as Monoidal import Categories.Category.Monoidal.Closed as MonClosed open import Categories.Object.Product open import Categories.Functor.Bifunctor -- Add sorting to a set Sorted : Set₁ → Set₁ Sorted Obj = T → Obj -- Lift a function on Obj to one on sorted Obj sorted : {O₁ O₂ : Set₁} → (O₁ → O₂) → Sorted O₁ → Sorted O₂ sorted f 𝒳 τ = f (𝒳 τ) -- Lift a binary operation on Obj to one on sorted Obj sorted₂ : {O₁ O₂ O₃ : Set₁} → (O₁ → O₂ → O₃) → Sorted O₁ → Sorted O₂ → Sorted O₃ sorted₂ op 𝒳 𝒴 τ = op (𝒳 τ) (𝒴 τ) sortedᵣ : {O₁ O₂ O₃ : Set₁} → (O₁ → O₂ → O₃) → O₁ → Sorted O₂ → Sorted O₃ sortedᵣ op X 𝒴 τ = op X (𝒴 τ) sortedₗ : {O₁ O₂ O₃ : Set₁} → (O₁ → O₂ → O₃) → Sorted O₁ → O₂ → Sorted O₃ sortedₗ op 𝒳 Y τ = op (𝒳 τ) Y -- Turn a category into a sorted category 𝕊orted : Category 1ℓ 0ℓ 0ℓ → Category 1ℓ 0ℓ 0ℓ 𝕊orted Cat = categoryHelper (record { Obj = Sorted Obj ; _⇒_ = λ A B → ∀{τ : T} → A τ ⇒ B τ ; _≈_ = λ f g → ∀{α : T} → f {α} ≈ g {α} ; id = id Cat ; _∘_ = λ g f → Category._∘_ Cat g f ; assoc = assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; equiv = record { refl = E.refl equiv ; sym = λ p → E.sym equiv p ; trans = λ p q → E.trans equiv p q } ; ∘-resp-≈ = λ p q → ∘-resp-≈ p q }) where open Category Cat open import Relation.Binary.Structures renaming (IsEquivalence to E) -- Lift functors to functors between sorted categories 𝕊orted-Functor : {ℂ 𝔻 : Category 1ℓ 0ℓ 0ℓ} → Functor ℂ 𝔻 → Functor (𝕊orted ℂ) (𝕊orted 𝔻) 𝕊orted-Functor F = record { F₀ = λ X τ → Functor.₀ F (X τ) ; F₁ = λ f → Functor.₁ F f ; identity = Functor.identity F ; homomorphism = Functor.homomorphism F ; F-resp-≈ = λ z → Functor.F-resp-≈ F z } -- Lift bifunctors to bifunctors between sorted categories 𝕊orted-Bifunctor : {ℂ 𝔻 𝔼 : Category 1ℓ 0ℓ 0ℓ} → Bifunctor ℂ 𝔻 𝔼 → Bifunctor (𝕊orted ℂ) (𝕊orted 𝔻) (𝕊orted 𝔼) 𝕊orted-Bifunctor F = record { F₀ = λ{ (X , Y) τ → Functor.₀ F (X τ , Y τ)} ; F₁ = λ{ (f , g) → Functor.₁ F (f , g)} ; identity = Functor.identity F ; homomorphism = Functor.homomorphism F ; F-resp-≈ = λ{ (p , q) → Functor.F-resp-≈ F (p , q)} } private variable C : Category 1ℓ 0ℓ 0ℓ -- A sorted CCC is itself a CCC 𝕊orted-CanCCC : Canonical.CartesianClosed C → Canonical.CartesianClosed (𝕊orted C) 𝕊orted-CanCCC CCC = record { ⊤ = λ τ → 𝓒.terminal.⊤ ; _×_ = λ A B τ → (A τ) 𝓒.× (B τ) ; ! = 𝓒.terminal.! ; π₁ = 𝓒.π₁ ; π₂ = 𝓒.π₂ ; ⟨_,_⟩ = λ f g → 𝓒.⟨ f , g ⟩ ; !-unique = λ f → 𝓒.terminal.!-unique f ; π₁-comp = 𝓒.π₁-comp ; π₂-comp = 𝓒.π₂-comp ; ⟨,⟩-unique = λ p₁ p₂ → 𝓒.⟨,⟩-unique p₁ p₂ ; _^_ = λ B A τ → B τ 𝓒.^ A τ ; eval = 𝓒.eval ; curry = λ f → 𝓒.curry f ; eval-comp = 𝓒.eval-comp ; curry-resp-≈ = λ p → 𝓒.curry-resp-≈ p ; curry-unique = λ p → 𝓒.curry-unique p } where private module 𝓒 = Canonical.CartesianClosed CCC -- A sorted co-Cartesian category is co-Cartesian 𝕊orted-Cocartesian : Cocartesian C → Cocartesian (𝕊orted C) 𝕊orted-Cocartesian Cocart = record { initial = record { ⊥ = λ τ → 𝓒.⊥ ; ⊥-is-initial = record { ! = 𝓒.initial.! ; !-unique = λ f → 𝓒.initial.!-unique f } } ; coproducts = record { coproduct = λ {A}{B} → record { A+B = λ τ → 𝓒.coproduct.A+B {A τ}{B τ} ; i₁ = 𝓒.i₁ ; i₂ = 𝓒.i₂ ; [_,_] = λ f g → 𝓒.[ f , g ] ; inject₁ = 𝓒.inject₁ ; inject₂ = 𝓒.inject₂ ; unique = λ p₁ p₂ → 𝓒.coproduct.unique p₁ p₂ } } } where private module 𝓒 = Cocartesian Cocart -- A sorted bi-Cartesian closed category is itself bi-Cartesian closed 𝕊orted-BCCC : BicartesianClosed C → BicartesianClosed (𝕊orted C) 𝕊orted-BCCC BCCC = record { cartesianClosed = fromCanonical _ (𝕊orted-CanCCC (toCanonical _ cartesianClosed)) ; cocartesian = 𝕊orted-Cocartesian cocartesian } where open BicartesianClosed BCCC open Canonical.Equivalence -- A sorted monoidal category is itself monoidal 𝕊orted-Monoidal : Monoidal.Monoidal C → Monoidal.Monoidal (𝕊orted C) 𝕊orted-Monoidal {C} Mon = record { ⊗ = record { F₀ = λ{ (X , Y) τ → X τ 𝓒.⊗₀ Y τ } ; F₁ = λ{ (f , g) → f 𝓒.⊗₁ g} ; identity = Functor.identity 𝓒.⊗ ; homomorphism = Functor.homomorphism 𝓒.⊗ ; F-resp-≈ = λ{ (p₁ , p₂) {α} → Functor.F-resp-≈ 𝓒.⊗ (p₁ , p₂) } } ; unit = λ τ → 𝓒.unit ; unitorˡ = record { from = λ {τ} → 𝓒.unitorˡ.from ; to = 𝓒.unitorˡ.to ; iso = record { isoˡ = Iso.isoˡ 𝓒.unitorˡ.iso ; isoʳ = Iso.isoʳ 𝓒.unitorˡ.iso } } ; unitorʳ = record { from = λ {τ} → 𝓒.unitorʳ.from ; to = 𝓒.unitorʳ.to ; iso = record { isoˡ = Iso.isoˡ 𝓒.unitorʳ.iso ; isoʳ = Iso.isoʳ 𝓒.unitorʳ.iso } } ; associator = record { from = λ {τ} → 𝓒.associator.from ; to = 𝓒.associator.to ; iso = record { isoˡ = Iso.isoˡ 𝓒.associator.iso ; isoʳ = Iso.isoʳ 𝓒.associator.iso } } ; unitorˡ-commute-from = 𝓒.unitorˡ-commute-from ; unitorˡ-commute-to = 𝓒.unitorˡ-commute-to ; unitorʳ-commute-from = 𝓒.unitorʳ-commute-from ; unitorʳ-commute-to = 𝓒.unitorʳ-commute-to ; assoc-commute-from = 𝓒.assoc-commute-from ; assoc-commute-to = 𝓒.assoc-commute-to ; triangle = 𝓒.triangle ; pentagon = 𝓒.pentagon } where private module 𝓒 = Monoidal.Monoidal Mon open import Categories.Morphism C -- A sorted monoidal closed category is itself monoidal closed 𝕊orted-MonClosed : {Mon : Monoidal.Monoidal C} → MonClosed.Closed Mon → MonClosed.Closed (𝕊orted-Monoidal Mon) 𝕊orted-MonClosed {Mon} Cl = record { [-,-] = record { F₀ = λ (X , Y) τ → 𝓒.[ X τ , Y τ ]₀ ; F₁ = λ (f , g) → 𝓒.[ f , g ]₁ ; identity = λ {A} {α} → Functor.identity 𝓒.[-,-] ; homomorphism = Functor.homomorphism 𝓒.[-,-] ; F-resp-≈ = λ{ (p₁ , p₂) {α} → Functor.F-resp-≈ 𝓒.[-,-] (p₁ , p₂) } } ; adjoint = record { unit = ntHelper record { η = λ X {τ} → NT.η 𝓒.adjoint.unit (X τ) ; commute = λ f → NT.commute 𝓒.adjoint.unit f } ; counit = ntHelper record { η = λ X {τ} → NT.η 𝓒.adjoint.counit (X τ) ; commute = λ f → NT.commute 𝓒.adjoint.counit f } ; zig = 𝓒.adjoint.zig ; zag = 𝓒.adjoint.zag } ; mate = λ f → record { commute₁ = 𝓒.mate.commute₁ f ; commute₂ = 𝓒.mate.commute₂ f } } where private module 𝓒 = MonClosed.Closed Cl
subroutine specgrp(na,natom,jmat,neigh) implicit double precision(a-h,o-z) dimension jmat(natom,natom),neigh(natom) neis=0 neistore=0 do n=1,natom neigh(n)=0 enddo neigh(na)=1 1 continue do n=1,natom if(neigh(n).ne.0)then do m=1,natom if(jmat(n,m).ne.0)then neigh(m)=1 endif enddo endif enddo neis=0 do m=1,natom if(neigh(m).eq.1)neis=neis+1 enddo c write(6,*)neis if(neis.eq.neistore)then go to 2 else neistore=neis neis=0 go to 1 endif 2 continue return end
Formal statement is: proposition derivative_is_holomorphic: assumes "open S" and fder: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z)" shows "f' holomorphic_on S" Informal statement is: If $f$ is a function whose derivative exists and is continuous on an open set $S$, then the derivative is holomorphic on $S$.
[STATEMENT] lemma symKey_neq_priK: "K \<in> symKeys \<Longrightarrow> K \<noteq> priK A" [PROOF STATE] proof (prove) goal (1 subgoal): 1. K \<in> symKeys \<Longrightarrow> K \<noteq> priK A [PROOF STEP] by (auto simp add: symKeys_def)
[GOAL] c : Prop inst✝ : Decidable c a b : Ordering ⊢ ((if c then a else b) = lt) = if c then a = lt else b = lt [PROOFSTEP] by_cases c [GOAL] c : Prop inst✝ : Decidable c a b : Ordering ⊢ ((if c then a else b) = lt) = if c then a = lt else b = lt [PROOFSTEP] by_cases c [GOAL] case pos c : Prop inst✝ : Decidable c a b : Ordering h : c ⊢ ((if c then a else b) = lt) = if c then a = lt else b = lt [PROOFSTEP] simp [*] [GOAL] case neg c : Prop inst✝ : Decidable c a b : Ordering h : ¬c ⊢ ((if c then a else b) = lt) = if c then a = lt else b = lt [PROOFSTEP] simp [*] [GOAL] c : Prop inst✝ : Decidable c a b : Ordering ⊢ ((if c then a else b) = eq) = if c then a = eq else b = eq [PROOFSTEP] by_cases c [GOAL] c : Prop inst✝ : Decidable c a b : Ordering ⊢ ((if c then a else b) = eq) = if c then a = eq else b = eq [PROOFSTEP] by_cases c [GOAL] case pos c : Prop inst✝ : Decidable c a b : Ordering h : c ⊢ ((if c then a else b) = eq) = if c then a = eq else b = eq [PROOFSTEP] simp [*] [GOAL] case neg c : Prop inst✝ : Decidable c a b : Ordering h : ¬c ⊢ ((if c then a else b) = eq) = if c then a = eq else b = eq [PROOFSTEP] simp [*] [GOAL] c : Prop inst✝ : Decidable c a b : Ordering ⊢ ((if c then a else b) = gt) = if c then a = gt else b = gt [PROOFSTEP] by_cases c [GOAL] c : Prop inst✝ : Decidable c a b : Ordering ⊢ ((if c then a else b) = gt) = if c then a = gt else b = gt [PROOFSTEP] by_cases c [GOAL] case pos c : Prop inst✝ : Decidable c a b : Ordering h : c ⊢ ((if c then a else b) = gt) = if c then a = gt else b = gt [PROOFSTEP] simp [*] [GOAL] case neg c : Prop inst✝ : Decidable c a b : Ordering h : ¬c ⊢ ((if c then a else b) = gt) = if c then a = gt else b = gt [PROOFSTEP] simp [*] [GOAL] α : Type u lt : α → α → Prop inst✝ : DecidableRel lt a b : α ⊢ (cmpUsing lt a b = Ordering.lt) = lt a b [PROOFSTEP] simp [GOAL] α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α ⊢ (cmpUsing lt a b = Ordering.gt) = lt b a [PROOFSTEP] simp only [cmpUsing, Ordering.ite_eq_gt_distrib, if_false_right_eq_and, and_true, if_false_left_eq_and] [GOAL] α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α ⊢ (¬lt a b ∧ lt b a) = lt b a [PROOFSTEP] apply propext [GOAL] case a α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α ⊢ ¬lt a b ∧ lt b a ↔ lt b a [PROOFSTEP] apply Iff.intro [GOAL] case a.mp α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α ⊢ ¬lt a b ∧ lt b a → lt b a [PROOFSTEP] exact fun h => h.2 [GOAL] case a.mpr α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α ⊢ lt b a → ¬lt a b ∧ lt b a [PROOFSTEP] intro hba [GOAL] case a.mpr α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α hba : lt b a ⊢ ¬lt a b ∧ lt b a [PROOFSTEP] constructor [GOAL] case a.mpr.left α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α hba : lt b a ⊢ ¬lt a b [PROOFSTEP] intro hab [GOAL] case a.mpr.left α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α hba : lt b a hab : lt a b ⊢ False [PROOFSTEP] exact absurd (_root_.trans hab hba) (irrefl a) [GOAL] case a.mpr.right α : Type u lt : α → α → Prop inst✝¹ : DecidableRel lt inst✝ : IsStrictOrder α lt a b : α hba : lt b a ⊢ lt b a [PROOFSTEP] assumption [GOAL] α : Type u lt : α → α → Prop inst✝ : DecidableRel lt a b : α ⊢ (cmpUsing lt a b = Ordering.eq) = (¬lt a b ∧ ¬lt b a) [PROOFSTEP] simp
(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Translation from Compcert C to Clight. Side effects are pulled out of Compcert C expressions. *) Require Import Coqlib. Require Import Errors. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import AST. Require Import Ctypes. Require Import Cop. Require Import Csyntax. Require Import Clight. Local Open Scope string_scope. (** State and error monad for generating fresh identifiers. *) Record generator : Type := mkgenerator { gen_next: ident; gen_trail: list (ident * type) }. Inductive result (A: Type) (g: generator) : Type := | Err: Errors.errmsg -> result A g | Res: A -> forall (g': generator), Ple (gen_next g) (gen_next g') -> result A g. Arguments Err [A g]. Arguments Res [A g]. Definition mon (A: Type) := forall (g: generator), result A g. Definition ret {A: Type} (x: A) : mon A := fun g => Res x g (Ple_refl (gen_next g)). Definition error {A: Type} (msg: Errors.errmsg) : mon A := fun g => Err msg. Definition bind {A B: Type} (x: mon A) (f: A -> mon B) : mon B := fun g => match x g with | Err msg => Err msg | Res a g' i => match f a g' with | Err msg => Err msg | Res b g'' i' => Res b g'' (Ple_trans _ _ _ i i') end end. Definition bind2 {A B C: Type} (x: mon (A * B)) (f: A -> B -> mon C) : mon C := bind x (fun p => f (fst p) (snd p)). Notation "'do' X <- A ; B" := (bind A (fun X => B)) (at level 200, X ident, A at level 100, B at level 200) : gensym_monad_scope. Notation "'do' ( X , Y ) <- A ; B" := (bind2 A (fun X Y => B)) (at level 200, X ident, Y ident, A at level 100, B at level 200) : gensym_monad_scope. Local Open Scope gensym_monad_scope. Parameter first_unused_ident: unit -> ident. Definition initial_generator (x: unit) : generator := mkgenerator (first_unused_ident x) nil. Definition gensym (ty: type): mon ident := fun (g: generator) => Res (gen_next g) (mkgenerator (Psucc (gen_next g)) ((gen_next g, ty) :: gen_trail g)) (Ple_succ (gen_next g)). (** Construct a sequence from a list of statements. To facilitate the proof, the sequence is nested to the left and starts with a [Sskip]. *) Fixpoint makeseq_rec (s: statement) (l: list statement) : statement := match l with | nil => s | s' :: l' => makeseq_rec (Ssequence s s') l' end. Definition makeseq (l: list statement) : statement := makeseq_rec Sskip l. (** Smart constructor for [if ... then ... else]. *) (** NOTE: Here, we no longer need anything about the memory model, by replacing (Mem.valid_block Mem.empty) with (fun _ => false). See the Cop.SemCast class, and the sem_cast_unit instance. *) Fixpoint eval_simpl_expr (a: expr) : option val := match a with | Econst_int n _ => Some(Vint n) | Econst_float n _ => Some(Vfloat n) | Econst_single n _ => Some(Vsingle n) | Econst_long n _ => Some(Vlong n) | Ecast b ty => match eval_simpl_expr b with | None => None | Some v => sem_cast v (typeof b) ty tt end | _ => None end. Function makeif (a: expr) (s1 s2: statement) : statement := match eval_simpl_expr a with | Some v => match bool_val v (typeof a) tt with | Some b => if b then s1 else s2 | None => Sifthenelse a s1 s2 end | None => Sifthenelse a s1 s2 end. (** Smart constructors for [&] and [*]. They optimize away [&*] and [*&] sequences. *) Definition Ederef' (a: expr) (t: type) : expr := match a with | Eaddrof a' t' => if type_eq t (typeof a') then a' else Ederef a t | _ => Ederef a t end. Definition Eaddrof' (a: expr) (t: type) : expr := match a with | Ederef a' t' => if type_eq t (typeof a') then a' else Eaddrof a t | _ => Eaddrof a t end. (** Translation of pre/post-increment/decrement. *) Definition transl_incrdecr (id: incr_or_decr) (a: expr) (ty: type) : expr := match id with | Incr => Ebinop Oadd a (Econst_int Int.one type_int32s) (incrdecr_type ty) | Decr => Ebinop Osub a (Econst_int Int.one type_int32s) (incrdecr_type ty) end. (** Generate a [Sset] or [Sbuiltin] operation as appropriate to dereference a l-value [l] and store its result in temporary variable [id]. *) Definition chunk_for_volatile_type (ty: type) : option memory_chunk := if type_is_volatile ty then match access_mode ty with By_value chunk => Some chunk | _ => None end else None. Definition make_set (id: ident) (l: expr) : statement := match chunk_for_volatile_type (typeof l) with | None => Sset id l | Some chunk => let typtr := Tpointer (typeof l) noattr in Sbuiltin (Some id) (EF_vload chunk) (Tcons typtr Tnil) ((Eaddrof l typtr):: nil) end. (** Translation of a "valof" operation. If the l-value accessed is of volatile type, we go through a temporary. *) Definition transl_valof (ty: type) (l: expr) : mon (list statement * expr) := if type_is_volatile ty then do t <- gensym ty; ret (make_set t l :: nil, Etempvar t ty) else ret (nil, l). (** Translation of an assignment. *) Definition make_assign (l r: expr) : statement := match chunk_for_volatile_type (typeof l) with | None => Sassign l r | Some chunk => let ty := typeof l in let typtr := Tpointer ty noattr in Sbuiltin None (EF_vstore chunk) (Tcons typtr (Tcons ty Tnil)) (Eaddrof l typtr :: r :: nil) end. (** Translation of expressions. Return a pair [(sl, a)] of a list of statements [sl] and a pure expression [a]. - If the [dst] argument is [For_val], the statements [sl] perform the side effects of the original expression, and [a] evaluates to the same value as the original expression. - If the [dst] argument is [For_effects], the statements [sl] perform the side effects of the original expression, and [a] is meaningless. - If the [dst] argument is [For_set tyl tvar], the statements [sl] perform the side effects of the original expression, then assign the value of the original expression to the temporary [tvar]. The value is casted according to the list of types [tyl] before assignment. In this case, [a] is meaningless. *) Inductive set_destination : Type := | SDbase (tycast ty: type) (tmp: ident) | SDcons (tycast ty: type) (tmp: ident) (sd: set_destination). Inductive destination : Type := | For_val | For_effects | For_set (sd: set_destination). Definition dummy_expr := Econst_int Int.zero type_int32s. Fixpoint do_set (sd: set_destination) (a: expr) : list statement := match sd with | SDbase tycast ty tmp => Sset tmp (Ecast a tycast) :: nil | SDcons tycast ty tmp sd' => Sset tmp (Ecast a tycast) :: do_set sd' (Etempvar tmp ty) end. Definition finish (dst: destination) (sl: list statement) (a: expr) := match dst with | For_val => (sl, a) | For_effects => (sl, a) | For_set sd => (sl ++ do_set sd a, a) end. Definition sd_temp (sd: set_destination) := match sd with SDbase _ _ tmp => tmp | SDcons _ _ tmp _ => tmp end. Definition sd_seqbool_val (tmp: ident) (ty: type) := SDbase type_bool ty tmp. Definition sd_seqbool_set (ty: type) (sd: set_destination) := let tmp := sd_temp sd in SDcons type_bool ty tmp sd. Fixpoint transl_expr (dst: destination) (a: Csyntax.expr) : mon (list statement * expr) := match a with | Csyntax.Eloc b ofs ty => error (msg "SimplExpr.transl_expr: Eloc") | Csyntax.Evar x ty => ret (finish dst nil (Evar x ty)) | Csyntax.Ederef r ty => do (sl, a) <- transl_expr For_val r; ret (finish dst sl (Ederef' a ty)) | Csyntax.Efield r f ty => do (sl, a) <- transl_expr For_val r; ret (finish dst sl (Efield a f ty)) | Csyntax.Eval (Vint n) ty => ret (finish dst nil (Econst_int n ty)) | Csyntax.Eval (Vfloat n) ty => ret (finish dst nil (Econst_float n ty)) | Csyntax.Eval (Vsingle n) ty => ret (finish dst nil (Econst_single n ty)) | Csyntax.Eval (Vlong n) ty => ret (finish dst nil (Econst_long n ty)) | Csyntax.Eval _ ty => error (msg "SimplExpr.transl_expr: Eval") | Csyntax.Esizeof ty' ty => ret (finish dst nil (Esizeof ty' ty)) | Csyntax.Ealignof ty' ty => ret (finish dst nil (Ealignof ty' ty)) | Csyntax.Evalof l ty => do (sl1, a1) <- transl_expr For_val l; do (sl2, a2) <- transl_valof (Csyntax.typeof l) a1; ret (finish dst (sl1 ++ sl2) a2) | Csyntax.Eaddrof l ty => do (sl, a) <- transl_expr For_val l; ret (finish dst sl (Eaddrof' a ty)) | Csyntax.Eunop op r1 ty => do (sl1, a1) <- transl_expr For_val r1; ret (finish dst sl1 (Eunop op a1 ty)) | Csyntax.Ebinop op r1 r2 ty => do (sl1, a1) <- transl_expr For_val r1; do (sl2, a2) <- transl_expr For_val r2; ret (finish dst (sl1 ++ sl2) (Ebinop op a1 a2 ty)) | Csyntax.Ecast r1 ty => do (sl1, a1) <- transl_expr For_val r1; ret (finish dst sl1 (Ecast a1 ty)) | Csyntax.Eseqand r1 r2 ty => do (sl1, a1) <- transl_expr For_val r1; match dst with | For_val => do t <- gensym ty; do (sl2, a2) <- transl_expr (For_set (sd_seqbool_val t ty)) r2; ret (sl1 ++ makeif a1 (makeseq sl2) (Sset t (Econst_int Int.zero ty)) :: nil, Etempvar t ty) | For_effects => do (sl2, a2) <- transl_expr For_effects r2; ret (sl1 ++ makeif a1 (makeseq sl2) Sskip :: nil, dummy_expr) | For_set sd => do (sl2, a2) <- transl_expr (For_set (sd_seqbool_set ty sd)) r2; ret (sl1 ++ makeif a1 (makeseq sl2) (makeseq (do_set sd (Econst_int Int.zero ty))) :: nil, dummy_expr) end | Csyntax.Eseqor r1 r2 ty => do (sl1, a1) <- transl_expr For_val r1; match dst with | For_val => do t <- gensym ty; do (sl2, a2) <- transl_expr (For_set (sd_seqbool_val t ty)) r2; ret (sl1 ++ makeif a1 (Sset t (Econst_int Int.one ty)) (makeseq sl2) :: nil, Etempvar t ty) | For_effects => do (sl2, a2) <- transl_expr For_effects r2; ret (sl1 ++ makeif a1 Sskip (makeseq sl2) :: nil, dummy_expr) | For_set sd => do (sl2, a2) <- transl_expr (For_set (sd_seqbool_set ty sd)) r2; ret (sl1 ++ makeif a1 (makeseq (do_set sd (Econst_int Int.one ty))) (makeseq sl2) :: nil, dummy_expr) end | Csyntax.Econdition r1 r2 r3 ty => do (sl1, a1) <- transl_expr For_val r1; match dst with | For_val => do t <- gensym ty; do (sl2, a2) <- transl_expr (For_set (SDbase ty ty t)) r2; do (sl3, a3) <- transl_expr (For_set (SDbase ty ty t)) r3; ret (sl1 ++ makeif a1 (makeseq sl2) (makeseq sl3) :: nil, Etempvar t ty) | For_effects => do (sl2, a2) <- transl_expr For_effects r2; do (sl3, a3) <- transl_expr For_effects r3; ret (sl1 ++ makeif a1 (makeseq sl2) (makeseq sl3) :: nil, dummy_expr) | For_set sd => do t <- gensym ty; do (sl2, a2) <- transl_expr (For_set (SDcons ty ty t sd)) r2; do (sl3, a3) <- transl_expr (For_set (SDcons ty ty t sd)) r3; ret (sl1 ++ makeif a1 (makeseq sl2) (makeseq sl3) :: nil, dummy_expr) end | Csyntax.Eassign l1 r2 ty => do (sl1, a1) <- transl_expr For_val l1; do (sl2, a2) <- transl_expr For_val r2; let ty1 := Csyntax.typeof l1 in let ty2 := Csyntax.typeof r2 in match dst with | For_val | For_set _ => do t <- gensym ty1; ret (finish dst (sl1 ++ sl2 ++ Sset t (Ecast a2 ty1) :: make_assign a1 (Etempvar t ty1) :: nil) (Etempvar t ty1)) | For_effects => ret (sl1 ++ sl2 ++ make_assign a1 a2 :: nil, dummy_expr) end | Csyntax.Eassignop op l1 r2 tyres ty => let ty1 := Csyntax.typeof l1 in do (sl1, a1) <- transl_expr For_val l1; do (sl2, a2) <- transl_expr For_val r2; do (sl3, a3) <- transl_valof ty1 a1; match dst with | For_val | For_set _ => do t <- gensym ty1; ret (finish dst (sl1 ++ sl2 ++ sl3 ++ Sset t (Ecast (Ebinop op a3 a2 tyres) ty1) :: make_assign a1 (Etempvar t ty1) :: nil) (Etempvar t ty1)) | For_effects => ret (sl1 ++ sl2 ++ sl3 ++ make_assign a1 (Ebinop op a3 a2 tyres) :: nil, dummy_expr) end | Csyntax.Epostincr id l1 ty => let ty1 := Csyntax.typeof l1 in do (sl1, a1) <- transl_expr For_val l1; match dst with | For_val | For_set _ => do t <- gensym ty1; ret (finish dst (sl1 ++ make_set t a1 :: make_assign a1 (transl_incrdecr id (Etempvar t ty1) ty1) :: nil) (Etempvar t ty1)) | For_effects => do (sl2, a2) <- transl_valof ty1 a1; ret (sl1 ++ sl2 ++ make_assign a1 (transl_incrdecr id a2 ty1) :: nil, dummy_expr) end | Csyntax.Ecomma r1 r2 ty => do (sl1, a1) <- transl_expr For_effects r1; do (sl2, a2) <- transl_expr dst r2; ret (sl1 ++ sl2, a2) | Csyntax.Ecall r1 rl2 ty => do (sl1, a1) <- transl_expr For_val r1; do (sl2, al2) <- transl_exprlist rl2; match dst with | For_val | For_set _ => do t <- gensym ty; ret (finish dst (sl1 ++ sl2 ++ Scall (Some t) a1 al2 :: nil) (Etempvar t ty)) | For_effects => ret (sl1 ++ sl2 ++ Scall None a1 al2 :: nil, dummy_expr) end | Csyntax.Ebuiltin ef tyargs rl ty => do (sl, al) <- transl_exprlist rl; match dst with | For_val | For_set _ => do t <- gensym ty; ret (finish dst (sl ++ Sbuiltin (Some t) ef tyargs al :: nil) (Etempvar t ty)) | For_effects => ret (sl ++ Sbuiltin None ef tyargs al :: nil, dummy_expr) end | Csyntax.Eparen r1 tycast ty => error (msg "SimplExpr.transl_expr: paren") end with transl_exprlist (rl: exprlist) : mon (list statement * list expr) := match rl with | Csyntax.Enil => ret (nil, nil) | Csyntax.Econs r1 rl2 => do (sl1, a1) <- transl_expr For_val r1; do (sl2, al2) <- transl_exprlist rl2; ret (sl1 ++ sl2, a1 :: al2) end. Definition transl_expression (r: Csyntax.expr) : mon (statement * expr) := do (sl, a) <- transl_expr For_val r; ret (makeseq sl, a). Definition transl_expr_stmt (r: Csyntax.expr) : mon statement := do (sl, a) <- transl_expr For_effects r; ret (makeseq sl). (* Definition transl_if (r: Csyntax.expr) (s1 s2: statement) : mon statement := do (sl, a) <- transl_expr For_val r; ret (makeseq (sl ++ makeif a s1 s2 :: nil)). *) Definition transl_if (r: Csyntax.expr) (s1 s2: statement) : mon statement := do (sl, a) <- transl_expr For_val r; ret (makeseq (sl ++ makeif a s1 s2 :: nil)). (** Translation of statements *) Definition expr_true := Econst_int Int.one type_int32s. Definition is_Sskip: forall s, {s = Csyntax.Sskip} + {s <> Csyntax.Sskip}. Proof. destruct s; ((left; reflexivity) || (right; congruence)). Defined. Fixpoint transl_stmt (s: Csyntax.statement) : mon statement := match s with | Csyntax.Sskip => ret Sskip | Csyntax.Sdo e => transl_expr_stmt e | Csyntax.Ssequence s1 s2 => do ts1 <- transl_stmt s1; do ts2 <- transl_stmt s2; ret (Ssequence ts1 ts2) | Csyntax.Sifthenelse e s1 s2 => do ts1 <- transl_stmt s1; do ts2 <- transl_stmt s2; do (s', a) <- transl_expression e; if is_Sskip s1 && is_Sskip s2 then ret (Ssequence s' Sskip) else ret (Ssequence s' (Sifthenelse a ts1 ts2)) | Csyntax.Swhile e s1 => do s' <- transl_if e Sskip Sbreak; do ts1 <- transl_stmt s1; ret (Sloop (Ssequence s' ts1) Sskip) | Csyntax.Sdowhile e s1 => do s' <- transl_if e Sskip Sbreak; do ts1 <- transl_stmt s1; ret (Sloop ts1 s') | Csyntax.Sfor s1 e2 s3 s4 => do ts1 <- transl_stmt s1; do s' <- transl_if e2 Sskip Sbreak; do ts3 <- transl_stmt s3; do ts4 <- transl_stmt s4; if is_Sskip s1 then ret (Sloop (Ssequence s' ts4) ts3) else ret (Ssequence ts1 (Sloop (Ssequence s' ts4) ts3)) | Csyntax.Sbreak => ret Sbreak | Csyntax.Scontinue => ret Scontinue | Csyntax.Sreturn None => ret (Sreturn None) | Csyntax.Sreturn (Some e) => do (s', a) <- transl_expression e; ret (Ssequence s' (Sreturn (Some a))) | Csyntax.Sswitch e ls => do (s', a) <- transl_expression e; do tls <- transl_lblstmt ls; ret (Ssequence s' (Sswitch a tls)) | Csyntax.Slabel lbl s1 => do ts1 <- transl_stmt s1; ret (Slabel lbl ts1) | Csyntax.Sgoto lbl => ret (Sgoto lbl) end with transl_lblstmt (ls: Csyntax.labeled_statements) : mon labeled_statements := match ls with | Csyntax.LSnil => ret LSnil | Csyntax.LScons c s ls1 => do ts <- transl_stmt s; do tls1 <- transl_lblstmt ls1; ret (LScons c ts tls1) end. (** Translation of a function *) Definition transl_function (f: Csyntax.function) : res function := match transl_stmt f.(Csyntax.fn_body) (initial_generator tt) with | Err msg => Error msg | Res tbody g i => OK (mkfunction f.(Csyntax.fn_return) f.(Csyntax.fn_callconv) f.(Csyntax.fn_params) f.(Csyntax.fn_vars) g.(gen_trail) tbody) end. Local Open Scope error_monad_scope. Definition transl_fundef (fd: Csyntax.fundef) : res fundef := match fd with | Internal f => do tf <- transl_function f; OK (Internal tf) | External ef targs tres cc => OK (External ef targs tres cc) end. Definition transl_program (p: Csyntax.program) : res program := do p1 <- AST.transform_partial_program transl_fundef p; OK {| prog_defs := AST.prog_defs p1; prog_public := AST.prog_public p1; prog_main := AST.prog_main p1; prog_types := prog_types p; prog_comp_env := prog_comp_env p; prog_comp_env_eq := prog_comp_env_eq p |}.
-- Andreas, 2017-08-13, issue #2686 -- Overloaded constructor where only one alternative is not abstract. -- Not ambiguous, since abstract constructors are not in scope! -- {-# OPTIONS -v tc.check.term:40 #-} abstract data A : Set where c : A data D : Set where c : D test = c match : D → D match c = c
State Before: F : Type ?u.344901 α : Type u_1 β : Type ?u.344907 γ : Type ?u.344910 ι : Type ?u.344913 κ : Type ?u.344916 inst✝ : LinearOrder α s : Finset α H : Finset.Nonempty s x : α h₂ : 1 < card s ⊢ min' s (_ : Finset.Nonempty s) < max' s (_ : Finset.Nonempty s) State After: case intro.intro.intro.intro F : Type ?u.344901 α : Type u_1 β : Type ?u.344907 γ : Type ?u.344910 ι : Type ?u.344913 κ : Type ?u.344916 inst✝ : LinearOrder α s : Finset α H : Finset.Nonempty s x : α h₂ : 1 < card s a : α ha : a ∈ s b : α hb : b ∈ s hab : a ≠ b ⊢ min' s (_ : Finset.Nonempty s) < max' s (_ : Finset.Nonempty s) Tactic: rcases one_lt_card.1 h₂ with ⟨a, ha, b, hb, hab⟩ State Before: case intro.intro.intro.intro F : Type ?u.344901 α : Type u_1 β : Type ?u.344907 γ : Type ?u.344910 ι : Type ?u.344913 κ : Type ?u.344916 inst✝ : LinearOrder α s : Finset α H : Finset.Nonempty s x : α h₂ : 1 < card s a : α ha : a ∈ s b : α hb : b ∈ s hab : a ≠ b ⊢ min' s (_ : Finset.Nonempty s) < max' s (_ : Finset.Nonempty s) State After: no goals Tactic: exact s.min'_lt_max' ha hb hab
(* abhishek@brixpro:~/parametricity/reflective-paramcoq/test-suite$ ./coqid.sh indFunArg *) Require Import SquiggleEq.terms. Require Import ReflParam.common. Require Import ReflParam.templateCoqMisc. Require Import String. Require Import List. Require Import Template.Ast. Require Import SquiggleEq.terms. Require Import ReflParam.paramDirect ReflParam.indType. Require Import SquiggleEq.substitution. Require Import ReflParam.PiTypeR. Import ListNotations. Open Scope string_scope. Require Import ReflParam.PIWNew. Require Import Template.Template. (* Inductive nat : Set := O : nat | S : forall ns:nat, nat. *) Run TemplateProgram (genParamIndAll [] "Coq.Init.Datatypes.nat"). Run TemplateProgram (mkIndEnv "indTransEnv" ["Coq.Init.Datatypes.nat"]). Run TemplateProgram (genWrappers indTransEnv). (* Set Printing All. Run TemplateProgram (genParamIndTotAll [] true "Coq.Init.Datatypes.nat"). Run TemplateProgram (genParamIso [] "Coq.Init.Datatypes.nat"). *) (* functions wont work until we fully produce the goodness of inductives *)
Add LoadPath "." as OmegaCategories. Require Export Unicode.Utf8_core. Require Import Vector. Require Export path. Set Universes Polymorphic. Set Implicit Arguments. Class Contr_internal (A : Type) := BuildContr { center : A ; contr : (forall y : A, center = y) }. Inductive trunc_index : Type := | minus_two : trunc_index | trunc_S : trunc_index -> trunc_index. (** We will use [Notation] for [trunc_index]es, so define a scope for them here. *) Delimit Scope trunc_scope with trunc. Bind Scope trunc_scope with trunc_index. Arguments trunc_S _%trunc_scope. Fixpoint nat_to_trunc_index (n : nat) : trunc_index := match n with | 0 => trunc_S (trunc_S minus_two) | S n' => trunc_S (nat_to_trunc_index n') end. Coercion nat_to_trunc_index : nat >-> trunc_index. Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type := match n with | minus_two => Contr_internal A | trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y) end. Notation minus_one:=(trunc_S minus_two). (** Include the basic numerals, so we don't need to go through the coercion from [nat], and so that we get the right binding with [trunc_scope]. *) Notation "0" := (trunc_S minus_one) : trunc_scope. Notation "1" := (trunc_S 0) : trunc_scope. Notation "2" := (trunc_S 1) : trunc_scope. Arguments IsTrunc_internal n A : simpl nomatch. Class IsTrunc (n : trunc_index) (A : Type) : Type := Trunc_is_trunc : IsTrunc_internal n A. (** We use the priciple that we should always be doing typeclass resolution on truncation of non-equality types. We try to change the hypotheses and goals so that they never mention something like [IsTrunc n (_ = _)] and instead say [IsTrunc (S n) _]. If you're evil enough that some of your paths [a = b] are n-truncated, but others are not, then you'll have to either reason manually or add some (local) hints with higher priority than the hint below, or generalize your equality type so that it's not a path anymore. *) Typeclasses Opaque IsTrunc. (* don't auto-unfold [IsTrunc] in typeclass search *) Arguments IsTrunc : simpl never. (* don't auto-unfold [IsTrunc] with [simpl] *) Instance istrunc_paths (A : Type) n `{H : IsTrunc (trunc_S n) A} (x y : A) : IsTrunc n (x = y) := H x y. (* but do fold [IsTrunc] *) Notation Contr := (IsTrunc minus_two). Notation IsHProp := (IsTrunc minus_one). Notation IsHSet := (IsTrunc 0).
#redirect Graduate Record Examinations
# Date objects in R # https://www.statmethods.net/input/dates.html x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960") z <- as.Date(x, "%d%b%Y") # gives 1-1-1960 etc y <- as.Date(z, format="%d-%m-%Y") # Gives 1960-01-01 # Using posix as date formater posixx <- as.POSIXlt("2018-08-30") # Using POSIX i can - or + dates and get the date between back
# Copyright (c) 2018-2021, Carnegie Mellon University # See LICENSE for details NewRulesFor(TConjEven, rec( TConjEven_vec := rec( switch := true, applicable := (self, t) >> IsEvenInt(t.params[1]) and t.isTag(1, AVecReg) and t.params[1] mod (2*t.getTag(1).v) = 0, apply := (self, t, C, Nonterms) >> let(N := t.params[1], v := t.getTag(1).v, rot := t.params[2], m := Mat([[1,0],[0,-1]]), # d1 := Diag(diagDirsum(fConst(TReal, 2, 1.0), fConst(TReal, N-2, 1/2))), d1 := VDiag(diagDirsum(fConst(TReal, 1, 1.0), fConst(TReal, v-1, 0.5), fConst(TReal, 1, 1.0), fConst(TReal, N-v-1, 0.5)), v), #m1 := DirectSum(m, SUM(I(N-2), Tensor(J((N-2)/2), m))), #dv1 := Diag(diagDirsum(fConst(TReal, v, 1.0), fConst(TReal, 1,-1.0), fConst(TReal, N-v-1, 1.0))), dv1 := DirectSum(VTensor(I(1), v), VBlk([[ [-1.0] :: Replicate(v-1, 1.0) ]], v), VTensor(I(N/v-2), v)), P1 := VPrm_x_I(L(N/v, N/(2*v)), v), Q1 := VPrm_x_I(L(N/v, 2), v), jv1 := P1*DirectSum(VO1dsJ(N/2, v), VScale(VO1dsJ(N/2, v), -1, v))*Q1, mv1 := _VSUM([dv1,jv1], v), #m2 := DirectSum(J(2), SUM(I(N-2), Tensor(J((N-2)/2), -m))), e0 := [0.0] :: Replicate(v-1, 1.0), e1 := [1.0] :: Replicate(v-1, 0.0), blk := VBlk([[e0,e1],[e1,e0]], v).setSymmetric(), dv2 := DirectSum(blk, VTensor(I(N/v-2), v)), jv2 := P1 * DirectSum(VScale(VO1dsJ(N/2, v), -1, v), VO1dsJ(N/2, v))*Q1, mv2 := _VSUM([dv2,jv2], v), # i := VTensor(I(N/v), v), d2 := VRCLR(Diag(fPrecompute(diagDirsum(fConst(TReal, 1, 1.0), diagMul(fConst(TComplex, N/2-1, omegapi(-1/2)), fCompose(dOmega(N, rot), fAdd(N/2, N/2-1, 1)))))), v), # #d1 * VBlkInt(d1 * _VHStack([mv1, mv2], v) * VStack(i, d2), v)) ), TConjEven_vec_tr := rec( switch := true, applicable := (self, t) >> IsEvenInt(t.params[1]) and t.isTag(1, AVecReg) and t.params[1] mod (2*t.getTag(AVecReg).v)=0, transposed := true, apply := (self, t, C, Nonterms) >> let(N := t.params[1], v := t.getTag(1).v, rot := t.params[2], m := Mat([[1,0],[0,-1]]), # d1 := Diag(diagDirsum(fConst(TReal, 2, 1.0), fConst(TReal, N-2, 1/2))), d1 := VDiag(diagDirsum(fConst(TReal, 1, 1.0), fConst(TReal, v-1, 0.5), fConst(TReal, 1, 1.0), fConst(TReal, N-v-1, 0.5)), v), #m1 := DirectSum(m, SUM(I(N-2), Tensor(J((N-2)/2), m))), #dv1 := Diag(diagDirsum(fConst(TReal, v, 1.0), fConst(TReal, 1,-1.0), fConst(TReal, N-v-1, 1.0))), dv1 := DirectSum(VTensor(I(1), v), VBlk([[ [-1.0] :: Replicate(v-1, 1.0) ]], v), VTensor(I(N/v-2), v)), P1 := VPrm_x_I(L(N/v, N/(2*v)), v), Q1 := VPrm_x_I(L(N/v, 2), v), jv1 := P1*DirectSum(VO1dsJ(N/2, v), VScale(VO1dsJ(N/2, v), -1, v))*Q1, mv1 := _VSUM([dv1,jv1], v), #m2 := DirectSum(J(2), SUM(I(N-2), Tensor(J((N-2)/2), -m))), e0 := [0.0] :: Replicate(v-1, 1.0), e1 := [1.0] :: Replicate(v-1, 0.0), blk := VBlk([[e0,e1],[e1,e0]], v).setSymmetric(), dv2 := DirectSum(blk, VTensor(I(N/v-2), v)), jv2 := P1 * DirectSum(VScale(VO1dsJ(N/2, v), -1, v), VO1dsJ(N/2, v))*Q1, mv2 := _VSUM([dv2,jv2], v), # i := VTensor(I(N/v), v), d2 := VRCLR(Diag(fPrecompute(diagDirsum(fConst(TReal, 1, 1.0), diagMul(fConst(TComplex, N/2-1, omegapi(-1/2)), fCompose(dOmega(N, rot), fAdd(N/2, N/2-1, 1)))))), v), # #d1 * VBlkInt(_VHStack([i, d2.transpose()], v) * VStack(mv1, mv2) * d1, v)) ) )); NewRulesFor(TXMatDHT, rec( TXMatDHT_vec := rec( switch := true, applicable := (self, t) >> IsEvenInt(t.params[1]) and t.isTag(1, AVecReg), apply := (self, t, C, Nonterms) >> let(N := t.params[1], v := t.getTag(1).v, f0 := Replicate(v, 1.0), f1 := [0.0] :: Replicate(v-1, 1.0), f2 := [1.0] :: Replicate(v-1, -1.0), fblk := VBlk([[f0,f1],[f1,f2]], v).setSymmetric(), fdiag := VTensor(Tensor(I(N/(2*v)-1), F(2)), v), ff := DirectSum(fblk, fdiag), ### m := Mat([[1,0],[0,-1]]), d1 := Diag(diagDirsum(fConst(TReal, 2, 1.0), fConst(TReal, N-2, 1/2))), #m1 := DirectSum(m, SUM(I(N-2), Tensor(J((N-2)/2), m))), #dv1 := Diag(diagDirsum(fConst(TReal, v,1), fConst(TReal, 1,-1), fConst(TReal, N-v-1, 1))), dv1 := DirectSum(VTensor(I(1), v), VBlk([[ [-1.0] :: Replicate(v-1, 1.0) ]], v), VTensor(I(N/v-2), v)), P1 := VPrm_x_I(L(N/v, N/(2*v)), v), Q1 := VPrm_x_I(L(N/v, 2), v), jv1 := P1*DirectSum(VO1dsJ(N/2, v), VScale(VO1dsJ(N/2, v), -1, v))*Q1, mv1 := _VSUM([dv1,jv1], v), #m2 := DirectSum(J(2), SUM(I(N-2), Tensor(J((N-2)/2), -m))), e0 := [0.0] :: Replicate(v-1, 1.0), e1 := [1.0] :: Replicate(v-1, 0.0), blk := VBlk([[e0,e1],[e1,e0]], v).setSymmetric(), dv2 := DirectSum(blk, VTensor(I(N/v-2), v)), jv2 := P1*DirectSum(VScale(VO1dsJ(N/2, v), -1, v), VO1dsJ(N/2, v))*Q1, mv2 := _VSUM([dv2,jv2], v), # i := VTensor(I(N/v), v), d2 := VRCLR(Diag(fPrecompute(diagDirsum(fConst(TReal, 1, 1.0), diagMul(fConst(TComplex, N/2-1, Complex(0,-1)), fCompose(dOmega(N, 1), fAdd(N/2, N/2-1, 1)))))), v), # d1 * VBlkInt(ff * _VHStack([mv1, mv2], v) * VStack(i, d2), v) )) ));
function vGlobal=getGlobalVectors(vLocal,uList) %%GETGLOBALVECTORS Change a collection of local vectors into global % vectors using the local coordinate axes. This multiplies % the components of the vectors by the corresponding % coordinate axis vectors. % %INPUTS: vLocal A numDimsXN matrix of N local vectors that are to be % converted. % uList A numDimsXnumDimsXN matrix of orthonormal unit coordinate % axes that are associated with the local coordinate system % in which the vectors are expressed. If all N vectors use % the same local coordinate system, then a numDimsxnumDimsx1 % matrix can be passed instead. % %OUTPUTS: vGlobal The vectors in the global coordinate system. % %September 2013 David F. Crouse, Naval Research Laboratory, Washington D.C. %(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release. numVel=size(vLocal,2); if(size(uList,3)==1) uList=repmat(uList,[1,1,numVel]); end numDims=size(vLocal,1); vGlobal=zeros(numDims,numVel); for curVel=1:numVel for curDim=1:numDims vGlobal(:,curVel)=vGlobal(:,curVel)+vLocal(curDim,curVel)*uList(:,curDim,curVel); end end end %LICENSE: % %The source code is in the public domain and not licensed or under %copyright. The information and software may be used freely by the public. %As required by 17 U.S.C. 403, third parties producing copyrighted works %consisting predominantly of the material produced by U.S. government %agencies must provide notice with such work(s) identifying the U.S. %Government material incorporated and stating that such material is not %subject to copyright protection. % %Derived works shall not identify themselves in a manner that implies an %endorsement by or an affiliation with the Naval Research Laboratory. % %RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE %SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY THE NAVAL %RESEARCH LABORATORY FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE ACTIONS %OF RECIPIENT IN THE USE OF THE SOFTWARE.
/- In this file, we'll start to build a certified abstract data type for the natural numbers. What we want is for our implementations to faithfully present the properties of natural numbers that we're familar with from highschool algebra. For example, zero is a left identify for addition; zero is also a right identity; addition is associative and commutative; the distributive law holds; etc. We'll get you started, and you will then finish off development of a certified abstract data type for natural numbers. -/ namespace hidden /- DATA TYPE -/ inductive nt | zero | succ (n' : nt) open nt /- Some example values of this type, with nice names. -/ def one := succ zero def two := succ (succ zero) def three := succ (succ (succ zero)) def four := succ three -- works just fine def five := succ four def six := succ five -- tests #reduce four #reduce five #reduce six /- OPERATIONS -/ -- COMPUTATIONAL /- This implementation of the identity function can be read as saying that id is a function from nt to nt, and in particular when applied to any argument, n, it returns n. Importantly, we don't need to "analyze/destructure" n to decide what to return: we just return whatever we got. -/ def id : nt → nt | n := n -- we can compute results of evaluating applications #reduce (id two) /- We can also write test cases as equality propositions that assert that actual outputs are equal to expected outputs, with simple equality proofs. The failure of rfl here indicates that either the computation or the test case is wrong. -/ example : id two = two := rfl example : id three = two := rfl -- oops, bad test case /- A similar approaches works for defining increment. -/ def inc : nt → nt | n := succ n /- Next we'll look at the decrement function, defined mathemtically as mapping 0 to 0 and and any positive natural number, n = n'+1, to n', i.e., to n-1. Make sure you understand what we just said! To implement this function, we need to *analyze/destructure* the argument in order to determine if it's zero or some non-zero number (which is to say, the successor of some one-smaller natural number, n'). -/ def dec : nt → nt | zero := zero | (succ n') := n' -- you must understand this! -- tests #reduce dec two -- expect one #reduce dec one -- expect zero #reduce dec zero -- expect zero /- Test cases as equality propositions for individual inputs. -/ example : dec two = one := rfl example : dec one = zero := rfl example : dec zero = zero := rfl /- The key to this definition is in the pattern match that occurs in the second case. Take, for example, the expression (dec two). To evaluate this we first evaluate the identifier expression, two, which then unfolds to (succ (succ zero)), then we do pattern matching. This term does not match the term, zero, so Lean moves on to match it with (succ n'). The essential technical concept at this point what we call unification. Lean sees that the pattern, (succ n'), can be unified with (succ (succ zero)), where the "succ" in (succ n') matches the first "succ" in (succ (succ zero)), and where n' matches the rest, namely (succ zero); and that n' is what gets returned. The big idea is that you can use pattern matching to "analyze" a term (argument in this case), to pull it apart into subterms pieces, giving subterms names (here n') that we can then use to express the return result to the right of the colon-equals separator. -/ /- Next, we define an isZero "predicate function", a function that returns true if an argument has a particular property (here that of being zero), or false if it doesn't. We again have to analyze the argument (doing a kind of case analysis). The one new concept introduced here is that sometimes you will want to match on any value of a given argument without giving it a name. This function matches on its argument to determine if it's zero, in which case the function returns true, otherwise it just returns false without further naming or analysis of the argument value. -/ def isZero : nt → bool | zero := tt | _ := ff /- Another example of a function where there's no need to analyze the argument: this function takes a natural number and returns zero no matter what it is. -/ def const_zero : nt → nt | _ := zero /- As an aside, it would be preferable for readability to use simpler syntax to define this function. Here is an alternative. -/ def const_zero' (n : nt) := zero -- some simple tests #check const_zero' #reduce const_zero' six -- expect zero -- binary operations /- Addition is defined as iterated application of the increment (inc) function to the second argument the first argument number of times. For example, 3 + 2 reduces to 1 + 1 + 1 + 2. That's three applications of inc to two. -/ def add : nt → nt → nt | zero m := m | (succ n') m := succ (add n' m) -- tests #reduce add two three -- check by eye example : add two three = five := rfl -- prove it /- Multiplication implemented as iteration of addition of the second argument the first argument number of times. Note that iterating multiplication 0 times is defined to be one, while iterating addition zero times is defined to be zero. -/ def mul : nt → nt → nt | zero m := zero | (succ n') m := add (mul n' m) m -- test example : mul two three = six := rfl /- Problem: represent the square function on natural numbers declaratively. -/ /- Exponentiation is defined to be iteration of multiplication of the first argument the second argument number of times. Take some time to really study the similarities and differences in the definitions of add, mul, and exp. -/ def exp : nt → nt → nt | n zero := one | n (succ m') := mul n (exp n m') -- tests example : exp two three = succ (succ six) := rfl example : exp zero three = zero := rfl example : exp three zero = one := rfl /- PROOFS OF PROPERTIES There are many properties we can try to prove. As a starter, let's try to prove that zero is a left identity for addition. def add : nt → nt → nt | zero m := m | (succ n') m := succ (add n' m) -/ example : ∀ (m : nt), add zero m = m := by simp [add] /- The crucial point in this case is that we already know that, ∀ (m : nt), add zero m = m, *from the definition of add*. In other words, add zero m is *definitionally* equal to m. def add : nt → nt → nt | zero m := m | (succ n') m := succ (add n' m) The first rule serves as an axiom that allows us instantly to conclude that: ∀ m, add zero m = m. The proof is by simply invoking this axiom, which we do by using the simplify (simp) tactic in Lean, pointing it to the definition whose rules we want it to employ. Note that "by" is a way of introducing a proof written using tactics without having the write a complete "begin ... end" block. -/ /- Perhaps somewhat surprisingly, we hit a roadblock when we try to prove that zero is a *right* identity. We don't have an axiom for that! Rather we'll need to prove it as a theorem. -/ example : ∀ (m : nt), add m zero = m := by simp [add] --fail /- def add : nt → nt → nt | zero m := m | (succ n') m := succ (add n' m) -/ -- Prove it! theorem zero_is_right_zero : ∀ (m : nt), add m zero = m := begin assume m, induction m with m' h, -- by induction! simp [add], simp [add], exact h, end -- NOTATION /- A complete, beautiful, and highly usable "module" that implements an algebraic structure, such as Boolean algebra or Peano arithmetic, often needs to introduce convenient *notations* for applying operations to arguments. We'd rather write (2 + 3) than (nat.add zero.succ.succ zero.succ.succ.succ), for example, even though we understand that they mean the same thing. In Lean, we can overload operators, such as +, that are already defined in Lean's libraries, and we will thereby inherit both precedence and associativity properties that were carefully crafted by the library designers. -/ notation x + y := add x y notation x * y := mul x y #reduce five + six -- expect 11 .succs of zero #reduce five * six + two -- expect 32 .succs of zero -- Now we can use these notations in writing expressions example : five + six = zero.succ.succ.succ.succ.succ.succ.succ.succ.succ.succ.succ := rfl -- HOMEWORK theorem add_commutes : ∀ (m n : nt), m + n = n + m := begin assume m n, induction m with m' h, -- base case -- exact rfl, does NOT work simp [add], rw zero_is_right_zero, -- inductive case simp [add], rw h, -- induction n with n' k, --base case rw <-h, simp [add], rw zero_is_right_zero, --inductive case end end hidden
[STATEMENT] lemma while_mult_top: "(x * top) \<star> z = z \<squnion> x * top" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] have 1: "z \<squnion> x * top \<le> (x * top) \<star> z" [PROOF STATE] proof (prove) goal (1 subgoal): 1. z \<squnion> x * top \<le> x * top \<star> z [PROOF STEP] by (metis le_supI sup_ge1 while_def while_increasing tarski_top_omega) [PROOF STATE] proof (state) this: z \<squnion> x * top \<le> x * top \<star> z goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] have "(x * top) \<star> z = z \<squnion> x * top * ((x * top) \<star> z)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top * (x * top \<star> z) [PROOF STEP] using while_left_unfold [PROOF STATE] proof (prove) using this: ?x \<star> ?y = ?y \<squnion> ?x * (?x \<star> ?y) goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top * (x * top \<star> z) [PROOF STEP] by auto [PROOF STATE] proof (state) this: x * top \<star> z = z \<squnion> x * top * (x * top \<star> z) goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] also [PROOF STATE] proof (state) this: x * top \<star> z = z \<squnion> x * top * (x * top \<star> z) goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] have "... \<le> z \<squnion> x * top" [PROOF STATE] proof (prove) goal (1 subgoal): 1. z \<squnion> x * top * (x * top \<star> z) \<le> z \<squnion> x * top [PROOF STEP] using mult_right_isotone sup_right_isotone top_greatest mult_assoc [PROOF STATE] proof (prove) using this: ?x \<le> ?y \<Longrightarrow> ?z * ?x \<le> ?z * ?y ?x \<le> ?y \<Longrightarrow> ?z \<squnion> ?x \<le> ?z \<squnion> ?y ?x \<le> top ?a * ?b * ?c = ?a * (?b * ?c) goal (1 subgoal): 1. z \<squnion> x * top * (x * top \<star> z) \<le> z \<squnion> x * top [PROOF STEP] by auto [PROOF STATE] proof (state) this: z \<squnion> x * top * (x * top \<star> z) \<le> z \<squnion> x * top goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: x * top \<star> z \<le> z \<squnion> x * top [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: x * top \<star> z \<le> z \<squnion> x * top goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] using 1 order.antisym [PROOF STATE] proof (prove) using this: x * top \<star> z \<le> z \<squnion> x * top z \<squnion> x * top \<le> x * top \<star> z \<lbrakk>?a \<le> ?b; ?b \<le> ?a\<rbrakk> \<Longrightarrow> ?a = ?b goal (1 subgoal): 1. x * top \<star> z = z \<squnion> x * top [PROOF STEP] by auto [PROOF STATE] proof (state) this: x * top \<star> z = z \<squnion> x * top goal: No subgoals! [PROOF STEP] qed
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import SingleSorted.Substitution open import Data.Nat using (ℕ; zero; suc) import MultiSorted.Context as Context module MultiSorted.Group where data 𝒜 : Set₀ where A : 𝒜 single-sort : ∀ (X : 𝒜) → X ≡ A single-sort A = refl open import MultiSorted.AlgebraicTheory open import MultiSorted.AlgebraicTheory data GroupOp : Set where e : GroupOp inv : GroupOp mul : GroupOp ctx : ∀ (n : ℕ) → Context.Context 𝒜 ctx zero = Context.ctx-empty ctx (suc n) = Context.ctx-concat (ctx n) (Context.ctx-slot A) -- the signature of the theory of small groups -- has one constant, one unary operation, one binary operation Σ : Signature {lzero} {lzero} Σ = record { sort = 𝒜 ; oper = GroupOp ; oper-arity = λ{ e → ctx 0 ; inv → ctx 1 ; mul → ctx 2} ; oper-sort = λ{ e → A ; inv → A ; mul → A} } open Signature Σ singleton-context : (var (ctx-slot A)) → var (ctx-concat ctx-empty (ctx-slot A)) singleton-context (var-var {A}) = var-inr (var-var {A}) single-sort-context : ∀ {Γ : Context} (x : var Γ) → sort-of Γ x ≡ A single-sort-context {Γ} x = single-sort (Context.sort-of 𝒜 Γ x) single-sort-terms : ∀ {X : 𝒜} {Γ : Context} → Term Γ X ≡ Term Γ A single-sort-terms {A} = refl σ : ∀ {Γ : Context} {t : Term Γ A} → Γ ⇒s (ctx 1) σ {Γ} {t} = λ{ (var-inr var-var) → t} δ : ∀ {Γ : Context} {t : Term Γ A} {s : Term Γ A} → Γ ⇒s (ctx 2) δ {Γ} {t} {s} = sub where sub : Γ ⇒s (ctx 2) sub (var-inl x) rewrite (single-sort-terms {(sort-of (ctx 2) (var-inl x))} {Γ}) = t sub (var-inr y) rewrite (single-sort-terms {(sort-of (ctx 2) (var-inr y))} {Γ}) = s -- helper functions for creating terms e' : ∀ {Γ : Context} → Term Γ A e' {Γ} = tm-oper e λ() _∗_ : ∀ {Γ} → Term Γ A → Term Γ A → Term Γ A t ∗ s = tm-oper mul λ{ xs → δ {t = t} {s = s} xs} _ⁱ : ∀ {Γ : Context} → Term Γ A → Term Γ A t ⁱ = tm-oper inv λ{ x → σ {t = t} x} -- _∗_ : ∀ {Γ} → Term Γ A → Term Γ A → Term Γ A -- _∗_ {Γ} t s = tm-oper mul λ{ (var-inl i) → {!!} ; (var-inr i) → {!!}} -- _ⁱ : ∀ {Γ : Context} → Term Γ A → Term Γ A -- t ⁱ = tm-oper inv λ{ x → t } infixl 5 _∗_ infix 6 _ⁱ _ : Term (ctx 2) A _ = tm-var (var-inl (var-inr var-var)) ∗ tm-var (var-inr var-var) -- group equations data GroupEq : Set where mul-assoc e-left e-right inv-left inv-right : GroupEq mul-assoc-eq : Equation Σ e-left-eq : Equation Σ e-right-eq : Equation Σ inv-left-eq : Equation Σ inv-right-eq : Equation Σ mul-assoc-eq = record { eq-ctx = ctx 3 ; eq-lhs = x ∗ y ∗ z ; eq-rhs = x ∗ (y ∗ z) } where x : Term (ctx 3) A y : Term (ctx 3) A z : Term (ctx 3) A x = tm-var (var-inl (var-inl (var-inr var-var))) y = tm-var (var-inl (var-inr var-var)) z = tm-var (var-inr var-var) e-left-eq = record { eq-ctx = ctx 1 ; eq-lhs = e' ∗ x ; eq-rhs = x } where x : Term (ctx 1) A x = tm-var (var-inr var-var) e-right-eq = record { eq-ctx = ctx 1 ; eq-lhs = x ∗ e' ; eq-rhs = x } where x : Term (ctx 1) A x = tm-var (var-inr var-var) inv-left-eq = record { eq-ctx = ctx 1 ; eq-lhs = x ⁱ ∗ x ; eq-rhs = e' } where x : Term (ctx 1) A x = tm-var (var-inr var-var) inv-right-eq = record { eq-ctx = ctx 1 ; eq-lhs = x ∗ x ⁱ ; eq-rhs = e' } where x : Term (ctx 1) A x = tm-var (var-inr var-var) 𝒢 : Theory lzero Σ 𝒢 = record { ax = GroupEq ; ax-eq = λ{ mul-assoc → mul-assoc-eq ; e-left → e-left-eq ; e-right → e-right-eq ; inv-left → inv-left-eq ; inv-right → inv-right-eq } }
module India.Language.Core import public India.Language.Core.Lexer import public India.Language.Core.Parser import public India.Language.Core.Types %default total
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017.*) theory TIP_prop_61 imports "../../Test_Base" begin datatype 'a list = nil2 | cons2 "'a" "'a list" datatype Nat = Z | S "Nat" fun x :: "'a list => 'a list => 'a list" where "x (nil2) z = z" | "x (cons2 z2 xs) z = cons2 z2 (x xs z)" fun last :: "Nat list => Nat" where "last (nil2) = Z" | "last (cons2 z (nil2)) = z" | "last (cons2 z (cons2 x2 x3)) = last (cons2 x2 x3)" fun lastOfTwo :: "Nat list => Nat list => Nat" where "lastOfTwo y (nil2) = last y" | "lastOfTwo y (cons2 z2 x2) = last (cons2 z2 x2)" theorem property0 : "((last (x xs ys)) = (lastOfTwo xs ys))" oops end
-- Copyright (c) 2013 Radek Micek module Main import Common import D3 main : IO () main = do let width = 400 let height = 300 a <- mkNode "a" b <- mkNode "b" c <- mkNode "c" d <- mkNode "d" nodesArr <- mkArray [a, b, c, d] ab <- mkLink a b () bc <- mkLink b c () ac <- mkLink a c () ad <- mkLink a d () linksArr <- mkArray [ab, bc, ac, ad] fl <- mkForceLayout width height fl ?? linkDistanceL 120 >=> chargeL (-300) putNodes fl nodesArr putLinks fl linksArr svg <- d3 ?? select "body" >=> append "svg" >=> attr "width" (show width) >=> attr "height" (show height) >=> style "border" "1px solid blue" -- Style for arrows. svg ?? append "svg:defs" >=> append "svg:marker" >=> attr "id" "arrow" >=> attr "viewBox" "0 -7 16 14" >=> attr "refX" "50" >=> attr "markerWidth" "14" >=> attr "markerHeight" "16" >=> attr "orient" "auto" >=> attr "fill" "green" >=> append "svg:path" >=> attr "d" "M0 -7 L16 0 L0 7" linkLayer <- svg ?? append "svg:g" nodeLayer <- svg ?? append "svg:g" nodes <- nodeLayer ?? selectAll "text" >=> bind nodesArr nodes ?? enter >=> append "svg:text" >=> makeDraggableL fl >=> text' (const . getNData) links <- linkLayer ?? selectAll "line" >=> bind linksArr links ?? enter >=> append "svg:line" >=> style "stroke" "red" >=> style "stroke-width" "1px" >=> attr "marker-end" "url(#arrow)" fl `onTickL` tickHandler nodes links startL fl return () where tickHandler : Sel NoData (Node String) -> Sel NoData (Link String ()) -> () -> IO () tickHandler nodes links () = do nodes ?? attr' "x" (\d, i => pure show <$> getX d) >=> attr' "y" (\d, i => pure show <$> getY d) links ?? attr' "x1" (\d, i => getSource d >>= getX >>= pure . show) >=> attr' "y1" (\d, i => getSource d >>= getY >>= pure . show) >=> attr' "x2" (\d, i => getTarget d >>= getX >>= pure . show) >=> attr' "y2" (\d, i => getTarget d >>= getY >>= pure . show) return ()
(* Title: HOL/Analysis/Harmonic_Numbers.thy Author: Manuel Eberl, TU München *) section \<open>Harmonic Numbers\<close> theory Harmonic_Numbers imports Complex_Transcendental Summation_Tests begin text \<open> The definition of the Harmonic Numbers and the Euler-Mascheroni constant. Also provides a reasonably accurate approximation of \<^term>\<open>ln 2 :: real\<close> and the Euler-Mascheroni constant. \<close> subsection \<open>The Harmonic numbers\<close> definition\<^marker>\<open>tag important\<close> harm :: "nat \<Rightarrow> 'a :: real_normed_field" where "harm n = (\<Sum>k=1..n. inverse (of_nat k))" lemma harm_altdef: "harm n = (\<Sum>k<n. inverse (of_nat (Suc k)))" unfolding harm_def by (induction n) simp_all lemma harm_Suc: "harm (Suc n) = harm n + inverse (of_nat (Suc n))" by (simp add: harm_def) lemma harm_nonneg: "harm n \<ge> (0 :: 'a :: {real_normed_field,linordered_field})" unfolding harm_def by (intro sum_nonneg) simp_all lemma harm_pos: "n > 0 \<Longrightarrow> harm n > (0 :: 'a :: {real_normed_field,linordered_field})" unfolding harm_def by (intro sum_pos) simp_all lemma harm_mono: "m \<le> n \<Longrightarrow> harm m \<le> (harm n :: 'a :: {real_normed_field,linordered_field})" by(simp add: harm_def sum_mono2) lemma of_real_harm: "of_real (harm n) = harm n" unfolding harm_def by simp lemma abs_harm [simp]: "(abs (harm n) :: real) = harm n" using harm_nonneg[of n] by (rule abs_of_nonneg) lemma norm_harm: "norm (harm n) = harm n" by (subst of_real_harm [symmetric]) (simp add: harm_nonneg) lemma harm_expand: "harm 0 = 0" "harm (Suc 0) = 1" "harm (numeral n) = harm (pred_numeral n) + inverse (numeral n)" proof - have "numeral n = Suc (pred_numeral n)" by simp also have "harm \<dots> = harm (pred_numeral n) + inverse (numeral n)" by (subst harm_Suc, subst numeral_eq_Suc[symmetric]) simp finally show "harm (numeral n) = harm (pred_numeral n) + inverse (numeral n)" . qed (simp_all add: harm_def) theorem not_convergent_harm: "\<not>convergent (harm :: nat \<Rightarrow> 'a :: real_normed_field)" proof - have "convergent (\<lambda>n. norm (harm n :: 'a)) \<longleftrightarrow> convergent (harm :: nat \<Rightarrow> real)" by (simp add: norm_harm) also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. \<Sum>k=Suc 0..Suc n. inverse (of_nat k) :: real)" unfolding harm_def[abs_def] by (subst convergent_Suc_iff) simp_all also have "... \<longleftrightarrow> convergent (\<lambda>n. \<Sum>k\<le>n. inverse (of_nat (Suc k)) :: real)" by (subst sum.shift_bounds_cl_Suc_ivl) (simp add: atLeast0AtMost) also have "... \<longleftrightarrow> summable (\<lambda>n. inverse (of_nat n) :: real)" by (subst summable_Suc_iff [symmetric]) (simp add: summable_iff_convergent') also have "\<not>..." by (rule not_summable_harmonic) finally show ?thesis by (blast dest: convergent_norm) qed lemma harm_pos_iff [simp]: "harm n > (0 :: 'a :: {real_normed_field,linordered_field}) \<longleftrightarrow> n > 0" by (rule iffI, cases n, simp add: harm_expand, simp, rule harm_pos) lemma ln_diff_le_inverse: assumes "x \<ge> (1::real)" shows "ln (x + 1) - ln x < 1 / x" proof - from assms have "\<exists>z>x. z < x + 1 \<and> ln (x + 1) - ln x = (x + 1 - x) * inverse z" by (intro MVT2) (auto intro!: derivative_eq_intros simp: field_simps) then obtain z where z: "z > x" "z < x + 1" "ln (x + 1) - ln x = inverse z" by auto have "ln (x + 1) - ln x = inverse z" by fact also from z(1,2) assms have "\<dots> < 1 / x" by (simp add: field_simps) finally show ?thesis . qed lemma ln_le_harm: "ln (real n + 1) \<le> (harm n :: real)" proof (induction n) fix n assume IH: "ln (real n + 1) \<le> harm n" have "ln (real (Suc n) + 1) = ln (real n + 1) + (ln (real n + 2) - ln (real n + 1))" by simp also have "(ln (real n + 2) - ln (real n + 1)) \<le> 1 / real (Suc n)" using ln_diff_le_inverse[of "real n + 1"] by (simp add: add_ac) also note IH also have "harm n + 1 / real (Suc n) = harm (Suc n)" by (simp add: harm_Suc field_simps) finally show "ln (real (Suc n) + 1) \<le> harm (Suc n)" by - simp qed (simp_all add: harm_def) lemma harm_at_top: "filterlim (harm :: nat \<Rightarrow> real) at_top sequentially" proof (rule filterlim_at_top_mono) show "eventually (\<lambda>n. harm n \<ge> ln (real (Suc n))) at_top" using ln_le_harm by (intro always_eventually allI) (simp_all add: add_ac) show "filterlim (\<lambda>n. ln (real (Suc n))) at_top sequentially" by (intro filterlim_compose[OF ln_at_top] filterlim_compose[OF filterlim_real_sequentially] filterlim_Suc) qed subsection \<open>The Euler-Mascheroni constant\<close> text \<open> The limit of the difference between the partial harmonic sum and the natural logarithm (approximately 0.577216). This value occurs e.g. in the definition of the Gamma function. \<close> definition euler_mascheroni :: "'a :: real_normed_algebra_1" where "euler_mascheroni = of_real (lim (\<lambda>n. harm n - ln (of_nat n)))" lemma of_real_euler_mascheroni [simp]: "of_real euler_mascheroni = euler_mascheroni" by (simp add: euler_mascheroni_def) lemma harm_ge_ln: "harm n \<ge> ln (real n + 1)" proof - have "ln (n + 1) = (\<Sum>j<n. ln (real (Suc j + 1)) - ln (real (j + 1)))" by (subst sum_lessThan_telescope) auto also have "\<dots> \<le> (\<Sum>j<n. 1 / (Suc j))" proof (intro sum_mono, clarify) fix j assume j: "j < n" have "\<exists>\<xi>. \<xi> > real j + 1 \<and> \<xi> < real j + 2 \<and> ln (real j + 2) - ln (real j + 1) = (real j + 2 - (real j + 1)) * (1 / \<xi>)" by (intro MVT2) (auto intro!: derivative_eq_intros) then obtain \<xi> :: real where \<xi>: "\<xi> \<in> {real j + 1..real j + 2}" "ln (real j + 2) - ln (real j + 1) = 1 / \<xi>" by auto note \<xi>(2) also have "1 / \<xi> \<le> 1 / (Suc j)" using \<xi>(1) by (auto simp: field_simps) finally show "ln (real (Suc j + 1)) - ln (real (j + 1)) \<le> 1 / (Suc j)" by (simp add: add_ac) qed also have "\<dots> = harm n" by (simp add: harm_altdef field_simps) finally show ?thesis by (simp add: add_ac) qed lemma decseq_harm_diff_ln: "decseq (\<lambda>n. harm (Suc n) - ln (Suc n))" proof (rule decseq_SucI) fix m :: nat define n where "n = Suc m" have "n > 0" by (simp add: n_def) have "convex_on {0<..} (\<lambda>x :: real. -ln x)" by (rule convex_on_realI[where f' = "\<lambda>x. -1/x"]) (auto intro!: derivative_eq_intros simp: field_simps) hence "(-1 / (n + 1)) * (real n - real (n + 1)) \<le> (- ln (real n)) - (-ln (real (n + 1)))" using \<open>n > 0\<close> by (intro convex_on_imp_above_tangent[where A = "{0<..}"]) (auto intro!: derivative_eq_intros simp: interior_open) thus "harm (Suc n) - ln (Suc n) \<le> harm n - ln n" by (auto simp: harm_Suc field_simps) qed lemma euler_mascheroni_sequence_nonneg: assumes "n > 0" shows "harm n - ln (real n) \<ge> (0 :: real)" proof - have "ln (real n) \<le> ln (real n + 1)" using assms by simp also have "\<dots> \<le> harm n" by (rule harm_ge_ln) finally show ?thesis by simp qed lemma euler_mascheroni_convergent: "convergent (\<lambda>n. harm n - ln n)" proof - have "harm (Suc n) - ln (real (Suc n)) \<ge> 0" for n :: nat using euler_mascheroni_sequence_nonneg[of "Suc n"] by simp hence "convergent (\<lambda>n. harm (Suc n) - ln (Suc n))" by (intro Bseq_monoseq_convergent decseq_bounded[of _ 0] decseq_harm_diff_ln decseq_imp_monoseq) auto thus ?thesis by (subst (asm) convergent_Suc_iff) qed lemma euler_mascheroni_sequence_decreasing: "m > 0 \<Longrightarrow> m \<le> n \<Longrightarrow> harm n - ln (of_nat n) \<le> harm m - ln (of_nat m :: real)" using decseqD[OF decseq_harm_diff_ln, of "m - 1" "n - 1"] by simp lemma\<^marker>\<open>tag important\<close> euler_mascheroni_LIMSEQ: "(\<lambda>n. harm n - ln (of_nat n) :: real) \<longlonglongrightarrow> euler_mascheroni" unfolding euler_mascheroni_def by (simp add: convergent_LIMSEQ_iff [symmetric] euler_mascheroni_convergent) lemma euler_mascheroni_LIMSEQ_of_real: "(\<lambda>n. of_real (harm n - ln (of_nat n))) \<longlonglongrightarrow> (euler_mascheroni :: 'a :: {real_normed_algebra_1, topological_space})" proof - have "(\<lambda>n. of_real (harm n - ln (of_nat n))) \<longlonglongrightarrow> (of_real (euler_mascheroni) :: 'a)" by (intro tendsto_of_real euler_mascheroni_LIMSEQ) thus ?thesis by simp qed lemma euler_mascheroni_sum_real: "(\<lambda>n. inverse (of_nat (n+1)) + ln (of_nat (n+1)) - ln (of_nat (n+2)) :: real) sums euler_mascheroni" using sums_add[OF telescope_sums[OF LIMSEQ_Suc[OF euler_mascheroni_LIMSEQ]] telescope_sums'[OF LIMSEQ_inverse_real_of_nat]] by (simp_all add: harm_def algebra_simps) lemma euler_mascheroni_sum: "(\<lambda>n. inverse (of_nat (n+1)) + of_real (ln (of_nat (n+1))) - of_real (ln (of_nat (n+2)))) sums (euler_mascheroni :: 'a :: {banach, real_normed_field})" proof - have "(\<lambda>n. of_real (inverse (of_nat (n+1)) + ln (of_nat (n+1)) - ln (of_nat (n+2)))) sums (of_real euler_mascheroni :: 'a :: {banach, real_normed_field})" by (subst sums_of_real_iff) (rule euler_mascheroni_sum_real) thus ?thesis by simp qed theorem alternating_harmonic_series_sums: "(\<lambda>k. (-1)^k / real_of_nat (Suc k)) sums ln 2" proof - let ?f = "\<lambda>n. harm n - ln (real_of_nat n)" let ?g = "\<lambda>n. if even n then 0 else (2::real)" let ?em = "\<lambda>n. harm n - ln (real_of_nat n)" have "eventually (\<lambda>n. ?em (2*n) - ?em n + ln 2 = (\<Sum>k<2*n. (-1)^k / real_of_nat (Suc k))) at_top" using eventually_gt_at_top[of "0::nat"] proof eventually_elim fix n :: nat assume n: "n > 0" have "(\<Sum>k<2*n. (-1)^k / real_of_nat (Suc k)) = (\<Sum>k<2*n. ((-1)^k + ?g k) / of_nat (Suc k)) - (\<Sum>k<2*n. ?g k / of_nat (Suc k))" by (simp add: sum.distrib algebra_simps divide_inverse) also have "(\<Sum>k<2*n. ((-1)^k + ?g k) / real_of_nat (Suc k)) = harm (2*n)" unfolding harm_altdef by (intro sum.cong) (auto simp: field_simps) also have "(\<Sum>k<2*n. ?g k / real_of_nat (Suc k)) = (\<Sum>k|k<2*n \<and> odd k. ?g k / of_nat (Suc k))" by (intro sum.mono_neutral_right) auto also have "\<dots> = (\<Sum>k|k<2*n \<and> odd k. 2 / (real_of_nat (Suc k)))" by (intro sum.cong) auto also have "(\<Sum>k|k<2*n \<and> odd k. 2 / (real_of_nat (Suc k))) = harm n" unfolding harm_altdef by (intro sum.reindex_cong[of "\<lambda>n. 2*n+1"]) (auto simp: inj_on_def field_simps elim!: oddE) also have "harm (2*n) - harm n = ?em (2*n) - ?em n + ln 2" using n by (simp_all add: algebra_simps ln_mult) finally show "?em (2*n) - ?em n + ln 2 = (\<Sum>k<2*n. (-1)^k / real_of_nat (Suc k))" .. qed moreover have "(\<lambda>n. ?em (2*n) - ?em n + ln (2::real)) \<longlonglongrightarrow> euler_mascheroni - euler_mascheroni + ln 2" by (intro tendsto_intros euler_mascheroni_LIMSEQ filterlim_compose[OF euler_mascheroni_LIMSEQ] filterlim_subseq) (auto simp: strict_mono_def) hence "(\<lambda>n. ?em (2*n) - ?em n + ln (2::real)) \<longlonglongrightarrow> ln 2" by simp ultimately have "(\<lambda>n. (\<Sum>k<2*n. (-1)^k / real_of_nat (Suc k))) \<longlonglongrightarrow> ln 2" by (blast intro: Lim_transform_eventually) moreover have "summable (\<lambda>k. (-1)^k * inverse (real_of_nat (Suc k)))" using LIMSEQ_inverse_real_of_nat by (intro summable_Leibniz(1) decseq_imp_monoseq decseq_SucI) simp_all hence A: "(\<lambda>n. \<Sum>k<n. (-1)^k / real_of_nat (Suc k)) \<longlonglongrightarrow> (\<Sum>k. (-1)^k / real_of_nat (Suc k))" by (simp add: summable_sums_iff divide_inverse sums_def) from filterlim_compose[OF this filterlim_subseq[of "(*) (2::nat)"]] have "(\<lambda>n. \<Sum>k<2*n. (-1)^k / real_of_nat (Suc k)) \<longlonglongrightarrow> (\<Sum>k. (-1)^k / real_of_nat (Suc k))" by (simp add: strict_mono_def) ultimately have "(\<Sum>k. (- 1) ^ k / real_of_nat (Suc k)) = ln 2" by (intro LIMSEQ_unique) with A show ?thesis by (simp add: sums_def) qed lemma alternating_harmonic_series_sums': "(\<lambda>k. inverse (real_of_nat (2*k+1)) - inverse (real_of_nat (2*k+2))) sums ln 2" unfolding sums_def proof (rule Lim_transform_eventually) show "(\<lambda>n. \<Sum>k<2*n. (-1)^k / (real_of_nat (Suc k))) \<longlonglongrightarrow> ln 2" using alternating_harmonic_series_sums unfolding sums_def by (rule filterlim_compose) (rule mult_nat_left_at_top, simp) show "eventually (\<lambda>n. (\<Sum>k<2*n. (-1)^k / (real_of_nat (Suc k))) = (\<Sum>k<n. inverse (real_of_nat (2*k+1)) - inverse (real_of_nat (2*k+2)))) sequentially" proof (intro always_eventually allI) fix n :: nat show "(\<Sum>k<2*n. (-1)^k / (real_of_nat (Suc k))) = (\<Sum>k<n. inverse (real_of_nat (2*k+1)) - inverse (real_of_nat (2*k+2)))" by (induction n) (simp_all add: inverse_eq_divide) qed qed subsection\<^marker>\<open>tag unimportant\<close> \<open>Bounds on the Euler-Mascheroni constant\<close> (* TODO: perhaps move this section away to remove unnecessary dependency on integration *) (* TODO: Move? *) lemma ln_inverse_approx_le: assumes "(x::real) > 0" "a > 0" shows "ln (x + a) - ln x \<le> a * (inverse x + inverse (x + a))/2" (is "_ \<le> ?A") proof - define f' where "f' = (inverse (x + a) - inverse x)/a" let ?f = "\<lambda>t. (t - x) * f' + inverse x" let ?F = "\<lambda>t. (t - x)^2 * f' / 2 + t * inverse x" have deriv: "\<exists>D. ((\<lambda>x. ?F x - ln x) has_field_derivative D) (at \<xi>) \<and> D \<ge> 0" if "\<xi> \<ge> x" "\<xi> \<le> x + a" for \<xi> proof - from that assms have t: "0 \<le> (\<xi> - x) / a" "(\<xi> - x) / a \<le> 1" by simp_all have "inverse \<xi> = inverse ((1 - (\<xi> - x) / a) *\<^sub>R x + ((\<xi> - x) / a) *\<^sub>R (x + a))" (is "_ = ?A") using assms by (simp add: field_simps) also from assms have "convex_on {x..x+a} inverse" by (intro convex_on_inverse) auto from convex_onD_Icc[OF this _ t] assms have "?A \<le> (1 - (\<xi> - x) / a) * inverse x + (\<xi> - x) / a * inverse (x + a)" by simp also have "\<dots> = (\<xi> - x) * f' + inverse x" using assms by (simp add: f'_def divide_simps) (simp add: field_simps) finally have "?f \<xi> - 1 / \<xi> \<ge> 0" by (simp add: field_simps) moreover have "((\<lambda>x. ?F x - ln x) has_field_derivative ?f \<xi> - 1 / \<xi>) (at \<xi>)" using that assms by (auto intro!: derivative_eq_intros simp: field_simps) ultimately show ?thesis by blast qed have "?F x - ln x \<le> ?F (x + a) - ln (x + a)" by (rule DERIV_nonneg_imp_nondecreasing[of x "x + a", OF _ deriv]) (use assms in auto) thus ?thesis using assms by (simp add: f'_def divide_simps) (simp add: algebra_simps power2_eq_square)? qed lemma ln_inverse_approx_ge: assumes "(x::real) > 0" "x < y" shows "ln y - ln x \<ge> 2 * (y - x) / (x + y)" (is "_ \<ge> ?A") proof - define m where "m = (x+y)/2" define f' where "f' = -inverse (m^2)" from assms have m: "m > 0" by (simp add: m_def) let ?F = "\<lambda>t. (t - m)^2 * f' / 2 + t / m" let ?f = "\<lambda>t. (t - m) * f' + inverse m" have deriv: "\<exists>D. ((\<lambda>x. ln x - ?F x) has_field_derivative D) (at \<xi>) \<and> D \<ge> 0" if "\<xi> \<ge> x" "\<xi> \<le> y" for \<xi> proof - from that assms have "inverse \<xi> - inverse m \<ge> f' * (\<xi> - m)" by (intro convex_on_imp_above_tangent[of "{0<..}"] convex_on_inverse) (auto simp: m_def interior_open f'_def power2_eq_square intro!: derivative_eq_intros) hence "1 / \<xi> - ?f \<xi> \<ge> 0" by (simp add: field_simps f'_def) moreover have "((\<lambda>x. ln x - ?F x) has_field_derivative 1 / \<xi> - ?f \<xi>) (at \<xi>)" using that assms m by (auto intro!: derivative_eq_intros simp: field_simps) ultimately show ?thesis by blast qed have "ln x - ?F x \<le> ln y - ?F y" by (rule DERIV_nonneg_imp_nondecreasing[of x y, OF _ deriv]) (use assms in auto) hence "ln y - ln x \<ge> ?F y - ?F x" by (simp add: algebra_simps) also have "?F y - ?F x = ?A" using assms by (simp add: f'_def m_def divide_simps) (simp add: algebra_simps power2_eq_square) finally show ?thesis . qed lemma euler_mascheroni_lower: "euler_mascheroni \<ge> harm (Suc n) - ln (real_of_nat (n + 2)) + 1/real_of_nat (2 * (n + 2))" and euler_mascheroni_upper: "euler_mascheroni \<le> harm (Suc n) - ln (real_of_nat (n + 2)) + 1/real_of_nat (2 * (n + 1))" proof - define D :: "_ \<Rightarrow> real" where "D n = inverse (of_nat (n+1)) + ln (of_nat (n+1)) - ln (of_nat (n+2))" for n let ?g = "\<lambda>n. ln (of_nat (n+2)) - ln (of_nat (n+1)) - inverse (of_nat (n+1)) :: real" define inv where [abs_def]: "inv n = inverse (real_of_nat n)" for n fix n :: nat note summable = sums_summable[OF euler_mascheroni_sum_real, folded D_def] have sums: "(\<lambda>k. (inv (Suc (k + (n+1))) - inv (Suc (Suc k + (n+1))))/2) sums ((inv (Suc (0 + (n+1))) - 0)/2)" unfolding inv_def by (intro sums_divide telescope_sums' LIMSEQ_ignore_initial_segment LIMSEQ_inverse_real_of_nat) have sums': "(\<lambda>k. (inv (Suc (k + n)) - inv (Suc (Suc k + n)))/2) sums ((inv (Suc (0 + n)) - 0)/2)" unfolding inv_def by (intro sums_divide telescope_sums' LIMSEQ_ignore_initial_segment LIMSEQ_inverse_real_of_nat) from euler_mascheroni_sum_real have "euler_mascheroni = (\<Sum>k. D k)" by (simp add: sums_iff D_def) also have "\<dots> = (\<Sum>k. D (k + Suc n)) + (\<Sum>k\<le>n. D k)" by (subst suminf_split_initial_segment[OF summable, of "Suc n"], subst lessThan_Suc_atMost) simp finally have sum: "(\<Sum>k\<le>n. D k) - euler_mascheroni = -(\<Sum>k. D (k + Suc n))" by simp note sum also have "\<dots> \<le> -(\<Sum>k. (inv (k + Suc n + 1) - inv (k + Suc n + 2)) / 2)" proof (intro le_imp_neg_le suminf_le allI summable_ignore_initial_segment[OF summable]) fix k' :: nat define k where "k = k' + Suc n" hence k: "k > 0" by (simp add: k_def) have "real_of_nat (k+1) > 0" by (simp add: k_def) with ln_inverse_approx_le[OF this zero_less_one] have "ln (of_nat k + 2) - ln (of_nat k + 1) \<le> (inv (k+1) + inv (k+2))/2" by (simp add: inv_def add_ac) hence "(inv (k+1) - inv (k+2))/2 \<le> inv (k+1) + ln (of_nat (k+1)) - ln (of_nat (k+2))" by (simp add: field_simps) also have "\<dots> = D k" unfolding D_def inv_def .. finally show "D (k' + Suc n) \<ge> (inv (k' + Suc n + 1) - inv (k' + Suc n + 2)) / 2" by (simp add: k_def) from sums_summable[OF sums] show "summable (\<lambda>k. (inv (k + Suc n + 1) - inv (k + Suc n + 2))/2)" by simp qed also from sums have "\<dots> = -inv (n+2) / 2" by (simp add: sums_iff) finally have "euler_mascheroni \<ge> (\<Sum>k\<le>n. D k) + 1 / (of_nat (2 * (n+2)))" by (simp add: inv_def field_simps) also have "(\<Sum>k\<le>n. D k) = harm (Suc n) - (\<Sum>k\<le>n. ln (real_of_nat (Suc k+1)) - ln (of_nat (k+1)))" unfolding harm_altdef D_def by (subst lessThan_Suc_atMost) (simp add: sum.distrib sum_subtractf) also have "(\<Sum>k\<le>n. ln (real_of_nat (Suc k+1)) - ln (of_nat (k+1))) = ln (of_nat (n+2))" by (subst atLeast0AtMost [symmetric], subst sum_Suc_diff) simp_all finally show "euler_mascheroni \<ge> harm (Suc n) - ln (real_of_nat (n + 2)) + 1/real_of_nat (2 * (n + 2))" by simp note sum also have "-(\<Sum>k. D (k + Suc n)) \<ge> -(\<Sum>k. (inv (Suc (k + n)) - inv (Suc (Suc k + n)))/2)" proof (intro le_imp_neg_le suminf_le allI summable_ignore_initial_segment[OF summable]) fix k' :: nat define k where "k = k' + Suc n" hence k: "k > 0" by (simp add: k_def) have "real_of_nat (k+1) > 0" by (simp add: k_def) from ln_inverse_approx_ge[of "of_nat k + 1" "of_nat k + 2"] have "2 / (2 * real_of_nat k + 3) \<le> ln (of_nat (k+2)) - ln (real_of_nat (k+1))" by (simp add: add_ac) hence "D k \<le> 1 / real_of_nat (k+1) - 2 / (2 * real_of_nat k + 3)" by (simp add: D_def inverse_eq_divide inv_def) also have "\<dots> = inv ((k+1)*(2*k+3))" unfolding inv_def by (simp add: field_simps) also have "\<dots> \<le> inv (2*k*(k+1))" unfolding inv_def using k by (intro le_imp_inverse_le) (simp add: algebra_simps, simp del: of_nat_add) also have "\<dots> = (inv k - inv (k+1))/2" unfolding inv_def using k by (simp add: divide_simps del: of_nat_mult) (simp add: algebra_simps) finally show "D k \<le> (inv (Suc (k' + n)) - inv (Suc (Suc k' + n)))/2" unfolding k_def by simp next from sums_summable[OF sums'] show "summable (\<lambda>k. (inv (Suc (k + n)) - inv (Suc (Suc k + n)))/2)" by simp qed also from sums' have "(\<Sum>k. (inv (Suc (k + n)) - inv (Suc (Suc k + n)))/2) = inv (n+1)/2" by (simp add: sums_iff) finally have "euler_mascheroni \<le> (\<Sum>k\<le>n. D k) + 1 / of_nat (2 * (n+1))" by (simp add: inv_def field_simps) also have "(\<Sum>k\<le>n. D k) = harm (Suc n) - (\<Sum>k\<le>n. ln (real_of_nat (Suc k+1)) - ln (of_nat (k+1)))" unfolding harm_altdef D_def by (subst lessThan_Suc_atMost) (simp add: sum.distrib sum_subtractf) also have "(\<Sum>k\<le>n. ln (real_of_nat (Suc k+1)) - ln (of_nat (k+1))) = ln (of_nat (n+2))" by (subst atLeast0AtMost [symmetric], subst sum_Suc_diff) simp_all finally show "euler_mascheroni \<le> harm (Suc n) - ln (real_of_nat (n + 2)) + 1/real_of_nat (2 * (n + 1))" by simp qed lemma euler_mascheroni_pos: "euler_mascheroni > (0::real)" using euler_mascheroni_lower[of 0] ln_2_less_1 by (simp add: harm_def) context begin private lemma ln_approx_aux: fixes n :: nat and x :: real defines "y \<equiv> (x-1)/(x+1)" assumes x: "x > 0" "x \<noteq> 1" shows "inverse (2*y^(2*n+1)) * (ln x - (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1))) \<in> {0..(1 / (1 - y^2) / of_nat (2*n+1))}" proof - from x have norm_y: "norm y < 1" unfolding y_def by simp from power_strict_mono[OF this, of 2] have norm_y': "norm y^2 < 1" by simp let ?f = "\<lambda>k. 2 * y ^ (2*k+1) / of_nat (2*k+1)" note sums = ln_series_quadratic[OF x(1)] define c where "c = inverse (2*y^(2*n+1))" let ?d = "c * (ln x - (\<Sum>k<n. ?f k))" have "\<And>k. y\<^sup>2^k / of_nat (2*(k+n)+1) \<le> y\<^sup>2 ^ k / of_nat (2*n+1)" by (intro divide_left_mono mult_right_mono mult_pos_pos zero_le_power[of "y^2"]) simp_all moreover { have "(\<lambda>k. ?f (k + n)) sums (ln x - (\<Sum>k<n. ?f k))" using sums_split_initial_segment[OF sums] by (simp add: y_def) hence "(\<lambda>k. c * ?f (k + n)) sums ?d" by (rule sums_mult) also have "(\<lambda>k. c * (2*y^(2*(k+n)+1) / of_nat (2*(k+n)+1))) = (\<lambda>k. (c * (2*y^(2*n+1))) * ((y^2)^k / of_nat (2*(k+n)+1)))" by (simp only: ring_distribs power_add power_mult) (simp add: mult_ac) also from x have "c * (2*y^(2*n+1)) = 1" by (simp add: c_def y_def) finally have "(\<lambda>k. (y^2)^k / of_nat (2*(k+n)+1)) sums ?d" by simp } note sums' = this moreover from norm_y' have "(\<lambda>k. (y^2)^k / of_nat (2*n+1)) sums (1 / (1 - y^2) / of_nat (2*n+1))" by (intro sums_divide geometric_sums) (simp_all add: norm_power) ultimately have "?d \<le> (1 / (1 - y^2) / of_nat (2*n+1))" by (rule sums_le) moreover have "c * (ln x - (\<Sum>k<n. 2 * y ^ (2 * k + 1) / real_of_nat (2 * k + 1))) \<ge> 0" by (intro sums_le[OF _ sums_zero sums']) simp_all ultimately show ?thesis unfolding c_def by simp qed lemma fixes n :: nat and x :: real defines "y \<equiv> (x-1)/(x+1)" defines "approx \<equiv> (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1))" defines "d \<equiv> y^(2*n+1) / (1 - y^2) / of_nat (2*n+1)" assumes x: "x > 1" shows ln_approx_bounds: "ln x \<in> {approx..approx + 2*d}" and ln_approx_abs: "abs (ln x - (approx + d)) \<le> d" proof - define c where "c = 2*y^(2*n+1)" from x have c_pos: "c > 0" unfolding c_def y_def by (intro mult_pos_pos zero_less_power) simp_all have A: "inverse c * (ln x - (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1))) \<in> {0.. (1 / (1 - y^2) / of_nat (2*n+1))}" using assms unfolding y_def c_def by (intro ln_approx_aux) simp_all hence "inverse c * (ln x - (\<Sum>k<n. 2*y^(2*k+1)/of_nat (2*k+1))) \<le> (1 / (1-y^2) / of_nat (2*n+1))" by simp hence "(ln x - (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1))) / c \<le> (1 / (1 - y^2) / of_nat (2*n+1))" by (auto simp add: field_split_simps) with c_pos have "ln x \<le> c / (1 - y^2) / of_nat (2*n+1) + approx" by (subst (asm) pos_divide_le_eq) (simp_all add: mult_ac approx_def) moreover { from A c_pos have "0 \<le> c * (inverse c * (ln x - (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1))))" by (intro mult_nonneg_nonneg[of c]) simp_all also have "\<dots> = (c * inverse c) * (ln x - (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1)))" by (simp add: mult_ac) also from c_pos have "c * inverse c = 1" by simp finally have "ln x \<ge> approx" by (simp add: approx_def) } ultimately show "ln x \<in> {approx..approx + 2*d}" by (simp add: c_def d_def) thus "abs (ln x - (approx + d)) \<le> d" by auto qed end lemma euler_mascheroni_bounds: fixes n :: nat assumes "n \<ge> 1" defines "t \<equiv> harm n - ln (of_nat (Suc n)) :: real" shows "euler_mascheroni \<in> {t + inverse (of_nat (2*(n+1)))..t + inverse (of_nat (2*n))}" using assms euler_mascheroni_upper[of "n-1"] euler_mascheroni_lower[of "n-1"] unfolding t_def by (cases n) (simp_all add: harm_Suc t_def inverse_eq_divide) lemma euler_mascheroni_bounds': fixes n :: nat assumes "n \<ge> 1" "ln (real_of_nat (Suc n)) \<in> {l<..<u}" shows "euler_mascheroni \<in> {harm n - u + inverse (of_nat (2*(n+1)))<..<harm n - l + inverse (of_nat (2*n))}" using euler_mascheroni_bounds[OF assms(1)] assms(2) by auto text \<open> Approximation of \<^term>\<open>ln 2\<close>. The lower bound is accurate to about 0.03; the upper bound is accurate to about 0.0015. \<close> lemma ln2_ge_two_thirds: "2/3 \<le> ln (2::real)" and ln2_le_25_over_36: "ln (2::real) \<le> 25/36" using ln_approx_bounds[of 2 1, simplified, simplified eval_nat_numeral, simplified] by simp_all text \<open> Approximation of the Euler-Mascheroni constant. The lower bound is accurate to about 0.0015; the upper bound is accurate to about 0.015. \<close> lemma euler_mascheroni_gt_19_over_33: "(euler_mascheroni :: real) > 19/33" (is ?th1) and euler_mascheroni_less_13_over_22: "(euler_mascheroni :: real) < 13/22" (is ?th2) proof - have "ln (real (Suc 7)) = 3 * ln 2" by (simp add: ln_powr [symmetric]) also from ln_approx_bounds[of 2 3] have "\<dots> \<in> {3*307/443<..<3*4615/6658}" by (simp add: eval_nat_numeral) finally have "ln (real (Suc 7)) \<in> \<dots>" . from euler_mascheroni_bounds'[OF _ this] have "?th1 \<and> ?th2" by (simp_all add: harm_expand) thus ?th1 ?th2 by blast+ qed end
(* Copyright (C) 2017 M.A.L. Marques This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. *) op_a1 := 1.5214: op_a2 := 0.5764: op_b1 := 1.1284: op_b2 := 0.3183: op_beta := (rs, z, xs0, xs1) -> op_qab/b88_zab(1, op_f, rs, z, xs0, xs1): f_op := (rs, z, xt, xs0, xs1) -> - (1 - z^2)*n_total(rs)/4.0 * (op_a1*op_beta(rs, z, xs0, xs1) + op_a2) / (op_beta(rs, z, xs0, xs1)^4 + op_b1*op_beta(rs, z, xs0, xs1)^3 + op_b2*op_beta(rs, z, xs0, xs1)^2): f := (rs, z, xt, xs0, xs1) -> f_op(rs, z, xt, xs0, xs1):
module Data.Tagged import Data.Bifunctor import Data.Profunctor %default total public export data Tagged : (a : Type) -> (b : Type) -> Type where MkTagged: b -> Tagged a b public export retag : Tagged s b -> Tagged t b retag (MkTagged b) = MkTagged b ||| Alias for 'unTagged' public export untag : Tagged s b -> b untag (MkTagged x) = x ||| Tag a value with its own type. public export tagSelf : a -> Tagged a a tagSelf = MkTagged ||| 'asTaggedTypeOf' is a type-restricted version of 'const'. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the tag of the second. public export asTaggedTypeOf : s -> Tagged s b -> s asTaggedTypeOf = const ||| 'untagSelf' is a type-restricted version of 'untag'. public export untagSelf : Tagged a a -> a untagSelf (MkTagged x) = x public export Semigroup a => Semigroup (Tagged s a) where (MkTagged a) <+> (MkTagged b) = MkTagged (a <+> b) public export Monoid a => Monoid (Tagged s a) where neutral = MkTagged neutral public export Functor (Tagged s) where map f (MkTagged x) = MkTagged (f x) public export implementation Applicative (Tagged s) where pure = MkTagged (MkTagged f) <*> (MkTagged x) = MkTagged (f x) public export implementation Monad (Tagged s) where (MkTagged m) >>= k = k m public export implementation Bifunctor Tagged where bimap _ g (MkTagged b) = MkTagged (g b) public export implementation Profunctor Tagged where dimap _ f (MkTagged s) = MkTagged (f s) lmap _ = retag rmap = map public export implementation Choice Tagged where left' (MkTagged b) = MkTagged (Left b) right' (MkTagged b) = MkTagged (Right b)
Formal statement is: lemma minus_right: "prod a (- b) = - prod a b" Informal statement is: The product of a number and the negative of another number is the negative of the product of the two numbers.
data_project = "[NAME]"; data_path_detail = "[SRC_DETAIL]"; data_all = data_load(data_path_detail); # data_known_paths = c("/example/path/"); # data_all <- subset(data_all, !(path %in% data_known_paths));
FUNCTION:NAME :BEGIN :END -- @@stderr -- dtrace: script 'test/unittest/actions/exit/tst.end-exit.d' matched 2 probes
[STATEMENT] lemma cart_basis_eq_set_of_vector_cart_basis': "cart_basis = set_of_vector (cart_basis')" [PROOF STATE] proof (prove) goal (1 subgoal): 1. cart_basis = set_of_vector cart_basis' [PROOF STEP] unfolding cart_basis_def cart_basis'_def set_of_vector_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. {axis i (1::'a) |i. i \<in> UNIV} = {(\<chi>i. axis i (1::'a)) $ i |i. i \<in> UNIV} [PROOF STEP] by auto
State Before: ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a : α l : List α ⊢ indexOf a l ≤ length l State After: case nil ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a : α ⊢ indexOf a [] ≤ length [] case cons ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l ⊢ indexOf a (b :: l) ≤ length (b :: l) Tactic: induction' l with b l ih State Before: case cons ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l ⊢ indexOf a (b :: l) ≤ length (b :: l) State After: case cons ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l ⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1 Tactic: simp only [length, indexOf_cons] State Before: case cons ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l ⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1 State After: case pos ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : a = b ⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1 case neg ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : ¬a = b ⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1 Tactic: by_cases h : a = b State Before: case neg ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : ¬a = b ⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1 State After: case neg ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : ¬a = b ⊢ succ (indexOf a l) ≤ length l + 1 Tactic: rw [if_neg h] State Before: case neg ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : ¬a = b ⊢ succ (indexOf a l) ≤ length l + 1 State After: no goals Tactic: exact succ_le_succ ih State Before: case nil ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a : α ⊢ indexOf a [] ≤ length [] State After: no goals Tactic: rfl State Before: case pos ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : a = b ⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1 State After: case pos ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : a = b ⊢ 0 ≤ length l + 1 Tactic: rw [if_pos h] State Before: case pos ι : Type ?u.80422 α : Type u β : Type v γ : Type w δ : Type x l₁ l₂ : List α inst✝ : DecidableEq α a b : α l : List α ih : indexOf a l ≤ length l h : a = b ⊢ 0 ≤ length l + 1 State After: no goals Tactic: exact Nat.zero_le _
Anthem key offers a world that is a constant living and breathing challenge for anyone daring to explore its vast territories. To face the unknown threats, you must be well prepared, and luckily — you are. Choose one out of four battle-suits: Ranger, Colossus, Storm, or Interceptor, and fight with all your might! Anthem key unlocks a window of unlimited potential. Whether it’s the skies, the land, the undergrounds, or the underwater realm, each of the environments are packed with formidable foes to face, numerous tasks to accomplish, and a variety of loot to discover! Buy Anthem key and enter a world long-forgotten by its creators. Abandoned and newly discovered planet bursts out with defensive mechanisms, and there’s quite a lot to protect. This world is as deadly as it is beautiful and breathtaking. Fight to ensure your survival and discover the wonders within. Anthem key doesn’t deliver just a game, it’s an experience worth your while to say the least. Your character is equipped with numerous weapons, your battle-suit is upgradeable to extents that are hard to describe, and an endless open-world exploration offers new challenges with each go. Anthem key presents an ambitious piece that promises to deliver a sensational experience for every player alike. Anthem offers you an unprecedented opportunity to enter this new adventure as one of the very first explorers out there. This World untainted by men is yours to tame — one of the greatest adventures in your gaming-life await!
module Common where open import Data.String using (String) -- Basic sorts ----------------------------------------------------------------- Id : Set Id = String
State Before: R : Type u_1 inst✝ : Semiring R f✝ f : R[X] ⊢ coeff (reverse f) 0 = leadingCoeff f State After: no goals Tactic: rw [coeff_reverse, revAt_le (zero_le f.natDegree), tsub_zero, leadingCoeff]
Formal statement is: proposition contour_integral_uniform_limit: assumes ev_fint: "eventually (\<lambda>n::'a. (f n) contour_integrable_on \<gamma>) F" and ul_f: "uniform_limit (path_image \<gamma>) f l F" and noleB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B" and \<gamma>: "valid_path \<gamma>" and [simp]: "\<not> trivial_limit F" shows "l contour_integrable_on \<gamma>" "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F" Informal statement is: If $f_n$ is a sequence of functions that are all integrable over a path $\gamma$, and if $f_n$ converges uniformly to $f$ over the image of $\gamma$, then $f$ is integrable over $\gamma$, and the sequence of integrals of $f_n$ converges to the integral of $f$.
If $I$ is a finite set, $F_i$ is a measurable set for each $i \in I$, and the sets $F_i$ are pairwise disjoint, then the measure of the union of the $F_i$ is the sum of the measures of the $F_i$.
module Generic.Lib.Reflection.Fold where open import Generic.Lib.Intro open import Generic.Lib.Decidable open import Generic.Lib.Category open import Generic.Lib.Data.Nat open import Generic.Lib.Data.String open import Generic.Lib.Data.Maybe open import Generic.Lib.Data.List open import Generic.Lib.Reflection.Core foldTypeOf : Data Type -> Type foldTypeOf (packData d a b cs ns) = appendType iab ∘ pi "π" π ∘ pi "P" P $ cs ʰ→ from ‵→ to where infixr 5 _ʰ→_ i = countPis a j = countPis b ab = appendType a b iab = implicitize ab π = implRelArg (quoteTerm Level) P = explRelArg ∘ appendType (shiftBy (suc j) b) ∘ agda-sort ∘ set $ pureVar j hyp = mapName (λ p -> appVar p ∘ drop i) d ∘ shiftBy (2 + j) _ʰ→_ = flip $ foldr (λ c r -> hyp c ‵→ shift r) from = appDef d (pisToArgVars (2 + i + j) ab) to = appVar 1 (pisToArgVars (3 + j) b) foldClausesOf : Name -> Data Type -> List Clause foldClausesOf f (packData d a b cs ns) = allToList $ mapAllInd (λ {a} n -> clauseOf n a) ns where k = length cs clauseOf : ℕ -> Type -> Name -> Clause clauseOf i c n = clause lhs rhs where args = explPisToNames c j = length args lhs = patVars ("P" ∷ unmap (λ n -> "f" ++ˢ showName n) ns) ∷ʳ explRelArg (patCon n (patVars args)) tryHyp : ℕ -> ℕ -> Type -> Maybe Term tryHyp m l (explPi r s a b) = explLam s <$> tryHyp (suc m) l b tryHyp m l (pi s a b) = tryHyp m l b tryHyp m l (appDef e _) = d == e ?> vis appDef f (pars ∷ʳ rarg) where pars = map (λ i -> pureVar (m + i)) $ downFromTo (suc k + j) j rarg = vis appVar (m + l) $ map pureVar (downFrom m) tryHyp m l b = nothing hyps : ℕ -> Type -> List Term hyps (suc l) (explPi r s a b) = fromMaybe (pureVar l) (tryHyp 0 l a) ∷ hyps l b hyps l (pi s a b) = hyps l b hyps l b = [] rhs = vis appVar (k + j ∸ suc i) (hyps j c) -- i = 1: f -- j = 3: x t r -- k = 2: g f -- 5 4 3 2 1 0 3 2 4 3 1 1 0 6 5 2 1 0 -- fold P g f (cons x t r) = f x (fold g f t) (λ y u -> fold g f (r y u)) defineFold : Name -> Data Type -> TC _ defineFold f D = declareDef (explRelArg f) (foldTypeOf D) >> defineFun f (foldClausesOf f D) deriveFold : Name -> Data Type -> TC Name deriveFold d D = freshName ("fold" ++ˢ showName d) >>= λ f -> f <$ defineFold f D deriveFoldTo : Name -> Name -> TC _ deriveFoldTo f = getData >=> defineFold f
1,010,000 (2000). 600,000 monolinguals. Total users in all countries: 1,016,650. Vigorous. All domains. All ages. Positive attitudes. Some also use Lingala [lin]. A few also use French [fra]. Used as L2 by Gilima [gix], Mbandja [zmz], Mono [mnh], Ngbundu [nuu].