Datasets:
AI4M
/

text
stringlengths
0
3.34M
open import Agda.Builtin.Bool data D : Set where c : Bool → D f : @0 D → Bool f (c true) = true f (c false) = false
import Data.Vect f1 : (n : Nat) -> Vect n Nat -> Vect (S n) Nat f1 a b = a :: b f2 : (n : Nat) -> case n of k => Vect k Nat -> Vect (S k) Nat f2 a b = a :: b f3 : (n : Nat) -> case n of Z => Vect Z Nat -> Vect (S Z) Nat (S k) => Vect (S k) Nat -> Vect (S (S k)) Nat f3 Z b = a :: b f3 (S a) b = a :: b f4 : (n : (Nat, Nat)) -> case n of (x, y) => Vect x Nat -> Vect (S x) Nat f4 (_, a) b = a :: b
(* Title: HOL/Auth/n_germanSimp_lemma_on_inv__44.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSimp Protocol Case Study*} theory n_germanSimp_lemma_on_inv__44 imports n_germanSimp_base begin section{*All lemmas on causal relation between inv__44 and some rule r*} lemma n_RecvReqSVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqS N i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (andForm (andForm (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv4) ''Cmd'')) (Const Empty)) (eqn (IVar (Para (Ident ''ShrSet'') p__Inv4)) (Const true))) (eqn (IVar (Field (Para (Ident ''Cache'') p__Inv4) ''State'')) (Const I))) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (andForm (andForm (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv4) ''Cmd'')) (Const Empty)) (eqn (IVar (Para (Ident ''ShrSet'') p__Inv4)) (Const true))) (eqn (IVar (Field (Para (Ident ''Cache'') p__Inv4) ''State'')) (Const I))) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvReqE__part__0Vsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqE__part__0 N i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvReqE__part__1Vsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqE__part__1 N i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInv__part__0Vsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__0 i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInv__part__1Vsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__1 i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInvAckVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInvAck i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (andForm (eqn (IVar (Ident ''CurCmd'')) (Const ReqS)) (eqn (IVar (Ident ''ExGntd'')) (Const false))) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv4) ''Cmd'')) (Const Inv))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvInvAckVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvInvAck i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } moreover { assume b1: "(i~=p__Inv4)" have "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))" have "?P3 s" apply (cut_tac a1 a2 b1 c1, simp, rule_tac x="(neg (andForm (andForm (eqn (IVar (Para (Ident ''ShrSet'') p__Inv4)) (Const true)) (eqn (IVar (Ident ''CurCmd'')) (Const ReqS))) (eqn (IVar (Field (Para (Ident ''Chan3'') i) ''Cmd'')) (Const InvAck))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" have "?P2 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntSVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntS i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntEVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntE N i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntSVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntS i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntEVsinv__44: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntE i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__44 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_StoreVsinv__44: assumes a1: "\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__44 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done end
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes ! This file was ported from Lean 3 source module data.polynomial.splits ! leanprover-community/mathlib commit f694c7dead66f5d4c80f446c796a5aad14707f0e ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Data.List.Prime import Mathbin.Data.Polynomial.FieldDivision import Mathbin.Data.Polynomial.Lifts /-! # Split polynomials A polynomial `f : K[X]` splits over a field extension `L` of `K` if it is zero or all of its irreducible factors over `L` have degree `1`. ## Main definitions * `polynomial.splits i f`: A predicate on a homomorphism `i : K →+* L` from a commutative ring to a field and a polynomial `f` saying that `f.map i` is zero or all of its irreducible factors over `L` have degree `1`. ## Main statements * `lift_of_splits`: If `K` and `L` are field extensions of a field `F` and for some finite subset `S` of `K`, the minimal polynomial of every `x ∈ K` splits as a polynomial with coefficients in `L`, then `algebra.adjoin F S` embeds into `L`. -/ noncomputable section open Classical BigOperators Polynomial universe u v w variable {F : Type u} {K : Type v} {L : Type w} namespace Polynomial open Polynomial section Splits section CommRing variable [CommRing K] [Field L] [Field F] variable (i : K →+* L) #print Polynomial.Splits /- /-- A polynomial `splits` iff it is zero or all of its irreducible factors have `degree` 1. -/ def Splits (f : K[X]) : Prop := f.map i = 0 ∨ ∀ {g : L[X]}, Irreducible g → g ∣ f.map i → degree g = 1 #align polynomial.splits Polynomial.Splits -/ #print Polynomial.splits_zero /- @[simp] theorem splits_zero : Splits i (0 : K[X]) := Or.inl (Polynomial.map_zero i) #align polynomial.splits_zero Polynomial.splits_zero -/ /- warning: polynomial.splits_of_map_eq_C -> Polynomial.splits_of_map_eq_C is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} {a : L}, (Eq.{succ u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) a)) -> (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} {a : L}, (Eq.{succ u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (fun (_x : L) => (fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))))) (Polynomial.C.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a)) -> (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) Case conversion may be inaccurate. Consider using '#align polynomial.splits_of_map_eq_C Polynomial.splits_of_map_eq_Cₓ'. -/ theorem splits_of_map_eq_C {f : K[X]} {a : L} (h : f.map i = C a) : Splits i f := if ha : a = 0 then Or.inl (h.trans (ha.symm ▸ C_0)) else Or.inr fun g hg ⟨p, hp⟩ => absurd hg.1 <| Classical.not_not.2 <| isUnit_iff_degree_eq_zero.2 <| by have := congr_arg degree hp rw [h, degree_C ha, degree_mul, @eq_comm (WithBot ℕ) 0, Nat.WithBot.add_eq_zero_iff] at this exact this.1 #align polynomial.splits_of_map_eq_C Polynomial.splits_of_map_eq_C /- warning: polynomial.splits_C -> Polynomial.splits_C is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (a : K), Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) a) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (a : K), Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) a) Case conversion may be inaccurate. Consider using '#align polynomial.splits_C Polynomial.splits_Cₓ'. -/ @[simp] theorem splits_C (a : K) : Splits i (C a) := splits_of_map_eq_C i (map_C i) #align polynomial.splits_C Polynomial.splits_C #print Polynomial.splits_of_map_degree_eq_one /- theorem splits_of_map_degree_eq_one {f : K[X]} (hf : degree (f.map i) = 1) : Splits i f := Or.inr fun g hg ⟨p, hp⟩ => by have := congr_arg degree hp <;> simp [Nat.WithBot.add_eq_one_iff, hf, @eq_comm (WithBot ℕ) 1, mt is_unit_iff_degree_eq_zero.2 hg.1] at this <;> clear _fun_match <;> tauto #align polynomial.splits_of_map_degree_eq_one Polynomial.splits_of_map_degree_eq_one -/ #print Polynomial.splits_of_degree_le_one /- theorem splits_of_degree_le_one {f : K[X]} (hf : degree f ≤ 1) : Splits i f := if hif : degree (f.map i) ≤ 0 then splits_of_map_eq_C i (degree_le_zero_iff.mp hif) else by push_neg at hif rw [← Order.succ_le_iff, ← WithBot.coe_zero, WithBot.succ_coe, Nat.succ_eq_succ] at hif exact splits_of_map_degree_eq_one i (le_antisymm ((degree_map_le i _).trans hf) hif) #align polynomial.splits_of_degree_le_one Polynomial.splits_of_degree_le_one -/ #print Polynomial.splits_of_degree_eq_one /- theorem splits_of_degree_eq_one {f : K[X]} (hf : degree f = 1) : Splits i f := splits_of_degree_le_one i hf.le #align polynomial.splits_of_degree_eq_one Polynomial.splits_of_degree_eq_one -/ #print Polynomial.splits_of_natDegree_le_one /- theorem splits_of_natDegree_le_one {f : K[X]} (hf : natDegree f ≤ 1) : Splits i f := splits_of_degree_le_one i (degree_le_of_natDegree_le hf) #align polynomial.splits_of_nat_degree_le_one Polynomial.splits_of_natDegree_le_one -/ #print Polynomial.splits_of_natDegree_eq_one /- theorem splits_of_natDegree_eq_one {f : K[X]} (hf : natDegree f = 1) : Splits i f := splits_of_natDegree_le_one i (le_of_eq hf) #align polynomial.splits_of_nat_degree_eq_one Polynomial.splits_of_natDegree_eq_one -/ #print Polynomial.splits_mul /- theorem splits_mul {f g : K[X]} (hf : Splits i f) (hg : Splits i g) : Splits i (f * g) := if h : (f * g).map i = 0 then Or.inl h else Or.inr fun p hp hpf => ((PrincipalIdealRing.irreducible_iff_prime.1 hp).2.2 _ _ (show p ∣ map i f * map i g by convert hpf <;> rw [Polynomial.map_mul])).elim (hf.resolve_left (fun hf => by simpa [hf] using h) hp) (hg.resolve_left (fun hg => by simpa [hg] using h) hp) #align polynomial.splits_mul Polynomial.splits_mul -/ #print Polynomial.splits_of_splits_mul' /- theorem splits_of_splits_mul' {f g : K[X]} (hfg : (f * g).map i ≠ 0) (h : Splits i (f * g)) : Splits i f ∧ Splits i g := ⟨Or.inr fun g hgi hg => Or.resolve_left h hfg hgi (by rw [Polynomial.map_mul] <;> exact hg.trans (dvd_mul_right _ _)), Or.inr fun g hgi hg => Or.resolve_left h hfg hgi (by rw [Polynomial.map_mul] <;> exact hg.trans (dvd_mul_left _ _))⟩ #align polynomial.splits_of_splits_mul' Polynomial.splits_of_splits_mul' -/ #print Polynomial.splits_map_iff /- theorem splits_map_iff (j : L →+* F) {f : K[X]} : Splits j (f.map i) ↔ Splits (j.comp i) f := by simp [splits, Polynomial.map_map] #align polynomial.splits_map_iff Polynomial.splits_map_iff -/ #print Polynomial.splits_one /- theorem splits_one : Splits i 1 := splits_C i 1 #align polynomial.splits_one Polynomial.splits_one -/ /- warning: polynomial.splits_of_is_unit -> Polynomial.splits_of_isUnit is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) [_inst_4 : IsDomain.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))] {u : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))}, (IsUnit.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.ring.{u1} K (CommRing.toRing.{u1} K _inst_1))) u) -> (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i u) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) [_inst_4 : IsDomain.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))] {u : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))}, (IsUnit.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) u) -> (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i u) Case conversion may be inaccurate. Consider using '#align polynomial.splits_of_is_unit Polynomial.splits_of_isUnitₓ'. -/ theorem splits_of_isUnit [IsDomain K] {u : K[X]} (hu : IsUnit u) : u.Splits i := (isUnit_iff.mp hu).choose_spec.2 ▸ splits_C _ _ #align polynomial.splits_of_is_unit Polynomial.splits_of_isUnit /- warning: polynomial.splits_X_sub_C -> Polynomial.splits_X_sub_C is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {x : K}, Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (instHSub.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.sub.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) x)) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {x : K}, Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) x) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (instHSub.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.sub.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)))))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) x)) Case conversion may be inaccurate. Consider using '#align polynomial.splits_X_sub_C Polynomial.splits_X_sub_Cₓ'. -/ theorem splits_X_sub_C {x : K} : (X - C x).Splits i := splits_of_degree_le_one _ <| degree_X_sub_C_le _ #align polynomial.splits_X_sub_C Polynomial.splits_X_sub_C #print Polynomial.splits_X /- theorem splits_X : X.Splits i := splits_of_degree_le_one _ degree_X_le #align polynomial.splits_X Polynomial.splits_X -/ #print Polynomial.splits_prod /- theorem splits_prod {ι : Type u} {s : ι → K[X]} {t : Finset ι} : (∀ j ∈ t, (s j).Splits i) → (∏ x in t, s x).Splits i := by refine' Finset.induction_on t (fun _ => splits_one i) fun a t hat ih ht => _ rw [Finset.forall_mem_insert] at ht; rw [Finset.prod_insert hat] exact splits_mul i ht.1 (ih ht.2) #align polynomial.splits_prod Polynomial.splits_prod -/ /- warning: polynomial.splits_pow -> Polynomial.splits_pow is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))}, (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) -> (forall (n : Nat), Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.ring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) f n)) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))}, (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) -> (forall (n : Nat), Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))))) f n)) Case conversion may be inaccurate. Consider using '#align polynomial.splits_pow Polynomial.splits_powₓ'. -/ theorem splits_pow {f : K[X]} (hf : f.Splits i) (n : ℕ) : (f ^ n).Splits i := by rw [← Finset.card_range n, ← Finset.prod_const] exact splits_prod i fun j hj => hf #align polynomial.splits_pow Polynomial.splits_pow /- warning: polynomial.splits_X_pow -> Polynomial.splits_X_pow is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (n : Nat), Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.ring.{u1} K (CommRing.toRing.{u1} K _inst_1))))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) n) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (n : Nat), Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))))))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))) n) Case conversion may be inaccurate. Consider using '#align polynomial.splits_X_pow Polynomial.splits_X_powₓ'. -/ theorem splits_X_pow (n : ℕ) : (X ^ n).Splits i := splits_pow i (splits_X i) n #align polynomial.splits_X_pow Polynomial.splits_X_pow #print Polynomial.splits_id_iff_splits /- theorem splits_id_iff_splits {f : K[X]} : (f.map i).Splits (RingHom.id L) ↔ f.Splits i := by rw [splits_map_iff, RingHom.id_comp] #align polynomial.splits_id_iff_splits Polynomial.splits_id_iff_splits -/ /- warning: polynomial.exists_root_of_splits' -> Polynomial.exists_root_of_splits' is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))}, (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) -> (Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f)) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero))))) -> (Exists.{succ u2} L (fun (x : L) => Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i x f) (OfNat.ofNat.{u2} L 0 (OfNat.mk.{u2} L 0 (Zero.zero.{u2} L (MulZeroClass.toHasZero.{u2} L (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} L (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonUnitalNonAssocRing.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))}, (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) -> (Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f)) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))) -> (Exists.{succ u2} L (fun (x : L) => Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i x f) (OfNat.ofNat.{u2} L 0 (Zero.toOfNat0.{u2} L (CommMonoidWithZero.toZero.{u2} L (CommGroupWithZero.toCommMonoidWithZero.{u2} L (Semifield.toCommGroupWithZero.{u2} L (Field.toSemifield.{u2} L _inst_2)))))))) Case conversion may be inaccurate. Consider using '#align polynomial.exists_root_of_splits' Polynomial.exists_root_of_splits'ₓ'. -/ theorem exists_root_of_splits' {f : K[X]} (hs : Splits i f) (hf0 : degree (f.map i) ≠ 0) : ∃ x, eval₂ i x f = 0 := if hf0' : f.map i = 0 then by simp [eval₂_eq_eval_map, hf0'] else let ⟨g, hg⟩ := WfDvdMonoid.exists_irreducible_factor (show ¬IsUnit (f.map i) from mt isUnit_iff_degree_eq_zero.1 hf0) hf0' let ⟨x, hx⟩ := exists_root_of_degree_eq_one (hs.resolve_left hf0' hg.1 hg.2) let ⟨i, hi⟩ := hg.2 ⟨x, by rw [← eval_map, hi, eval_mul, show _ = _ from hx, MulZeroClass.zero_mul]⟩ #align polynomial.exists_root_of_splits' Polynomial.exists_root_of_splits' #print Polynomial.roots_ne_zero_of_splits' /- theorem roots_ne_zero_of_splits' {f : K[X]} (hs : Splits i f) (hf0 : natDegree (f.map i) ≠ 0) : (f.map i).roots ≠ 0 := let ⟨x, hx⟩ := exists_root_of_splits' i hs fun h => hf0 <| natDegree_eq_of_degree_eq_some h fun h => by rw [← eval_map] at hx cases h.subst ((mem_roots _).2 hx) exact ne_zero_of_nat_degree_gt (Nat.pos_of_ne_zero hf0) #align polynomial.roots_ne_zero_of_splits' Polynomial.roots_ne_zero_of_splits' -/ #print Polynomial.rootOfSplits' /- /-- Pick a root of a polynomial that splits. See `root_of_splits` for polynomials over a field which has simpler assumptions. -/ def rootOfSplits' {f : K[X]} (hf : f.Splits i) (hfd : (f.map i).degree ≠ 0) : L := Classical.choose <| exists_root_of_splits' i hf hfd #align polynomial.root_of_splits' Polynomial.rootOfSplits' -/ /- warning: polynomial.map_root_of_splits' -> Polynomial.map_rootOfSplits' is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} (hf : Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) (hfd : Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f)) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero))))), Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i (Polynomial.rootOfSplits'.{u1, u2} K L _inst_1 _inst_2 i f hf hfd) f) (OfNat.ofNat.{u2} L 0 (OfNat.mk.{u2} L 0 (Zero.zero.{u2} L (MulZeroClass.toHasZero.{u2} L (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} L (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonUnitalNonAssocRing.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} (hf : Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i f) (hfd : Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f)) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))), Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i (Polynomial.rootOfSplits'.{u1, u2} K L _inst_1 _inst_2 i f hf hfd) f) (OfNat.ofNat.{u2} L 0 (Zero.toOfNat0.{u2} L (CommMonoidWithZero.toZero.{u2} L (CommGroupWithZero.toCommMonoidWithZero.{u2} L (Semifield.toCommGroupWithZero.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) Case conversion may be inaccurate. Consider using '#align polynomial.map_root_of_splits' Polynomial.map_rootOfSplits'ₓ'. -/ theorem map_rootOfSplits' {f : K[X]} (hf : f.Splits i) (hfd) : f.eval₂ i (rootOfSplits' i hf hfd) = 0 := Classical.choose_spec <| exists_root_of_splits' i hf hfd #align polynomial.map_root_of_splits' Polynomial.map_rootOfSplits' /- warning: polynomial.nat_degree_eq_card_roots' -> Polynomial.natDegree_eq_card_roots' is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i p) -> (Eq.{1} Nat (Polynomial.natDegree.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p)) (coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u2} L) -> Nat) (AddMonoidHom.hasCoeToFun.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p)))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i p) -> (Eq.{1} Nat (Polynomial.natDegree.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p)) (FunLike.coe.{succ u2, succ u2, 1} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) (fun (_x : Multiset.{u2} L) => (fun ([email protected]._hyg.403 : Multiset.{u2} L) => Nat) _x) (AddHomClass.toFunLike.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddZeroClass.toAdd.{u2} (Multiset.{u2} L) (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p)))) Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_eq_card_roots' Polynomial.natDegree_eq_card_roots'ₓ'. -/ theorem natDegree_eq_card_roots' {p : K[X]} {i : K →+* L} (hsplit : Splits i p) : (p.map i).natDegree = (p.map i).roots.card := by by_cases hp : p.map i = 0 · rw [hp, nat_degree_zero, roots_zero, Multiset.card_zero] obtain ⟨q, he, hd, hr⟩ := exists_prod_multiset_X_sub_C_mul (p.map i) rw [← splits_id_iff_splits, ← he] at hsplit rw [← he] at hp have hq : q ≠ 0 := fun h => hp (by rw [h, MulZeroClass.mul_zero]) rw [← hd, add_right_eq_self] by_contra have h' : (map (RingHom.id L) q).natDegree ≠ 0 := by simp [h] have := roots_ne_zero_of_splits' (RingHom.id L) (splits_of_splits_mul' _ _ hsplit).2 h' · rw [map_id] at this exact this hr · rw [map_id] exact mul_ne_zero monic_prod_multiset_X_sub_C.ne_zero hq #align polynomial.nat_degree_eq_card_roots' Polynomial.natDegree_eq_card_roots' /- warning: polynomial.degree_eq_card_roots' -> Polynomial.degree_eq_card_roots' is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Ne.{succ u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p) (OfNat.ofNat.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) 0 (OfNat.mk.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) 0 (Zero.zero.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.zero.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) -> (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i p) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) (coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u2} L) -> Nat) (AddMonoidHom.hasCoeToFun.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : CommRing.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (CommRing.toRing.{u1} K _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Ne.{succ u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p) (OfNat.ofNat.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) 0 (Zero.toOfNat0.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.zero.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))) -> (Polynomial.Splits.{u1, u2} K L _inst_1 _inst_2 i p) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p)) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) (FunLike.coe.{succ u2, succ u2, 1} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) (fun (_x : Multiset.{u2} L) => (fun ([email protected]._hyg.403 : Multiset.{u2} L) => Nat) _x) (AddHomClass.toFunLike.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddZeroClass.toAdd.{u2} (Multiset.{u2} L) (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K _inst_1)) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p))))) Case conversion may be inaccurate. Consider using '#align polynomial.degree_eq_card_roots' Polynomial.degree_eq_card_roots'ₓ'. -/ theorem degree_eq_card_roots' {p : K[X]} {i : K →+* L} (p_ne_zero : p.map i ≠ 0) (hsplit : Splits i p) : (p.map i).degree = (p.map i).roots.card := by rw [degree_eq_nat_degree p_ne_zero, nat_degree_eq_card_roots' hsplit] #align polynomial.degree_eq_card_roots' Polynomial.degree_eq_card_roots' end CommRing variable [Field K] [Field L] [Field F] variable (i : K →+* L) /- warning: polynomial.splits_iff -> Polynomial.splits_iff is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))), Iff (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) (Or (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) f (OfNat.ofNat.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (OfNat.mk.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (Zero.zero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (forall {g : Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))}, (Irreducible.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Ring.toMonoid.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.ring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) g) -> (Dvd.Dvd.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (semigroupDvd.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.commRing.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2))))))))) g (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f)) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) g) (OfNat.ofNat.{0} (WithBot.{0} Nat) 1 (OfNat.mk.{0} (WithBot.{0} Nat) 1 (One.one.{0} (WithBot.{0} Nat) (WithBot.hasOne.{0} Nat Nat.hasOne))))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))), Iff (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) (Or (Eq.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) f (OfNat.ofNat.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (forall {g : Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))}, (Irreducible.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (MonoidWithZero.toMonoid.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toMonoidWithZero.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) g) -> (Dvd.dvd.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (semigroupDvd.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (EuclideanDomain.toCommRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u2} L _inst_2)))))))) g (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f)) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) g) (OfNat.ofNat.{0} (WithBot.{0} Nat) 1 (One.toOfNat1.{0} (WithBot.{0} Nat) (WithBot.one.{0} Nat (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))))) Case conversion may be inaccurate. Consider using '#align polynomial.splits_iff Polynomial.splits_iffₓ'. -/ /-- This lemma is for polynomials over a field. -/ theorem splits_iff (f : K[X]) : Splits i f ↔ f = 0 ∨ ∀ {g : L[X]}, Irreducible g → g ∣ f.map i → degree g = 1 := by rw [splits, map_eq_zero] #align polynomial.splits_iff Polynomial.splits_iff /- warning: polynomial.splits.def -> Polynomial.Splits.def is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))} {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) -> (Or (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) f (OfNat.ofNat.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (OfNat.mk.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (Zero.zero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (forall {g : Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))}, (Irreducible.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Ring.toMonoid.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.ring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) g) -> (Dvd.Dvd.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (semigroupDvd.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.commRing.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2))))))))) g (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f)) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) g) (OfNat.ofNat.{0} (WithBot.{0} Nat) 1 (OfNat.mk.{0} (WithBot.{0} Nat) 1 (One.one.{0} (WithBot.{0} Nat) (WithBot.hasOne.{0} Nat Nat.hasOne))))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))} {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) -> (Or (Eq.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) f (OfNat.ofNat.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (forall {g : Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))}, (Irreducible.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (MonoidWithZero.toMonoid.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toMonoidWithZero.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) g) -> (Dvd.dvd.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (semigroupDvd.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (EuclideanDomain.toCommRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u2} L _inst_2)))))))) g (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f)) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) g) (OfNat.ofNat.{0} (WithBot.{0} Nat) 1 (One.toOfNat1.{0} (WithBot.{0} Nat) (WithBot.one.{0} Nat (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))))) Case conversion may be inaccurate. Consider using '#align polynomial.splits.def Polynomial.Splits.defₓ'. -/ /-- This lemma is for polynomials over a field. -/ theorem Splits.def {i : K →+* L} {f : K[X]} (h : Splits i f) : f = 0 ∨ ∀ {g : L[X]}, Irreducible g → g ∣ f.map i → degree g = 1 := (splits_iff i f).mp h #align polynomial.splits.def Polynomial.Splits.def #print Polynomial.splits_of_splits_mul /- theorem splits_of_splits_mul {f g : K[X]} (hfg : f * g ≠ 0) (h : Splits i (f * g)) : Splits i f ∧ Splits i g := splits_of_splits_mul' i (map_ne_zero hfg) h #align polynomial.splits_of_splits_mul Polynomial.splits_of_splits_mul -/ #print Polynomial.splits_of_splits_of_dvd /- theorem splits_of_splits_of_dvd {f g : K[X]} (hf0 : f ≠ 0) (hf : Splits i f) (hgf : g ∣ f) : Splits i g := by obtain ⟨f, rfl⟩ := hgf exact (splits_of_splits_mul i hf0 hf).1 #align polynomial.splits_of_splits_of_dvd Polynomial.splits_of_splits_of_dvd -/ /- warning: polynomial.splits_of_splits_gcd_left -> Polynomial.splits_of_splits_gcd_left is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} {g : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Ne.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) f (OfNat.ofNat.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (OfNat.mk.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (Zero.zero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i (EuclideanDomain.gcd.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (Polynomial.euclideanDomain.{u1} K _inst_1) (fun (a : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (b : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) => Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) a b)) f g)) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} {g : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Ne.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) f (OfNat.ofNat.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i (EuclideanDomain.gcd.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u1} K _inst_1) (fun (a : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (b : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) => Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) a b)) f g)) Case conversion may be inaccurate. Consider using '#align polynomial.splits_of_splits_gcd_left Polynomial.splits_of_splits_gcd_leftₓ'. -/ theorem splits_of_splits_gcd_left {f g : K[X]} (hf0 : f ≠ 0) (hf : Splits i f) : Splits i (EuclideanDomain.gcd f g) := Polynomial.splits_of_splits_of_dvd i hf0 hf (EuclideanDomain.gcd_dvd_left f g) #align polynomial.splits_of_splits_gcd_left Polynomial.splits_of_splits_gcd_left /- warning: polynomial.splits_of_splits_gcd_right -> Polynomial.splits_of_splits_gcd_right is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} {g : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Ne.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) g (OfNat.ofNat.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (OfNat.mk.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (Zero.zero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i g) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i (EuclideanDomain.gcd.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (Polynomial.euclideanDomain.{u1} K _inst_1) (fun (a : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (b : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) => Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) a b)) f g)) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} {g : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Ne.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) g (OfNat.ofNat.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i g) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i (EuclideanDomain.gcd.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u1} K _inst_1) (fun (a : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) (b : Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) => Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (CommRing.toRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))))) a b)) f g)) Case conversion may be inaccurate. Consider using '#align polynomial.splits_of_splits_gcd_right Polynomial.splits_of_splits_gcd_rightₓ'. -/ theorem splits_of_splits_gcd_right {f g : K[X]} (hg0 : g ≠ 0) (hg : Splits i g) : Splits i (EuclideanDomain.gcd f g) := Polynomial.splits_of_splits_of_dvd i hg0 hg (EuclideanDomain.gcd_dvd_right f g) #align polynomial.splits_of_splits_gcd_right Polynomial.splits_of_splits_gcd_right #print Polynomial.splits_mul_iff /- theorem splits_mul_iff {f g : K[X]} (hf : f ≠ 0) (hg : g ≠ 0) : (f * g).Splits i ↔ f.Splits i ∧ g.Splits i := ⟨splits_of_splits_mul i (mul_ne_zero hf hg), fun ⟨hfs, hgs⟩ => splits_mul i hfs hgs⟩ #align polynomial.splits_mul_iff Polynomial.splits_mul_iff -/ #print Polynomial.splits_prod_iff /- theorem splits_prod_iff {ι : Type u} {s : ι → K[X]} {t : Finset ι} : (∀ j ∈ t, s j ≠ 0) → ((∏ x in t, s x).Splits i ↔ ∀ j ∈ t, (s j).Splits i) := by refine' Finset.induction_on t (fun _ => ⟨fun _ _ h => h.elim, fun _ => splits_one i⟩) fun a t hat ih ht => _ rw [Finset.forall_mem_insert] at ht⊢ rw [Finset.prod_insert hat, splits_mul_iff i ht.1 (Finset.prod_ne_zero_iff.2 ht.2), ih ht.2] #align polynomial.splits_prod_iff Polynomial.splits_prod_iff -/ /- warning: polynomial.degree_eq_one_of_irreducible_of_splits -> Polynomial.degree_eq_one_of_irreducible_of_splits is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Irreducible.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Ring.toMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.ring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) p) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p) (OfNat.ofNat.{0} (WithBot.{0} Nat) 1 (OfNat.mk.{0} (WithBot.{0} Nat) 1 (One.one.{0} (WithBot.{0} Nat) (WithBot.hasOne.{0} Nat Nat.hasOne))))) but is expected to have type forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Irreducible.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) p) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p) (OfNat.ofNat.{0} (WithBot.{0} Nat) 1 (One.toOfNat1.{0} (WithBot.{0} Nat) (WithBot.one.{0} Nat (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) Case conversion may be inaccurate. Consider using '#align polynomial.degree_eq_one_of_irreducible_of_splits Polynomial.degree_eq_one_of_irreducible_of_splitsₓ'. -/ theorem degree_eq_one_of_irreducible_of_splits {p : K[X]} (hp : Irreducible p) (hp_splits : Splits (RingHom.id K) p) : p.degree = 1 := by rcases hp_splits with ⟨⟩ · exfalso simp_all · apply hp_splits hp simp #align polynomial.degree_eq_one_of_irreducible_of_splits Polynomial.degree_eq_one_of_irreducible_of_splits /- warning: polynomial.exists_root_of_splits -> Polynomial.exists_root_of_splits is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) -> (Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) f) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero))))) -> (Exists.{succ u2} L (fun (x : L) => Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i x f) (OfNat.ofNat.{u2} L 0 (OfNat.mk.{u2} L 0 (Zero.zero.{u2} L (MulZeroClass.toHasZero.{u2} L (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} L (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonUnitalNonAssocRing.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) -> (Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))) -> (Exists.{succ u2} L (fun (x : L) => Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i x f) (OfNat.ofNat.{u2} L 0 (Zero.toOfNat0.{u2} L (CommMonoidWithZero.toZero.{u2} L (CommGroupWithZero.toCommMonoidWithZero.{u2} L (Semifield.toCommGroupWithZero.{u2} L (Field.toSemifield.{u2} L _inst_2)))))))) Case conversion may be inaccurate. Consider using '#align polynomial.exists_root_of_splits Polynomial.exists_root_of_splitsₓ'. -/ theorem exists_root_of_splits {f : K[X]} (hs : Splits i f) (hf0 : degree f ≠ 0) : ∃ x, eval₂ i x f = 0 := exists_root_of_splits' i hs ((f.degree_map i).symm ▸ hf0) #align polynomial.exists_root_of_splits Polynomial.exists_root_of_splits #print Polynomial.roots_ne_zero_of_splits /- theorem roots_ne_zero_of_splits {f : K[X]} (hs : Splits i f) (hf0 : natDegree f ≠ 0) : (f.map i).roots ≠ 0 := roots_ne_zero_of_splits' i hs (ne_of_eq_of_ne (natDegree_map i) hf0) #align polynomial.roots_ne_zero_of_splits Polynomial.roots_ne_zero_of_splits -/ #print Polynomial.rootOfSplits /- /-- Pick a root of a polynomial that splits. This version is for polynomials over a field and has simpler assumptions. -/ def rootOfSplits {f : K[X]} (hf : f.Splits i) (hfd : f.degree ≠ 0) : L := rootOfSplits' i hf ((f.degree_map i).symm ▸ hfd) #align polynomial.root_of_splits Polynomial.rootOfSplits -/ #print Polynomial.rootOfSplits'_eq_rootOfSplits /- /-- `root_of_splits'` is definitionally equal to `root_of_splits`. -/ theorem rootOfSplits'_eq_rootOfSplits {f : K[X]} (hf : f.Splits i) (hfd) : rootOfSplits' i hf hfd = rootOfSplits i hf (f.degree_map i ▸ hfd) := rfl #align polynomial.root_of_splits'_eq_root_of_splits Polynomial.rootOfSplits'_eq_rootOfSplits -/ /- warning: polynomial.map_root_of_splits -> Polynomial.map_rootOfSplits is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} (hf : Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) (hfd : Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) f) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero))))), Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i (Polynomial.rootOfSplits.{u1, u2} K L _inst_1 _inst_2 i f hf hfd) f) (OfNat.ofNat.{u2} L 0 (OfNat.mk.{u2} L 0 (Zero.zero.{u2} L (MulZeroClass.toHasZero.{u2} L (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} L (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonUnitalNonAssocRing.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} (hf : Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) (hfd : Ne.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))), Eq.{succ u2} L (Polynomial.eval₂.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i (Polynomial.rootOfSplits.{u1, u2} K L _inst_1 _inst_2 i f hf hfd) f) (OfNat.ofNat.{u2} L 0 (Zero.toOfNat0.{u2} L (CommMonoidWithZero.toZero.{u2} L (CommGroupWithZero.toCommMonoidWithZero.{u2} L (Semifield.toCommGroupWithZero.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) Case conversion may be inaccurate. Consider using '#align polynomial.map_root_of_splits Polynomial.map_rootOfSplitsₓ'. -/ theorem map_rootOfSplits {f : K[X]} (hf : f.Splits i) (hfd) : f.eval₂ i (rootOfSplits i hf hfd) = 0 := map_rootOfSplits' i hf (ne_of_eq_of_ne (degree_map f i) hfd) #align polynomial.map_root_of_splits Polynomial.map_rootOfSplits /- warning: polynomial.nat_degree_eq_card_roots -> Polynomial.natDegree_eq_card_roots is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i p) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p) (coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u2} L) -> Nat) (AddMonoidHom.hasCoeToFun.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p)))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i p) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p) (FunLike.coe.{succ u2, succ u2, 1} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) (fun (_x : Multiset.{u2} L) => (fun ([email protected]._hyg.403 : Multiset.{u2} L) => Nat) _x) (AddHomClass.toFunLike.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddZeroClass.toAdd.{u2} (Multiset.{u2} L) (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p)))) Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_eq_card_roots Polynomial.natDegree_eq_card_rootsₓ'. -/ theorem natDegree_eq_card_roots {p : K[X]} {i : K →+* L} (hsplit : Splits i p) : p.natDegree = (p.map i).roots.card := (natDegree_map i).symm.trans <| natDegree_eq_card_roots' hsplit #align polynomial.nat_degree_eq_card_roots Polynomial.natDegree_eq_card_roots /- warning: polynomial.degree_eq_card_roots -> Polynomial.degree_eq_card_roots is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Ne.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) p (OfNat.ofNat.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (OfNat.mk.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) 0 (Zero.zero.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i p) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) (coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u2} L) -> Nat) (AddMonoidHom.hasCoeToFun.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.orderedCancelAddCommMonoid.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Ne.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) p (OfNat.ofNat.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.zero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i p) -> (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) (FunLike.coe.{succ u2, succ u2, 1} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) (fun (_x : Multiset.{u2} L) => (fun ([email protected]._hyg.403 : Multiset.{u2} L) => Nat) _x) (AddHomClass.toFunLike.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddZeroClass.toAdd.{u2} (Multiset.{u2} L) (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u2, u2, 0} (AddMonoidHom.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u2, 0} (Multiset.{u2} L) Nat (AddMonoid.toAddZeroClass.{u2} (Multiset.{u2} L) (AddRightCancelMonoid.toAddMonoid.{u2} (Multiset.{u2} L) (AddCancelMonoid.toAddRightCancelMonoid.{u2} (Multiset.{u2} L) (AddCancelCommMonoid.toAddCancelMonoid.{u2} (Multiset.{u2} L) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u2} (Multiset.{u2} L) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u2} L)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p))))) Case conversion may be inaccurate. Consider using '#align polynomial.degree_eq_card_roots Polynomial.degree_eq_card_rootsₓ'. -/ theorem degree_eq_card_roots {p : K[X]} {i : K →+* L} (p_ne_zero : p ≠ 0) (hsplit : Splits i p) : p.degree = (p.map i).roots.card := by rw [degree_eq_nat_degree p_ne_zero, nat_degree_eq_card_roots hsplit] #align polynomial.degree_eq_card_roots Polynomial.degree_eq_card_roots /- warning: polynomial.roots_map -> Polynomial.roots_map is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) f) -> (Eq.{succ u2} (Multiset.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f)) (Multiset.map.{u1, u2} K L (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (fun (_x : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) => K -> L) (RingHom.hasCoeToFun.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) i) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) f))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) f) -> (Eq.{succ u2} (Multiset.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f)) (Multiset.map.{u1, u2} K L (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => L) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) f))) Case conversion may be inaccurate. Consider using '#align polynomial.roots_map Polynomial.roots_mapₓ'. -/ theorem roots_map {f : K[X]} (hf : f.Splits <| RingHom.id K) : (f.map i).roots = f.roots.map i := (roots_map_of_injective_of_card_eq_natDegree i.Injective <| by convert(nat_degree_eq_card_roots hf).symm rw [map_id]).symm #align polynomial.roots_map Polynomial.roots_map #print Polynomial.image_rootSet /- theorem image_rootSet [Algebra F K] [Algebra F L] {p : F[X]} (h : p.Splits (algebraMap F K)) (f : K →ₐ[F] L) : f '' p.rootSet K = p.rootSet L := by classical rw [root_set, ← Finset.coe_image, ← Multiset.toFinset_map, ← f.coe_to_ring_hom, ← roots_map (↑f) ((splits_id_iff_splits (algebraMap F K)).mpr h), map_map, f.comp_algebra_map, ← root_set] #align polynomial.image_root_set Polynomial.image_rootSet -/ /- warning: polynomial.adjoin_root_set_eq_range -> Polynomial.adjoin_rootSet_eq_range is a dubious translation: lean 3 declaration is forall {F : Type.{u1}} {K : Type.{u2}} {L : Type.{u3}} [_inst_1 : Field.{u2} K] [_inst_2 : Field.{u3} L] [_inst_3 : Field.{u1} F] [_inst_4 : Algebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1)))] [_inst_5 : Algebra.{u1, u3} F L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u3} L (DivisionRing.toRing.{u3} L (Field.toDivisionRing.{u3} L _inst_2)))] {p : Polynomial.{u1} F (Ring.toSemiring.{u1} F (DivisionRing.toRing.{u1} F (Field.toDivisionRing.{u1} F _inst_3)))}, (Polynomial.Splits.{u1, u2} F K (EuclideanDomain.toCommRing.{u1} F (Field.toEuclideanDomain.{u1} F _inst_3)) _inst_1 (algebraMap.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4) p) -> (forall (f : AlgHom.{u1, u2, u3} F K L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) (Ring.toSemiring.{u3} L (DivisionRing.toRing.{u3} L (Field.toDivisionRing.{u3} L _inst_2))) _inst_4 _inst_5), Iff (Eq.{succ u3} (Subalgebra.{u1, u3} F L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u3} L (DivisionRing.toRing.{u3} L (Field.toDivisionRing.{u3} L _inst_2))) _inst_5) (Algebra.adjoin.{u1, u3} F L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u3} L (DivisionRing.toRing.{u3} L (Field.toDivisionRing.{u3} L _inst_2))) _inst_5 (Polynomial.rootSet.{u1, u3} F (EuclideanDomain.toCommRing.{u1} F (Field.toEuclideanDomain.{u1} F _inst_3)) p L (EuclideanDomain.toCommRing.{u3} L (Field.toEuclideanDomain.{u3} L _inst_2)) (Field.isDomain.{u3} L _inst_2) _inst_5)) (AlgHom.range.{u1, u2, u3} F K L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4 (Ring.toSemiring.{u3} L (DivisionRing.toRing.{u3} L (Field.toDivisionRing.{u3} L _inst_2))) _inst_5 f)) (Eq.{succ u2} (Subalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4) (Algebra.adjoin.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4 (Polynomial.rootSet.{u1, u2} F (EuclideanDomain.toCommRing.{u1} F (Field.toEuclideanDomain.{u1} F _inst_3)) p K (EuclideanDomain.toCommRing.{u2} K (Field.toEuclideanDomain.{u2} K _inst_1)) (Field.isDomain.{u2} K _inst_1) _inst_4)) (Top.top.{u2} (Subalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4) (CompleteLattice.toHasTop.{u2} (Subalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4) (Algebra.Subalgebra.completeLattice.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (Ring.toSemiring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) _inst_4))))) but is expected to have type forall {F : Type.{u1}} {K : Type.{u2}} {L : Type.{u3}} [_inst_1 : Field.{u2} K] [_inst_2 : Field.{u3} L] [_inst_3 : Field.{u1} F] [_inst_4 : Algebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))] [_inst_5 : Algebra.{u1, u3} F L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u3} L (Semifield.toDivisionSemiring.{u3} L (Field.toSemifield.{u3} L _inst_2)))] {p : Polynomial.{u1} F (DivisionSemiring.toSemiring.{u1} F (Semifield.toDivisionSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)))}, (Polynomial.Splits.{u1, u2} F K (EuclideanDomain.toCommRing.{u1} F (Field.toEuclideanDomain.{u1} F _inst_3)) _inst_1 (algebraMap.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4) p) -> (forall (f : AlgHom.{u1, u2, u3} F K L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) (DivisionSemiring.toSemiring.{u3} L (Semifield.toDivisionSemiring.{u3} L (Field.toSemifield.{u3} L _inst_2))) _inst_4 _inst_5), Iff (Eq.{succ u3} (Subalgebra.{u1, u3} F L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u3} L (Semifield.toDivisionSemiring.{u3} L (Field.toSemifield.{u3} L _inst_2))) _inst_5) (Algebra.adjoin.{u1, u3} F L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u3} L (Semifield.toDivisionSemiring.{u3} L (Field.toSemifield.{u3} L _inst_2))) _inst_5 (Polynomial.rootSet.{u1, u3} F (EuclideanDomain.toCommRing.{u1} F (Field.toEuclideanDomain.{u1} F _inst_3)) p L (EuclideanDomain.toCommRing.{u3} L (Field.toEuclideanDomain.{u3} L _inst_2)) (Field.isDomain.{u3} L _inst_2) _inst_5)) (AlgHom.range.{u1, u2, u3} F K L (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4 (DivisionSemiring.toSemiring.{u3} L (Semifield.toDivisionSemiring.{u3} L (Field.toSemifield.{u3} L _inst_2))) _inst_5 f)) (Eq.{succ u2} (Subalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4) (Algebra.adjoin.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4 (Polynomial.rootSet.{u1, u2} F (EuclideanDomain.toCommRing.{u1} F (Field.toEuclideanDomain.{u1} F _inst_3)) p K (EuclideanDomain.toCommRing.{u2} K (Field.toEuclideanDomain.{u2} K _inst_1)) (Field.isDomain.{u2} K _inst_1) _inst_4)) (Top.top.{u2} (Subalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4) (CompleteLattice.toTop.{u2} (Subalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4) (Algebra.instCompleteLatticeSubalgebra.{u1, u2} F K (Semifield.toCommSemiring.{u1} F (Field.toSemifield.{u1} F _inst_3)) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_4))))) Case conversion may be inaccurate. Consider using '#align polynomial.adjoin_root_set_eq_range Polynomial.adjoin_rootSet_eq_rangeₓ'. -/ theorem adjoin_rootSet_eq_range [Algebra F K] [Algebra F L] {p : F[X]} (h : p.Splits (algebraMap F K)) (f : K →ₐ[F] L) : Algebra.adjoin F (p.rootSet L) = f.range ↔ Algebra.adjoin F (p.rootSet K) = ⊤ := by rw [← image_root_set h f, Algebra.adjoin_image, ← Algebra.map_top] exact (Subalgebra.map_injective f.to_ring_hom.injective).eq_iff #align polynomial.adjoin_root_set_eq_range Polynomial.adjoin_rootSet_eq_range /- warning: polynomial.eq_prod_roots_of_splits -> Polynomial.eq_prod_roots_of_splits is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i p) -> (Eq.{succ u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p) (HMul.hMul.{u2, u2, u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (instHMul.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.mul'.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (fun (_x : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) => K -> L) (RingHom.hasCoeToFun.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) i (Polynomial.leadingCoeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p))) (Multiset.prod.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (CommRing.toCommMonoid.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.commRing.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)))) (Multiset.map.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (fun (a : L) => HSub.hSub.{u2, u2, u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (instHSub.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.sub.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.X.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) a)) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i p)))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} {i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i p) -> (Eq.{succ u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p) (HMul.hMul.{u2, u2, u2} ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p))) (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p))) (instHMul.{u2} ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p))) (Polynomial.mul'.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2))))) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (fun (_x : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) => (fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2))))))))) (Polynomial.C.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => L) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p))) (Multiset.prod.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (CommRing.toCommMonoid.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (EuclideanDomain.toCommRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u2} L _inst_2))) (Multiset.map.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (fun (a : L) => HSub.hSub.{u2, u2, u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) ((fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a) (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (instHSub.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.sub.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.X.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (fun (_x : L) => (fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))))) (Polynomial.C.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a)) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i p)))))) Case conversion may be inaccurate. Consider using '#align polynomial.eq_prod_roots_of_splits Polynomial.eq_prod_roots_of_splitsₓ'. -/ theorem eq_prod_roots_of_splits {p : K[X]} {i : K →+* L} (hsplit : Splits i p) : p.map i = C (i p.leadingCoeff) * ((p.map i).roots.map fun a => X - C a).Prod := by rw [← leading_coeff_map]; symm apply C_leading_coeff_mul_prod_multiset_X_sub_C rw [nat_degree_map]; exact (nat_degree_eq_card_roots hsplit).symm #align polynomial.eq_prod_roots_of_splits Polynomial.eq_prod_roots_of_splits /- warning: polynomial.eq_prod_roots_of_splits_id -> Polynomial.eq_prod_roots_of_splits_id is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) -> (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instHMul.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.mul'.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p)) (Multiset.prod.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.commRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)))) (Multiset.map.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (fun (a : K) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instHSub.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.sub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) a)) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) p))))) but is expected to have type forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) -> (Eq.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) p (HMul.hMul.{u1, u1, u1} ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (instHMul.{u1} ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Polynomial.mul'.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (Polynomial.C.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) (Multiset.prod.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (EuclideanDomain.toCommRing.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u1} K _inst_1))) (Multiset.map.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (fun (a : K) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) a) (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instHSub.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.sub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.X.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (Polynomial.C.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) a)) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) p))))) Case conversion may be inaccurate. Consider using '#align polynomial.eq_prod_roots_of_splits_id Polynomial.eq_prod_roots_of_splits_idₓ'. -/ theorem eq_prod_roots_of_splits_id {p : K[X]} (hsplit : Splits (RingHom.id K) p) : p = C p.leadingCoeff * (p.roots.map fun a => X - C a).Prod := by simpa using eq_prod_roots_of_splits hsplit #align polynomial.eq_prod_roots_of_splits_id Polynomial.eq_prod_roots_of_splits_id /- warning: polynomial.eq_prod_roots_of_monic_of_splits_id -> Polynomial.eq_prod_roots_of_monic_of_splits_id is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Monic.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) -> (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) p (Multiset.prod.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.commRing.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)))) (Multiset.map.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (fun (a : K) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instHSub.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.sub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) a)) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) p)))) but is expected to have type forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Monic.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) -> (Eq.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) p (Multiset.prod.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (EuclideanDomain.toCommRing.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u1} K _inst_1))) (Multiset.map.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (fun (a : K) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) a) (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instHSub.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.sub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.X.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (Polynomial.C.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) a)) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) p)))) Case conversion may be inaccurate. Consider using '#align polynomial.eq_prod_roots_of_monic_of_splits_id Polynomial.eq_prod_roots_of_monic_of_splits_idₓ'. -/ theorem eq_prod_roots_of_monic_of_splits_id {p : K[X]} (m : Monic p) (hsplit : Splits (RingHom.id K) p) : p = (p.roots.map fun a => X - C a).Prod := by convert eq_prod_roots_of_splits_id hsplit simp [m] #align polynomial.eq_prod_roots_of_monic_of_splits_id Polynomial.eq_prod_roots_of_monic_of_splits_id /- warning: polynomial.eq_X_sub_C_of_splits_of_single_root -> Polynomial.eq_X_sub_C_of_splits_of_single_root is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {x : K} {h : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i h) -> (Eq.{succ u2} (Multiset.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Field.isDomain.{u2} L _inst_2) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i h)) (Singleton.singleton.{u2, u2} L (Multiset.{u2} L) (Multiset.hasSingleton.{u2} L) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (fun (_x : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) => K -> L) (RingHom.hasCoeToFun.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) i x))) -> (Eq.{succ u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) h (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instHMul.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.mul'.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) h)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instHSub.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.sub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.X.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (fun (_x : RingHom.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) => K -> (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (RingHom.hasCoeToFun.{u1, u1} K (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.C.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) x)))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {x : K} {h : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i h) -> (Eq.{succ u2} (Multiset.{u2} L) (Polynomial.roots.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i h)) (Singleton.singleton.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) x) (Multiset.{u2} L) (Multiset.instSingletonMultiset.{u2} L) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => L) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i x))) -> (Eq.{succ u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) h (HMul.hMul.{u1, u1, u1} ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) h)) (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instHMul.{u1} ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) h)) (Polynomial.mul'.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (Polynomial.C.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) h)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) ((fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) x) (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instHSub.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.sub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.X.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))) (RingHom.instRingHomClassRingHom.{u1, u1} K (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (Polynomial.C.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) x)))) Case conversion may be inaccurate. Consider using '#align polynomial.eq_X_sub_C_of_splits_of_single_root Polynomial.eq_X_sub_C_of_splits_of_single_rootₓ'. -/ theorem eq_X_sub_C_of_splits_of_single_root {x : K} {h : K[X]} (h_splits : Splits i h) (h_roots : (h.map i).roots = {i x}) : h = C h.leadingCoeff * (X - C x) := by apply Polynomial.map_injective _ i.injective rw [eq_prod_roots_of_splits h_splits, h_roots] simp #align polynomial.eq_X_sub_C_of_splits_of_single_root Polynomial.eq_X_sub_C_of_splits_of_single_root /- warning: polynomial.mem_lift_of_splits_of_roots_mem_range -> Polynomial.mem_lift_of_splits_of_roots_mem_range is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (R : Type.{u2}) [_inst_4 : CommRing.{u2} R] [_inst_5 : Algebra.{u2, u1} R K (CommRing.toCommSemiring.{u2} R _inst_4) (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))] {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) f) -> (Polynomial.Monic.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) f) -> (forall (a : K), (Membership.Mem.{u1, u1} K (Multiset.{u1} K) (Multiset.hasMem.{u1} K) a (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) f)) -> (Membership.Mem.{u1, u1} K (Subring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (SetLike.hasMem.{u1, u1} (Subring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) K (Subring.setLike.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) a (RingHom.range.{u2, u1} R K (CommRing.toRing.{u2} R _inst_4) (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)) (algebraMap.{u2, u1} R K (CommRing.toCommSemiring.{u2} R _inst_4) (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) _inst_5)))) -> (Membership.Mem.{u1, u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Subsemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (SetLike.hasMem.{u1, u1} (Subsemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Subsemiring.setLike.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Polynomial.semiring.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) f (Polynomial.lifts.{u2, u1} R (CommSemiring.toSemiring.{u2} R (CommRing.toCommSemiring.{u2} R _inst_4)) K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (algebraMap.{u2, u1} R K (CommRing.toCommSemiring.{u2} R _inst_4) (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) _inst_5))) but is expected to have type forall {K : Type.{u2}} [_inst_1 : Field.{u2} K] (R : Type.{u1}) [_inst_4 : CommRing.{u1} R] [_inst_5 : Algebra.{u1, u2} R K (CommRing.toCommSemiring.{u1} R _inst_4) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))] {f : Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))}, (Polynomial.Splits.{u2, u2} K K (EuclideanDomain.toCommRing.{u2} K (Field.toEuclideanDomain.{u2} K _inst_1)) _inst_1 (RingHom.id.{u2} K (NonAssocRing.toNonAssocSemiring.{u2} K (Ring.toNonAssocRing.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))))) f) -> (Polynomial.Monic.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) f) -> (forall (a : K), (Membership.mem.{u2, u2} K (Multiset.{u2} K) (Multiset.instMembershipMultiset.{u2} K) a (Polynomial.roots.{u2} K (EuclideanDomain.toCommRing.{u2} K (Field.toEuclideanDomain.{u2} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u2} K (Field.toEuclideanDomain.{u2} K _inst_1)) f)) -> (Membership.mem.{u2, u2} K (Subring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) (SetLike.instMembership.{u2, u2} (Subring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1))) K (Subring.instSetLikeSubring.{u2} K (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1)))) a (RingHom.range.{u1, u2} R K (CommRing.toRing.{u1} R _inst_4) (DivisionRing.toRing.{u2} K (Field.toDivisionRing.{u2} K _inst_1)) (algebraMap.{u1, u2} R K (CommRing.toCommSemiring.{u1} R _inst_4) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_5)))) -> (Membership.mem.{u2, u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Subsemiring.{u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Polynomial.semiring.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))))) (SetLike.instMembership.{u2, u2} (Subsemiring.{u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Polynomial.semiring.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))))) (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Subsemiring.instSetLikeSubsemiring.{u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1)))) (Polynomial.semiring.{u2} K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))))))) f (Polynomial.lifts.{u1, u2} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_4)) K (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) (algebraMap.{u1, u2} R K (CommRing.toCommSemiring.{u1} R _inst_4) (DivisionSemiring.toSemiring.{u2} K (Semifield.toDivisionSemiring.{u2} K (Field.toSemifield.{u2} K _inst_1))) _inst_5))) Case conversion may be inaccurate. Consider using '#align polynomial.mem_lift_of_splits_of_roots_mem_range Polynomial.mem_lift_of_splits_of_roots_mem_rangeₓ'. -/ theorem mem_lift_of_splits_of_roots_mem_range (R : Type _) [CommRing R] [Algebra R K] {f : K[X]} (hs : f.Splits (RingHom.id K)) (hm : f.Monic) (hr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range) : f ∈ Polynomial.lifts (algebraMap R K) := by rw [eq_prod_roots_of_monic_of_splits_id hm hs, lifts_iff_lifts_ring] refine' Subring.multiset_prod_mem _ _ fun P hP => _ obtain ⟨b, hb, rfl⟩ := Multiset.mem_map.1 hP exact Subring.sub_mem _ (X_mem_lifts _) (C'_mem_lifts (hr _ hb)) #align polynomial.mem_lift_of_splits_of_roots_mem_range Polynomial.mem_lift_of_splits_of_roots_mem_range section UFD attribute [local instance] PrincipalIdealRing.to_uniqueFactorizationMonoid -- mathport name: «expr ~ᵤ » local infixl:50 " ~ᵤ " => Associated open UniqueFactorizationMonoid Associates /- warning: polynomial.splits_of_exists_multiset -> Polynomial.splits_of_exists_multiset is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))} {s : Multiset.{u2} L}, (Eq.{succ u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f) (HMul.hMul.{u2, u2, u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (instHMul.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.mul'.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (fun (_x : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) => K -> L) (RingHom.hasCoeToFun.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) i (Polynomial.leadingCoeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) f))) (Multiset.prod.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (CommRing.toCommMonoid.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.commRing.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)))) (Multiset.map.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (fun (a : L) => HSub.hSub.{u2, u2, u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (instHSub.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.sub.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.X.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) a)) s)))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))} {s : Multiset.{u2} L}, (Eq.{succ u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f) (HMul.hMul.{u2, u2, u2} ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (instHMul.{u2} ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (Polynomial.mul'.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (fun (_x : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => (fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))))))) (Polynomial.C.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => L) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (Multiset.prod.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (CommRing.toCommMonoid.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.commRing.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)))) (Multiset.map.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (fun (a : L) => HSub.hSub.{u2, u2, u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) ((fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a) (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (instHSub.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.sub.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.X.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (fun (_x : L) => (fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))))) (Polynomial.C.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a)) s)))) -> (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) Case conversion may be inaccurate. Consider using '#align polynomial.splits_of_exists_multiset Polynomial.splits_of_exists_multisetₓ'. -/ theorem splits_of_exists_multiset {f : K[X]} {s : Multiset L} (hs : f.map i = C (i f.leadingCoeff) * (s.map fun a : L => X - C a).Prod) : Splits i f := if hf0 : f = 0 then hf0.symm ▸ splits_zero i else Or.inr fun p hp hdp => by rw [irreducible_iff_prime] at hp rw [hs, ← Multiset.prod_toList] at hdp obtain hd | hd := hp.2.2 _ _ hdp · refine' (hp.2.1 <| isUnit_of_dvd_unit hd _).elim exact is_unit_C.2 ((leading_coeff_ne_zero.2 hf0).IsUnit.map i) · obtain ⟨q, hq, hd⟩ := hp.dvd_prod_iff.1 hd obtain ⟨a, ha, rfl⟩ := Multiset.mem_map.1 (Multiset.mem_toList.1 hq) rw [degree_eq_degree_of_associated ((hp.dvd_prime_iff_associated <| prime_X_sub_C a).1 hd)] exact degree_X_sub_C a #align polynomial.splits_of_exists_multiset Polynomial.splits_of_exists_multiset #print Polynomial.splits_of_splits_id /- theorem splits_of_splits_id {f : K[X]} : Splits (RingHom.id K) f → Splits i f := UniqueFactorizationMonoid.induction_on_prime f (fun _ => splits_zero _) (fun _ hu _ => splits_of_degree_le_one _ ((isUnit_iff_degree_eq_zero.1 hu).symm ▸ by decide)) fun a p ha0 hp ih hfi => splits_mul _ (splits_of_degree_eq_one _ ((splits_of_splits_mul _ (mul_ne_zero hp.1 ha0) hfi).1.def.resolve_left hp.1 hp.Irreducible (by rw [map_id]))) (ih (splits_of_splits_mul _ (mul_ne_zero hp.1 ha0) hfi).2) #align polynomial.splits_of_splits_id Polynomial.splits_of_splits_id -/ end UFD /- warning: polynomial.splits_iff_exists_multiset -> Polynomial.splits_iff_exists_multiset is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, Iff (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) (Exists.{succ u2} (Multiset.{u2} L) (fun (s : Multiset.{u2} L) => Eq.{succ u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))) i f) (HMul.hMul.{u2, u2, u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (instHMul.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.mul'.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (fun (_x : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) => K -> L) (RingHom.hasCoeToFun.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) i (Polynomial.leadingCoeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) f))) (Multiset.prod.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (CommRing.toCommMonoid.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.commRing.{u2} L (EuclideanDomain.toCommRing.{u2} L (Field.toEuclideanDomain.{u2} L _inst_2)))) (Multiset.map.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (fun (a : L) => HSub.hSub.{u2, u2, u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (instHSub.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.sub.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.X.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (fun (_x : RingHom.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) => L -> (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHom.hasCoeToFun.{u2, u2} L (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (Polynomial.C.{u2} L (Ring.toSemiring.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) a)) s))))) but is expected to have type forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : Field.{u1} K] [_inst_2 : Field.{u2} L] (i : RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) {f : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, Iff (Polynomial.Splits.{u1, u2} K L (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_2 i f) (Exists.{succ u2} (Multiset.{u2} L) (fun (s : Multiset.{u2} L) => Eq.{succ u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.map.{u1, u2} K L (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))) i f) (HMul.hMul.{u2, u2, u2} ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (instHMul.{u2} ((fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (a : K) => (fun ([email protected]._hyg.2391 : K) => L) a) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (Polynomial.mul'.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (fun (_x : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => (fun ([email protected]._hyg.2391 : (fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) => Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))))) ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (Polynomial.semiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2))))))))) (Polynomial.C.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (DivisionSemiring.toSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Semifield.toDivisionSemiring.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) (Field.toSemifield.{u2} ((fun ([email protected]._hyg.2391 : K) => L) (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f)) _inst_2)))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K (fun (_x : K) => (fun ([email protected]._hyg.2391 : K) => L) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonUnitalNonAssocSemiring.toMul.{u1} K (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2))))) K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (RingHom.instRingHomClassRingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u2} L (Ring.toNonAssocRing.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))))))) i (Polynomial.leadingCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) f))) (Multiset.prod.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (CommRing.toCommMonoid.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (EuclideanDomain.toCommRing.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.instEuclideanDomainPolynomialToSemiringToDivisionSemiringToSemifield.{u2} L _inst_2))) (Multiset.map.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (fun (a : L) => HSub.hSub.{u2, u2, u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) ((fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a) (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (instHSub.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.sub.{u2} L (DivisionRing.toRing.{u2} L (Field.toDivisionRing.{u2} L _inst_2)))) (Polynomial.X.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (fun (_x : L) => (fun ([email protected]._hyg.2391 : L) => Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} L (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (NonUnitalNonAssocSemiring.toMul.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} L (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))))) L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))) (RingHom.instRingHomClassRingHom.{u2, u2} L (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) (Polynomial.semiring.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2))))))))) (Polynomial.C.{u2} L (DivisionSemiring.toSemiring.{u2} L (Semifield.toDivisionSemiring.{u2} L (Field.toSemifield.{u2} L _inst_2)))) a)) s))))) Case conversion may be inaccurate. Consider using '#align polynomial.splits_iff_exists_multiset Polynomial.splits_iff_exists_multisetₓ'. -/ theorem splits_iff_exists_multiset {f : K[X]} : Splits i f ↔ ∃ s : Multiset L, f.map i = C (i f.leadingCoeff) * (s.map fun a : L => X - C a).Prod := ⟨fun hf => ⟨(f.map i).roots, eq_prod_roots_of_splits hf⟩, fun ⟨s, hs⟩ => splits_of_exists_multiset i hs⟩ #align polynomial.splits_iff_exists_multiset Polynomial.splits_iff_exists_multiset #print Polynomial.splits_comp_of_splits /- theorem splits_comp_of_splits (j : L →+* F) {f : K[X]} (h : Splits i f) : Splits (j.comp i) f := by change i with (RingHom.id _).comp i at h rw [← splits_map_iff] rw [← splits_map_iff i] at h exact splits_of_splits_id _ h #align polynomial.splits_comp_of_splits Polynomial.splits_comp_of_splits -/ /- warning: polynomial.splits_iff_card_roots -> Polynomial.splits_iff_card_roots is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, Iff (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) (Eq.{1} Nat (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.orderedCancelAddCommMonoid.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.orderedCancelAddCommMonoid.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} K) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.orderedCancelAddCommMonoid.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} K) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) p)) (Polynomial.natDegree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) p)) but is expected to have type forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {p : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, Iff (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) p) (Eq.{1} ((fun ([email protected]._hyg.403 : Multiset.{u1} K) => Nat) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) p)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} K) (fun (_x : Multiset.{u1} K) => (fun ([email protected]._hyg.403 : Multiset.{u1} K) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} K) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} K) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} K))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} K) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} K) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} K) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} K) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} K) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} K) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} K)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} K) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) p)) (Polynomial.natDegree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) p)) Case conversion may be inaccurate. Consider using '#align polynomial.splits_iff_card_roots Polynomial.splits_iff_card_rootsₓ'. -/ /-- A polynomial splits if and only if it has as many roots as its degree. -/ theorem splits_iff_card_roots {p : K[X]} : Splits (RingHom.id K) p ↔ p.roots.card = p.natDegree := by constructor · intro H rw [nat_degree_eq_card_roots H, map_id] · intro hroots rw [splits_iff_exists_multiset (RingHom.id K)] use p.roots simp only [RingHom.id_apply, map_id] exact (C_leading_coeff_mul_prod_multiset_X_sub_C hroots).symm #align polynomial.splits_iff_card_roots Polynomial.splits_iff_card_roots #print Polynomial.aeval_root_derivative_of_splits /- theorem aeval_root_derivative_of_splits [Algebra K L] {P : K[X]} (hmo : P.Monic) (hP : P.Splits (algebraMap K L)) {r : L} (hr : r ∈ (P.map (algebraMap K L)).roots) : aeval r P.derivative = (((P.map <| algebraMap K L).roots.eraseₓ r).map fun a => r - a).Prod := by replace hmo := hmo.map (algebraMap K L) replace hP := (splits_id_iff_splits (algebraMap K L)).2 hP rw [aeval_def, ← eval_map, ← derivative_map] nth_rw 1 [eq_prod_roots_of_monic_of_splits_id hmo hP] rw [eval_multiset_prod_X_sub_C_derivative hr] #align polynomial.aeval_root_derivative_of_splits Polynomial.aeval_root_derivative_of_splits -/ /- warning: polynomial.prod_roots_eq_coeff_zero_of_monic_of_split -> Polynomial.prod_roots_eq_coeff_zero_of_monic_of_split is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {P : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Monic.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) P) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) P) -> (Eq.{succ u1} K (Polynomial.coeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Polynomial.natDegree.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) P)) (Multiset.prod.{u1} K (CommRing.toCommMonoid.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) P)))) but is expected to have type forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {P : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Monic.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) P) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) P) -> (Eq.{succ u1} K (Polynomial.coeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Polynomial.natDegree.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) P)) (Multiset.prod.{u1} K (CommRing.toCommMonoid.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1))) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) P)))) Case conversion may be inaccurate. Consider using '#align polynomial.prod_roots_eq_coeff_zero_of_monic_of_split Polynomial.prod_roots_eq_coeff_zero_of_monic_of_splitₓ'. -/ /-- If `P` is a monic polynomial that splits, then `coeff P 0` equals the product of the roots. -/ theorem prod_roots_eq_coeff_zero_of_monic_of_split {P : K[X]} (hmo : P.Monic) (hP : P.Splits (RingHom.id K)) : coeff P 0 = (-1) ^ P.natDegree * P.roots.Prod := by nth_rw 1 [eq_prod_roots_of_monic_of_splits_id hmo hP] rw [coeff_zero_eq_eval_zero, eval_multiset_prod, Multiset.map_map] simp_rw [Function.comp_apply, eval_sub, eval_X, zero_sub, eval_C] conv_lhs => congr congr ext rw [neg_eq_neg_one_mul] rw [Multiset.prod_map_mul, Multiset.map_const, Multiset.prod_replicate, Multiset.map_id', splits_iff_card_roots.1 hP] #align polynomial.prod_roots_eq_coeff_zero_of_monic_of_split Polynomial.prod_roots_eq_coeff_zero_of_monic_of_split /- warning: polynomial.sum_roots_eq_next_coeff_of_monic_of_split -> Polynomial.sum_roots_eq_nextCoeff_of_monic_of_split is a dubious translation: lean 3 declaration is forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {P : Polynomial.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))}, (Polynomial.Monic.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) P) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) P) -> (Eq.{succ u1} K (Polynomial.nextCoeff.{u1} K (Ring.toSemiring.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) P) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Multiset.sum.{u1} K (AddCommGroup.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toAddCommGroup.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (Field.isDomain.{u1} K _inst_1) P)))) but is expected to have type forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] {P : Polynomial.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))}, (Polynomial.Monic.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) P) -> (Polynomial.Splits.{u1, u1} K K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) _inst_1 (RingHom.id.{u1} K (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) P) -> (Eq.{succ u1} K (Polynomial.nextCoeff.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))) P) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (Multiset.sum.{u1} K (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (Polynomial.roots.{u1} K (EuclideanDomain.toCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) (EuclideanDomain.instIsDomainToSemiringToRingToCommRing.{u1} K (Field.toEuclideanDomain.{u1} K _inst_1)) P)))) Case conversion may be inaccurate. Consider using '#align polynomial.sum_roots_eq_next_coeff_of_monic_of_split Polynomial.sum_roots_eq_nextCoeff_of_monic_of_splitₓ'. -/ /-- If `P` is a monic polynomial that splits, then `P.next_coeff` equals the sum of the roots. -/ theorem sum_roots_eq_nextCoeff_of_monic_of_split {P : K[X]} (hmo : P.Monic) (hP : P.Splits (RingHom.id K)) : P.nextCoeff = -P.roots.Sum := by nth_rw 1 [eq_prod_roots_of_monic_of_splits_id hmo hP] rw [monic.next_coeff_multiset_prod _ _ fun a ha => _] · simp_rw [next_coeff_X_sub_C, Multiset.sum_map_neg'] · exact monic_X_sub_C a #align polynomial.sum_roots_eq_next_coeff_of_monic_of_split Polynomial.sum_roots_eq_nextCoeff_of_monic_of_split end Splits end Polynomial
1 -- @@stderr -- dtrace: invalid probe specifier sysinfo:genunix:read: probe description :sysinfo:genunix:read does not match any probes
function engine = dv_unrolled_dbn_inf_engine(bnet, T, varargin) % JTREE_UNROLLED_DBN_INF_ENGINE Unroll the DBN for T time-slices and apply jtree to the resulting static net % engine = jtree_unrolled_dbn_inf_engine(bnet, T, ...) % % The following optional arguments can be specified in the form of name/value pairs: % [default value in brackets] % % useC - 1 means use jtree_C_inf_engine instead of jtree_inf_engine [0] % constrained - 1 means we constrain ourselves to eliminate slice t before t+1 [1] % % e.g., engine = jtree_unrolled_inf_engine(bnet, 'useC', 1); % set default params N = length(bnet.intra); useC = 0; constrained = 1; if nargin >= 3 args = varargin; nargs = length(args); if isstr(args{1}) for i=1:2:nargs switch args{i}, case 'useC', useC = args{i+1}; case 'constrained', constrained = args{i+1}; otherwise, error(['invalid argument name ' args{i}]); end end else error(['invalid argument name ' args{1}]); end end bnet2 = hodbn_to_bnet(bnet, T); ss = length(bnet.intra); engine.ss = ss; % If constrained_order = 1 we constrain ourselves to eliminate slice t before t+1. % This prevents cliques containing nodes from far-apart time-slices. if constrained stages = num2cell(unroll_set(1:ss, ss, T), 1); else stages = { 1:length(bnet2.dag) }; end if useC %jengine = jtree_C_inf_engine(bnet2, 'stages', stages); %function is not implemented assert(0) else jengine = stab_cond_gauss_inf_engine(bnet2); end engine.unrolled_engine = jengine; % we don't inherit from jtree_inf_engine, because that would only store bnet2, % and we would lose access to the DBN-specific fields like intra/inter engine.nslices = T; engine = class(engine, 'stable_ho_inf_engine', inf_engine(bnet));
# abstract type Equation end #---------------------------------------------------------------------- export Diffusion #---------------------------------------------------------------------- struct Diffusion{T,U} <: Equation # {T,U,D,K} # type, dimension, (bdfK order) fld::Field{T} ν ::Array{T} # viscosity f ::Array{T} # forcing rhs::Array{T} # RHS tstep::TimeStepper{T,U} msh::Mesh{T} # mesh end #--------------------------------------# function Diffusion(bc::Array{Char,1},msh::Mesh ;Ti=0.,Tf=0.,dt=0.,k=3) fld = Field(bc,msh) ν = zero(fld.u) f = zero(fld.u) rhs = zero(fld.u) tstep = TimeStepper(Ti,Tf,dt,k) return Diffusion(fld ,ν,f,rhs ,tstep ,msh) end #---------------------------------------------------------------------- function opLHS(u::Array,dfn::Diffusion) @unpack fld, msh, ν = dfn @unpack bdfB = dfn.tstep lhs = hlmz(u,ν,bdfB[1],msh) lhs .= gatherScatter(lhs,msh) lhs .= mask(lhs,fld.M) return lhs end function opPrecond(u::Array,dfn::Diffusion) return u end function makeRHS!(dfn::Diffusion) @unpack fld, rhs, ν, f, msh = dfn @unpack bdfA, bdfB = dfn.tstep rhs .= mass(f ,msh) # forcing rhs .-= ν .* lapl(fld.ub,msh) # boundary data for i=1:length(fld.uh) # histories rhs .-= bdfB[1+i] .* mass(fld.uh[i],msh) end rhs .= mask(rhs,fld.M) rhs .= gatherScatter(rhs,msh) return end function solve!(dfn::Diffusion) @unpack rhs, msh, fld = dfn @unpack u,ub = fld opL(u) = opLHS(u,dfn) opP(u) = opPrecond(u,dfn) pcg!(u,rhs,opL;opM=opP,mult=msh.mult,ifv=false) u .+= ub return end #---------------------------------------------------------------------- export evolve! #---------------------------------------------------------------------- function evolve!(dfn::Diffusion ,setBC! =fixU! ,setForcing! =fixU! ,setVisc! =fixU!) @unpack fld, f, ν, msh = dfn @unpack time, bdfA, bdfB, istep, dt = dfn.tstep updateHist!(fld) Zygote.ignore() do updateHist!(time) istep .+= 1 time[1] += dt[1] bdfExtK!(bdfA,bdfB,time) end setBC!(fld.ub,msh.x,msh.y,time[1]) setForcing!(f,msh.x,msh.y,time[1]) setVisc!(ν ,msh.x,msh.y,time[1]) makeRHS!(dfn) solve!(dfn) return end #---------------------------------------------------------------------- export simulate! #---------------------------------------------------------------------- function simulate!(dfn::Diffusion,callback!::Function ,setIC! =fixU! ,setBC! =fixU! ,setForcing! =fixU! ,setVisc! =fixU!) @unpack fld, msh = dfn @unpack time, istep, dt, Tf = dfn.tstep setIC!(fld.u,msh.x,msh.y,time[1]) Zygote.ignore() do callback!(dfn) end while time[1] <= Tf[1] evolve!(dfn,setBC!,setForcing!,setVisc!) Zygote.ignore() do callback!(dfn) end if(time[1] < 1e-12) break end end return end #---------------------------------------------------------------------- #
theory conditions_relativized imports conditions_negative begin (****************** Relativized order and equality relations ****************) definition subset_in::\<open>'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> bool\<close> ("_\<preceq>\<^sub>__") where \<open>A \<preceq>\<^sub>U B \<equiv> \<forall>x. U x \<longrightarrow> (A x \<longrightarrow> B x)\<close> definition subset_out::\<open>'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> bool\<close> ("_\<preceq>\<^sup>__") where \<open>A \<preceq>\<^sup>U B \<equiv> \<forall>x. \<not>U x \<longrightarrow> (A x \<longrightarrow> B x)\<close> definition setequ_in::\<open>'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> bool\<close> ("_\<approx>\<^sub>__") where \<open>A \<approx>\<^sub>U B \<equiv> \<forall>x. U x \<longrightarrow> (A x \<longleftrightarrow> B x)\<close> definition setequ_out::\<open>'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> 'p \<sigma> \<Rightarrow> bool\<close> ("_\<approx>\<^sup>__") where \<open>A \<approx>\<^sup>U B \<equiv> \<forall>x. \<not>U x \<longrightarrow> (A x \<longleftrightarrow> B x)\<close> declare subset_in_def[order] subset_out_def[order] setequ_in_def[order] setequ_out_def[order] lemma subset_in_out: "(let U=C in (A \<preceq>\<^sub>U B)) = (let U=\<^bold>\<midarrow>C in (A \<preceq>\<^sup>U B))" by (simp add: compl_def subset_in_def subset_out_def) lemma setequ_in_out: "(let U=C in (A \<approx>\<^sub>U B)) = (let U=\<^bold>\<midarrow>C in (A \<approx>\<^sup>U B))" by (simp add: compl_def setequ_in_def setequ_out_def) lemma subset_in_char: "(A \<preceq>\<^sub>U B) = (U \<^bold>\<and> A \<preceq> U \<^bold>\<and> B)" unfolding order conn by blast lemma subset_out_char: "(A \<preceq>\<^sup>U B) = (U \<^bold>\<or> A \<preceq> U \<^bold>\<or> B)" unfolding order conn by blast lemma setequ_in_char: "(A \<approx>\<^sub>U B) = (U \<^bold>\<and> A \<approx> U \<^bold>\<and> B)" unfolding order conn by blast lemma setequ_out_char: "(A \<approx>\<^sup>U B) = (U \<^bold>\<or> A \<approx> U \<^bold>\<or> B)" unfolding order conn by blast (**Relativization cannot be meaningfully applied to conditions (n)NORM or (n)DNRM.*) lemma "NORM \<phi> = (let U = \<^bold>\<top> in ((\<phi> \<^bold>\<bottom>) \<approx>\<^sub>U \<^bold>\<bottom>))" by (simp add: NORM_def setequ_def setequ_in_def top_def) lemma "(let U = \<^bold>\<bottom> in ((\<phi> \<^bold>\<bottom>) \<approx>\<^sub>U \<^bold>\<bottom>))" by (simp add: bottom_def setequ_in_def) (*Relativization ('in' resp. 'out') leaves (n)EXPN/(n)CNTR unchanged or trivializes them.*) lemma "EXPN \<phi> = (\<forall>A. A \<preceq>\<^sub>A \<phi> A)" by (simp add: EXPN_def subset_def subset_in_def) lemma "CNTR \<phi> = (\<forall>A. (\<phi> A) \<preceq>\<^sup>A A)" by (metis (mono_tags, lifting) CNTR_def subset_def subset_out_def) lemma "\<forall>A. A \<preceq>\<^sup>A \<phi> A" by (simp add: subset_out_def) lemma "\<forall>A. (\<phi> A) \<preceq>\<^sub>A A" by (simp add: subset_in_def) (****************** Relativized ADDI variants ****************) definition ADDIr::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("ADDIr") where "ADDIr \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<or> B) in (\<phi>(A \<^bold>\<or> B) \<approx>\<^sup>U (\<phi> A) \<^bold>\<or> (\<phi> B))" definition ADDIr_a::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("ADDIr\<^sup>a") where "ADDIr\<^sup>a \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<or> B) in (\<phi>(A \<^bold>\<or> B) \<preceq>\<^sup>U (\<phi> A) \<^bold>\<or> (\<phi> B))" definition ADDIr_b::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("ADDIr\<^sup>b") where "ADDIr\<^sup>b \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<or> B) in ((\<phi> A) \<^bold>\<or> (\<phi> B) \<preceq>\<^sup>U \<phi>(A \<^bold>\<or> B))" declare ADDIr_def[cond] ADDIr_a_def[cond] ADDIr_b_def[cond] lemma ADDIr_char: "ADDIr \<phi> = (ADDIr\<^sup>a \<phi> \<and> ADDIr\<^sup>b \<phi>)" unfolding cond by (meson setequ_char setequ_out_char subset_out_char) lemma ADDIr_a_impl: "ADDI\<^sup>a \<phi> \<longrightarrow> ADDIr\<^sup>a \<phi>" by (simp add: ADDI_a_def ADDIr_a_def subset_def subset_out_def) lemma ADDIr_a_equ: "EXPN \<phi> \<Longrightarrow> ADDIr\<^sup>a \<phi> = ADDI\<^sup>a \<phi>" unfolding cond by (smt (verit, del_insts) join_def subset_def subset_out_def) lemma ADDIr_a_equ':"nEXPN \<phi> \<Longrightarrow> ADDIr\<^sup>a \<phi> = ADDI\<^sup>a \<phi>" unfolding cond by (smt (verit, ccfv_threshold) compl_def subset_def subset_out_def) lemma ADDIr_b_impl: "ADDI\<^sup>b \<phi> \<longrightarrow> ADDIr\<^sup>b \<phi>" by (simp add: ADDI_b_def ADDIr_b_def subset_def subset_out_def) lemma "nEXPN \<phi> \<Longrightarrow> ADDIr\<^sup>b \<phi> \<longrightarrow> ADDI\<^sup>b \<phi>" nitpick oops lemma ADDIr_b_equ: "EXPN \<phi> \<Longrightarrow> ADDIr\<^sup>b \<phi> = ADDI\<^sup>b \<phi>" unfolding cond by (smt (z3) subset_def subset_out_def) (****************** Relativized MULT variants ****************) definition MULTr::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("MULTr") where "MULTr \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<and> B) in (\<phi>(A \<^bold>\<and> B) \<approx>\<^sub>U (\<phi> A) \<^bold>\<and> (\<phi> B))" definition MULTr_a::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("MULTr\<^sup>a") where "MULTr\<^sup>a \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<and> B) in (\<phi>(A \<^bold>\<and> B) \<preceq>\<^sub>U (\<phi> A) \<^bold>\<and> (\<phi> B))" definition MULTr_b::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("MULTr\<^sup>b") where "MULTr\<^sup>b \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<and> B) in ((\<phi> A) \<^bold>\<and> (\<phi> B) \<preceq>\<^sub>U \<phi>(A \<^bold>\<and> B))" declare MULTr_def[cond] MULTr_a_def[cond] MULTr_b_def[cond] lemma MULTr_char: "MULTr \<phi> = (MULTr\<^sup>a \<phi> \<and> MULTr\<^sup>b \<phi>)" unfolding cond by (meson setequ_char setequ_in_char subset_in_char) lemma MULTr_a_impl: "MULT\<^sup>a \<phi> \<longrightarrow> MULTr\<^sup>a \<phi>" by (simp add: MULT_a_def MULTr_a_def subset_def subset_in_def) lemma "nCNTR \<phi> \<Longrightarrow> MULTr\<^sup>a \<phi> \<longrightarrow> MULT\<^sup>a \<phi>" nitpick oops lemma MULTr_a_equ: "CNTR \<phi> \<Longrightarrow> MULTr\<^sup>a \<phi> = MULT\<^sup>a \<phi>" unfolding cond by (smt (verit, del_insts) subset_def subset_in_def) lemma MULTr_b_impl: "MULT\<^sup>b \<phi> \<longrightarrow> MULTr\<^sup>b \<phi>" by (simp add: MULT_b_def MULTr_b_def subset_def subset_in_def) lemma "MULTr\<^sup>b \<phi> \<longrightarrow> MULT\<^sup>b \<phi>" nitpick oops lemma MULTr_b_equ: "CNTR \<phi> \<Longrightarrow> MULTr\<^sup>b \<phi> = MULT\<^sup>b \<phi>" unfolding cond by (smt (verit, del_insts) meet_def subset_def subset_in_def) lemma MULTr_b_equ':"nCNTR \<phi> \<Longrightarrow> MULTr\<^sup>b \<phi> = MULT\<^sup>b \<phi>" unfolding cond by (smt (z3) compl_def subset_def subset_in_def) (**** Weak variants of monotonicity ***) definition MONOw1::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("MONOw\<^sup>1") where "MONOw\<^sup>1 \<phi> \<equiv> \<forall>A B. A \<preceq> B \<longrightarrow> (\<phi> A) \<preceq> B \<^bold>\<or> (\<phi> B)" definition MONOw2::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("MONOw\<^sup>2") where "MONOw\<^sup>2 \<phi> \<equiv> \<forall>A B. A \<preceq> B \<longrightarrow> A \<^bold>\<and> (\<phi> A) \<preceq> (\<phi> B)" declare MONOw1_def[cond] MONOw2_def[cond] lemma MONOw1_ADDIr_b: "MONOw\<^sup>1 \<phi> = ADDIr\<^sup>b \<phi>" proof - have l2r: "MONOw\<^sup>1 \<phi> \<longrightarrow> ADDIr\<^sup>b \<phi>" unfolding cond subset_out_char by (metis (mono_tags, opaque_lifting) L7 join_def subset_def) have r2l: "ADDIr\<^sup>b \<phi> \<longrightarrow> MONOw\<^sup>1 \<phi>" unfolding cond subset_out_char by (metis (full_types) L9 join_def setequ_ext subset_def) show ?thesis using l2r r2l by blast qed lemma MONOw2_MULTr_a: "MONOw\<^sup>2 \<phi> = MULTr\<^sup>a \<phi>" proof - have l2r: "MONOw\<^sup>2 \<phi> \<longrightarrow> MULTr\<^sup>a \<phi>" unfolding cond subset_in_char by (meson L4 L5 L8 L9) have r2l:"MULTr\<^sup>a \<phi> \<longrightarrow> MONOw\<^sup>2 \<phi>" unfolding cond subset_in_char by (metis BA_distr1 L2 L5 L6 L9 setequ_ext) show ?thesis using l2r r2l by blast qed lemma MONOw1_impl: "MONO \<phi> \<longrightarrow> MONOw\<^sup>1 \<phi>" by (simp add: ADDIr_b_impl MONO_ADDIb MONOw1_ADDIr_b) lemma "MONOw\<^sup>1 \<phi> \<longrightarrow> MONO \<phi>" nitpick oops lemma MONOw2_impl: "MONO \<phi> \<longrightarrow> MONOw\<^sup>2 \<phi>" by (simp add: MONO_MULTa MONOw2_MULTr_a MULTr_a_impl) lemma "MONOw\<^sup>2 \<phi> \<longrightarrow> MONO \<phi>" nitpick oops (** We have in fact that (n)CNTR (resp. (n)EXPN) implies MONOw\<^sup>1/ADDIr\<^sup>b (resp. MONOw\<^sup>2/MULTr\<^sup>a) *) lemma CNTR_MONOw1_impl: "CNTR \<phi> \<longrightarrow> MONOw\<^sup>1 \<phi>" by (metis CNTR_def L3 MONOw1_def subset_char1) lemma nCNTR_MONOw1_impl: "nCNTR \<phi> \<longrightarrow> MONOw\<^sup>1 \<phi>" by (smt (verit, ccfv_threshold) MONOw1_def compl_def join_def nCNTR_def subset_def) lemma EXPN_MONOw2_impl: "EXPN \<phi> \<longrightarrow> MONOw\<^sup>2 \<phi>" by (metis EXPN_def L4 MONOw2_def subset_char1) lemma nEXPN_MONOw2_impl: "nEXPN \<phi> \<longrightarrow> MONOw\<^sup>2 \<phi>" by (smt (verit) MONOw2_def compl_def meet_def nEXPN_def subset_def) (****************** Relativized nADDI variants ****************) definition nADDIr::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nADDIr") where "nADDIr \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<or> B) in (\<phi>(A \<^bold>\<or> B) \<approx>\<^sup>U (\<phi> A) \<^bold>\<and> (\<phi> B))" definition nADDIr_a::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nADDIr\<^sup>a") where "nADDIr\<^sup>a \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<or> B) in ((\<phi> A) \<^bold>\<and> (\<phi> B) \<preceq>\<^sup>U \<phi>(A \<^bold>\<or> B))" definition nADDIr_b::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nADDIr\<^sup>b") where "nADDIr\<^sup>b \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<or> B) in (\<phi>(A \<^bold>\<or> B) \<preceq>\<^sup>U (\<phi> A) \<^bold>\<and> (\<phi> B))" declare nADDIr_def[cond] nADDIr_a_def[cond] nADDIr_b_def[cond] lemma nADDIr_char: "nADDIr \<phi> = (nADDIr\<^sup>a \<phi> \<and> nADDIr\<^sup>b \<phi>)" unfolding cond by (meson setequ_char setequ_out_char subset_out_char) lemma nADDIr_a_impl: "nADDI\<^sup>a \<phi> \<longrightarrow> nADDIr\<^sup>a \<phi>" unfolding cond by (simp add: subset_def subset_out_def) lemma "nADDIr\<^sup>a \<phi> \<longrightarrow> nADDI\<^sup>a \<phi>" nitpick oops lemma nADDIr_a_equ: "EXPN \<phi> \<Longrightarrow> nADDIr\<^sup>a \<phi> = nADDI\<^sup>a \<phi>" unfolding cond by (smt (z3) subset_def subset_out_def) lemma nADDIr_a_equ':"nEXPN \<phi> \<Longrightarrow> nADDIr\<^sup>a \<phi> = nADDI\<^sup>a \<phi>" unfolding cond by (smt (z3) compl_def join_def meet_def subset_def subset_out_def) lemma nADDIr_b_impl: "nADDI\<^sup>b \<phi> \<longrightarrow> nADDIr\<^sup>b \<phi>" by (simp add: nADDI_b_def nADDIr_b_def subset_def subset_out_def) lemma "EXPN \<phi> \<Longrightarrow> nADDIr\<^sup>b \<phi> \<longrightarrow> nADDI\<^sup>b \<phi>" nitpick oops lemma nADDIr_b_equ: "nEXPN \<phi> \<Longrightarrow> nADDIr\<^sup>b \<phi> = nADDI\<^sup>b \<phi>" unfolding cond by (smt (z3) compl_def subset_def subset_out_def) (****************** Relativized nMULT variants ****************) definition nMULTr::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nMULTr") where "nMULTr \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<and> B) in (\<phi>(A \<^bold>\<and> B) \<approx>\<^sub>U (\<phi> A) \<^bold>\<or> (\<phi> B))" definition nMULTr_a::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nMULTr\<^sup>a") where "nMULTr\<^sup>a \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<and> B) in ((\<phi> A) \<^bold>\<or> (\<phi> B) \<preceq>\<^sub>U \<phi>(A \<^bold>\<and> B))" definition nMULTr_b::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nMULTr\<^sup>b") where "nMULTr\<^sup>b \<phi> \<equiv> \<forall>A B. let U = (A \<^bold>\<and> B) in (\<phi>(A \<^bold>\<and> B) \<preceq>\<^sub>U (\<phi> A) \<^bold>\<or> (\<phi> B))" declare nMULTr_def[cond] nMULTr_a_def[cond] nMULTr_b_def[cond] lemma nMULTr_char: "nMULTr \<phi> = (nMULTr\<^sup>a \<phi> \<and> nMULTr\<^sup>b \<phi>)" unfolding cond by (meson setequ_char setequ_in_char subset_in_char) lemma nMULTr_a_impl: "nMULT\<^sup>a \<phi> \<longrightarrow> nMULTr\<^sup>a \<phi>" by (simp add: nMULT_a_def nMULTr_a_def subset_def subset_in_def) lemma "CNTR \<phi> \<Longrightarrow> nMULTr\<^sup>a \<phi> \<longrightarrow> nMULT\<^sup>a \<phi>" nitpick oops lemma nMULTr_a_equ: "nCNTR \<phi> \<Longrightarrow> nMULTr\<^sup>a \<phi> = nMULT\<^sup>a \<phi>" unfolding cond by (smt (z3) compl_def subset_def subset_in_def) lemma nMULTr_b_impl: "nMULT\<^sup>b \<phi> \<longrightarrow> nMULTr\<^sup>b \<phi>" by (simp add: nMULT_b_def nMULTr_b_def subset_def subset_in_def) lemma "nMULTr\<^sup>b \<phi> \<longrightarrow> nMULT\<^sup>b \<phi>" nitpick oops lemma nMULTr_b_equ: "CNTR \<phi> \<Longrightarrow> nMULTr\<^sup>b \<phi> = nMULT\<^sup>b \<phi>" unfolding cond by (smt (z3) compl_def join_def meet_def subset_def subset_in_def) lemma nMULTr_b_equ':"nCNTR \<phi> \<Longrightarrow> nMULTr\<^sup>b \<phi> = nMULT\<^sup>b \<phi>" unfolding cond by (smt (z3) compl_def join_def meet_def subset_def subset_in_def) (**** Weak variants of antitonicity ***) definition ANTIw1::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("ANTIw\<^sup>1") where "ANTIw\<^sup>1 \<phi> \<equiv> \<forall>A B. A \<preceq> B \<longrightarrow> (\<phi> B) \<preceq> B \<^bold>\<or> (\<phi> A)" definition ANTIw2::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("ANTIw\<^sup>2") where "ANTIw\<^sup>2 \<phi> \<equiv> \<forall>A B. A \<preceq> B \<longrightarrow> A \<^bold>\<and> (\<phi> B) \<preceq> (\<phi> A)" declare ANTIw1_def[cond] ANTIw2_def[cond] lemma ANTIw1_nADDIr_b: "ANTIw\<^sup>1 \<phi> = nADDIr\<^sup>b \<phi>" proof - have l2r: "ANTIw\<^sup>1 \<phi> \<longrightarrow> nADDIr\<^sup>b \<phi>" unfolding cond subset_out_char by (smt (verit, ccfv_SIG) BA_distr2 L8 join_def setequ_ext subset_def) have r2l: "nADDIr\<^sup>b \<phi> \<longrightarrow> ANTIw\<^sup>1 \<phi>" unfolding cond subset_out_def by (metis (full_types) L9 join_def meet_def setequ_ext subset_def) show ?thesis using l2r r2l by blast qed lemma ANTIw2_nMULTr_a: "ANTIw\<^sup>2 \<phi> = nMULTr\<^sup>a \<phi>" proof - have l2r: "ANTIw\<^sup>2 \<phi> \<longrightarrow> nMULTr\<^sup>a \<phi>" unfolding cond subset_in_char by (metis BA_distr1 L3 L4 L5 L7 L8 setequ_ext) have r2l: "nMULTr\<^sup>a \<phi> \<longrightarrow> ANTIw\<^sup>2 \<phi>" unfolding cond subset_in_def by (metis (full_types) L10 join_def meet_def setequ_ext subset_def) show ?thesis using l2r r2l by blast qed lemma "ANTI \<phi> \<longrightarrow> ANTIw\<^sup>1 \<phi>" by (simp add: ANTI_nADDIb ANTIw1_nADDIr_b nADDIr_b_impl) lemma "ANTIw\<^sup>1 \<phi> \<longrightarrow> ANTI \<phi>" nitpick oops lemma "ANTI \<phi> \<longrightarrow> ANTIw\<^sup>2 \<phi>" by (simp add: ANTI_nMULTa ANTIw2_nMULTr_a nMULTr_a_impl) lemma "ANTIw\<^sup>2 \<phi> \<longrightarrow> ANTI \<phi>" nitpick oops (** We have in fact that (n)CNTR (resp. (n)EXPN) implies ANTIw\<^sup>1/nADDIr\<^sup>b (resp. ANTIw\<^sup>2/nMULTr\<^sup>a) *) lemma CNTR_ANTIw1_impl: "CNTR \<phi> \<longrightarrow> ANTIw\<^sup>1 \<phi>" unfolding cond using L3 subset_char1 by blast lemma nCNTR_ANTIw1_impl: "nCNTR \<phi> \<longrightarrow> ANTIw\<^sup>1 \<phi>" unfolding cond by (metis (full_types) compl_def join_def subset_def) lemma EXPN_ANTIw2_impl: "EXPN \<phi> \<longrightarrow> ANTIw\<^sup>2 \<phi>" unfolding cond using L4 subset_char1 by blast lemma nEXPN_ANTIw2_impl: "nEXPN \<phi> \<longrightarrow> ANTIw\<^sup>2 \<phi>" unfolding cond by (metis (full_types) compl_def meet_def subset_def) (****************** Dual interrelations ****************) lemma ADDIr_dual1: "ADDIr\<^sup>a \<phi> = MULTr\<^sup>b \<phi>\<^sup>d" unfolding cond subset_in_char subset_out_char by (smt (z3) BA_cp BA_deMorgan1 BA_dn op_dual_def setequ_ext) lemma ADDIr_dual2: "ADDIr\<^sup>b \<phi> = MULTr\<^sup>a \<phi>\<^sup>d" unfolding cond subset_in_char subset_out_char by (smt (verit, ccfv_threshold) BA_cp BA_deMorgan1 BA_dn op_dual_def setequ_ext) lemma ADDIr_dual: "ADDIr \<phi> = MULTr \<phi>\<^sup>d" using ADDIr_char ADDIr_dual1 ADDIr_dual2 MULTr_char by blast lemma nADDIr_dual1: "nADDIr\<^sup>a \<phi> = nMULTr\<^sup>b \<phi>\<^sup>d" unfolding cond subset_in_char subset_out_char by (smt (verit, del_insts) BA_cp BA_deMorgan1 BA_dn op_dual_def setequ_ext) lemma nADDIr_dual2: "nADDIr\<^sup>b \<phi> = nMULTr\<^sup>a \<phi>\<^sup>d" by (smt (z3) BA_deMorgan1 BA_dn compl_def nADDIr_b_def nMULTr_a_def op_dual_def setequ_ext subset_in_def subset_out_def) lemma nADDIr_dual: "nADDIr \<phi> = nMULTr \<phi>\<^sup>d" using nADDIr_char nADDIr_dual1 nADDIr_dual2 nMULTr_char by blast (****************** Complement interrelations ****************) lemma ADDIr_a_cmpl: "ADDIr\<^sup>a \<phi> = nADDIr\<^sup>a \<phi>\<^sup>c" unfolding cond by (smt (verit, del_insts) BA_deMorgan1 compl_def setequ_ext subset_out_def svfun_compl_def) lemma ADDIr_b_cmpl: "ADDIr\<^sup>b \<phi> = nADDIr\<^sup>b \<phi>\<^sup>c" unfolding cond by (smt (verit, del_insts) BA_deMorgan1 compl_def setequ_ext subset_out_def svfun_compl_def) lemma ADDIr_cmpl: "ADDIr \<phi> = nADDIr \<phi>\<^sup>c" by (simp add: ADDIr_a_cmpl ADDIr_b_cmpl ADDIr_char nADDIr_char) lemma MULTr_a_cmpl: "MULTr\<^sup>a \<phi> = nMULTr\<^sup>a \<phi>\<^sup>c" unfolding cond by (smt (verit, del_insts) BA_deMorgan2 compl_def setequ_ext subset_in_def svfun_compl_def) lemma MULTr_b_cmpl: "MULTr\<^sup>b \<phi> = nMULTr\<^sup>b \<phi>\<^sup>c" unfolding cond by (smt (verit, ccfv_threshold) BA_deMorgan2 compl_def setequ_ext subset_in_def svfun_compl_def) lemma MULTr_cmpl: "MULTr \<phi> = nMULTr \<phi>\<^sup>c" by (simp add: MULTr_a_cmpl MULTr_b_cmpl MULTr_char nMULTr_char) (****************** Fixed-point interrelations ****************) lemma EXPN_fp: "EXPN \<phi> = EXPN \<phi>\<^sup>f\<^sup>p" by (simp add: EXPN_def dimpl_def op_fixpoint_def subset_def) lemma EXPN_fpc: "EXPN \<phi> = nEXPN \<phi>\<^sup>f\<^sup>p\<^sup>c" using EXPN_fp nEXPN_CNTR_compl by blast lemma CNTR_fp: "CNTR \<phi> = nCNTR \<phi>\<^sup>f\<^sup>p" by (metis EXPN_CNTR_dual1 EXPN_fp dual_compl_char2 dual_invol nCNTR_EXPN_compl ofp_comm_dc1 sfun_compl_invol) lemma CNTR_fpc: "CNTR \<phi> = CNTR \<phi>\<^sup>f\<^sup>p\<^sup>c" by (metis CNTR_fp nCNTR_EXPN_compl ofp_comm_compl ofp_invol) lemma nNORM_fp: "NORM \<phi> = nNORM \<phi>\<^sup>f\<^sup>p" by (metis NORM_def fixpoints_def fp_rel nNORM_def) lemma NORM_fpc: "NORM \<phi> = NORM \<phi>\<^sup>f\<^sup>p\<^sup>c" by (simp add: NORM_def bottom_def ofp_fixpoint_compl_def sdiff_def) lemma DNRM_fp: "DNRM \<phi> = DNRM \<phi>\<^sup>f\<^sup>p" by (simp add: DNRM_def dimpl_def op_fixpoint_def top_def) lemma DNRM_fpc: "DNRM \<phi> = nDNRM \<phi>\<^sup>f\<^sup>p\<^sup>c" using DNRM_fp nDNRM_DNRM_compl by blast lemma ADDIr_a_fpc: "ADDIr\<^sup>a \<phi> = ADDIr\<^sup>a \<phi>\<^sup>f\<^sup>p\<^sup>c" unfolding cond subset_out_def by (simp add: join_def ofp_fixpoint_compl_def sdiff_def) lemma ADDIr_a_fp: "ADDIr\<^sup>a \<phi> = nADDIr\<^sup>a \<phi>\<^sup>f\<^sup>p" by (metis ADDIr_a_cmpl ADDIr_a_fpc sfun_compl_invol) lemma ADDIr_b_fpc: "ADDIr\<^sup>b \<phi> = ADDIr\<^sup>b \<phi>\<^sup>f\<^sup>p\<^sup>c" unfolding cond subset_out_def by (simp add: join_def ofp_fixpoint_compl_def sdiff_def) lemma ADDIr_b_fp: "ADDIr\<^sup>b \<phi> = nADDIr\<^sup>b \<phi>\<^sup>f\<^sup>p" by (metis ADDIr_b_cmpl ADDIr_b_fpc sfun_compl_invol) lemma MULTr_a_fp: "MULTr\<^sup>a \<phi> = MULTr\<^sup>a \<phi>\<^sup>f\<^sup>p" unfolding cond subset_in_def by (simp add: dimpl_def meet_def op_fixpoint_def) lemma MULTr_a_fpc: "MULTr\<^sup>a \<phi> = nMULTr\<^sup>a \<phi>\<^sup>f\<^sup>p\<^sup>c" using MULTr_a_cmpl MULTr_a_fp by blast lemma MULTr_b_fp: "MULTr\<^sup>b \<phi> = MULTr\<^sup>b \<phi>\<^sup>f\<^sup>p" unfolding cond subset_in_def by (simp add: dimpl_def meet_def op_fixpoint_def) lemma MULTr_b_fpc: "MULTr\<^sup>b \<phi> = nMULTr\<^sup>b \<phi>\<^sup>f\<^sup>p\<^sup>c" using MULTr_b_cmpl MULTr_b_fp by blast (****************** Relativized IDEM variants ****************) definition IDEMr_a::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("IDEMr\<^sup>a") where "IDEMr\<^sup>a \<phi> \<equiv> \<forall>A. \<phi>(A \<^bold>\<or> \<phi> A) \<preceq>\<^sup>A (\<phi> A)" definition IDEMr_b::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("IDEMr\<^sup>b") where "IDEMr\<^sup>b \<phi> \<equiv> \<forall>A. (\<phi> A) \<preceq>\<^sub>A \<phi>(A \<^bold>\<and> \<phi> A)" declare IDEMr_a_def[cond] IDEMr_b_def[cond] (****************** Relativized nIDEM variants ****************) definition nIDEMr_a::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nIDEMr\<^sup>a") where "nIDEMr\<^sup>a \<phi> \<equiv> \<forall>A. (\<phi> A) \<preceq>\<^sup>A \<phi>(A \<^bold>\<or> \<^bold>\<midarrow>(\<phi> A))" definition nIDEMr_b::"('w \<sigma> \<Rightarrow> 'w \<sigma>) \<Rightarrow> bool" ("nIDEMr\<^sup>b") where "nIDEMr\<^sup>b \<phi> \<equiv> \<forall>A. \<phi>(A \<^bold>\<and> \<^bold>\<midarrow>(\<phi> A)) \<preceq>\<^sub>A (\<phi> A)" declare nIDEMr_a_def[cond] nIDEMr_b_def[cond] (****************** Complement interrelations ****************) lemma IDEMr_a_cmpl: "IDEMr\<^sup>a \<phi> = nIDEMr\<^sup>a \<phi>\<^sup>c" unfolding cond subset_in_def subset_out_def by (metis compl_def sfun_compl_invol svfun_compl_def) lemma IDEMr_b_cmpl: "IDEMr\<^sup>b \<phi> = nIDEMr\<^sup>b \<phi>\<^sup>c" unfolding cond subset_in_def subset_out_def by (metis compl_def sfun_compl_invol svfun_compl_def) (****************** Dual interrelation ****************) lemma IDEMr_dual: "IDEMr\<^sup>a \<phi> = IDEMr\<^sup>b \<phi>\<^sup>d" unfolding cond subset_in_def subset_out_def op_dual_def by (metis (mono_tags, opaque_lifting) BA_dn compl_def diff_char1 diff_char2 impl_char setequ_ext) lemma nIDEMr_dual: "nIDEMr\<^sup>a \<phi> = nIDEMr\<^sup>b \<phi>\<^sup>d" by (metis IDEMr_dual IDEMr_a_cmpl IDEMr_b_cmpl dual_compl_char1 dual_compl_char2 sfun_compl_invol) (****************** Fixed-point interrelations ****************) lemma IDEMr_a_fp: "IDEMr\<^sup>a \<phi> = nIDEMr\<^sup>a \<phi>\<^sup>f\<^sup>p" proof - have l2r: "IDEMr\<^sup>a \<phi> \<longrightarrow> nIDEMr\<^sup>a \<phi>\<^sup>f\<^sup>p" unfolding cond subset_out_def op_fixpoint_def conn order apply simp (*by metis*) sorry (*fix proof reconstruction in kernel*) have r2l: "nIDEMr\<^sup>a \<phi>\<^sup>f\<^sup>p \<longrightarrow> IDEMr\<^sup>a \<phi>" unfolding cond subset_out_def op_fixpoint_def conn order apply simp (*by metis*) sorry (*fix proof reconstruction in kernel*) from l2r r2l show ?thesis by blast qed lemma IDEMr_a_fpc: "IDEMr\<^sup>a \<phi> = IDEMr\<^sup>a \<phi>\<^sup>f\<^sup>p\<^sup>c" using IDEMr_a_fp by (metis IDEMr_a_cmpl sfun_compl_invol) lemma IDEMr_b_fp: "IDEMr\<^sup>b \<phi> = IDEMr\<^sup>b \<phi>\<^sup>f\<^sup>p" proof - have l2r: "IDEMr\<^sup>b \<phi> \<longrightarrow> IDEMr\<^sup>b \<phi>\<^sup>f\<^sup>p" unfolding cond subset_in_def op_fixpoint_def conn order apply simp (*by metis*) sorry (*fix proof reconstruction in kernel*) have r2l: "IDEMr\<^sup>b \<phi>\<^sup>f\<^sup>p \<longrightarrow> IDEMr\<^sup>b \<phi>" unfolding cond subset_in_def op_fixpoint_def conn order apply simp (*by metis*) sorry (*fix proof reconstruction in kernel*) from l2r r2l show ?thesis by blast qed lemma IDEMr_b_fpc: "IDEMr\<^sup>b \<phi> = nIDEMr\<^sup>b \<phi>\<^sup>f\<^sup>p\<^sup>c" using IDEMr_b_fp IDEMr_b_cmpl by blast (***************************************************) (*** Verifying original border axioms by Zarycki ***) (***************************************************) (*The original border condition B1' is equivalent to the conjuntion of nMULTr and CNTR*) abbreviation "B1' \<phi> \<equiv> \<forall>A B. \<phi>(A \<^bold>\<and> B) \<approx> (A \<^bold>\<and> \<phi> B) \<^bold>\<or> (\<phi> A \<^bold>\<and> B)" lemma "B1' \<phi> = (nMULTr \<phi> \<and> CNTR \<phi>)" proof - have l2ra: "B1' \<phi> \<longrightarrow> nMULTr \<phi>" unfolding cond by (smt (z3) join_def meet_def setequ_ext setequ_in_def) have l2rb: "B1' \<phi> \<longrightarrow> CNTR \<phi>" unfolding cond by (metis L2 L4 L5 L7 L9 setequ_ext) have r2l: "(nMULTr \<phi> \<and> CNTR \<phi>) \<longrightarrow> B1' \<phi>" unfolding cond by (smt (z3) L10 join_def meet_def setequ_def setequ_in_char) from l2ra l2rb r2l show ?thesis by blast qed (*Modulo conditions nMULTr and CNTR the border condition B4 is equivalent to nIDEMr\<^sup>b*) abbreviation "B4 \<phi> \<equiv> \<forall>A. \<phi>(\<^bold>\<midarrow>\<phi>(\<^bold>\<midarrow>A)) \<preceq> A" lemma "nMULTr \<phi> \<Longrightarrow> CNTR \<phi> \<Longrightarrow> B4 \<phi> = nIDEMr\<^sup>b \<phi>" proof - assume a1: "nMULTr \<phi>" and a2: "CNTR \<phi>" have l2r: "nMULTr\<^sup>b \<phi> \<Longrightarrow> B4 \<phi> \<longrightarrow> nIDEMr\<^sup>b \<phi>" unfolding cond subset_in_char subset_def by (metis BA_deMorgan1 BA_dn compl_def meet_def setequ_ext) have r2l: "nMULTr\<^sup>a \<phi> \<Longrightarrow> CNTR \<phi> \<Longrightarrow> nIDEMr\<^sup>b \<phi> \<longrightarrow> B4 \<phi>" unfolding cond by (smt (verit) compl_def join_def meet_def subset_def subset_in_def) from l2r r2l show ?thesis using a1 a2 nMULTr_char by blast qed end
In animals , amino acids are obtained through the consumption of foods containing protein . Ingested proteins are then broken down into amino acids through digestion , which typically involves denaturation of the protein through exposure to acid and hydrolysis by enzymes called proteases . Some ingested amino acids are used for protein biosynthesis , while others are converted to glucose through gluconeogenesis , or fed into the citric acid cycle . This use of protein as a fuel is particularly important under starvation conditions as it allows the body 's own proteins to be used to support life , particularly those found in muscle . Amino acids are also an important dietary source of nitrogen .
#!/usr/bin/R # compute descriptive statistics, correlation, and regression from raw.txt # required pacakges # - dplyr # - Hmisc # library library("dplyr") library("Hmisc") # improt raw .txt to data frame raw_data <- read.delim("raw_data-caffeine.txt") # convert data to numerical matrix df <- as.matrix(as.data.frame(lapply(raw_data, as.numeric))) # output file - descriptive stats sink("descriptive_stats-caffeine.txt", split=TRUE, append=FALSE) # descriptive stats summary(raw_data) # output file - correlation and regression sink("correlation-caffeine.txt", split=TRUE, append=FALSE) # correlations (r) and significance (p) rcorr(df, type=c("pearson"))
/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser ! This file was ported from Lean 3 source module ring_theory.subsemiring.pointwise ! leanprover-community/mathlib commit 59694bd07f0a39c5beccba34bd9f413a160782bf ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Algebra.GroupRingAction.Basic import Mathlib.RingTheory.Subsemiring.Basic import Mathlib.GroupTheory.Submonoid.Pointwise import Mathlib.Data.Set.Pointwise.Basic /-! # Pointwise instances on `Subsemiring`s This file provides the action `Subsemiring.PointwiseMulAction` which matches the action of `MulActionSet`. This actions is available in the `Pointwise` locale. ## Implementation notes This file is almost identical to `GroupTheory/Submonoid/Pointwise.lean`. Where possible, try to keep them in sync. -/ open Set variable {M R : Type _} namespace Subsemiring section Monoid variable [Monoid M] [Semiring R] [MulSemiringAction M R] /-- The action on a subsemiring corresponding to applying the action to every element. This is available as an instance in the `pointwise` locale. -/ protected def pointwiseMulAction : MulAction M (Subsemiring R) where smul a S := S.map (MulSemiringAction.toRingHom _ _ a) one_smul S := (congr_arg (fun f => S.map f) (RingHom.ext <| one_smul M)).trans S.map_id mul_smul _a₁ _a₂ S := (congr_arg (fun f => S.map f) (RingHom.ext <| mul_smul _ _)).trans (S.map_map _ _).symm #align subsemiring.pointwise_mul_action Subsemiring.pointwiseMulAction scoped[Pointwise] attribute [instance] Subsemiring.pointwiseMulAction open Pointwise theorem pointwise_smul_def {a : M} (S : Subsemiring R) : a • S = S.map (MulSemiringAction.toRingHom _ _ a) := rfl #align subsemiring.pointwise_smul_def Subsemiring.pointwise_smul_def @[simp] theorem coe_pointwise_smul (m : M) (S : Subsemiring R) : ↑(m • S) = m • (S : Set R) := rfl #align subsemiring.coe_pointwise_smul Subsemiring.coe_pointwise_smul @[simp] theorem pointwise_smul_toAddSubmonoid (m : M) (S : Subsemiring R) : (m • S).toAddSubmonoid = m • S.toAddSubmonoid := rfl #align subsemiring.pointwise_smul_to_add_submonoid Subsemiring.pointwise_smul_toAddSubmonoid theorem smul_mem_pointwise_smul (m : M) (r : R) (S : Subsemiring R) : r ∈ S → m • r ∈ m • S := (Set.smul_mem_smul_set : _ → _ ∈ m • (S : Set R)) #align subsemiring.smul_mem_pointwise_smul Subsemiring.smul_mem_pointwise_smul theorem mem_smul_pointwise_iff_exists (m : M) (r : R) (S : Subsemiring R) : r ∈ m • S ↔ ∃ s : R, s ∈ S ∧ m • s = r := (Set.mem_smul_set : r ∈ m • (S : Set R) ↔ _) #align subsemiring.mem_smul_pointwise_iff_exists Subsemiring.mem_smul_pointwise_iff_exists @[simp] theorem smul_bot (a : M) : a • (⊥ : Subsemiring R) = ⊥ := map_bot _ #align subsemiring.smul_bot Subsemiring.smul_bot theorem smul_sup (a : M) (S T : Subsemiring R) : a • (S ⊔ T) = a • S ⊔ a • T := map_sup _ _ _ #align subsemiring.smul_sup Subsemiring.smul_sup theorem smul_closure (a : M) (s : Set R) : a • closure s = closure (a • s) := RingHom.map_closureS _ _ #align subsemiring.smul_closure Subsemiring.smul_closure instance pointwise_central_scalar [MulSemiringAction Mᵐᵒᵖ R] [IsCentralScalar M R] : IsCentralScalar M (Subsemiring R) := ⟨fun _a S => (congr_arg fun f => S.map f) <| RingHom.ext <| op_smul_eq_smul _⟩ #align subsemiring.pointwise_central_scalar Subsemiring.pointwise_central_scalar end Monoid section Group variable [Group M] [Semiring R] [MulSemiringAction M R] open Pointwise @[simp] theorem smul_mem_pointwise_smul_iff {a : M} {S : Subsemiring R} {x : R} : a • x ∈ a • S ↔ x ∈ S := smul_mem_smul_set_iff #align subsemiring.smul_mem_pointwise_smul_iff Subsemiring.smul_mem_pointwise_smul_iff theorem mem_pointwise_smul_iff_inv_smul_mem {a : M} {S : Subsemiring R} {x : R} : x ∈ a • S ↔ a⁻¹ • x ∈ S := mem_smul_set_iff_inv_smul_mem #align subsemiring.mem_pointwise_smul_iff_inv_smul_mem Subsemiring.mem_pointwise_smul_iff_inv_smul_mem theorem mem_inv_pointwise_smul_iff {a : M} {S : Subsemiring R} {x : R} : x ∈ a⁻¹ • S ↔ a • x ∈ S := mem_inv_smul_set_iff #align subsemiring.mem_inv_pointwise_smul_iff Subsemiring.mem_inv_pointwise_smul_iff @[simp] theorem pointwise_smul_le_pointwise_smul_iff {a : M} {S T : Subsemiring R} : a • S ≤ a • T ↔ S ≤ T := set_smul_subset_set_smul_iff #align subsemiring.pointwise_smul_le_pointwise_smul_iff Subsemiring.pointwise_smul_le_pointwise_smul_iff theorem pointwise_smul_subset_iff {a : M} {S T : Subsemiring R} : a • S ≤ T ↔ S ≤ a⁻¹ • T := set_smul_subset_iff #align subsemiring.pointwise_smul_subset_iff Subsemiring.pointwise_smul_subset_iff theorem subset_pointwise_smul_iff {a : M} {S T : Subsemiring R} : S ≤ a • T ↔ a⁻¹ • S ≤ T := subset_set_smul_iff #align subsemiring.subset_pointwise_smul_iff Subsemiring.subset_pointwise_smul_iff /-! TODO: add `equiv_smul` like we have for subgroup. -/ end Group section GroupWithZero variable [GroupWithZero M] [Semiring R] [MulSemiringAction M R] open Pointwise @[simp] theorem smul_mem_pointwise_smul_iff₀ {a : M} (ha : a ≠ 0) (S : Subsemiring R) (x : R) : a • x ∈ a • S ↔ x ∈ S := smul_mem_smul_set_iff₀ ha (S : Set R) x #align subsemiring.smul_mem_pointwise_smul_iff₀ Subsemiring.smul_mem_pointwise_smul_iff₀ theorem mem_pointwise_smul_iff_inv_smul_mem₀ {a : M} (ha : a ≠ 0) (S : Subsemiring R) (x : R) : x ∈ a • S ↔ a⁻¹ • x ∈ S := mem_smul_set_iff_inv_smul_mem₀ ha (S : Set R) x #align subsemiring.mem_pointwise_smul_iff_inv_smul_mem₀ Subsemiring.mem_pointwise_smul_iff_inv_smul_mem₀ theorem mem_inv_pointwise_smul_iff₀ {a : M} (ha : a ≠ 0) (S : Subsemiring R) (x : R) : x ∈ a⁻¹ • S ↔ a • x ∈ S := mem_inv_smul_set_iff₀ ha (S : Set R) x #align subsemiring.mem_inv_pointwise_smul_iff₀ Subsemiring.mem_inv_pointwise_smul_iff₀ @[simp] theorem pointwise_smul_le_pointwise_smul_iff₀ {a : M} (ha : a ≠ 0) {S T : Subsemiring R} : a • S ≤ a • T ↔ S ≤ T := set_smul_subset_set_smul_iff₀ ha #align subsemiring.pointwise_smul_le_pointwise_smul_iff₀ Subsemiring.pointwise_smul_le_pointwise_smul_iff₀ theorem pointwise_smul_le_iff₀ {a : M} (ha : a ≠ 0) {S T : Subsemiring R} : a • S ≤ T ↔ S ≤ a⁻¹ • T := set_smul_subset_iff₀ ha #align subsemiring.pointwise_smul_le_iff₀ Subsemiring.pointwise_smul_le_iff₀ theorem le_pointwise_smul_iff₀ {a : M} (ha : a ≠ 0) {S T : Subsemiring R} : S ≤ a • T ↔ a⁻¹ • S ≤ T := subset_set_smul_iff₀ ha #align subsemiring.le_pointwise_smul_iff₀ Subsemiring.le_pointwise_smul_iff₀ end GroupWithZero end Subsemiring
## Tests involing building packages and whatnot build_tests_dir = joinpath(@__DIR__, "build_tests") libfoo_products = [ LibraryProduct("libfoo", :libfoo), ExecutableProduct("fooifier", :fooifier), ] libfoo_make_script = raw""" cd ${WORKSPACE}/srcdir/libfoo make install install_license ${WORKSPACE}/srcdir/libfoo/LICENSE.md """ libfoo_cmake_script = raw""" mkdir ${WORKSPACE}/srcdir/libfoo/build && cd ${WORKSPACE}/srcdir/libfoo/build cmake -DCMAKE_INSTALL_PREFIX=${prefix} -DCMAKE_TOOLCHAIN_FILE=${CMAKE_TARGET_TOOLCHAIN} .. make install install_license ${WORKSPACE}/srcdir/libfoo/LICENSE.md """ libfoo_meson_script = raw""" mkdir ${WORKSPACE}/srcdir/libfoo/build && cd ${WORKSPACE}/srcdir/libfoo/build meson .. -Dprefix=${prefix} --cross-file="${MESON_TARGET_TOOLCHAIN}" ninja install -v # grumble grumble meson! Why do you go to all the trouble to build it properly # in `build`, then screw it up when you `install` it?! Silly willy. if [[ ${target} == *apple* ]]; then install_name_tool ${prefix}/bin/fooifier -change ${prefix}/lib/libfoo.0.dylib @rpath/libfoo.0.dylib fi install_license ${WORKSPACE}/srcdir/libfoo/LICENSE.md """ @testset "Building libfoo" begin # Test building with both `make` and `cmake`, using directory and git repository for script in (libfoo_make_script, libfoo_cmake_script, libfoo_meson_script) # Do build within a separate temporary directory mktempdir() do build_path # Create local git repository of `libfoo` sources git_path = joinpath(build_path, "libfoo.git") mkpath(git_path) # Copy files in, commit them. This is the commit we will build. repo = LibGit2.init(git_path) LibGit2.commit(repo, "Initial empty commit") libfoo_src_dir = joinpath(build_tests_dir, "libfoo") run(`cp -r $(libfoo_src_dir)/$(readdir(libfoo_src_dir)) $(git_path)/`) for file in readdir(git_path) LibGit2.add!(repo, file) end commit = LibGit2.commit(repo, "Add libfoo files") # Add another commit to ensure that the git checkout is getting the right commit. open(joinpath(git_path, "Makefile"), "w") do io println(io, "THIS WILL BREAK EVERYTHING") end LibGit2.add!(repo, "Makefile") LibGit2.commit(repo, "Break Makefile") for source in (build_tests_dir, git_path => bytes2hex(LibGit2.raw(LibGit2.GitHash(commit)))) build_output_meta = autobuild( build_path, "libfoo", v"1.0.0", # Copy in the libfoo sources [source], # Use the particular build script we're interested in script, # Build for this platform [platform], # The products we expect to be build libfoo_products, # No depenedencies []; # Don't do audit passes skip_audit=true, # Make one verbose for the coverage. We do it all for the coverage, Morty. verbose=true, ) @test haskey(build_output_meta, platform) tarball_path, tarball_hash = build_output_meta[platform][1:2] # Ensure the build products were created @test isfile(tarball_path) # Ensure that the file contains what we expect contents = list_tarball_files(tarball_path) @test "bin/fooifier$(exeext(platform))" in contents @test "lib/libfoo.$(dlext(platform))" in contents # Unpack it somewhere else @test verify(tarball_path, tarball_hash) testdir = joinpath(build_path, "testdir") mkpath(testdir) unpack(tarball_path, testdir) # Ensure we can use it prefix = Prefix(testdir) fooifier_path = joinpath(bindir(prefix), "fooifier$(exeext(platform))") libfoo_path = first(filter(f -> isfile(f), joinpath.(libdirs(prefix), "libfoo.$(dlext(platform))"))) # We know that foo(a, b) returns 2*a^2 - b result = 2*2.2^2 - 1.1 # Test that we can invoke fooifier @test !success(`$fooifier_path`) @test success(`$fooifier_path 1.5 2.0`) @test parse(Float64,readchomp(`$fooifier_path 2.2 1.1`)) ≈ result # Test that we can dlopen() libfoo and invoke it directly libfoo = Libdl.dlopen_e(libfoo_path) @test libfoo != C_NULL foo = Libdl.dlsym_e(libfoo, :foo) @test foo != C_NULL @test ccall(foo, Cdouble, (Cdouble, Cdouble), 2.2, 1.1) ≈ result Libdl.dlclose(libfoo) end end end end shards_to_test = expand_cxxstring_abis(expand_gfortran_versions(platform)) if lowercase(get(ENV, "BINARYBUILDER_FULL_SHARD_TEST", "false")) == "true" @info("Beginning full shard test... (this can take a while)") shards_to_test = supported_platforms() else shards_to_test = [platform] end # Expand to all platforms shards_to_test = expand_cxxstring_abis(expand_gfortran_versions(shards_to_test)) # Perform a sanity test on each and every shard. @testset "Shard testsuites" begin mktempdir() do build_path products = Product[ ExecutableProduct("hello_world_c", :hello_world_c), ExecutableProduct("hello_world_cxx", :hello_world_cxx), ExecutableProduct("hello_world_fortran", :hello_world_fortran), ExecutableProduct("hello_world_go", :hello_world_go), ExecutableProduct("hello_world_rust", :hello_world_rust), ] build_output_meta = autobuild( build_path, "testsuite", v"1.0.0", # No sources [], # Build the test suite, install the binaries into our prefix's `bin` raw""" # Build testsuite make -j${nproc} -sC /usr/share/testsuite install # Install fake license just to silence the warning install_license /usr/share/licenses/libuv/LICENSE """, # Build for ALL the platforms shards_to_test, products, # No dependencies []; # We need to be able to build go and rust and whatnot compilers=[:c, :go, :rust], ) # Test that we built everything (I'm not entirely sure how I expect # this to fail without some kind of error being thrown earlier on, # to be honest I just like seeing lots of large green numbers.) @test length(keys(shards_to_test)) == length(keys(build_output_meta)) # Extract our platform's build, run the hello_world tests: output_meta = select_platform(build_output_meta, platform) @test output_meta != nothing tarball_path, tarball_hash = output_meta[1:2] # Ensure the build products were created @test isfile(tarball_path) # Unpack it somewhere else @test verify(tarball_path, tarball_hash) testdir = joinpath(build_path, "testdir") mkdir(testdir) unpack(tarball_path, testdir) prefix = Prefix(testdir) for product in products hw_path = locate(product, prefix) @test hw_path !== nothing && isfile(hw_path) with_libgfortran() do @test strip(String(read(`$hw_path`))) == "Hello, World!" end end end end @testset "Dependency Specification" begin mktempdir() do build_path @test_logs (:error, r"BadDependency_jll") (:error, r"WorseDependency_jll") match_mode=:any begin @test_throws ErrorException autobuild( build_path, "baddeps", v"1.0.0", # No sources [], "true", [platform], [ExecutableProduct("foo", :foo)], # Three dependencies; one good, two bad [ "Zlib_jll", # We hope nobody will ever register something named this "BadDependency_jll", "WorseDependency_jll", ] ) end end end
-- @@stderr -- dtrace: failed to compile script test/unittest/speculation/err.NegativeBufSize.d: line 27: failed to set option 'bufsize' to '-72': Invalid value for specified option
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +IsAbGroup : IsAbGroup 0r _+_ -_ ·IsMonoid : IsMonoid 1r _·_ dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) -- This is in the Agda stdlib, but it's redundant -- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r) open IsAbGroup +IsAbGroup public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; inverse to +Inv ; invl to +Linv ; invr to +Rinv ; comm to +Comm ; isSemigroup to +IsSemigroup ; isMonoid to +IsMonoid ; isGroup to +IsGroup ) open IsMonoid ·IsMonoid public renaming ( assoc to ·Assoc ; identity to ·Identity ; lid to ·Lid ; rid to ·Rid ; isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this ·Rdist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·Rdist+ x y z = dist x y z .fst ·Ldist+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) ·Ldist+ x y z = dist x y z .snd record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor ringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isRing : IsRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsRing isRing public Ring : ∀ ℓ → Type (ℓ-suc ℓ) Ring ℓ = TypeWithStr ℓ RingStr isSetRing : (R : Ring ℓ) → isSet ⟨ R ⟩ isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (r+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → IsRing 0r 1r _+_ _·_ -_ makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm) (makeIsMonoid is-setR ·-assoc ·-rid ·-lid) λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → Ring ℓ makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = _ , ringstr 0r 1r _+_ _·_ -_ (makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ ) record IsRingHom {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module R = RingStr R module S = RingStr S field pres0 : f R.0r ≡ S.0r pres1 : f R.1r ≡ S.1r pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y pres- : (x : A) → f (R.- x) ≡ S.- (f x) unquoteDecl IsRingHomIsoΣ = declareRecordIsoΣ IsRingHomIsoΣ (quote IsRingHom) RingHom : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ') RingHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsRingHom (R .snd) f (S .snd) IsRingEquiv : {A : Type ℓ} {B : Type ℓ'} (M : RingStr A) (e : A ≃ B) (N : RingStr B) → Type (ℓ-max ℓ ℓ') IsRingEquiv M e N = IsRingHom M (e .fst) N RingEquiv : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ') RingEquiv R S = Σ[ e ∈ (⟨ R ⟩ ≃ ⟨ S ⟩) ] IsRingEquiv (R .snd) e (S .snd) _$_ : {R S : Ring ℓ} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩ φ $ x = φ .fst x RingEquiv→RingHom : {A B : Ring ℓ} → RingEquiv A B → RingHom A B RingEquiv→RingHom (e , eIsHom) = e .fst , eIsHom isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsRing 0r 1r _+_ _·_ -_) isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) = λ i → isring (isPropIsAbGroup _ _ _ RG SG i) (isPropIsMonoid _ _ RM SM i) (isPropDistr RD SD i) where isSetR : isSet _ isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z))) × (((x + y) · z) ≡ ((x · z) + (y · z)))) isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _) isPropIsRingHom : {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B) → isProp (IsRingHom R f S) isPropIsRingHom R f S = isOfHLevelRetractFromIso 1 IsRingHomIsoΣ (isProp×4 (isSetRing (_ , S) _ _) (isSetRing (_ , S) _ _) (isPropΠ2 λ _ _ → isSetRing (_ , S) _ _) (isPropΠ2 λ _ _ → isSetRing (_ , S) _ _) (isPropΠ λ _ → isSetRing (_ , S) _ _)) isSetRingHom : (R : Ring ℓ) (S : Ring ℓ') → isSet (RingHom R S) isSetRingHom R S = isSetΣSndProp (isSetΠ (λ _ → isSetRing S)) (λ f → isPropIsRingHom (snd R) f (snd S)) RingHomPathP : (R S T : Ring ℓ) (p : S ≡ T) (φ : RingHom R S) (ψ : RingHom R T) → PathP (λ i → R .fst → p i .fst) (φ .fst) (ψ .fst) → PathP (λ i → RingHom R (p i)) φ ψ RingHomPathP R S T p φ ψ q = ΣPathP (q , isProp→PathP (λ _ → isPropIsRingHom _ _ _) _ _) RingHom≡ : {R S : Ring ℓ} {φ ψ : RingHom R S} → fst φ ≡ fst ψ → φ ≡ ψ RingHom≡ = Σ≡Prop λ f → isPropIsRingHom _ f _ 𝒮ᴰ-Ring : DUARel (𝒮-Univ ℓ) RingStr ℓ 𝒮ᴰ-Ring = 𝒮ᴰ-Record (𝒮-Univ _) IsRingEquiv (fields: data[ 0r ∣ null ∣ pres0 ] data[ 1r ∣ null ∣ pres1 ] data[ _+_ ∣ bin ∣ pres+ ] data[ _·_ ∣ bin ∣ pres· ] data[ -_ ∣ un ∣ pres- ] prop[ isRing ∣ (λ _ _ → isPropIsRing _ _ _ _ _) ]) where open RingStr open IsRingHom -- faster with some sharing null = autoDUARel (𝒮-Univ _) (λ A → A) un = autoDUARel (𝒮-Univ _) (λ A → A → A) bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A) RingPath : (R S : Ring ℓ) → RingEquiv R S ≃ (R ≡ S) RingPath = ∫ 𝒮ᴰ-Ring .UARel.ua -- Rings have an abelian group and a monoid Ring→AbGroup : Ring ℓ → AbGroup ℓ Ring→AbGroup (A , ringstr _ _ _ _ _ R) = A , abgroupstr _ _ _ (IsRing.+IsAbGroup R) Ring→Group : Ring ℓ → Group ℓ Ring→Group = AbGroup→Group ∘ Ring→AbGroup Ring→AddMonoid : Ring ℓ → Monoid ℓ Ring→AddMonoid = Group→Monoid ∘ Ring→Group Ring→MultMonoid : Ring ℓ → Monoid ℓ Ring→MultMonoid (A , ringstr _ _ _ _ _ R) = monoid _ _ _ (IsRing.·IsMonoid R) -- Smart constructor for ring homomorphisms -- that infers the other equations from pres1, pres+, and pres· module _ {R : Ring ℓ} {S : Ring ℓ'} {f : ⟨ R ⟩ → ⟨ S ⟩} where private module R = RingStr (R .snd) module S = RingStr (S .snd) module _ (p1 : f R.1r ≡ S.1r) (p+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y) (p· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y) where open IsRingHom private isGHom : IsGroupHom (Ring→Group R .snd) f (Ring→Group S .snd) isGHom = makeIsGroupHom p+ makeIsRingHom : IsRingHom (R .snd) f (S .snd) makeIsRingHom .pres0 = isGHom .IsGroupHom.pres1 makeIsRingHom .pres1 = p1 makeIsRingHom .pres+ = p+ makeIsRingHom .pres· = p· makeIsRingHom .pres- = isGHom .IsGroupHom.presinv
################################################# ###### Integers and Floating-Point Numbers ###### ################################################# # Julia's primitive numeric types: # Integer types # Type Signed? Number of bits Smallest value Largest value # Int8 ✓ 8 -2^7 2^7 - 1 # UInt8 8 0 2^8 - 1 # Int16 ✓ 16 -2^15 2^15 - 1 # UInt16 16 0 2^16 - 1 # Int32 ✓ 32 -2^31 2^31 - 1 # UInt32 32 0 2^32 - 1 # Int64 ✓ 64 -2^63 2^63 - 1 # UInt64 64 0 2^64 - 1 # Int128 ✓ 128 -2^127 2^127 - 1 # UInt128 128 0 2^128 - 1 # Bool N/A 8 false (0) true (1) <- implemented as an 8-bit primitive type # Floating-point types: # Type Precision Number of bits # Float16 half 16 # Float32 single 32 # Float64 double 64 typeof(12) # Int64 # Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits 0-9a-f # (the capitalized digits A-F also work for input). The size of the unsigned value is determined # by the number of hex digits used: x = 0x1 # 0x01 typeof(x) # UInt8 x = 0x123 # UInt16 x = 0x1234567 # UInt32 ################################## ###### Arithmetic Operators ###### ################################## # The following arithmetic operators are supported on all primitive numeric types: # Expression Name Description # +x unary plus the identity operation # -x unary minus maps values to their additive inverses # x + y binary plus performs addition # x - y binary minus performs subtraction # x * y times performs multiplication # x / y divide performs division # x ÷ y integer divide x / y, truncated to an integer # x \ y inverse divide equivalent to y / x # x ^ y power raises x to the yth power # x % y remainder equivalent to rem(x,y) ############################### ###### Boolean Operators ###### ############################### # Expression Name # !x negation # x && y short-circuiting and # x || y short-circuiting or ############################### ###### Bitwise Operators ###### ############################### # Expression Name # ~x bitwise not # x & y bitwise and # x | y bitwise or # x ⊻ y bitwise xor (exclusive or) # x >>> y logical shift right # x >> y arithmetic shift right # x << y logical/arithmetic shift left ################################# ###### Numeric Comparisons ###### ################################# # Operator Name # == equality # !=, ≠ inequality # < less than # <=, ≤ less than or equal to # > greater than # >=, ≥ greater than or equal to ################################ ###### Updating operators ###### ################################ # += -= *= /= \= ÷= %= ^= &= |= ⊻= >>>= >>= <<= ####################### ###### Functions ###### ####################### function g(x,y) return x + y end function hypot(x,y) x = abs(x) y = abs(y) if x > y r = y/x return x*sqrt(1+r*r) end if y == 0 return zero(x) end r = x/y return y*sqrt(1+r*r) end function fact(n::Int) n >= 0 || error("n must be non-negative") n == 0 && return 1 n * fact(n-1) end ################################# ###### Anonymous Functions ###### ################################# x -> x + x function (x) x + x end
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) -- Cocone over a Functor F (from shape category J into category C) module Categories.Diagram.Cocone {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where open Category C open Functor F open import Level record Coapex (N : Obj) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where field ψ : (X : Category.Obj J) → F₀ X ⇒ N commute : ∀ {X Y} (f : J [ X , Y ]) → ψ Y ∘ F₁ f ≈ ψ X record Cocone : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where field {N} : Obj coapex : Coapex N open Coapex coapex public open Coapex open Cocone record Cocone⇒ (c c′ : Cocone) : Set (ℓ ⊔ e ⊔ o′) where field arr : N c ⇒ N c′ commute : ∀ {X} → arr ∘ ψ c X ≈ ψ c′ X open Cocone⇒
import numpy as np from . import edgefit from . import imagefit from .models import simulate def analyze(qpi, r0, method="edge", model="projection", edgekw={}, imagekw={}, ret_center=False, ret_pha_offset=False, ret_qpi=False): """Determine refractive index and radius of a spherical object Parameters ---------- qpi: qpimage.QPImage Quantitative phase image data r0: float Approximate radius of the sphere [m] method: str The method used to determine the refractive index can either be "edge" (determine the radius from the edge detected in the phase image) or "image" (perform a 2D phase image fit). model: str The light-scattering model used by `method`. If `method` is "edge", only "projection" is allowed. If `method` is "image", `model` can be one of "mie", "projection", "rytov", or "rytov-sc". edgekw: dict Keyword arguments for tuning the edge detection algorithm, see :func:`qpsphere.edgefit.contour_canny`. imagekw: dict Keyword arguments for tuning the image fitting algorithm, see :func:`qpsphere.imagefit.alg.match_phase` ret_center: bool If True, return the center coordinate of the sphere. ret_pha_offset: bool If True, return the phase image background offset. ret_qpi: bool If True, return the modeled data as a :class:`qpimage.QPImage`. Returns ------- n: float Computed refractive index r: float Computed radius [m] c: tuple of floats Only returned if `ret_center` is True; Center position of the sphere [px] pha_offset: float Only returned if `ret_pha_offset` is True; Phase image background offset qpi_sim: qpimage.QPImage Only returned if `ret_qpi` is True; Modeled data Notes ----- If `method` is "image", then the "edge" method is used as a first step to estimate initial parameters for radius, refractive index, and position of the sphere using `edgekw`. If this behavior is not desired, please make use of the method :func:`qpsphere.imagefit.analyze`. """ if method == "edge": if model != "projection": raise ValueError("`method='edge'` requires `model='projection'`!") n, r, c = edgefit.analyze(qpi=qpi, r0=r0, edgekw=edgekw, ret_center=True, ret_edge=False, ) res = [n, r] if ret_center: res.append(c) if ret_pha_offset: res.append(0) if ret_qpi: qpi_sim = simulate(radius=r, sphere_index=n, medium_index=qpi["medium index"], wavelength=qpi["wavelength"], grid_size=qpi.shape, model="projection", pixel_size=qpi["pixel size"], center=c) res.append(qpi_sim) elif method == "image": try: n0, r0, c0 = edgefit.analyze(qpi=qpi, r0=r0, edgekw=edgekw, ret_center=True, ret_edge=False, ) except (edgefit.EdgeDetectionError, edgefit.RadiusExceedsImageSizeError): # proceed with best guess c0 = np.array(qpi.shape) / 2 n0 = qpi["medium index"] + np.sign(np.sum(qpi.pha)) * .01 res = imagefit.analyze(qpi=qpi, model=model, n0=n0, r0=r0, c0=c0, imagekw=imagekw, ret_center=ret_center, ret_pha_offset=ret_pha_offset, ret_qpi=ret_qpi ) else: raise NotImplementedError("`method` must be 'edge' or 'image'!") return res def bg_phase_mask_from_sim(sim, radial_clearance=1.1): """Return the background phase mask of a qpsphere simulation Parameters ---------- sim: qpimage.QPImage Quantitative phase data simulated with qpsphere; The simulation keyword arguments "sim center", "sim radius", and "pixel size" must be present in `sim.meta`. radial_clearance: float Multiplicator to the fitted radius of the sphere; modifies the size of the mask; set to "1" to use the radius determined by :func:`qpsphere.analyze`. The circular area containing the phase object is set to `False` in the output `mask` image. Returns ------- mask: boolean 2d np.ndarray The mask is `True` for background regions and `False` for object regions. """ # Mask values around the object cx, cy = sim["sim center"] radius = sim["sim radius"] px_um = sim["pixel size"] x = np.arange(sim.shape[0]).reshape(-1, 1) y = np.arange(sim.shape[1]).reshape(1, -1) rsq = (x - cx)**2 + (y - cy)**2 mask = rsq > (radius/px_um * radial_clearance)**2 return mask def bg_phase_mask_for_qpi(qpi, r0, method="edge", model="projection", edgekw={}, imagekw={}, radial_clearance=1.1): """Determine the background phase mask for a spherical phase object The position and radius of the phase object are determined with :func:`analyze`, to which the corresponding keyword arguments are passed. A binary mask is created from the simulation results via :func:`bg_phase_mask_from_sim`. Parameters ---------- qpi: qpimage.QPImage Quantitative phase image data r0: float Approximate radius of the sphere [m] method: str The method used to determine the refractive index can either be "edge" (determine the radius from the edge detected in the phase image) or "image" (perform a 2D phase image fit). model: str The light-scattering model used by `method`. If `method` is "edge", only "projection" is allowed. If `method` is "image", `model` can be one of "mie", "projection", "rytov", or "rytov-sc". edgekw: dict Keyword arguments for tuning the edge detection algorithm, see :func:`qpsphere.edgefit.contour_canny`. imagekw: dict Keyword arguments for tuning the image fitting algorithm, see :func:`qpsphere.imagefit.alg.match_phase` radial_clearance: float Multiplicator to the fitted radius of the sphere; modifies the size of the mask; set to "1" to use the radius determined by :func:`qpsphere.analyze`. The circular area containing the phase object is set to `False` in the output `mask` image. Returns ------- mask: boolean 2d np.ndarray The mask is `True` for background regions and `False` for object regions. """ # fit sphere _, _, sim = analyze(qpi=qpi, r0=r0, method=method, model=model, edgekw=edgekw, imagekw=imagekw, ret_qpi=True) # determine mask mask = bg_phase_mask_from_sim(sim=sim, radial_clearance=radial_clearance) return mask
-- @@stderr -- dtrace: failed to compile script test/unittest/types/err.D_DECL_ENCONST.badeval.d: [D_DECL_ENCONST] line 18: enumerator 'TAG' must be assigned to an integral constant expression
State Before: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type ?u.27970 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F ⊢ ‖inclusionInDoubleDual 𝕜 E‖ ≤ 1 State After: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type ?u.27970 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F ⊢ ‖ContinuousLinearMap.id 𝕜 (Dual 𝕜 E)‖ ≤ 1 Tactic: rw [inclusionInDoubleDual_norm_eq] State Before: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type ?u.27970 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F ⊢ ‖ContinuousLinearMap.id 𝕜 (Dual 𝕜 E)‖ ≤ 1 State After: no goals Tactic: exact ContinuousLinearMap.norm_id_le
[STATEMENT] lemma ladder_shift_j_length: "length (ladder_shift_j d L) = length L" [PROOF STATE] proof (prove) goal (1 subgoal): 1. length (ladder_shift_j d L) = length L [PROOF STEP] by (induct L, auto)
Set Warnings "-notation-overridden,-parsing". Require Import Tweetnacl_verif.init_tweetnacl. Require Import Tweetnacl_verif.spec_A. Require Import Tweetnacl.Libs.Export. Require Import Tweetnacl.ListsOp.Export. Require Import Tweetnacl.Low.A. Open Scope Z. Definition Gprog : funspecs := ltac:(with_library prog [A_spec]). Import Low. Lemma body_A: semax_body Vprog Gprog f_A A_spec. Proof. start_function. unfold nm_overlap_array_sep_3, nm_overlap_array_sep_3' in *. assert(HA: Zlength (A a b) = 16). rewrite A_Zlength ; omega. assert(HmA: Zlength (mVI64 (A a b)) = 16). rewrite ?Zlength_map //. assert(Forall (fun x : ℤ => amin + bmin < x < amax + bmax) (A a b)). apply A_bound_Zlength_lt ; trivial ; omega. assert(Htkdp: tkdp 16 (mVI64 (A a b)) o = mVI64 (A a b)). rewrite -HmA tkdp_all ; trivial ; rewrite ?Zlength_map; omega. assert(Haux1: forall i, 0 <= i < 16 -> exists aux1, Vlong aux1 = Znth i (mVI64 a) Vundef). intros; erewrite (Znth_map Int64.zero) ; [eexists ; reflexivity | rewrite Zlength_map; omega]. assert(Haux2: forall i, 0 <= i < 16 -> exists aux2, Vlong aux2 = Znth i (mVI64 b) Vundef). intros; erewrite (Znth_map Int64.zero) ; [eexists ; reflexivity | rewrite Zlength_map; omega]. assert(Haux3: forall i, 0 <= i < 16 -> exists aux3, Vlong aux3 = Znth i (tkdp i (mVI64 (A a b)) (mVI64 a)) Vundef). intros ; rewrite /tkdp -?map_firstn -?map_skipn -?map_app ; erewrite (Znth_map Int64.zero);[eexists ; reflexivity | rewrite ?Zlength_map]; change (firstn (nat_of_Z i) (A a b) ++ skipn (nat_of_Z i) a) with (tkdp i (A a b) a); rewrite tkdp_Zlength HA ; omega. assert(Haux4: forall i, 0 <= i < 16 -> exists aux4, Vlong aux4 = Znth i (tkdp i (mVI64 (A a b)) (mVI64 b)) Vundef). intros ; rewrite /tkdp -?map_firstn -?map_skipn -?map_app ; erewrite (Znth_map Int64.zero);[eexists ; reflexivity | rewrite ?Zlength_map]; change (firstn (nat_of_Z i) (A a b) ++ skipn (nat_of_Z i) a) with (tkdp i (A a b) a); rewrite tkdp_Zlength HA ; omega. flatten ; Intros. 1: subst o v_a. 2: subst o v_b. 3: subst b v_b. 4: subst o a v_o v_a. 1: forward_for_simple_bound 16 (A_Inv sho sha shb v_o v_o v_b (mVI64 a) a amin amax b bmin bmax 0); [ unfold nm_overlap_array_sep_3' ; entailer!| | rewrite Htkdp; forward; unfold nm_overlap_array_sep_3' ; entailer!]. 2: forward_for_simple_bound 16 (A_Inv sho sha shb v_o v_a v_o (mVI64 b) a amin amax b bmin bmax 1); [ unfold nm_overlap_array_sep_3' ; entailer! | | rewrite Htkdp; forward; unfold nm_overlap_array_sep_3' ; entailer!]. 3: forward_for_simple_bound 16 (A_Inv sho sha shb v_o v_a v_a o a amin amax a amin amax 2); [ unfold nm_overlap_array_sep_3' ; entailer!| | rewrite Htkdp; forward; unfold nm_overlap_array_sep_3' ; entailer!]. 4: forward_for_simple_bound 16 (A_Inv sho sha shb v_b v_b v_b (mVI64 b) b bmin bmax b bmin bmax 3); [ unfold nm_overlap_array_sep_3' ; entailer!| | rewrite Htkdp; forward; unfold nm_overlap_array_sep_3' ; entailer!]. 5: forward_for_simple_bound 16 (A_Inv sho sha shb v_o v_a v_b o a amin amax b bmin bmax 4); [ unfold nm_overlap_array_sep_3' ; entailer!| | rewrite Htkdp; forward; unfold nm_overlap_array_sep_3' ; entailer!]. all: unfold nm_overlap_array_sep_3' ; simpl ; Intros. all: specialize Haux1 with i ; destruct (Haux1 H7) as [aux1 HHaux1]. all: specialize Haux2 with i ; destruct (Haux2 H7) as [aux2 HHaux2]. all: specialize Haux3 with i ; destruct (Haux3 H7) as [aux3 HHaux3]. all: specialize Haux4 with i ; destruct (Haux4 H7) as [aux4 HHaux4]. all: forward. 3,4,5,6,9,10: rewrite -HHaux1. 1,2,9,10: rewrite -HHaux3. 1,3,5,7,9: entailer!. all: forward. 7,8: rewrite -HHaux1. 1,2,9,10: rewrite -HHaux2. 5,6: rewrite -HHaux3. 7,8: rewrite -HHaux4. 1,3,5,7,9: entailer!. all: forward. all: entailer!. all: rewrite map_map in HHaux1. all: rewrite map_map in HHaux2. all: rewrite (Znth_map 0) in HHaux1; [ | omega ]. all: rewrite (Znth_map 0) in HHaux2; [ | omega ]. all: rewrite Znth_tkdp in HHaux3 ; [ | omega]. all: rewrite Znth_tkdp in HHaux4 ; [ | omega]. all: rewrite map_map in HHaux4. all: rewrite map_map in HHaux3. all: try (rewrite (Znth_map 0) in HHaux3; [ | omega ]). all: try (rewrite (Znth_map 0) in HHaux4; [ | omega ]). 1,3,5,7,9: inversion HHaux1. 1,2,3,4,5: inversion HHaux2. 1,2,3,4,5: inversion HHaux3. 1,2,3,4,5: inversion HHaux4. all: try assert(-2^62 < (Znth i a 0) < 2 ^ 62) by (solve_bounds_by_values_ H). all: try assert(-2^62 < (Znth i b 0) < 2 ^ 62) by (solve_bounds_by_values_ H0). all: try assert((-2^62) + (-2^62) <= Znth i a 0 + Znth i b 0 <= 2^62 + 2^62) by omega. all: try assert((-2^62) + (-2^62) <= Znth i a 0 + Znth i a 0 <= 2^62 + 2^62) by omega. all: try assert((-2^62) + (-2^62) <= Znth i b 0 + Znth i b 0 <= 2^62 + 2^62) by omega. 1,2,3,4,5: rewrite ?Int64.signed_repr ; solve_bounds_by_values. all: unfold nm_overlap_array_sep_3' ; simpl ; data_atify ; cancel ; replace_cancel. all: unfold A. (* postcond |-- loop invariant *) all: clean_context_from_VST. all: rewrite /tkdp -?map_firstn -?map_skipn -?map_app in HHaux3. all: rewrite /tkdp -?map_firstn -?map_skipn -?map_app in HHaux4. all: inv HHaux1 ; inv HHaux2 ; inv HHaux3 ; inv HHaux4. all: rewrite add64_repr /nat_of_Z. all: rewrite ?Znth_nth; try omega. all: rewrite <- ZsubList_nth_Zlength ; try omega. all: rewrite /tkdp ?simple_S_i ; try omega. all: rewrite /A in HA, HmA. all: rewrite (upd_Znth_app_step_Zlength _ _ _ Vundef); try omega. all: f_equal ; rewrite map_map (Znth_map 0) ?Znth_nth ; try reflexivity. all: omega. Qed. Close Scope Z.
CCHHAAPPTTEERR 11 FFRRAANNZZ LLIISSPP 11..11.. FRANZ LISPwas algebraic manipulation, artificial intelligence, and programming languages at the Univer- sity of California at Berkeley. Its roots are in a PDP-11 Lisp system which originally came from Harvard. As it grew it adopted features of Maclisp and Lisp Machine Lisp. Substantial compatibility with other Lisp dialects (Interlisp, UCILisp, CMULisp) is achieved by means of support packages and compiler switches. The heart of FRANZ LISP is written almost entirely in the programming language C. Of course, it has been greatly extended by additions written in Lisp. A small part is written in the assembly lan- guage for the current host machines, VAXen and a cou- ple of flavors of 68000. Because FRANZ LISP is writ- ten in C, it is relatively portable and easy to com- prehend. FRANZ LISP is capable of running large lisp pro- grams in a timesharing environment, has facilities for arrays and user defined structures, has a user con- trolled reader with character and word macro capabil- ities, and can interact directly with compiled Lisp, C, Fortran, and Pascal code. This document is a reference manual for the FRANZ LISP system. It is not a Lisp primer or introduction to the language. Some parts will be of interest pri- marily to those maintaining FRANZ LISP at their com- puter site. There is an additional document entitled _T_h_e _F_r_a_n_z _L_i_s_p _S_y_s_t_e_m_, _b_y _J_o_h_n _F_o_d_e_r_a_r_o_, _w_h_i_c_h _p_a_r_- _t_i_a_l_l_y _d_e_s_c_r_i_b_e_s _t_h_e _s_y_s_t_e_m _i_m_p_l_e_m_e_n_t_a_t_i_o_n_. _F_R_A_N_Z _L_I_S_P_, _a_s _d_e_l_i_v_e_r_e_d _b_y _B_e_r_k_e_l_e_y_, _i_n_c_l_u_d_e_s _a_l_l _s_o_u_r_c_e _c_o_d_e _a_n_d _m_a_c_h_i_n_e _r_e_a_d_a_b_l_e _v_e_r_s_i_o_n _o_f _t_h_i_s _m_a_n_u_a_l _a_n_d _s_y_s_t_e_m _d_o_c_u_m_e_n_t_. _T_h_e _s_y_s_t_e_m _d_o_c_u_m_e_n_t _i_s _i_n _a _s_i_n_g_l_e _f_i_l_e _n_a_m_e_d _"_f_r_a_n_z_._n_" _i_n _t_h_e _"_d_o_c_" _s_u_b_d_i_r_e_c_t_o_r_y_. ____________________ is rumored that this name has something to do with Franz Liszt [F_rants List] (1811-1886) a Hungarian composer and keyboard virtuoso. These allegations have never been proven. FFRRAANNZZ LLIISSPP 11--11 FFRRAANNZZ LLIISSPP 11--22 This document is divided into four Movements. In the first one we will attempt to describe the language of FRANZ LISP precisely and completely as it now stands (Opus 38.69, June 1983). In the second Move- ment we will look at the reader, function types, arrays and exception handling. In the third Movement we will look at several large support packages written to help the FRANZ LISP user, namely the trace package, compiler, fixit and stepping package. Finally the fourth movement contains an index into the other movements. In the rest of this chapter we shall exam- ine the data types of FRANZ LISP. The conventions used in the description of the FRANZ LISP functions will be given in S1.3 -- it is very important that these conventions are understood. 11..22.. DDaattaa TTyyppeess FRANZ LISP has fourteen data types. In this section we shall look in detail at each type and if a type is divisible we shall look inside it. There is a Lisp function _t_y_p_e which will return the type name of a lisp object. This is the official FRANZ LISP name for that type and we will use this name and this name only in the manual to avoid confus- ing the reader. The types are listed in terms of importance rather than alphabetically. 11..22..00.. lliissppvvaall This is the name we use to describe any Lisp object. The function _t_y_p_e will never return `lispval'. 11..22..11.. ssyymmbbooll This object corresponds to a variable in most other programming languages. It may have a value or may be `unbound'. A symbol may be _l_a_m_b_d_a _b_o_u_n_d meaning that its current value is stored away somewhere and the symbol is given a new value for the duration of a certain context. When the Lisp processor leaves that context, the symbol's cur- rent value is thrown away and its old value is restored. A symbol may also have a _f_u_n_c_t_i_o_n _b_i_n_d_i_n_g. This function binding is static; it cannot be lambda bound. Whenever the symbol is used in the func- tional position of a Lisp expression the function binding of the symbol is examined (see Chapter 4 for more details on evaluation). A symbol may also have a _p_r_o_p_e_r_t_y _l_i_s_t, another static data structure. The property list consists Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--33 of a list of an even number of elements, considered to be grouped as pairs. The first element of the pair is the _i_n_d_i_c_a_t_o_r the second the _v_a_l_u_e of that indicator. Each symbol has a print name _(_p_n_a_m_e_) which is how this symbol is accessed from input and referred to on (printed) output. A symbol also has a hashlink used to link symbols together in the oblist -- this field is inaccessi- ble to the lisp user. Symbols are created by the reader and by the func- tions _c_o_n_c_a_t, _m_a_k_n_a_m and their derivatives. Most symbols live on FRANZ LISP's sole _o_b_l_i_s_t, and therefore two symbols with the same print name are usually the exact same object (they are _e_q). Sym- bols which are not on the oblist are said to be _u_n_i_n_t_e_r_n_e_d_. The function _m_a_k_n_a_m creates uninterned symbols while _c_o_n_c_a_t creates _i_n_t_e_r_n_e_d ones. +-------------+-----------+-----------+---------------------+ |Subpart name | Get value | Set value | Type | | | | | | +-------------+-----------+-----------+---------------------+ | value | eval | set | lispval | | | | setq | | +-------------+-----------+-----------+---------------------+ | property | plist | setplist | list or nil | | list | get | putprop | | | | | defprop | | +-------------+-----------+-----------+---------------------+ | function | getd | putd | array, binary, list | | binding | | def | or nil | +-------------+-----------+-----------+---------------------+ | print name | get_pname | | string | +-------------+-----------+-----------+---------------------+ | hash link | | | | +-------------+-----------+-----------+---------------------+ 11..22..22.. lliisstt A list cell has two parts, called the car and cdr. List cells are created by the func- tion _c_o_n_s. Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--44 +-------------+-----------+-----------+---------+ |Subpart name | Get value | Set value | Type | | | | | | +-------------+-----------+-----------+---------+ | car | car | rplaca | lispval | +-------------+-----------+-----------+---------+ | cdr | cdr | rplacd | lispval | +-------------+-----------+-----------+---------+ 11..22..33.. bbiinnaarryy This type acts as a function header for machine coded functions. It has two parts, a pointer to the start of the function and a symbol whose print name describes the argument _d_i_s_c_i_p_l_i_n_e. The discipline (if _l_a_m_b_d_a, _m_a_c_r_o or _n_l_a_m_b_d_a) deter- mines whether the arguments to this function will be evaluated by the caller before this function is called. If the discipline is a string (specifi- cally "_s_u_b_r_o_u_t_i_n_e", "_f_u_n_c_t_i_o_n", "_i_n_t_e_g_e_r_-_f_u_n_c_t_i_o_n", "_r_e_a_l_-_f_u_n_c_t_i_o_n", "_c_-_f_u_n_c_t_i_o_n", "_d_o_u_b_l_e_-_c_-_f_u_n_c_t_i_o_n", or "_v_e_c_t_o_r_-_c_-_f_u_n_c_t_i_o_n" ) then this function is a foreign subroutine or function (see S8.5 for more details on this). Although the type of the _e_n_t_r_y field of a binary type object is usually ssttrriinngg or ootthheerr, the object pointed to is actually a sequence of machine instructions. Objects of type binary are created by _m_f_u_n_c_t_i_o_n_, _c_f_a_s_l_, and _g_e_t_a_d_d_r_e_s_s_. +-------------+-----------+-----------+------------------+ |Subpart name | Get value | Set value | Type | | | | | | +-------------+-----------+-----------+------------------+ | entry | getentry | | string or fixnum | +-------------+-----------+-----------+------------------+ | discipline | getdisc | putdisc | symbol or fixnum | +-------------+-----------+-----------+------------------+ 11..22..44.. ffiixxnnuumm A fixnum is an integer constant in the range -2to 2Small fixnums (-1024 to 1023) are stored in a special table so they needn't be allo- cated each time one is needed. In principle, the range for fixnums is machine dependent, although all current implementations for franz have this range. Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--55 11..22..55.. fflloonnuumm A flonum is a double precision real number. On the VAX, the range is +-2.9x10to +-1.7x10There are approximately sixteen decimal digits of precision. Other machines may have other ranges. 11..22..66.. bbiiggnnuumm A bignum is an integer of potentially unbounded size. When integer arithmetic exceeds the limits of fixnums mentioned above, the calcula- tion is automatically done with bignums. Should calculation with bignums give a result which can be represented as a fixnum, then the fixnum represen- tation will be used.(f current algorithms for inte- ger arithmetic operations will return (in certain cases) a result between +-2and 2as a bignum although this could be represented as a fixnum. This contraction is known as _i_n_t_e_g_e_r _n_o_r_m_a_l_i_z_a_t_i_o_n. Many Lisp functions assume that integers are nor- malized. Bignums are composed of a sequence of lliisstt cells and a cell known as an ssddoott.. The user should consider a bbiiggnnuumm structure indivisible and use functions such as _h_a_i_p_a_r_t, and _b_i_g_n_u_m_-_l_e_f_t_s_h_i_f_t to extract parts of it. 11..22..77.. ssttrriinngg A string is a null terminated sequence of characters. Most functions of symbols which operate on the symbol's print name will also work on strings. The default reader syntax is set so that a sequence of characters surrounded by dou- ble quotes is a string. 11..22..88.. ppoorrtt A port is a structure which the system I/O routines can reference to transfer data between the Lisp system and external media. Unlike other Lisp objects there are a very limited number of ports (20). Ports are allocated by _i_n_f_i_l_e and _o_u_t_- _f_i_l_e and deallocated by _c_l_o_s_e and _r_e_s_e_t_i_o. The _p_r_i_n_t function prints a port as a percent sign fol- lowed by the name of the file it is connected to (if the port was opened by _f_i_l_e_o_p_e_n_, _i_n_f_i_l_e_, _o_r _o_u_t_f_i_l_e). During initialization, FRANZ LISP binds the symbol ppiippoorrtt to a port attached to the stan- dard input stream. This port prints as %$stdin. There are ports connected to the standard output and error streams, which print as %$stdout and %$stderr. This is discussed in more detail at the beginning of Chapter 5. Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--66 11..22..99.. vveeccttoorr Vectors are indexed sequences of data. They can be used to implement a notion of user-defined types via their associated property list. They make hhuunnkkss (see below) logically unnec- essary, although hunks are very efficiently garbage collected. There is a second kind of vector, called an immediate-vector, which stores binary data. The name that the function _t_y_p_e returns for immediate-vectors is vveeccttoorrii. Immediate-vectors could be used to implement strings and block-flonum arrays, for example. Vectors are discussed in chapter 9. The functions _n_e_w_-_v_e_c_t_o_r, and _v_e_c_t_o_r, can be used to create vectors. +-------------+-----------+-----------+---------+ |Subpart name | Get value | Set value | Type | | | | | | +-------------+-----------+-----------+---------+ | datum[_i] | vref | vset | lispval | +-------------+-----------+-----------+---------+ | property | vprop | vsetprop | lispval | | | | vputprop | | +-------------+-----------+-----------+---------+ | size | vsize | - | fixnum | +-------------+-----------+-----------+---------+ 11..22..1100.. aarrrraayy Arrays are rather complicated types and are fully described in Chapter 9. An array consists of a block of contiguous data, a function to access that data, and auxiliary fields for use by the accessing function. Since an array's accessing function is created by the user, an array can have any form the user chooses (e.g. n- dimensional, triangular, or hash table). Arrays are created by the function _m_a_r_r_a_y. Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--77 +----------------+-----------+-----------+---------------------+ | Subpart name | Get value | Set value | Type | | | | | | +----------------+-----------+-----------+---------------------+ |access function | getaccess | putaccess | binary, list | | | | | or symbol | +----------------+-----------+-----------+---------------------+ | auxiliary | getaux | putaux | lispval | +----------------+-----------+-----------+---------------------+ | data | arrayref | replace | block of contiguous | | | | set | lispval | +----------------+-----------+-----------+---------------------+ | length | getlength | putlength | fixnum | +----------------+-----------+-----------+---------------------+ | delta | getdelta | putdelta | fixnum | +----------------+-----------+-----------+---------------------+ 11..22..1111.. vvaalluuee A value cell contains a pointer to a lispval. This type is used mainly by arrays of general lisp objects. Value cells are created with the _p_t_r function. A value cell containing a pointer to the symbol `foo' is printed as `(ptr to)foo' 11..22..1122.. hhuunnkk A hunk is a vector of from 1 to 128 lispvals. Once a hunk is created (by _h_u_n_k or _m_a_k_h_u_n_k) it cannot grow or shrink. The access time for an element of a hunk is slower than a list cell element but faster than an array. Hunks are really only allocated in sizes which are powers of two, but can appear to the user to be any size in the 1 to 128 range. Users of hunks must realize that _(_n_o_t _(_a_t_o_m _'_l_i_s_p_v_a_l_)_) will return true if _l_i_s_p_v_a_l is a hunk. Most lisp systems do not have a direct test for a list cell and instead use the above test and assume that a true result means _l_i_s_p_v_a_l is a list cell. In FRANZ LISP you can use _d_t_p_r to check for a list cell. Although hunks are not list cells, you can still access the first two hunk ele- ments with _c_d_r and _c_a_r and you can access any hunk element with _c_x_r.(f a hunk, the function _c_d_r refer- ences the first element and _c_a_r the second. You can set the value of the first two elements of a hunk with _r_p_l_a_c_d and _r_p_l_a_c_a and you can set the value of any element of the hunk with _r_p_l_a_c_x. A hunk is printed by printing its contents surrounded by { and }. However a hunk cannot be read in in this way in the standard lisp system. It is easy Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--88 to write a reader macro to do this if desired. 11..22..1133.. ootthheerr Occasionally, you can obtain a pointer to storage not allocated by the lisp sys- tem. One example of this is the entry field of those FRANZ LISP functions written in C. Such objects are classified as of type ootthheerr. Foreign functions which call malloc to allocate their own space, may also inadvertantly create such objects. The garbage collector is supposed to ignore such objects. 11..33.. DDooccuummeennttaattiioonn The conventions used in the follow- ing chapters were designed to give a great deal of information in a brief space. The first line of a function description contains the function name in bboolldd ffaaccee and then lists the arguments, if any. The arguments all have names which begin with a letter or letters and an underscore. The letter(s) gives the allowable type(s) for that argument according to this table. Printed: October 16, 1993 FFRRAANNZZ LLIISSPP 11--99 +-------+----------------------------------------------+ |Letter | Allowable type(s) | | | | +-------+----------------------------------------------+ |g | any type | +-------+----------------------------------------------+ |s | symbol (although nil may not be allowed) | +-------+----------------------------------------------+ |t | string | +-------+----------------------------------------------+ |l | list (although nil may be allowed) | +-------+----------------------------------------------+ |n | number (fixnum, flonum, bignum) | +-------+----------------------------------------------+ |i | integer (fixnum, bignum) | +-------+----------------------------------------------+ |x | fixnum | +-------+----------------------------------------------+ |b | bignum | +-------+----------------------------------------------+ |f | flonum | +-------+----------------------------------------------+ |u | function type (either binary or lambda body) | +-------+----------------------------------------------+ |y | binary | +-------+----------------------------------------------+ |v | vector | +-------+----------------------------------------------+ |V | vectori | +-------+----------------------------------------------+ |a | array | +-------+----------------------------------------------+ |e | value | +-------+----------------------------------------------+ |p | port (or nil) | +-------+----------------------------------------------+ |h | hunk | +-------+----------------------------------------------+ In the first line of a function description, those arguments preceded by a quote mark are evaluated (usu- ally before the function is called). The quoting con- vention is used so that we can give a name to the result of evaluating the argument and we can describe the allowable types. If an argument is not quoted it does not mean that that argument will not be evalu- ated, but rather that if it is evaluated, the time at which it is evaluated will be specifically mentioned in the function description. Optional arguments are surrounded by square brackets. An ellipsis (...) means zero or more occurrences of an argument of the directly preceding type. Printed: October 16, 1993
[STATEMENT] lemma mult_lres_sub_assoc: "x * (y / z) \<le> (x * y) / z" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x * (y / z) \<le> x * y / z [PROOF STEP] by (meson dual_order.trans lres_galois mult_right_isotone lres_inverse lres_mult_sub_lres_lres)
lemma sets_restrict_space_cong: "sets M = sets N \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (restrict_space N \<Omega>)"
import Data.Vect import Decidable.Equality myExactLength : {m : _} -> (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a) myExactLength len input = case decEq m len of Yes Refl => Just input No contra => Nothing
If $f$ and $g$ are continuous real-valued functions on a topological space $X$, then the function $x \mapsto \max(f(x), g(x))$ is continuous.
The information contained in JoeBobBriggs.com is for general information purposes only. The information is provided by JoeBobBriggs.com and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to JoeBobBriggs.com or the information, products, services, or related graphics contained on JoeBobBriggs.com for any purpose. Any reliance you place on such information is therefore strictly at your own risk. In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of JoeBobBriggs.com. Through JoeBobBriggs.com you are able to link to other websites which are not under the control of JoeBobBriggs.com. We have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them. Every effort is made to keep JoeBobBriggs.com up and running smoothly. However,JoeBobBriggs.com takes no responsibility for, and will not be liable for, JoeBobBriggs.com being temporarily unavailable due to technical issues beyond our control.
lemma sphere_empty [simp]: "r < 0 \<Longrightarrow> sphere a r = {}" for a :: "'a::metric_space"
If $f$ is holomorphic on an open set $M$ and $f(w) \neq 0$ and $f(w) \neq a$ for all $w \in M - \{z\}$, then either $f$ or $1/f$ is bounded on a punctured neighborhood of $z$.
In 2014 , Fey was recognized by Elle Magazine during The Women in Hollywood Awards , honoring women for their outstanding achievements in film , spanning all aspects of the motion picture industry , including acting , directing , and producing .
module GDAL.Complex ( Complex(..) , module C ) where import Data.Complex as C hiding (Complex(..)) import qualified Data.Complex as C newtype Complex a = Complex { unComplex :: C.Complex a } deriving (Eq) instance Show a => Show (Complex a) where show (Complex c) = show c
[STATEMENT] lemma eff_Done[simp]: "eff Done s i = s" [PROOF STATE] proof (prove) goal (1 subgoal): 1. eff Done s i = s [PROOF STEP] unfolding eff_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. snd (snd (wt_cont_eff Done s i)) = s [PROOF STEP] by simp
State Before: α : Type u_2 β : Type u_3 ι : Type ?u.400065 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β → E g : α → β a : α hg : Measurable g hf : StronglyMeasurable f ⊢ (∫ (x : β), f x ∂↑(deterministic g hg) a) = f (g a) State After: no goals Tactic: rw [kernel.deterministic_apply, integral_dirac' _ _ hf]
lemma continuous_on_mult_right: fixes c::"'a::real_normed_algebra" shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
State Before: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x : α hl : Nodup l ⊢ formPerm l ^ length l = 1 State After: case H α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α ⊢ ↑(formPerm l ^ length l) x = ↑1 x Tactic: ext x State Before: case H α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α ⊢ ↑(formPerm l ^ length l) x = ↑1 x State After: case pos α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : x ∈ l ⊢ ↑(formPerm l ^ length l) x = ↑1 x case neg α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l ⊢ ↑(formPerm l ^ length l) x = ↑1 x Tactic: by_cases hx : x ∈ l State Before: case pos α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : x ∈ l ⊢ ↑(formPerm l ^ length l) x = ↑1 x State After: case pos.intro.intro α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l ⊢ ↑(formPerm l ^ length l) (nthLe l k hk) = ↑1 (nthLe l k hk) Tactic: obtain ⟨k, hk, rfl⟩ := nthLe_of_mem hx State Before: case pos.intro.intro α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l ⊢ ↑(formPerm l ^ length l) (nthLe l k hk) = ↑1 (nthLe l k hk) State After: no goals Tactic: simp [formPerm_pow_apply_nthLe _ hl, Nat.mod_eq_of_lt hk] State Before: case neg α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l ⊢ ↑(formPerm l ^ length l) x = ↑1 x State After: case neg α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l this : ¬x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} ⊢ ↑(formPerm l ^ length l) x = ↑1 x Tactic: have : x ∉ { x | (l.formPerm ^ l.length) x ≠ x } := by intro H refine' hx _ replace H := set_support_zpow_subset l.formPerm l.length H simpa using support_formPerm_le' _ H State Before: case neg α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l this : ¬x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} ⊢ ↑(formPerm l ^ length l) x = ↑1 x State After: no goals Tactic: simpa using this State Before: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l ⊢ ¬x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} State After: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l H : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} ⊢ False Tactic: intro H State Before: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l H : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} ⊢ False State After: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l H : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} ⊢ x ∈ l Tactic: refine' hx _ State Before: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l H : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x} ⊢ x ∈ l State After: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l H : x ∈ {x | ↑(formPerm l) x ≠ x} ⊢ x ∈ l Tactic: replace H := set_support_zpow_subset l.formPerm l.length H State Before: α : Type u_1 β : Type ?u.842481 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : ¬x ∈ l H : x ∈ {x | ↑(formPerm l) x ≠ x} ⊢ x ∈ l State After: no goals Tactic: simpa using support_formPerm_le' _ H
module Issue2858-nbe where open import Agda.Builtin.List data Ty : Set where α : Ty _↝_ : Ty → Ty → Ty variable σ τ : Ty Γ Δ Θ : List Ty Scoped : Set₁ Scoped = Ty → List Ty → Set data Var : Scoped where z : Var σ (σ ∷ Γ) s : Var σ Γ → Var σ (τ ∷ Γ) record Ren (Γ Δ : List Ty) : Set where field lookup : ∀ {σ} → Var σ Γ → Var σ Δ open Ren public bind : Ren Γ Δ → Ren (σ ∷ Γ) (σ ∷ Δ) lookup (bind ρ) z = z lookup (bind ρ) (s v) = s (lookup ρ v) refl : Ren Γ Γ lookup refl v = v step : Ren Γ (σ ∷ Γ) lookup step v = s v _∘_ : Ren Δ Θ → Ren Γ Δ → Ren Γ Θ lookup (ρ′ ∘ ρ) v = lookup ρ′ (lookup ρ v) interleaved mutual data Syn : Scoped data Chk : Scoped th^Syn : Ren Γ Δ → Syn σ Γ → Syn σ Δ th^Chk : Ren Γ Δ → Chk σ Γ → Chk σ Δ -- variable rule constructor var : Var σ Γ → Syn σ Γ th^Syn ρ (var v) = var (lookup ρ v) -- change of direction rules constructor emb : Syn σ Γ → Chk σ Γ cut : Chk σ Γ → Syn σ Γ th^Chk ρ (emb t) = emb (th^Syn ρ t) th^Syn ρ (cut c) = cut (th^Chk ρ c) -- function introduction and elimination constructor app : Syn (σ ↝ τ) Γ → Chk σ Γ → Syn τ Γ lam : Chk τ (σ ∷ Γ) → Chk (σ ↝ τ) Γ th^Syn ρ (app f t) = app (th^Syn ρ f) (th^Chk ρ t) th^Chk ρ (lam b) = lam (th^Chk (bind ρ) b) -- Model construction Val : Scoped Val α Γ = Syn α Γ Val (σ ↝ τ) Γ = ∀ {Δ} → Ren Γ Δ → Val σ Δ → Val τ Δ th^Val : Ren Γ Δ → Val σ Γ → Val σ Δ th^Val {σ = α} ρ t = th^Syn ρ t th^Val {σ = σ ↝ τ} ρ t = λ ρ′ → t (ρ′ ∘ ρ) interleaved mutual reify : ∀ σ → Val σ Γ → Chk σ Γ reflect : ∀ σ → Syn σ Γ → Val σ Γ -- base case reify α t = emb t reflect α t = t -- arrow case reify (σ ↝ τ) t = lam (reify τ (t step (reflect σ (var z)))) reflect (σ ↝ τ) t = λ ρ v → reflect τ (app (th^Syn ρ t) (reify σ v)) record Env (Γ Δ : List Ty) : Set where field lookup : ∀ {σ} → Var σ Γ → Val σ Δ open Env public th^Env : Ren Δ Θ → Env Γ Δ → Env Γ Θ lookup (th^Env ρ vs) v = th^Val ρ (lookup vs v) placeholders : Env Γ Γ lookup placeholders v = reflect _ (var v) extend : Env Γ Δ → Val σ Δ → Env (σ ∷ Γ) Δ lookup (extend ρ t) z = t lookup (extend ρ t) (s v) = lookup ρ v interleaved mutual eval^Syn : Env Γ Δ → Syn σ Γ → Val σ Δ eval^Chk : Env Γ Δ → Chk σ Γ → Val σ Δ -- variable eval^Syn vs (var v) = lookup vs v -- change of direction eval^Syn vs (cut t) = eval^Chk vs t eval^Chk vs (emb t) = eval^Syn vs t -- function introduction & elimination eval^Syn vs (app f t) = eval^Syn vs f refl (eval^Chk vs t) eval^Chk vs (lam b) = λ ρ v → eval^Chk (extend (th^Env ρ vs) v) b interleaved mutual norm^Syn : Syn σ Γ → Chk σ Γ norm^Chk : Chk σ Γ → Chk σ Γ norm^Syn t = norm^Chk (emb t) norm^Chk t = reify _ (eval^Chk placeholders t)
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Kenny Lau, Johan Commelin, Mario Carneiro, Kevin Buzzard -/ import group_theory.submonoid.basic import algebra.big_operators.basic import deprecated.group /-! # Unbundled submonoids (deprecated) This file is deprecated, and is no longer imported by anything in mathlib other than other deprecated files, and test files. You should not need to import it. This file defines unbundled multiplicative and additive submonoids. Instead of using this file, please use `submonoid G` and `add_submonoid A`, defined in `group_theory.submonoid.basic`. ## Main definitions `is_add_submonoid (S : set M)` : the predicate that `S` is the underlying subset of an additive submonoid of `M`. The bundled variant `add_submonoid M` should be used in preference to this. `is_submonoid (S : set M)` : the predicate that `S` is the underlying subset of a submonoid of `M`. The bundled variant `submonoid M` should be used in preference to this. ## Tags submonoid, submonoids, is_submonoid -/ open_locale big_operators variables {M : Type*} [monoid M] {s : set M} variables {A : Type*} [add_monoid A] {t : set A} /-- `s` is an additive submonoid: a set containing 0 and closed under addition. Note that this structure is deprecated, and the bundled variant `add_submonoid A` should be preferred. -/ structure is_add_submonoid (s : set A) : Prop := (zero_mem : (0:A) ∈ s) (add_mem {a b} : a ∈ s → b ∈ s → a + b ∈ s) /-- `s` is a submonoid: a set containing 1 and closed under multiplication. Note that this structure is deprecated, and the bundled variant `submonoid M` should be preferred. -/ @[to_additive] structure is_submonoid (s : set M) : Prop := (one_mem : (1:M) ∈ s) (mul_mem {a b} : a ∈ s → b ∈ s → a * b ∈ s) lemma additive.is_add_submonoid {s : set M} : ∀ (is : is_submonoid s), @is_add_submonoid (additive M) _ s | ⟨h₁, h₂⟩ := ⟨h₁, @h₂⟩ theorem additive.is_add_submonoid_iff {s : set M} : @is_add_submonoid (additive M) _ s ↔ is_submonoid s := ⟨λ ⟨h₁, h₂⟩, ⟨h₁, @h₂⟩, additive.is_add_submonoid⟩ lemma multiplicative.is_submonoid {s : set A} : ∀ (is : is_add_submonoid s), @is_submonoid (multiplicative A) _ s | ⟨h₁, h₂⟩ := ⟨h₁, @h₂⟩ theorem multiplicative.is_submonoid_iff {s : set A} : @is_submonoid (multiplicative A) _ s ↔ is_add_submonoid s := ⟨λ ⟨h₁, h₂⟩, ⟨h₁, @h₂⟩, multiplicative.is_submonoid⟩ /-- The intersection of two submonoids of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The intersection of two `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of M."] lemma is_submonoid.inter {s₁ s₂ : set M} (is₁ : is_submonoid s₁) (is₂ : is_submonoid s₂) : is_submonoid (s₁ ∩ s₂) := { one_mem := ⟨is₁.one_mem, is₂.one_mem⟩, mul_mem := λ x y hx hy, ⟨is₁.mul_mem hx.1 hy.1, is₂.mul_mem hx.2 hy.2⟩ } /-- The intersection of an indexed set of submonoids of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The intersection of an indexed set of `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of `M`."] lemma is_submonoid.Inter {ι : Sort*} {s : ι → set M} (h : ∀ y : ι, is_submonoid (s y)) : is_submonoid (set.Inter s) := { one_mem := set.mem_Inter.2 $ λ y, (h y).one_mem, mul_mem := λ x₁ x₂ h₁ h₂, set.mem_Inter.2 $ λ y, (h y).mul_mem (set.mem_Inter.1 h₁ y) (set.mem_Inter.1 h₂ y) } /-- The union of an indexed, directed, nonempty set of submonoids of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The union of an indexed, directed, nonempty set of `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of `M`. "] lemma is_submonoid_Union_of_directed {ι : Type*} [hι : nonempty ι] {s : ι → set M} (hs : ∀ i, is_submonoid (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) : is_submonoid (⋃i, s i) := { one_mem := let ⟨i⟩ := hι in set.mem_Union.2 ⟨i, (hs i).one_mem⟩, mul_mem := λ a b ha hb, let ⟨i, hi⟩ := set.mem_Union.1 ha in let ⟨j, hj⟩ := set.mem_Union.1 hb in let ⟨k, hk⟩ := directed i j in set.mem_Union.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ } section powers /-- The set of natural number powers `1, x, x², ...` of an element `x` of a monoid. -/ @[to_additive multiples "The set of natural number multiples `0, x, 2x, ...` of an element `x` of an `add_monoid`."] def powers (x : M) : set M := {y | ∃ n:ℕ, x^n = y} /-- 1 is in the set of natural number powers of an element of a monoid. -/ @[to_additive "0 is in the set of natural number multiples of an element of an `add_monoid`."] lemma powers.one_mem {x : M} : (1 : M) ∈ powers x := ⟨0, pow_zero _⟩ /-- An element of a monoid is in the set of that element's natural number powers. -/ @[to_additive "An element of an `add_monoid` is in the set of that element's natural number multiples."] lemma powers.self_mem {x : M} : x ∈ powers x := ⟨1, pow_one _⟩ /-- The set of natural number powers of an element of a monoid is closed under multiplication. -/ @[to_additive "The set of natural number multiples of an element of an `add_monoid` is closed under addition."] lemma powers.mul_mem {x y z : M} : (y ∈ powers x) → (z ∈ powers x) → (y * z ∈ powers x) := λ ⟨n₁, h₁⟩ ⟨n₂, h₂⟩, ⟨n₁ + n₂, by simp only [pow_add, *]⟩ /-- The set of natural number powers of an element of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The set of natural number multiples of an element of an `add_monoid` `M` is an `add_submonoid` of `M`."] lemma powers.is_submonoid (x : M) : is_submonoid (powers x) := { one_mem := powers.one_mem, mul_mem := λ y z, powers.mul_mem } /-- A monoid is a submonoid of itself. -/ @[to_additive "An `add_monoid` is an `add_submonoid` of itself."] lemma univ.is_submonoid : is_submonoid (@set.univ M) := by split; simp /-- The preimage of a submonoid under a monoid hom is a submonoid of the domain. -/ @[to_additive "The preimage of an `add_submonoid` under an `add_monoid` hom is an `add_submonoid` of the domain."] lemma is_submonoid.preimage {N : Type*} [monoid N] {f : M → N} (hf : is_monoid_hom f) {s : set N} (hs : is_submonoid s) : is_submonoid (f ⁻¹' s) := { one_mem := show f 1 ∈ s, by rw is_monoid_hom.map_one hf; exact hs.one_mem, mul_mem := λ a b (ha : f a ∈ s) (hb : f b ∈ s), show f (a * b) ∈ s, by rw is_monoid_hom.map_mul hf; exact hs.mul_mem ha hb } /-- The image of a submonoid under a monoid hom is a submonoid of the codomain. -/ @[to_additive "The image of an `add_submonoid` under an `add_monoid` hom is an `add_submonoid` of the codomain."] lemma is_submonoid.image {γ : Type*} [monoid γ] {f : M → γ} (hf : is_monoid_hom f) {s : set M} (hs : is_submonoid s) : is_submonoid (f '' s) := { one_mem := ⟨1, hs.one_mem, hf.map_one⟩, mul_mem := λ a b ⟨x, hx⟩ ⟨y, hy⟩, ⟨x * y, hs.mul_mem hx.1 hy.1, by rw [hf.map_mul, hx.2, hy.2]⟩ } /-- The image of a monoid hom is a submonoid of the codomain. -/ @[to_additive "The image of an `add_monoid` hom is an `add_submonoid` of the codomain."] lemma range.is_submonoid {γ : Type*} [monoid γ] {f : M → γ} (hf : is_monoid_hom f) : is_submonoid (set.range f) := by { rw ← set.image_univ, exact univ.is_submonoid.image hf } /-- Submonoids are closed under natural powers. -/ @[to_additive is_add_submonoid.smul_mem "An `add_submonoid` is closed under multiplication by naturals."] lemma is_submonoid.pow_mem {a : M} (hs : is_submonoid s) (h : a ∈ s) : ∀ {n : ℕ}, a ^ n ∈ s | 0 := by { rw pow_zero, exact hs.one_mem } | (n + 1) := by { rw pow_succ, exact hs.mul_mem h is_submonoid.pow_mem } /-- The set of natural number powers of an element of a submonoid is a subset of the submonoid. -/ @[to_additive is_add_submonoid.multiples_subset "The set of natural number multiples of an element of an `add_submonoid` is a subset of the `add_submonoid`."] lemma is_submonoid.power_subset {a : M} (hs : is_submonoid s) (h : a ∈ s) : powers a ⊆ s := assume x ⟨n, hx⟩, hx ▸ hs.pow_mem h end powers namespace is_submonoid /-- The product of a list of elements of a submonoid is an element of the submonoid. -/ @[to_additive "The sum of a list of elements of an `add_submonoid` is an element of the `add_submonoid`."] lemma list_prod_mem (hs : is_submonoid s) : ∀{l : list M}, (∀x∈l, x ∈ s) → l.prod ∈ s | [] h := hs.one_mem | (a::l) h := suffices a * l.prod ∈ s, by simpa, have a ∈ s ∧ (∀x∈l, x ∈ s), by simpa using h, hs.mul_mem this.1 (list_prod_mem this.2) /-- The product of a multiset of elements of a submonoid of a `comm_monoid` is an element of the submonoid. -/ @[to_additive "The sum of a multiset of elements of an `add_submonoid` of an `add_comm_monoid` is an element of the `add_submonoid`. "] lemma multiset_prod_mem {M} [comm_monoid M] {s : set M} (hs : is_submonoid s) (m : multiset M) : (∀a∈m, a ∈ s) → m.prod ∈ s := begin refine quotient.induction_on m (assume l hl, _), rw [multiset.quot_mk_to_coe, multiset.coe_prod], exact list_prod_mem hs hl end /-- The product of elements of a submonoid of a `comm_monoid` indexed by a `finset` is an element of the submonoid. -/ @[to_additive "The sum of elements of an `add_submonoid` of an `add_comm_monoid` indexed by a `finset` is an element of the `add_submonoid`."] lemma finset_prod_mem {M A} [comm_monoid M] {s : set M} (hs : is_submonoid s) (f : A → M) : ∀(t : finset A), (∀b∈t, f b ∈ s) → ∏ b in t, f b ∈ s | ⟨m, hm⟩ _ := multiset_prod_mem hs _ (by simpa) end is_submonoid namespace add_monoid /-- The inductively defined membership predicate for the submonoid generated by a subset of a monoid. -/ inductive in_closure (s : set A) : A → Prop | basic {a : A} : a ∈ s → in_closure a | zero : in_closure 0 | add {a b : A} : in_closure a → in_closure b → in_closure (a + b) end add_monoid namespace monoid /-- The inductively defined membership predicate for the `submonoid` generated by a subset of an monoid. -/ @[to_additive] inductive in_closure (s : set M) : M → Prop | basic {a : M} : a ∈ s → in_closure a | one : in_closure 1 | mul {a b : M} : in_closure a → in_closure b → in_closure (a * b) /-- The inductively defined submonoid generated by a subset of a monoid. -/ @[to_additive "The inductively defined `add_submonoid` genrated by a subset of an `add_monoid`."] def closure (s : set M) : set M := {a | in_closure s a } @[to_additive] lemma closure.is_submonoid (s : set M) : is_submonoid (closure s) := { one_mem := in_closure.one, mul_mem := assume a b, in_closure.mul } /-- A subset of a monoid is contained in the submonoid it generates. -/ @[to_additive "A subset of an `add_monoid` is contained in the `add_submonoid` it generates."] theorem subset_closure {s : set M} : s ⊆ closure s := assume a, in_closure.basic /-- The submonoid generated by a set is contained in any submonoid that contains the set. -/ @[to_additive "The `add_submonoid` generated by a set is contained in any `add_submonoid` that contains the set."] theorem closure_subset {s t : set M} (ht : is_submonoid t) (h : s ⊆ t) : closure s ⊆ t := assume a ha, by induction ha; simp [h _, *, is_submonoid.one_mem, is_submonoid.mul_mem] /-- Given subsets `t` and `s` of a monoid `M`, if `s ⊆ t`, the submonoid of `M` generated by `s` is contained in the submonoid generated by `t`. -/ @[to_additive "Given subsets `t` and `s` of an `add_monoid M`, if `s ⊆ t`, the `add_submonoid` of `M` generated by `s` is contained in the `add_submonoid` generated by `t`."] theorem closure_mono {s t : set M} (h : s ⊆ t) : closure s ⊆ closure t := closure_subset (closure.is_submonoid t) $ set.subset.trans h subset_closure /-- The submonoid generated by an element of a monoid equals the set of natural number powers of the element. -/ @[to_additive "The `add_submonoid` generated by an element of an `add_monoid` equals the set of natural number multiples of the element."] theorem closure_singleton {x : M} : closure ({x} : set M) = powers x := set.eq_of_subset_of_subset (closure_subset (powers.is_submonoid x) $ set.singleton_subset_iff.2 $ powers.self_mem) $ is_submonoid.power_subset (closure.is_submonoid _) $ set.singleton_subset_iff.1 $ subset_closure /-- The image under a monoid hom of the submonoid generated by a set equals the submonoid generated by the image of the set under the monoid hom. -/ @[to_additive "The image under an `add_monoid` hom of the `add_submonoid` generated by a set equals the `add_submonoid` generated by the image of the set under the `add_monoid` hom."] lemma image_closure {A : Type*} [monoid A] {f : M → A} (hf : is_monoid_hom f) (s : set M) : f '' closure s = closure (f '' s) := le_antisymm begin rintros _ ⟨x, hx, rfl⟩, apply in_closure.rec_on hx; intros, { solve_by_elim [subset_closure, set.mem_image_of_mem] }, { rw [hf.map_one], apply is_submonoid.one_mem (closure.is_submonoid (f '' s))}, { rw [hf.map_mul], solve_by_elim [(closure.is_submonoid _).mul_mem] } end (closure_subset (is_submonoid.image hf (closure.is_submonoid _)) $ set.image_subset _ subset_closure) /-- Given an element `a` of the submonoid of a monoid `M` generated by a set `s`, there exists a list of elements of `s` whose product is `a`. -/ @[to_additive "Given an element `a` of the `add_submonoid` of an `add_monoid M` generated by a set `s`, there exists a list of elements of `s` whose sum is `a`."] theorem exists_list_of_mem_closure {s : set M} {a : M} (h : a ∈ closure s) : (∃l:list M, (∀x∈l, x ∈ s) ∧ l.prod = a) := begin induction h, case in_closure.basic : a ha { existsi ([a]), simp [ha] }, case in_closure.one { existsi ([]), simp }, case in_closure.mul : a b _ _ ha hb { rcases ha with ⟨la, ha, eqa⟩, rcases hb with ⟨lb, hb, eqb⟩, existsi (la ++ lb), simp [eqa.symm, eqb.symm, or_imp_distrib], exact assume a, ⟨ha a, hb a⟩ } end /-- Given sets `s, t` of a commutative monoid `M`, `x ∈ M` is in the submonoid of `M` generated by `s ∪ t` iff there exists an element of the submonoid generated by `s` and an element of the submonoid generated by `t` whose product is `x`. -/ @[to_additive "Given sets `s, t` of a commutative `add_monoid M`, `x ∈ M` is in the `add_submonoid` of `M` generated by `s ∪ t` iff there exists an element of the `add_submonoid` generated by `s` and an element of the `add_submonoid` generated by `t` whose sum is `x`."] theorem mem_closure_union_iff {M : Type*} [comm_monoid M] {s t : set M} {x : M} : x ∈ closure (s ∪ t) ↔ ∃ y ∈ closure s, ∃ z ∈ closure t, y * z = x := ⟨λ hx, let ⟨L, HL1, HL2⟩ := exists_list_of_mem_closure hx in HL2 ▸ list.rec_on L (λ _, ⟨1, (closure.is_submonoid _).one_mem, 1, (closure.is_submonoid _).one_mem, mul_one _⟩) (λ hd tl ih HL1, let ⟨y, hy, z, hz, hyzx⟩ := ih (list.forall_mem_of_forall_mem_cons HL1) in or.cases_on (HL1 hd $ list.mem_cons_self _ _) (λ hs, ⟨hd * y, (closure.is_submonoid _).mul_mem (subset_closure hs) hy, z, hz, by rw [mul_assoc, list.prod_cons, ← hyzx]; refl⟩) (λ ht, ⟨y, hy, z * hd, (closure.is_submonoid _).mul_mem hz (subset_closure ht), by rw [← mul_assoc, list.prod_cons, ← hyzx, mul_comm hd]; refl⟩)) HL1, λ ⟨y, hy, z, hz, hyzx⟩, hyzx ▸ (closure.is_submonoid _).mul_mem (closure_mono (set.subset_union_left _ _) hy) (closure_mono (set.subset_union_right _ _) hz)⟩ end monoid /-- Create a bundled submonoid from a set `s` and `[is_submonoid s]`. -/ @[to_additive "Create a bundled additive submonoid from a set `s` and `[is_add_submonoid s]`."] def submonoid.of {s : set M} (h : is_submonoid s) : submonoid M := ⟨s, h.2, h.1⟩ @[to_additive] lemma submonoid.is_submonoid (S : submonoid M) : is_submonoid (S : set M) := ⟨S.3, S.2⟩
\chapter{March} \section{Perceptron algorithm} \index{Perceptron algorithm} Suppose we have input data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n) \in \mathbb{R}^p \times \{-1, 1\}$, and if the data points are separable, the perceptron algorithm works as following: \begin{minted}[frame=lines, framesep=2mm,tabsize=4]{cpp} w = 0 while some (x, y) is misclassified: w = w + yx \end{minted} \begin{remark} In the separable case, perceptron algorithm guarantees to converge. \end{remark} \myheader{Multi-class perceptron} \begin{minted}[frame=lines, framesep=2mm,tabsize=4]{cpp} w_1 = w_2 = ... = w_k = 0 while some (x, y) is misclassified: for correct label y: w_y = w_y + x for incorrect label y*: w_(y*) = w_(y*) - x \end{minted} \section{Kernel function} \index{Kernel function} Following the perceptron algorithm, suppose $\phi$ is a function that maps $x$ to another feature space, such as $\phi(x) = (1, x_1, x_2, ..., x_1^2, x_2^2,..., x_1 x_2,...)$, which is a quadratic embedding. In this case we can also run perceptron algorithm in the new feature space. \begin{minted}[frame=lines, framesep=2mm,tabsize=4]{cpp} w = 0 while y*(w * \phi(x)) < 0: w = w + y\phi(x) \end{minted} A problem is that every time we need to calculate $\phi(x)$, which may be of high dimensions. To solve this problem, we observe that in fact we don't need to access $\phi(x)$ at all to make a decision, instead we can write $w$ as following: \myequ{ w = a_1 \phi(x_1) + a_2 \phi(x_2) + ... + a_n \phi(x_n) } then $w\cdot\phi(x)$ is a weighted sum of $\phi(x)\cdot\phi(x_i)$. In addition, we also observe that \myequ{ \phi(x) \cdot \phi(z) = (1 + x\cdot z)^2 } That is, we don't need to calculate $\phi(x)$. \myheader{kernel function} From above we know that we don't care about the embedding $\phi(x)$, we only care about the similarity between a pair of data points. Therefore, the kernel function is defined as following: \vspace{0.5cm} \begin{definition}[Kernel function] A function $k$: $\mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}$ is a valid kernel if it corresponds to some embedding, that is, there exists $\phi$ defined on $\mathbb{R}^p$ such that \myequ{ k(x,z) = \phi(x) \cdot \phi(z) } \end{definition} This is equivalent to require that for any finite subset $\{x_1, x_2, ..., x_m\} \subset \mathbb{R}^p$, the $m \times m$ similarity matrix \myequ{ K_{ij} = k(x_i, x_j) } is \textit{positive semidefinite}. Proof: \myequ{ Z^T K Z = Z^T (X^T X) Z = (XZ)^T (XZ) \geq 0 } \myheader{RBF kernel} RBF kernel or Gaussian kernel is defined as \myequ{ k(x,z) = e^{-||x-z||^2 / 2\sigma^2} } \myheader{string kernel} For each substring $s$, we define feature: \myequ{ \phi_s(x) &= \# \text{ of times substring $s$ appears in $x$} \\ \phi(x) &= (\phi_s(x): \text{ all strings } s) } \section{$k$-means Clustering}\index{$k$-means Clustering} \myheader{$k$-means} Minimize average squared distance between points and their nearest representatives. The input is data points $x_1, x_2, ..., x_n$, and integer $k$, and the output is centers $\mu_1, \mu_2, ..., \mu_k$. \myheader{Lloyd's $k$-means algorithm} \begin{minted}[frame=lines, framesep=2mm,tabsize=4]{cpp} Initialize centers u_1, u_2, ... u_k in some manner. Repeat until convergence: assign each point to its nearest center update each u_j to the mean of points assigned to it \end{minted} \myheader{How to initialize centers?} $k$-means++: start with extra centers, then prune later. \begin{lstlisting}[ style=liststy, ] Pick a data point x at random as the first center Let $C = \{x\}$ Repeat until the desired number of centers is attained: pick a data point $x$ at random from the following distributions: $Pr(x) \propto dist(x, C)^2$, where $dist(x, C) = min_{z\in C}||x-z||$ Add $x$ to $C$ \end{lstlisting} \myheader{Streaming and online computation} If there are too much data to fit in memory, or the data is continuously collected, we have to update the model gradually. \myheader{The good and the bad} Good: fast and easy, effective in quantization. Bad: geared towards data in which the clusters are spherical, and of roughly the same results. \section{Mixtures of Gaussians} \index{Mixtures of Gaussians} Each of $k$ clusters is specified by a Guassian distribution $P_j = N(\mu_i, \sum_i)$ and a mixing weight $\pi_j$. The overall distribution is a mixture of all Gaussians: \myequ{ Pr(x) = \pi_1 P_1(x) + \pi_2 P_2(x) + ... + \pi_k P_k(x) } We need to determine all the parameters including $\pi, \mu, \sum$. We apply \textbf{EM} algorithm to solve this problem (see Figure~\ref{fig:em_mar}). \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/gmm_em.PNG} } \caption{EM algorithm for GMM clustering.} \label{fig:em_mar} \end{figure} \section{Hierarchical clustering} \index{Hierarchical clustering} Clustering is of multi-scale, and often there is no single right answer. Hierarchical clustering avoids these problems. \begin{lstlisting}[ style=liststy, ] Start with each point on its own Repeat until there is just one cluster: Merge the two clusters with the $closest$ pair of points Discard singleton clusters \end{lstlisting} \myheader{Linkage method} The problem is how we measure the distance between two cluster of points. \begin{enumerate} \item Single linkage: $dist(C, C') = min_{x \in C, x' \in C'} ||x - x'||$ \item Complete linkage: $dist(C, C') = max_{x \in C, x' \in C'} ||x - x'||$ \item Average linkage: \begin{enumerate} \item average pairwise distance between all pair of points in the two clusters \item distance between cluster centers \item Ward's method \end{enumerate} \end{enumerate} \section{Boosting} \myheader{Adaboost} See Figure~\ref{fig:adaboost_mar}. \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/adaboost.PNG} } \caption{Adaboost algorithms.} \label{fig:adaboost_mar} \end{figure} \myheader{Bagging} See Figure~\ref{fig:bagging_mar} \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/bagging.PNG} } \caption{Bagging.} \label{fig:bagging_mar} \end{figure} \myheader{Random forest} See Figure~\ref{fig:random_forest_mar} \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/random_forest.PNG} } \caption{Random forests.} \label{fig:random_forest_mar} \end{figure} \section{Informative projections} \index{Informative projections} \myheader{Project to multiple directions} Suppose we want to project $x \in \mathbb{R}^p$ into the $k$-dimensional subspace spanned by $u_1, u_2, ..., u_k \in \mathbb{R}^p$, and suppose all $u_i$ are orthonormal (each has length one, and they are perpendicular to each other). Then the projection is: \myequ{ (x \cdot u_1)u_1 + (x \cdot u_2)u_2 + ... + (x \cdot u_k)u_k = UU^Tx } \myheader{Best single direction} Suppose we want to map our data $x_1, x_2, ..., x_n \in \mathbb{R}^p$ into just one dimension $x \mapsto u \cdot x$, what is the best direction $u$. The best direction $u$ should be the one that maximize the variance after projection. Let $X$ be the data matrix, where each column is a data point, and $\sum$ be the covariance matrix of $X$. Suppose the mean of $X$ is $\mu \in \mathbb{R}^p$, then \myequ{ \mathbb{E}(u^T X) & = u^T \mathbb{E}(X) = u^T \mu \\ var(u^T X) & = \mathbb{E}(u^T X - u^T \mu) = \mathbb{E} (u^T (X - \mu) (X - \mu)^T u) \\ & = u^T \mathbb{E}(X - \mu)(X - \mu)^T u = u^T \sum u } \begin{remark} $u^T\sum u$ is maximized by setting $u$ to the first \textbf{eigenvector} of $\sum$. The maximum value is the corresponding eigenvalue. \end{remark} \myheader{Best $k$-dimensional projection} Let $\sum$ be the $p\times p$ covariance matrix of $X$. and $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p$ are the eigenvalues, and $u_1, u_2, ... u_p$ are the corresponding eigenvectors. Then the best $k$-dimensional projection directions are $u_1, u_2, ..., u_k$. \myheader{Spectral decomposition} See Figure~\ref{fig:spec_decomp_mar}. \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/spectral_decomp.PNG} } \caption{Spectral decomposition.} \label{fig:spec_decomp_mar} \end{figure} \myheader{Singular value decomposition (SVD)} See Figure~\ref{fig:svd_mar}. Where $u_i, \sigma_i, v_i$ comes from? We know that: \begin{itemize} \item $Mv_i = \sigma_i u_i, M^T u_i = \sigma_i v_i$ \item $M M^T u_i = \sigma_i^2 u_i, M^T M v_i = \sigma_i^2 v_i$ \end{itemize} Therefore, $v_i$ is the eigenvectors of $M^T M$, and $u_i$ is the eigenvectors of $M M^T$. $MM^T$ and $M^TM$ has the same eigenvalues $\sigma_i^2$. Note that all $\sigma_i$ are \textbf{non-negative}. \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/SVD.PNG} } \caption{Singular value decomposition.} \label{fig:svd_mar} \end{figure} \section{Positive definite matrix } \vspace{0.5cm} \begin{definition}[Positive definite matrix] A square $p \times p$ symmetric matrix $A$ is positive definite if for all nonzero $x \in \mathbb{R}^p$, \myequ{ x^T A x > 0 } \end{definition} \myheader{Properties of positive definite matrix} \begin{enumerate} \item The $r \times r$ submatrix $A_r$ (start from top left element) is also positive semidefinite. \item The $p$ eigenvalues of A $\lambda_1, \lambda_2, ..., \lambda_p$ are positive. Conversely, if all the eigenvalues of a matrix $B$ are positive, then $B$ is positive definite. \item There exist a unique decomposition of $A = LL^T$, where $L$ is a lower triangular matrix. This is called \textit{Cholesky Decomposition}. \item There exists a unique decomposition of $A = VDV^T$. \end{enumerate} \section{Beyond projections} \index{Beyond projections} Sometimes data in a high-dimensional space $\mathbb{R}^p$ in fact lies close to a $k$-dimensional manifold, for $k\ll p$. \myheader{ISOMAP algorithm} Given data $x_1, x_2, ..., x_n$, \begin{enumerate} \item estimate \textit{geodesic distances} between the data points, that is, distance along the manifold. \item embed these points in Euclidean space so as to match these distances. \end{enumerate} \myheader{Geodesic distances} To estimate geodesic distances: \begin{enumerate} \item Construct neighborhood graph, connect nodes whenever two nodes are close together. \item Compute distance in this graph (shortest-path algorithm). \end{enumerate} \myheader{Distance-preserving embeddings} Problem definition: \begin{lstlisting}[ style=liststy,] Input:an $n\times n$ matrix of pairwise distances $D$, where $D_ij$ is the distance between points $i$ and $j$. Output: an embedding $z_1, z_2, ..., z_n \in \mathbb{R}^k$ that realizes these distances as closely as possible. \end{lstlisting} \myheader{Gram matrix} Gram matrix on a set of vectors $z_1, z_2, ..., z_n$ is the matrix $B$ where $B_{ij} = z_i \cdot z_j$. \myheader{Classical multidimensional scaling} See Figure~\ref{fig:cms_mar} \begin{figure}[H] \centering{ \includegraphics[width=0.9\textwidth]{./images/mar/cms.PNG} } \caption{Classical multidimensional scaling.} \label{fig:cms_mar} \end{figure} \section{Jacobian matrix} \index{Jacobian matrix} In vector calculus, the Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function. \myequ{ J = \frac{d \mathbf{f}}{d \mathbf{x}} &= \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \frac{\partial \mathbf{f}}{\partial x_2} & \dots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} \\ & = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} } \section{Gaussian-Newton algorithm} \index{Gaussian-Newton algorithm} The Gaussian-Newton algorithm is used to solve non-linear least square problems. It is a modification of Newton's method for finding a minimum of a function. Unlike Newton's method, the Gaussian-Newton algorithm can only be used to minimize a sum of squared function values, but it has the advantage that the second derivatives, which can be challenging to compute, are not required. Given $m$ functions $r = (r_1, r_2, \dots, r_m)$ (often called residuals) of $n$ variables $\mathbf{\beta} = (\beta_1, \dots, \beta_n)$ with $m \geq n$, the Gauss–Newton algorithm iteratively finds the value of the variables which minimizes the sum of squares: \myequ{ S(\beta) = \sum\limits_{i=1}^{m} r_i^2(\beta) } Start with an initial guess $\mathbf{\beta}^{(0)}$, the method proceeds by the iterations: \myequ{ \mathbf{\beta}^{(s+1)} = \mathbf{\beta}^{(s)} - (J_r^T J_r)^{-1} J_r^T r(\mathbf{\beta}^{(s)}) } where \myequ{ (J_r)_{ij} = \frac{\partial r_i(\beta^{(s)})}{\partial \beta_j} } If $m = n$, the iteration simplifies to \myequ{ \mathbf{\beta}^{(s+1)} = \mathbf{\beta}^{(s)} - (J_r)^{-1} r(\mathbf{\beta}^{(s)}) } \section{Functional programming: introductions} \index{Functional programming: introductions} \myheader{Why FP?} We want software to be \textit{readable, reusable, modifiable, predictable and checkable}. Functional programming could satisfy these requirements. There is no assignment, mutation, or loop in FP. \section{$\lambda$-calculus}\index{$\lambda$-calculus} Lambda calculus (also written as $\lambda$-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. \myheader{Syntax} Three kinds of expressions: \begin{lstlisting}[ style=liststy,] e ::= x | $\lambda$ x. e | $\lambda$ e_1 e_2 \end{lstlisting} called \textit{variables}, \textit{functions}($\lambda$-abstraction), and \textit{application}. Functions $\lambda x. e$ takes $x$ as an input and output $e$. Application associates to the left: $x y z$ means $(x y) z$. However, abstraction extends as far right as possible: $\lambda x. x \lambda y. x y z \Rightarrow \lambda x. (x \lambda y. ((x y) z))$ Identity function: $I = \lambda x. x$ \myheader{Scope of identifier (variable)} Scope of a variable is the part of program where the variable is \textit{accessible}. $\lambda x. E$ binds variable $x$ in $E$: \begin{enumerate} \item $x$ is the newly introduced varialbe. \item $E$ is the scope of $x$. \item $x$ is bound in $\lambda x. E$ \end{enumerate} $y$ is \textit{free} if it occurs not bound in $E$: \begin{enumerate} \item $Free(x) = \{x\}$ \item $Free(E_1 E_2) = Free(E_1) \cup Free(E_2)$ \item $Free(\lambda x. E) = Free(E) - \{x\}$ \end{enumerate} $\alpha$-renaming: \begin{enumerate} \item Allows bound variable names to be changed. \item $\lambda x. x = \lambda y. y$ \end{enumerate} substitution: \begin{enumerate} \item $[E'/x]E$: use $E'$ to substitute all $x$ bounded in $E$ \item $[y (\lambda x. x)/x] \lambda y. (\lambda x. x) y x \equiv$ $[y (\lambda v. v)/x] \lambda y. (\lambda u. u) z x $ (renaming) $\equiv \lambda z. (\lambda u. u) z (y (\lambda v. v))$ (substitution) \end{enumerate} $\beta$-reduction: \begin{enumerate} \item $\beta$-reduction captures the idea of function application. \item $(\lambda x. e) e' \rightarrow [e'/x]e$ \item $((\lambda n. n\times2) 7) \rightarrow 7\times 2$ \end{enumerate} local variable: \begin{lstlisting}[ style=liststy,] let x = $e_1$ in $e_2$ $\equiv (\lambda x. e_2) e_1$ \end{lstlisting} boolean: \begin{lstlisting}[ style=liststy,] true $\equiv$ $\lambda x. \lambda y. x$ false $\equiv$ $\lambda x. \lambda y. y$ if $E_1$ then $E_2$ else $E_3$ $\equiv$ $E_1 E_2 E_3$ if true then u else v $\rightarrow$ $(\lambda x. \lambda y. x) u\ v \rightarrow (\lambda y. u) \rightarrow u$ \end{lstlisting} not: \begin{lstlisting}[ style=liststy,] function takes b: return function x, y: return (if b then y else x) not $\equiv \lambda b. (\lambda x. \lambda y. \ b\ y\ x)$ not true $\rightarrow \lambda x. \lambda y. \ true \ y \ x \rightarrow \lambda x. \lambda y. \ y \rightarrow false$ \end{lstlisting} or: \begin{lstlisting}[ style=liststy,] function takes $b_1, b_2$ return function takes x, y: return (if $b_1$ then x else (if $b_2$ then x else y)) or $\equiv \lambda b_1 . \lambda b_2 . (\lambda x. \lambda y.\ b_1\ x (b_2 \ x \ y))$ \end{lstlisting} records: \begin{lstlisting}[ style=liststy,] pair = function takes a bool return the left or right element mkpair $e_1 \ e_2 \equiv \lambda b. \ b\ e_1\ e_2$ fst p $\equiv$ p true snd p $\equiv$ p false \end{lstlisting} natural numbers: \begin{lstlisting}[ style=liststy,] natural number: iterate a number of times over some function $n$ = function that takes function $f$, starting value $s$ returns: $f$ applied to $s$ $n$ times $0 \equiv \lambda f. \lambda s. \ s$ $1 \equiv \lambda f. \lambda s. \ f \ s$ $2 \equiv \lambda f. \lambda s. \ f (f \ s)$ (n f s) = apply f to s n times \end{lstlisting} operations on natural numbers: \begin{lstlisting}[ style=liststy,] iszero n $\Leftrightarrow$ n ($\lambda$ b. false) true iszero $\Leftrightarrow$ $\lambda $ n. ($\lambda$ b. false) true succ n $\Leftrightarrow$ $\lambda$f. $\lambda$s. f (n f s) add a b $\Leftrightarrow$ a succ b multi a b $\Leftrightarrow$ a (add b) 0 \end{lstlisting} \section{Haskell: basics}\index{Haskell: basics} Haskell is a standardized, general-purpose purely functional programming language, with non-strict semantics and strong static typing. \myheader{GHC system} \begin{lstlisting}[ style=liststy, language=Haskell,] :load foo.hs :type expression :info variable \end{lstlisting} \myheader{Basic types} \begin{haskellcode} 32 :: Integer 4.2 :: Double 'a' :: Char True :: Bool -- function types pos :: Integer -> Bool pos x = (x > 0) -- multiple argument function types -- function takes args of A1, A2, A3, gives out B A1 -> A2 -> A3 -> B -- tuples, elements do not have to be of the same type (A1, ..., An) -- pattern matching extracts values from tuple pat :: (Int, Int, Int) -> Int pat (x, y, z) = x * (y + z) -- Lists, elements have to be of the same type [1, 3, 5, 7] -- construct lists 'a' : ['b', 'c'] = ['a', 'b', 'c'] cons2 x y zs = x : y : zs -- type -- Not a new type, just shorthand type XY = (Double, Double) type Circle = (Double, Double, Double) -- data creates new types data CircleT = Circle (Double, Double, Double) data Shape = | Rectangle Side Side | Ellipse Radius Radius | RtTriangle Side Side | Polygon [Vertex] type Side = Double type Radius = Double type Vertex = (Double, Double) \end{haskellcode} \myheader{Input and output} \begin{haskellcode} -- action: value describing an effect on world IO a -- type of an action that returns an a -- takes input string, return action that writes string to stdout putStr :: String -> IO () -- only one way to execute action: make it the value of name main main :: IO () main = putStr "hello world\n" -- do many actions with 'do' do putStr "Hello" putStr "World" putStr "\n" -- input getLine :: IO String main:: IO() main = do putStr "What is your name?" n <- getLine -- assignment putStrLn ("Happy New Year " ++ n) \end{haskellcode} \section{Haskell: higher-order functions}\index{Haskell: higher-order functions} In all functional languages, functions are first-class values, meaning, that they can be treated just as you would any other data. That is, you can pass functions around to in any manner that you can pass any other data around in. \myheader{Functions are data} \begin{haskellcode} plus1 :: Int -> Int plus1 x = x + 1 minus1 :: Int -> Int minus1 x = x - 1 funp :: (Int -> Int, Int -> Int) funp = (plus1, minus1) \end{haskellcode} \myheader{Take functions as input and output} \begin{haskellcode} -- functions as input doTwice :: (t -> t) -> t -> t doTwice f x = f (f x) -- functions as output plusn :: Int -> (Int -> Int) plusn n = f where f x = x + n -- partially apply functions plus :: Int -> Int -> Int plus a b = a + b plus5 :: Int -> Int plus5 = plus 5 -- plus5 1000 outputs 1005 \end{haskellcode} \myheader{Anonymous functions} We will see many situations where a particular function is only used once, and hence, there is no need to explicitly name it. Haskell provides a mechanism to create such anonymous functions. \begin{haskellcode} \x -> x + 1 (\x -> x + 1) 100 -- 101 doTwice (\x -> x + 1) 100 -- 102 \end{haskellcode} \myheader{Infix operations} Haskell allows you to use any function as an infix operator, simply by wrapping it inside backticks. To further improve readability, Haskell allows you to use partially applied infix operators, ie infix operators with only a single argument. These are called \textit{sections}. \begin{haskellcode} 2 `plus` 4 -- 6 doTwice (+1) 0 -- 2 doTwice (1+) 0 -- 2 doTwice (1:) [2..5] -- [1, 1, 2, 3, 4, 5] \end{haskellcode} \myheader{Polymorphism} \textit{doTwice} is polymorphic in that it works with different kinds of values, e.g. functions that increment integers and concatenate strings. This is vital for \textit{abstraction}. Polymorphic functions which can operate on different kinds values are often associated with polymorphic data structures which can contain different kinds of values. These are also represented by types containing type variables. \begin{haskellcode} foo :: a -> (a -> b) -> b foo x f = f x x |> f = f x do1 :: (a -> b) -> a -> b do1 f x = x |> f do2 :: (a -> a) -> a -> a do2 f x = x |> f |> f \end{haskellcode} \myheader{Bottling Computation Patterns With Polymorphic Higher-Order Functions} \begin{haskellcode} toUpperString :: String -> String toUpperString [] = [] toUpperString (c:cs) = toUpper c : toUpperString cs -- map map :: (a -> b) -> [a] -> [b] map f [] = [] map f (x:xs) = (f x) : (map f xs) toUpperString = map toUpper -- foldr foldr op base [] = base foldr op base (x:xs) = x `op` (foldr op base xs) -- foldr on actions fuseActions :: [IO ()] -> IO () fuseActions [] = return () fuseActions (a1:acts) = do a1 fuseActions acts fuseActions :: [IO ()] -> IO () fuseActions = foldr (>>) (return ()) \end{haskellcode} \section{Higher-order programming} \index{Higher-order programming} \myheader{Recursive types} \begin{haskellcode} data Shape = Rectangle Double Double | Polygon [(Double, Double)] data IntTree = ILeaf Int | INode IntTree IntTree \end{haskellcode} \myheader{Parameterized types} \begin{haskellcode} -- a is a type data List a = Empty | OneAndMore a (List a) data Tree a = Leaf a | Node (Tree a) (Tree a) type IntList = List Int type CharList = List Char type DoubleList = List Double \end{haskellcode} \myheader{Kinds} In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. The \textit{Tree a} corresponds to trees of values of type a. If a is the type parameter, then what is Tree ? A function that takes a type a as input and returns a type Tree a as output! But wait, if List is a function then what is its type? A \textit{kind} is the type of a type. \begin{haskellcode} :kind Int -- * :kind Char -- * :kind Bool -- * -> * :kind (->) -- * -> * -> * \end{haskellcode} \begin{enumerate} \item *: the kind of all data types seen as nullary type constructors, and also called proper types in this context. \item * -> * : the kind of a unary type constructor, e.g. list type constructor. \item * -> * -> * : the kind of a binary type constructor (via currying), e.g. of a pair type constructor and also that of a function type constructor. \item (* -> *) -> *: the kind of a higher-order type operator from unary type constructors to proper types. \end{enumerate} \section{Haskell: typeclass}\index{Haskell: typeclass} We want the operator such as $+$ to work for a bunch of different data types such as integers, doubles. So what should be the type of $+$? \begin{haskellcode} -- too anemic (+) :: Integer -> Integer -> Integer -- too aggressive, it doesn’t make sense to add two functions (+) :: a -> a -> a \end{haskellcode} Haskell solves this problem with an insanely slick mechanism called typeclasses. \myheader{Qualified types} \begin{haskellcode} -- truth (+) :: (Num a) => a -> a -> a \end{haskellcode} We call the above a qualified type. Read it as, $+$ takes in two a values and returns an a value for any type a that is a Num or is an instance of Num. The name Num can be thought of as a predicate over types. Some types satisfy the Num predicate. Examples include Integer, Double etc, and any values of those types can be passed to +. Other types do not satisfy the predicate. Examples include Char, String, functions etc, and so values of those types cannot be passed to +. \myheader{Typeclass} A \textit{typeclass} is a collection of operations (functions) that must exist for the underlying type. A typeclass defines some behavior (like comparing for equality, comparing for ordering, enumeration) and then types that can behave in that way are made instances of that typeclass. The behavior of typeclasses is achieved by defining functions or just type declarations that we then implement. So when we say that a type is an instance of a typeclass, we mean that we can use the functions that the typeclass defines with that type. \begin{haskellcode} -- typeclass Eq class Eq a where (==) :: a -> a -> Bool (/=) :: a -> a -> Bool -- typeclass show class Show a where show :: a -> String \end{haskellcode} A type a can be an instance of Eq as long as there are two functions that determine if two a values are respectively equal or disequal. Similarly, the typeclass Show captures the requirements that make a particular datatype be viewable, \myheader{Automatic derivation} Haskell allows us automatically derive functions for certain key type classes, namely those in the standard library. \begin{haskellcode} data Showable = A' | B' | C' deriving (Eq, Show) class (Eq a, Show a) => Num a where (+) :: a -> a -> a (*) :: a -> a -> a (-) :: a -> a -> a negate :: a -> a abs :: a -> a signum :: a -> a fromInteger :: Integer -> a -- A type T can only be deemed an instance of Num if -- 1. The type is also an instance of Eq and Show, and -- 2. There are functions for adding, multiplying, etc \end{haskellcode} \myheader{Explicit signatures} While Haskell is pretty good about inferring types in general, there are cases when the use of type classes requires explicit annotations. \begin{haskellcode} -- Read is a build typeclass, parse a string and turn it into an a read:: (Read a) => String -> a -- read "2" -- error: it doesn’t know what to convert the string to -- (read "2") :: Int -- correct -- (read "2") :: Double -- correct \end{haskellcode} \section{Haskell: monads}\index{Haskell: monads} The function programming community divides into two camps: \begin{enumerate} \item "Pure" languages, such as Haskell, are based directly upon the mathematical notion of a function as a mapping from arguments to results. \item "Impure" languages, such as ML, are based upon the extension of this notion with a range of possible effects, such as exceptions and assignments. \end{enumerate} Pure languages are easier to reason about and may benefit from lazy evaluation, while impure languages may be more efficient and can lead to shorter programs. \subsection{Abstracting programming patterns} Monads are an example of the idea of abstracting out a common programming pattern as a definition. \begin{haskellcode} inc :: [Int] -> [Int] inc [] = [] inc (n:ns) = n+1 : inc ns sqr :: [Int] -> [Int] sqr [] = [] sqr (n:ns) = n^2 : sqr ns -- above functions have the same programming pattern, -- namely mapping the empty list to itself, and a non-empty -- list to some function applied to each element in the list -- abstract this pattern gives us the map function map :: (a -> b) -> [a] -> [b] map f [] = [] map f (x:xs) = f x : map f xs inc = map (+1) sqr = map (^2) \end{haskellcode} \myheader{Maybe} The \texttt{Maybe} type encapsulates an optional value. A value of type \texttt{Maybe a} either contains a value of type \texttt{a} (represented as \text{Just a}), or it is empty (represented as \texttt{Nothing}). Using \texttt{Maybe} is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error. \begin{haskellcode} data Maybe a = Just a | Nothing foo :: (a -> b) -> Maybe a -> Maybe b foo f z = case z of Just x -> Just (f x) Nothing -> Nothing \end{haskellcode} \myheader{Functor typeclass} Functor typeclass is basically for things that can be mapped over. \begin{haskellcode} class Functor f where fmap :: (a -> b) -> f a -> f b -- map is just a map that works on lists instance Functor [] where fmap = map -- Maybe is also a functor instance Functor Maybe where fmap f (Just x) = Just (f x) fmap f Nothing = Nothing -- make Tree type instance of Functor instance Functor Tree where fmap f EmptyTree = EmptyTree fmap f (Node x left right) = Node (f x) (fmap f left) (fmap f right) -- IO is an instance of Functor instance Functor IO where fmap f action = do results <- action return (f result) -- <-: bind that result to a name result <- getLine -- return: a function that makes an I/O action that doesn't do -- anything but only presents something as its result \end{haskellcode} \myheader{Generalize map to many arguments} We can generalize map to many arguments. \begin{haskellcode} lift1 :: (a -> b) -> [a] -> [b] lift2 :: (a1 -> a2 -> b) -> [a1] -> [a2] -> [b] lift3 :: (a1 -> a2 -> a3 -> b) -> [a1] -> [a2] -> [a3] -> [b] \end{haskellcode} There is a typeclass called \texttt{Applicative} that corresponds to the type constructors that you can \texttt{lift2} or \texttt{lift3} over. \begin{haskellcode} liftA :: Applicative t => (a -> b) -> t a -> t b liftA2 :: Applicative t => (a1 -> a2 -> b) -> t a1 -> t a2 -> t b liftA3 :: Applicative t => (a1 -> a2 -> a3 -> b) -> t a1 -> t a2 -> t a3 -> t b \end{haskellcode} \myheader{Sequencing operator} Here we introduce a new sequencing operator that we write as \texttt{>>=}, and read as \textit{then}. \begin{haskellcode} (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b m >>= f = case m of Nothing -> Nothing Just x -> f x -- evaluate each of the expression m1, m2, ..., mn in turn, -- and combine their results x1, x2, ..., xn by applying -- the function f m1 >>= \x1 -> m2 >>= \x2 -> ... mn >>= \xn -> f x1 x2 ... xn \end{haskellcode} \section{To add}
-- --------------------------------------------------------------- [ Day04.idr ] -- Module : Data.Advent.Day04 -- Description : My solution to the Day 4 puzzle of the 2016 Advent of Code. -- Copyright : Copyright (c) 2016, Eric Bailey -- License : MIT -- Link : http://adventofcode.com/2016/day/4 -- --------------------------------------------------------------------- [ EOH ] ||| Day 4: Security Through Obscurity module Data.Advent.Day04 import public Data.SortedMap import public Lightyear import public Lightyear.Char import public Lightyear.Strings import public Lightyear.StringFile %access export -- NOTE: This is not awesome, but the maps here will be small... private inc : k -> SortedMap k Nat -> SortedMap k Nat inc k m = case lookup k m of Nothing => insert k 1 m Just v => insert k (S v) $ delete k m -- ----------------------------------------------------------------- [ Parsers ] encryptedName : Parser (List Char) encryptedName = concat <$> some (some letter <* token "-") sectorId : Parser Integer sectorId = integer checksum : Parser String checksum = quoted' '[' ']' room : Parser (List Char, Integer, String) room = liftA2 MkPair encryptedName $ liftA2 MkPair sectorId checksum -- ------------------------------------------------------------------- [ Logic ] implementation [day04] Ord (Char, Nat) where compare (a,x) (b,y) = let o = compare y x in if EQ /= o then o else compare a b computeChecksum : List Char -> String computeChecksum = pack . map Basics.fst . take 5 . sort @{day04} . toList . foldr inc empty isReal : (List Char, Integer, String) -> Bool isReal (cs, _, cksum) = cksum == computeChecksum cs main' : Show a => Parser (List (List Char, Integer, String)) -> (List (List Char, Integer, String) -> a) -> IO () main' p f = either putStrLn (printLn . f) !(run $ parseFile (const show) (const id) p "input/day04.txt") -- ---------------------------------------------------------------- [ Part One ] namespace PartOne main : IO () main = main' (some room) $ foldr go 0 where go r@(_,sid,_) sum = if isReal r then sum + sid else sum -- ---------------------------------------------------------------- [ Part Two ] namespace PartTwo roomToMessage : (List Char, Integer, String) -> String roomToMessage (cs, sid, _) = let az = cycle ['a' .. 'z'] n = toNat sid `mod` 26 in pack $ map (\c => index n (drop (toNat c `minus` 97) az)) cs main : IO () main = main' (filter isReal <$> some room) $ \rs => fromMaybe (-404) $ (\(_,sid,_) => sid) <$> find (("northpoleobjectstorage" ==) . roomToMessage) rs -- -------------------------------------------------------------------- [ Main ] namespace Main main : IO () main = putStr "Part One: " *> PartOne.main *> putStr "Part Two: " *> PartTwo.main -- --------------------------------------------------------------------- [ EOF ]
State Before: α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α ⊢ withDensity ν (rnDeriv μ ν) ≤ μ State After: case pos α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : HaveLebesgueDecomposition μ ν ⊢ withDensity ν (rnDeriv μ ν) ≤ μ case neg α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : ¬HaveLebesgueDecomposition μ ν ⊢ withDensity ν (rnDeriv μ ν) ≤ μ Tactic: by_cases hl : HaveLebesgueDecomposition μ ν State Before: case pos α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : HaveLebesgueDecomposition μ ν ⊢ withDensity ν (rnDeriv μ ν) ≤ μ State After: case pos.intro α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : HaveLebesgueDecomposition μ ν left✝ : singularPart μ ν ⟂ₘ ν h : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν) ⊢ withDensity ν (rnDeriv μ ν) ≤ μ Tactic: cases' (haveLebesgueDecomposition_spec μ ν).2 with _ h State Before: case pos.intro α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : HaveLebesgueDecomposition μ ν left✝ : singularPart μ ν ⟂ₘ ν h : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν) ⊢ withDensity ν (rnDeriv μ ν) ≤ μ State After: case pos.intro α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : HaveLebesgueDecomposition μ ν left✝ : singularPart μ ν ⟂ₘ ν h : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν) ⊢ withDensity ν (rnDeriv μ ν) ≤ singularPart μ ν + withDensity ν (rnDeriv μ ν) Tactic: conv_rhs => rw [h] State Before: case pos.intro α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : HaveLebesgueDecomposition μ ν left✝ : singularPart μ ν ⟂ₘ ν h : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν) ⊢ withDensity ν (rnDeriv μ ν) ≤ singularPart μ ν + withDensity ν (rnDeriv μ ν) State After: no goals Tactic: exact Measure.le_add_left le_rfl State Before: case neg α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : ¬HaveLebesgueDecomposition μ ν ⊢ withDensity ν (rnDeriv μ ν) ≤ μ State After: case neg α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : ¬HaveLebesgueDecomposition μ ν ⊢ 0 ≤ μ Tactic: rw [rnDeriv, dif_neg hl, withDensity_zero] State Before: case neg α : Type u_1 β : Type ?u.34335 m : MeasurableSpace α μ✝ ν✝ μ ν : Measure α hl : ¬HaveLebesgueDecomposition μ ν ⊢ 0 ≤ μ State After: no goals Tactic: exact Measure.zero_le μ
function ConstantMagneticPotentialDifference(;name, V_m=1.0) val = V_m @named two_port_elementary = TwoPortElementary() @unpack port_p, port_n = two_port_elementary @parameters V_m @variables Phi(t) eqs = [ V_m ~ port_p.V_m - port_n.V_m, Phi ~ port_p.Phi, 0 ~ port_p.Phi + port_n.Phi, ] extend(ODESystem(eqs, t, [Phi], [V_m], systems=[port_p, port_n], defaults=Dict(V_m => val), name=name), two_port_elementary) end function ConstantMagneticFlux(;name, Phi=1.0) val = Phi @named two_port_elementary = TwoPortElementary() @unpack port_p, port_n = two_port_elementary @parameters Phi @variables V_m(t) eqs = [ V_m ~ port_p.V_m - port_n.V_m, Phi ~ port_p.Phi, 0 ~ port_p.Phi + port_n.Phi, ] extend(ODESystem(eqs, t, [V_m], [Phi], systems=[port_p, port_n], defaults=Dict(Phi => val), name=name), two_port_elementary) end
Formal statement is: lemma LIMSEQ_linear: "X \<longlonglongrightarrow> x \<Longrightarrow> l > 0 \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x" Informal statement is: If $X$ converges to $x$, then $X(n \cdot l)$ converges to $x$ for any $l > 0$.
function newfp = slchangefilepart(fp, varargin) %SLCHANGEFILEPART Changes some parts of the file path % % $ Syntax $ % - newfp = slchangefilepart(fp, partname1, part1, ...) % % $ Description $ % - newfp = slchangefilepart(fp, partname1, part1, ...) changes the % specified part of a path to a new value to form a new path. % Please refer to slfilepart for part names % % $ Remarks $ % - If you specify the name, then you should be specify title and ext. % % $ History $ % - Created by Dahua Lin, on Aug 12nd, 2006 % %% Main body if isempty(varargin) newfp = fp; else opts.parent = ''; opts.name = ''; opts.title = ''; opts.ext = ''; opts = slparseprops(opts, varargin{:}); if ~isempty(opts.ext) if opts.ext(1) ~= '.' error('sltoolbox:invalidarg', ... 'The extension string should start with a dot . '); end end [p.parent, p.title, p.ext] = fileparts(fp); if isempty(opts.name) p = updatefields(p, opts, {'parent', 'title', 'ext'}); newfp = fullfile(p.parent, [p.title, p.ext]); else if ~isempty(opts.title) || ~isempty(opts.ext) error('sltoolbox:invalidarg', ... 'When name is specified, title and ext should not be'); end p = updatefields(p, opts, {'parent', 'name'}); newfp = fullfile(p.parent, p.name); end end %% Auxiliary functions function S = updatefields(S, newS, fns) nf = length(fns); for i = 1 : nf f = fns{i}; if ~isempty(newS.(f)) S.(f) = newS.(f); end end
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially" for c :: nat
Formal statement is: lemma tendsto_mult_one: fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_mult" shows "(f \<longlongrightarrow> 1) F \<Longrightarrow> (g \<longlongrightarrow> 1) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> 1) F" Informal statement is: If $f$ and $g$ converge to $1$, then $f \cdot g$ converges to $1$.
MODULE myjunk TYPE POINT REAL :: X, Y CONTAINS PROCEDURE, PASS :: LENGTH => POINT_LENGTH END TYPE POINT CONTAINS REAL FUNCTION POINT_LENGTH(A,B) CLASS(POINT), INTENT(IN) :: A, B POINT_LENGTH = SQRT((A%X-B%X)**2+(A%Y-B%Y)**2) END FUNCTION POINT_LENGTH END MODULE
module Minecraft.Base.PreClassic.Cobblestone import public Minecraft.Core.Block.GenericData import public Minecraft.Core.Entity.Pickup.GenericData import public Minecraft.Core.Item.GenericData %default total public export record Block where constructor MkBlock {auto base : GenericBlockData} public export record Item where constructor MkItem {auto base : GenericItemData} public export record ItemEntity where constructor MkItemEntity {auto base : GenericItemEntityData Cobblestone.Item}
The broadcast of Sister Wives came at a time that polygamy and multiple marriages were a prevalent topic in American pop culture . Big Love , the hit HBO series about fictional Utah polygamist Bill Henrickson , his three sister wives , and their struggle to gain acceptance in society , had already been on the air for several years . In early September 2010 , the drama series Lone Star , about a con man on the verge of entering into multiple marriages , premiered on Fox but was quickly canceled after two episodes , and when Sister Wives debuted , actress Katherine Heigl was in the process of developing a film about Carolyn Jessop , a woman who fled from a polygamist sect .
(* Title: Psi-calculi Author/Maintainer: Jesper Bengtson ([email protected]), 2012 *) theory Bisim_Struct_Cong imports Bisim_Pres Sim_Struct_Cong Structural_Congruence begin context env begin lemma bisimParComm: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" shows "\<Psi> \<rhd> P \<parallel> Q \<sim> Q \<parallel> P" proof - let ?X = "{((\<Psi>::'b), \<lparr>\<nu>*xvec\<rparr>((P::('a, 'b, 'c) psi) \<parallel> Q), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P)) | xvec \<Psi> P Q. xvec \<sharp>* \<Psi>}" have "eqvt ?X" by(force simp add: eqvt_def pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst] eqvts) have "(\<Psi>, P \<parallel> Q, Q \<parallel> P) \<in> ?X" apply auto by(rule_tac x="[]" in exI) auto thus ?thesis proof(coinduct rule: bisimWeakCoinduct) case(cStatEq \<Psi> PQ QP) from \<open>(\<Psi>, PQ, QP) \<in> ?X\<close> obtain xvec P Q where PFrQ: "PQ = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)" and QFrP: "QP = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P)" and "xvec \<sharp>* \<Psi>" by auto obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" and "A\<^sub>P \<sharp>* Q" by(rule_tac C="(\<Psi>, Q)" in freshFrame) auto obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extractFrame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" by(rule_tac C="(\<Psi>, A\<^sub>P, \<Psi>\<^sub>P)" in freshFrame) auto from FrQ \<open>A\<^sub>Q \<sharp>* A\<^sub>P\<close> \<open>A\<^sub>P \<sharp>* Q\<close> have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" by(force dest: extractFrameFreshChain) have "\<langle>(xvec@A\<^sub>P@A\<^sub>Q), \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q\<rangle> \<simeq>\<^sub>F \<langle>(xvec@A\<^sub>Q@A\<^sub>P), \<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>P\<rangle>" by(simp add: frameChainAppend) (metis frameResChainPres frameResChainComm frameNilStatEq compositionSym Associativity Commutativity FrameStatEqTrans) with FrP FrQ PFrQ QFrP \<open>A\<^sub>P \<sharp>* \<Psi>\<^sub>Q\<close> \<open>A\<^sub>Q \<sharp>* \<Psi>\<^sub>P\<close> \<open>A\<^sub>Q \<sharp>* A\<^sub>P\<close> \<open>xvec \<sharp>* \<Psi>\<close> \<open>A\<^sub>P \<sharp>* \<Psi>\<close> \<open>A\<^sub>Q \<sharp>* \<Psi>\<close> show ?case by(auto simp add: frameChainAppend) next case(cSim \<Psi> PQ QP) from \<open>(\<Psi>, PQ, QP) \<in> ?X\<close> obtain xvec P Q where PFrQ: "PQ = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)" and QFrP: "QP = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P)" and "xvec \<sharp>* \<Psi>" by auto moreover have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q) \<leadsto>[?X] \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P)" proof - have "\<Psi> \<rhd> P \<parallel> Q \<leadsto>[?X] Q \<parallel> P" proof - note \<open>eqvt ?X\<close> moreover have "\<And>\<Psi> P Q. (\<Psi>, P \<parallel> Q, Q \<parallel> P) \<in> ?X" apply auto by(rule_tac x="[]" in exI) auto moreover have "\<And>\<Psi> P Q xvec. \<lbrakk>(\<Psi>, P, Q) \<in> ?X; xvec \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>*xvec\<rparr>P, \<lparr>\<nu>*xvec\<rparr>Q) \<in> ?X" apply(induct xvec, auto) by(rule_tac x="xvec@xveca" in exI) (auto simp add: resChainAppend) ultimately show ?thesis by(rule simParComm) qed moreover note \<open>eqvt ?X\<close> \<open>xvec \<sharp>* \<Psi>\<close> moreover have "\<And>\<Psi> P Q x. \<lbrakk>(\<Psi>, P, Q) \<in> ?X; x \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X" apply auto by(rule_tac x="x#xvec" in exI) auto ultimately show ?thesis by(rule resChainPres) qed ultimately show ?case by simp next case(cExt \<Psi> PQ QP \<Psi>') from \<open>(\<Psi>, PQ, QP) \<in> ?X\<close> obtain xvec P Q where PFrQ: "PQ = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)" and QFrP: "QP = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P)" and "xvec \<sharp>* \<Psi>" by auto obtain p where "(p \<bullet> xvec) \<sharp>* \<Psi>" and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>'" and S: "(set p) \<subseteq> (set xvec) \<times> (set(p \<bullet> xvec))" and "distinctPerm p" by(rule_tac c="(\<Psi>, P, Q, \<Psi>')" in name_list_avoiding) auto from \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> S have "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> (P \<parallel> Q))" by(subst resChainAlpha) auto hence PQAlpha: "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> Q))" by(simp add: eqvts) from \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> S have "\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> (Q \<parallel> P))" by(subst resChainAlpha) auto hence QPAlpha: "\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> P) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> Q) \<parallel> (p \<bullet> P))" by(simp add: eqvts) from \<open>(p \<bullet> xvec) \<sharp>* \<Psi>\<close> \<open>(p \<bullet> xvec) \<sharp>* \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> Q)), \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> Q) \<parallel> (p \<bullet> P))) \<in> ?X" by auto with PFrQ QFrP PQAlpha QPAlpha show ?case by simp next case(cSym \<Psi> PR QR) thus ?case by blast qed qed lemma bisimResComm: fixes x :: name and \<Psi> :: 'b and y :: name and P :: "('a, 'b, 'c) psi" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<sim> \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" proof(cases "x=y") case True thus ?thesis by(blast intro: bisimReflexive) next case False { fix x::name and y::name and P::"('a, 'b, 'c) psi" assume "x \<sharp> \<Psi>" and "y \<sharp> \<Psi>" let ?X = "{((\<Psi>::'b), \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>(P::('a, 'b, 'c) psi)), \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)) | \<Psi> x y P. x \<sharp> \<Psi> \<and> y \<sharp> \<Psi>}" from \<open>x \<sharp> \<Psi>\<close> \<open>y \<sharp> \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P), \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)) \<in> ?X" by auto hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<sim> \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" proof(coinduct rule: bisimCoinduct) case(cStatEq \<Psi> xyP yxP) from \<open>(\<Psi>, xyP, yxP) \<in> ?X\<close> obtain x y P where "x \<sharp> \<Psi>" and "y \<sharp> \<Psi>" and "xyP = \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P)" and "yxP = \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" by auto moreover obtain A\<^sub>P \<Psi>\<^sub>P where "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" and "x \<sharp> A\<^sub>P" and "y \<sharp> A\<^sub>P" by(rule_tac C="(x, y, \<Psi>)" in freshFrame) auto ultimately show ?case by(force intro: frameResComm FrameStatEqTrans) next case(cSim \<Psi> xyP yxP) from \<open>(\<Psi>, xyP, yxP) \<in> ?X\<close> obtain x y P where "x \<sharp> \<Psi>" and "y \<sharp> \<Psi>" and "xyP = \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P)" and "yxP = \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" by auto note \<open>x \<sharp> \<Psi>\<close> \<open>y \<sharp> \<Psi>\<close> moreover have "eqvt ?X" by(force simp add: eqvt_def pt_fresh_bij[OF pt_name_inst, OF at_name_inst]) hence "eqvt(?X \<union> bisim)" by auto moreover have "\<And>\<Psi> P. (\<Psi>, P, P) \<in> ?X \<union> bisim" by(blast intro: bisimReflexive) moreover have "\<And>\<Psi> x y P. \<lbrakk>x \<sharp> \<Psi>; y \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P), \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)) \<in> ?X \<union> bisim" by auto ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<leadsto>[(?X \<union> bisim)] \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" by(rule resComm) with \<open>xyP = \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P)\<close> \<open>yxP = \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)\<close> show ?case by simp next case(cExt \<Psi> xyP yxP \<Psi>') from \<open>(\<Psi>, xyP, yxP) \<in> ?X\<close> obtain x y P where "x \<sharp> \<Psi>" and "y \<sharp> \<Psi>" and xyPeq: "xyP = \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P)" and yxPeq: "yxP = \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" by auto show ?case proof(case_tac "x=y") assume "x = y" with xyPeq yxPeq show ?case by(blast intro: bisimReflexive) next assume "x \<noteq> y" obtain x' where "x' \<sharp> \<Psi>" and "x' \<sharp> \<Psi>'" and "x' \<noteq> x" and "x' \<noteq> y" and "x' \<sharp> P" by(generate_fresh "name") (auto simp add: fresh_prod) obtain y' where "y' \<sharp> \<Psi>" and "y' \<sharp> \<Psi>'" and "y' \<noteq> x" and "x' \<noteq> y'" and "y' \<noteq> y" and "y' \<sharp> P" by(generate_fresh "name") (auto simp add: fresh_prod) with xyPeq \<open>y' \<sharp> P\<close> \<open>x' \<sharp> P\<close> \<open>x \<noteq> y\<close> \<open>x' \<noteq> y\<close> \<open>y' \<noteq> x\<close> have "\<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) = \<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P))" apply(subst alphaRes[of x']) apply(simp add: abs_fresh) by(subst alphaRes[of y' _ y]) (auto simp add: eqvts calc_atm) moreover with yxPeq \<open>y' \<sharp> P\<close> \<open>x' \<sharp> P\<close> \<open>x \<noteq> y\<close> \<open>x' \<noteq> y\<close> \<open>y' \<noteq> x\<close> \<open>x' \<noteq> y'\<close> have "\<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P) = \<lparr>\<nu>y'\<rparr>(\<lparr>\<nu>x'\<rparr>([(y, y')] \<bullet> [(x, x')] \<bullet> P))" apply(subst alphaRes[of y']) apply(simp add: abs_fresh) by(subst alphaRes[of x' _ x]) (auto simp add: eqvts calc_atm) with \<open>x \<noteq> y\<close> \<open>x' \<noteq> y\<close> \<open>y' \<noteq> y\<close> \<open>x' \<noteq> x\<close> \<open>y' \<noteq> x\<close> \<open>x' \<noteq> y'\<close> have "\<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P) = \<lparr>\<nu>y'\<rparr>(\<lparr>\<nu>x'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P))" by(subst perm_compose) (simp add: calc_atm) moreover from \<open>x' \<sharp> \<Psi>\<close> \<open>x' \<sharp> \<Psi>'\<close> \<open>y' \<sharp> \<Psi>\<close> \<open>y' \<sharp> \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P)), \<lparr>\<nu>y'\<rparr>(\<lparr>\<nu>x'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P))) \<in> ?X" by auto ultimately show ?case using xyPeq yxPeq by simp qed next case(cSym \<Psi> xyP yxP) thus ?case by auto qed } moreover obtain x'::name where "x' \<sharp> \<Psi>" and "x' \<sharp> P" and "x' \<noteq> x" and "x' \<noteq> y" by(generate_fresh "name") auto moreover obtain y'::name where "y' \<sharp> \<Psi>" and "y' \<sharp> P" and "y' \<noteq> x" and "y' \<noteq> y" and "y' \<noteq> x'" by(generate_fresh "name") auto ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(y, y'), (x, x')] \<bullet> P)) \<sim> \<lparr>\<nu>y'\<rparr>(\<lparr>\<nu>x'\<rparr>([(y, y'), (x, x')] \<bullet> P))" by auto thus ?thesis using \<open>x' \<sharp> P\<close> \<open>x' \<noteq> x\<close> \<open>x' \<noteq> y\<close> \<open>y' \<sharp> P\<close> \<open>y' \<noteq> x\<close> \<open>y' \<noteq> y\<close> \<open>y' \<noteq> x'\<close> \<open>x \<noteq> y\<close> apply(subst alphaRes[where x=x and y=x' and P=P], auto) apply(subst alphaRes[where x=y and y=y' and P=P], auto) apply(subst alphaRes[where x=x and y=x' and P="\<lparr>\<nu>y'\<rparr>([(y, y')] \<bullet> P)"], auto simp add: abs_fresh fresh_left) apply(subst alphaRes[where x=y and y=y' and P="\<lparr>\<nu>x'\<rparr>([(x, x')] \<bullet> P)"], auto simp add: abs_fresh fresh_left) by(subst perm_compose) (simp add: eqvts calc_atm) qed lemma bisimResComm': fixes x :: name and \<Psi> :: 'b and xvec :: "name list" and P :: "('a, 'b, 'c) psi" assumes "x \<sharp> \<Psi>" and "xvec \<sharp>* \<Psi>" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>P) \<sim> \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>P)" using assms by(induct xvec) (auto intro: bisimResComm bisimReflexive bisimResPres bisimTransitive) lemma bisimScopeExt: fixes x :: name and \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" assumes "x \<sharp> P" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<sim> P \<parallel> \<lparr>\<nu>x\<rparr>Q" proof - { fix x::name and Q :: "('a, 'b, 'c) psi" assume "x \<sharp> \<Psi>" and "x \<sharp> P" let ?X1 = "{((\<Psi>::'b), \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>((P::('a, 'b, 'c) psi) \<parallel> Q)), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)) | \<Psi> xvec x P Q. x \<sharp> \<Psi> \<and> x \<sharp> P \<and> xvec \<sharp>* \<Psi>}" let ?X2 = "{((\<Psi>::'b), \<lparr>\<nu>*xvec\<rparr>((P::('a, 'b, 'c) psi) \<parallel> \<lparr>\<nu>x\<rparr>Q), \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))) | \<Psi> xvec x P Q. x \<sharp> \<Psi> \<and> x \<sharp> P \<and> xvec \<sharp>* \<Psi>}" let ?X = "?X1 \<union> ?X2" from \<open>x \<sharp> \<Psi>\<close> \<open>x \<sharp> P\<close> have "(\<Psi>, \<lparr>\<nu>x\<rparr>(P \<parallel> Q), P \<parallel> \<lparr>\<nu>x\<rparr>Q) \<in> ?X" by(auto, rule_tac x="[]" in exI) (auto simp add: fresh_list_nil) moreover have "eqvt ?X" by(rule eqvtUnion) (fastforce simp add: eqvt_def eqvts pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst] pt_fresh_bij[OF pt_name_inst, OF at_name_inst])+ ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<sim> P \<parallel> \<lparr>\<nu>x\<rparr>Q" proof(coinduct rule: transitiveCoinduct) case(cStatEq \<Psi> R T) show ?case proof(case_tac "(\<Psi>, R, T) \<in> ?X1") assume "(\<Psi>, R, T) \<in> ?X1" then obtain xvec x P Q where "R = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and "T = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto moreover obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" and "x \<sharp> A\<^sub>P" and "A\<^sub>P \<sharp>* Q" by(rule_tac C="(\<Psi>, x, Q)" in freshFrame) auto moreover obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extractFrame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "x \<sharp> A\<^sub>Q" and "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" by(rule_tac C="(\<Psi>, x, A\<^sub>P, \<Psi>\<^sub>P)" in freshFrame) auto moreover from FrQ \<open>A\<^sub>P \<sharp>* Q\<close> \<open>A\<^sub>Q \<sharp>* A\<^sub>P\<close> have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" by(drule_tac extractFrameFreshChain) auto moreover from \<open>x \<sharp> P\<close> \<open>x \<sharp> A\<^sub>P\<close> FrP have "x \<sharp> \<Psi>\<^sub>P" by(drule_tac extractFrameFresh) auto ultimately show ?case by(force simp add: frameChainAppend intro: frameResComm' FrameStatEqTrans frameResChainPres) next assume "(\<Psi>, R, T) \<notin> ?X1" with \<open>(\<Psi>, R, T) \<in> ?X\<close> have "(\<Psi>, R, T) \<in> ?X2" by blast then obtain xvec x P Q where "T = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and "R = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto moreover obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" and "x \<sharp> A\<^sub>P" and "A\<^sub>P \<sharp>* Q" by(rule_tac C="(\<Psi>, x, Q)" in freshFrame) auto moreover obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extractFrame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "x \<sharp> A\<^sub>Q" and "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" by(rule_tac C="(\<Psi>, x, A\<^sub>P, \<Psi>\<^sub>P)" in freshFrame) auto moreover from FrQ \<open>A\<^sub>P \<sharp>* Q\<close> \<open>A\<^sub>Q \<sharp>* A\<^sub>P\<close> have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" by(drule_tac extractFrameFreshChain) auto moreover from \<open>x \<sharp> P\<close> \<open>x \<sharp> A\<^sub>P\<close> FrP have "x \<sharp> \<Psi>\<^sub>P" by(drule_tac extractFrameFresh) auto ultimately show ?case apply auto by(force simp add: frameChainAppend intro: frameResComm' FrameStatEqTrans frameResChainPres FrameStatEqSym) qed next case(cSim \<Psi> R T) let ?Y = "{(\<Psi>, P, Q) | \<Psi> P P' Q' Q. \<Psi> \<rhd> P \<sim> P' \<and> ((\<Psi>, P', Q') \<in> ?X \<or> \<Psi> \<rhd> P' \<sim> Q') \<and> \<Psi> \<rhd> Q' \<sim> Q}" from \<open>eqvt ?X\<close> have "eqvt ?Y" by blast have C1: "\<And>\<Psi> R T y. \<lbrakk>(\<Psi>, R, T) \<in> ?Y; (y::name) \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>y\<rparr>R, \<lparr>\<nu>y\<rparr>T) \<in> ?Y" proof - fix \<Psi> R T y assume "(\<Psi>, R, T) \<in> ?Y" then obtain R' T' where "\<Psi> \<rhd> R \<sim> R'" and "(\<Psi>, R', T') \<in> (?X \<union> bisim)" and "\<Psi> \<rhd> T' \<sim> T" by fastforce assume "(y::name) \<sharp> \<Psi>" show "(\<Psi>, \<lparr>\<nu>y\<rparr>R, \<lparr>\<nu>y\<rparr>T) \<in> ?Y" proof(case_tac "(\<Psi>, R', T') \<in> ?X") assume "(\<Psi>, R', T') \<in> ?X" show ?thesis proof(case_tac "(\<Psi>, R', T') \<in> ?X1") assume "(\<Psi>, R', T') \<in> ?X1" then obtain xvec x P Q where R'eq: "R' = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and T'eq: "T' = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto from \<open>\<Psi> \<rhd> R \<sim> R'\<close> \<open>y \<sharp> \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>R \<sim> \<lparr>\<nu>y\<rparr>R'" by(rule bisimResPres) moreover from \<open>xvec \<sharp>* \<Psi>\<close> \<open>y \<sharp> \<Psi>\<close> \<open>x \<sharp> P\<close> \<open>x \<sharp> \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>*(y#xvec)\<rparr>\<lparr>\<nu>x\<rparr>(P \<parallel> Q), \<lparr>\<nu>*(y#xvec)\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)) \<in> ?X1" by(force simp del: resChain.simps) with R'eq T'eq have "(\<Psi>, \<lparr>\<nu>y\<rparr>R', \<lparr>\<nu>y\<rparr>T') \<in> ?X \<union> bisim" by simp moreover from \<open>\<Psi> \<rhd> T' \<sim> T\<close> \<open>y \<sharp> \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>T' \<sim> \<lparr>\<nu>y\<rparr>T" by(rule bisimResPres) ultimately show ?thesis by blast next assume "(\<Psi>, R', T') \<notin> ?X1" with \<open>(\<Psi>, R', T') \<in> ?X\<close> have "(\<Psi>, R', T') \<in> ?X2" by blast then obtain xvec x P Q where T'eq: "T' = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and R'eq: "R' = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto from \<open>\<Psi> \<rhd> R \<sim> R'\<close> \<open>y \<sharp> \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>R \<sim> \<lparr>\<nu>y\<rparr>R'" by(rule bisimResPres) moreover from \<open>xvec \<sharp>* \<Psi>\<close> \<open>y \<sharp> \<Psi>\<close> \<open>x \<sharp> P\<close> \<open>x \<sharp> \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>*(y#xvec)\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q), \<lparr>\<nu>*(y#xvec)\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))) \<in> ?X2" by(force simp del: resChain.simps) with R'eq T'eq have "(\<Psi>, \<lparr>\<nu>y\<rparr>R', \<lparr>\<nu>y\<rparr>T') \<in> ?X \<union> bisim" by simp moreover from \<open>\<Psi> \<rhd> T' \<sim> T\<close> \<open>y \<sharp> \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>T' \<sim> \<lparr>\<nu>y\<rparr>T" by(rule bisimResPres) ultimately show ?thesis by blast qed next assume "(\<Psi>, R', T') \<notin> ?X" with \<open>(\<Psi>, R', T') \<in> ?X \<union> bisim\<close> have "\<Psi> \<rhd> R' \<sim> T'" by blast with \<open>\<Psi> \<rhd> R \<sim> R'\<close> \<open>\<Psi> \<rhd> T' \<sim> T\<close> \<open>y \<sharp> \<Psi>\<close> show ?thesis by(blast dest: bisimResPres) qed qed show ?case proof(case_tac "(\<Psi>, R, T) \<in> ?X1") assume "(\<Psi>, R, T) \<in> ?X1" then obtain xvec x P Q where Req: "R = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and Teq: "T = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q)) \<leadsto>[?Y] \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" proof - have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<leadsto>[?Y] P \<parallel> \<lparr>\<nu>x\<rparr>Q" proof - note \<open>x \<sharp> P\<close> \<open>x \<sharp> \<Psi>\<close> \<open>eqvt ?Y\<close> moreover have "\<And>\<Psi> P. (\<Psi>, P, P) \<in> ?Y" by(blast intro: bisimReflexive) moreover have "\<And>x \<Psi> P Q xvec. \<lbrakk>x \<sharp> \<Psi>; x \<sharp> P; xvec \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)) \<in> ?Y" proof - fix x \<Psi> P Q xvec assume "(x::name) \<sharp> (\<Psi>::'b)" and "x \<sharp> (P::('a, 'b, 'c) psi)" and "(xvec::name list) \<sharp>* \<Psi>" from \<open>x \<sharp> \<Psi>\<close> \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)) \<sim> \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" by(rule bisimResComm') moreover from \<open>xvec \<sharp>* \<Psi>\<close> \<open>x \<sharp> \<Psi>\<close> \<open>x \<sharp> P\<close> have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q)), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)) \<in> ?X \<union> bisim" by blast ultimately show "(\<Psi>, \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)) \<in> ?Y" by(blast intro: bisimReflexive) qed moreover have "\<And>\<Psi> xvec P x. \<lbrakk>x \<sharp> \<Psi>; xvec \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>P), \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>P)) \<in> ?Y" by(blast intro: bisimResComm' bisimReflexive) ultimately show ?thesis by(rule scopeExtLeft) qed thus ?thesis using \<open>eqvt ?Y\<close> \<open>xvec \<sharp>* \<Psi>\<close> C1 by(rule resChainPres) qed with Req Teq show ?case by simp next assume "(\<Psi>, R, T) \<notin> ?X1" with \<open>(\<Psi>, R, T) \<in> ?X\<close> have "(\<Psi>, R, T) \<in> ?X2" by blast then obtain xvec x P Q where Teq: "T = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and Req: "R = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q) \<leadsto>[?Y] \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" proof - have "\<Psi> \<rhd> P \<parallel> \<lparr>\<nu>x\<rparr>Q \<leadsto>[?Y] \<lparr>\<nu>x\<rparr>(P \<parallel> Q)" proof - note \<open>x \<sharp> P\<close> \<open>x \<sharp> \<Psi>\<close> \<open>eqvt ?Y\<close> moreover have "\<And>\<Psi> P. (\<Psi>, P, P) \<in> ?Y" by(blast intro: bisimReflexive) moreover have "\<And>x \<Psi> P Q xvec. \<lbrakk>x \<sharp> \<Psi>; x \<sharp> P; xvec \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q), \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q))) \<in> ?Y" proof - fix x \<Psi> P Q xvec assume "(x::name) \<sharp> (\<Psi>::'b)" and "x \<sharp> (P::('a, 'b, 'c) psi)" and "(xvec::name list) \<sharp>* \<Psi>" from \<open>xvec \<sharp>* \<Psi>\<close> \<open>x \<sharp> \<Psi>\<close> \<open>x \<sharp> P\<close> have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q), \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))) \<in> ?X \<union> bisim" by blast moreover from \<open>x \<sharp> \<Psi>\<close> \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q)) \<sim> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q))" by(blast intro: bisimResComm' bisimE) ultimately show "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q), \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q))) \<in> ?Y" by(blast intro: bisimReflexive) qed ultimately show ?thesis by(rule scopeExtRight) qed thus ?thesis using \<open>eqvt ?Y\<close> \<open>xvec \<sharp>* \<Psi>\<close> C1 by(rule resChainPres) qed with Req Teq show ?case by simp qed next case(cExt \<Psi> R T \<Psi>') show ?case proof(case_tac "(\<Psi>, R, T) \<in> ?X1") assume "(\<Psi>, R, T) \<in> ?X1" then obtain xvec x P Q where Req: "R = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and Teq: "T = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto obtain y::name where "y \<sharp> P" and "y \<sharp> Q" and "y \<sharp> xvec" and "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" by(generate_fresh "name", auto simp add: fresh_prod) obtain p where "(p \<bullet> xvec) \<sharp>* \<Psi>" and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>'" and "x \<sharp> (p \<bullet> xvec)" and "y \<sharp> (p \<bullet> xvec)" and S: "(set p) \<subseteq> (set xvec) \<times> (set(p \<bullet> xvec))" and "distinctPerm p" by(rule_tac c="(\<Psi>, P, Q, x, y, \<Psi>')" in name_list_avoiding) auto from \<open>y \<sharp> P\<close> have "(p \<bullet> y) \<sharp> (p \<bullet> P)" by(simp add: pt_fresh_bij[OF pt_name_inst, OF at_name_inst]) with S \<open>y \<sharp> xvec\<close> \<open>y \<sharp> (p \<bullet> xvec)\<close> have "y \<sharp> (p \<bullet> P)" by simp with \<open>(p \<bullet> xvec) \<sharp>* \<Psi>\<close> \<open>y \<sharp> \<Psi>\<close> \<open>(p \<bullet> xvec) \<sharp>* \<Psi>'\<close> \<open>y \<sharp> \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(\<lparr>\<nu>y\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> [(x, y)] \<bullet> Q))), \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (\<lparr>\<nu>y\<rparr>(p \<bullet> [(x, y)] \<bullet> Q)))) \<in> ?X" by auto moreover from Req \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> \<open>y \<sharp> xvec\<close> \<open>y \<sharp> (p \<bullet> xvec)\<close> \<open>x \<sharp> (p \<bullet> xvec)\<close> \<open>y \<sharp> P\<close> \<open>y \<sharp> Q\<close> \<open>x \<sharp> P\<close> S have "R = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(\<lparr>\<nu>y\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> [(x, y)] \<bullet> Q)))" apply(erule_tac rev_mp) apply(subst alphaRes[of y]) apply(clarsimp simp add: eqvts) apply(subst resChainAlpha[of p]) by(auto simp add: eqvts) moreover from Teq \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> \<open>y \<sharp> xvec\<close> \<open>y \<sharp> (p \<bullet> xvec)\<close> \<open>x \<sharp> (p \<bullet> xvec)\<close> \<open>y \<sharp> P\<close> \<open>y \<sharp> Q\<close> \<open>x \<sharp> P\<close> S have "T = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> \<lparr>\<nu>y\<rparr>(p \<bullet> [(x, y)] \<bullet> Q))" apply(erule_tac rev_mp) apply(subst alphaRes[of y]) apply(clarsimp simp add: eqvts) apply(subst resChainAlpha[of p]) by(auto simp add: eqvts) ultimately show ?case by blast next assume "(\<Psi>, R, T) \<notin> ?X1" with \<open>(\<Psi>, R, T) \<in> ?X\<close> have "(\<Psi>, R, T) \<in> ?X2" by blast then obtain xvec x P Q where Teq: "T = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>x\<rparr>(P \<parallel> Q))" and Req: "R = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> \<lparr>\<nu>x\<rparr>Q)" and "xvec \<sharp>* \<Psi>" and "x \<sharp> P" and "x \<sharp> \<Psi>" by auto obtain y::name where "y \<sharp> P" and "y \<sharp> Q" and "y \<sharp> xvec" and "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" by(generate_fresh "name", auto simp add: fresh_prod) obtain p where "(p \<bullet> xvec) \<sharp>* \<Psi>" and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>'" and "x \<sharp> (p \<bullet> xvec)" and "y \<sharp> (p \<bullet> xvec)" and S: "(set p) \<subseteq> (set xvec) \<times> (set(p \<bullet> xvec))" and "distinctPerm p" by(rule_tac c="(\<Psi>, P, Q, x, y, \<Psi>')" in name_list_avoiding) auto from \<open>y \<sharp> P\<close> have "(p \<bullet> y) \<sharp> (p \<bullet> P)" by(simp add: pt_fresh_bij[OF pt_name_inst, OF at_name_inst]) with S \<open>y \<sharp> xvec\<close> \<open>y \<sharp> (p \<bullet> xvec)\<close> have "y \<sharp> (p \<bullet> P)" by simp with \<open>(p \<bullet> xvec) \<sharp>* \<Psi>\<close> \<open>y \<sharp> \<Psi>\<close> \<open>(p \<bullet> xvec) \<sharp>* \<Psi>'\<close> \<open>y \<sharp> \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> \<lparr>\<nu>y\<rparr>(p \<bullet> [(x, y)] \<bullet> Q)), \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(\<lparr>\<nu>y\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> [(x, y)] \<bullet> Q)))) \<in> ?X2" by auto moreover from Teq \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> \<open>y \<sharp> xvec\<close> \<open>y \<sharp> (p \<bullet> xvec)\<close> \<open>x \<sharp> (p \<bullet> xvec)\<close> \<open>y \<sharp> P\<close> \<open>y \<sharp> Q\<close> \<open>x \<sharp> P\<close> S have "T = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(\<lparr>\<nu>y\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> [(x, y)] \<bullet> Q)))" apply(erule_tac rev_mp) apply(subst alphaRes[of y]) apply(clarsimp simp add: eqvts) apply(subst resChainAlpha[of p]) by(auto simp add: eqvts) moreover from Req \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> \<open>y \<sharp> xvec\<close> \<open>y \<sharp> (p \<bullet> xvec)\<close> \<open>x \<sharp> (p \<bullet> xvec)\<close> \<open>y \<sharp> P\<close> \<open>y \<sharp> Q\<close> \<open>x \<sharp> P\<close> S have "R = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> \<lparr>\<nu>y\<rparr>(p \<bullet> [(x, y)] \<bullet> Q))" apply(erule_tac rev_mp) apply(subst alphaRes[of y]) apply(clarsimp simp add: eqvts) apply(subst resChainAlpha[of p]) by(auto simp add: eqvts) ultimately show ?case by blast qed next case(cSym \<Psi> P Q) thus ?case by(blast dest: bisimE) qed } moreover obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> P" "y \<sharp> Q" by(generate_fresh "name") auto ultimately have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>(P \<parallel> ([(x, y)] \<bullet> Q)) \<sim> P \<parallel> \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> Q)" by auto thus ?thesis using assms \<open>y \<sharp> P\<close> \<open>y \<sharp> Q\<close> apply(subst alphaRes[where x=x and y=y and P=Q], auto) by(subst alphaRes[where x=x and y=y and P="P \<parallel> Q"]) auto qed lemma bisimScopeExtChain: fixes xvec :: "name list" and \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" assumes "xvec \<sharp>* \<Psi>" and "xvec \<sharp>* P" shows "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q) \<sim> P \<parallel> (\<lparr>\<nu>*xvec\<rparr>Q)" using assms by(induct xvec) (auto intro: bisimScopeExt bisimReflexive bisimTransitive bisimResPres) lemma bisimParAssoc: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" and R :: "('a, 'b, 'c) psi" shows "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<sim> P \<parallel> (Q \<parallel> R)" proof - let ?X = "{(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))) | \<Psi> xvec P Q R. xvec \<sharp>* \<Psi>}" let ?Y = "{(\<Psi>, P, Q) | \<Psi> P P' Q' Q. \<Psi> \<rhd> P \<sim> P' \<and> (\<Psi>, P', Q') \<in> ?X \<and> \<Psi> \<rhd> Q' \<sim> Q}" have "(\<Psi>, (P \<parallel> Q) \<parallel> R, P \<parallel> (Q \<parallel> R)) \<in> ?X" by(auto, rule_tac x="[]" in exI) auto moreover have "eqvt ?X" by(force simp add: eqvt_def simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst] eqvts) ultimately show ?thesis proof(coinduct rule: weakTransitiveCoinduct') case(cStatEq \<Psi> PQR PQR') from \<open>(\<Psi>, PQR, PQR') \<in> ?X\<close> obtain xvec P Q R where "xvec \<sharp>* \<Psi>" and "PQR = \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" and "PQR' = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))" by auto moreover obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" and "A\<^sub>P \<sharp>* Q" and "A\<^sub>P \<sharp>* R" by(rule_tac C="(\<Psi>, Q, R)" in freshFrame) auto moreover obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extractFrame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>Q \<sharp>* R" by(rule_tac C="(\<Psi>, A\<^sub>P, \<Psi>\<^sub>P, R)" in freshFrame) auto moreover obtain A\<^sub>R \<Psi>\<^sub>R where FrR: "extractFrame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* A\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>R \<sharp>* A\<^sub>Q" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>Q" by(rule_tac C="(\<Psi>, A\<^sub>P, \<Psi>\<^sub>P, A\<^sub>Q, \<Psi>\<^sub>Q)" in freshFrame) auto moreover from FrQ \<open>A\<^sub>P \<sharp>* Q\<close> \<open>A\<^sub>Q \<sharp>* A\<^sub>P\<close> have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" by(drule_tac extractFrameFreshChain) auto moreover from FrR \<open>A\<^sub>P \<sharp>* R\<close> \<open>A\<^sub>R \<sharp>* A\<^sub>P\<close> have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R" by(drule_tac extractFrameFreshChain) auto moreover from FrR \<open>A\<^sub>Q \<sharp>* R\<close> \<open>A\<^sub>R \<sharp>* A\<^sub>Q\<close> have "A\<^sub>Q \<sharp>* \<Psi>\<^sub>R" by(drule_tac extractFrameFreshChain) auto ultimately show ?case using freshCompChain by auto (metis frameChainAppend compositionSym Associativity frameNilStatEq frameResChainPres) next case(cSim \<Psi> T S) from \<open>(\<Psi>, T, S) \<in> ?X\<close> obtain xvec P Q R where "xvec \<sharp>* \<Psi>" and TEq: "T = \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" and SEq: "S = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))" by auto from \<open>eqvt ?X\<close>have "eqvt ?Y" by blast have C1: "\<And>\<Psi> T S yvec. \<lbrakk>(\<Psi>, T, S) \<in> ?Y; yvec \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>*yvec\<rparr>T, \<lparr>\<nu>*yvec\<rparr>S) \<in> ?Y" proof - fix \<Psi> T S yvec assume "(\<Psi>, T, S) \<in> ?Y" then obtain T' S' where "\<Psi> \<rhd> T \<sim> T'" and "(\<Psi>, T', S') \<in> ?X" and "\<Psi> \<rhd> S' \<sim> S" by fastforce assume "(yvec::name list) \<sharp>* \<Psi>" from \<open>(\<Psi>, T', S') \<in> ?X\<close> obtain xvec P Q R where T'eq: "T' = \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" and S'eq: "S' = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))" and "xvec \<sharp>* \<Psi>" by auto from \<open>\<Psi> \<rhd> T \<sim> T'\<close> \<open>yvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*yvec\<rparr>T \<sim> \<lparr>\<nu>*yvec\<rparr>T'" by(rule bisimResChainPres) moreover from \<open>xvec \<sharp>* \<Psi>\<close> \<open>yvec \<sharp>* \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>*(yvec@xvec)\<rparr>((P \<parallel> Q) \<parallel> R), \<lparr>\<nu>*(yvec@xvec)\<rparr>(P \<parallel> (Q \<parallel> R))) \<in> ?X" by force with T'eq S'eq have "(\<Psi>, \<lparr>\<nu>*yvec\<rparr>T', \<lparr>\<nu>*yvec\<rparr>S') \<in> ?X" by(simp add: resChainAppend) moreover from \<open>\<Psi> \<rhd> S' \<sim> S\<close> \<open>yvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*yvec\<rparr>S' \<sim> \<lparr>\<nu>*yvec\<rparr>S" by(rule bisimResChainPres) ultimately show "(\<Psi>, \<lparr>\<nu>*yvec\<rparr>T, \<lparr>\<nu>*yvec\<rparr>S) \<in> ?Y" by blast qed have C2: "\<And>\<Psi> T S y. \<lbrakk>(\<Psi>, T, S) \<in> ?Y; y \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>y\<rparr>T, \<lparr>\<nu>y\<rparr>S) \<in> ?Y" by(drule_tac yvec2="[y]" in C1) auto have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R) \<leadsto>[?Y] \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))" proof - have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<leadsto>[?Y] P \<parallel> (Q \<parallel> R)" proof - note \<open>eqvt ?Y\<close> moreover have "\<And>\<Psi> P Q R. (\<Psi>, (P \<parallel> Q) \<parallel> R, P \<parallel> (Q \<parallel> R)) \<in> ?Y" proof - fix \<Psi> P Q R have "(\<Psi>::'b, ((P::('a, 'b, 'c) psi) \<parallel> Q) \<parallel> R, P \<parallel> (Q \<parallel> R)) \<in> ?X" by(auto, rule_tac x="[]" in exI) auto thus "(\<Psi>, (P \<parallel> Q) \<parallel> R, P \<parallel> (Q \<parallel> R)) \<in> ?Y" by(blast intro: bisimReflexive) qed moreover have "\<And>xvec \<Psi> P Q R. \<lbrakk>xvec \<sharp>* \<Psi>; xvec \<sharp>* P\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R), P \<parallel> (\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R))) \<in> ?Y" proof - fix xvec \<Psi> P Q R assume "(xvec::name list) \<sharp>* (\<Psi>::'b)" and "xvec \<sharp>* (P::('a, 'b, 'c) psi)" from \<open>xvec \<sharp>* \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))) \<in> ?X" by blast moreover from \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* P\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R)) \<sim> P \<parallel> (\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R))" by(rule bisimScopeExtChain) ultimately show "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R), P \<parallel> (\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R))) \<in> ?Y" by(blast intro: bisimReflexive) qed moreover have "\<And>xvec \<Psi> P Q R. \<lbrakk>xvec \<sharp>* \<Psi>; xvec \<sharp>* R\<rbrakk> \<Longrightarrow> (\<Psi>, (\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)) \<parallel> R, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))) \<in> ?Y" proof - fix xvec \<Psi> P Q R assume "(xvec::name list) \<sharp>* (\<Psi>::'b)" and "xvec \<sharp>* (R::('a, 'b, 'c) psi)" have "\<Psi> \<rhd> (\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)) \<parallel> R \<sim> R \<parallel> (\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q))" by(rule bisimParComm) moreover from \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* R\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(R \<parallel> (P \<parallel> Q)) \<sim> R \<parallel> (\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q))" by(rule bisimScopeExtChain) hence "\<Psi> \<rhd> R \<parallel> (\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)) \<sim> \<lparr>\<nu>*xvec\<rparr>(R \<parallel> (P \<parallel> Q))" by(rule bisimE) moreover from \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(R \<parallel> (P \<parallel> Q)) \<sim> \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" by(metis bisimResChainPres bisimParComm) moreover from \<open>xvec \<sharp>* \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))) \<in> ?X" by blast ultimately show "(\<Psi>, (\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)) \<parallel> R, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))) \<in> ?Y" by(blast dest: bisimTransitive intro: bisimReflexive) qed ultimately show ?thesis using C1 by(rule parAssocLeft) qed thus ?thesis using \<open>eqvt ?Y\<close> \<open>xvec \<sharp>* \<Psi>\<close> C2 by(rule resChainPres) qed with TEq SEq show ?case by simp next case(cExt \<Psi> T S \<Psi>') from \<open>(\<Psi>, T, S) \<in> ?X\<close> obtain xvec P Q R where "xvec \<sharp>* \<Psi>" and TEq: "T = \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" and SEq: "S = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R))" by auto obtain p where "(p \<bullet> xvec) \<sharp>* \<Psi>" and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* R" and "(p \<bullet> xvec) \<sharp>* \<Psi>'" and S: "(set p) \<subseteq> (set xvec) \<times> (set(p \<bullet> xvec))" and "distinctPerm p" by(rule_tac c="(\<Psi>, P, Q, R, \<Psi>')" in name_list_avoiding) auto from \<open>(p \<bullet> xvec) \<sharp>* \<Psi>\<close> \<open>(p \<bullet> xvec) \<sharp>* \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(((p \<bullet> P) \<parallel> (p \<bullet> Q)) \<parallel> (p \<bullet> R)), \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> ((p \<bullet> Q) \<parallel> (p \<bullet> R)))) \<in> ?X" by auto moreover from TEq \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> \<open>(p \<bullet> xvec) \<sharp>* R\<close> S have "T = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(((p \<bullet> P) \<parallel> (p \<bullet> Q)) \<parallel> (p \<bullet> R))" apply auto by(subst resChainAlpha[of p]) auto moreover from SEq \<open>(p \<bullet> xvec) \<sharp>* P\<close> \<open>(p \<bullet> xvec) \<sharp>* Q\<close> \<open>(p \<bullet> xvec) \<sharp>* R\<close> S have "S = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> ((p \<bullet> Q) \<parallel> (p \<bullet> R)))" apply auto by(subst resChainAlpha[of p]) auto ultimately show ?case by simp next case(cSym \<Psi> T S) from \<open>(\<Psi>, T, S) \<in> ?X\<close> obtain xvec P Q R where "xvec \<sharp>* \<Psi>" and TEq: "T = \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" and SEq: "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R)) = S" by auto from \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> (Q \<parallel> R)) \<sim> \<lparr>\<nu>*xvec\<rparr>((R \<parallel> Q) \<parallel> P)" by(metis bisimParComm bisimParPres bisimTransitive bisimResChainPres) moreover from \<open>xvec \<sharp>* \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((R \<parallel> Q) \<parallel> P), \<lparr>\<nu>*xvec\<rparr>(R \<parallel> (Q \<parallel> P))) \<in> ?X" by blast moreover from \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(R \<parallel> (Q \<parallel> P)) \<sim> \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q) \<parallel> R)" by(metis bisimParComm bisimParPres bisimTransitive bisimResChainPres) ultimately show ?case using TEq SEq by(blast dest: bisimTransitive) qed qed lemma bisimParNil: fixes P :: "('a, 'b, 'c) psi" shows "\<Psi> \<rhd> P \<parallel> \<zero> \<sim> P" proof - let ?X1 = "{(\<Psi>, P \<parallel> \<zero>, P) | \<Psi> P. True}" let ?X2 = "{(\<Psi>, P, P \<parallel> \<zero>) | \<Psi> P. True}" let ?X = "?X1 \<union> ?X2" have "eqvt ?X" by(auto simp add: eqvt_def) have "(\<Psi>, P \<parallel> \<zero>, P) \<in> ?X" by simp thus ?thesis proof(coinduct rule: bisimWeakCoinduct) case(cStatEq \<Psi> Q R) show ?case proof(case_tac "(\<Psi>, Q, R) \<in> ?X1") assume "(\<Psi>, Q, R) \<in> ?X1" then obtain P where "Q = P \<parallel> \<zero>" and "R = P" by auto moreover obtain A\<^sub>P \<Psi>\<^sub>P where "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" by(rule freshFrame) ultimately show ?case apply auto by(metis frameResChainPres frameNilStatEq Identity Associativity AssertionStatEqTrans Commutativity) next assume "(\<Psi>, Q, R) \<notin> ?X1" with \<open>(\<Psi>, Q, R) \<in> ?X\<close> have "(\<Psi>, Q, R) \<in> ?X2" by blast then obtain P where "Q = P" and "R = P \<parallel> \<zero>" by auto moreover obtain A\<^sub>P \<Psi>\<^sub>P where "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" by(rule freshFrame) ultimately show ?case apply auto by(metis frameResChainPres frameNilStatEq Identity Associativity AssertionStatEqTrans AssertionStatEqSym Commutativity) qed next case(cSim \<Psi> Q R) thus ?case using \<open>eqvt ?X\<close> by(auto intro: parNilLeft parNilRight) next case(cExt \<Psi> Q R \<Psi>') thus ?case by auto next case(cSym \<Psi> Q R) thus ?case by auto qed qed lemma bisimResNil: fixes x :: name and \<Psi> :: 'b shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>\<zero> \<sim> \<zero>" proof - { fix x::name assume "x \<sharp> \<Psi>" have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>\<zero> \<sim> \<zero>" proof - let ?X1 = "{(\<Psi>, \<lparr>\<nu>x\<rparr>\<zero>, \<zero>) | \<Psi> x. x \<sharp> \<Psi>}" let ?X2 = "{(\<Psi>, \<zero>, \<lparr>\<nu>x\<rparr>\<zero>) | \<Psi> x. x \<sharp> \<Psi>}" let ?X = "?X1 \<union> ?X2" from \<open>x \<sharp> \<Psi>\<close> have "(\<Psi>, \<lparr>\<nu>x\<rparr>\<zero>, \<zero>) \<in> ?X" by auto thus ?thesis proof(coinduct rule: bisimWeakCoinduct) case(cStatEq \<Psi> P Q) thus ?case using freshComp by(force intro: frameResFresh FrameStatEqSym) next case(cSim \<Psi> P Q) thus ?case by(force intro: resNilLeft resNilRight) next case(cExt \<Psi> P Q \<Psi>') obtain y where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<noteq> x" by(generate_fresh "name") (auto simp add: fresh_prod) show ?case proof(case_tac "(\<Psi>, P, Q) \<in> ?X1") assume "(\<Psi>, P, Q) \<in> ?X1" then obtain x where "P = \<lparr>\<nu>x\<rparr>\<zero>" and "Q = \<zero>" by auto moreover have "\<lparr>\<nu>x\<rparr>\<zero> = \<lparr>\<nu>y\<rparr> \<zero>" by(subst alphaRes) auto ultimately show ?case using \<open>y \<sharp> \<Psi>\<close> \<open>y \<sharp> \<Psi>'\<close> by auto next assume "(\<Psi>, P, Q) \<notin> ?X1" with \<open>(\<Psi>, P, Q) \<in> ?X\<close> have "(\<Psi>, P, Q) \<in> ?X2" by auto then obtain x where "Q = \<lparr>\<nu>x\<rparr>\<zero>" and "P = \<zero>" by auto moreover have "\<lparr>\<nu>x\<rparr>\<zero> = \<lparr>\<nu>y\<rparr> \<zero>" by(subst alphaRes) auto ultimately show ?case using \<open>y \<sharp> \<Psi>\<close> \<open>y \<sharp> \<Psi>'\<close> by auto qed next case(cSym \<Psi> P Q) thus ?case by auto qed qed } moreover obtain y::name where "y \<sharp> \<Psi>" by(generate_fresh "name") auto ultimately have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>\<zero> \<sim> \<zero>" by auto thus ?thesis by(subst alphaRes[where x=x and y=y]) auto qed lemma bisimOutputPushRes: fixes x :: name and \<Psi> :: 'b and M :: 'a and N :: 'a and P :: "('a, 'b, 'c) psi" assumes "x \<sharp> M" and "x \<sharp> N" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<sim> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P" proof - { fix x::name and P::"('a, 'b, 'c) psi" assume "x \<sharp> \<Psi>" and "x \<sharp> M" and "x \<sharp> N" let ?X1 = "{(\<Psi>, \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P), M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P) | \<Psi> x M N P. x \<sharp> \<Psi> \<and> x \<sharp> M \<and> x \<sharp> N}" let ?X2 = "{(\<Psi>, M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P)) | \<Psi> x M N P. x \<sharp> \<Psi> \<and> x \<sharp> M \<and> x \<sharp> N}" let ?X = "?X1 \<union> ?X2" have "eqvt ?X" by(rule_tac eqvtUnion) (force simp add: eqvt_def pt_fresh_bij[OF pt_name_inst, OF at_name_inst] eqvts)+ from \<open>x \<sharp> \<Psi>\<close> \<open>x \<sharp> M\<close> \<open>x \<sharp> N\<close> have "(\<Psi>, \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P), M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P) \<in> ?X" by auto hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<sim> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P" proof(coinduct rule: bisimCoinduct) case(cStatEq \<Psi> Q R) thus ?case using freshComp by(force intro: frameResFresh FrameStatEqSym) next case(cSim \<Psi> Q R) thus ?case using \<open>eqvt ?X\<close> by(fastforce intro: outputPushResLeft outputPushResRight bisimReflexive) next case(cExt \<Psi> Q R \<Psi>') show ?case proof(case_tac "(\<Psi>, Q, R) \<in> ?X1") assume "(\<Psi>, Q, R) \<in> ?X1" then obtain x M N P where Qeq: "Q = \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P)" and Req: "R = M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P" and "x \<sharp> \<Psi>" and "x \<sharp> M" and "x \<sharp> N" by auto obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<sharp> M" and "y \<sharp> N" and "y \<sharp> P" by(generate_fresh "name") (auto simp add: fresh_prod) moreover hence "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>(M\<langle>N\<rangle>.([(x, y)] \<bullet> P)), M\<langle>N\<rangle>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)) \<in> ?X" by auto moreover from Qeq \<open>x \<sharp> M\<close> \<open>y \<sharp> M\<close> \<open>x \<sharp> N\<close> \<open>y \<sharp> N\<close> \<open>y \<sharp> P\<close> have "Q = \<lparr>\<nu>y\<rparr>(M\<langle>N\<rangle>.([(x, y)] \<bullet> P))" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) moreover from Req \<open>y \<sharp> P\<close> have "R = M\<langle>N\<rangle>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) ultimately show ?case by blast next assume "(\<Psi>, Q, R) \<notin> ?X1" with \<open>(\<Psi>, Q, R) \<in> ?X\<close> have "(\<Psi>, Q, R) \<in> ?X2" by blast then obtain x M N P where Req: "R = \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P)" and Qeq: "Q = M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P" and "x \<sharp> \<Psi>" and "x \<sharp> M" and "x \<sharp> N" by auto obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<sharp> M" and "y \<sharp> N" and "y \<sharp> P" by(generate_fresh "name") (auto simp add: fresh_prod) moreover hence "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>(M\<langle>N\<rangle>.([(x, y)] \<bullet> P)), M\<langle>N\<rangle>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)) \<in> ?X" by auto moreover from Req \<open>x \<sharp> M\<close> \<open>y \<sharp> M\<close> \<open>x \<sharp> N\<close> \<open>y \<sharp> N\<close> \<open>y \<sharp> P\<close> have "R = \<lparr>\<nu>y\<rparr>(M\<langle>N\<rangle>.([(x, y)] \<bullet> P))" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) moreover from Qeq \<open>y \<sharp> P\<close> have "Q = M\<langle>N\<rangle>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) ultimately show ?case by blast qed next case(cSym \<Psi> R Q) thus ?case by blast qed } moreover obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> M" and "y \<sharp> N" "y \<sharp> P" by(generate_fresh "name") auto ultimately have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>(M\<langle>N\<rangle>.([(x, y)] \<bullet> P)) \<sim> M\<langle>N\<rangle>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" by auto thus ?thesis using assms \<open>y \<sharp> P\<close> \<open>y \<sharp> M\<close> \<open>y \<sharp> N\<close> apply(subst alphaRes[where x=x and y=y and P=P], auto) by(subst alphaRes[where x=x and y=y and P="M\<langle>N\<rangle>.P"]) auto qed lemma bisimInputPushRes: fixes x :: name and \<Psi> :: 'b and M :: 'a and xvec :: "name list" and N :: 'a and P :: "('a, 'b, 'c) psi" assumes "x \<sharp> M" and "x \<sharp> xvec" and "x \<sharp> N" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P) \<sim> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P" proof - { fix x::name and P::"('a, 'b, 'c) psi" assume "x \<sharp> \<Psi>" and "x \<sharp> M" and "x \<sharp> N" and "x \<sharp> xvec" let ?X1 = "{(\<Psi>, \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P), M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P) | \<Psi> x M xvec N P. x \<sharp> \<Psi> \<and> x \<sharp> M \<and> x \<sharp> xvec \<and> x \<sharp> N}" let ?X2 = "{(\<Psi>, M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P)) | \<Psi> x M xvec N P. x \<sharp> \<Psi> \<and> x \<sharp> M \<and> x \<sharp> xvec \<and> x \<sharp> N}" let ?X = "?X1 \<union> ?X2" have "eqvt ?X" by(rule_tac eqvtUnion) (force simp add: eqvt_def pt_fresh_bij[OF pt_name_inst, OF at_name_inst] eqvts)+ from \<open>x \<sharp> \<Psi>\<close> \<open>x \<sharp> M\<close> \<open>x \<sharp> xvec\<close> \<open>x \<sharp> N\<close> have "(\<Psi>, \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P), M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P) \<in> ?X" by blast hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P) \<sim> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P" proof(coinduct rule: bisimCoinduct) case(cStatEq \<Psi> Q R) thus ?case using freshComp by(force intro: frameResFresh FrameStatEqSym) next case(cSim \<Psi> Q R) thus ?case using \<open>eqvt ?X\<close> by(fastforce intro: inputPushResLeft inputPushResRight bisimReflexive) next case(cExt \<Psi> Q R \<Psi>') show ?case proof(case_tac "(\<Psi>, Q, R) \<in> ?X1") assume "(\<Psi>, Q, R) \<in> ?X1" then obtain x M xvec N P where Qeq: "Q = \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P)" and Req: "R = M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P" and "x \<sharp> \<Psi>" and "x \<sharp> M" and "x \<sharp> xvec" and "x \<sharp> N" by auto obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<sharp> M" and "y \<sharp> N" and "y \<sharp> P" and "y \<sharp> xvec" by(generate_fresh "name") (auto simp add: fresh_prod) moreover hence "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.([(x, y)] \<bullet> P)), M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)) \<in> ?X" by fastforce moreover from Qeq \<open>x \<sharp> M\<close> \<open>y \<sharp> M\<close> \<open>x \<sharp> xvec\<close> \<open>y \<sharp> xvec\<close> \<open>x \<sharp> N\<close> \<open>y \<sharp> N\<close> \<open>y \<sharp> P\<close> have "Q = \<lparr>\<nu>y\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.([(x, y)] \<bullet> P))" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts inputChainFresh) moreover from Req \<open>y \<sharp> P\<close> have "R = M\<lparr>\<lambda>*xvec N \<rparr>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) ultimately show ?case by blast next assume "(\<Psi>, Q, R) \<notin> ?X1" with \<open>(\<Psi>, Q, R) \<in> ?X\<close> have "(\<Psi>, Q, R) \<in> ?X2" by blast then obtain x M xvec N P where Req: "R = \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P)" and Qeq: "Q = M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P" and "x \<sharp> \<Psi>" and "x \<sharp> M" and "x \<sharp> xvec" and "x \<sharp> N" by auto obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<sharp> M" and "y \<sharp> N" and "y \<sharp> P" and "y \<sharp> xvec" by(generate_fresh "name") (auto simp add: fresh_prod) moreover hence "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.([(x, y)] \<bullet> P)), M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)) \<in> ?X" by fastforce moreover from Req \<open>x \<sharp> M\<close> \<open>y \<sharp> M\<close> \<open>x \<sharp> xvec\<close> \<open>y \<sharp> xvec\<close> \<open>x \<sharp> N\<close> \<open>y \<sharp> N\<close> \<open>y \<sharp> P\<close> have "R = \<lparr>\<nu>y\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.([(x, y)] \<bullet> P))" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts inputChainFresh) moreover from Qeq \<open>y \<sharp> P\<close> have "Q = M\<lparr>\<lambda>*xvec N \<rparr>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) ultimately show ?case by blast qed next case(cSym \<Psi> R Q) thus ?case by blast qed } moreover obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> M" and "y \<sharp> N" and "y \<sharp> P" and "y \<sharp> xvec" by(generate_fresh "name") auto ultimately have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.([(x, y)] \<bullet> P)) \<sim> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" by auto thus ?thesis using assms \<open>y \<sharp> P\<close> \<open>y \<sharp> M\<close> \<open>y \<sharp> N\<close> \<open>y \<sharp> xvec\<close> apply(subst alphaRes[where x=x and y=y and P=P], auto) by(subst alphaRes[where x=x and y=y and P="M\<lparr>\<lambda>*xvec N\<rparr>.P"]) (auto simp add: inputChainFresh eqvts) qed lemma bisimCasePushRes: fixes x :: name and \<Psi> :: 'b and Cs :: "('c \<times> ('a, 'b, 'c) psi) list" assumes "x \<sharp> (map fst Cs)" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<sim> Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)" proof - { fix x::name and Cs::"('c \<times> ('a, 'b, 'c) psi) list" assume "x \<sharp> \<Psi>" and "x \<sharp> (map fst Cs)" let ?X1 = "{(\<Psi>, \<lparr>\<nu>x\<rparr>(Cases Cs), Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)) | \<Psi> x Cs. x \<sharp> \<Psi> \<and> x \<sharp> (map fst Cs)}" let ?X2 = "{(\<Psi>, Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs), \<lparr>\<nu>x\<rparr>(Cases Cs)) | \<Psi> x Cs. x \<sharp> \<Psi> \<and> x \<sharp> (map fst Cs)}" let ?X = "?X1 \<union> ?X2" have "eqvt ?X" apply(rule_tac eqvtUnion) apply(auto simp add: eqvt_def eqvts) apply(rule_tac x="p \<bullet> x" in exI) apply(rule_tac x="p \<bullet> Cs" in exI) apply(perm_extend_simp) apply(auto simp add: eqvts) apply(simp add: pt_fresh_bij[OF pt_name_inst, OF at_name_inst]) apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst]) apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: eqvts) apply(perm_extend_simp) apply(simp add: eqvts) apply(rule_tac x="p \<bullet> x" in exI) apply(rule_tac x="p \<bullet> Cs" in exI) apply auto apply(perm_extend_simp) apply(simp add: pt_fresh_bij[OF pt_name_inst, OF at_name_inst]) apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst]) apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst]) apply(simp add: eqvts) apply(perm_extend_simp) by(simp add: eqvts) from \<open>x \<sharp> \<Psi>\<close> \<open>x \<sharp> map fst Cs\<close> have "(\<Psi>, \<lparr>\<nu>x\<rparr>(Cases Cs), Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)) \<in> ?X" by auto hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<sim> Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)" proof(coinduct rule: bisimCoinduct) case(cStatEq \<Psi> Q R) thus ?case using freshComp by(force intro: frameResFresh FrameStatEqSym) next case(cSim \<Psi> Q R) thus ?case using \<open>eqvt ?X\<close> by(fastforce intro: casePushResLeft casePushResRight bisimReflexive) next case(cExt \<Psi> Q R \<Psi>') show ?case proof(case_tac "(\<Psi>, Q, R) \<in> ?X1") assume "(\<Psi>, Q, R) \<in> ?X1" then obtain x Cs where Qeq: "Q = \<lparr>\<nu>x\<rparr>(Cases Cs)" and Req: "R = Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)" and "x \<sharp> \<Psi>" and "x \<sharp> (map fst Cs)" by blast obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<sharp> Cs" by(generate_fresh "name") (auto simp add: fresh_prod) from \<open>y \<sharp> Cs\<close> \<open>x \<sharp> (map fst Cs)\<close> have "y \<sharp> map fst ([(x, y)] \<bullet> Cs)" by(induct Cs) (auto simp add: fresh_list_cons fresh_list_nil) moreover with \<open>y \<sharp> \<Psi>\<close> \<open>y \<sharp> \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>(Cases ([(x, y)] \<bullet> Cs)), Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>y\<rparr>P)) ([(x, y)] \<bullet> Cs))) \<in> ?X" by auto moreover from Qeq \<open>y \<sharp> Cs\<close> have "Q = \<lparr>\<nu>y\<rparr>(Cases([(x, y)] \<bullet> Cs))" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) moreover from Req \<open>y \<sharp> Cs\<close> \<open>x \<sharp> (map fst Cs)\<close> have "R = Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>y\<rparr>P)) ([(x, y)] \<bullet> Cs))" by(induct Cs arbitrary: R) (auto simp add: fresh_list_cons fresh_prod alphaRes) ultimately show ?case by blast next assume "(\<Psi>, Q, R) \<notin> ?X1" with \<open>(\<Psi>, Q, R) \<in> ?X\<close> have "(\<Psi>, Q, R) \<in> ?X2" by blast then obtain x Cs where Req: "R = \<lparr>\<nu>x\<rparr>(Cases Cs)" and Qeq: "Q = Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)" and "x \<sharp> \<Psi>" and "x \<sharp> (map fst Cs)" by blast obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'" and "y \<sharp> Cs" by(generate_fresh "name") (auto simp add: fresh_prod) from \<open>y \<sharp> Cs\<close> \<open>x \<sharp> (map fst Cs)\<close> have "y \<sharp> map fst ([(x, y)] \<bullet> Cs)" by(induct Cs) (auto simp add: fresh_list_cons fresh_list_nil) moreover with \<open>y \<sharp> \<Psi>\<close> \<open>y \<sharp> \<Psi>'\<close> have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>(Cases ([(x, y)] \<bullet> Cs)), Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>y\<rparr>P)) ([(x, y)] \<bullet> Cs))) \<in> ?X" by auto moreover from Req \<open>y \<sharp> Cs\<close> have "R = \<lparr>\<nu>y\<rparr>(Cases([(x, y)] \<bullet> Cs))" apply auto by(subst alphaRes[of y]) (auto simp add: eqvts) moreover from Qeq \<open>y \<sharp> Cs\<close> \<open>x \<sharp> (map fst Cs)\<close> have "Q = Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>y\<rparr>P)) ([(x, y)] \<bullet> Cs))" by(induct Cs arbitrary: Q) (auto simp add: fresh_list_cons fresh_prod alphaRes) ultimately show ?case by blast qed next case(cSym \<Psi> R Q) thus ?case by blast qed } moreover obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> Cs" by(generate_fresh "name") auto moreover from \<open>x \<sharp> map fst Cs\<close> have "y \<sharp> map fst([(x, y)] \<bullet> Cs)" by(induct Cs) (auto simp add: fresh_left calc_atm) ultimately have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>(Cases ([(x, y)] \<bullet> Cs)) \<sim> Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>y\<rparr>P)) ([(x, y)] \<bullet> Cs))" by auto moreover from \<open>y \<sharp> Cs\<close> have "\<lparr>\<nu>y\<rparr>(Cases ([(x, y)] \<bullet> Cs)) = \<lparr>\<nu>x\<rparr>(Cases Cs)" by(simp add: alphaRes eqvts) moreover from \<open>x \<sharp> map fst Cs\<close> \<open>y \<sharp> Cs\<close> have "Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>y\<rparr>P)) ([(x, y)] \<bullet> Cs)) = Cases(map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)" by(induct Cs) (auto simp add: alphaRes) ultimately show ?thesis by auto qed lemma bangExt: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" assumes "guarded P" shows "\<Psi> \<rhd> !P \<sim> P \<parallel> !P" proof - let ?X = "{(\<Psi>, !P, P \<parallel> !P) | \<Psi> P. guarded P} \<union> {(\<Psi>, P \<parallel> !P, !P) | \<Psi> P. guarded P}" from \<open>guarded P\<close> have "(\<Psi>, !P, P \<parallel> !P) \<in> ?X" by auto thus ?thesis proof(coinduct rule: bisimCoinduct) case(cStatEq \<Psi> Q R) from \<open>(\<Psi>, Q, R) \<in> ?X\<close> obtain P where Eq: "(Q = !P \<and> R = P \<parallel> !P) \<or> (Q = P \<parallel> !P \<and> R = !P)" and "guarded P" by auto obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extractFrame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" by(rule freshFrame) from FrP \<open>guarded P\<close> have "\<Psi>\<^sub>P \<simeq> SBottom'" by(blast dest: guardedStatEq) from \<open>\<Psi>\<^sub>P \<simeq> SBottom'\<close> have "\<Psi> \<otimes> SBottom' \<simeq> \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> SBottom'" by(metis Identity Composition AssertionStatEqTrans Commutativity AssertionStatEqSym) hence "\<langle>A\<^sub>P, \<Psi> \<otimes> SBottom'\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>P, \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> SBottom'\<rangle>" by(force intro: frameResChainPres) moreover from \<open>A\<^sub>P \<sharp>* \<Psi>\<close> have "\<langle>\<epsilon>, \<Psi> \<otimes> SBottom'\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>P, \<Psi> \<otimes> SBottom'\<rangle>" by(rule_tac FrameStatEqSym) (fastforce intro: frameResFreshChain) ultimately show ?case using Eq \<open>A\<^sub>P \<sharp>* \<Psi>\<close> FrP by auto (blast dest: FrameStatEqTrans FrameStatEqSym)+ next case(cSim \<Psi> Q R) thus ?case by(auto intro: bangExtLeft bangExtRight bisimReflexive) next case(cExt \<Psi> Q R) thus ?case by auto next case(cSym \<Psi> Q R) thus ?case by auto qed qed lemma bisimParPresSym: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" and R :: "('a, 'b, 'c) psi" assumes "\<Psi> \<rhd> P \<sim> Q" shows "\<Psi> \<rhd> R \<parallel> P \<sim> R \<parallel> Q" using assms by(metis bisimParComm bisimParPres bisimTransitive) lemma bisimScopeExtSym: fixes x :: name and Q :: "('a, 'b, 'c) psi" and P :: "('a, 'b, 'c) psi" assumes "x \<sharp> \<Psi>" and "x \<sharp> Q" shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<sim> (\<lparr>\<nu>x\<rparr>P) \<parallel> Q" using assms by(metis bisimScopeExt bisimTransitive bisimParComm bisimSymmetric bisimResPres) lemma bisimScopeExtChainSym: fixes xvec :: "name list" and Q :: "('a, 'b, 'c) psi" and P :: "('a, 'b, 'c) psi" assumes "xvec \<sharp>* \<Psi>" and "xvec \<sharp>* Q" shows "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q) \<sim> (\<lparr>\<nu>*xvec\<rparr>P) \<parallel> Q" using assms by(induct xvec) (auto intro: bisimScopeExtSym bisimReflexive bisimTransitive bisimResPres) lemma bisimParPresAuxSym: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" and R :: "('a, 'b, 'c) psi" assumes "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q" and "extractFrame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q" shows "\<Psi> \<rhd> R \<parallel> P \<sim> R \<parallel> Q" using assms by(metis bisimParComm bisimParPresAux bisimTransitive) lemma bangDerivative: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and \<alpha> :: "'a action" and P' :: "('a, 'b, 'c) psi" assumes "\<Psi> \<rhd> !P \<longmapsto>\<alpha> \<prec> P'" and "\<Psi> \<rhd> P \<sim> Q" and "bn \<alpha> \<sharp>* \<Psi>" and "bn \<alpha> \<sharp>* P" and "bn \<alpha> \<sharp>* Q" and "bn \<alpha> \<sharp>* subject \<alpha>" and "guarded Q" obtains Q' R T where "\<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q'" and "\<Psi> \<rhd> P' \<sim> R \<parallel> !P" and "\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q" and "\<Psi> \<rhd> R \<sim> T" and "((supp R)::name set) \<subseteq> supp P'" and "((supp T)::name set) \<subseteq> supp Q'" proof - from \<open>\<Psi> \<rhd> !P \<longmapsto>\<alpha> \<prec> P'\<close> have "guarded P" apply - by(ind_cases "\<Psi> \<rhd> !P \<longmapsto>\<alpha> \<prec> P'") (auto simp add: psi.inject) assume "\<And>Q' R T. \<lbrakk>\<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q'; \<Psi> \<rhd> P' \<sim> R \<parallel> !P; \<Psi> \<rhd> Q' \<sim> T \<parallel> !Q; \<Psi> \<rhd> R \<sim> T; ((supp R)::name set) \<subseteq> supp P'; ((supp T)::name set) \<subseteq> supp Q'\<rbrakk> \<Longrightarrow> thesis" moreover from \<open>\<Psi> \<rhd> !P \<longmapsto>\<alpha> \<prec> P'\<close> \<open>bn \<alpha> \<sharp>* subject \<alpha>\<close> \<open>bn \<alpha> \<sharp>* \<Psi>\<close> \<open>bn \<alpha> \<sharp>* P\<close> \<open>bn \<alpha> \<sharp>* Q\<close> \<open>\<Psi> \<rhd> P \<sim> Q\<close> \<open>guarded Q\<close> have "\<exists>Q' T R . \<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q' \<and> \<Psi> \<rhd> P' \<sim> R \<parallel> !P \<and> \<Psi> \<rhd> Q' \<sim> T \<parallel> !Q \<and> \<Psi> \<rhd> R \<sim> T \<and> ((supp R)::name set) \<subseteq> supp P' \<and> ((supp T)::name set) \<subseteq> supp Q'" proof(nominal_induct avoiding: Q rule: bangInduct') case(cAlpha \<alpha> P' p Q) then obtain Q' T R where QTrans: "\<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q'" and "\<Psi> \<rhd> P' \<sim> R \<parallel> (P \<parallel> !P)" and "\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q" and "\<Psi> \<rhd> R \<sim> T" and suppR: "((supp R)::name set) \<subseteq> supp P'" and suppT: "((supp T)::name set) \<subseteq> supp Q'" by blast from QTrans have "distinct(bn \<alpha>)" by(rule boundOutputDistinct) have S: "set p \<subseteq> set(bn \<alpha>) \<times> set(bn(p \<bullet> \<alpha>))" by fact from QTrans \<open>bn(p \<bullet> \<alpha>) \<sharp>* Q\<close> \<open>bn(p \<bullet> \<alpha>) \<sharp>* \<alpha>\<close> \<open>bn \<alpha> \<sharp>* subject \<alpha>\<close> \<open>distinct(bn \<alpha>)\<close> have "bn(p \<bullet> \<alpha>) \<sharp>* Q'" by(drule_tac freeFreshChainDerivative) simp+ with QTrans \<open>bn(p \<bullet> \<alpha>) \<sharp>* \<alpha>\<close> S \<open>bn \<alpha> \<sharp>* subject \<alpha>\<close> have "\<Psi> \<rhd> !Q \<longmapsto>(p \<bullet> \<alpha>) \<prec> (p \<bullet> Q')" by(force simp add: residualAlpha) moreover from \<open>\<Psi> \<rhd> P' \<sim> R \<parallel> (P \<parallel> !P)\<close> have "(p \<bullet> \<Psi>) \<rhd> (p \<bullet> P') \<sim> (p \<bullet> (R \<parallel> (P \<parallel> !P)))" by(rule bisimClosed) with \<open>bn \<alpha> \<sharp>* \<Psi>\<close> \<open>bn \<alpha> \<sharp>* P\<close> \<open>bn(p \<bullet> \<alpha>) \<sharp>* \<Psi>\<close> \<open>bn(p \<bullet> \<alpha>) \<sharp>* P\<close> S have "\<Psi> \<rhd> (p \<bullet> P') \<sim> (p \<bullet> R) \<parallel> (P \<parallel> !P)" by(simp add: eqvts) moreover from \<open>\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q\<close> have "(p \<bullet> \<Psi>) \<rhd> (p \<bullet> Q') \<sim> (p \<bullet> (T \<parallel> !Q))" by(rule bisimClosed) with \<open>bn \<alpha> \<sharp>* \<Psi>\<close> \<open>bn \<alpha> \<sharp>* Q\<close> \<open>bn(p \<bullet> \<alpha>) \<sharp>* \<Psi>\<close> \<open>bn(p \<bullet> \<alpha>) \<sharp>* Q\<close> S have "\<Psi> \<rhd> (p \<bullet> Q') \<sim> (p \<bullet> T) \<parallel> !Q" by(simp add: eqvts) moreover from \<open>\<Psi> \<rhd> R \<sim> T\<close> have "(p \<bullet> \<Psi>) \<rhd> (p \<bullet> R) \<sim> (p \<bullet> T)" by(rule bisimClosed) with \<open>bn \<alpha> \<sharp>* \<Psi>\<close> \<open>bn(p \<bullet> \<alpha>) \<sharp>* \<Psi>\<close> S have "\<Psi> \<rhd> (p \<bullet> R) \<sim> (p \<bullet> T)" by(simp add: eqvts) moreover from suppR have "((supp(p \<bullet> R))::name set) \<subseteq> supp(p \<bullet> P')" apply(erule_tac rev_mp) by(subst subsetClosed[of p, symmetric]) (simp add: eqvts) moreover from suppT have "((supp(p \<bullet> T))::name set) \<subseteq> supp(p \<bullet> Q')" apply(erule_tac rev_mp) by(subst subsetClosed[of p, symmetric]) (simp add: eqvts) ultimately show ?case by blast next case(cPar1 \<alpha> P' Q) from \<open>\<Psi> \<rhd> P \<sim> Q\<close> \<open>\<Psi> \<rhd> P \<longmapsto>\<alpha> \<prec> P'\<close> \<open>bn \<alpha> \<sharp>* \<Psi>\<close> \<open>bn \<alpha> \<sharp>* Q\<close> obtain Q' where QTrans: "\<Psi> \<rhd> Q \<longmapsto>\<alpha> \<prec> Q'" and "\<Psi> \<rhd> P' \<sim> Q'" by(blast dest: bisimE simE) from QTrans have "\<Psi> \<otimes> SBottom' \<rhd> Q \<longmapsto>\<alpha> \<prec> Q'" by(metis statEqTransition Identity AssertionStatEqSym) hence "\<Psi> \<rhd> Q \<parallel> !Q \<longmapsto>\<alpha> \<prec> (Q' \<parallel> !Q)" using \<open>bn \<alpha> \<sharp>* Q\<close> by(rule_tac Par1) (assumption | simp)+ hence "\<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> (Q' \<parallel> !Q)" using \<open>guarded Q\<close> by(rule Bang) moreover from \<open>guarded P\<close> have "\<Psi> \<rhd> P' \<parallel> !P \<sim> P' \<parallel> (P \<parallel> !P)" by(metis bangExt bisimParPresSym) moreover have "\<Psi> \<rhd> Q' \<parallel> !Q \<sim> Q' \<parallel> !Q" by(rule bisimReflexive) ultimately show ?case using \<open>\<Psi> \<rhd> P' \<sim> Q'\<close> by(force simp add: psi.supp) next case(cPar2 \<alpha> P' Q) then obtain Q' T R where QTrans: "\<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q'" and "\<Psi> \<rhd> P' \<sim> R \<parallel> !P" and "\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q" and "\<Psi> \<rhd> R \<sim> T" and suppR: "((supp R)::name set) \<subseteq> supp P'" and suppT: "((supp T)::name set) \<subseteq> supp Q'" by blast note QTrans from \<open>\<Psi> \<rhd> P' \<sim> R \<parallel> !P\<close> have "\<Psi> \<rhd> P \<parallel> P' \<sim> R \<parallel> (P \<parallel> !P)" by(metis bisimParPresSym bisimParComm bisimTransitive bisimParAssoc) with QTrans show ?case using \<open>\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q\<close> \<open>\<Psi> \<rhd> R \<sim> T\<close> suppR suppT by(force simp add: psi.supp) next case(cComm1 M N P' K xvec P'' Q) from \<open>\<Psi> \<rhd> P \<sim> Q\<close> have "\<Psi> \<rhd> Q \<leadsto>[bisim] P" by(metis bisimE) with \<open>\<Psi> \<rhd> P \<longmapsto>M\<lparr>N\<rparr> \<prec> P'\<close> obtain Q' where QTrans: "\<Psi> \<rhd> Q \<longmapsto>M\<lparr>N\<rparr> \<prec> Q'" and "\<Psi> \<rhd> Q' \<sim> P'" by(force dest: simE) from QTrans have "\<Psi> \<otimes> SBottom' \<rhd> Q \<longmapsto>M\<lparr>N\<rparr> \<prec> Q'" by(metis statEqTransition Identity AssertionStatEqSym) moreover obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extractFrame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* Q" and "A\<^sub>Q \<sharp>* M" by(rule_tac C="(\<Psi>, Q, M)" in freshFrame) auto note FrQ moreover from FrQ \<open>guarded Q\<close> have "\<Psi>\<^sub>Q \<simeq> SBottom'" by(blast dest: guardedStatEq) from \<open>\<Psi> \<rhd> !P \<longmapsto>K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P''\<close> \<open>xvec \<sharp>* K\<close> \<open>\<Psi> \<rhd> P \<sim> Q\<close> \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* P\<close> \<open>xvec \<sharp>* Q\<close> \<open>guarded Q\<close> obtain Q'' T R where QTrans': "\<Psi> \<rhd> !Q \<longmapsto>K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q''" and "\<Psi> \<rhd> P'' \<sim> R \<parallel> !P" and "\<Psi> \<rhd> Q'' \<sim> T \<parallel> !Q" and "\<Psi> \<rhd> R \<sim> T" and suppR: "((supp R)::name set) \<subseteq> supp P''" and suppT: "((supp T)::name set) \<subseteq> supp Q''" using cComm1 by fastforce from QTrans' \<open>\<Psi>\<^sub>Q \<simeq> SBottom'\<close> have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> !Q \<longmapsto>K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q''" by(metis statEqTransition Identity compositionSym AssertionStatEqSym) moreover from \<open>\<Psi> \<turnstile> M \<leftrightarrow> K\<close> \<open>\<Psi>\<^sub>Q \<simeq> SBottom'\<close> have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> SBottom' \<turnstile> M \<leftrightarrow> K" by(metis statEqEnt Identity compositionSym AssertionStatEqSym) ultimately have "\<Psi> \<rhd> Q \<parallel> !Q \<longmapsto>\<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q''))" using \<open>A\<^sub>Q \<sharp>* \<Psi>\<close> \<open>A\<^sub>Q \<sharp>* Q\<close> \<open>A\<^sub>Q \<sharp>* M\<close> \<open>xvec \<sharp>* Q\<close> by(rule_tac Comm1) (assumption | simp)+ hence "\<Psi> \<rhd> !Q \<longmapsto>\<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q''))" using \<open>guarded Q\<close> by(rule Bang) moreover from \<open>\<Psi> \<rhd> P'' \<sim> R \<parallel> !P\<close> \<open>guarded P\<close> \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> P'') \<sim> \<lparr>\<nu>*xvec\<rparr>((P' \<parallel> R) \<parallel> (P \<parallel> !P))" by(metis bisimParPresSym bangExt bisimTransitive bisimParAssoc bisimSymmetric bisimResChainPres) with \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* P\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> P'') \<sim> (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R)) \<parallel> (P \<parallel> !P)" by(metis bisimScopeExtChainSym bisimTransitive psiFreshVec) moreover from \<open>\<Psi> \<rhd> Q'' \<sim> T \<parallel> !Q\<close> \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* Q\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q'') \<sim> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> T)) \<parallel> !Q" by(metis bisimParPresSym bisimTransitive bisimParAssoc bisimSymmetric bisimResChainPres bisimScopeExtChainSym psiFreshVec) moreover from \<open>\<Psi> \<rhd> R \<sim> T\<close> \<open>\<Psi> \<rhd> Q' \<sim> P'\<close> \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R) \<sim> \<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> T)" by(metis bisimParPresSym bisimTransitive bisimResChainPres bisimParComm bisimE(4)) moreover from suppR have "((supp(\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R)))::name set) \<subseteq> supp((\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> P'')))" by(auto simp add: psi.supp resChainSupp) moreover from suppT have "((supp(\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> T)))::name set) \<subseteq> supp((\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q'')))" by(auto simp add: psi.supp resChainSupp) ultimately show ?case by blast next case(cComm2 M xvec N P' K P'' Q) from \<open>\<Psi> \<rhd> P \<sim> Q\<close> \<open>\<Psi> \<rhd> P \<longmapsto>M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P'\<close> \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* Q\<close> obtain Q' where QTrans: "\<Psi> \<rhd> Q \<longmapsto>M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'" and "\<Psi> \<rhd> P' \<sim> Q'" by(metis bisimE simE bn.simps) from QTrans have "\<Psi> \<otimes> SBottom' \<rhd> Q \<longmapsto>M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'" by(metis statEqTransition Identity AssertionStatEqSym) moreover obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extractFrame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* Q" and "A\<^sub>Q \<sharp>* M" by(rule_tac C="(\<Psi>, Q, M)" in freshFrame) auto note FrQ moreover from FrQ \<open>guarded Q\<close> have "\<Psi>\<^sub>Q \<simeq> SBottom'" by(blast dest: guardedStatEq) from \<open>\<Psi> \<rhd> !P \<longmapsto>K\<lparr>N\<rparr> \<prec> P''\<close> \<open>\<Psi> \<rhd> P \<sim> Q\<close> \<open>guarded Q\<close> obtain Q'' T R where QTrans': "\<Psi> \<rhd> !Q \<longmapsto>K\<lparr>N\<rparr> \<prec> Q''" and "\<Psi> \<rhd> P'' \<sim> R \<parallel> !P" and "\<Psi> \<rhd> Q'' \<sim> T \<parallel> !Q" and "\<Psi> \<rhd> R \<sim> T" and suppR: "((supp R)::name set) \<subseteq> supp P''" and suppT: "((supp T)::name set) \<subseteq> supp Q''" using cComm2 by fastforce from QTrans' \<open>\<Psi>\<^sub>Q \<simeq> SBottom'\<close> have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> !Q \<longmapsto>K\<lparr>N\<rparr> \<prec> Q''" by(metis statEqTransition Identity compositionSym AssertionStatEqSym) moreover from \<open>\<Psi> \<turnstile> M \<leftrightarrow> K\<close> \<open>\<Psi>\<^sub>Q \<simeq> SBottom'\<close> have "\<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> SBottom' \<turnstile> M \<leftrightarrow> K" by(metis statEqEnt Identity compositionSym AssertionStatEqSym) ultimately have "\<Psi> \<rhd> Q \<parallel> !Q \<longmapsto>\<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q''))" using \<open>A\<^sub>Q \<sharp>* \<Psi>\<close> \<open>A\<^sub>Q \<sharp>* Q\<close> \<open>A\<^sub>Q \<sharp>* M\<close> \<open>xvec \<sharp>* Q\<close> by(rule_tac Comm2) (assumption | simp)+ hence "\<Psi> \<rhd> !Q \<longmapsto>\<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q''))" using \<open>guarded Q\<close> by(rule Bang) moreover from \<open>\<Psi> \<rhd> P'' \<sim> R \<parallel> !P\<close> \<open>guarded P\<close> \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> P'') \<sim> \<lparr>\<nu>*xvec\<rparr>((P' \<parallel> R) \<parallel> (P \<parallel> !P))" by(metis bisimParPresSym bangExt bisimTransitive bisimParAssoc bisimSymmetric bisimResChainPres) with \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* P\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> P'') \<sim> (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R)) \<parallel> (P \<parallel> !P)" by(metis bisimScopeExtChainSym bisimTransitive psiFreshVec) moreover from \<open>\<Psi> \<rhd> Q'' \<sim> T \<parallel> !Q\<close> \<open>xvec \<sharp>* \<Psi>\<close> \<open>xvec \<sharp>* Q\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q'') \<sim> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> T)) \<parallel> !Q" by(metis bisimParPresSym bisimTransitive bisimParAssoc bisimSymmetric bisimResChainPres bisimScopeExtChainSym psiFreshVec) moreover from \<open>\<Psi> \<rhd> R \<sim> T\<close> \<open>\<Psi> \<rhd> P' \<sim> Q'\<close> \<open>xvec \<sharp>* \<Psi>\<close> have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R) \<sim> \<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> T)" by(metis bisimParPresSym bisimTransitive bisimResChainPres bisimParComm) moreover from suppR have "((supp(\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> R)))::name set) \<subseteq> supp((\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> P'')))" by(auto simp add: psi.supp resChainSupp) moreover from suppT have "((supp(\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> T)))::name set) \<subseteq> supp((\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> Q'')))" by(auto simp add: psi.supp resChainSupp) ultimately show ?case by blast next case(cBang \<alpha> P' Q) then obtain Q' T R where QTrans: "\<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q'" and "\<Psi> \<rhd> P' \<sim> R \<parallel> (P \<parallel> !P)" and "\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q" and "\<Psi> \<rhd> R \<sim> T" and suppR: "((supp R)::name set) \<subseteq> supp P'" and suppT: "((supp T)::name set) \<subseteq> supp Q'" by blast from \<open>\<Psi> \<rhd> P' \<sim> R \<parallel> (P \<parallel> !P)\<close> \<open>guarded P\<close> have "\<Psi> \<rhd> P' \<sim> R \<parallel> !P" by(metis bangExt bisimParPresSym bisimTransitive bisimSymmetric) with QTrans show ?case using \<open>\<Psi> \<rhd> Q' \<sim> T \<parallel> !Q\<close> \<open>\<Psi> \<rhd> R \<sim> T\<close> suppR suppT by blast qed ultimately show ?thesis by blast qed lemma structCongBisim: fixes P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" assumes "P \<equiv>\<^sub>s Q" shows "P \<sim> Q" using assms by(induct rule: structCong.induct) (auto intro: bisimReflexive bisimSymmetric bisimTransitive bisimParComm bisimParAssoc bisimParNil bisimResNil bisimResComm bisimScopeExt bisimCasePushRes bisimInputPushRes bisimOutputPushRes bangExt) lemma bisimBangPres: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" and Q :: "('a, 'b, 'c) psi" assumes "\<Psi> \<rhd> P \<sim> Q" and "guarded P" and "guarded Q" shows "\<Psi> \<rhd> !P \<sim> !Q" proof - let ?X = "{(\<Psi>, R \<parallel> !P, R \<parallel> !Q) | \<Psi> P Q R. \<Psi> \<rhd> P \<sim> Q \<and> guarded P \<and> guarded Q}" let ?Y = "{(\<Psi>, P, Q) | \<Psi> P P' Q' Q. \<Psi> \<rhd> P \<sim> P' \<and> (\<Psi>, P', Q') \<in> ?X \<and> \<Psi> \<rhd> Q' \<sim> Q}" from assms have "(\<Psi>, \<zero> \<parallel> !P, \<zero> \<parallel> !Q) \<in> ?X" by(blast intro: bisimReflexive) moreover have "eqvt ?X" apply(auto simp add: eqvt_def) apply(drule_tac p=p in bisimClosed) by fastforce ultimately have "\<Psi> \<rhd> \<zero> \<parallel> !P \<sim> \<zero> \<parallel> !Q" proof(coinduct rule: weakTransitiveCoinduct) case(cStatEq \<Psi> P Q) thus ?case by auto next case(cSim \<Psi> RP RQ) from \<open>(\<Psi>, RP, RQ) \<in> ?X\<close> obtain P Q R where "\<Psi> \<rhd> P \<sim> Q" and "guarded P" and "guarded Q" and "RP = R \<parallel> !P" and "RQ = R \<parallel> !Q" by auto note \<open>\<Psi> \<rhd> P \<sim> Q\<close> moreover from \<open>eqvt ?X\<close> have "eqvt ?Y" by blast moreover note \<open>guarded P\<close> \<open>guarded Q\<close> bisimE(2) bisimE(3) bisimE(4) statEqBisim bisimClosed bisimParAssoc[THEN bisimSymmetric] bisimParPres bisimParPresAuxSym bisimResChainPres bisimScopeExtChainSym bisimTransitive moreover have "\<And>\<Psi> P Q R T. \<lbrakk>\<Psi> \<rhd> P \<sim> Q; (\<Psi>, Q, R) \<in> ?Y; \<Psi> \<rhd> R \<sim> T\<rbrakk> \<Longrightarrow> (\<Psi>, P, T) \<in> ?Y" by auto (metis bisimTransitive) moreover have "\<And>\<Psi> P Q R. \<lbrakk>\<Psi> \<rhd> P \<sim> Q; guarded P; guarded Q\<rbrakk> \<Longrightarrow> (\<Psi>, R \<parallel> !P, R \<parallel> !Q) \<in> ?Y" by(blast intro: bisimReflexive) moreover have "\<And>\<Psi> P \<alpha> P' Q. \<lbrakk>\<Psi> \<rhd> !P \<longmapsto>\<alpha> \<prec> P'; \<Psi> \<rhd> P \<sim> Q; bn \<alpha> \<sharp>* \<Psi>; bn \<alpha> \<sharp>* P; bn \<alpha> \<sharp>* Q; guarded Q; bn \<alpha> \<sharp>* subject \<alpha>\<rbrakk> \<Longrightarrow> \<exists>Q' R T. \<Psi> \<rhd> !Q \<longmapsto>\<alpha> \<prec> Q' \<and> \<Psi> \<rhd> P' \<sim> R \<parallel> !P \<and> \<Psi> \<rhd> Q' \<sim> T \<parallel> !Q \<and> \<Psi> \<rhd> R \<sim> T \<and> ((supp R)::name set) \<subseteq> supp P' \<and> ((supp T)::name set) \<subseteq> supp Q'" by(blast elim: bangDerivative) ultimately have "\<Psi> \<rhd> R \<parallel> !P \<leadsto>[?Y] R \<parallel> !Q" by(rule bangPres) with \<open>RP = R \<parallel> !P\<close> \<open>RQ = R \<parallel> !Q\<close> show ?case by blast next case(cExt \<Psi> RP RQ \<Psi>') thus ?case by(blast dest: bisimE) next case(cSym \<Psi> RP RQ) thus ?case by(blast dest: bisimE) qed thus ?thesis by(metis bisimTransitive bisimParNil bisimSymmetric bisimParComm) qed end end
Key Features Material- CottonHalf Sleeve Warranty 3 Days Replacement Policy 100.. Free Home Delivery! Key Features Material- Cotton; GSM-160Half Sleeve Warranty 3 Da.. Free Home Delivery! Key Features Material- Cotton; GSM-200Half Sleeve Warranty 3 Da.. Free Home Delivery! Key Features জার্সি কাপড়ের থাই কোয়ালিটির, আর্জেন্টিনা জার্সির সামনে বামে .. Free Home Delivery! Key Features জার্সি কাপড়ের থাই কোয়ালিটির, ব্রাজিল জার্সির সামনে বামে থাকছ.. Free Home Delivery! Key Features Material- SyntheticHalf Sleeve Warranty 3 Days Rep.. Free Home Delivery! Key Features Material- Synthetic Full Sleeve Warranty .. Free Home Delivery! Key Features Material- SyntheticFull Sleeve Warranty 3 Days Rep.. Key Features Material- Cotton; GSM-160 Half Sleeve Warranty 3 Days Replacement ..
State Before: α : Type ?u.27674 M✝ : Type u N : Type v G : Type w H : Type x A : Type y B : Type z R : Type u₁ S : Type u₂ inst✝² : Monoid M✝ inst✝¹ : AddMonoid A M : Type u_1 inst✝ : Monoid M x : M m n : ℕ h : x ^ n = 1 ⊢ x ^ m = x ^ (m % n) State After: α : Type ?u.27674 M✝ : Type u N : Type v G : Type w H : Type x A : Type y B : Type z R : Type u₁ S : Type u₂ inst✝² : Monoid M✝ inst✝¹ : AddMonoid A M : Type u_1 inst✝ : Monoid M x : M m n : ℕ h : x ^ n = 1 t : x ^ m = x ^ (n * (m / n) + m % n) ⊢ x ^ m = x ^ (m % n) Tactic: have t : x ^ m = x ^ (n * (m / n) + m % n) := congr_arg (fun a => x ^ a) ((Nat.add_comm _ _).trans (Nat.mod_add_div _ _)).symm State Before: α : Type ?u.27674 M✝ : Type u N : Type v G : Type w H : Type x A : Type y B : Type z R : Type u₁ S : Type u₂ inst✝² : Monoid M✝ inst✝¹ : AddMonoid A M : Type u_1 inst✝ : Monoid M x : M m n : ℕ h : x ^ n = 1 t : x ^ m = x ^ (n * (m / n) + m % n) ⊢ x ^ m = x ^ (m % n) State After: α : Type ?u.27674 M✝ : Type u N : Type v G : Type w H : Type x A : Type y B : Type z R : Type u₁ S : Type u₂ inst✝² : Monoid M✝ inst✝¹ : AddMonoid A M : Type u_1 inst✝ : Monoid M x : M m n : ℕ h : x ^ n = 1 t : x ^ m = x ^ (n * (m / n) + m % n) ⊢ x ^ m = x ^ (m % n) Tactic: dsimp at t State Before: α : Type ?u.27674 M✝ : Type u N : Type v G : Type w H : Type x A : Type y B : Type z R : Type u₁ S : Type u₂ inst✝² : Monoid M✝ inst✝¹ : AddMonoid A M : Type u_1 inst✝ : Monoid M x : M m n : ℕ h : x ^ n = 1 t : x ^ m = x ^ (n * (m / n) + m % n) ⊢ x ^ m = x ^ (m % n) State After: no goals Tactic: rw [t, pow_add, pow_mul, h, one_pow, one_mul]
function [gal] = ft32gal(ft3) % Convert volume from cubic feet to US liquid gallons. % Chad Greene 2012 gal = ft3*7.4805194805;
const UIntOrChar = Union{Unsigned, AbstractChar} struct StaticString{N, T<:Unsigned} <: AbstractString data::NTuple{N, T} function StaticString{N, T}(t::NTuple{M, <:UIntOrChar}) where {N, T, M} N == M || throw(DimensionMismatch( "cannot construct StaticString{$N, $T} from input of length $M")) new{N, T}(t) end end StaticString{N, T}(cs::UIntOrChar...) where {N, T} = StaticString{N, T}(cs) StaticString{N, T}(fs::StaticString{N, T}) where {N, T} = fs StaticString{N, T}(s) where {N, T} = StaticString{N, T}(String(s)...) _units_to_type(n::Int) = ifelse(n == 1, UInt8, ifelse(n==2, UInt16, UInt32)) macro static_str(s) quote StaticString{ length($(esc(s))), _units_to_type(maximum(ncodeunits, $(esc(s)))) }($(esc(s))) end end convert(::Type{StaticString{N, T}}, s::AbstractString) where {N, T} = StaticString{N, T}(s) ncodeunits(s::StaticString{N, T}) where {T,N} = N sizeof(s::StaticString) = sizeof(s.data) length(s::StaticString) = ncodeunits(s) length(S::Type{StaticString{N, T}}) where {N, T} = N lastindex(s::StaticString{N, T}) where {N, T} = N function iterate(s::StaticString{N, T}, i::Int = 1) where {N, T} i > N && return nothing return Char(s[i]), i+1 end codeunit(::StaticString{N, T}) where {N, T} = T @propagate_inbounds codeunit(s::StaticString, i::Integer) = s.data[i] @propagate_inbounds getindex(s::StaticString, i::Integer)::Char = s.data[i] isvalid(s::StaticString, i::Integer) = checkbounds(Bool, s, i)
function p=polelague(n) % p=polegend(n) % Almacena en las filas de la matriz p los coefs de los polinomios de Legendre p(1,1)=1; p(2,1:2)=[-1 1]; for k=2:n p(k+1,1:k+1)=((2*(k-2)*[0 p(k,1:k)]+3*[0 p(k,1:k)]-[p(k,1:k) 0]-(k-1).^2*[0 0 p(k-1,1:k-1)])); end
module ExVectDecEq import Decidable.Equality %default total data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a {- interface DecEq ty where decEq : (val1 : ty) -> (val2 : ty) -> Dec (val1 = val2) data Dec : (prop : Type) -> Type where Yes : (prf : prop) -> Dec prop No : (contra ; prop -> Void) -> Dec prop -} headUnequal : DecEq a => { xs: Vect n a } -> { ys : Vect n a } -> (contra : (x = y) -> Void) -> ((x :: xs) = (y :: ys)) -> Void headUnequal contra Refl = contra Refl tailUnequal : DecEq a => { xs : Vect n a } -> { ys : Vect n a } -> (contra : (xs = ys) -> Void) -> ((x :: xs) = (y:: ys)) -> Void tailUnequal contra Refl = contra Refl DecEq a => DecEq (Vect n a) where decEq [] [] = Yes Refl decEq [] _ = No ?nilNotEqualToCons decEq _ [] = No ?consNotEqualToNil decEq (x :: xs) (y :: ys) = case decEq x y of No contra => No (headUnequal contra) Yes Refl => case decEq xs ys of No contra => No (tailUnequal contra) Yes Refl => Yes Refl
module Intro sm : List Nat -> Nat sm [] = 0 sm (x :: xs) = x + (sm xs) fct : Nat -> Nat fct Z = 1 fct (S k) = (S k) * (fct k) fbp : Nat -> (Nat, Nat) fbp Z = (1, 1) fbp (S k) = (snd (fbp k), fst (fbp k) + snd (fbp k)) fib : Nat -> Nat fib n = fst (fbp n) public export add : Nat -> Nat -> Nat add Z j = j add (S k) j = S (add k j) mul : Nat -> Nat -> Nat mul Z j = Z mul (S k) j = add j (mul k j) sub : (n: Nat) -> (m : Nat) -> (LTE m n) -> Nat sub n Z LTEZero = n sub (S right) (S left) (LTESucc x) = sub right left x oneLTEFour : LTE 1 4 oneLTEFour = LTESucc LTEZero fourMinusOne : Nat fourMinusOne = sub 4 1 oneLTEFour reflLTE : (n: Nat) -> LTE n n reflLTE Z = LTEZero reflLTE (S k) = LTESucc (reflLTE k) sillyZero: Nat -> Nat sillyZero n = sub n n (reflLTE n) idNat : Nat -> Nat idNat = \x => x loop: Nat -> Nat loop k = loop (S k)
Formal statement is: proposition Schwarz_reflection: assumes "open S" and cnjs: "cnj ` S \<subseteq> S" and holf: "f holomorphic_on (S \<inter> {z. 0 < Im z})" and contf: "continuous_on (S \<inter> {z. 0 \<le> Im z}) f" and f: "\<And>z. \<lbrakk>z \<in> S; z \<in> \<real>\<rbrakk> \<Longrightarrow> (f z) \<in> \<real>" shows "(\<lambda>z. if 0 \<le> Im z then f z else cnj(f(cnj z))) holomorphic_on S" Informal statement is: If $f$ is holomorphic on the upper half-plane and continuous on the real line, then the Schwarz reflection of $f$ is holomorphic on the whole plane.
## these are differently named than SymPy or missing or ... Base.abs(x::SymbolicObject) = sympy.Abs(x) Base.abs2(x::SymbolicObject) = x * conj(x) Base.max(x::Sym, a) = sympy.Max(x, a) Base.min(x::Sym, a) = sympy.Min(x, a) Base.cbrt(x::Sym) = x^(1//3) Base.ceil(x::Sym) = sympy.ceiling(x) ## Trig Base.asech(z::Sym) = log(sqrt(1/z-1)*sqrt(1/z+1) + 1/z) Base.acsch(z::Sym) = log(sqrt(1+1/z^2) + 1/z) ## http://mathworld.wolfram.com/InverseHyperbolicCosecant.html Base.atan(y::Sym, x) = sympy.atan2(y,x) Base.sinc(x::Sym) = iszero(x) ? one(x) : sin(PI*x)/(PI*x) cosc(x::Sym) = diff(sinc(x)) Base.sincos(x::Sym) = (sin(x), cos(x)) Base.sinpi(x::Sym) = sympy.sin(x*PI) Base.cospi(x::Sym) = sympy.cos(x*PI) degree_variants = (:sind, :cosd, :tand, :cotd, :secd, :cscd, :asind, :acosd, :atand, :acotd, :asecd, :acscd) for methvar in degree_variants meth = Symbol(String(methvar)[1:end-1]) @eval begin (Base.$methvar)(ex::SymbolicObject) = ($meth)((PI/180)*ex) end end Base.rad2deg(x::Sym) = (x * 180) / PI Base.deg2rad(x::Sym) = (x * PI) / 180 Base.hypot(x::Sym, y::Number) = hypot(promote(x,y)...) Base.hypot(xs::Sym...) = sqrt(sum(abs(xᵢ)^2 for xᵢ ∈ xs)) ## exponential Base.log1p(x::Sym) = sympy.log(1 + x) Base.log(x::Sym) = sympy.log(x) Base.log(b::Number, x::Sym) = sympy.log(x, b) Base.log2(x::SymbolicObject) = log(2,x) Base.log10(x::SymbolicObject) = log(10,x) ## calculus. ## use a pair for limit x=>0 limit(x::SymbolicObject, xc::Pair, args...;kwargs...) = limit(x, xc[1], xc[2], args...;kwargs...) ## allow a function limit(f::Function, x::Sym, c;kwargs...) = limit(Sym(f(x)), x, c; kwargs...) function limit(f::Function, c;kwargs...) @vars x limit(f, x, c; kwargs...) end ## This is type piracy and a bad idea function Base.diff(f::Function, n::Integer=1) @vars x sympy.diff(f(x), x, n) end ## integrate(ex,a,b) function integrate(ex::SymbolicObject, a::Number, b::Number) fs = free_symbols(ex) if length(fs) !== 1 @warn "Need exactly on free symbol. Use `integrate(ex, (x, a, b))` instead" return end integrate(ex, (fs[1], a, b)) end function integrate(f::Function, a::Number, b::Number) @vars x sympy.integrate(f(x), (x, a, b)) end function integrate(f::Function) @syms x sympy.integrate(f(x), x) end ## Add interfaces for solve, nonlinsolve when vector of equations passed in ## An alternative to Eq(lhs, rhs) following Symbolics.jl """ lhs ~ rhs Specify an equation. Alternative syntax to `Eq(lhs, rhs)` or `lhs ⩵ rhs` (`\\Equal[tab]`) following `Symbolics.jl`. """ Base.:~(lhs::Number, rhs::SymbolicObject) = Eq(lhs, rhs) Base.:~(lhs::SymbolicObject, rhs::Number) = Eq(lhs, rhs) Base.:~(lhs::SymbolicObject, rhs::SymbolicObject) = Eq(lhs, rhs) """ solve Use `solve` to solve algebraic equations. Examples: ```julia julia> using SymPy julia> @syms x y a b c d (x, y, a, b, c, d) julia> solve(x^2 + 2x + 1, x) # [-1] 1-element Vector{Sym}: -1 julia> solve(x^2 + 2a*x + a^2, x) # [-a] 1-element Vector{Sym}: -a julia> solve([a*x + b*y-3, c*x + b*y - 1], [x,y]) # Dict(y => (a - 3*c)/(b*(a - c)),x => 2/(a - c)) Dict{Any, Any} with 2 entries: y => (a - 3*c)/(a*b - b*c) x => 2/(a - c) ``` !!! note A very nice example using `solve` is a [blog](https://newptcai.github.io/euclidean-plane-geometry-with-julia.html) entry on [Napolean's theorem](https://en.wikipedia.org/wiki/Napoleon%27s_theorem) by Xing Shi Cai. """ solve() = () solve(V::Vector{T}, args...; kwargs...) where {T <: SymbolicObject} = sympy.solve(V, args...; kwargs...) """ nonlinsolve Note: if passing variables in use a tuple (e.g., `(x,y)`) and *not* a vector (e.g., `[x,y]`). """ nonlinsolve(V::AbstractArray{T,N}, args...; kwargs...) where {T <: SymbolicObject, N} = sympy.nonlinsolve(V, args...; kwargs...) linsolve(V::AbstractArray{T,N}, args...; kwargs...) where {T <: SymbolicObject, N} = sympy.linsolve(V, args...; kwargs...) linsolve(Ts::Tuple, args...; kwargs...) where {T <: SymbolicObject} = sympy.linsolve(Ts, args...; kwargs...) ## dsolve allowing initial condiation to be specified """ dsolve(eqn, var, args..,; ics=nothing, kwargs...) Call `sympy.dsolve`. The initial conditions are specified with a dictionary. Example: ```jldoctest dsolve julia> using SymPy julia> @syms α, x, f(), g() (α, x, f, g) julia> ∂ = Differential(x) Differential(x) julia> eqn = ∂(f(x)) ~ α * x d ──(f(x)) = x⋅α dx ``` ```julia julia> dsolve(eqn) 2 x ⋅α f(x) = C₁ + ──── 2 ``` ```jldoctest dsolve julia> dsolve(eqn(α=>2); ics=Dict(f(0)=>1)) |> print # fill in parameter, initial condition Eq(f(x), x^2 + 1) julia> eqn = ∂(∂(f(x))) ~ -f(x); print(eqn) Eq(Derivative(f(x), (x, 2)), -f(x)) julia> dsolve(eqn) f(x) = C₁⋅sin(x) + C₂⋅cos(x) julia> dsolve(eqn; ics = Dict(f(0)=>1, ∂(f)(0) => -1)) f(x) = -sin(x) + cos(x) julia> eqn = ∂(∂(f(x))) - f(x) - exp(x); julia> dsolve(eqn, ics=Dict(f(0) => 1, f(1) => Sym(1//2))) |> print # not just 1//2 Eq(f(x), (x/2 + (-exp(2) - 2 + E)/(-2 + 2*exp(2)))*exp(x) + (-E + 3*exp(2))*exp(-x)/(-2 + 2*exp(2))) ``` Systems ```jldoctest dsolve julia> @syms x() y() t g (x, y, t, g) julia> ∂ = Differential(t) Differential(t) julia> eqns = [∂(x(t)) ~ y(t), ∂(y(t)) ~ x(t)] 2-element Vector{Sym}: Eq(Derivative(x(t), t), y(t)) Eq(Derivative(y(t), t), x(t)) julia> dsolve(eqns) 2-element Vector{Sym}: Eq(x(t), -C1*exp(-t) + C2*exp(t)) Eq(y(t), C1*exp(-t) + C2*exp(t)) julia> dsolve(eqns, ics = Dict(x(0) => 1, y(0) => 2)) 2-element Vector{Sym}: Eq(x(t), 3*exp(t)/2 - exp(-t)/2) Eq(y(t), 3*exp(t)/2 + exp(-t)/2) julia> eqns = [∂(∂(x(t))) ~ 0, ∂(∂(y(t))) ~ -g] 2-element Vector{Sym}: Eq(Derivative(x(t), (t, 2)), 0) Eq(Derivative(y(t), (t, 2)), -g) julia> dsolve(eqns) # can't solve for initial conditions though! (NotAlgebraic) 2-element Vector{Sym}: x(t) = C₁ + C₂⋅t Eq(y(t), C3 + C4*t - g*t^2/2) julia> @syms t x() y() (t, x, y) julia> eq = (∂(x)(t) ~ x(t)*y(t)*sin(t), ∂(y)(t) ~ y(t)^2 * sin(t)) (Eq(Derivative(x(t), t), x(t)*y(t)*sin(t)), Eq(Derivative(y(t), t), y(t)^2*sin(t))) ``` ```julia julia> dsolve(eq) # returns a set to be `collect`ed: PyObject {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} ``` ```julia julia> dsolve(eq) |> collect 2-element Vector{Any}: Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))) Eq(y(t), -1/(C1 - cos(t))) ``` """ function dsolve(eqn, args...; ics::Union{Nothing, AbstractDict, Tuple}=nothing, kwargs...) if isa(ics, Tuple) # legacy _dsolve(eqn, args...; ics=ics, kwargs...) else sympy.dsolve(eqn, args...; ics=ics, kwargs...) end end rhs(x::SymbolicObject) = pycall_hasproperty(x, :rhs) ? x.rhs : x lhs(x::SymbolicObject) = pycall_hasproperty(x, :lhs) ? x.lhs : x export dsolve, rhs, lhs ## ---- deprecate ---- ## used with ics=(u,0,1) style function _dsolve(eqn::Sym, args...; ics=nothing, kwargs...) Base.depwarn("Use of tuple(s), `(u, x₀, u₀)`, to specify initial conditions is deprecated. Use a dictionary: `ics=Dict(u(x₀) => u₀)`.", :_dsolve) if isempty(args) var = first(free_symbols(eqn)) else var = first(args) end # var might be f(x) or x, we want `x` if Introspection.classname(var) != "Symbol" var = first(var.args) end ## if we have one initial condition, can be passed in a (u,x0,y0) *or* ((u,x0,y0),) ## if more than oneq a tuple of tuples if eltype(ics) <: Tuple __dsolve(eqn, var, ics; kwargs...) else __dsolve(eqn, var, (ics,); kwargs...) end end function __dsolve(eqn::Sym, var::Sym, ics; kwargs...) if length(ics) == 0 throw(ArgumentError("""Some initial value specification is needed. Specifying the function, as in `dsolve(ex, f(x))`, is deprecated. Use `sympy.dsolve(ex, f(x); kwargs...)` directly for that underlying interface. """)) end out = sympy.dsolve(eqn; kwargs...) ord = sympy.ode_order(eqn, var) ## `out` may be an array of solutions. If so we do each one. ## we want to use an array for output only if needed if !isa(out, Array) return _solve_ivp(out, var, ics,ord) else output = Sym[] for o in out a = _solve_ivp(o, var, ics,ord) a != nothing && push!(output, a) end return length(output) == 1 ? output[1] : output end end ## Helper. ## out is an equation in var with constants. Args are intial conditions ## Return `nothing` if initial condition is not satisfied (found by `solve`) function _solve_ivp(out, var, args, o) eqns = Sym[(diff(out.rhs(), var, f.n))(var=>x0) - y0 for (f, x0, y0) in args] sols = solve(eqns, Sym["C$i" for i in 1:o], dict=true) if length(sols) == 0 return nothing end ## massage output ## Might have more than one solution, though unlikely. But if we substitute a variable ## for y0 we will get an array back from solve which may have length 1. if isa(sols, Array) if length(sols) == 1 sols = sols[1] else return [out([Pair(k,v) for (k,v) in sol]...) for sol in sols] end end out([Pair(k,v) for (k,v) in sols]...) end ## For System Of Ordinary Differential Equations ## may need to collect return values # dsolve(eqs::Union{Array, Tuple}, args...; kwargs...) = sympy.dsolve(eqs, args...; kwargs...)
theory Hotel_Example_Small_Generator imports Hotel_Example "~~/src/HOL/Library/Predicate_Compile_Alternative_Defs" begin ML_file "~~/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML" declare Let_def[code_pred_inline] lemma [code_pred_inline]: "insert == (%y A x. y = x | A x)" by (auto simp add: insert_iff[unfolded mem_def] fun_eq_iff intro!: eq_reflection) lemma [code_pred_inline]: "(op -) == (%A B x. A x \<and> \<not> B x)" by (auto simp add: Diff_iff[unfolded mem_def] fun_eq_iff intro!: eq_reflection) instantiation room :: small_lazy begin definition "small_lazy i = Lazy_Sequence.single Room0" instance .. end instantiation key :: small_lazy begin definition "small_lazy i = Lazy_Sequence.append (Lazy_Sequence.single Key0) (Lazy_Sequence.append (Lazy_Sequence.single Key1) (Lazy_Sequence.append (Lazy_Sequence.single Key2) (Lazy_Sequence.single Key3)))" instance .. end instantiation guest :: small_lazy begin definition "small_lazy i = Lazy_Sequence.append (Lazy_Sequence.single Guest0) (Lazy_Sequence.single Guest1)" instance .. end ML \<open> val small_15_active = Attrib.setup_config_bool @{binding quickcheck_small_14_active} (K false); val small_14_active = Attrib.setup_config_bool @{binding quickcheck_small_15_active} (K false); \<close> setup \<open> Context.theory_map (Quickcheck.add_tester ("small_generators_depth_14", (small_14_active, Predicate_Compile_Quickcheck.test_goals (Predicate_Compile_Aux.Pos_Generator_DSeq, true, true, 14)))) #> Context.theory_map (Quickcheck.add_tester ("small_generators_depth_15", (small_15_active, Predicate_Compile_Quickcheck.test_goals (Predicate_Compile_Aux.Pos_Generator_DSeq, true, true, 15)))) \<close> lemma "hotel s ==> feels_safe s r ==> g \<in> isin s r ==> owns s r = Some g" (*quickcheck[tester = small_generators_depth_14, finite_types = false, iterations = 1, size = 1, timeout = 1200.0, expect = no_counterexample]*) quickcheck[tester = small_generators_depth_15, finite_types = false, iterations = 1, size = 1, timeout = 2400.0, expect = counterexample] oops end
Parameter A : Set. Definition Eq : A -> A -> Prop := fun a => fun b => forall P : A -> Prop, P a <-> P b. Lemma Eq_eq : forall x y, Eq x y <-> x = y. Proof. unfold Eq. intros x y; split. - intro E. destruct (E (fun z => x = z)). apply (H (eq_refl x)). - intro E. subst; split; auto. Qed.
# Managing Complexity with BondGraphTools https://github.com/peter-cudmore/seminars/CellML-2019 &nbsp; Dr. Peter Cudmore. Systems Biology Labratory, The School of Chemical and Biomedical Engineering, The University of Melbourne. ```python ## Make sympy print pretty text import sympy as sp sp.init_printing() # Load the examples from examples import * # Import the source-code inspector from inspect import getsourcelines # Start the julia interpreter from BondGraphTools.config import config _ = config.start_julia() # Parameters from Safaei et.al. 2018 blood = Fluid(density=0.004, viscosity=1050) # Approximate parameters for 10cm worth of artery. artery = Vessel(radius=0.03, thickness=0.005, youngs_modulus=0.16e6, length=0.1) ``` ## The problem with big systems is that they're _big_... <center> </center> ## Complex Physical Systems A _complex physical system_ has: * many parts or subsystems (High-dimensional). * subsystems which are not all of the same (Heterogenenous). * subsystems which are complicated (Nonlinear and/or Noisy). * well defined boundaries between the subsystems (Network Topology). * **subsystems interact via resource exchange (Conservation Laws).** Examples include: Biochemical Networks, Ecosystems, Electrical Grids, Hydraulic networks, etc. ## Some Obvious Questions Human Metabolism Map @ https://www.vmh.life <center> </center> 1. Why? 2. Where do we get the topology from? 3. What are the dynamic features? 4. How do we paramaterise them? 5. What is a useful representation? 6. How do we manipulate and refine our model? 7. How should one manage complexity at scale? ## Why? &nbsp; To predict, understand and control systemic phenomenon such as emergence, multiscale dynamics and long-range interactions. &nbsp; To _rationally engineer_ systems in general and biological systems in particular. ## Where do we get network data? For Systems Biology: - Databases (Brenda, KEGG, BIGG, SABIO-RK, reactome) - Model Repositories (Physiome Project, BioModels) - Publications (supp. materials, images, tables) - Collaborators. More generally: connectivity maps. ## A Subtle Issue: Dynamics. Recall that Complex Physical Systems have a _network topology_ of _conservative interactions_. - As edges are 'resource exchange', - _effort_ must be imposed to move resources from one node to another, - which move at some corresponding _flow_ rate. - Nodes must either store resources, or conservatively pass them along. - The exceptions are the boundary conditions such as resource sources and sinks (including dissipation). ## A Major Issue: Parameterisation. Ideally we would use parameters that: - are physically meaningful, - are able to be theoretically estimated, - can be derived from underlying physics/chemistry, - or that have been shown to be consistent across many experiemental conditions. - and hence tabulated (or able to be derived from tablated data) (but this is easier said than done) ## The Relevant Questions for Today. - What is a useful representation of a complex physical system? - What is a good way to manipulate models? - How do we manage complexity and scale? _Object Oriented Modelling via_ `BondGraphTools`. ## 'Energetic Systems' as an Object Oriented Programming. Object Oriented Programming (OOP) is a software development paradigm that seeks to manage large, complicated projects by breaking problems into _data_ plus _methods_ that act on the data. Three big ideas in OOP are: 1. _Inheritance_ or is-a relationships. 2. _Composition_ or has-a relationships. 3. _Encapsulation_ or infomation hiding. This allows for _hierarchical_ and _modular_ design which reduces model complexity. ```python import BondGraphTools help(BondGraphTools) ``` Help on package BondGraphTools: NAME BondGraphTools DESCRIPTION BondGraphTools ============== BondGraphTools is a python library for symbolic modelling of energetic systems. Package Documentation:: https://bondgraphtools.readthedocs.io/ Source:: https://github.com/BondGraphTools/BondGraphTools Bug reports: https://github.com/BondGraphTools/BondGraphTools/issues Simple Example -------------- Build and simulate a RLC driven RLC circuit:: import BondGraphTools as bgt # Create a new model model = bgt.new(name="RLC") # Create components # 1 Ohm Resistor resistor = bgt.new("R", name="R1", value=1.0) # 1 Henry Inductor inductor = bgt.new("L", name="L1", value=1.0) # 1 Farad Capacitor capacitor = bgt.new("C", name="C1", value=1.0) # Conservation Law law = bgt.new("0") # Common voltage conservation law # Connect the components connect(law, resistor) connect(law, capacitor) connect(law, inductor) # produce timeseries data t, x = simulate(model, x0=[1,1], timespan=[0, 10]) Bugs ---- Please report any bugs `here <https://github.com/BondGraphTools/BondGraphTools/issues>`_, or fork the repository and submit a pull request. License ------- Released under the Apache 2.0 License:: Copyright (C) 2018 Peter Cudmore <[email protected]> PACKAGE CONTENTS actions algebra atomic base component_manager compound config exceptions fileio port_hamiltonian reaction_builder sim_tools version view DATA version = '0.3.7' FILE /Users/pete/Workspace/BondGraphTools/BondGraphTools/__init__.py ### Bond Graphs, Port Hamiltonians and BondGraphTools _Bond graphs_ are a **graphical** framework for modelling energetic systems. _Port Hamiltonians_ are a **geometric** framework for modelling energetic systems. _BondGraphTools_ is a **programmatic** framework for modelling energetic systems. ## Goals of this talk. In the remaining time i hope to convince you that: - Object oriented modelling is suited to complex physical systems. - `BondGraphTools` is a useful library for this purpose. - Incorporating scripting into your work is worthwhile. - `BondGraphTools` and `libCellML` &nbsp; &nbsp; # Object Oriented Modelling for Energetic Systems &nbsp; Inheritance, Composition and Encapsulation ## Inheritance &nbsp; For networked systems, _inheritance_ means that for each node or subsystems have: - conditions on the interals. - a description of the interface. ## Inheritance &nbsp; ### Nodes are particular _energetic systems_ Each node is described by a set of differential-algebraic equations; the constitutive relations $$\Phi(\dot{x},x,e,f) = 0.$$ ## Inheritance &nbsp; ### Edges are constraints on port variables. An edge represents how state is shared between systems. ## Inheritance #### Example Node Subclasses: - Resistive dissipation. - Elastic defomation of vessel walls. - Conservation of mass. &nbsp; _This_ chemical reation or _that particular_ aeortic compliance are **instances** of a particular subclass. ## Anatomy of an Energetic System &nbsp; Nodes can have _state_, represented by the variables $(\dot{x}, x)$ Examples with state: - Charge accumulation. - Chemical concentration. - Elastic deformation. ## Anatomy of an Energetic System &nbsp; Nodes can alternatively be stateless. Examples without state: - resistance / friction - semiconductance - elementary chemical reactions ## Anatomy of an Energetic System &nbsp; Nodes can have _external ports_ (here labeled $[1]$ , $[2]$ and $[3]$) which provide an interface to the external environment. Examples of ports: - The poles of a dielectic membrane - The open end of a vessel segment. - The enzyme/substrate/cofactor mix of a biochemical reaction. ## Anatomy of an Energetic System $\Phi$ relates _internal state_ to _external environment_. The relation $\Phi$ may have parameters such as: - Temperature and pressure - Gibbs formation energy - Vessel wall compliance - Electrical resistance ## Composition &nbsp; _Composition_ means that we can replace subgraphs with a single node and vice-versa. &nbsp; _This means we both abstract parts of the model, or refine parts of the model as necessary!_ ## Composition &nbsp; Recall that each node is a set of DAE's $$\Phi_j(\dot{x},x,e,f) = 0.$$ One can simply take the direct sum of the systems to produce a composite system $$ \Phi_0 = \left( \Phi_6, \Phi_7,\Phi_8, \Phi_{edges}\right)^T = 0 $$ ## Compostion For $$ \Phi_0 = \left( \Phi_6, \Phi_7, \Phi_8 \Phi_{edges}\right)^T = 0 $$ the relation $$\Phi_{edges} = (e^i_\alpha - e^j_\beta, f^i_\alpha + f^j_\beta,\ldots)$$ turns edges between node-ports pairs $(i,\alpha)$ and $(j,\beta)$ into constraints upon the composed system $\Phi_0$. ## Compositon &nbsp; _Like joining pipe segments!_ - $e^i_\alpha - e^j_\beta = 0$ implies 'pressure'(effort) is identical at the join. - $f^i_\alpha + f^j_\beta = 0$ implies the flow goes losslessly from one, to the other. ## Encapsulation &nbsp; Encapsulation = Modularity! - Model Sharing. - Scalablity! ## Encapsulation &nbsp; Encapsulation allows Model Comparison. - In-place model swaps. - Model re-use. ## Object Oriented Modelling and Energetic Systems Energetic systems provide: - _Inheritance_; an abstract base representation of energetic systems. - _Composition_; a way to hierarchically compose systems of systems. - _Encapsulation_; a framework inside which simplifications can occur. &nbsp; # `BondGraphTools` &nbsp; Modelling Object Oriented Physical System ## Energetic Modelling as Object Oriented Programming. `BondGraphTools` provides the infrastructure to - Represent complex physical systems as object oriented python code. - Manipulate and organise models of complex phyiscal systems programmitcally. - Algorithmically simplify the resulting models. ## What `BondGraphTools` is good for (and why you should use it, or pinch ideas from it) - automated model reduciton - scripted model building - formal (code) modelling of systems. - tool integration ```python from BondGraphTools import draw segment1 = VesselSegmentA( "Example_1", artery, blood ) draw(segment1) ``` ```python source, _ = getsourcelines(VesselSegmentA) for line in source: print(line[:-1]) ``` class VesselSegmentA(bgt.BondGraph): """A vascular vessel segment. This class is an example of Vessel Segment A from: Safaei, Sorous. Blanco, Pablo J. Müller, Lucas O. Hellevik, Leif R. and Hunter, Peter J. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations Frontiers in Physiology, 2018, volume 9, page 148 The vessel segment is of the $uv$ type that has components: - pressure inlet $u_i$ - flow outlet $v_o$ - fluid interia $I$ - wall dissipation $R$ - and compliance $C$. The linear resistance, compliance and inertance are computed as per Safaei et.al.. See Also: BondGraph """ def __init__(self, name, vessel, fluid): """ Args: name (str): The name of this vessel segement vessel (Vessel): The vessel material properties fluid (Fluid): The fluid properties """ # Parameters resistance = 8 * fluid.viscosity * vessel.length / (pi * vessel.radius**4) inertance = 2 * pi * vessel.radius**3 / (vessel.thickness * vessel.youngs_modulus) compliance = fluid.density * vessel.length / (pi* vessel.radius**2) # Instantiating Components R_component = bgt.new('R', value=resistance, name=f'R') C_component = bgt.new('C', value=compliance, name=f'C') I_component = bgt.new('I', value=inertance, name=f'I') conserved_flow = bgt.new("1", name=f'1') conserved_pressure = bgt.new("0", name=f'0') u_in = bgt.new('SS', name=f'u_i') v_out = bgt.new('SS', name=f'v_o') bonds = [ (u_in, conserved_flow), (conserved_flow, R_component), (conserved_flow, I_component), (conserved_flow, conserved_pressure), (conserved_pressure, C_component), (conserved_pressure, v_out) ] # Build the BondGraph via the inherited initialise function super().__init__( name=name, components=(R_component, C_component, I_component, conserved_flow, conserved_pressure, u_in, v_out) ) # wire it up for bond in bonds: bgt.connect(*bond) # expose the ports bgt.expose(u_in, label="u_i") bgt.expose(v_out, label="v_o") ## Scripting the construction of an artery model ```python from BondGraphTools import new, add, connect length = 1 current_length = 0 segment_counter = 0 artery_model = new() inlet = new('Se', name='inlet', label='u_i') add(artery_model, inlet) outlet = bgt.new('Sf', name='outlet', label='v_o') add(artery_model, outlet) last_outlet = inlet ``` ```python while current_length < length: # Add a new segment this_segment = VesselSegmentA( name=f"Segment_{{{segment_counter}}}", vessel=artery, fluid=blood) add(artery_model, this_segment) current_inlet_port = (this_segment, 'u_i') # and connect it to the previous one connect(last_outlet, current_inlet_port) # Update the counter variables last_outlet = (this_segment, 'v_o') current_length = current_length + artery.length segment_counter = segment_counter + 1 connect(last_outlet, outlet) ``` ## Automatically Generating Equations ```python artery_model.constitutive_relations ``` ## Algorithmic Substitution ```python from BondGraphTools import ( BondGraph, expose, new, connect) class Voigt_Model(BondGraph): def __init__(self, name, compliance, dissipation): # ------ Define the Subcomponents C = new("C", name='C', value=compliance) R = new("R", name='R',value=dissipation) law = new('1') port = new("SS", name='SS') # ------ Build the model super().__init__(name=name, components=(C, R, law, port) ) # ------ Wire it up connect(port, law) connect(law, R) connect(law, C) # ----- Expose the port expose(port, label="C_v") ``` ```python from BondGraphTools import swap # simple iterator function def next_segment(model): i = 0 try: while True: yield model / f"Segment_{{{i}}}" i += 1 except ValueError: return StopIteration # swap the components out for each segment for segment in next_segment(artery_model): C = segment / "C" C_v = Voigt_Model('C_v', C.params['C'], 0.001) swap(C, C_v) ``` ```python print_tree(artery_model) ``` BG: BG1 |-BG: Segment_{10} |--BG: C_v |---SS: SS |---1: 124 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{9} |--BG: C_v |---SS: SS |---1: 123 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{8} |--BG: C_v |---SS: SS |---1: 122 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{7} |--BG: C_v |---SS: SS |---1: 121 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{6} |--BG: C_v |---SS: SS |---1: 120 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{5} |--BG: C_v |---SS: SS |---1: 119 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{4} |--BG: C_v |---SS: SS |---1: 118 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{3} |--BG: C_v |---SS: SS |---1: 117 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{2} |--BG: C_v |---SS: SS |---1: 116 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{1} |--BG: C_v |---SS: SS |---1: 115 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-BG: Segment_{0} |--BG: C_v |---SS: SS |---1: 114 |---R: R |---C: C |--SS: v_o |--SS: u_i |--0: 0 |--1: 1 |--I: I |--R: R |-SS: outlet |-SS: inlet ## Automated Model Building ```python TCA_reactions = { "Citrate synthase": ["acetyl-CoA + oxaloacetate + H2O = citrate + CoA-SH"], "Aconitase": ["Citrate = cis-Aconitate + H2O", "cis-Aconitate + H2O = Isocitrate"], "Isocitrate dehydrogenase": ["Isocitrate + NAD = Oxalosuccinate + NADH + H", "Oxalosuccinate = a-Ketoglutarate + CO2" ], "a-Ketoglutarate dehydrogenase": ["a-Ketoglutarate + NAD + CoA-SH = Succinyl-CoA + NADH + H + CO2"], "Succinyl-CoA synthetase": ["Succinyl-CoA + ADP + Pi = Succinate + CoA-SH + ATP"], "Succinate dehydrogenase": ["Succinate + Q = Fumarate + QH2"], "Fumarase": ["Fumarate + H2O = L-Malate"], "Malate dehydrogenase": ["L-Malate + NAD = Oxaloacetate + NADH + H"] } ``` ```python from BondGraphTools.reaction_builder import ( Reaction_Network) def TCA_Cycle(): reaction_net = Reaction_Network( name="TCA_Cycle" ) # loop through each enzyme for enzyme in TCA_reactions: for i, reaction in enumerate(TCA_reactions[enzyme]): # add each reaction. reaction_net.add_reaction( reaction, name=f"{enzyme} - {i}" ) return reaction_net ``` ```python from BondGraphTools import draw tca_model = TCA_Cycle().as_network_model() draw(tca_model) ``` ## ...from data to equations ```python tca_model.constitutive_relations ``` ```python # Parameters tca_model.params ``` {0: (C: acetyl-CoA, 'k'), 1: (C: acetyl-CoA, 'R'), 2: (C: acetyl-CoA, 'T'), 3: (C: oxaloacetate, 'k'), 4: (C: oxaloacetate, 'R'), 5: (C: oxaloacetate, 'T'), 6: (C: H2O, 'k'), 7: (C: H2O, 'R'), 8: (C: H2O, 'T'), 9: (C: citrate, 'k'), 10: (C: citrate, 'R'), 11: (C: citrate, 'T'), 12: (C: CoA-SH, 'k'), 13: (C: CoA-SH, 'R'), 14: (C: CoA-SH, 'T'), 15: (C: Citrate, 'k'), 16: (C: Citrate, 'R'), 17: (C: Citrate, 'T'), 18: (C: cis-Aconitate, 'k'), 19: (C: cis-Aconitate, 'R'), 20: (C: cis-Aconitate, 'T'), 21: (C: Isocitrate, 'k'), 22: (C: Isocitrate, 'R'), 23: (C: Isocitrate, 'T'), 24: (C: NAD, 'k'), 25: (C: NAD, 'R'), 26: (C: NAD, 'T'), 27: (C: Oxalosuccinate, 'k'), 28: (C: Oxalosuccinate, 'R'), 29: (C: Oxalosuccinate, 'T'), 30: (C: NADH, 'k'), 31: (C: NADH, 'R'), 32: (C: NADH, 'T'), 33: (C: H, 'k'), 34: (C: H, 'R'), 35: (C: H, 'T'), 36: (C: a-Ketoglutarate, 'k'), 37: (C: a-Ketoglutarate, 'R'), 38: (C: a-Ketoglutarate, 'T'), 39: (C: CO2, 'k'), 40: (C: CO2, 'R'), 41: (C: CO2, 'T'), 42: (C: Succinyl-CoA, 'k'), 43: (C: Succinyl-CoA, 'R'), 44: (C: Succinyl-CoA, 'T'), 45: (C: ADP, 'k'), 46: (C: ADP, 'R'), 47: (C: ADP, 'T'), 48: (C: Pi, 'k'), 49: (C: Pi, 'R'), 50: (C: Pi, 'T'), 51: (C: Succinate, 'k'), 52: (C: Succinate, 'R'), 53: (C: Succinate, 'T'), 54: (C: ATP, 'k'), 55: (C: ATP, 'R'), 56: (C: ATP, 'T'), 57: (C: Q, 'k'), 58: (C: Q, 'R'), 59: (C: Q, 'T'), 60: (C: Fumarate, 'k'), 61: (C: Fumarate, 'R'), 62: (C: Fumarate, 'T'), 63: (C: QH2, 'k'), 64: (C: QH2, 'R'), 65: (C: QH2, 'T'), 66: (C: L-Malate, 'k'), 67: (C: L-Malate, 'R'), 68: (C: L-Malate, 'T'), 69: (C: Oxaloacetate, 'k'), 70: (C: Oxaloacetate, 'R'), 71: (C: Oxaloacetate, 'T'), 72: (R: Citrate synthase - 0, 'r'), 73: (R: Citrate synthase - 0, 'R'), 74: (R: Citrate synthase - 0, 'T'), 75: (R: Aconitase - 0, 'r'), 76: (R: Aconitase - 0, 'R'), 77: (R: Aconitase - 0, 'T'), 78: (R: Aconitase - 1, 'r'), 79: (R: Aconitase - 1, 'R'), 80: (R: Aconitase - 1, 'T'), 81: (R: Isocitrate dehydrogenase - 0, 'r'), 82: (R: Isocitrate dehydrogenase - 0, 'R'), 83: (R: Isocitrate dehydrogenase - 0, 'T'), 84: (R: Isocitrate dehydrogenase - 1, 'r'), 85: (R: Isocitrate dehydrogenase - 1, 'R'), 86: (R: Isocitrate dehydrogenase - 1, 'T'), 87: (R: a-Ketoglutarate dehydrogenase - 0, 'r'), 88: (R: a-Ketoglutarate dehydrogenase - 0, 'R'), 89: (R: a-Ketoglutarate dehydrogenase - 0, 'T'), 90: (R: Succinyl-CoA synthetase - 0, 'r'), 91: (R: Succinyl-CoA synthetase - 0, 'R'), 92: (R: Succinyl-CoA synthetase - 0, 'T'), 93: (R: Succinate dehydrogenase - 0, 'r'), 94: (R: Succinate dehydrogenase - 0, 'R'), 95: (R: Succinate dehydrogenase - 0, 'T'), 96: (R: Fumarase - 0, 'r'), 97: (R: Fumarase - 0, 'R'), 98: (R: Fumarase - 0, 'T'), 99: (R: Malate dehydrogenase - 0, 'r'), 100: (R: Malate dehydrogenase - 0, 'R'), 101: (R: Malate dehydrogenase - 0, 'T')} ```python from BondGraphTools import set_param, swap, new # Set Parameters to 1 value = 1 for param in tca_model.params: set_param(tca_model, param, value) # Swap acetyl_CoA for a effort source acetyl_CoA = tca_model / "C: acetyl-CoA" flow_control = new("Se", value=None) swap(acetyl_CoA, flow_control) ``` ```python tca_model.constitutive_relations ``` ## Basic Simulation ```python import numpy as np x_dim = len(tca_model.state_vars) x0 = np.exp(np.random.randn(x_dim)) from BondGraphTools import simulate t, x = simulate(tca_model, timespan=[0,1], x0=x0, control_vars=["t > 0.2 ? 2 : 0"]) ``` ```python from matplotlib.pyplot import plot _ = plot(t, x) ``` ## BondGraphTools Development Philosophy BondGraphTools ideals: - working is better than right. - ... it should just do the thing. - ... it does what it says on the box. - don't make the user fight the tools. ## What `BondGraphTools` does not do - dimensional anaysis - ensure realistic models - graphical user interfaces - parameter fitting - ontologies, metadata... ## `BondGraphTools` in literature Used in forthcoming work by: - Prof. Peter Gawthrop (Physically Plausible Models) - Michael Pan (Algorithmic Model Evalutition) - PC (`BondGraphTools`) ## Current Status: Currently version: 0.3.8 The next version 0.4 will include: - Symbolics overhaul. - Improved model reduction. - Cleaner parameter handline. - Observables. # Thanks - Andre and the CellML workshop organisers - Prof. Peter Hunter and the ABI - Prof. Edmund Crampin, Prof. Peter Gawthrop and Michael Pan & The Systems Biology Lab <table > <tr style="background-color:#FFFFFF;"> <td></td> <td></td> </tr> </table> ## Please check out `BondGraphTools` Docs: https://bondgraphtools.readthedocs.io/ GitHub: https://github.com/BondGraphTools
-- -------------------------------------------------------------- [ Common.idr ] -- Module : Common.idr -- Copyright : (c) Jan de Muijnck-Hughes -- License : see LICENSE -- --------------------------------------------------------------------- [ EOH ] module Freya.Common %access export public export data RTy = FUNC | USAB | RELI | PERF | SUPP implementation Cast RTy String where cast FUNC = "functional" cast USAB = "usability" cast RELI = "reliability" cast PERF = "performance" cast SUPP = "supportability" implementation Show RTy where show FUNC = "FUNC" show USAB = "USAB" show RELI = "RELI" show PERF = "PERF" show SUPP = "SUPP" readRTy : String -> Maybe RTy readRTy s = case s of "functional" => Just FUNC "usability" => Just USAB "reliability" => Just RELI "performance" => Just PERF "supportability" => Just SUPP otherwise => Nothing public export data TTy = ADV | DIS | GEN implementation Show TTy where show ADV = "ADVANTAGE" show DIS = "DISADVANTAGE" show GEN = "GENERAL" implementation Cast TTy String where cast ADV = "advantage" cast DIS = "disadvantage" cast GEN = "general" readTTy : String -> Maybe TTy readTTy s = case s of "advantage" => Just ADV "disadvantage" => Just DIS "general" => Just GEN otherwise => Nothing public export data MTy = STRUCT | DYN implementation Show MTy where show STRUCT = "STRUCT" show DYN = "DYN" implementation Cast MTy String where cast STRUCT = "structure" cast DYN = "dynamic" readMTy : String -> Maybe MTy readMTy s = case s of "structure" => Just STRUCT "dynamic" => Just DYN otherwise => Nothing public export data LTy = SPECIAL | IMPL | USES | LINK implementation Show LTy where show SPECIAL = "SPECIAL" show IMPL = "IMPL" show USES = "USES" show LINK = "LINK" public export implementation Cast LTy String where cast SPECIAL = "specialises" cast IMPL = "implements" cast USES = "requires" cast LINK = "linked" readLTy : String -> Maybe LTy readLTy s = case s of "specialises" => Just SPECIAL "implements" => Just IMPL "requires" => Just USES "linked" => Just LINK otherwise => Nothing -- --------------------------------------------------------------------- [ EOF ]
State Before: α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl : List.Pairwise Disjoint l ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod l) x State After: case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l h : f ∈ [] hl : List.Pairwise Disjoint [] ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod []) x case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : List.Pairwise Disjoint (hd :: tl) ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod (hd :: tl)) x Tactic: induction' l with hd tl IH State Before: case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l h : f ∈ [] hl : List.Pairwise Disjoint [] ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod []) x State After: no goals Tactic: simp at h State Before: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : List.Pairwise Disjoint (hd :: tl) ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod (hd :: tl)) x State After: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : List.Pairwise Disjoint (hd :: tl) x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x Tactic: intro x hx State Before: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : List.Pairwise Disjoint (hd :: tl) x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x State After: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x Tactic: rw [List.pairwise_cons] at hl State Before: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x State After: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f = hd ∨ f ∈ tl hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x Tactic: rw [List.mem_cons] at h State Before: case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f = hd ∨ f ∈ tl hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x State After: case cons.inl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl✝ : List.Pairwise Disjoint l tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x x : α hx : x ∈ support f hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint f a') ∧ List.Pairwise Disjoint tl ⊢ ↑f x = ↑(List.prod (f :: tl)) x case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ↑f x = ↑(List.prod (hd :: tl)) x Tactic: rcases h with (rfl | h) State Before: case cons.inl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl✝ : List.Pairwise Disjoint l tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x x : α hx : x ∈ support f hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint f a') ∧ List.Pairwise Disjoint tl ⊢ ↑f x = ↑(List.prod (f :: tl)) x State After: no goals Tactic: rw [List.prod_cons, mul_apply, not_mem_support.mp ((disjoint_prod_right tl hl.left).mem_imp hx)] State Before: case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ↑f x = ↑(List.prod (hd :: tl)) x State After: case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ¬↑f x ∈ support hd Tactic: rw [List.prod_cons, mul_apply, ← IH h hl.right _ hx, eq_comm, ← not_mem_support] State Before: case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ¬↑f x ∈ support hd State After: case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ↑f x ∈ support f Tactic: refine' (hl.left _ h).symm.mem_imp _ State Before: case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ↑f x ∈ support f State After: no goals Tactic: simpa using hx
State Before: α : Type u_2 β : Type ?u.56609 γ : Type ?u.56612 δ : Type ?u.56615 ι : Type u_1 R : Type ?u.56621 R' : Type ?u.56624 m : MeasurableSpace α μ μ₁ μ₂ : Measure α s✝ s₁ s₂ t : Set α inst✝¹ : SemilatticeSup ι inst✝ : Countable ι s : ι → Set α hm : Monotone s ⊢ Tendsto (↑↑μ ∘ s) atTop (𝓝 (↑↑μ (⋃ (n : ι), s n))) State After: α : Type u_2 β : Type ?u.56609 γ : Type ?u.56612 δ : Type ?u.56615 ι : Type u_1 R : Type ?u.56621 R' : Type ?u.56624 m : MeasurableSpace α μ μ₁ μ₂ : Measure α s✝ s₁ s₂ t : Set α inst✝¹ : SemilatticeSup ι inst✝ : Countable ι s : ι → Set α hm : Monotone s ⊢ Tendsto (↑↑μ ∘ s) atTop (𝓝 (⨆ (i : ι), ↑↑μ (s i))) Tactic: rw [measure_iUnion_eq_iSup (directed_of_sup hm)] State Before: α : Type u_2 β : Type ?u.56609 γ : Type ?u.56612 δ : Type ?u.56615 ι : Type u_1 R : Type ?u.56621 R' : Type ?u.56624 m : MeasurableSpace α μ μ₁ μ₂ : Measure α s✝ s₁ s₂ t : Set α inst✝¹ : SemilatticeSup ι inst✝ : Countable ι s : ι → Set α hm : Monotone s ⊢ Tendsto (↑↑μ ∘ s) atTop (𝓝 (⨆ (i : ι), ↑↑μ (s i))) State After: no goals Tactic: exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
(* generated by Ott 0.32, locally-nameless lngen from: ../Qualitative.ott *) Require Import Metalib.Metatheory. Require Export Metalib.LibLNgen. Require Export Qual.grade_sig. Require Export Qual.sort_sig. (** syntax *) Definition tmvar : Set := var. (*r variables *) Definition qualityvar : Set := atom. (*r qualities *) Definition grade : Set := grade. Definition sort : Set := sort. Inductive tm : Set := (*r terms and types *) | a_TyUnit : tm (*r unit type *) | a_TmUnit : tm (*r unit term *) | a_Pi (psi:grade) (A:tm) (B:tm) (*r dependent function type *) | a_Abs (psi:grade) (A:tm) (a:tm) (*r function *) | a_App (a:tm) (psi:grade) (b:tm) (*r function application *) | a_Type (s:sort) (*r sort *) | a_Var_b (_:nat) (*r variable *) | a_Var_f (x:tmvar) (*r variable *) | a_Sum (A1:tm) (A2:tm) (*r sum type *) | a_Inj1 (a:tm) (*r injection into sum type *) | a_Inj2 (a:tm) (*r injection into sum type *) | a_Case (psi:grade) (a:tm) (b1:tm) (b2:tm) (*r case elimination of sum type *) | a_WSigma (psi:grade) (A:tm) (B:tm) (*r dependent tuple type *) | a_WPair (a:tm) (psi:grade) (b:tm) (*r tuple creation *) | a_LetPair (psi:grade) (a:tm) (b:tm) (*r tuple elimination *) | a_SSigma (psi:grade) (A:tm) (B:tm) | a_SPair (a:tm) (psi:grade) (b:tm) | a_Proj1 (psi:grade) (a:tm) | a_Proj2 (psi:grade) (a:tm). Definition econtext : Set := list ( atom * grade ). Definition context : Set := list ( atom * (grade * tm) ). (* EXPERIMENTAL *) (** auxiliary functions on the new list types *) (** library functions *) (** subrules *) (** arities *) (** opening up abstractions *) Fixpoint open_tm_wrt_tm_rec (k:nat) (a5:tm) (a_6:tm) {struct a_6}: tm := match a_6 with | a_TyUnit => a_TyUnit | a_TmUnit => a_TmUnit | (a_Pi psi A B) => a_Pi psi (open_tm_wrt_tm_rec k a5 A) (open_tm_wrt_tm_rec (S k) a5 B) | (a_Abs psi A a) => a_Abs psi (open_tm_wrt_tm_rec k a5 A) (open_tm_wrt_tm_rec (S k) a5 a) | (a_App a psi b) => a_App (open_tm_wrt_tm_rec k a5 a) psi (open_tm_wrt_tm_rec k a5 b) | (a_Type s) => a_Type s | (a_Var_b nat) => match lt_eq_lt_dec nat k with | inleft (left _) => a_Var_b nat | inleft (right _) => a5 | inright _ => a_Var_b (nat - 1) end | (a_Var_f x) => a_Var_f x | (a_Sum A1 A2) => a_Sum (open_tm_wrt_tm_rec k a5 A1) (open_tm_wrt_tm_rec k a5 A2) | (a_Inj1 a) => a_Inj1 (open_tm_wrt_tm_rec k a5 a) | (a_Inj2 a) => a_Inj2 (open_tm_wrt_tm_rec k a5 a) | (a_Case psi a b1 b2) => a_Case psi (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec k a5 b1) (open_tm_wrt_tm_rec k a5 b2) | (a_WSigma psi A B) => a_WSigma psi (open_tm_wrt_tm_rec k a5 A) (open_tm_wrt_tm_rec (S k) a5 B) | (a_WPair a psi b) => a_WPair (open_tm_wrt_tm_rec k a5 a) psi (open_tm_wrt_tm_rec k a5 b) | (a_LetPair psi a b) => a_LetPair psi (open_tm_wrt_tm_rec k a5 a) (open_tm_wrt_tm_rec (S k) a5 b) | (a_SSigma psi A B) => a_SSigma psi (open_tm_wrt_tm_rec k a5 A) (open_tm_wrt_tm_rec (S k) a5 B) | (a_SPair a psi b) => a_SPair (open_tm_wrt_tm_rec k a5 a) psi (open_tm_wrt_tm_rec k a5 b) | (a_Proj1 psi a) => a_Proj1 psi (open_tm_wrt_tm_rec k a5 a) | (a_Proj2 psi a) => a_Proj2 psi (open_tm_wrt_tm_rec k a5 a) end. Definition open_tm_wrt_tm a5 a_6 := open_tm_wrt_tm_rec 0 a_6 a5. (** terms are locally-closed pre-terms *) (** definitions *) (* defns LC_tm *) Inductive lc_tm : tm -> Prop := (* defn lc_tm *) | lc_a_TyUnit : (lc_tm a_TyUnit) | lc_a_TmUnit : (lc_tm a_TmUnit) | lc_a_Pi : forall (psi:grade) (A B:tm), (lc_tm A) -> ( forall x , lc_tm ( open_tm_wrt_tm B (a_Var_f x) ) ) -> (lc_tm (a_Pi psi A B)) | lc_a_Abs : forall (psi:grade) (A a:tm), (lc_tm A) -> ( forall x , lc_tm ( open_tm_wrt_tm a (a_Var_f x) ) ) -> (lc_tm (a_Abs psi A a)) | lc_a_App : forall (a:tm) (psi:grade) (b:tm), (lc_tm a) -> (lc_tm b) -> (lc_tm (a_App a psi b)) | lc_a_Type : forall (s:sort), (lc_tm (a_Type s)) | lc_a_Var_f : forall (x:tmvar), (lc_tm (a_Var_f x)) | lc_a_Sum : forall (A1 A2:tm), (lc_tm A1) -> (lc_tm A2) -> (lc_tm (a_Sum A1 A2)) | lc_a_Inj1 : forall (a:tm), (lc_tm a) -> (lc_tm (a_Inj1 a)) | lc_a_Inj2 : forall (a:tm), (lc_tm a) -> (lc_tm (a_Inj2 a)) | lc_a_Case : forall (psi:grade) (a b1 b2:tm), (lc_tm a) -> (lc_tm b1) -> (lc_tm b2) -> (lc_tm (a_Case psi a b1 b2)) | lc_a_WSigma : forall (psi:grade) (A B:tm), (lc_tm A) -> ( forall x , lc_tm ( open_tm_wrt_tm B (a_Var_f x) ) ) -> (lc_tm (a_WSigma psi A B)) | lc_a_WPair : forall (a:tm) (psi:grade) (b:tm), (lc_tm a) -> (lc_tm b) -> (lc_tm (a_WPair a psi b)) | lc_a_LetPair : forall (psi:grade) (a b:tm), (lc_tm a) -> ( forall x , lc_tm ( open_tm_wrt_tm b (a_Var_f x) ) ) -> (lc_tm (a_LetPair psi a b)) | lc_a_SSigma : forall (psi:grade) (A B:tm), (lc_tm A) -> ( forall x , lc_tm ( open_tm_wrt_tm B (a_Var_f x) ) ) -> (lc_tm (a_SSigma psi A B)) | lc_a_SPair : forall (a:tm) (psi:grade) (b:tm), (lc_tm a) -> (lc_tm b) -> (lc_tm (a_SPair a psi b)) | lc_a_Proj1 : forall (psi:grade) (a:tm), (lc_tm a) -> (lc_tm (a_Proj1 psi a)) | lc_a_Proj2 : forall (psi:grade) (a:tm), (lc_tm a) -> (lc_tm (a_Proj2 psi a)). (** free variables *) Fixpoint fv_tm_tm (a5:tm) : vars := match a5 with | a_TyUnit => {} | a_TmUnit => {} | (a_Pi psi A B) => (fv_tm_tm A) \u (fv_tm_tm B) | (a_Abs psi A a) => (fv_tm_tm A) \u (fv_tm_tm a) | (a_App a psi b) => (fv_tm_tm a) \u (fv_tm_tm b) | (a_Type s) => {} | (a_Var_b nat) => {} | (a_Var_f x) => {{x}} | (a_Sum A1 A2) => (fv_tm_tm A1) \u (fv_tm_tm A2) | (a_Inj1 a) => (fv_tm_tm a) | (a_Inj2 a) => (fv_tm_tm a) | (a_Case psi a b1 b2) => (fv_tm_tm a) \u (fv_tm_tm b1) \u (fv_tm_tm b2) | (a_WSigma psi A B) => (fv_tm_tm A) \u (fv_tm_tm B) | (a_WPair a psi b) => (fv_tm_tm a) \u (fv_tm_tm b) | (a_LetPair psi a b) => (fv_tm_tm a) \u (fv_tm_tm b) | (a_SSigma psi A B) => (fv_tm_tm A) \u (fv_tm_tm B) | (a_SPair a psi b) => (fv_tm_tm a) \u (fv_tm_tm b) | (a_Proj1 psi a) => (fv_tm_tm a) | (a_Proj2 psi a) => (fv_tm_tm a) end. (** substitutions *) Fixpoint subst_tm_tm (a5:tm) (x5:tmvar) (a_6:tm) {struct a_6} : tm := match a_6 with | a_TyUnit => a_TyUnit | a_TmUnit => a_TmUnit | (a_Pi psi A B) => a_Pi psi (subst_tm_tm a5 x5 A) (subst_tm_tm a5 x5 B) | (a_Abs psi A a) => a_Abs psi (subst_tm_tm a5 x5 A) (subst_tm_tm a5 x5 a) | (a_App a psi b) => a_App (subst_tm_tm a5 x5 a) psi (subst_tm_tm a5 x5 b) | (a_Type s) => a_Type s | (a_Var_b nat) => a_Var_b nat | (a_Var_f x) => (if eq_var x x5 then a5 else (a_Var_f x)) | (a_Sum A1 A2) => a_Sum (subst_tm_tm a5 x5 A1) (subst_tm_tm a5 x5 A2) | (a_Inj1 a) => a_Inj1 (subst_tm_tm a5 x5 a) | (a_Inj2 a) => a_Inj2 (subst_tm_tm a5 x5 a) | (a_Case psi a b1 b2) => a_Case psi (subst_tm_tm a5 x5 a) (subst_tm_tm a5 x5 b1) (subst_tm_tm a5 x5 b2) | (a_WSigma psi A B) => a_WSigma psi (subst_tm_tm a5 x5 A) (subst_tm_tm a5 x5 B) | (a_WPair a psi b) => a_WPair (subst_tm_tm a5 x5 a) psi (subst_tm_tm a5 x5 b) | (a_LetPair psi a b) => a_LetPair psi (subst_tm_tm a5 x5 a) (subst_tm_tm a5 x5 b) | (a_SSigma psi A B) => a_SSigma psi (subst_tm_tm a5 x5 A) (subst_tm_tm a5 x5 B) | (a_SPair a psi b) => a_SPair (subst_tm_tm a5 x5 a) psi (subst_tm_tm a5 x5 b) | (a_Proj1 psi a) => a_Proj1 psi (subst_tm_tm a5 x5 a) | (a_Proj2 psi a) => a_Proj2 psi (subst_tm_tm a5 x5 a) end. (* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *) Local Open Scope grade_scope. Definition labels : context -> econtext := map (fun '(u , s) => u). Definition subst_ctx (a : tm) (x:var) : context -> context := map (fun '(g, A) => (g, (subst_tm_tm a x A))). Definition join_ctx_l (psi : grade) : context -> context := map (fun '(g, A) => (psi * g, A)). Definition join_ctx_r (psi : grade) : context -> context := map (fun '(g, A) => (g * psi, A)). Definition meet_ctx_l (psi : grade) : context -> context := map (fun '(g, A) => (psi + g, A)). Definition meet_ctx_r (psi : grade) : context -> context := map (fun '(g, A) => (g + psi, A)). Fixpoint close_tm_wrt_tm_rec (n1 : nat) (x1 : tmvar) (a1 : tm) {struct a1} : tm := match a1 with | a_TyUnit => a_TyUnit | a_TmUnit => a_TmUnit | a_Pi psi1 A1 B1 => a_Pi psi1 (close_tm_wrt_tm_rec n1 x1 A1) (close_tm_wrt_tm_rec (S n1) x1 B1) | a_Abs psi1 A1 a2 => a_Abs psi1 (close_tm_wrt_tm_rec n1 x1 A1) (close_tm_wrt_tm_rec (S n1) x1 a2) | a_App a2 psi1 b1 => a_App (close_tm_wrt_tm_rec n1 x1 a2) psi1 (close_tm_wrt_tm_rec n1 x1 b1) | a_Type s => a_Type s | a_Var_f x2 => if (x1 == x2) then (a_Var_b n1) else (a_Var_f x2) | a_Var_b n2 => if (lt_ge_dec n2 n1) then (a_Var_b n2) else (a_Var_b (S n2)) | a_Sum A1 A2 => a_Sum (close_tm_wrt_tm_rec n1 x1 A1) (close_tm_wrt_tm_rec n1 x1 A2) | a_Inj1 a2 => a_Inj1 (close_tm_wrt_tm_rec n1 x1 a2) | a_Inj2 a2 => a_Inj2 (close_tm_wrt_tm_rec n1 x1 a2) | a_Case psi a2 b1 b2 => a_Case psi (close_tm_wrt_tm_rec n1 x1 a2) (close_tm_wrt_tm_rec n1 x1 b1) (close_tm_wrt_tm_rec n1 x1 b2) | a_WSigma psi1 A1 B1 => a_WSigma psi1 (close_tm_wrt_tm_rec n1 x1 A1) (close_tm_wrt_tm_rec (S n1) x1 B1) | a_WPair a2 psi1 b1 => a_WPair (close_tm_wrt_tm_rec n1 x1 a2) psi1 (close_tm_wrt_tm_rec n1 x1 b1) | a_LetPair psi1 a2 b1 => a_LetPair psi1 (close_tm_wrt_tm_rec n1 x1 a2) (close_tm_wrt_tm_rec (S n1) x1 b1) | a_SSigma psi1 A1 B1 => a_SSigma psi1 (close_tm_wrt_tm_rec n1 x1 A1) (close_tm_wrt_tm_rec (S n1) x1 B1) | a_SPair a2 psi1 b1 => a_SPair (close_tm_wrt_tm_rec n1 x1 a2) psi1 (close_tm_wrt_tm_rec n1 x1 b1) | a_Proj1 psi1 a2 => a_Proj1 psi1 (close_tm_wrt_tm_rec n1 x1 a2) | a_Proj2 psi1 a2 => a_Proj2 psi1 (close_tm_wrt_tm_rec n1 x1 a2) end. Definition close_tm_wrt_tm x1 a1 := close_tm_wrt_tm_rec 0 x1 a1. (** definitions *) (* defns JOp *) Inductive Step : tm -> tm -> Prop := (* defn Step *) | S_AppCong : forall (a:tm) (psi:grade) (b a':tm), lc_tm b -> Step a a' -> Step (a_App a psi b) (a_App a' psi b) | S_Beta : forall (psi:grade) (A a b:tm), lc_tm A -> lc_tm (a_Abs psi A a) -> lc_tm b -> Step (a_App ( (a_Abs psi A a) ) psi b) (open_tm_wrt_tm a b ) | S_CaseCong : forall (psi:grade) (a b1 b2 a':tm), lc_tm b1 -> lc_tm b2 -> Step a a' -> Step (a_Case psi a b1 b2) (a_Case psi a' b1 b2) | S_Case1Beta : forall (psi:grade) (a b1 b2:tm), lc_tm b2 -> lc_tm b1 -> lc_tm a -> Step (a_Case psi ( (a_Inj1 a) ) b1 b2) (a_App b1 psi a) | S_Case2Beta : forall (psi:grade) (a b1 b2:tm), lc_tm b1 -> lc_tm b2 -> lc_tm a -> Step (a_Case psi ( (a_Inj2 a) ) b1 b2) (a_App b2 psi a) | S_Proj1Cong : forall (psi:grade) (a a':tm), Step a a' -> Step (a_Proj1 psi a) (a_Proj1 psi a') | S_Proj2Cong : forall (psi:grade) (a a':tm), Step a a' -> Step (a_Proj2 psi a) (a_Proj2 psi a') | S_Proj1Beta : forall (psi:grade) (a1 a2:tm), lc_tm a2 -> lc_tm a1 -> Step (a_Proj1 psi (a_SPair a1 psi a2)) a1 | S_Proj2Beta : forall (psi:grade) (a1 a2:tm), lc_tm a1 -> lc_tm a2 -> Step (a_Proj2 psi (a_SPair a1 psi a2)) a2 | S_LetPairCong : forall (psi:grade) (a b a':tm), lc_tm (a_LetPair psi a b) -> Step a a' -> Step (a_LetPair psi a b) (a_LetPair psi a' b) | S_LetPairBeta : forall (psi:grade) (a1 a2 b:tm), lc_tm (a_LetPair psi (a_WPair a1 psi a2) b) -> lc_tm a1 -> lc_tm a2 -> Step (a_LetPair psi (a_WPair a1 psi a2) b) (a_App (open_tm_wrt_tm b a1 ) q_Bot a2). (* defns Jsub *) Inductive P_sub : econtext -> econtext -> Prop := (* defn P_sub *) | P_Empty : P_sub nil nil | P_Cons : forall (P1:econtext) (x:tmvar) (psi1:grade) (P2:econtext) (psi2:grade), ( psi1 <= psi2 ) -> P_sub P1 P2 -> ~ AtomSetImpl.In x (dom P1 ) -> ~ AtomSetImpl.In x (dom P2 ) -> P_sub ( ( x ~ psi1 ) ++ P1 ) ( ( x ~ psi2 ) ++ P2 ) . (* defns Wsub *) Inductive ctx_sub : context -> context -> Prop := (* defn ctx_sub *) | CS_Empty : ctx_sub nil nil | CS_ConsTm : forall (W1:context) (x:tmvar) (psi1:grade) (A:tm) (W2:context) (psi2:grade), ( psi1 <= psi2 ) -> ctx_sub W1 W2 -> ~ AtomSetImpl.In x (dom W1 ) -> ~ AtomSetImpl.In x (dom W2 ) -> True -> ctx_sub ( ( x ~( psi1 , A )) ++ W1 ) ( ( x ~( psi2 , A )) ++ W2 ) . (* defns JGrade *) Inductive CGrade : econtext -> grade -> grade -> tm -> Prop := (* defn CGrade *) | CG_Leq : forall (P:econtext) (phi phi0:grade) (a:tm), ( phi0 <= phi ) -> Grade P phi a -> CGrade P phi phi0 a | CG_Nleq : forall (P:econtext) (phi phi0:grade) (a:tm), lc_tm a -> not ( ( ( phi0 <= phi ) ) ) -> uniq P -> CGrade P phi phi0 a with Grade : econtext -> grade -> tm -> Prop := (* defn Grade *) | G_Type : forall (P:econtext) (psi:grade) (s:sort), uniq P -> Grade P psi (a_Type s) | G_Var : forall (P:econtext) (psi:grade) (x:tmvar) (psi0:grade), uniq P -> ( psi0 <= psi ) -> binds x psi0 P -> Grade P psi (a_Var_f x) | G_Pi : forall (L:vars) (P:econtext) (psi psi0:grade) (A B:tm), Grade P psi A -> ( forall x , x \notin L -> Grade ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B (a_Var_f x) ) ) -> Grade P psi (a_Pi psi0 A B) | G_Abs : forall (L:vars) (P:econtext) (psi psi0:grade) (A b:tm), ( forall x , x \notin L -> Grade ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b (a_Var_f x) ) ) -> CGrade P psi q_Top A -> Grade P psi (a_Abs psi0 A b) | G_App : forall (P:econtext) (psi:grade) (b:tm) (psi0:grade) (a:tm), Grade P psi b -> CGrade P psi psi0 a -> Grade P psi (a_App b psi0 a) | G_WSigma : forall (L:vars) (P:econtext) (psi psi0:grade) (A B:tm), Grade P psi A -> ( forall x , x \notin L -> Grade ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B (a_Var_f x) ) ) -> Grade P psi (a_WSigma psi0 A B) | G_WPair : forall (P:econtext) (psi:grade) (a:tm) (psi0:grade) (b:tm), CGrade P psi psi0 a -> Grade P psi b -> Grade P psi (a_WPair a psi0 b) | G_LetPair : forall (L:vars) (P:econtext) (psi psi0:grade) (a c:tm), Grade P psi a -> ( forall x , x \notin L -> Grade ( ( ( x ~ psi0 ) ++ P ) ) psi ( open_tm_wrt_tm c (a_Var_f x) ) ) -> Grade P psi (a_LetPair psi0 a c) | G_SSigma : forall (L:vars) (P:econtext) (psi psi0:grade) (A B:tm), Grade P psi A -> ( forall x , x \notin L -> Grade ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B (a_Var_f x) ) ) -> Grade P psi (a_SSigma psi0 A B) | G_SPair : forall (P:econtext) (psi:grade) (a:tm) (psi0:grade) (b:tm), CGrade P psi psi0 a -> Grade P psi b -> Grade P psi (a_SPair a psi0 b) | G_Proj1 : forall (P:econtext) (psi psi0:grade) (a:tm), Grade P psi a -> ( psi0 <= psi ) -> Grade P psi (a_Proj1 psi0 a) | G_Proj2 : forall (P:econtext) (psi psi0:grade) (a:tm), Grade P psi a -> Grade P psi (a_Proj2 psi0 a) | G_Sum : forall (P:econtext) (psi:grade) (A B:tm), Grade P psi A -> Grade P psi B -> Grade P psi (a_Sum A B) | G_Inj1 : forall (P:econtext) (psi:grade) (a1:tm), Grade P psi a1 -> Grade P psi (a_Inj1 a1) | G_Inj2 : forall (P:econtext) (psi:grade) (a2:tm), Grade P psi a2 -> Grade P psi (a_Inj2 a2) | G_Case : forall (P:econtext) (psi psi0:grade) (a b1 b2:tm), Grade P psi a -> Grade P psi b1 -> Grade P psi b2 -> ( psi0 <= psi ) -> Grade P psi (a_Case psi0 a b1 b2) | G_TyUnit : forall (P:econtext) (psi:grade), uniq P -> Grade P psi a_TyUnit | G_TmUnit : forall (P:econtext) (psi:grade), uniq P -> Grade P psi a_TmUnit. (* defns JGEq *) Inductive CEq : econtext -> grade -> grade -> tm -> tm -> Prop := (* defn CEq *) | CEq_Leq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), ( psi0 <= psi ) -> GEq P psi a1 a2 -> CEq P psi psi0 a1 a2 | CEq_Nleq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), lc_tm a1 -> lc_tm a2 -> not ( ( ( psi0 <= psi ) ) ) -> uniq P -> CEq P psi psi0 a1 a2 with GEq : econtext -> grade -> tm -> tm -> Prop := (* defn GEq *) | GEq_Var : forall (P:econtext) (psi:grade) (x:tmvar) (psi0:grade), uniq P -> binds x psi0 P -> ( psi0 <= psi ) -> GEq P psi (a_Var_f x) (a_Var_f x) | GEq_Type : forall (P:econtext) (psi:grade) (s:sort), uniq P -> GEq P psi (a_Type s) (a_Type s) | GEq_Pi : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 B1 A2 B2:tm), GEq P psi A1 A2 -> ( forall x , x \notin L -> GEq ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> GEq P psi (a_Pi psi0 A1 B1) (a_Pi psi0 A2 B2) | GEq_Abs : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 b1 A2 b2:tm), ( forall x , x \notin L -> GEq ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> CEq P psi q_Top A1 A2 -> GEq P psi (a_Abs psi0 A1 b1) (a_Abs psi0 A2 b2) | GEq_App : forall (P:econtext) (psi:grade) (b1:tm) (psi0:grade) (a1 b2 a2:tm), GEq P psi b1 b2 -> CEq P psi psi0 a1 a2 -> GEq P psi (a_App b1 psi0 a1) (a_App b2 psi0 a2) | GEq_WSigma : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 B1 A2 B2:tm), GEq P psi A1 A2 -> ( forall x , x \notin L -> GEq ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> GEq P psi (a_WSigma psi0 A1 B1) (a_WSigma psi0 A2 B2) | GEq_WPair : forall (P:econtext) (psi:grade) (a1:tm) (psi0:grade) (b1 a2 b2:tm), CEq P psi psi0 a1 a2 -> GEq P psi b1 b2 -> GEq P psi (a_WPair a1 psi0 b1) (a_WPair a2 psi0 b2) | GEq_LetPair : forall (L:vars) (P:econtext) (psi psi0:grade) (a1 b1 a2 b2:tm), GEq P psi a1 a2 -> ( forall x , x \notin L -> GEq ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> GEq P psi (a_LetPair psi0 a1 b1) (a_LetPair psi0 a2 b2) | GEq_SSigma : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 B1 A2 B2:tm), GEq P psi A1 A2 -> ( forall x , x \notin L -> GEq ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> GEq P psi (a_SSigma psi0 A1 B1) (a_SSigma psi0 A2 B2) | GEq_SPair : forall (P:econtext) (psi:grade) (a1:tm) (psi0:grade) (b1 a2 b2:tm), CEq P psi psi0 a1 a2 -> GEq P psi b1 b2 -> GEq P psi (a_SPair a1 psi0 b1) (a_SPair a2 psi0 b2) | GEq_Proj1 : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), GEq P psi a1 a2 -> ( psi0 <= psi ) -> GEq P psi (a_Proj1 psi0 a1) (a_Proj1 psi0 a2) | GEq_Proj2 : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), GEq P psi a1 a2 -> GEq P psi (a_Proj2 psi0 a1) (a_Proj2 psi0 a2) | GEq_Sum : forall (P:econtext) (psi:grade) (A1 A2 A1' A2':tm), GEq P psi A1 A1' -> GEq P psi A2 A2' -> GEq P psi (a_Sum A1 A2) (a_Sum A1' A2') | GEq_Inj1 : forall (P:econtext) (psi:grade) (a1 a1':tm), GEq P psi a1 a1' -> GEq P psi (a_Inj1 a1) (a_Inj1 a1') | GEq_Inj2 : forall (P:econtext) (psi:grade) (a2 a2':tm), GEq P psi a2 a2' -> GEq P psi (a_Inj2 a2) (a_Inj2 a2') | GEq_Case : forall (P:econtext) (psi psi0:grade) (a b1 b2 a' b1' b2':tm), GEq P psi a a' -> GEq P psi b1 b1' -> GEq P psi b2 b2' -> ( psi0 <= psi ) -> GEq P psi (a_Case psi0 a b1 b2) (a_Case psi0 a' b1' b2') | GEq_TyUnit : forall (P:econtext) (psi:grade), uniq P -> GEq P psi a_TyUnit a_TyUnit | GEq_TmUnit : forall (P:econtext) (psi:grade), uniq P -> GEq P psi a_TmUnit a_TmUnit. (* defns JUnTyDefEq *) Inductive CDefEq : econtext -> grade -> grade -> tm -> tm -> Prop := (* defn CDefEq *) | CDefEq_Leq : forall (P:econtext) (phi phi0:grade) (a b:tm), ( phi0 <= phi ) -> DefEq P phi a b -> CDefEq P phi phi0 a b | CDefEq_Nleq : forall (P:econtext) (phi phi0:grade) (a b:tm), lc_tm a -> lc_tm b -> not ( ( ( phi0 <= phi ) ) ) -> uniq P -> CDefEq P phi phi0 a b with DefEq : econtext -> grade -> tm -> tm -> Prop := (* defn DefEq *) | Eq_Refl : forall (P:econtext) (psi:grade) (a:tm), Grade P psi a -> DefEq P psi a a | Eq_Trans : forall (P:econtext) (psi:grade) (a c b:tm), DefEq P psi a b -> DefEq P psi b c -> DefEq P psi a c | Eq_Sym : forall (P:econtext) (psi:grade) (b a:tm), DefEq P psi a b -> DefEq P psi b a | Eq_Beta : forall (P:econtext) (psi:grade) (a b:tm), Grade P psi a -> Step a b -> Grade P psi b -> DefEq P psi a b | Eq_Pi : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 B1 A2 B2:tm), DefEq P psi A1 A2 -> ( forall x , x \notin L -> DefEq ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> DefEq P psi (a_Pi psi0 A1 B1) (a_Pi psi0 A2 B2) | Eq_Abs : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 b1 A2 b2:tm), CDefEq P psi q_Top A1 A2 -> ( forall x , x \notin L -> DefEq ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> DefEq P psi (a_Abs psi0 A1 b1) (a_Abs psi0 A2 b2) | Eq_App : forall (P:econtext) (psi:grade) (b1:tm) (psi0:grade) (a1 b2 a2:tm), DefEq P psi b1 b2 -> CDefEq P psi psi0 a1 a2 -> DefEq P psi (a_App b1 psi0 a1) (a_App b2 psi0 a2) | Eq_PiFst : forall (P:econtext) (psi:grade) (A1 A2:tm) (psi0:grade) (B1 B2:tm), DefEq P psi (a_Pi psi0 A1 B1) (a_Pi psi0 A2 B2) -> DefEq P psi A1 A2 | Eq_PiSnd : forall (P:econtext) (psi:grade) (B1 a1 B2 a2:tm) (psi0:grade) (A1 A2:tm), DefEq P psi (a_Pi psi0 A1 B1) (a_Pi psi0 A2 B2) -> DefEq P psi a1 a2 -> DefEq P psi (open_tm_wrt_tm B1 a1 ) (open_tm_wrt_tm B2 a2 ) | Eq_WSigma : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 B1 A2 B2:tm), DefEq P psi A1 A2 -> ( forall x , x \notin L -> DefEq ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> DefEq P psi (a_WSigma psi0 A1 B1) (a_WSigma psi0 A2 B2) | Eq_WSigmaFst : forall (P:econtext) (psi:grade) (A1 A2:tm) (psi0:grade) (B1 B2:tm), DefEq P psi (a_WSigma psi0 A1 B1) (a_WSigma psi0 A2 B2) -> DefEq P psi A1 A2 | Eq_WSigmaSnd : forall (P:econtext) (psi:grade) (B1 a B2:tm) (psi0:grade) (A1 A2:tm), DefEq P psi (a_WSigma psi0 A1 B1) (a_WSigma psi0 A2 B2) -> Grade P psi a -> DefEq P psi (open_tm_wrt_tm B1 a ) (open_tm_wrt_tm B2 a ) | Eq_WPair : forall (P:econtext) (psi:grade) (a1:tm) (psi0:grade) (b1 a2 b2:tm), CDefEq P psi psi0 a1 a2 -> DefEq P psi b1 b2 -> DefEq P psi (a_WPair a1 psi0 b1) (a_WPair a2 psi0 b2) | Eq_LetPair : forall (L:vars) (P:econtext) (psi psi0:grade) (a1 b1 a2 b2:tm), DefEq P psi a1 a2 -> ( forall x , x \notin L -> DefEq ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> DefEq P psi (a_LetPair psi0 a1 b1) (a_LetPair psi0 a2 b2) | Eq_SSigma : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 B1 A2 B2:tm), DefEq P psi A1 A2 -> ( forall x , x \notin L -> DefEq ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> DefEq P psi (a_SSigma psi0 A1 B1) (a_SSigma psi0 A2 B2) | Eq_SSigmaFst : forall (P:econtext) (psi:grade) (A1 A2:tm) (psi0:grade) (B1 B2:tm), DefEq P psi (a_SSigma psi0 A1 B1) (a_SSigma psi0 A2 B2) -> DefEq P psi A1 A2 | Eq_SSigmaSnd : forall (P:econtext) (psi:grade) (B1 a1 B2 a2:tm) (psi0:grade) (A1 A2:tm), DefEq P psi (a_SSigma psi0 A1 B1) (a_SSigma psi0 A2 B2) -> DefEq P psi a1 a2 -> DefEq P psi (open_tm_wrt_tm B1 a1 ) (open_tm_wrt_tm B2 a2 ) | Eq_SPair : forall (P:econtext) (psi:grade) (a1:tm) (psi0:grade) (b1 a2 b2:tm), CDefEq P psi psi0 a1 a2 -> DefEq P psi b1 b2 -> DefEq P psi (a_SPair a1 psi0 b1) (a_SPair a2 psi0 b2) | Eq_Proj1 : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), DefEq P psi a1 a2 -> ( psi0 <= psi ) -> DefEq P psi (a_Proj1 psi0 a1) (a_Proj1 psi0 a2) | Eq_Proj2 : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), DefEq P psi a1 a2 -> DefEq P psi (a_Proj2 psi0 a1) (a_Proj2 psi0 a2) | Eq_Sum : forall (P:econtext) (psi:grade) (A1 A2 A1' A2':tm), DefEq P psi A1 A1' -> DefEq P psi A2 A2' -> DefEq P psi (a_Sum A1 A2) (a_Sum A1' A2') | Eq_SumFst : forall (P:econtext) (psi:grade) (A1 A1' A2 A2':tm), DefEq P psi (a_Sum A1 A2) (a_Sum A1' A2') -> DefEq P psi A1 A1' | Eq_SumSnd : forall (P:econtext) (psi:grade) (A2 A2' A1 A1':tm), DefEq P psi (a_Sum A1 A2) (a_Sum A1' A2') -> DefEq P psi A2 A2' | Eq_Inj1 : forall (P:econtext) (psi:grade) (a1 a1':tm), DefEq P psi a1 a1' -> DefEq P psi (a_Inj1 a1) (a_Inj1 a1') | Eq_Inj2 : forall (P:econtext) (psi:grade) (a2 a2':tm), DefEq P psi a2 a2' -> DefEq P psi (a_Inj2 a2) (a_Inj2 a2') | Eq_Case : forall (P:econtext) (psi psi0:grade) (a b1 b2 a' b1' b2':tm), DefEq P psi a a' -> DefEq P psi b1 b1' -> DefEq P psi b2 b2' -> ( psi0 <= psi ) -> DefEq P psi (a_Case psi0 a b1 b2) (a_Case psi0 a' b1' b2') | Eq_TyUnit : forall (P:econtext) (psi:grade), uniq P -> DefEq P psi a_TyUnit a_TyUnit | Eq_TmUnit : forall (P:econtext) (psi:grade), uniq P -> DefEq P psi a_TmUnit a_TmUnit | Eq_SubstIrrel : forall (L:vars) (P:econtext) (phi:grade) (b1 a1 b2 a2:tm) (psi:grade), lc_tm a1 -> lc_tm a2 -> True -> True -> ( forall x , x \notin L -> DefEq ( ( x ~ psi ) ++ P ) phi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> not ( ( ( psi <= phi ) ) ) -> DefEq P phi (open_tm_wrt_tm b1 a1 ) (open_tm_wrt_tm b2 a2 ) . (* defns JTyping *) Inductive Typing : context -> grade -> tm -> tm -> Prop := (* defn Typing *) | T_Type : forall (W:context) (psi:grade) (s1 s2:sort), uniq W -> ( psi <= q_C ) -> axiom s1 s2 -> Typing W psi (a_Type s1) (a_Type s2) | T_Conv : forall (W:context) (psi:grade) (a B A:tm) (s:sort), Typing W psi a A -> DefEq (labels (meet_ctx_l q_C W ) ) q_C A B -> Typing (meet_ctx_l q_C W ) q_C B (a_Type s) -> Typing W psi a B | T_Var : forall (W:context) (psi:grade) (x:tmvar) (A:tm) (psi0:grade), uniq W -> ( psi0 <= psi ) -> binds x ( psi0 , A ) W -> ( psi <= q_C ) -> Typing W psi (a_Var_f x) A | T_Pi : forall (L:vars) (W:context) (psi psi0:grade) (A B:tm) (s3 s1 s2:sort), Typing W psi A (a_Type s1) -> ( forall x , x \notin L -> Typing ( ( x ~( psi , A )) ++ W ) psi ( open_tm_wrt_tm B (a_Var_f x) ) (a_Type s2) ) -> rule_pi s1 s2 s3 -> Typing W psi (a_Pi psi0 A B) (a_Type s3) | T_Abs : forall (L:vars) (W:context) (psi psi0:grade) (A b B:tm) (s:sort), ( forall x , x \notin L -> Typing ( ( x ~( (q_join psi0 psi ) , A )) ++ W ) psi ( open_tm_wrt_tm b (a_Var_f x) ) ( open_tm_wrt_tm B (a_Var_f x) ) ) -> Typing (meet_ctx_l q_C W ) q_C ( (a_Pi psi0 A B) ) (a_Type s) -> Typing W psi (a_Abs psi0 A b) (a_Pi psi0 A B) | T_App : forall (W:context) (psi:grade) (b:tm) (psi0:grade) (a B A:tm), Typing W psi b (a_Pi psi0 A B) -> Typing W (q_join psi0 psi ) a A -> ( psi0 <= q_C ) -> Typing W psi (a_App b psi0 a) (open_tm_wrt_tm B a ) | T_AppIrrel : forall (W:context) (psi:grade) (b:tm) (psi0:grade) (a B A:tm), Typing W psi b (a_Pi psi0 A B) -> Typing (meet_ctx_l q_C W ) q_C a A -> ( q_C < psi0 ) -> Typing W psi (a_App b psi0 a) (open_tm_wrt_tm B a ) | T_WSigma : forall (L:vars) (W:context) (psi psi0:grade) (A B:tm) (s3 s1 s2:sort), Typing W psi A (a_Type s1) -> ( forall x , x \notin L -> Typing ( ( x ~( psi , A )) ++ W ) psi ( open_tm_wrt_tm B (a_Var_f x) ) (a_Type s2) ) -> rule_sig s1 s2 s3 -> Typing W psi (a_WSigma psi0 A B) (a_Type s3) | T_WPair : forall (W:context) (psi:grade) (a:tm) (psi0:grade) (b A B:tm) (s:sort), Typing (meet_ctx_l q_C W ) q_C ( (a_WSigma psi0 A B) ) (a_Type s) -> Typing W (q_join psi0 psi ) a A -> Typing W psi b (open_tm_wrt_tm B a ) -> ( psi0 <= q_C ) -> Typing W psi (a_WPair a psi0 b) (a_WSigma psi0 A B) | T_WPairIrrel : forall (W:context) (psi:grade) (a:tm) (psi0:grade) (b A B:tm) (s:sort), Typing (meet_ctx_l q_C W ) q_C ( (a_WSigma psi0 A B) ) (a_Type s) -> Typing (meet_ctx_l q_C W ) q_C a A -> ( q_C < psi0 ) -> Typing W psi b (open_tm_wrt_tm B a ) -> Typing W psi (a_WPair a psi0 b) (a_WSigma psi0 A B) | T_LetPair : forall (L:vars) (W:context) (psi psi0:grade) (a c C B A:tm) (s:sort), ( forall x , x \notin L -> Typing ((x ~ (q_C, a_WSigma psi0 A B)) ++ meet_ctx_l q_C W) q_C (open_tm_wrt_tm C (a_Var_f x)) (a_Type s)) -> Typing W psi a (a_WSigma psi0 A B) -> ( forall x , x \notin L -> forall y, y \notin L \u {{x}} -> Typing ((x ~ ((q_join psi0 psi), A)) ++ W) psi (open_tm_wrt_tm c (a_Var_f x)) (a_Pi q_Bot (open_tm_wrt_tm B (a_Var_f x)) (close_tm_wrt_tm y (open_tm_wrt_tm C (a_WPair (a_Var_f x) psi0 (a_Var_f y)))))) -> (Typing W psi (a_LetPair psi0 a c) (open_tm_wrt_tm C a)) | T_SSigma : forall (L:vars) (W:context) (psi psi0:grade) (A B:tm) (s3 s1 s2:sort), Typing W psi A (a_Type s1) -> ( forall x , x \notin L -> Typing ( ( x ~( psi , A )) ++ W ) psi ( open_tm_wrt_tm B (a_Var_f x) ) (a_Type s2) ) -> rule_sig s1 s2 s3 -> Typing W psi (a_SSigma psi0 A B) (a_Type s3) | T_SPair : forall (W:context) (psi:grade) (a:tm) (psi0:grade) (b A B:tm) (s:sort), Typing (meet_ctx_l q_C W ) q_C (a_SSigma psi0 A B) (a_Type s) -> Typing W (q_join psi0 psi ) a A -> Typing W psi b (open_tm_wrt_tm B a ) -> ( psi0 <= q_C ) -> Typing W psi (a_SPair a psi0 b) (a_SSigma psi0 A B) | T_Proj1 : forall (W:context) (psi psi0:grade) (a A B:tm), Typing W psi a (a_SSigma psi0 A B) -> ( psi0 <= psi ) -> Typing W psi (a_Proj1 psi0 a) A | T_Proj2 : forall (W:context) (psi psi0:grade) (a B A:tm), Typing W psi a (a_SSigma psi0 A B) -> ( psi0 <= q_C ) -> Typing W psi (a_Proj2 psi0 a) (open_tm_wrt_tm B (a_Proj1 psi0 a) ) | T_Sum : forall (W:context) (psi:grade) (A B:tm) (s:sort), Typing W psi A (a_Type s) -> Typing W psi B (a_Type s) -> Typing W psi (a_Sum A B) (a_Type s) | T_Inj1 : forall (W:context) (psi:grade) (a1 A1 A2:tm) (s:sort), Typing W psi a1 A1 -> Typing (meet_ctx_l q_C W ) q_C (a_Sum A1 A2) (a_Type s) -> Typing W psi (a_Inj1 a1) (a_Sum A1 A2) | T_Inj2 : forall (W:context) (psi:grade) (a2 A1 A2:tm) (s:sort), Typing W psi a2 A2 -> Typing (meet_ctx_l q_C W ) q_C (a_Sum A1 A2) (a_Type s) -> Typing W psi (a_Inj2 a2) (a_Sum A1 A2) | T_Case : forall (L:vars) (W:context) (psi psi0:grade) (a b1 b2 B:tm) (A1 A2 B1 B2:tm) s, ( forall z, z \notin L -> Typing ( ( ( z ~( q_C , (a_Sum A1 A2) )) ++ ( (meet_ctx_l q_C W ) ) ) ) q_C (open_tm_wrt_tm B (a_Var_f z)) (a_Type s)) -> Typing W psi a (a_Sum A1 A2) -> ( forall x , x \notin L -> ( open_tm_wrt_tm B1 (a_Var_f x) ) = (open_tm_wrt_tm B (a_Inj1 (a_Var_f x)) ) ) -> ( forall y , y \notin L -> ( open_tm_wrt_tm B2 (a_Var_f y) ) = (open_tm_wrt_tm B (a_Inj2 (a_Var_f y)) ) ) -> Typing W psi b1 (a_Pi psi0 A1 B1) -> Typing W psi b2 (a_Pi psi0 A2 B2) -> ( psi0 <= psi ) -> Typing W psi (a_Case psi0 a b1 b2) (open_tm_wrt_tm B a ) | T_TmUnit : forall (W:context) (psi:grade) (s:sort), uniq W -> ( psi <= q_C ) -> Typing W psi a_TyUnit (a_Type s) | T_TyUnit : forall (W:context) (psi:grade), uniq W -> ( psi <= q_C ) -> Typing W psi a_TmUnit a_TyUnit. (* defns JCTyping *) Inductive CTyping : context -> grade -> tm -> tm -> Prop := (* defn CTyping *) | CT_Leq : forall (W:context) (psi:grade) (a A:tm), Typing W psi a A -> ( psi <= q_C ) -> CTyping W psi a A | CT_Top : forall (W:context) (psi:grade) (a A:tm), Typing (meet_ctx_l q_C W ) q_C a A -> ( q_C < psi ) -> CTyping W psi a A. (* defns JCtx *) Inductive Ctx : context -> Prop := (* defn Ctx *) | Ctx_Empty : Ctx nil | Ctx_Cons : forall (W:context) (x:tmvar) (psi0:grade) (A:tm) (s:sort), Ctx W -> Typing (meet_ctx_l q_C W ) q_C A (a_Type s) -> ~ AtomSetImpl.In x (dom W ) -> Ctx ( ( x ~( psi0 , A )) ++ W ) . (* defns JValueType *) Inductive ValueType : tm -> Prop := (* defn ValueType *) | ValueType_Type : forall (s:sort), ValueType (a_Type s) | ValueType_Unit : ValueType a_TyUnit | ValueType_Pi : forall (psi:grade) (A B:tm), lc_tm A -> lc_tm (a_Pi psi A B) -> ValueType (a_Pi psi A B) | ValueType_WSigma : forall (psi:grade) (A B:tm), lc_tm A -> lc_tm (a_WSigma psi A B) -> ValueType (a_WSigma psi A B) | ValueType_SSigma : forall (psi:grade) (A B:tm), lc_tm A -> lc_tm (a_SSigma psi A B) -> ValueType (a_SSigma psi A B) | ValueType_Sum : forall (A B:tm), lc_tm A -> lc_tm B -> ValueType (a_Sum A B). (* defns JConsistent *) Inductive Consistent : tm -> tm -> Prop := (* defn Consistent *) | Consistent_a_Type : forall (s:sort), Consistent (a_Type s) (a_Type s) | Consistent_a_Unit : Consistent a_TyUnit a_TyUnit | Consistent_a_Pi : forall (psi:grade) (A B A' B':tm), lc_tm A -> lc_tm (a_Pi psi A B) -> lc_tm A' -> lc_tm (a_Pi psi A' B') -> Consistent ( (a_Pi psi A B) ) ( (a_Pi psi A' B') ) | Consistent_a_WSigma : forall (psi:grade) (A B A' B':tm), lc_tm A -> lc_tm (a_WSigma psi A B) -> lc_tm A' -> lc_tm (a_WSigma psi A' B') -> Consistent ( (a_WSigma psi A B) ) ( (a_WSigma psi A' B') ) | Consistent_a_SSigma : forall (psi:grade) (A B A' B':tm), lc_tm A -> lc_tm (a_SSigma psi A B) -> lc_tm A' -> lc_tm (a_SSigma psi A' B') -> Consistent (a_SSigma psi A B) (a_SSigma psi A' B') | Consistent_a_Sum : forall (A B A' B':tm), lc_tm A -> lc_tm B -> lc_tm A' -> lc_tm B' -> Consistent ( (a_Sum A B) ) ( (a_Sum A' B') ) | Consistent_a_Step_R : forall (a b:tm), lc_tm b -> not ( ValueType a ) -> Consistent a b | Consistent_a_Step_L : forall (a b:tm), lc_tm a -> not ( ValueType b ) -> Consistent a b. (* defns JPar *) Inductive CPar : econtext -> grade -> grade -> tm -> tm -> Prop := (* defn CPar *) | CPar_Leq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), ( psi0 <= psi ) -> Par P psi a1 a2 -> CPar P psi psi0 a1 a2 | CPar_Nleq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), lc_tm a1 -> lc_tm a2 -> not ( ( ( psi0 <= psi ) ) ) -> uniq P -> CPar P psi psi0 a1 a2 with Par : econtext -> grade -> tm -> tm -> Prop := (* defn Par *) | Par_Refl : forall (P:econtext) (psi:grade) (a:tm), Grade P psi a -> Par P psi a a | Par_Pi : forall (L:vars) (P:econtext) (psi psi1:grade) (A1 B1 A2 B2:tm), Par P psi A1 A2 -> ( forall x , x \notin L -> Par ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> Par P psi (a_Pi psi1 A1 B1) (a_Pi psi1 A2 B2) | Par_AppBeta : forall (P:econtext) (psi:grade) (a:tm) (psi0:grade) (b a' b' A:tm), Par P psi a ( (a_Abs psi0 A a') ) -> CPar P psi psi0 b b' -> Par P psi (a_App a psi0 b) (open_tm_wrt_tm a' b' ) | Par_App : forall (P:econtext) (psi:grade) (a:tm) (psi0:grade) (b a' b':tm), Par P psi a a' -> CPar P psi psi0 b b' -> Par P psi (a_App a psi0 b) (a_App a' psi0 b') | Par_Abs : forall (L:vars) (P:econtext) (psi psi0:grade) (A1 b1 A2 b2:tm), ( forall x , x \notin L -> Par ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> CPar P psi q_Top A1 A2 -> Par P psi (a_Abs psi0 A1 b1) (a_Abs psi0 A2 b2) | Par_WSigma : forall (L:vars) (P:econtext) (psi psi1:grade) (A1 B1 A2 B2:tm), Par P psi A1 A2 -> ( forall x , x \notin L -> Par ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> Par P psi (a_WSigma psi1 A1 B1) (a_WSigma psi1 A2 B2) | Par_WPair : forall (P:econtext) (psi:grade) (a1:tm) (psi0:grade) (b1 a2 b2:tm), CPar P psi psi0 a1 a2 -> Par P psi b1 b2 -> Par P psi (a_WPair a1 psi0 b1) (a_WPair a2 psi0 b2) | Par_WPairBeta : forall (L:vars) (P:econtext) (psi psi0:grade) (a1 b1 b2 a1' a2':tm), Par P psi a1 (a_WPair a1' psi0 a2') -> ( forall x , x \notin L -> Par ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) (open_tm_wrt_tm b2 (a_Var_f x) ) ) -> Par P psi (a_LetPair psi0 a1 b1) (a_App (open_tm_wrt_tm b2 a1' ) q_Bot a2') | Par_LetPair : forall (L:vars) (P:econtext) (psi psi0:grade) (a1 b1 a2 b2:tm), Par P psi a1 a2 -> ( forall x , x \notin L -> Par ( ( x ~ psi0 ) ++ P ) psi ( open_tm_wrt_tm b1 (a_Var_f x) ) ( open_tm_wrt_tm b2 (a_Var_f x) ) ) -> Par P psi (a_LetPair psi0 a1 b1) (a_LetPair psi0 a2 b2) | Par_SSigma : forall (L:vars) (P:econtext) (psi psi1:grade) (A1 B1 A2 B2:tm), Par P psi A1 A2 -> ( forall x , x \notin L -> Par ( ( x ~ psi ) ++ P ) psi ( open_tm_wrt_tm B1 (a_Var_f x) ) ( open_tm_wrt_tm B2 (a_Var_f x) ) ) -> Par P psi (a_SSigma psi1 A1 B1) (a_SSigma psi1 A2 B2) | Par_SPair : forall (P:econtext) (psi:grade) (a1:tm) (psi0:grade) (b1 a2 b2:tm), CPar P psi psi0 a1 a2 -> Par P psi b1 b2 -> Par P psi (a_SPair a1 psi0 b1) (a_SPair a2 psi0 b2) | Par_Proj1Beta : forall (P:econtext) (psi psi0:grade) (a1 a1' a2:tm), Par P psi a1 (a_SPair a1' psi0 a2) -> ( psi0 <= psi ) -> Par P psi (a_Proj1 psi0 a1) a1' | Par_Proj1 : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), Par P psi a1 a2 -> ( psi0 <= psi ) -> Par P psi (a_Proj1 psi0 a1) (a_Proj1 psi0 a2) | Par_Proj2Beta : forall (P:econtext) (psi psi0:grade) (a1 a2 a1':tm), Par P psi a1 (a_SPair a1' psi0 a2) -> Par P psi (a_Proj2 psi0 a1) a2 | Par_Proj2 : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), Par P psi a1 a2 -> Par P psi (a_Proj2 psi0 a1) (a_Proj2 psi0 a2) | Par_Sum : forall (P:econtext) (psi:grade) (A1 A2 A1' A2':tm), Par P psi A1 A1' -> Par P psi A2 A2' -> Par P psi (a_Sum A1 A2) (a_Sum A1' A2') | Par_Inj1 : forall (P:econtext) (psi:grade) (a1 a1':tm), Par P psi a1 a1' -> Par P psi (a_Inj1 a1) (a_Inj1 a1') | Par_Inj2 : forall (P:econtext) (psi:grade) (a2 a2':tm), Par P psi a2 a2' -> Par P psi (a_Inj2 a2) (a_Inj2 a2') | Par_CaseBeta1 : forall (P:econtext) (psi psi0:grade) (a b1 b2 b1' a' b2':tm), Par P psi a (a_Inj1 a') -> Par P psi b1 b1' -> Par P psi b2 b2' -> ( psi0 <= psi ) -> Par P psi (a_Case psi0 a b1 b2) (a_App b1' psi0 a') | Par_CaseBeta2 : forall (P:econtext) (psi psi0:grade) (a b1 b2 b2' a' b1':tm), Par P psi a (a_Inj2 a') -> Par P psi b1 b1' -> Par P psi b2 b2' -> ( psi0 <= psi ) -> Par P psi (a_Case psi0 a b1 b2) (a_App b2' psi0 a') | Par_Case : forall (P:econtext) (psi psi0:grade) (a b1 b2 a' b1' b2':tm), Par P psi a a' -> Par P psi b1 b1' -> Par P psi b2 b2' -> ( psi0 <= psi ) -> Par P psi (a_Case psi0 a b1 b2) (a_Case psi0 a' b1' b2'). (* defns JMultiPar *) Inductive MultiPar : econtext -> grade -> tm -> tm -> Prop := (* defn MultiPar *) | MP_Refl : forall (P:econtext) (psi:grade) (a:tm), Grade P psi a -> MultiPar P psi a a | MP_Step : forall (P:econtext) (psi:grade) (a a' b:tm), Par P psi a b -> MultiPar P psi b a' -> MultiPar P psi a a'. (* defns JJoins *) Inductive Joins : econtext -> grade -> tm -> tm -> Prop := (* defn Joins *) | join : forall (P:econtext) (psi:grade) (a1 a2 b1 b2:tm), MultiPar P psi a1 b1 -> MultiPar P psi a2 b2 -> GEq P psi b1 b2 -> Joins P psi a1 a2. (* defns JValue *) Inductive Value : tm -> Prop := (* defn Value *) | V_ValueType : forall (a:tm), ValueType a -> Value a | V_TmUnit : Value a_TmUnit | V_Abs : forall (psi:grade) (A a:tm), lc_tm A -> lc_tm (a_Abs psi A a) -> Value (a_Abs psi A a) | V_WPair : forall (a:tm) (psi:grade) (b:tm), lc_tm a -> lc_tm b -> Value (a_WPair a psi b) | V_SPair : forall (a:tm) (psi:grade) (b:tm), lc_tm a -> lc_tm b -> Value (a_SPair a psi b) | V_Inj1 : forall (a:tm), lc_tm a -> Value (a_Inj1 a) | V_Inj2 : forall (a:tm), lc_tm a -> Value (a_Inj2 a). (* defns JCMultiPar *) Inductive CMultiPar : econtext -> grade -> grade -> tm -> tm -> Prop := (* defn CMultiPar *) | CMP_Leq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), ( psi0 <= psi ) -> MultiPar P psi a1 a2 -> CMultiPar P psi psi0 a1 a2 | CMP_Nleq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), lc_tm a1 -> lc_tm a2 -> not ( ( ( psi0 <= psi ) ) ) -> uniq P -> CMultiPar P psi psi0 a1 a2. (* defns JCJoins *) Inductive CJoins : econtext -> grade -> grade -> tm -> tm -> Prop := (* defn CJoins *) | CJ_Leq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), ( psi0 <= psi ) -> Joins P psi a1 a2 -> CJoins P psi psi0 a1 a2 | CJ_Nleq : forall (P:econtext) (psi psi0:grade) (a1 a2:tm), lc_tm a1 -> lc_tm a2 -> not ( ( ( psi0 <= psi ) ) ) -> uniq P -> CJoins P psi psi0 a1 a2. (** infrastructure *) Hint Constructors Step P_sub ctx_sub CGrade Grade CEq GEq CDefEq DefEq Typing CTyping Ctx ValueType Consistent CPar Par MultiPar Joins Value CMultiPar CJoins lc_tm : core.
(* * Copyright (C) 2014, National ICT Australia Limited. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * The name of National ICT Australia Limited nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) theory WordLemmaBucket imports Lib MoreDivides Aligned HOLLemmaBucket DistinctPropLemmaBucket "~~/src/HOL/Library/Sublist" "~~/src/HOL/Library/Prefix_Order" begin (* Setup "quickcheck" to support words. *) quickcheck_generator word constructors: "zero_class.zero :: ('a::len) word", "numeral :: num \<Rightarrow> ('a::len) word", "uminus :: ('a::len) word \<Rightarrow> ('a::len) word" instantiation Enum.finite_1 :: len begin definition "len_of_finite_1 (x :: Enum.finite_1 itself) \<equiv> (1 :: nat)" instance by (default, auto simp: len_of_finite_1_def) end instantiation Enum.finite_2 :: len begin definition "len_of_finite_2 (x :: Enum.finite_2 itself) \<equiv> (2 :: nat)" instance by (default, auto simp: len_of_finite_2_def) end instantiation Enum.finite_3 :: len begin definition "len_of_finite_3 (x :: Enum.finite_3 itself) \<equiv> (4 :: nat)" instance by (default, auto simp: len_of_finite_3_def) end (* Provide wf and less_induct for word. wf may be more useful in loop proofs, less_induct in recursion proofs. *) lemma word_less_wf: "wf {(a, b). a < (b :: ('a::len) word)}" apply (rule wf_subset) apply (rule wf_measure) apply safe apply (subst in_measure) apply (erule unat_mono) done lemma word_less_induct: "\<lbrakk> \<And>x::('a::len) word. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x \<rbrakk> \<Longrightarrow> P a" using word_less_wf apply induct apply blast done instantiation word :: (len) wellorder begin instance apply (intro_classes) apply (metis word_less_induct) done end lemma word_plus_mono_left: fixes x :: "'a :: len word" shows "\<lbrakk>y \<le> z; x \<le> x + z\<rbrakk> \<Longrightarrow> y + x \<le> z + x" by unat_arith lemma word_2p_mult_inc: assumes x: "2 * 2 ^ n < (2::'a::len word) * 2 ^ m" assumes suc_n: "Suc n < len_of TYPE('a::len)" assumes suc_m: "Suc m < len_of TYPE('a::len)" assumes 2: "unat (2::'a::len word) = 2" shows "2^n < (2::'a::len word)^m" proof - from suc_n have "(2::nat) * 2 ^ n mod 2 ^ len_of TYPE('a::len) = 2 * 2^n" apply (subst mod_less) apply (subst power_Suc[symmetric]) apply (rule power_strict_increasing) apply simp apply simp apply simp done moreover from suc_m have "(2::nat) * 2 ^ m mod 2 ^ len_of TYPE('a::len) = 2 * 2^m" apply (subst mod_less) apply (subst power_Suc[symmetric]) apply (rule power_strict_increasing) apply simp apply simp apply simp done ultimately have "2 * 2 ^ n < (2::nat) * 2 ^ m" using x apply (unfold word_less_nat_alt) apply simp apply (subst (asm) unat_word_ariths(2))+ apply (subst (asm) 2)+ apply (subst (asm) word_unat_power, subst (asm) unat_of_nat)+ apply (simp add: mod_mult_right_eq[symmetric]) done with suc_n suc_m show ?thesis unfolding word_less_nat_alt apply (subst word_unat_power, subst unat_of_nat)+ apply simp done qed lemma word_shiftl_add_distrib: fixes x :: "'a :: len word" shows "(x + y) << n = (x << n) + (y << n)" by (simp add: shiftl_t2n ring_distribs) lemma upper_bits_unset_is_l2p: "n < word_bits \<Longrightarrow> (\<forall>n' \<ge> n. n' < word_bits \<longrightarrow> \<not> p !! n') = ((p::word32) < 2 ^ n)" apply (rule iffI) prefer 2 apply (clarsimp simp: word_bits_def) apply (drule bang_is_le) apply (drule_tac y=p in order_le_less_trans, assumption) apply (drule word_power_increasing) apply simp apply simp apply simp apply simp apply (subst mask_eq_iff_w2p [symmetric]) apply (clarsimp simp: word_size word_bits_def) apply (rule word_eqI) apply (clarsimp simp: word_size word_bits_def) apply (case_tac "na < n", auto) done lemma up_ucast_inj: "\<lbrakk> ucast x = (ucast y::'b::len word); len_of TYPE('a) \<le> len_of TYPE ('b) \<rbrakk> \<Longrightarrow> x = (y::'a::len word)" apply (subst (asm) bang_eq) apply (fastforce simp: nth_ucast word_size intro: word_eqI) done lemma up_ucast_inj_eq: "len_of TYPE('a) \<le> len_of TYPE ('b) \<Longrightarrow> (ucast x = (ucast y::'b::len word)) = (x = (y::'a::len word))" by (fastforce dest: up_ucast_inj) lemma ucast_up_inj: "\<lbrakk> ucast x = (ucast y :: 'b::len word); len_of TYPE('a) \<le> len_of TYPE('b) \<rbrakk> \<Longrightarrow> x = (y :: 'a::len word)" apply (subst (asm) bang_eq) apply (rule word_eqI) apply (simp add: word_size nth_ucast) apply (erule_tac x=n in allE) apply simp done lemma ucast_8_32_inj: "inj (ucast :: 8 word \<Rightarrow> 32 word)" apply (rule down_ucast_inj) apply (clarsimp simp: is_down_def target_size source_size) done lemma no_plus_overflow_neg: "(x :: ('a :: len) word) < -y \<Longrightarrow> x \<le> x + y" apply (simp add: no_plus_overflow_uint_size word_less_alt uint_word_ariths word_size) apply (subst(asm) zmod_zminus1_eq_if) apply (simp split: split_if_asm) done lemma ucast_ucast_eq: fixes x :: "'a::len word" fixes y :: "'b::len word" shows "\<lbrakk> ucast x = (ucast (ucast y::'a::len word)::'c::len word); len_of TYPE('a) \<le> len_of TYPE('b); len_of TYPE('b) \<le> len_of TYPE('c) \<rbrakk> \<Longrightarrow> x = ucast y" apply (rule word_eqI) apply (subst (asm) bang_eq) apply (erule_tac x=n in allE) apply (simp add: nth_ucast word_size) done (******** GeneralLib ****************) lemma neq_into_nprefixeq: "\<lbrakk> x \<noteq> take (length x) y \<rbrakk> \<Longrightarrow> \<not> x \<le> y" by (clarsimp simp: prefixeq_def less_eq_list_def) lemma distinct_suffixeq: assumes dx: "distinct xs" and pf: "suffixeq ys xs" shows "distinct ys" using dx pf by (clarsimp elim!: suffixeqE) lemma suffixeq_map: assumes pf: "suffixeq ys xs" shows "suffixeq (map f ys) (map f xs)" using pf by (auto elim!: suffixeqE intro: suffixeqI) lemma suffixeq_drop [simp]: "suffixeq (drop n as) as" unfolding suffixeq_def apply (rule exI [where x = "take n as"]) apply simp done lemma suffixeq_take: "suffixeq ys xs \<Longrightarrow> xs = take (length xs - length ys) xs @ ys" by (clarsimp elim!: suffixeqE) lemma suffixeq_eqI: "\<lbrakk> suffixeq xs as; suffixeq xs bs; length as = length bs; take (length as - length xs) as \<le> take (length bs - length xs) bs\<rbrakk> \<Longrightarrow> as = bs" by (clarsimp elim!: prefixE suffixeqE) lemma suffixeq_Cons_mem: "suffixeq (x # xs) as \<Longrightarrow> x \<in> set as" apply (drule suffixeq_set_subset) apply simp done lemma list_induct_suffixeq [case_names Nil Cons]: assumes nilr: "P []" and consr: "\<And>x xs. \<lbrakk>P xs; suffixeq (x # xs) as \<rbrakk> \<Longrightarrow> P (x # xs)" shows "P as" proof - def as' == as have "suffixeq as as'" unfolding as'_def by simp thus ?thesis proof (induct as) case Nil show ?case by fact next case (Cons x xs) show ?case proof (rule consr) from Cons.prems show "suffixeq (x # xs) as" unfolding as'_def . hence "suffixeq xs as'" by (auto dest: suffixeq_ConsD simp: as'_def) thus "P xs" using Cons.hyps by simp qed qed qed text {* Parallel etc. and lemmas for list prefix *} lemma prefix_induct [consumes 1, case_names Nil Cons]: fixes prefix assumes np: "prefix \<le> lst" and base: "\<And>xs. P [] xs" and rl: "\<And>x xs y ys. \<lbrakk> x = y; xs \<le> ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys)" shows "P prefix lst" using np proof (induct prefix arbitrary: lst) case Nil show ?case by fact next case (Cons x xs) have prem: "(x # xs) \<le> lst" by fact then obtain y ys where lv: "lst = y # ys" by (rule prefixE, auto) have ih: "\<And>lst. xs \<le> lst \<Longrightarrow> P xs lst" by fact show ?case using prem by (auto simp: lv intro!: rl ih) qed lemma not_prefix_cases: fixes prefix assumes pfx: "\<not> prefix \<le> lst" and c1: "\<lbrakk> prefix \<noteq> []; lst = [] \<rbrakk> \<Longrightarrow> R" and c2: "\<And>a as x xs. \<lbrakk> prefix = a#as; lst = x#xs; x = a; \<not> as \<le> xs\<rbrakk> \<Longrightarrow> R" and c3: "\<And>a as x xs. \<lbrakk> prefix = a#as; lst = x#xs; x \<noteq> a\<rbrakk> \<Longrightarrow> R" shows "R" proof (cases prefix) case Nil thus ?thesis using pfx by simp next case (Cons a as) have c: "prefix = a#as" by fact show ?thesis proof (cases lst) case Nil thus ?thesis by (intro c1, simp add: Cons) next case (Cons x xs) show ?thesis proof (cases "x = a") case True show ?thesis proof (intro c2) show "\<not> as \<le> xs" using pfx c Cons True by simp qed fact+ next case False show ?thesis by (rule c3) fact+ qed qed qed lemma not_prefix_induct [consumes 1, case_names Nil Neq Eq]: fixes prefix assumes np: "\<not> prefix \<le> lst" and base: "\<And>x xs. P (x#xs) []" and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (x#xs) (y#ys)" and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> xs \<le> ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys)" shows "P prefix lst" using np proof (induct lst arbitrary: prefix) case Nil thus ?case by (auto simp: neq_Nil_conv elim!: not_prefix_cases intro!: base) next case (Cons y ys) have npfx: "\<not> prefix \<le> (y # ys)" by fact then obtain x xs where pv: "prefix = x # xs" by (rule not_prefix_cases) auto have ih: "\<And>prefix. \<not> prefix \<le> ys \<Longrightarrow> P prefix ys" by fact show ?case using npfx by (simp only: pv) (erule not_prefix_cases, auto intro: r1 r2 ih) qed text {* right-padding a word to a certain length *} lemma bl_pad_to_prefix: "bl \<le> bl_pad_to bl sz" by (simp add: bl_pad_to_def) lemma same_length_is_parallel: assumes len: "\<forall>y \<in> set as. length y = x" shows "\<forall>x \<in> set as. \<forall>y \<in> set as - {x}. x \<parallel> y" proof (rule, rule) fix x y assume xi: "x \<in> set as" and yi: "y \<in> set as - {x}" from len obtain q where len': "\<forall>y \<in> set as. length y = q" .. show "x \<parallel> y" proof (rule not_equal_is_parallel) from xi yi show "x \<noteq> y" by auto from xi yi len' show "length x = length y" by (auto dest: bspec) qed qed text {* Lemmas about words *} lemma word_bits_len_of: "len_of TYPE (32) = word_bits" by (simp add: word_bits_conv) lemmas unat_power_lower32 [simp] = unat_power_lower[where 'a=32, unfolded word_bits_len_of] lemma eq_zero_set_bl: "(w = 0) = (True \<notin> set (to_bl w))" apply (subst word_bl.Rep_inject[symmetric]) apply (subst to_bl_0) apply (rule iffI) apply clarsimp apply (drule list_of_false) apply simp done lemmas and_bang = word_and_nth lemma of_drop_to_bl: "of_bl (drop n (to_bl x)) = (x && mask (size x - n))" apply (clarsimp simp: bang_eq and_bang test_bit_of_bl rev_nth cong: rev_conj_cong) apply (safe, simp_all add: word_size to_bl_nth) done lemma less_is_drop_replicate: fixes x :: "'a :: len word" assumes lt: "x < 2 ^ n" shows "to_bl x = replicate (len_of TYPE('a) - n) False @ drop (len_of TYPE('a) - n) (to_bl x)" proof - show ?thesis apply (subst less_mask_eq [OF lt, symmetric]) apply (subst bl_and_mask) apply simp done qed lemma word_add_offset_less: fixes x :: "'a :: len word" assumes yv: "y < 2 ^ n" and xv: "x < 2 ^ m" and mnv: "sz < len_of TYPE('a :: len)" and xv': "x < 2 ^ (len_of TYPE('a :: len) - n)" and mn: "sz = m + n" shows "x * 2 ^ n + y < 2 ^ sz" proof (subst mn) from mnv mn have nv: "n < len_of TYPE('a)" and mv: "m < len_of TYPE('a)" by auto have uy: "unat y < 2 ^ n" by (rule order_less_le_trans [OF unat_mono [OF yv] order_eq_refl], rule unat_power_lower[OF nv]) have ux: "unat x < 2 ^ m" by (rule order_less_le_trans [OF unat_mono [OF xv] order_eq_refl], rule unat_power_lower[OF mv]) thus "x * 2 ^ n + y < 2 ^ (m + n)" using ux uy nv mnv xv' apply (subst word_less_nat_alt) apply (subst unat_word_ariths word_bits_len_of)+ apply (subst mod_less) apply (simp add: unat_power_lower) apply (subst mult.commute) apply (rule nat_less_power_trans [OF _ order_less_imp_le [OF nv]]) apply (rule order_less_le_trans [OF unat_mono [OF xv']]) apply (cases "n = 0") apply (simp add: unat_power_lower) apply (simp add: unat_power_lower) apply (subst unat_power_lower[OF nv]) apply (subst mod_less) apply (erule order_less_le_trans [OF nat_add_offset_less], assumption) apply (rule mn) apply simp apply (simp add: mn mnv unat_power_lower) apply (erule nat_add_offset_less) apply simp+ done qed lemma word_less_power_trans: fixes n :: "'a :: len word" assumes nv: "n < 2 ^ (m - k)" and kv: "k \<le> m" and mv: "m < len_of TYPE ('a)" shows "2 ^ k * n < 2 ^ m" using nv kv mv apply - apply (subst word_less_nat_alt) apply (subst unat_word_ariths) apply (subst mod_less) apply (simp add: unat_power_lower) apply (rule nat_less_power_trans) apply (erule order_less_trans [OF unat_mono]) apply (simp add: unat_power_lower) apply simp apply (simp add: unat_power_lower) apply (rule nat_less_power_trans) apply (subst unat_power_lower[where 'a = 'a, symmetric]) apply simp apply (erule unat_mono) apply simp done lemma word_less_sub_le[simp]: fixes x :: "'a :: len word" assumes nv: "n < len_of TYPE('a)" shows "(x \<le> 2 ^ n - 1) = (x < 2 ^ n)" proof - have "Suc (unat ((2::'a word) ^ n - 1)) = unat ((2::'a word) ^ n)" using nv by (metis Suc_pred' power_2_ge_iff unat_gt_0 unat_minus_one word_not_simps(1)) thus ?thesis using nv apply - apply (subst word_le_nat_alt) apply (subst less_Suc_eq_le [symmetric]) apply (erule ssubst) apply (subst word_less_nat_alt) apply (rule refl) done qed lemmas word32_less_sub_le[simp] = word_less_sub_le[where 'a = 32, folded word_bits_def] lemma Suc_unat_diff_1: fixes x :: "'a :: len word" assumes lt: "1 \<le> x" shows "Suc (unat (x - 1)) = unat x" proof - have "0 < unat x" by (rule order_less_le_trans [where y = 1], simp, subst unat_1 [symmetric], rule iffD1 [OF word_le_nat_alt lt]) thus ?thesis by ((subst unat_sub [OF lt])+, simp only: unat_1) qed lemma word_div_sub: fixes x :: "'a :: len word" assumes yx: "y \<le> x" and y0: "0 < y" shows "(x - y) div y = x div y - 1" apply (rule word_unat.Rep_eqD) apply (subst unat_div) apply (subst unat_sub [OF yx]) apply (subst unat_sub) apply (subst word_le_nat_alt) apply (subst unat_div) apply (subst le_div_geq) apply (rule order_le_less_trans [OF _ unat_mono [OF y0]]) apply simp apply (subst word_le_nat_alt [symmetric], rule yx) apply simp apply (subst unat_div) apply (subst le_div_geq [OF _ iffD1 [OF word_le_nat_alt yx]]) apply (rule order_le_less_trans [OF _ unat_mono [OF y0]]) apply simp apply simp done lemma word_mult_less_mono1: fixes i :: "'a :: len word" assumes ij: "i < j" and knz: "0 < k" and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)" shows "i * k < j * k" proof - from ij ujk knz have jk: "unat i * unat k < 2 ^ len_of TYPE ('a)" by (auto intro: order_less_subst2 simp: word_less_nat_alt elim: mult_less_mono1) thus ?thesis using ujk knz ij by (auto simp: word_less_nat_alt iffD1 [OF unat_mult_lem]) qed lemma word_mult_less_dest: fixes i :: "'a :: len word" assumes ij: "i * k < j * k" and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)" shows "i < j" using uik ujk ij by (auto simp: word_less_nat_alt iffD1 [OF unat_mult_lem] elim: mult_less_mono1) lemma word_mult_less_cancel: fixes k :: "'a :: len word" assumes knz: "0 < k" and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)" shows "(i * k < j * k) = (i < j)" by (rule iffI [OF word_mult_less_dest [OF _ uik ujk] word_mult_less_mono1 [OF _ knz ujk]]) lemma Suc_div_unat_helper: assumes szv: "sz < len_of TYPE('a :: len)" and usszv: "us \<le> sz" shows "2 ^ (sz - us) = Suc (unat (((2::'a :: len word) ^ sz - 1) div 2 ^ us))" proof - note usv = order_le_less_trans [OF usszv szv] from usszv obtain q where qv: "sz = us + q" by (auto simp: le_iff_add) have "Suc (unat (((2:: 'a word) ^ sz - 1) div 2 ^ us)) = (2 ^ us + unat ((2:: 'a word) ^ sz - 1)) div 2 ^ us" apply (subst unat_div unat_power_lower[OF usv])+ apply (subst div_add_self1, simp+) done also have "\<dots> = ((2 ^ us - 1) + 2 ^ sz) div 2 ^ us" using szv apply (subst unat_minus_one) apply (simp add: p2_eq_0) apply (simp add: unat_power_lower) done also have "\<dots> = 2 ^ q + ((2 ^ us - 1) div 2 ^ us)" apply (subst qv) apply (subst power_add) apply (subst div_mult_self2) apply simp apply (rule refl) done also have "\<dots> = 2 ^ (sz - us)" using qv by simp finally show ?thesis .. qed lemma upto_enum_red': assumes lt: "1 \<le> X" shows "[(0::'a :: len word) .e. X - 1] = map of_nat [0 ..< unat X]" proof - have lt': "unat X < 2 ^ len_of TYPE('a)" by (rule unat_lt2p) show ?thesis apply (subst upto_enum_red) apply (simp del: upt.simps) apply (subst Suc_unat_diff_1 [OF lt]) apply (rule map_cong [OF refl]) apply (rule toEnum_of_nat) apply simp apply (erule order_less_trans [OF _ lt']) done qed lemma upto_enum_red2: assumes szv: "sz < len_of TYPE('a :: len)" shows "[(0:: 'a :: len word) .e. 2 ^ sz - 1] = map of_nat [0 ..< 2 ^ sz]" using szv apply (subst unat_power_lower[OF szv, symmetric]) apply (rule upto_enum_red') apply (subst word_le_nat_alt, simp add: unat_power_lower) done (* FIXME: WordEnum.upto_enum_step_def is fixed to word32. *) lemma upto_enum_step_red: assumes szv: "sz < word_bits" and usszv: "us \<le> sz" shows "[0 , 2 ^ us .e. 2 ^ sz - 1] = map (\<lambda>x. of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]" using szv unfolding upto_enum_step_def apply (subst if_not_P) apply (rule leD) apply (subst word_le_nat_alt) apply (subst unat_minus_one) apply (simp add: p2_eq_0 word_bits_def) apply simp apply simp apply (subst upto_enum_red) apply (simp del: upt.simps) apply (subst Suc_div_unat_helper [where 'a = 32, folded word_bits_def, OF szv usszv, symmetric]) apply clarsimp apply (subst toEnum_of_nat) apply (subst word_bits_len_of) apply (erule order_less_trans) using szv apply simp apply simp done lemma upto_enum_word: "[x .e. y] = map of_nat [unat x ..< Suc (unat y)]" apply (subst upto_enum_red) apply clarsimp apply (subst toEnum_of_nat) prefer 2 apply (rule refl) apply (erule disjE, simp) apply clarsimp apply (erule order_less_trans) apply simp done text {* Lemmas about upto and upto_enum *} lemma word_upto_Cons_eq: "\<lbrakk>x = z; x < y; Suc (unat y) < 2 ^ len_of TYPE('a)\<rbrakk> \<Longrightarrow> [x::'a::len word .e. y] = z # [x + 1 .e. y]" apply (subst upto_enum_red) apply (subst upt_conv_Cons) apply (simp) apply (drule unat_mono) apply arith apply (simp only: list.map) apply (subst list.inject) apply rule apply (rule to_from_enum) apply (subst upto_enum_red) apply (rule map_cong [OF _ refl]) apply (rule arg_cong2 [where f = "\<lambda>x y. [x ..< y]"]) apply unat_arith apply simp done lemma distinct_enum_upto: "distinct [(0 :: 'a::len word) .e. b]" proof - have "\<And>(b::'a word). [0 .e. b] = sublist enum {..< Suc (fromEnum b)}" apply (subst upto_enum_red) apply (subst sublist_upt_eq_take) apply (subst enum_word_def) apply (subst take_map) apply (subst take_upt) apply (simp only: add_0 fromEnum_unat) apply (rule order_trans [OF _ order_eq_refl]) apply (rule Suc_leI [OF unat_lt2p]) apply simp apply clarsimp apply (rule toEnum_of_nat) apply (erule order_less_trans [OF _ unat_lt2p]) done thus ?thesis by (rule ssubst) (rule distinct_sublistI, simp) qed lemma upto_enum_set_conv [simp]: fixes a :: "'a :: len word" shows "set [a .e. b] = {x. a \<le> x \<and> x \<le> b}" apply (subst upto_enum_red) apply (subst set_map) apply safe apply simp apply clarsimp apply (erule disjE) apply simp apply (erule iffD2 [OF word_le_nat_alt]) apply clarsimp apply (erule word_unat.Rep_cases [OF unat_le [OF order_less_imp_le]]) apply simp apply (erule iffD2 [OF word_le_nat_alt]) apply simp apply clarsimp apply (erule disjE) apply simp apply clarsimp apply (rule word_unat.Rep_cases [OF unat_le [OF order_less_imp_le]]) apply assumption apply simp apply (erule order_less_imp_le [OF iffD2 [OF word_less_nat_alt]]) apply clarsimp apply (rule_tac x="fromEnum x" in image_eqI) apply clarsimp apply clarsimp apply (rule conjI) apply (subst word_le_nat_alt [symmetric]) apply simp apply safe apply (simp add: word_le_nat_alt [symmetric]) apply (simp add: word_less_nat_alt [symmetric]) done lemma upto_enum_less: assumes xin: "x \<in> set [(a::'a::len word).e.2 ^ n - 1]" and nv: "n < len_of TYPE('a::len)" shows "x < 2 ^ n" proof (cases n) case 0 thus ?thesis using xin by (simp add: upto_enum_set_conv) next case (Suc m) show ?thesis using xin nv by simp qed lemma upto_enum_len_less: "\<lbrakk> n \<le> length [a, b .e. c]; n \<noteq> 0 \<rbrakk> \<Longrightarrow> a \<le> c" unfolding upto_enum_step_def by (simp split: split_if_asm) lemma length_upto_enum_step: fixes x :: word32 shows "x \<le> z \<Longrightarrow> length [x , y .e. z] = (unat ((z - x) div (y - x))) + 1" unfolding upto_enum_step_def by (simp add: upto_enum_red) lemma length_upto_enum_one: fixes x :: word32 assumes lt1: "x < y" and lt2: "z < y" and lt3: "x \<le> z" shows "[x , y .e. z] = [x]" unfolding upto_enum_step_def proof (subst upto_enum_red, subst if_not_P [OF leD [OF lt3]], clarsimp, rule) show "unat ((z - x) div (y - x)) = 0" proof (subst unat_div, rule div_less) have syx: "unat (y - x) = unat y - unat x" by (rule unat_sub [OF order_less_imp_le]) fact moreover have "unat (z - x) = unat z - unat x" by (rule unat_sub) fact ultimately show "unat (z - x) < unat (y - x)" using lt3 apply simp apply (rule diff_less_mono[OF unat_mono, OF lt2]) apply (simp add: word_le_nat_alt[symmetric]) done qed thus "toEnum (unat ((z - x) div (y - x))) * (y - x) = 0" by simp qed lemma map_length_unfold_one: fixes x :: "'a::len word" assumes xv: "Suc (unat x) < 2 ^ len_of TYPE('a)" and ax: "a < x" shows "map f [a .e. x] = f a # map f [a + 1 .e. x]" by (subst word_upto_Cons_eq, auto, fact+) lemma upto_enum_triv [simp]: "[x .e. x] = [x]" unfolding upto_enum_def by simp lemma of_nat_unat [simp]: "of_nat \<circ> unat = id" by (rule ext, simp) lemma Suc_unat_minus_one [simp]: "x \<noteq> 0 \<Longrightarrow> Suc (unat (x - 1)) = unat x" by (metis Suc_diff_1 unat_gt_0 unat_minus_one) text {* Lemmas about alignment *} lemma word_bits_size: "size (w::word32) = word_bits" by (simp add: word_bits_def word_size) text {* Lemmas about defs in the specs *} lemma and_commute: "(X and Y) = (Y and X)" unfolding pred_conj_def by (auto simp: fun_eq_iff) lemma ptr_add_0 [simp]: "ptr_add ref 0 = ref " unfolding ptr_add_def by simp (* Other word lemmas *) lemma word_add_le_dest: fixes i :: "'a :: len word" assumes le: "i + k \<le> j + k" and uik: "unat i + unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)" shows "i \<le> j" using uik ujk le by (auto simp: word_le_nat_alt iffD1 [OF unat_add_lem] elim: add_le_mono1) lemma mask_shift: "(x && ~~ mask y) >> y = x >> y" apply (rule word_eqI) apply (simp add: nth_shiftr word_size) apply safe apply (drule test_bit.Rep[simplified, rule_format]) apply (simp add: word_size word_ops_nth_size) done lemma word_add_le_mono1: fixes i :: "'a :: len word" assumes ij: "i \<le> j" and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)" shows "i + k \<le> j + k" proof - from ij ujk have jk: "unat i + unat k < 2 ^ len_of TYPE ('a)" by (auto elim: order_le_less_subst2 simp: word_le_nat_alt elim: add_le_mono1) thus ?thesis using ujk ij by (auto simp: word_le_nat_alt iffD1 [OF unat_add_lem]) qed lemma word_add_le_mono2: fixes i :: "('a :: len) word" shows "\<lbrakk>i \<le> j; unat j + unat k < 2 ^ len_of TYPE('a)\<rbrakk> \<Longrightarrow> k + i \<le> k + j" by (subst field_simps, subst field_simps, erule (1) word_add_le_mono1) lemma word_add_le_iff: fixes i :: "'a :: len word" assumes uik: "unat i + unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)" shows "(i + k \<le> j + k) = (i \<le> j)" proof assume "i \<le> j" show "i + k \<le> j + k" by (rule word_add_le_mono1) fact+ next assume "i + k \<le> j + k" show "i \<le> j" by (rule word_add_le_dest) fact+ qed lemma word_add_less_mono1: fixes i :: "'a :: len word" assumes ij: "i < j" and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)" shows "i + k < j + k" proof - from ij ujk have jk: "unat i + unat k < 2 ^ len_of TYPE ('a)" by (auto elim: order_le_less_subst2 simp: word_less_nat_alt elim: add_less_mono1) thus ?thesis using ujk ij by (auto simp: word_less_nat_alt iffD1 [OF unat_add_lem]) qed lemma word_add_less_dest: fixes i :: "'a :: len word" assumes le: "i + k < j + k" and uik: "unat i + unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)" shows "i < j" using uik ujk le by (auto simp: word_less_nat_alt iffD1 [OF unat_add_lem] elim: add_less_mono1) lemma word_add_less_iff: fixes i :: "'a :: len word" assumes uik: "unat i + unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)" shows "(i + k < j + k) = (i < j)" proof assume "i < j" show "i + k < j + k" by (rule word_add_less_mono1) fact+ next assume "i + k < j + k" show "i < j" by (rule word_add_less_dest) fact+ qed lemma shiftr_div_2n': "unat (w >> n) = unat w div 2 ^ n" apply (unfold unat_def) apply (subst shiftr_div_2n) apply (subst nat_div_distrib) apply simp apply (simp add: nat_power_eq) done lemma shiftl_shiftr_id: assumes nv: "n < len_of TYPE('a :: len)" and xv: "x < 2 ^ (len_of TYPE('a :: len) - n)" shows "x << n >> n = (x::'a::len word)" apply (simp add: shiftl_t2n) apply (rule word_unat.Rep_eqD) apply (subst shiftr_div_2n') apply (cases n) apply simp apply (subst iffD1 [OF unat_mult_lem])+ apply (subst unat_power_lower[OF nv]) apply (rule nat_less_power_trans [OF _ order_less_imp_le [OF nv]]) apply (rule order_less_le_trans [OF unat_mono [OF xv] order_eq_refl]) apply (rule unat_power_lower) apply simp apply (subst unat_power_lower[OF nv]) apply simp done lemma word_mult_less_iff: fixes i :: "'a :: len word" assumes knz: "0 < k" and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)" shows "(i * k < j * k) = (i < j)" proof assume "i < j" show "i * k < j * k" by (rule word_mult_less_mono1) fact+ next assume p: "i * k < j * k" have "0 < unat k" using knz by (simp add: word_less_nat_alt) thus "i < j" using p by (clarsimp simp: word_less_nat_alt iffD1 [OF unat_mult_lem uik] iffD1 [OF unat_mult_lem ujk]) qed lemma word_le_imp_diff_le: fixes n :: "'a::len word" shows "\<lbrakk>k \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> n - k \<le> m" by (clarsimp simp: unat_sub word_le_nat_alt intro!: le_imp_diff_le) lemma word_less_imp_diff_less: fixes n :: "'a::len word" shows "\<lbrakk>k \<le> n; n < m\<rbrakk> \<Longrightarrow> n - k < m" by (clarsimp simp: unat_sub word_less_nat_alt intro!: less_imp_diff_less) lemma word_mult_le_mono1: fixes i :: "'a :: len word" assumes ij: "i \<le> j" and knz: "0 < k" and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)" shows "i * k \<le> j * k" proof - from ij ujk knz have jk: "unat i * unat k < 2 ^ len_of TYPE ('a)" by (auto elim: order_le_less_subst2 simp: word_le_nat_alt elim: mult_le_mono1) thus ?thesis using ujk knz ij by (auto simp: word_le_nat_alt iffD1 [OF unat_mult_lem]) qed lemma word_mult_le_iff: fixes i :: "'a :: len word" assumes knz: "0 < k" and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)" and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)" shows "(i * k \<le> j * k) = (i \<le> j)" proof assume "i \<le> j" show "i * k \<le> j * k" by (rule word_mult_le_mono1) fact+ next assume p: "i * k \<le> j * k" have "0 < unat k" using knz by (simp add: word_less_nat_alt) thus "i \<le> j" using p by (clarsimp simp: word_le_nat_alt iffD1 [OF unat_mult_lem uik] iffD1 [OF unat_mult_lem ujk]) qed lemma word_diff_less: fixes n :: "'a :: len word" shows "\<lbrakk>0 < n; 0 < m; n \<le> m\<rbrakk> \<Longrightarrow> m - n < m" apply (subst word_less_nat_alt) apply (subst unat_sub) apply assumption apply (rule diff_less) apply (simp_all add: word_less_nat_alt) done lemma MinI: assumes fa: "finite A" and ne: "A \<noteq> {}" and xv: "m \<in> A" and min: "\<forall>y \<in> A. m \<le> y" shows "Min A = m" using fa ne xv min proof (induct A arbitrary: m rule: finite_ne_induct) case singleton thus ?case by simp next case (insert y F) from insert.prems have yx: "m \<le> y" and fx: "\<forall>y \<in> F. m \<le> y" by auto have "m \<in> insert y F" by fact thus ?case proof assume mv: "m = y" have mlt: "m \<le> Min F" by (rule iffD2 [OF Min_ge_iff [OF insert.hyps(1) insert.hyps(2)] fx]) show ?case apply (subst Min_insert [OF insert.hyps(1) insert.hyps(2)]) apply (subst mv [symmetric]) apply (rule iffD2 [OF linorder_min_same1 mlt]) done next assume "m \<in> F" hence mf: "Min F = m" by (rule insert.hyps(4) [OF _ fx]) show ?case apply (subst Min_insert [OF insert.hyps(1) insert.hyps(2)]) apply (subst mf) apply (rule iffD2 [OF linorder_min_same2 yx]) done qed qed lemma length_upto_enum [simp]: fixes a :: "('a :: len) word" shows "length [a .e. b] = Suc (unat b) - unat a" apply (simp add: word_le_nat_alt upto_enum_red) apply (clarsimp simp: Suc_diff_le) done lemma length_upto_enum_less_one: "\<lbrakk>a \<le> b; b \<noteq> 0\<rbrakk> \<Longrightarrow> length [a .e. b - 1] = unat (b - a)" apply clarsimp apply (subst unat_sub[symmetric], assumption) apply clarsimp done lemma drop_upto_enum: "drop (unat n) [0 .e. m] = [n .e. m]" apply (clarsimp simp: upto_enum_def) apply (induct m, simp) by (metis drop_map drop_upt plus_nat.add_0) lemma distinct_enum_upto' [simp]: "distinct [a::'a::len word .e. b]" apply (subst drop_upto_enum [symmetric]) apply (rule distinct_drop) apply (rule distinct_enum_upto) done lemma length_interval: "\<lbrakk>set xs = {x. (a::'a::len word) \<le> x \<and> x \<le> b}; distinct xs\<rbrakk> \<Longrightarrow> length xs = Suc (unat b) - unat a" apply (frule distinct_card) apply (subgoal_tac "set xs = set [a .e. b]") apply (cut_tac distinct_card [where xs="[a .e. b]"]) apply (subst (asm) length_upto_enum) apply clarsimp apply (rule distinct_enum_upto') apply simp done lemma not_empty_eq: "(S \<noteq> {}) = (\<exists>x. x \<in> S)" by auto lemma range_subset_lower: fixes c :: "'a ::linorder" shows "\<lbrakk> {a..b} \<subseteq> {c..d}; x \<in> {a..b} \<rbrakk> \<Longrightarrow> c \<le> a" apply (frule (1) subsetD) apply (rule classical) apply clarsimp done lemma range_subset_upper: fixes c :: "'a ::linorder" shows "\<lbrakk> {a..b} \<subseteq> {c..d}; x \<in> {a..b} \<rbrakk> \<Longrightarrow> b \<le> d" apply (frule (1) subsetD) apply (rule classical) apply clarsimp done lemma range_subset_eq: fixes a::"'a::linorder" assumes non_empty: "a \<le> b" shows "({a..b} \<subseteq> {c..d}) = (c \<le> a \<and> b \<le> d)" apply (insert non_empty) apply (rule iffI) apply (frule range_subset_lower [where x=a], simp) apply (drule range_subset_upper [where x=a], simp) apply simp apply auto done lemma range_eq: fixes a::"'a::linorder" assumes non_empty: "a \<le> b" shows "({a..b} = {c..d}) = (a = c \<and> b = d)" by (metis atLeastatMost_subset_iff eq_iff non_empty) lemma range_strict_subset_eq: fixes a::"'a::linorder" assumes non_empty: "a \<le> b" shows "({a..b} \<subset> {c..d}) = (c \<le> a \<and> b \<le> d \<and> (a = c \<longrightarrow> b \<noteq> d))" apply (insert non_empty) apply (subst psubset_eq) apply (subst range_subset_eq, assumption+) apply (subst range_eq, assumption+) apply simp done lemma range_subsetI: fixes x :: "'a :: order" assumes xX: "X \<le> x" and yY: "y \<le> Y" shows "{x .. y} \<subseteq> {X .. Y}" using xX yY by auto lemma set_False [simp]: "(set bs \<subseteq> {False}) = (True \<notin> set bs)" by auto declare of_nat_power [simp del] (* TODO: move to word *) lemma unat_of_bl_length: "unat (of_bl xs :: 'a::len word) < 2 ^ (length xs)" proof (cases "length xs < len_of TYPE('a)") case True hence "(of_bl xs::'a::len word) < 2 ^ length xs" by (simp add: of_bl_length_less) with True show ?thesis by (simp add: word_less_nat_alt word_unat_power unat_of_nat) next case False have "unat (of_bl xs::'a::len word) < 2 ^ len_of TYPE('a)" by (simp split: unat_split) also from False have "len_of TYPE('a) \<le> length xs" by simp hence "2 ^ len_of TYPE('a) \<le> (2::nat) ^ length xs" by (rule power_increasing) simp finally show ?thesis . qed lemma is_aligned_0'[simp]: "is_aligned 0 n" by (simp add: is_aligned_def) lemma p_assoc_help: fixes p :: "'a::{ring,power,numeral,one}" shows "p + 2^sz - 1 = p + (2^sz - 1)" by simp lemma word_add_increasing: fixes x :: "'a :: len word" shows "\<lbrakk> p + w \<le> x; p \<le> p + w \<rbrakk> \<Longrightarrow> p \<le> x" by unat_arith lemma word_random: fixes x :: "'a :: len word" shows "\<lbrakk> p \<le> p + x'; x \<le> x' \<rbrakk> \<Longrightarrow> p \<le> p + x" by unat_arith lemma word_sub_mono: "\<lbrakk> a \<le> c; d \<le> b; a - b \<le> a; c - d \<le> c \<rbrakk> \<Longrightarrow> (a - b) \<le> (c - d :: ('a :: len) word)" by unat_arith lemma power_not_zero: "n < len_of TYPE('a::len) \<Longrightarrow> (2 :: 'a word) ^ n \<noteq> 0" by (metis p2_gt_0 word_neq_0_conv) lemma word_gt_a_gt_0: "a < n \<Longrightarrow> (0 :: 'a::len word) < n" apply (case_tac "n = 0") apply clarsimp apply (clarsimp simp: word_neq_0_conv) done lemma word_shift_nonzero: "\<lbrakk> (x\<Colon>'a\<Colon>len word) \<le> 2 ^ m; m + n < len_of TYPE('a\<Colon>len); x \<noteq> 0\<rbrakk> \<Longrightarrow> x << n \<noteq> 0" apply (simp only: word_neq_0_conv word_less_nat_alt shiftl_t2n mod_0 unat_word_ariths unat_power_lower word_le_nat_alt) apply (subst mod_less) apply (rule order_le_less_trans) apply (erule mult_le_mono2) apply (subst power_add[symmetric]) apply (rule power_strict_increasing) apply simp apply simp apply simp done lemma word_power_less_1 [simp]: "sz < len_of TYPE('a\<Colon>len) \<Longrightarrow> (2::'a word) ^ sz - 1 < 2 ^ sz" apply (simp add: word_less_nat_alt word_bits_def) apply (subst unat_minus_one) apply (simp add: word_unat.Rep_inject [symmetric]) apply simp done lemmas word32_power_less_1[simp] = word_power_less_1[where 'a = 32, folded word_bits_def] lemma nasty_split_lt: "\<lbrakk> (x :: 'a:: len word) < 2 ^ (m - n); n \<le> m; m < len_of TYPE('a\<Colon>len) \<rbrakk> \<Longrightarrow> x * 2 ^ n + (2 ^ n - 1) \<le> 2 ^ m - 1" apply (simp only: add_diff_eq word_bits_def) apply (subst mult_1[symmetric], subst distrib_right[symmetric]) apply (rule word_sub_mono) apply (rule order_trans) apply (rule word_mult_le_mono1) apply (rule inc_le) apply assumption apply (subst word_neq_0_conv[symmetric]) apply (rule power_not_zero) apply (simp add: word_bits_def) apply (subst unat_power_lower, simp)+ apply (subst power_add[symmetric]) apply (rule power_strict_increasing) apply (simp add: word_bits_def) apply simp apply (subst power_add[symmetric]) apply simp apply simp apply (rule word_sub_1_le) apply (subst mult.commute) apply (subst shiftl_t2n[symmetric]) apply (rule word_shift_nonzero) apply (erule inc_le) apply (simp add: word_bits_def) apply (unat_arith) apply (drule word_power_less_1[unfolded word_bits_def]) apply simp done lemma nasty_split_less: "\<lbrakk>m \<le> n; n \<le> nm; nm < len_of TYPE('a\<Colon>len); x < 2 ^ (nm - n)\<rbrakk> \<Longrightarrow> (x :: 'a word) * 2 ^ n + (2 ^ m - 1) < 2 ^ nm" apply (simp only: word_less_sub_le[symmetric]) apply (rule order_trans [OF _ nasty_split_lt]) apply (rule word_plus_mono_right) apply (rule word_sub_mono) apply (simp add: word_le_nat_alt) apply simp apply (simp add: word_sub_1_le[OF power_not_zero]) apply (simp add: word_sub_1_le[OF power_not_zero]) apply (rule is_aligned_no_wrap') apply (rule is_aligned_mult_triv2) apply simp apply (erule order_le_less_trans, simp) apply simp+ done lemma int_not_emptyD: "A \<inter> B \<noteq> {} \<Longrightarrow> \<exists>x. x \<in> A \<and> x \<in> B" by (erule contrapos_np, clarsimp simp: disjoint_iff_not_equal) lemma unat_less_power: fixes k :: "'a::len word" assumes szv: "sz < len_of TYPE('a)" and kv: "k < 2 ^ sz" shows "unat k < 2 ^ sz" using szv unat_mono [OF kv] by simp (* This should replace some crud \<dots> search for unat_of_nat *) lemma unat_mult_power_lem: assumes kv: "k < 2 ^ (len_of TYPE('a::len) - sz)" shows "unat (2 ^ sz * of_nat k :: (('a::len) word)) = 2 ^ sz * k" proof cases assume szv: "sz < len_of TYPE('a::len)" show ?thesis proof (cases "sz = 0") case True thus ?thesis using kv szv by (simp add: unat_of_nat) next case False hence sne: "0 < sz" .. have uk: "unat (of_nat k :: 'a word) = k" apply (subst unat_of_nat) apply (simp add: nat_mod_eq less_trans[OF kv] sne) done show ?thesis using szv apply (subst iffD1 [OF unat_mult_lem]) apply (simp add: uk nat_less_power_trans[OF kv order_less_imp_le [OF szv]])+ done qed next assume "\<not> sz < len_of TYPE('a)" with kv show ?thesis by (simp add: not_less power_overflow) qed lemma aligned_add_offset_no_wrap: fixes off :: "('a::len) word" and x :: "'a word" assumes al: "is_aligned x sz" and offv: "off < 2 ^ sz" shows "unat x + unat off < 2 ^ len_of TYPE('a)" proof cases assume szv: "sz < len_of TYPE('a)" from al obtain k where xv: "x = 2 ^ sz * (of_nat k)" and kl: "k < 2 ^ (len_of TYPE('a) - sz)" by (auto elim: is_alignedE) show ?thesis using szv apply (subst xv) apply (subst unat_mult_power_lem[OF kl]) apply (subst mult.commute, rule nat_add_offset_less) apply (rule less_le_trans[OF unat_mono[OF offv, simplified]]) apply (erule eq_imp_le[OF unat_power_lower]) apply (rule kl) apply simp done next assume "\<not> sz < len_of TYPE('a)" with offv show ?thesis by (simp add: not_less power_overflow ) qed lemma aligned_add_offset_mod: fixes x :: "('a::len) word" assumes al: "is_aligned x sz" and kv: "k < 2 ^ sz" shows "(x + k) mod 2 ^ sz = k" proof cases assume szv: "sz < len_of TYPE('a)" have ux: "unat x + unat k < 2 ^ len_of TYPE('a)" by (rule aligned_add_offset_no_wrap) fact+ show ?thesis using al szv apply - apply (erule is_alignedE) apply (subst word_unat.Rep_inject [symmetric]) apply (subst unat_mod) apply (subst iffD1 [OF unat_add_lem], rule ux) apply simp apply (subst unat_mult_power_lem, assumption+) apply (subst mod_add_left_eq) apply (simp) apply (rule mod_less[OF less_le_trans[OF unat_mono], OF kv]) apply (erule eq_imp_le[OF unat_power_lower]) done next assume "\<not> sz < len_of TYPE('a)" with al show ?thesis by (simp add: not_less power_overflow is_aligned_mask mask_def word_mod_by_0) qed lemma word_plus_mcs_4: "\<lbrakk>v + x \<le> w + x; x \<le> v + x\<rbrakk> \<Longrightarrow> v \<le> (w::'a::len word)" by uint_arith lemma word_plus_mcs_3: "\<lbrakk>v \<le> w; x \<le> w + x\<rbrakk> \<Longrightarrow> v + x \<le> w + (x::'a::len word)" by unat_arith have rl: "\<And>(p::'a word) k w. \<lbrakk>uint p + uint k < 2 ^ len_of TYPE('a); w = p + k; w \<le> p + (2 ^ sz - 1) \<rbrakk> \<Longrightarrow> k < 2 ^ sz" apply - apply simp apply (subst (asm) add.commute, subst (asm) add.commute, drule word_plus_mcs_4) apply (subst add.commute, subst no_plus_overflow_uint_size) apply (simp add: word_size_bl) apply (erule iffD1 [OF word_less_sub_le[OF szv]]) done from xb obtain kx where kx: "z = x + kx" and kxl: "uint x + uint kx < 2 ^ len_of TYPE('a)" by (clarsimp dest!: word_le_exists') from yb obtain ky where ky: "z = y + ky" and kyl: "uint y + uint ky < 2 ^ len_of TYPE('a)" by (clarsimp dest!: word_le_exists') have "x = y" proof - have "kx = z mod 2 ^ sz" proof (subst kx, rule sym, rule aligned_add_offset_mod) show "kx < 2 ^ sz" by (rule rl) fact+ qed fact+ also have "\<dots> = ky" proof (subst ky, rule aligned_add_offset_mod) show "ky < 2 ^ sz" using kyl ky yt by (rule rl) qed fact+ finally have kxky: "kx = ky" . moreover have "x + kx = y + ky" by (simp add: kx [symmetric] ky [symmetric]) ultimately show ?thesis by simp qed thus False using neq by simp qed next assume "\<not> sz < len_of TYPE('a)" with neq alx aly have False by (simp add: is_aligned_mask mask_def power_overflow) thus ?thesis .. qed lemma less_two_pow_divD: "\<lbrakk> (x :: nat) < 2 ^ n div 2 ^ m \<rbrakk> \<Longrightarrow> n \<ge> m \<and> (x < 2 ^ (n - m))" apply (rule context_conjI) apply (rule ccontr) apply (simp add: div_less power_strict_increasing) apply (simp add: power_sub) done lemma less_two_pow_divI: "\<lbrakk> (x :: nat) < 2 ^ (n - m); m \<le> n \<rbrakk> \<Longrightarrow> x < 2 ^ n div 2 ^ m" by (simp add: power_sub) lemma word_less_two_pow_divI: "\<lbrakk> (x :: 'a::len word) < 2 ^ (n - m); m \<le> n; n < len_of TYPE('a) \<rbrakk> \<Longrightarrow> x < 2 ^ n div 2 ^ m" apply (simp add: word_less_nat_alt) apply (subst unat_word_ariths) apply (subst mod_less) apply (rule order_le_less_trans [OF div_le_dividend]) apply (rule unat_lt2p) apply (simp add: power_sub) done lemma word_less_two_pow_divD: "\<lbrakk> (x :: 'a::len word) < 2 ^ n div 2 ^ m \<rbrakk> \<Longrightarrow> n \<ge> m \<and> (x < 2 ^ (n - m))" apply (cases "n < len_of TYPE('a)") apply (cases "m < len_of TYPE('a)") apply (simp add: word_less_nat_alt) apply (subst(asm) unat_word_ariths) apply (subst(asm) mod_less) apply (rule order_le_less_trans [OF div_le_dividend]) apply (rule unat_lt2p) apply (clarsimp dest!: less_two_pow_divD) apply (simp add: power_overflow) apply (simp add: word_div_def) apply (simp add: power_overflow word_div_def) done lemma of_nat_less_two_pow_div_set: "\<lbrakk> n < len_of TYPE('a) \<rbrakk> \<Longrightarrow> {x. x < (2 ^ n div 2 ^ m :: 'a::len word)} = of_nat ` {k. k < 2 ^ n div 2 ^ m}" apply (simp add: image_def) apply (safe dest!: word_less_two_pow_divD less_two_pow_divD intro!: word_less_two_pow_divI) apply (rule_tac x="unat x" in exI) apply (simp add: power_sub[symmetric]) apply (subst unat_power_lower[symmetric, where 'a='a]) apply simp apply (erule unat_mono) apply (subst word_unat_power) apply (rule of_nat_mono_maybe) apply (rule power_strict_increasing) apply simp apply simp apply assumption done (* FIXME: generalise! *) lemma upto_2_helper: "{0..<2 :: word32} = {0, 1}" apply (safe, simp_all) apply unat_arith done (* TODO: MOVE to word *) lemma word_less_power_trans2: fixes n :: "'a::len word" shows "\<lbrakk>n < 2 ^ (m - k); k \<le> m; m < len_of TYPE('a)\<rbrakk> \<Longrightarrow> n * 2 ^ k < 2 ^ m" by (subst field_simps, rule word_less_power_trans) lemma ucast_less: "len_of TYPE('b) < len_of TYPE('a) \<Longrightarrow> (ucast (x :: ('b :: len) word) :: (('a :: len) word)) < 2 ^ len_of TYPE('b)" apply (subst mask_eq_iff_w2p[symmetric]) apply (simp add: word_size) apply (rule word_eqI) apply (simp add: word_size nth_ucast) apply safe apply (simp add: test_bit.Rep[simplified]) done lemma ucast_less_shiftl_helper: "\<lbrakk> len_of TYPE('b) + 2 < word_bits; 2 ^ (len_of TYPE('b) + 2) \<le> n\<rbrakk> \<Longrightarrow> (ucast (x :: ('b :: len) word) << 2) < (n :: word32)" apply (erule order_less_le_trans[rotated]) apply (cut_tac ucast_less[where x=x and 'a=32]) apply (simp only: shiftl_t2n field_simps) apply (rule word_less_power_trans2) apply (simp_all add: word_bits_def) done lemma ucast_range_less: "len_of TYPE('a :: len) < len_of TYPE('b :: len) \<Longrightarrow> range (ucast :: 'a word \<Rightarrow> 'b word) = {x. x < 2 ^ len_of TYPE ('a)}" apply safe apply (erule ucast_less) apply (simp add: image_def) apply (rule_tac x="ucast x" in exI) apply (drule less_mask_eq) apply (rule word_eqI) apply (drule_tac x=n in word_eqD) apply (simp add: word_size nth_ucast) done lemma word_power_less_diff: "\<lbrakk>2 ^ n * q < (2::'a::len word) ^ m; q < 2 ^ (len_of TYPE('a) - n)\<rbrakk> \<Longrightarrow> q < 2 ^ (m - n)" apply (case_tac "m \<ge> len_of TYPE('a)") apply (simp add: power_overflow) apply (case_tac "n \<ge> len_of TYPE('a)") apply (simp add: power_overflow) apply (cases "n = 0") apply simp apply (subst word_less_nat_alt) apply (subst unat_power_lower) apply simp apply (rule nat_power_less_diff) apply (simp add: word_less_nat_alt) apply (subst (asm) iffD1 [OF unat_mult_lem]) apply (simp add:nat_less_power_trans) apply simp done lemmas word_diff_ls' = word_diff_ls [where xa=x and x=x for x, simplified] lemmas word_l_diffs = word_l_diffs [where xa=x and x=x for x, simplified] lemma is_aligned_diff: fixes m :: "'a::len word" assumes alm: "is_aligned m s1" and aln: "is_aligned n s2" and s2wb: "s2 < len_of TYPE('a)" and nm: "m \<in> {n .. n + (2 ^ s2 - 1)}" and s1s2: "s1 \<le> s2" and s10: "0 < s1" (* Probably can be folded into the proof \<dots> *) shows "\<exists>q. m - n = of_nat q * 2 ^ s1 \<and> q < 2 ^ (s2 - s1)" proof - have rl: "\<And>m s. \<lbrakk> m < 2 ^ (len_of TYPE('a) - s); s < len_of TYPE('a) \<rbrakk> \<Longrightarrow> unat ((2::'a word) ^ s * of_nat m) = 2 ^ s * m" proof - fix m :: nat and s assume m: "m < 2 ^ (len_of TYPE('a) - s)" and s: "s < len_of TYPE('a)" hence "unat ((of_nat m) :: 'a word) = m" apply (subst unat_of_nat) apply (subst mod_less) apply (erule order_less_le_trans) apply (rule power_increasing) apply simp_all done thus "?thesis m s" using s m apply (subst iffD1 [OF unat_mult_lem]) apply (simp add: nat_less_power_trans)+ done qed have s1wb: "s1 < len_of TYPE('a)" using s2wb s1s2 by simp from alm obtain mq where mmq: "m = 2 ^ s1 * of_nat mq" and mq: "mq < 2 ^ (len_of TYPE('a) - s1)" by (auto elim: is_alignedE simp: field_simps) from aln obtain nq where nnq: "n = 2 ^ s2 * of_nat nq" and nq: "nq < 2 ^ (len_of TYPE('a) - s2)" by (auto elim: is_alignedE simp: field_simps) from s1s2 obtain sq where sq: "s2 = s1 + sq" by (auto simp: le_iff_add) note us1 = rl [OF mq s1wb] note us2 = rl [OF nq s2wb] from nm have "n \<le> m" by clarsimp hence "(2::'a word) ^ s2 * of_nat nq \<le> 2 ^ s1 * of_nat mq" using nnq mmq by simp hence "2 ^ s2 * nq \<le> 2 ^ s1 * mq" using s1wb s2wb by (simp add: word_le_nat_alt us1 us2) hence nqmq: "2 ^ sq * nq \<le> mq" using sq by (simp add: power_add) have "m - n = 2 ^ s1 * of_nat mq - 2 ^ s2 * of_nat nq" using mmq nnq by simp also have "\<dots> = 2 ^ s1 * of_nat mq - 2 ^ s1 * 2 ^ sq * of_nat nq" using sq by (simp add: power_add) also have "\<dots> = 2 ^ s1 * (of_nat mq - 2 ^ sq * of_nat nq)" by (simp add: field_simps) also have "\<dots> = 2 ^ s1 * of_nat (mq - 2 ^ sq * nq)" using s1wb s2wb us1 us2 nqmq by (simp add: word_unat_power) finally have mn: "m - n = of_nat (mq - 2 ^ sq * nq) * 2 ^ s1" by simp moreover from nm have "m - n \<le> 2 ^ s2 - 1" by - (rule word_diff_ls', (simp add: field_simps)+) hence "(2::'a word) ^ s1 * of_nat (mq - 2 ^ sq * nq) < 2 ^ s2" using mn s2wb by (simp add: field_simps word_less_sub_le) hence "of_nat (mq - 2 ^ sq * nq) < (2::'a word) ^ (s2 - s1)" proof (rule word_power_less_diff) have mm: "mq - 2 ^ sq * nq < 2 ^ (len_of TYPE('a) - s1)" using mq by simp moreover from s10 have "len_of TYPE('a) - s1 < len_of TYPE('a)" by (rule diff_less, simp) ultimately show "of_nat (mq - 2 ^ sq * nq) < (2::'a word) ^ (len_of TYPE('a) - s1)" apply (simp add: word_less_nat_alt) apply (subst unat_of_nat) apply (subst mod_less) apply (erule order_less_le_trans) apply simp+ done qed hence "mq - 2 ^ sq * nq < 2 ^ (s2 - s1)" using mq s2wb apply (simp add: word_less_nat_alt) apply (subst (asm) unat_of_nat) apply (subst (asm) mod_less) apply (rule order_le_less_trans) apply (rule diff_le_self) apply (erule order_less_le_trans) apply simp apply assumption done ultimately show ?thesis by auto qed lemma word_less_sub_1: "x < (y :: ('a :: len) word) \<Longrightarrow> x \<le> y - 1" apply (erule udvd_minus_le') apply (simp add: udvd_def)+ done lemma word_sub_mono2: "\<lbrakk> a + b \<le> c + d; c \<le> a; b \<le> a + b; d \<le> c + d \<rbrakk> \<Longrightarrow> b \<le> (d :: ('a :: len) word)" apply (drule(1) word_sub_mono) apply simp apply simp apply simp done lemma word_subset_less: "\<lbrakk> {x .. x + r - 1} \<subseteq> {y .. y + s - 1}; x \<le> x + r - 1; y \<le> y + (s :: ('a :: len) word) - 1; s \<noteq> 0 \<rbrakk> \<Longrightarrow> r \<le> s" apply (frule subsetD[where c=x]) apply simp apply (drule subsetD[where c="x + r - 1"]) apply simp apply (clarsimp simp: add_diff_eq[symmetric]) apply (drule(1) word_sub_mono2) apply (simp_all add: olen_add_eqv[symmetric]) apply (erule word_le_minus_cancel) apply (rule ccontr) apply (simp add: word_not_le) done lemma two_power_strict_part_mono: "strict_part_mono {..31} (\<lambda>x. (2 :: word32) ^ x)" by (simp | subst strict_part_mono_by_steps)+ lemma uint_power_lower: "n < len_of TYPE('a) \<Longrightarrow> uint (2 ^ n :: 'a :: len word) = (2 ^ n :: int)" by (simp add: uint_nat int_power) lemma power_le_mono: "\<lbrakk>2 ^ n \<le> (2::'a::len word) ^ m; n < len_of TYPE('a); m < len_of TYPE('a)\<rbrakk> \<Longrightarrow> n \<le> m" apply (clarsimp simp add: le_less) apply safe apply (simp add: word_less_nat_alt) apply (simp only: uint_arith_simps(3)) apply (drule uint_power_lower)+ apply simp done lemma sublist_equal_part: "xs \<le> ys \<Longrightarrow> take (length xs) ys = xs" by (clarsimp simp: prefixeq_def less_eq_list_def) lemma take_n_subset_le: "\<lbrakk> {x. take n (to_bl x) = take n xs} \<subseteq> {y :: word32. take m (to_bl y) = take m ys}; n \<le> 32; m \<le> 32; length xs = 32; length ys = 32 \<rbrakk> \<Longrightarrow> m \<le> n" apply (rule ccontr, simp add: le_def) apply (simp add: subset_iff) apply (drule spec[where x="of_bl (take n xs @ take (32 - n) (map Not (drop n ys)))"]) apply (simp add: word_bl.Abs_inverse) apply (subgoal_tac "\<exists>p. m = n + p") apply clarsimp apply (simp add: take_add take_map_Not) apply (rule exI[where x="m - n"]) apply simp done lemma two_power_eq: "\<lbrakk>n < len_of TYPE('a); m < len_of TYPE('a)\<rbrakk> \<Longrightarrow> ((2::'a::len word) ^ n = 2 ^ m) = (n = m)" apply safe apply (rule order_antisym) apply (simp add: power_le_mono[where 'a='a])+ done lemma less_list_def': "(xs < ys) = (prefix xs ys)" apply (metis prefix_order.eq_iff prefix_def less_list_def less_eq_list_def) done lemma prefix_length_less: "xs < ys \<Longrightarrow> length xs < length ys" apply (clarsimp simp: less_list_def' prefix_def) apply (frule prefixeq_length_le) apply (rule ccontr, simp) apply (clarsimp simp: prefixeq_def) done lemmas strict_prefix_simps [simp, code] = prefix_simps [folded less_list_def'] lemmas take_strict_prefix = take_prefix [folded less_list_def'] lemma not_prefix_longer: "\<lbrakk> length xs > length ys \<rbrakk> \<Longrightarrow> \<not> xs \<le> ys" by (clarsimp dest!: prefix_length_le) lemma of_bl_length: "length xs < len_of TYPE('a) \<Longrightarrow> of_bl xs < (2 :: 'a::len word) ^ length xs" by (simp add: of_bl_length_less) (* FIXME: do we need this? *) lemma power_overflow_simp [simp]: "(2 ^ n = (0::'a :: len word)) = (len_of TYPE ('a) \<le> n)" by (rule WordLib.p2_eq_0) lemma unat_of_nat_eq: "x < 2 ^ len_of TYPE('a) \<Longrightarrow> unat (of_nat x ::'a::len word) = x" by (simp add: unat_of_nat) lemmas unat_of_nat32 = unat_of_nat_eq[where 'a=32, unfolded word_bits_len_of] lemma unat_eq_of_nat: "n < 2 ^ len_of TYPE('a) \<Longrightarrow> (unat (x :: 'a::len word) = n) = (x = of_nat n)" by (subst unat_of_nat_eq[where x=n, symmetric], simp+) lemma unat_less_helper: "x < of_nat n \<Longrightarrow> unat x < n" apply (simp add: word_less_nat_alt) apply (erule order_less_le_trans) apply (simp add: unat_of_nat) done lemma of_nat_0: "\<lbrakk>of_nat n = (0::('a::len) word); n < 2 ^ len_of (TYPE('a))\<rbrakk> \<Longrightarrow> n = 0" by (drule unat_of_nat_eq, simp) lemma of_nat32_0: "\<lbrakk>of_nat n = (0::word32); n < 2 ^ word_bits\<rbrakk> \<Longrightarrow> n = 0" by (erule of_nat_0, simp add: word_bits_def) lemma unat_mask_2_less_4: "unat (p && mask 2 :: word32) < 4" apply (rule unat_less_helper) apply (rule order_le_less_trans, rule word_and_le1) apply (simp add: mask_def) done lemma minus_one_helper3: "x < y \<Longrightarrow> x \<le> (y :: ('a :: len) word) - 1" apply (simp add: word_less_nat_alt word_le_nat_alt) apply (subst unat_minus_one) apply clarsimp apply arith done lemma minus_one_helper: "\<lbrakk> x \<le> y; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x - 1 < (y :: ('a :: len) word)" apply (simp add: word_less_nat_alt word_le_nat_alt) apply (subst unat_minus_one) apply assumption apply (cases "unat x") apply (simp add: unat_eq_zero) apply arith done lemma minus_one_helper5: fixes x :: "'a::len word" shows "\<lbrakk>y \<noteq> 0; x \<le> y - 1 \<rbrakk> \<Longrightarrow> x < y" by (metis leD minus_one_helper not_leE) lemma plus_one_helper[elim!]: "x < n + (1 :: ('a :: len) word) \<Longrightarrow> x \<le> n" apply (simp add: word_less_nat_alt word_le_nat_alt field_simps) apply (case_tac "1 + n = 0") apply simp apply (subst(asm) unatSuc, assumption) apply arith done lemma not_greatest_aligned: "\<lbrakk> x < y; is_aligned x n; is_aligned y n \<rbrakk> \<Longrightarrow> x + 2 ^ n \<noteq> 0" apply (rule notI) apply (erule is_aligned_get_word_bits[where p=y]) apply (simp add: eq_diff_eq[symmetric]) apply (frule minus_one_helper3) apply (drule le_minus'[where a="x" and c="y - x" and b="- 1" for x y, simplified]) apply (simp add: field_simps) apply (frule is_aligned_less_sz[where a=y]) apply clarsimp apply (erule notE) apply (rule minus_one_helper5) apply simp apply (metis is_aligned_no_overflow minus_one_helper3 order_le_less_trans) apply simp done lemma of_nat_inj: "\<lbrakk>x < 2 ^ len_of TYPE('a); y < 2 ^ len_of TYPE('a)\<rbrakk> \<Longrightarrow> (of_nat x = (of_nat y :: 'a :: len word)) = (x = y)" by (simp add: word_unat.norm_eq_iff [symmetric]) lemma map_prefixI: "xs \<le> ys \<Longrightarrow> map f xs \<le> map f ys" by (clarsimp simp: less_eq_list_def prefixeq_def) lemma if_Some_None_eq_None: "((if P then Some v else None) = None) = (\<not> P)" by simp lemma CollectPairFalse [iff]: "{(a,b). False} = {}" by (simp add: split_def) lemma if_P_True1: "Q \<Longrightarrow> (if P then True else Q)" by simp lemma if_P_True2: "Q \<Longrightarrow> (if P then Q else True)" by simp lemma list_all2_induct [consumes 1, case_names Nil Cons]: assumes lall: "list_all2 Q xs ys" and nilr: "P [] []" and consr: "\<And>x xs y ys. \<lbrakk>list_all2 Q xs ys; Q x y; P xs ys\<rbrakk> \<Longrightarrow> P (x # xs) (y # ys)" shows "P xs ys" using lall proof (induct rule: list_induct2 [OF list_all2_lengthD [OF lall]]) case 1 thus ?case by auto fact+ next case (2 x xs y ys) show ?case proof (rule consr) from "2.prems" show "list_all2 Q xs ys" and "Q x y" by simp_all thus "P xs ys" by (intro "2.hyps") qed qed lemma list_all2_induct_suffixeq [consumes 1, case_names Nil Cons]: assumes lall: "list_all2 Q as bs" and nilr: "P [] []" and consr: "\<And>x xs y ys. \<lbrakk>list_all2 Q xs ys; Q x y; P xs ys; suffixeq (x # xs) as; suffixeq (y # ys) bs\<rbrakk> \<Longrightarrow> P (x # xs) (y # ys)" shows "P as bs" proof - def as' == as def bs' == bs have "suffixeq as as' \<and> suffixeq bs bs'" unfolding as'_def bs'_def by simp thus ?thesis using lall proof (induct rule: list_induct2 [OF list_all2_lengthD [OF lall]]) case 1 show ?case by fact next case (2 x xs y ys) show ?case proof (rule consr) from "2.prems" show "list_all2 Q xs ys" and "Q x y" by simp_all thus "P xs ys" using "2.hyps" "2.prems" by (auto dest: suffixeq_ConsD) from "2.prems" show "suffixeq (x # xs) as" and "suffixeq (y # ys) bs" by (auto simp: as'_def bs'_def) qed qed qed lemma distinct_prop_enum: "\<lbrakk> \<And>x y. \<lbrakk> x \<le> stop; y \<le> stop; x \<noteq> y \<rbrakk> \<Longrightarrow> P x y \<rbrakk> \<Longrightarrow> distinct_prop P [(0 :: word32) .e. stop]" apply (simp add: upto_enum_def distinct_prop_map del: upt.simps) apply (rule distinct_prop_distinct) apply simp apply (simp add: less_Suc_eq_le del: upt.simps) apply (erule_tac x="of_nat x" in meta_allE) apply (erule_tac x="of_nat y" in meta_allE) apply (frule_tac y=x in unat_le) apply (frule_tac y=y in unat_le) apply (erule word_unat.Rep_cases)+ apply (simp add: toEnum_of_nat[OF unat_lt2p] word_le_nat_alt) done lemma distinct_prop_enum_step: "\<lbrakk> \<And>x y. \<lbrakk> x \<le> stop div step; y \<le> stop div step; x \<noteq> y \<rbrakk> \<Longrightarrow> P (x * step) (y * step) \<rbrakk> \<Longrightarrow> distinct_prop P [0, step .e. stop]" apply (simp add: upto_enum_step_def distinct_prop_map) apply (rule distinct_prop_enum) apply simp done lemma if_apply_def2: "(if P then F else G) = (\<lambda>x. (P \<longrightarrow> F x) \<and> (\<not> P \<longrightarrow> G x))" by simp lemma case_bool_If: "case_bool P Q b = (if b then P else Q)" by simp lemma option_case_If: "case_option P (\<lambda>x. Q) v = (if v = None then P else Q)" by clarsimp lemma option_case_If2: "case_option P Q v = If (v \<noteq> None) (Q (the v)) P" by (simp split: option.split) lemma if3_fold: "(if P then x else if Q then y else x) = (if P \<or> \<not> Q then x else y)" by simp lemma word32_shift_by_2: "x * 4 = (x::word32) << 2" by (simp add: shiftl_t2n) (* TODO: move to Aligned *) lemma add_mask_lower_bits: "\<lbrakk>is_aligned (x :: 'a :: len word) n; \<forall>n' \<ge> n. n' < len_of TYPE('a) \<longrightarrow> \<not> p !! n'\<rbrakk> \<Longrightarrow> x + p && ~~mask n = x" apply (subst word_plus_and_or_coroll) apply (rule word_eqI) apply (clarsimp simp: word_size is_aligned_nth) apply (erule_tac x=na in allE)+ apply simp apply (rule word_eqI) apply (clarsimp simp: word_size is_aligned_nth nth_mask word_ops_nth_size) apply (erule_tac x=na in allE)+ apply (case_tac "na < n") apply simp apply simp done lemma findSomeD: "find P xs = Some x \<Longrightarrow> P x \<and> x \<in> set xs" by (induct xs) (auto split: split_if_asm) lemma findNoneD: "find P xs = None \<Longrightarrow> \<forall>x \<in> set xs. \<not>P x" by (induct xs) (auto split: split_if_asm) lemma dom_upd: "dom (\<lambda>x. if x = y then None else f x) = dom f - {y}" by (rule set_eqI) (auto split: split_if_asm) lemma ran_upd: "\<lbrakk> inj_on f (dom f); f y = Some z \<rbrakk> \<Longrightarrow> ran (\<lambda>x. if x = y then None else f x) = ran f - {z}" apply (rule set_eqI) apply (unfold ran_def) apply simp apply (rule iffI) apply clarsimp apply (rule conjI, blast) apply clarsimp apply (drule_tac x=a and y=y in inj_onD, simp) apply blast apply blast apply simp apply clarsimp apply (rule_tac x=a in exI) apply clarsimp done lemma maxBound_word: "(maxBound::'a::len word) = -1" apply (simp add: maxBound_def enum_word_def) apply (subst last_map) apply clarsimp apply simp done lemma minBound_word: "(minBound::'a::len word) = 0" apply (simp add: minBound_def enum_word_def) apply (subst map_upt_unfold) apply simp apply simp done lemma maxBound_max_word: "(maxBound::'a::len word) = max_word" apply (subst maxBound_word) apply (subst max_word_minus [symmetric]) apply (rule refl) done lemma is_aligned_andI1: "is_aligned x n \<Longrightarrow> is_aligned (x && y) n" by (simp add: is_aligned_nth) lemma is_aligned_andI2: "is_aligned y n \<Longrightarrow> is_aligned (x && y) n" by (simp add: is_aligned_nth) lemma is_aligned_shiftl: "is_aligned w (n - m) \<Longrightarrow> is_aligned (w << m) n" by (simp add: is_aligned_nth nth_shiftl) lemma is_aligned_shiftr: "is_aligned w (n + m) \<Longrightarrow> is_aligned (w >> m) n" by (simp add: is_aligned_nth nth_shiftr) lemma is_aligned_shiftl_self: "is_aligned (p << n) n" by (rule is_aligned_shiftl) simp lemma is_aligned_neg_mask_eq: "is_aligned p n \<Longrightarrow> p && ~~ mask n = p" apply (simp add: is_aligned_nth) apply (rule word_eqI) apply (clarsimp simp: word_size word_ops_nth_size) apply fastforce done lemma rtrancl_insert: assumes x_new: "\<And>y. (x,y) \<notin> R" shows "R^* `` insert x S = insert x (R^* `` S)" proof - have "R^* `` insert x S = R^* `` ({x} \<union> S)" by simp also have "R^* `` ({x} \<union> S) = R^* `` {x} \<union> R^* `` S" by (subst Image_Un) simp also have "R^* `` {x} = {x}" apply (clarsimp simp: Image_singleton) apply (rule set_eqI, clarsimp) apply (rule iffI) apply (drule rtranclD) apply (erule disjE, simp) apply clarsimp apply (drule tranclD) apply (clarsimp simp: x_new) apply fastforce done finally show ?thesis by simp qed lemma ran_del_subset: "y \<in> ran (f (x := None)) \<Longrightarrow> y \<in> ran f" by (auto simp: ran_def split: split_if_asm) lemma trancl_sub_lift: assumes sub: "\<And>p p'. (p,p') \<in> r \<Longrightarrow> (p,p') \<in> r'" shows "(p,p') \<in> r^+ \<Longrightarrow> (p,p') \<in> r'^+" by (fastforce intro: trancl_mono sub) lemma trancl_step_lift: assumes x_step: "\<And>p p'. (p,p') \<in> r' \<Longrightarrow> (p,p') \<in> r \<or> (p = x \<and> p' = y)" assumes y_new: "\<And>p'. \<not>(y,p') \<in> r" shows "(p,p') \<in> r'^+ \<Longrightarrow> (p,p') \<in> r^+ \<or> ((p,x) \<in> r^+ \<and> p' = y) \<or> (p = x \<and> p' = y)" apply (erule trancl_induct) apply (drule x_step) apply fastforce apply (erule disjE) apply (drule x_step) apply (erule disjE) apply (drule trancl_trans, drule r_into_trancl, assumption) apply blast apply clarsimp apply (erule disjE) apply clarsimp apply (drule x_step) apply (erule disjE) apply (simp add: y_new) apply simp apply clarsimp apply (drule x_step) apply (simp add: y_new) done lemma upto_enum_step_shift: "\<lbrakk> is_aligned p n \<rbrakk> \<Longrightarrow> ([p , p + 2 ^ m .e. p + 2 ^ n - 1]) = map (op + p) [0, 2 ^ m .e. 2 ^ n - 1]" apply (erule is_aligned_get_word_bits) prefer 2 apply (simp add: map_idI) apply (clarsimp simp: upto_enum_step_def) apply (frule is_aligned_no_overflow) apply (simp add: linorder_not_le [symmetric]) done lemma upto_enum_step_shift_red: "\<lbrakk> is_aligned p sz; sz < word_bits; us \<le> sz \<rbrakk> \<Longrightarrow> [p, p + 2 ^ us .e. p + 2 ^ sz - 1] = map (\<lambda>x. p + of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]" apply (subst upto_enum_step_shift, assumption) apply (simp add: upto_enum_step_red) done lemma div_to_mult_word_lt: "\<lbrakk> (x :: ('a :: len) word) \<le> y div z \<rbrakk> \<Longrightarrow> x * z \<le> y" apply (cases "z = 0") apply simp apply (simp add: word_neq_0_conv) apply (rule order_trans) apply (erule(1) word_mult_le_mono1) apply (simp add: unat_div) apply (rule order_le_less_trans [OF div_mult_le]) apply simp apply (rule word_div_mult_le) done lemma upto_enum_step_subset: "set [x, y .e. z] \<subseteq> {x .. z}" apply (clarsimp simp: upto_enum_step_def linorder_not_less) apply (drule div_to_mult_word_lt) apply (rule conjI) apply (erule word_random[rotated]) apply simp apply (rule order_trans) apply (erule word_plus_mono_right) apply simp apply simp done lemma shiftr_less_t2n': fixes x :: "('a :: len) word" shows "\<lbrakk> x && mask (n + m) = x; m < len_of TYPE('a) \<rbrakk> \<Longrightarrow> (x >> n) < 2 ^ m" apply (subst mask_eq_iff_w2p[symmetric]) apply (simp add: word_size) apply (rule word_eqI) apply (drule_tac x="na + n" in word_eqD) apply (simp add: nth_shiftr word_size) apply safe done lemma shiftr_less_t2n: fixes x :: "('a :: len) word" shows "x < 2 ^ (n + m) \<Longrightarrow> (x >> n) < 2 ^ m" apply (rule shiftr_less_t2n') apply (erule less_mask_eq) apply (rule ccontr) apply (simp add: not_less) apply (subst (asm) p2_eq_0[symmetric]) apply (simp add: power_add) done lemma shiftr_eq_0: "n \<ge> len_of TYPE('a :: len) \<Longrightarrow> ((w::('a::len word)) >> n) = 0" apply (cut_tac shiftr_less_t2n'[of w n 0], simp) apply (simp add: mask_eq_iff) apply (simp add: lt2p_lem) apply simp done lemma shiftr_not_mask_0: "n+m\<ge>len_of TYPE('a :: len) \<Longrightarrow> ((w::('a::len word)) >> n) && ~~ mask m = 0" apply (simp add: and_not_mask shiftr_less_t2n shiftr_shiftr) apply (subgoal_tac "w >> n + m = 0", simp) apply (simp add: le_mask_iff[symmetric] mask_def le_def) apply (subst (asm) p2_gt_0[symmetric]) apply (simp add: power_add not_less) done lemma shiftl_less_t2n: fixes x :: "('a :: len) word" shows "\<lbrakk> x < (2 ^ (m - n)); m < len_of TYPE('a) \<rbrakk> \<Longrightarrow> (x << n) < 2 ^ m" apply (subst mask_eq_iff_w2p[symmetric]) apply (simp add: word_size) apply (drule less_mask_eq) apply (rule word_eqI) apply (drule_tac x="na - n" in word_eqD) apply (simp add: nth_shiftl word_size) apply (cases "n \<le> m") apply safe apply simp apply simp done lemma shiftl_less_t2n': "(x::'a::len word) < 2 ^ m \<Longrightarrow> m+n < len_of TYPE('a) \<Longrightarrow> x << n < 2 ^ (m + n)" by (rule shiftl_less_t2n) simp_all lemma ucast_ucast_mask: "(ucast :: ('a :: len) word \<Rightarrow> ('b :: len) word) (ucast x) = x && mask (len_of TYPE ('a))" apply (rule word_eqI) apply (simp add: nth_ucast word_size) done lemma ucast_ucast_len: "\<lbrakk> x < 2 ^ len_of TYPE('b) \<rbrakk> \<Longrightarrow> ucast (ucast x::'b::len word) = (x::'a::len word)" apply (subst ucast_ucast_mask) apply (erule less_mask_eq) done lemma unat_ucast: "unat (ucast x :: ('a :: len0) word) = unat x mod 2 ^ (len_of TYPE('a))" apply (simp add: unat_def ucast_def) apply (subst word_uint.eq_norm) apply (subst nat_mod_distrib) apply simp apply simp apply (subst nat_power_eq) apply simp apply simp done lemma sints_subset: "m \<le> n \<Longrightarrow> sints m \<subseteq> sints n" apply (simp add: sints_num) apply clarsimp apply (rule conjI) apply (erule order_trans[rotated]) apply simp apply (erule order_less_le_trans) apply simp done lemma up_scast_inj: "\<lbrakk> scast x = (scast y :: ('b :: len) word); size x \<le> len_of TYPE('b) \<rbrakk> \<Longrightarrow> x = y" apply (simp add: scast_def) apply (subst(asm) word_sint.Abs_inject) apply (erule subsetD [OF sints_subset]) apply (simp add: word_size) apply (erule subsetD [OF sints_subset]) apply (simp add: word_size) apply simp done lemma up_scast_inj_eq: "len_of TYPE('a) \<le> len_of TYPE ('b) \<Longrightarrow> (scast x = (scast y::'b::len word)) = (x = (y::'a::len word))" by (fastforce dest: up_scast_inj simp: word_size) lemma nth_bounded: "\<lbrakk>(x :: 'a :: len word) !! n; x < 2 ^ m; m \<le> len_of TYPE ('a)\<rbrakk> \<Longrightarrow> n < m" apply (frule test_bit_size) apply (clarsimp simp: test_bit_bl word_size) apply (simp add: nth_rev) apply (subst(asm) is_aligned_add_conv[OF is_aligned_0', simplified add_0_left, rotated]) apply assumption+ apply (simp only: to_bl_0 word_bits_len_of) apply (simp add: nth_append split: split_if_asm) done lemma is_aligned_add_or: "\<lbrakk>is_aligned p n; d < 2 ^ n\<rbrakk> \<Longrightarrow> p + d = p || d" apply (rule word_plus_and_or_coroll) apply (erule is_aligned_get_word_bits) apply (rule word_eqI) apply (clarsimp simp add: is_aligned_nth) apply (frule(1) nth_bounded) apply simp+ done lemma two_power_increasing: "\<lbrakk> n \<le> m; m < len_of TYPE('a) \<rbrakk> \<Longrightarrow> (2 :: 'a :: len word) ^ n \<le> 2 ^ m" by (simp add: word_le_nat_alt) lemma is_aligned_add_less_t2n: "\<lbrakk>is_aligned (p\<Colon>'a\<Colon>len word) n; d < 2^n; n \<le> m; p < 2^m\<rbrakk> \<Longrightarrow> p + d < 2^m" apply (case_tac "m < len_of TYPE('a)") apply (subst mask_eq_iff_w2p[symmetric]) apply (simp add: word_size) apply (simp add: is_aligned_add_or word_ao_dist less_mask_eq) apply (subst less_mask_eq) apply (erule order_less_le_trans) apply (erule(1) two_power_increasing) apply simp apply (simp add: power_overflow) done (* FIXME: generalise? *) lemma le_2p_upper_bits: "\<lbrakk> (p::word32) \<le> 2^n - 1; n < word_bits \<rbrakk> \<Longrightarrow> \<forall>n'\<ge>n. n' < word_bits \<longrightarrow> \<not> p !! n'" apply (subst upper_bits_unset_is_l2p, assumption) apply simp done lemma ran_upd': "\<lbrakk>inj_on f (dom f); f y = Some z\<rbrakk> \<Longrightarrow> ran (f (y := None)) = ran f - {z}" apply (drule (1) ran_upd) apply (simp add: ran_def) done (* FIXME: generalise? *) lemma le2p_bits_unset: "p \<le> 2 ^ n - 1 \<Longrightarrow> \<forall>n'\<ge>n. n' < word_bits \<longrightarrow> \<not> (p::word32) !! n'" apply (case_tac "n < word_bits") apply (frule upper_bits_unset_is_l2p [where p=p]) apply simp_all done lemma aligned_offset_non_zero: "\<lbrakk> is_aligned x n; y < 2 ^ n; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x + y \<noteq> 0" apply (cases "y = 0") apply simp apply (subst word_neq_0_conv) apply (subst gt0_iff_gem1) apply (erule is_aligned_get_word_bits) apply (subst field_simps[symmetric], subst plus_le_left_cancel_nowrap) apply (rule is_aligned_no_wrap') apply simp apply (rule minus_one_helper) apply simp apply assumption apply (erule (1) is_aligned_no_wrap') apply (simp add: gt0_iff_gem1 [symmetric] word_neq_0_conv) apply simp done lemma le_imp_power_dvd_int: "n \<le> m \<Longrightarrow> (b ^ n :: int) dvd b ^ m" apply (simp add: dvd_def) apply (rule exI[where x="b ^ (m - n)"]) apply (simp add: power_add[symmetric]) done (* FIXME: this is identical to mask_eqs(1), unnecessary? *) lemma mask_inner_mask: "((p && mask n) + q) && mask n = (p + q) && mask n" apply (rule mask_eqs(1)) done lemma mask_add_aligned: "is_aligned p n \<Longrightarrow> (p + q) && mask n = q && mask n" apply (simp add: is_aligned_mask) apply (subst mask_inner_mask [symmetric]) apply simp done lemma take_prefix: "(take (length xs) ys = xs) = (xs \<le> ys)" proof (induct xs arbitrary: ys) case Nil thus ?case by simp next case Cons thus ?case by (cases ys) auto qed lemma rel_comp_Image: "(R O R') `` S = R' `` (R `` S)" by blast lemma trancl_power: "x \<in> r^+ = (\<exists>n > 0. x \<in> r^^n)" apply (cases x) apply simp apply (rule iffI) apply (drule tranclD2) apply (clarsimp simp: rtrancl_is_UN_relpow) apply (rule_tac x="Suc n" in exI) apply fastforce apply clarsimp apply (case_tac n, simp) apply clarsimp apply (drule relpow_imp_rtrancl) apply fastforce done lemma take_is_prefix: "take n xs \<le> xs" apply (simp add: less_eq_list_def prefixeq_def) apply (rule_tac x="drop n xs" in exI) apply simp done lemma cart_singleton_empty: "(S \<times> {e} = {}) = (S = {})" by blast lemma word_div_1: "(n :: ('a :: len) word) div 1 = n" by (simp add: word_div_def) lemma word_minus_one_le: "-1 \<le> (x :: ('a :: len) word) = (x = -1)" apply (insert word_n1_ge[where y=x]) apply safe apply (erule(1) order_antisym) done lemmas word32_minus_one_le = word_minus_one_le[where 'a=32, simplified] lemma mask_out_sub_mask: "(x && ~~ mask n) = x - (x && mask n)" by (simp add: field_simps word_plus_and_or_coroll2) lemma is_aligned_addD1: assumes al1: "is_aligned (x + y) n" and al2: "is_aligned (x::'a::len word) n" shows "is_aligned y n" using al2 proof (rule is_aligned_get_word_bits) assume "x = 0" thus ?thesis using al1 by simp next assume nv: "n < len_of TYPE('a)" from al1 obtain q1 where xy: "x + y = 2 ^ n * of_nat q1" and "q1 < 2 ^ (len_of TYPE('a) - n)" by (rule is_alignedE) moreover from al2 obtain q2 where x: "x = 2 ^ n * of_nat q2" and "q2 < 2 ^ (len_of TYPE('a) - n)" by (rule is_alignedE) ultimately have "y = 2 ^ n * (of_nat q1 - of_nat q2)" by (simp add: field_simps) thus ?thesis using nv by (simp add: is_aligned_mult_triv1) qed lemmas is_aligned_addD2 = is_aligned_addD1[OF subst[OF add.commute, of "%x. is_aligned x n" for n]] lemma is_aligned_add: "\<lbrakk>is_aligned p n; is_aligned q n\<rbrakk> \<Longrightarrow> is_aligned (p + q) n" by (simp add: is_aligned_mask mask_add_aligned) lemma my_BallE: "\<lbrakk> \<forall>x \<in> A. P x; y \<in> A; P y \<Longrightarrow> Q \<rbrakk> \<Longrightarrow> Q" by (simp add: Ball_def) lemma word_le_add: fixes x :: "'a :: len word" shows "x \<le> y \<Longrightarrow> \<exists>n. y = x + of_nat n" apply (rule exI [where x = "unat (y - x)"]) apply simp done lemma zipWith_nth: "\<lbrakk> n < min (length xs) (length ys) \<rbrakk> \<Longrightarrow> zipWith f xs ys ! n = f (xs ! n) (ys ! n)" unfolding zipWith_def by simp lemma length_zipWith: "length (zipWith f xs ys) = min (length xs) (length ys)" unfolding zipWith_def by simp lemma distinct_prop_nth: "\<lbrakk> distinct_prop P ls; n < n'; n' < length ls \<rbrakk> \<Longrightarrow> P (ls ! n) (ls ! n')" apply (induct ls arbitrary: n n') apply simp apply simp apply (case_tac n') apply simp apply simp apply (case_tac n) apply simp apply simp done lemma shiftl_mask_is_0 : "(x << n) && mask n = 0" apply (rule iffD1 [OF is_aligned_mask]) apply (rule is_aligned_shiftl_self) done lemma word_power_nonzero: "\<lbrakk> (x :: word32) < 2 ^ (word_bits - n); n < word_bits; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x * 2 ^ n \<noteq> 0" apply (cases "n = 0") apply simp apply (simp only: word_neq_0_conv word_less_nat_alt shiftl_t2n mod_0 unat_word_ariths unat_power_lower word_le_nat_alt word_bits_def) apply (unfold word_bits_len_of) apply (subst mod_less) apply (subst mult.commute, erule nat_less_power_trans) apply simp apply simp done lemmas unat_mult_simple = iffD1 [OF unat_mult_lem [where 'a = 32, unfolded word_bits_len_of]] definition sum_map :: "('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> 'a + 'c \<Rightarrow> 'b + 'd" where "sum_map f g x \<equiv> case x of Inl v \<Rightarrow> Inl (f v) | Inr v' \<Rightarrow> Inr (g v')" lemma sum_map_simps[simp]: "sum_map f g (Inl v) = Inl (f v)" "sum_map f g (Inr w) = Inr (g w)" by (simp add: sum_map_def)+ lemma if_and_helper: "(If x v v') && v'' = If x (v && v'') (v' && v'')" by (simp split: split_if) lemma unat_Suc2: fixes n :: "('a :: len) word" shows "n \<noteq> -1 \<Longrightarrow> unat (n + 1) = Suc (unat n)" apply (subst add.commute, rule unatSuc) apply (subst eq_diff_eq[symmetric], simp add: minus_equation_iff) done lemmas unat_eq_1 = unat_eq_0 word_unat.Rep_inject[where y=1, simplified] lemma cart_singleton_image: "S \<times> {s} = (\<lambda>v. (v, s)) ` S" by auto lemma singleton_eq_o2s: "({x} = set_option v) = (v = Some x)" by (cases v, auto) lemma ran_option_map_restrict_eq: "\<lbrakk> x \<in> ran (option_map f o g); x \<notin> ran (option_map f o (g |` (- {y}))) \<rbrakk> \<Longrightarrow> \<exists>v. g y = Some v \<and> f v = x" apply (clarsimp simp: elim!: ranE) apply (rename_tac w z) apply (case_tac "w = y") apply clarsimp apply (erule notE, rule_tac a=w in ranI) apply (simp add: restrict_map_def) done lemma option_set_singleton_eq: "(set_option opt = {v}) = (opt = Some v)" by (cases opt, simp_all) lemmas option_set_singleton_eqs = option_set_singleton_eq trans[OF eq_commute option_set_singleton_eq] lemma option_map_comp2: "option_map (f o g) = option_map f o option_map g" by (simp add: option.map_comp fun_eq_iff) lemma rshift_sub_mask_eq: "(a >> (size a - b)) && mask b = a >> (size a - b)" using shiftl_shiftr2[where a=a and b=0 and c="size a - b"] apply (cases "b < size a") apply simp apply (simp add: linorder_not_less mask_def word_size p2_eq_0[THEN iffD2]) done lemma shiftl_shiftr3: "b \<le> c \<Longrightarrow> a << b >> c = (a >> c - b) && mask (size a - c)" apply (cases "b = c") apply (simp add: shiftl_shiftr1) apply (simp add: shiftl_shiftr2) done lemma and_mask_shiftr_comm: "m\<le>size w \<Longrightarrow> (w && mask m) >> n = (w >> n) && mask (m-n)" by (simp add: and_mask shiftr_shiftr) (simp add: word_size shiftl_shiftr3) lemma and_not_mask_twice: "(w && ~~ mask n) && ~~ mask m = w && ~~ mask (max m n)" apply (simp add: and_not_mask) apply (case_tac "n<m") apply (simp_all add: shiftl_shiftr2 shiftl_shiftr1 not_less max_def shiftr_shiftr shiftl_shiftl) apply (cut_tac and_mask_shiftr_comm [where w=w and m="size w" and n=m, simplified,symmetric]) apply (simp add: word_size mask_def) apply (cut_tac and_mask_shiftr_comm [where w=w and m="size w" and n=n, simplified,symmetric]) apply (simp add: word_size mask_def) done (* FIXME: move *) lemma word_less_cases: "x < y \<Longrightarrow> x = y - 1 \<or> x < y - (1 ::'a::len word)" apply (drule word_less_sub_1) apply (drule order_le_imp_less_or_eq) apply auto done lemma eq_eqI: "a = b \<Longrightarrow> (a = x) = (b = x)" by simp lemma mask_and_mask: "mask a && mask b = mask (min a b)" apply (rule word_eqI) apply (simp add: word_size) done lemma mask_eq_0_eq_x: "(x && w = 0) = (x && ~~ w = x)" using word_plus_and_or_coroll2[where x=x and w=w] by auto lemma mask_eq_x_eq_0: "(x && w = x) = (x && ~~ w = 0)" using word_plus_and_or_coroll2[where x=x and w=w] by auto definition "limited_and (x :: ('a :: len) word) y = (x && y = x)" lemma limited_and_eq_0: "\<lbrakk> limited_and x z; y && ~~ z = y \<rbrakk> \<Longrightarrow> x && y = 0" unfolding limited_and_def apply (subst arg_cong2[where f="op &&"]) apply (erule sym)+ apply (simp(no_asm) add: word_bw_assocs word_bw_comms word_bw_lcs) done lemma limited_and_eq_id: "\<lbrakk> limited_and x z; y && z = z \<rbrakk> \<Longrightarrow> x && y = x" unfolding limited_and_def by (erule subst, fastforce simp: word_bw_lcs word_bw_assocs word_bw_comms) lemma lshift_limited_and: "limited_and x z \<Longrightarrow> limited_and (x << n) (z << n)" unfolding limited_and_def by (simp add: shiftl_over_and_dist[symmetric]) lemma rshift_limited_and: "limited_and x z \<Longrightarrow> limited_and (x >> n) (z >> n)" unfolding limited_and_def by (simp add: shiftr_over_and_dist[symmetric]) lemmas limited_and_simps1 = limited_and_eq_0 limited_and_eq_id lemmas is_aligned_limited_and = is_aligned_neg_mask_eq[unfolded mask_def, folded limited_and_def] lemma compl_of_1: "~~ 1 = (-2 :: ('a :: len) word)" apply (rule word_bool_alg.compl_eq_compl_iff[THEN iffD1]) apply simp done lemmas limited_and_simps = limited_and_simps1 limited_and_simps1[OF is_aligned_limited_and] limited_and_simps1[OF lshift_limited_and] limited_and_simps1[OF rshift_limited_and] limited_and_simps1[OF rshift_limited_and, OF is_aligned_limited_and] compl_of_1 shiftl_shiftr1[unfolded word_size mask_def] shiftl_shiftr2[unfolded word_size mask_def] lemma isRight_sum_case: "isRight x \<Longrightarrow> case_sum f g x = g (theRight x)" by (clarsimp simp add: isRight_def) lemma split_word_eq_on_mask: "(x = y) = (x && m = y && m \<and> x && ~~ m = y && ~~ m)" apply safe apply (rule word_eqI) apply (drule_tac x=n in word_eqD)+ apply (simp add: word_size word_ops_nth_size) apply auto done lemma inj_case_bool: "inj (case_bool a b) = (a \<noteq> b)" by (auto dest: inj_onD[where x=True and y=False] intro: inj_onI split: bool.split_asm) lemma zip_map2: "zip as (map f bs) = map (\<lambda>(a, b). (a, f b)) (zip as bs)" apply (induct bs arbitrary: as) apply simp apply (case_tac as) apply simp apply simp done lemma zip_same: "zip xs xs = map (\<lambda>v. (v, v)) xs" by (induct xs, simp+) lemma foldl_fun_upd: "foldl (\<lambda>s r. s (r := g r)) f rs = (\<lambda>x. if x \<in> set rs then g x else f x)" apply (induct rs arbitrary: f) apply simp apply (auto simp: fun_eq_iff split: split_if) done lemma all_rv_choice_fn_eq_pred: "\<lbrakk> \<And>rv. P rv \<Longrightarrow> \<exists>fn. f rv = g fn \<rbrakk> \<Longrightarrow> \<exists>fn. \<forall>rv. P rv \<longrightarrow> f rv = g (fn rv)" apply (rule_tac x="\<lambda>rv. SOME h. f rv = g h" in exI) apply (clarsimp split: split_if) apply (erule meta_allE, drule(1) meta_mp, elim exE) apply (erule someI) done lemma ex_const_function: "\<exists>f. \<forall>s. f (f' s) = v" by force lemma sum_to_zero: "(a :: 'a :: ring) + b = 0 \<Longrightarrow> a = (- b)" by (drule arg_cong[where f="\<lambda> x. x - a"], simp) lemma nat_le_Suc_less_imp: "x < y \<Longrightarrow> x \<le> y - Suc 0" by arith lemma list_case_If2: "case_list f g xs = If (xs = []) f (g (hd xs) (tl xs))" by (simp split: list.split) lemma length_ineq_not_Nil: "length xs > n \<Longrightarrow> xs \<noteq> []" "length xs \<ge> n \<Longrightarrow> n \<noteq> 0 \<longrightarrow> xs \<noteq> []" "\<not> length xs < n \<Longrightarrow> n \<noteq> 0 \<longrightarrow> xs \<noteq> []" "\<not> length xs \<le> n \<Longrightarrow> xs \<noteq> []" by auto lemma numeral_eqs: "2 = Suc (Suc 0)" "3 = Suc (Suc (Suc 0))" "4 = Suc (Suc (Suc (Suc 0)))" "5 = Suc (Suc (Suc (Suc (Suc 0))))" "6 = Suc (Suc (Suc (Suc (Suc (Suc 0)))))" by simp+ lemma psubset_singleton: "(S \<subset> {x}) = (S = {})" by blast lemma ucast_not_helper: fixes a::word8 assumes a: "a \<noteq> 0xFF" shows "ucast a \<noteq> (0xFF::word32)" proof assume "ucast a = (0xFF::word32)" also have "(0xFF::word32) = ucast (0xFF::word8)" by simp finally show False using a apply - apply (drule up_ucast_inj, simp) apply simp done qed lemma length_takeWhile_ge: "length (takeWhile f xs) = n \<Longrightarrow> length xs = n \<or> (length xs > n \<and> \<not> f (xs ! n))" apply (induct xs arbitrary: n) apply simp apply (simp split: split_if_asm) apply (case_tac n, simp_all) done lemma length_takeWhile_le: "\<not> f (xs ! n) \<Longrightarrow> length (takeWhile f xs) \<le> n" apply (induct xs arbitrary: n) apply simp apply (clarsimp split: split_if) apply (case_tac n, simp_all) done lemma length_takeWhile_gt: "n < length (takeWhile f xs) \<Longrightarrow> (\<exists>ys zs. length ys = Suc n \<and> xs = ys @ zs \<and> takeWhile f xs = ys @ takeWhile f zs)" apply (induct xs arbitrary: n) apply simp apply (simp split: split_if_asm) apply (case_tac n, simp_all) apply (rule_tac x="[a]" in exI) apply simp apply (erule meta_allE, drule(1) meta_mp) apply clarsimp apply (rule_tac x="a # ys" in exI) apply simp done lemma hd_drop_conv_nth2: "n < length xs \<Longrightarrow> hd (drop n xs) = xs ! n" by (rule hd_drop_conv_nth, clarsimp+) lemma map_upt_eq_vals_D: "\<lbrakk> map f [0 ..< n] = ys; m < length ys \<rbrakk> \<Longrightarrow> f m = ys ! m" by clarsimp lemma length_le_helper: "\<lbrakk> n \<le> length xs; n \<noteq> 0 \<rbrakk> \<Longrightarrow> xs \<noteq> [] \<and> n - 1 \<le> length (tl xs)" by (cases xs, simp_all) lemma all_ex_eq_helper: "(\<forall>v. (\<exists>v'. v = f v' \<and> P v v') \<longrightarrow> Q v) = (\<forall>v'. P (f v') v' \<longrightarrow> Q (f v'))" by auto lemma less_4_cases: "(x::word32) < 4 \<Longrightarrow> x=0 \<or> x=1 \<or> x=2 \<or> x=3" apply clarsimp apply (drule word_less_cases, erule disjE, simp, simp)+ done lemma if_n_0_0: "((if P then n else 0) \<noteq> 0) = (P \<and> n \<noteq> 0)" by (simp split: split_if) lemma insert_dom: assumes fx: "f x = Some y" shows "insert x (dom f) = dom f" unfolding dom_def using fx by auto lemma map_comp_subset_dom: "dom (prj \<circ>\<^sub>m f) \<subseteq> dom f" unfolding dom_def by (auto simp: map_comp_Some_iff) lemmas map_comp_subset_domD = subsetD [OF map_comp_subset_dom] lemma dom_map_comp: "x \<in> dom (prj \<circ>\<^sub>m f) = (\<exists>y z. f x = Some y \<and> prj y = Some z)" by (fastforce simp: dom_def map_comp_Some_iff) lemma option_map_Some_eq2: "(Some y = option_map f x) = (\<exists>z. x = Some z \<and> f z = y)" by (metis map_option_eq_Some) lemma option_map_eq_dom_eq: assumes ome: "option_map f \<circ> g = option_map f \<circ> g'" shows "dom g = dom g'" proof (rule set_eqI) fix x { assume "x \<in> dom g" hence "Some (f (the (g x))) = (option_map f \<circ> g) x" by (auto simp: map_option_case split: option.splits) also have "\<dots> = (option_map f \<circ> g') x" by (simp add: ome) finally have "x \<in> dom g'" by (auto simp: map_option_case split: option.splits) } moreover { assume "x \<in> dom g'" hence "Some (f (the (g' x))) = (option_map f \<circ> g') x" by (auto simp: map_option_case split: option.splits) also have "\<dots> = (option_map f \<circ> g) x" by (simp add: ome) finally have "x \<in> dom g" by (auto simp: map_option_case split: option.splits) } ultimately show "(x \<in> dom g) = (x \<in> dom g')" by auto qed lemma map_comp_eqI: assumes dm: "dom g = dom g'" and fg: "\<And>x. x \<in> dom g' \<Longrightarrow> f (the (g' x)) = f (the (g x))" shows "f \<circ>\<^sub>m g = f \<circ>\<^sub>m g'" apply (rule ext) apply (case_tac "x \<in> dom g") apply (frule subst [OF dm]) apply (clarsimp split: option.splits) apply (frule domI [where m = g']) apply (drule fg) apply simp apply (frule subst [OF dm]) apply clarsimp apply (drule not_sym) apply (clarsimp simp: map_comp_Some_iff) done lemma is_aligned_0: "is_aligned 0 n" unfolding is_aligned_def by simp lemma compD: "\<lbrakk>f \<circ> g = f \<circ> g'; g x = v \<rbrakk> \<Longrightarrow> f (g' x) = f v" apply clarsimp apply (subgoal_tac "(f (g x)) = (f \<circ> g) x") apply simp apply (simp (no_asm)) done lemma option_map_comp_eqE: assumes om: "option_map f \<circ> mp = option_map f \<circ> mp'" and p1: "\<lbrakk> mp x = None; mp' x = None \<rbrakk> \<Longrightarrow> P" and p2: "\<And>v v'. \<lbrakk> mp x = Some v; mp' x = Some v'; f v = f v' \<rbrakk> \<Longrightarrow> P" shows "P" proof (cases "mp x") case None hence "x \<notin> dom mp" by (simp add: domIff) hence "mp' x = None" by (simp add: option_map_eq_dom_eq [OF om] domIff) with None show ?thesis by (rule p1) next case (Some v) hence "x \<in> dom mp" by clarsimp then obtain v' where Some': "mp' x = Some v'" by (clarsimp simp add: option_map_eq_dom_eq [OF om]) with Some show ?thesis proof (rule p2) show "f v = f v'" using Some' compD [OF om, OF Some] by simp qed qed lemma Some_the: "x \<in> dom f \<Longrightarrow> f x = Some (the (f x))" by clarsimp lemma map_comp_update: "f \<circ>\<^sub>m (g(x \<mapsto> v)) = (f \<circ>\<^sub>m g)(x := f v)" apply (rule ext) apply clarsimp apply (case_tac "g xa") apply simp apply simp done lemma restrict_map_eqI: assumes req: "A |` S = B |` S" and mem: "x \<in> S" shows "A x = B x" proof - from mem have "A x = (A |` S) x" by simp also have "\<dots> = (B |` S) x" using req by simp also have "\<dots> = B x" using mem by simp finally show ?thesis . qed lemma word_or_zero: "(a || b = 0) = (a = 0 \<and> b = 0)" apply (safe, simp_all) apply (rule word_eqI, drule_tac x=n in word_eqD, simp)+ done lemma aligned_shiftr_mask_shiftl: "is_aligned x n \<Longrightarrow> ((x >> n) && mask v) << n = x && mask (v + n)" apply (rule word_eqI) apply (simp add: word_size nth_shiftl nth_shiftr) apply (subgoal_tac "\<forall>m. x !! m \<longrightarrow> m \<ge> n") apply auto[1] apply (clarsimp simp: is_aligned_mask) apply (drule_tac x=m in word_eqD) apply (frule test_bit_size) apply (simp add: word_size) done lemma word_and_1_shiftl: fixes x :: "('a :: len) word" shows "x && (1 << n) = (if x !! n then (1 << n) else 0)" apply (rule word_eqI) apply (simp add: word_size nth_shiftl word_nth_1 split: split_if del: shiftl_t2n shiftl_1) apply auto done lemmas word_and_1_shiftls = word_and_1_shiftl[where n=0, simplified] word_and_1_shiftl[where n=1, simplified] word_and_1_shiftl[where n=2, simplified] lemma word_and_mask_shiftl: "x && (mask n << m) = ((x >> m) && mask n) << m" apply (rule word_eqI) apply (simp add: word_size nth_shiftl nth_shiftr) apply auto done lemma toEnum_eq_to_fromEnum_eq: fixes v :: "'a :: enum" shows "n \<le> fromEnum (maxBound :: 'a) \<Longrightarrow> (toEnum n = v) = (n = fromEnum v)" apply (rule iffI) apply (drule arg_cong[where f=fromEnum]) apply simp apply (drule arg_cong[where f="toEnum :: nat \<Rightarrow> 'a"]) apply simp done lemma if_Const_helper: "If P (Con x) (Con y) = Con (If P x y)" by (simp split: split_if) lemmas if_Some_helper = if_Const_helper[where Con=Some] lemma expand_restrict_map_eq: "(m |` S = m' |` S) = (\<forall>x. x \<in> S \<longrightarrow> m x = m' x)" by (simp add: fun_eq_iff restrict_map_def split: split_if) lemma unat_ucast_8_32: fixes x :: "word8" shows "unat (ucast x :: word32) = unat x" unfolding ucast_def unat_def apply (subst int_word_uint) apply (subst mod_pos_pos_trivial) apply simp apply (rule lt2p_lem) apply simp apply simp done lemma disj_imp_rhs: "(P \<Longrightarrow> Q) \<Longrightarrow> (P \<or> Q) = Q" by blast lemma remove1_filter: "distinct xs \<Longrightarrow> remove1 x xs = filter (\<lambda>y. x \<noteq> y) xs" apply (induct xs) apply simp apply clarsimp apply (rule sym, rule filter_True) apply clarsimp done lemma if_then_1_else_0: "((if P then 1 else 0) = (0 :: word32)) = (\<not> P)" by simp lemma if_then_0_else_1: "((if P then 0 else 1) = (0 :: word32)) = (P)" by simp lemmas if_then_simps = if_then_0_else_1 if_then_1_else_0 lemma nat_less_cases': "(x::nat) < y \<Longrightarrow> x = y - 1 \<or> x < y - 1" by (fastforce intro: nat_less_cases) lemma word32_FF_is_mask: "0xFF = mask 8 " by (simp add: mask_def) lemma filter_to_shorter_upto: "n \<le> m \<Longrightarrow> filter (\<lambda>x. x < n) [0 ..< m] = [0 ..< n]" apply (induct m) apply simp apply clarsimp apply (erule le_SucE) apply simp apply simp done lemma in_emptyE: "\<lbrakk> A = {}; x \<in> A \<rbrakk> \<Longrightarrow> P" by blast lemma ucast_of_nat_small: "x < 2 ^ len_of TYPE('a) \<Longrightarrow> ucast (of_nat x :: ('a :: len) word) = (of_nat x :: ('b :: len) word)" apply (rule sym, subst word_unat.inverse_norm) apply (simp add: ucast_def word_of_int[symmetric] of_nat_nat[symmetric] unat_def[symmetric]) apply (simp add: unat_of_nat) done lemma word_le_make_less: fixes x :: "('a :: len) word" shows "y \<noteq> -1 \<Longrightarrow> (x \<le> y) = (x < (y + 1))" apply safe apply (erule plus_one_helper2) apply (simp add: eq_diff_eq[symmetric]) done lemma Ball_emptyI: "S = {} \<Longrightarrow> (\<forall>x \<in> S. P x)" by simp lemma allfEI: "\<lbrakk> \<forall>x. P x; \<And>x. P (f x) \<Longrightarrow> Q x \<rbrakk> \<Longrightarrow> \<forall>x. Q x" by fastforce lemma arith_is_1: "\<lbrakk> x \<le> Suc 0; x > 0 \<rbrakk> \<Longrightarrow> x = 1" by arith (* sjw: combining lemmas here :( *) lemma cart_singleton_empty2: "({x} \<times> S = {}) = (S = {})" "({} = S \<times> {e}) = (S = {})" by auto lemma cases_simp_conj: "((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q) \<and> R) = (Q \<and> R)" by fastforce lemma domE : "\<lbrakk> x \<in> dom m; \<And>r. \<lbrakk>m x = Some r\<rbrakk> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" by clarsimp lemma dom_eqD: "\<lbrakk> f x = Some v; dom f = S \<rbrakk> \<Longrightarrow> x \<in> S" by clarsimp lemma exception_set_finite: "finite {x. P x} \<Longrightarrow> finite {x. (x = y \<longrightarrow> Q x) \<and> P x}" "finite {x. P x} \<Longrightarrow> finite {x. x \<noteq> y \<longrightarrow> P x}" apply (simp add: Collect_conj_eq) apply (subst imp_conv_disj, subst Collect_disj_eq) apply simp done lemma exfEI: "\<lbrakk> \<exists>x. P x; \<And>x. P x \<Longrightarrow> Q (f x) \<rbrakk> \<Longrightarrow> \<exists>x. Q x" by fastforce lemma finite_word: "finite (S :: (('a :: len) word) set)" by (rule finite) lemma if_f: "(if a then f b else f c) = f (if a then b else c)" by simp lemma in_16_range: "0 \<in> S \<Longrightarrow> r \<in> (\<lambda>x. r + x * (16 :: word32)) ` S" "n - 1 \<in> S \<Longrightarrow> (r + (16 * n - 16)) \<in> (\<lambda>x :: word32. r + x * 16) ` S" by (clarsimp simp: image_def elim!: bexI[rotated])+ definition "modify_map m p f \<equiv> m (p := option_map f (m p))" lemma modify_map_id: "modify_map m p id = m" by (auto simp add: modify_map_def map_option_case split: option.splits) lemma modify_map_addr_com: assumes com: "x \<noteq> y" shows "modify_map (modify_map m x g) y f = modify_map (modify_map m y f) x g" by (rule ext) (simp add: modify_map_def option_map_def com split: option.splits) lemma modify_map_dom : "dom (modify_map m p f) = dom m" unfolding modify_map_def apply (cases "m p") apply simp apply (simp add: dom_def) apply simp apply (rule insert_absorb) apply (simp add: dom_def) done lemma modify_map_None: "m x = None \<Longrightarrow> modify_map m x f = m" by (rule ext) (simp add: modify_map_def) lemma modify_map_ndom : "x \<notin> dom m \<Longrightarrow> modify_map m x f = m" by (rule modify_map_None) clarsimp lemma modify_map_app: "(modify_map m p f) q = (if p = q then option_map f (m p) else m q)" unfolding modify_map_def by simp lemma modify_map_apply: "m p = Some x \<Longrightarrow> modify_map m p f = m (p \<mapsto> f x)" by (simp add: modify_map_def) lemma modify_map_com: assumes com: "\<And>x. f (g x) = g (f x)" shows "modify_map (modify_map m x g) y f = modify_map (modify_map m y f) x g" using assms by (auto simp: modify_map_def map_option_case split: option.splits) lemma modify_map_comp: "modify_map m x (f o g) = modify_map (modify_map m x g) x f" by (rule ext) (simp add: modify_map_def option.map_comp) lemma modify_map_exists_eq: "(\<exists>cte. modify_map m p' f p= Some cte) = (\<exists>cte. m p = Some cte)" by (auto simp: modify_map_def split: if_splits) lemma modify_map_other: "p \<noteq> q \<Longrightarrow> (modify_map m p f) q = (m q)" by (simp add: modify_map_app) lemma modify_map_same: "(modify_map m p f) p = (option_map f (m p))" by (simp add: modify_map_app) lemma next_update_is_modify: "\<lbrakk> m p = Some cte'; cte = f cte' \<rbrakk> \<Longrightarrow> (m(p \<mapsto> cte)) = (modify_map m p f)" unfolding modify_map_def by simp lemma nat_power_minus_less: "a < 2 ^ (x - n) \<Longrightarrow> (a :: nat) < 2 ^ x" apply (erule order_less_le_trans) apply simp done lemma neg_rtranclI: "\<lbrakk> x \<noteq> y; (x, y) \<notin> R\<^sup>+ \<rbrakk> \<Longrightarrow> (x, y) \<notin> R\<^sup>*" apply (erule contrapos_nn) apply (drule rtranclD) apply simp done lemma neg_rtrancl_into_trancl: "\<not> (x, y) \<in> R\<^sup>* \<Longrightarrow> \<not> (x, y) \<in> R\<^sup>+" by (erule contrapos_nn, erule trancl_into_rtrancl) lemma set_neqI: "\<lbrakk> x \<in> S; x \<notin> S' \<rbrakk> \<Longrightarrow> S \<noteq> S'" by clarsimp lemma set_pair_UN: "{x. P x} = UNION {xa. \<exists>xb. P (xa, xb)} (\<lambda>xa. {xa} \<times> {xb. P (xa, xb)})" apply safe apply (rule_tac a=a in UN_I) apply blast+ done lemma singleton_elemD: "S = {x} \<Longrightarrow> x \<in> S" by simp lemma word_to_1_set: "{0 ..< (1 :: ('a :: len) word)} = {0}" by fastforce lemma ball_ran_eq: "(\<forall>y \<in> ran m. P y) = (\<forall>x y. m x = Some y \<longrightarrow> P y)" by (auto simp add: ran_def) lemma cart_helper: "({} = {x} \<times> S) = (S = {})" by blast lemmas converse_trancl_induct' = converse_trancl_induct [consumes 1, case_names base step] lemma disjCI2: "(\<not> P \<Longrightarrow> Q) \<Longrightarrow> P \<or> Q" by blast lemma insert_UNIV : "insert x UNIV = UNIV" by blast lemma not_singletonE: "\<lbrakk> \<forall>p. S \<noteq> {p}; S \<noteq> {}; \<And>p p'. \<lbrakk> p \<noteq> p'; p \<in> S; p' \<in> S \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R" by blast lemma not_singleton_oneE: "\<lbrakk> \<forall>p. S \<noteq> {p}; p \<in> S; \<And>p'. \<lbrakk> p \<noteq> p'; p' \<in> S \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R" apply (erule not_singletonE) apply clarsimp apply (case_tac "p = p'") apply fastforce apply fastforce done lemma interval_empty: "({m..n} = {}) = (\<not> m \<le> (n::'a::order))" apply (rule iffI) apply clarsimp apply auto done lemma range_subset_eq2: "{a :: word32 .. b} \<noteq> {} \<Longrightarrow> ({a .. b} \<subseteq> {c .. d}) = (c \<le> a \<and> b \<le> d)" by (simp add: interval_empty) lemma singleton_eqD: "A = {x} \<Longrightarrow> x \<in> A" by blast lemma ball_ran_fun_updI: "\<lbrakk> \<forall>v \<in> ran m. P v; \<forall>v. y = Some v \<longrightarrow> P v \<rbrakk> \<Longrightarrow> \<forall>v \<in> ran (m (x := y)). P v" by (auto simp add: ran_def) lemma ball_ran_modify_map_eq: "\<lbrakk> \<forall>v. m x = Some v \<longrightarrow> P (f v) = P v \<rbrakk> \<Longrightarrow> (\<forall>v \<in> ran (modify_map m x f). P v) = (\<forall>v \<in> ran m. P v)" apply (simp add: ball_ran_eq) apply (rule iff_allI) apply (auto simp: modify_map_def) done lemma disj_imp: "(P \<or> Q) = (\<not>P \<longrightarrow> Q)" by blast lemma eq_singleton_redux: "\<lbrakk> S = {x} \<rbrakk> \<Longrightarrow> x \<in> S" by simp lemma if_eq_elem_helperE: "\<lbrakk> x \<in> (if P then S else S'); \<lbrakk> P; x \<in> S \<rbrakk> \<Longrightarrow> a = b; \<lbrakk> \<not> P; x \<in> S' \<rbrakk> \<Longrightarrow> a = c \<rbrakk> \<Longrightarrow> a = (if P then b else c)" by fastforce lemma if_option_Some : "((if P then None else Some x) = Some y) = (\<not>P \<and> x = y)" by simp lemma insert_minus_eq: "x \<notin> A \<Longrightarrow> A - S = (A - (S - {x}))" by auto lemma map2_Cons_2_3: "(map2 f xs (y # ys) = (z # zs)) = (\<exists>x xs'. xs = x # xs' \<and> f x y = z \<and> map2 f xs' ys = zs)" by (case_tac xs, simp_all) lemma map2_xor_replicate_False: "map2 (\<lambda>(x\<Colon>bool) y\<Colon>bool. x = (\<not> y)) xs (replicate n False) = take n xs" apply (induct xs arbitrary: n) apply simp apply (case_tac n) apply (simp add: map2_def) apply simp done lemma modify_map_K_D: "modify_map m p (\<lambda>x. y) p' = Some v \<Longrightarrow> (m (p \<mapsto> y)) p' = Some v" by (simp add: modify_map_def split: split_if_asm) lemmas tranclE2' = tranclE2 [consumes 1, case_names base trancl] lemma weak_imp_cong: "\<lbrakk> P = R; Q = S \<rbrakk> \<Longrightarrow> (P \<longrightarrow> Q) = (R \<longrightarrow> S)" by simp lemma Collect_Diff_restrict_simp: "T - {x \<in> T. Q x} = T - {x. Q x}" by (auto intro: Collect_cong) lemma Collect_Int_pred_eq: "{x \<in> S. P x} \<inter> {x \<in> T. P x} = {x \<in> (S \<inter> T). P x}" by (simp add: Collect_conj_eq [symmetric] conj_ac) lemma Collect_restrict_predR: "{x. P x} \<inter> T = {} \<Longrightarrow> {x. P x} \<inter> {x \<in> T. Q x} = {}" apply (subst Collect_conj_eq [symmetric]) apply (simp add: disjoint_iff_not_equal) apply rule apply (drule_tac x = x in spec) apply clarsimp apply (drule (1) bspec) apply simp done lemma Diff_Un2: assumes emptyad: "A \<inter> D = {}" and emptybc: "B \<inter> C = {}" shows "(A \<union> B) - (C \<union> D) = (A - C) \<union> (B - D)" proof - have "(A \<union> B) - (C \<union> D) = (A \<union> B - C) \<inter> (A \<union> B - D)" by (rule Diff_Un) also have "\<dots> = ((A - C) \<union> B) \<inter> (A \<union> (B - D))" using emptyad emptybc by (simp add: Un_Diff Diff_triv) also have "\<dots> = (A - C) \<union> (B - D)" proof - have "(A - C) \<inter> (A \<union> (B - D)) = A - C" using emptyad emptybc by (metis Diff_Int2 Diff_Int_distrib2 inf_sup_absorb) moreover have "B \<inter> (A \<union> (B - D)) = B - D" using emptyad emptybc by (metis Int_Diff Un_Diff Un_Diff_Int Un_commute Un_empty_left inf_sup_absorb) ultimately show ?thesis by (simp add: Int_Un_distrib2) qed finally show ?thesis . qed lemma ballEI: "\<lbrakk> \<forall>x \<in> S. Q x; \<And>x. \<lbrakk> x \<in> S; Q x \<rbrakk> \<Longrightarrow> P x \<rbrakk> \<Longrightarrow> \<forall>x \<in> S. P x" by auto lemma dom_if_None: "dom (\<lambda>x. if P x then None else f x) = dom f - {x. P x}" by (simp add: dom_def, fastforce) lemma notemptyI: "x \<in> S \<Longrightarrow> S \<noteq> {}" by clarsimp lemma plus_Collect_helper: "op + x ` {xa. P (xa :: ('a :: len) word)} = {xa. P (xa - x)}" by (fastforce simp add: image_def) lemma plus_Collect_helper2: "op + (- x) ` {xa. P (xa :: ('a :: len) word)} = {xa. P (x + xa)}" by (simp add: field_simps plus_Collect_helper) lemma restrict_map_Some_iff: "((m |` S) x = Some y) = (m x = Some y \<and> x \<in> S)" by (cases "x \<in> S", simp_all) lemma context_case_bools: "\<lbrakk> \<And>v. P v \<Longrightarrow> R v; \<lbrakk> \<not> P v; \<And>v. P v \<Longrightarrow> R v \<rbrakk> \<Longrightarrow> R v \<rbrakk> \<Longrightarrow> R v" by (cases "P v", simp_all) lemma inj_on_fun_upd_strongerI: "\<lbrakk>inj_on f A; y \<notin> f ` (A - {x})\<rbrakk> \<Longrightarrow> inj_on (f(x := y)) A" apply (simp add: inj_on_def) apply blast done lemma less_handy_casesE: "\<lbrakk> m < n; m = 0 \<Longrightarrow> R; \<And>m' n'. \<lbrakk> n = Suc n'; m = Suc m'; m < n \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R" apply (case_tac n, simp_all) apply (case_tac m, simp_all) done lemma subset_drop_Diff_strg: "(A \<subseteq> C) \<longrightarrow> (A - B \<subseteq> C)" by blast lemma word32_count_from_top: "n \<noteq> 0 \<Longrightarrow> {0 ..< n :: word32} = {0 ..< n - 1} \<union> {n - 1}" apply (rule set_eqI, rule iffI) apply simp apply (drule minus_one_helper3) apply (rule disjCI) apply simp apply simp apply (erule minus_one_helper5) apply fastforce done lemma Int_Union_empty: "(\<And>x. x \<in> S \<Longrightarrow> A \<inter> P x = {}) \<Longrightarrow> A \<inter> (\<Union>x \<in> S. P x) = {}" by auto lemma UN_Int_empty: "(\<And>x. x \<in> S \<Longrightarrow> P x \<inter> T = {}) \<Longrightarrow> (\<Union>x \<in> S. P x) \<inter> T = {}" by auto lemma disjointI: "\<lbrakk>\<And>x y. \<lbrakk> x \<in> A; y \<in> B \<rbrakk> \<Longrightarrow> x \<noteq> y \<rbrakk> \<Longrightarrow> A \<inter> B = {}" by auto lemma UN_disjointI: assumes rl: "\<And>x y. \<lbrakk> x \<in> A; y \<in> B \<rbrakk> \<Longrightarrow> P x \<inter> Q y = {}" shows "(\<Union>x \<in> A. P x) \<inter> (\<Union>x \<in> B. Q x) = {}" apply (rule disjointI) apply clarsimp apply (drule (1) rl) apply auto done lemma UN_set_member: assumes sub: "A \<subseteq> (\<Union>x \<in> S. P x)" and nz: "A \<noteq> {}" shows "\<exists>x \<in> S. P x \<inter> A \<noteq> {}" proof - from nz obtain z where zA: "z \<in> A" by fastforce with sub obtain x where "x \<in> S" and "z \<in> P x" by auto hence "P x \<inter> A \<noteq> {}" using zA by auto thus ?thesis using sub nz by auto qed lemma append_Cons_cases [consumes 1, case_names pre mid post]: "\<lbrakk>(x, y) \<in> set (as @ b # bs); (x, y) \<in> set as \<Longrightarrow> R; \<lbrakk>(x, y) \<notin> set as; (x, y) \<notin> set bs; (x, y) = b\<rbrakk> \<Longrightarrow> R; (x, y) \<in> set bs \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by auto lemma cart_singletons: "{a} \<times> {b} = {(a, b)}" by blast lemma disjoint_subset_neg1: "\<lbrakk> B \<inter> C = {}; A \<subseteq> B; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<not> A \<subseteq> C" by auto lemma disjoint_subset_neg2: "\<lbrakk> B \<inter> C = {}; A \<subseteq> C; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<not> A \<subseteq> B" by auto lemma iffE2: "\<lbrakk> P = Q; \<lbrakk> P; Q \<rbrakk> \<Longrightarrow> R; \<lbrakk> \<not> P; \<not> Q \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R" by blast lemma minus_one_helper2: "\<lbrakk> x - 1 < y \<rbrakk> \<Longrightarrow> x \<le> (y :: ('a :: len) word)" apply (cases "x = 0") apply simp apply (simp add: word_less_nat_alt word_le_nat_alt) apply (subst(asm) unat_minus_one) apply (simp add: word_less_nat_alt) apply (cases "unat x") apply (simp add: unat_eq_zero) apply arith done lemma mod_mod_power: fixes k :: nat shows "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ (min m n)" proof (cases "m \<le> n") case True hence "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ m" apply - apply (subst mod_less [where n = "2 ^ n"]) apply (rule order_less_le_trans [OF mod_less_divisor]) apply simp+ done also have "\<dots> = k mod 2 ^ (min m n)" using True by simp finally show ?thesis . next case False hence "n < m" by simp then obtain d where md: "m = n + d" by (auto dest: less_imp_add_positive) hence "k mod 2 ^ m = 2 ^ n * (k div 2 ^ n mod 2 ^ d) + k mod 2 ^ n" by (simp add: mod_mult2_eq power_add) hence "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ n" by (simp add: mod_add_left_eq) thus ?thesis using False by simp qed lemma word_div_less: fixes m :: "'a :: len word" shows "m < n \<Longrightarrow> m div n = 0" apply (rule word_unat.Rep_eqD) apply (simp add: word_less_nat_alt unat_div) done lemma word_must_wrap: "\<lbrakk> x \<le> n - 1; n \<le> x \<rbrakk> \<Longrightarrow> n = (0 :: ('a :: len) word)" apply (rule ccontr) apply (drule(1) order_trans) apply (drule word_sub_1_le) apply (drule(1) order_antisym) apply simp done lemma upt_add_eq_append': assumes a1: "i \<le> j" and a2: "j \<le> k" shows "[i..<k] = [i..<j] @ [j..<k]" using a1 a2 by (clarsimp simp: le_iff_add intro!: upt_add_eq_append) lemma range_subset_card: "\<lbrakk> {a :: ('a :: len) word .. b} \<subseteq> {c .. d}; b \<ge> a \<rbrakk> \<Longrightarrow> d \<ge> c \<and> d - c \<ge> b - a" apply (subgoal_tac "a \<in> {a .. b}") apply (frule(1) range_subset_lower) apply (frule(1) range_subset_upper) apply (rule context_conjI, simp) apply (rule word_sub_mono, assumption+) apply (erule word_sub_le) apply (erule word_sub_le) apply simp done lemma less_1_simp: "n - 1 < m = (n \<le> (m :: ('a :: len) word) \<and> n \<noteq> 0)" by unat_arith lemma alignUp_div_helper: fixes a :: "'a::len word" assumes kv: "k < 2 ^ (len_of TYPE('a) - n)" and xk: "x = 2 ^ n * of_nat k" and le: "a \<le> x" and sz: "n < len_of TYPE('a)" and anz: "a mod 2 ^ n \<noteq> 0" shows "a div 2 ^ n < of_nat k" proof - have kn: "unat (of_nat k :: 'a word) * unat ((2::'a word) ^ n) < 2 ^ len_of TYPE('a)" using xk kv sz apply (subst unat_of_nat_eq) apply (erule order_less_le_trans) apply simp apply (subst unat_power_lower, simp add: word_bits_def) apply (subst mult.commute) apply (rule nat_less_power_trans) apply simp apply simp done have "unat a div 2 ^ n * 2 ^ n \<noteq> unat a" proof - have "unat a = unat a div 2 ^ n * 2 ^ n + unat a mod 2 ^ n" by (simp add: mod_div_equality) also have "\<dots> \<noteq> unat a div 2 ^ n * 2 ^ n" using sz anz by (simp add: unat_arith_simps word_bits_def) finally show ?thesis .. qed hence "a div 2 ^ n * 2 ^ n < a" using sz anz apply (subst word_less_nat_alt) apply (subst unat_word_ariths) apply (subst unat_div) apply simp apply (rule order_le_less_trans [OF mod_le_dividend]) apply (erule order_le_neq_trans [OF div_mult_le]) done also from xk le have "\<dots> \<le> of_nat k * 2 ^ n" by (simp add: field_simps) finally show ?thesis using sz kv apply - apply (erule word_mult_less_dest [OF _ _ kn]) apply (simp add: unat_div) apply (rule order_le_less_trans [OF div_mult_le]) apply (rule unat_lt2p) done qed lemma nat_mod_power_lem: fixes a :: nat shows "1 < a \<Longrightarrow> a ^ n mod a ^ m = (if m \<le> n then 0 else a ^ n)" by (clarsimp, clarsimp simp add: le_iff_add power_add) lemma power_mod_div: fixes x :: "nat" shows "x mod 2 ^ n div 2 ^ m = x div 2 ^ m mod 2 ^ (n - m)" (is "?LHS = ?RHS") proof (cases "n \<le> m") case True hence "?LHS = 0" apply - apply (rule div_less) apply (rule order_less_le_trans [OF mod_less_divisor]) apply simp apply simp done also have "\<dots> = ?RHS" using True by simp finally show ?thesis . next case False hence lt: "m < n" by simp then obtain q where nv: "n = m + q" and "0 < q" by (auto dest: less_imp_Suc_add) hence "x mod 2 ^ n = 2 ^ m * (x div 2 ^ m mod 2 ^ q) + x mod 2 ^ m" by (simp add: power_add mod_mult2_eq) hence "?LHS = x div 2 ^ m mod 2 ^ q" by (simp add: div_add1_eq) also have "\<dots> = ?RHS" using nv by simp finally show ?thesis . qed lemma word_power_mod_div: fixes x :: "'a::len word" shows "\<lbrakk> n < len_of TYPE('a); m < len_of TYPE('a)\<rbrakk> \<Longrightarrow> x mod 2 ^ n div 2 ^ m = x div 2 ^ m mod 2 ^ (n - m)" apply (simp add: word_arith_nat_div unat_mod power_mod_div) apply (subst unat_arith_simps(3)) apply (subst unat_mod) apply (subst unat_of_nat)+ apply (simp add: mod_mod_power min.commute) done (* FIXME: stronger version of GenericLib.p_assoc_help *) lemma x_power_minus_1: fixes x :: "'a :: {ab_group_add, power, numeral, one}" shows "x + (2::'a) ^ n - (1::'a) = x + (2 ^ n - 1)" by simp lemma nat_le_power_trans: fixes n :: nat shows "\<lbrakk>n \<le> 2 ^ (m - k); k \<le> m\<rbrakk> \<Longrightarrow> 2 ^ k * n \<le> 2 ^ m" apply (drule order_le_imp_less_or_eq) apply (erule disjE) apply (drule (1) nat_less_power_trans) apply (erule order_less_imp_le) apply (simp add: power_add [symmetric]) done lemma nat_diff_add: fixes i :: nat shows "\<lbrakk> i + j = k \<rbrakk> \<Longrightarrow> i = k - j" by arith lemma word_range_minus_1': fixes a :: "'a :: len word" shows "a \<noteq> 0 \<Longrightarrow> {a - 1<..b} = {a..b}" by (simp add: greaterThanAtMost_def atLeastAtMost_def greaterThan_def atLeast_def less_1_simp) lemma word_range_minus_1: fixes a :: word32 shows "b \<noteq> 0 \<Longrightarrow> {a..b - 1} = {a..<b}" apply (simp add: atLeastLessThan_def atLeastAtMost_def atMost_def lessThan_def) apply (rule arg_cong [where f = "\<lambda>x. {a..} \<inter> x"]) apply rule apply clarsimp apply (erule contrapos_pp) apply (simp add: linorder_not_less linorder_not_le word_must_wrap) apply (clarsimp) apply (drule minus_one_helper3) apply (auto simp: word_less_sub_1) done lemma ucast_nat_def: "of_nat (unat x) = (ucast :: ('a :: len) word \<Rightarrow> ('b :: len) word) x" by (simp add: ucast_def word_of_int_nat unat_def) lemma delete_remove1 : "delete x xs = remove1 x xs" by (induct xs, auto) lemma list_case_If: "(case xs of [] \<Rightarrow> P | _ \<Rightarrow> Q) = (if xs = [] then P else Q)" by (clarsimp simp: neq_Nil_conv) lemma remove1_Nil_in_set: "\<lbrakk> remove1 x xs = []; xs \<noteq> [] \<rbrakk> \<Longrightarrow> x \<in> set xs" by (induct xs) (auto split: split_if_asm) lemma remove1_empty: "(remove1 v xs = []) = (xs = [v] \<or> xs = [])" by (cases xs, simp_all) lemma set_remove1: "x \<in> set (remove1 y xs) \<Longrightarrow> x \<in> set xs" apply (induct xs) apply simp apply (case_tac "y = a") apply clarsimp+ done lemma If_rearrage: "(if P then if Q then x else y else z) = (if P \<and> Q then x else if P then y else z)" by simp lemma cases_simp_left: "((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q) \<and> R) = (Q \<and> R)" by fastforce lemma disjI2_strg: "Q \<longrightarrow> (P \<or> Q)" by simp lemma eq_2_32_0: "(2 ^ 32 :: word32) = 0" by simp lemma eq_imp_strg: "P t \<longrightarrow> (t = s \<longrightarrow> P s)" by clarsimp lemma if_fun_split: "(if P then \<lambda>s. Q s else (\<lambda>s. R s)) = (\<lambda>s. (P \<longrightarrow> Q s) \<and> (\<not>P \<longrightarrow> R s))" by simp lemma i_hate_words_helper: "i \<le> (j - k :: nat) \<Longrightarrow> i \<le> j" by simp lemma i_hate_words: "unat (a :: 'a word) \<le> unat (b :: ('a :: len) word) - Suc 0 \<Longrightarrow> a \<noteq> -1" apply (frule i_hate_words_helper) apply (subst(asm) word_le_nat_alt[symmetric]) apply (clarsimp simp only: word_minus_one_le) apply (simp only: linorder_not_less[symmetric]) apply (erule notE) apply (rule diff_Suc_less) apply (subst neq0_conv[symmetric]) apply (subst unat_eq_0) apply (rule notI, drule arg_cong[where f="op + 1"]) apply simp done lemma if_both_strengthen: "P \<and> Q \<longrightarrow> (if G then P else Q)" by simp lemma if_both_strengthen2: "P s \<and> Q s \<longrightarrow> (if G then P else Q) s" by simp lemma if_swap: "(if P then Q else R) = (if \<not>P then R else Q)" by simp lemma ignore_if: "(y and z) s \<Longrightarrow> (if x then y else z) s" by (clarsimp simp: pred_conj_def) lemma imp_consequent: "P \<longrightarrow> Q \<longrightarrow> P" by simp lemma list_case_helper: "xs \<noteq> [] \<Longrightarrow> case_list f g xs = g (hd xs) (tl xs)" by (cases xs, simp_all) lemma list_cons_rewrite: "(\<forall>x xs. L = x # xs \<longrightarrow> P x xs) = (L \<noteq> [] \<longrightarrow> P (hd L) (tl L))" by (auto simp: neq_Nil_conv) lemma list_not_Nil_manip: "\<lbrakk> xs = y # ys; case xs of [] \<Rightarrow> False | (y # ys) \<Rightarrow> P y ys \<rbrakk> \<Longrightarrow> P y ys" by simp lemma ran_ball_triv: "\<And>P m S. \<lbrakk> \<forall>x \<in> (ran S). P x ; m \<in> (ran S) \<rbrakk> \<Longrightarrow> P m" by blast lemma singleton_tuple_cartesian: "({(a, b)} = S \<times> T) = ({a} = S \<and> {b} = T)" "(S \<times> T = {(a, b)}) = ({a} = S \<and> {b} = T)" by blast+ lemma strengthen_ignore_if: "A s \<and> B s \<longrightarrow> (if P then A else B) s" by clarsimp lemma sum_case_True : "(case r of Inl a \<Rightarrow> True | Inr b \<Rightarrow> f b) = (\<forall>b. r = Inr b \<longrightarrow> f b)" by (cases r) auto lemma sym_ex_elim: "F x = y \<Longrightarrow> \<exists>x. y = F x" by auto lemma tl_drop_1 : "tl xs = drop 1 xs" by (simp add: drop_Suc) lemma upt_lhs_sub_map: "[x ..< y] = map (op + x) [0 ..< y - x]" apply (induct y) apply simp apply (clarsimp simp: Suc_diff_le) done lemma upto_0_to_4: "[0..<4] = 0 # [1..<4]" apply (subst upt_rec) apply simp done lemma disjEI: "\<lbrakk> P \<or> Q; P \<Longrightarrow> R; Q \<Longrightarrow> S \<rbrakk> \<Longrightarrow> R \<or> S" by fastforce lemma dom_fun_upd2: "s x = Some z \<Longrightarrow> dom (s (x \<mapsto> y)) = dom s" by (simp add: insert_absorb domI) lemma foldl_True : "foldl op \<or> True bs" by (induct bs) auto lemma image_set_comp: "f ` {g x | x. Q x} = (f \<circ> g) ` {x. Q x}" by fastforce lemma mutual_exE: "\<lbrakk> \<exists>x. P x; \<And>x. P x \<Longrightarrow> Q x \<rbrakk> \<Longrightarrow> \<exists>x. Q x" apply clarsimp apply blast done lemma nat_diff_eq: fixes x :: nat shows "\<lbrakk> x - y = x - z; y < x\<rbrakk> \<Longrightarrow> y = z" by arith lemma overflow_plus_one_self: "(1 + p \<le> p) = (p = (-1 :: word32))" apply (safe, simp_all) apply (rule ccontr) apply (drule plus_one_helper2) apply (rule notI) apply (drule arg_cong[where f="\<lambda>x. x - 1"]) apply simp apply (simp add: field_simps) done lemma plus_1_less: "(x + 1 \<le> (x :: ('a :: len) word)) = (x = -1)" apply (rule iffI) apply (rule ccontr) apply (cut_tac plus_one_helper2[where x=x, OF order_refl]) apply simp apply clarsimp apply (drule arg_cong[where f="\<lambda>x. x - 1"]) apply simp apply simp done lemma pos_mult_pos_ge: "[|x > (0::int); n>=0 |] ==> n * x >= n*1" apply (simp only: mult_left_mono) done lemma If_eq_obvious: "x \<noteq> z \<Longrightarrow> ((if P then x else y) = z) = (\<not> P \<and> y = z)" by simp lemma Some_to_the: "v = Some x \<Longrightarrow> x = the v" by simp lemma dom_if_Some: "dom (\<lambda>x. if P x then Some (f x) else g x) = {x. P x} \<union> dom g" by fastforce lemma dom_insert_absorb: "x \<in> dom f \<Longrightarrow> insert x (dom f) = dom f" by auto lemma emptyE2: "\<lbrakk> S = {}; x \<in> S \<rbrakk> \<Longrightarrow> P" by simp lemma mod_div_equality_div_eq: "a div b * b = (a - (a mod b) :: int)" by (simp add: field_simps) lemma zmod_helper: "n mod m = k \<Longrightarrow> ((n :: int) + a) mod m = (k + a) mod m" by (clarsimp simp: pull_mods) lemma int_div_sub_1: "\<lbrakk> m \<ge> 1 \<rbrakk> \<Longrightarrow> (n - (1 :: int)) div m = (if m dvd n then (n div m) - 1 else n div m)" apply (subgoal_tac "m = 0 \<or> (n - (1 :: int)) div m = (if m dvd n then (n div m) - 1 else n div m)") apply fastforce apply (subst mult_cancel_right[symmetric]) apply (simp only: left_diff_distrib split: split_if) apply (simp only: mod_div_equality_div_eq) apply (clarsimp simp: field_simps dvd_mult_div_cancel) apply (clarsimp simp: dvd_eq_mod_eq_0) apply (cases "m = 1") apply simp apply (subst mod_diff_eq, simp add: zmod_minus1 mod_pos_pos_trivial) apply clarsimp apply (subst diff_add_cancel[where b=1, symmetric]) apply (subst push_mods(1)) apply (simp add: field_simps mod_pos_pos_trivial) apply (rule mod_pos_pos_trivial) apply (subst add_0_right[where a=0, symmetric]) apply (rule add_mono) apply simp apply simp apply (cases "(n - 1) mod m = m - 1") apply (drule zmod_helper[where a=1]) apply simp apply (subgoal_tac "1 + (n - 1) mod m \<le> m") apply simp apply (subst field_simps, rule zless_imp_add1_zle) apply simp done lemmas nat_less_power_trans_16 = subst [OF mult.commute, where P="\<lambda>x. x < v" for v, OF nat_less_power_trans[where k=4, simplified]] lemmas nat_less_power_trans_256 = subst [OF mult.commute, where P="\<lambda>x. x < v" for v, OF nat_less_power_trans[where k=8, simplified]] lemmas nat_less_power_trans_4096 = subst [OF mult.commute, where P="\<lambda>x. x < v" for v, OF nat_less_power_trans[where k=12, simplified]] lemma ptr_add_image_multI: "\<lbrakk> \<And>x y. (x * val = y * val') = (x * val'' = y); x * val'' \<in> S \<rbrakk> \<Longrightarrow> ptr_add ptr (x * val) \<in> (\<lambda>p. ptr_add ptr (p * val')) ` S" apply (simp add: image_def) apply (erule rev_bexI) apply (rule arg_cong[where f="ptr_add ptr"]) apply simp done lemma shift_times_fold: "(x :: word32) * (2 ^ n) << m = x << (m + n)" by (simp add: shiftl_t2n ac_simps power_add) lemma word_plus_strict_mono_right: fixes x :: "'a :: len word" shows "\<lbrakk>y < z; x \<le> x + z\<rbrakk> \<Longrightarrow> x + y < x + z" by unat_arith lemma comp_upd_simp: "(f \<circ> (g (x := y))) = ((f \<circ> g) (x := f y))" by (rule ext, simp add: o_def) lemma dom_option_map: "dom (option_map f o m) = dom m" by (simp add: dom_def) lemma drop_imp: "P \<Longrightarrow> (A \<longrightarrow> P) \<and> (B \<longrightarrow> P)" by blast lemma inj_on_fun_updI2: "\<lbrakk> inj_on f A; y \<notin> f ` (A - {x}) \<rbrakk> \<Longrightarrow> inj_on (f(x := y)) A" apply (rule inj_onI) apply (simp split: split_if_asm) apply (erule notE, rule image_eqI, erule sym) apply simp apply (erule(3) inj_onD) done lemma inj_on_fun_upd_elsewhere: "x \<notin> S \<Longrightarrow> inj_on (f (x := y)) S = inj_on f S" apply (simp add: inj_on_def) apply blast done lemma not_Some_eq_tuple: "(\<forall>y z. x \<noteq> Some (y, z)) = (x = None)" by (cases x, simp_all) lemma ran_option_map: "ran (option_map f o m) = f ` ran m" by (auto simp add: ran_def) lemma All_less_Ball: "(\<forall>x < n. P x) = (\<forall>x\<in>{..< n}. P x)" by fastforce lemma Int_image_empty: "\<lbrakk> \<And>x y. f x \<noteq> g y \<rbrakk> \<Longrightarrow> f ` S \<inter> g ` T = {}" by auto lemma Max_prop: "\<lbrakk> Max S \<in> S \<Longrightarrow> P (Max S); (S :: ('a :: {finite, linorder}) set) \<noteq> {} \<rbrakk> \<Longrightarrow> P (Max S)" apply (erule meta_mp) apply (rule Max_in) apply simp apply assumption done lemma Min_prop: "\<lbrakk> Min S \<in> S \<Longrightarrow> P (Min S); (S :: ('a :: {finite, linorder}) set) \<noteq> {} \<rbrakk> \<Longrightarrow> P (Min S)" apply (erule meta_mp) apply (rule Min_in) apply simp apply assumption done definition is_inv :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('b \<rightharpoonup> 'a) \<Rightarrow> bool" where "is_inv f g \<equiv> ran f = dom g \<and> (\<forall>x y. f x = Some y \<longrightarrow> g y = Some x)" lemma is_inv_NoneD: assumes "g x = None" assumes "is_inv f g" shows "x \<notin> ran f" proof - from assms have "x \<notin> dom g" by (auto simp: ran_def) moreover from assms have "ran f = dom g" by (simp add: is_inv_def) ultimately show ?thesis by simp qed lemma is_inv_SomeD: "\<lbrakk> f x = Some y; is_inv f g \<rbrakk> \<Longrightarrow> g y = Some x" by (simp add: is_inv_def) lemma is_inv_com: "is_inv f g \<Longrightarrow> is_inv g f" apply (unfold is_inv_def) apply safe apply (clarsimp simp: ran_def dom_def set_eq_iff) apply (erule_tac x=a in allE) apply clarsimp apply (clarsimp simp: ran_def dom_def set_eq_iff) apply blast apply (clarsimp simp: ran_def dom_def set_eq_iff) apply (erule_tac x=x in allE) apply clarsimp done lemma is_inv_inj: "is_inv f g \<Longrightarrow> inj_on f (dom f)" apply (frule is_inv_com) apply (clarsimp simp: inj_on_def) apply (drule (1) is_inv_SomeD) apply (drule_tac f=f in is_inv_SomeD, assumption) apply simp done lemma is_inv_None_upd: "\<lbrakk> is_inv f g; g x = Some y\<rbrakk> \<Longrightarrow> is_inv (f(y := None)) (g(x := None))" apply (subst is_inv_def) apply (clarsimp simp add: dom_upd) apply (drule is_inv_SomeD, erule is_inv_com) apply (frule is_inv_inj) apply (simp add: ran_upd') apply (rule conjI) apply (simp add: is_inv_def) apply (drule (1) is_inv_SomeD) apply (clarsimp simp: is_inv_def) done lemma is_inv_inj2: "is_inv f g \<Longrightarrow> inj_on g (dom g)" apply (drule is_inv_com) apply (erule is_inv_inj) done lemma range_convergence1: "\<lbrakk> \<forall>z. x < z \<and> z \<le> y \<longrightarrow> P z; \<forall>z > y. P (z :: 'a :: linorder) \<rbrakk> \<Longrightarrow> \<forall>z > x. P z" apply clarsimp apply (case_tac "z \<le> y") apply simp apply (simp add: linorder_not_le) done lemma range_convergence2: "\<lbrakk> \<forall>z. x < z \<and> z \<le> y \<longrightarrow> P z; \<forall>z. z > y \<and> z < w \<longrightarrow> P (z :: 'a :: linorder) \<rbrakk> \<Longrightarrow> \<forall>z. z > x \<and> z < w \<longrightarrow> P z" apply (cut_tac range_convergence1[where P="\<lambda>z. z < w \<longrightarrow> P z" and x=x and y=y]) apply simp apply simp apply simp done lemma replicate_minus: "k < n \<Longrightarrow> replicate n False = replicate (n - k) False @ replicate k False" by (subst replicate_add [symmetric]) simp lemmas map_pair_split_imageI = map_prod_imageI[where f="split f" and g="split g" and a="(a, b)" and b="(c, d)" for a b c d f g, simplified] lemma word_div_mult: fixes c :: word32 shows "\<lbrakk>0 < c; a < b * c \<rbrakk> \<Longrightarrow> a div c < b" apply (simp add: word_less_nat_alt unat_div) apply (subst td_gal_lt [symmetric]) apply assumption apply (erule order_less_le_trans) apply (subst unat_word_ariths) apply (unfold word_bits_len_of) apply (rule mod_le_dividend) done lemma word_less_power_trans_ofnat: "\<lbrakk>n < 2 ^ (m - k); k \<le> m; m < len_of TYPE('a)\<rbrakk> \<Longrightarrow> of_nat n * 2 ^ k < (2::'a::len word) ^ m" apply (subst mult.commute) apply (rule word_less_power_trans) apply (simp add: word_less_nat_alt) apply (subst unat_of_nat_eq) apply (erule order_less_trans) apply (simp add: unat_power_lower)+ done lemma upto_enum_step_red': "\<lbrakk> c < word_bits; b \<le> c; is_aligned a c \<rbrakk> \<Longrightarrow> [a, a + 2 ^ b .e. a + 2 ^ c - 1] = map (op + a) [0, 2 ^ b .e. 2 ^ c - 1]" unfolding upto_enum_step_def by (auto simp: upto_enum_word dest:is_aligned_no_overflow) lemma div_power_helper: "\<lbrakk> x \<le> y; y < word_bits \<rbrakk> \<Longrightarrow> (2 ^ y - 1) div (2 ^ x :: word32) = 2 ^ (y - x) - 1" apply (rule word_uint.Rep_eqD) apply (simp only: uint_word_ariths uint_div uint_power_lower word_bits_len_of) apply (subst mod_pos_pos_trivial, fastforce, fastforce)+ apply (subst mod_pos_pos_trivial) apply (simp add: le_diff_eq uint_2p_alt[where 'a=32, unfolded word_bits_len_of]) apply (rule less_1_helper) apply (rule power_increasing) apply (simp add: word_bits_def) apply simp apply (subst mod_pos_pos_trivial) apply (simp add: uint_2p_alt[where 'a=32, unfolded word_bits_len_of]) apply (rule less_1_helper) apply (rule power_increasing) apply (simp add: word_bits_def) apply simp apply (subst int_div_sub_1) apply simp apply (simp add: uint_2p_alt[where 'a=32, unfolded word_bits_len_of]) apply (subst power_0[symmetric, where a=2]) apply (simp add: uint_2p_alt[where 'a=32, unfolded word_bits_len_of] le_imp_power_dvd_int power_sub_int) done lemma n_less_word_bits: "(n < word_bits) = (n < 32)" by (simp add: word_bits_def) lemma of_nat_less_pow: "\<lbrakk> x < 2 ^ n; n < word_bits \<rbrakk> \<Longrightarrow> of_nat x < (2 :: word32) ^ n" apply (subst word_unat_power) apply (rule of_nat_mono_maybe) apply (rule power_strict_increasing) apply (simp add: word_bits_def) apply simp apply assumption done lemma power_helper: "\<lbrakk> (x :: word32) < 2 ^ (m - n); n \<le> m; m < word_bits \<rbrakk> \<Longrightarrow> x * (2 ^ n) < 2 ^ m" apply (drule word_mult_less_mono1[where k="2 ^ n"]) apply (simp add: word_neq_0_conv[symmetric] word_bits_def) apply (simp only: unat_power_lower[where 'a=32, unfolded word_bits_len_of] power_add[symmetric]) apply (rule power_strict_increasing) apply (simp add: word_bits_def) apply simp apply (simp add: power_add[symmetric] del: power_add) done lemma word_1_le_power: "n < len_of TYPE('a) \<Longrightarrow> (1 :: 'a :: len word) \<le> 2 ^ n" by (rule inc_le[where i=0, simplified], erule iffD2[OF p2_gt_0]) lemma enum_word_div: fixes v :: "('a :: len) word" shows "\<exists>xs ys. enum = xs @ [v] @ ys \<and> (\<forall>x \<in> set xs. x < v) \<and> (\<forall>y \<in> set ys. v < y)" apply (simp only: enum_word_def) apply (subst upt_add_eq_append'[where j="unat v"]) apply simp apply (rule order_less_imp_le, simp) apply (simp add: upt_conv_Cons) apply (intro exI conjI) apply fastforce apply clarsimp apply (drule of_nat_mono_maybe[rotated, where 'a='a]) apply simp apply simp apply (clarsimp simp: Suc_le_eq) apply (drule of_nat_mono_maybe[rotated, where 'a='a]) apply simp apply simp done lemma less_x_plus_1: fixes x :: "('a :: len) word" shows "x \<noteq> max_word \<Longrightarrow> (y < (x + 1)) = (y < x \<or> y = x)" apply (rule iffI) apply (rule disjCI) apply (drule plus_one_helper) apply simp apply (subgoal_tac "x < x + 1") apply (erule disjE, simp_all) apply (rule plus_one_helper2 [OF order_refl]) apply (rule notI, drule max_word_wrap) apply simp done lemma of_bool_nth: "of_bool (x !! v) = (x >> v) && 1" apply (rule word_eqI) apply (simp add: nth_shiftr cong: rev_conj_cong) done lemma unat_1_0: "1 \<le> (x::word32) = (0 < unat x)" by (auto simp add: word_le_nat_alt) lemma x_less_2_0_1: fixes x :: word32 shows "x < 2 \<Longrightarrow> x = 0 \<or> x = 1" by unat_arith lemma Collect_int_vars: "{s. P rv s} \<inter> {s. rv = xf s} = {s. P (xf s) s} \<inter> {s. rv = xf s}" by auto lemma if_0_1_eq: "((if P then 1 else 0) = (case Q of True \<Rightarrow> of_nat 1 | False \<Rightarrow> of_nat 0)) = (P = Q)" by (simp add: case_bool_If split: split_if) lemma modify_map_exists_cte : "(\<exists>cte. modify_map m p f p' = Some cte) = (\<exists>cte. m p' = Some cte)" by (simp add: modify_map_def) lemmas word_add_le_iff2 = word_add_le_iff [folded no_olen_add_nat] lemma mask_32_max_word : shows "mask 32 = (max_word :: word32)" unfolding mask_def by (simp add: max_word_def) lemma dom_eqI: assumes c1: "\<And>x y. P x = Some y \<Longrightarrow> \<exists>y. Q x = Some y" and c2: "\<And>x y. Q x = Some y \<Longrightarrow> \<exists>y. P x = Some y" shows "dom P = dom Q" unfolding dom_def by (auto simp: c1 c2) lemma dvd_reduce_multiple: fixes k :: nat shows "(k dvd k * m + n) = (k dvd n)" apply (induct m) apply simp apply simp apply (subst add.assoc, subst add.commute) apply (subst dvd_reduce) apply assumption done lemma image_iff: "inj f \<Longrightarrow> f x \<in> f ` S = (x \<in> S)" apply rule apply (erule imageE) apply (simp add: inj_eq) apply (erule imageI) done lemma of_nat_n_less_equal_power_2: "n < len_of TYPE('a::len) \<Longrightarrow> ((of_nat n)::'a word) < 2 ^ n" apply (induct n) apply clarsimp apply clarsimp apply (metis WordLemmaBucket.of_nat_power n_less_equal_power_2 of_nat_Suc power_Suc) done lemma of_nat32_n_less_equal_power_2: "n < 32 \<Longrightarrow> ((of_nat n)::32 word) < 2 ^ n" by (rule of_nat_n_less_equal_power_2, clarsimp simp: word_size) lemma map_comp_restrict_map_Some_iff: "((g \<circ>\<^sub>m (m |` S)) x = Some y) = ((g \<circ>\<^sub>m m) x = Some y \<and> x \<in> S)" by (auto simp add: map_comp_Some_iff restrict_map_Some_iff) lemma range_subsetD: fixes a :: "'a :: order" shows "\<lbrakk> {a..b} \<subseteq> {c..d}; a \<le> b \<rbrakk> \<Longrightarrow> c \<le> a \<and> b \<le> d" apply (rule conjI) apply (drule subsetD [where c = a]) apply simp apply simp apply (drule subsetD [where c = b]) apply simp apply simp done lemma option_case_dom: "(case f x of None \<Rightarrow> a | Some v \<Rightarrow> b v) = (if x \<in> dom f then b (the (f x)) else a)" by (auto split: split_if option.split) lemma contrapos_imp: "P \<longrightarrow> Q \<Longrightarrow> \<not> Q \<longrightarrow> \<not> P" by clarsimp lemma eq_mask_less: fixes w :: "('a::len) word" assumes eqm: "w = w && mask n" and sz: "n < len_of TYPE ('a)" shows "w < (2::'a word) ^ n" by (subst eqm, rule and_mask_less' [OF sz]) lemma of_nat_mono_maybe': fixes Y :: "nat" assumes xlt: "X < 2 ^ len_of TYPE ('a :: len)" assumes ylt: "Y < 2 ^ len_of TYPE ('a :: len)" shows "(Y < X) = (of_nat Y < (of_nat X :: 'a :: len word))" apply (subst word_less_nat_alt) apply (subst unat_of_nat)+ apply (subst mod_less) apply (rule ylt) apply (subst mod_less) apply (rule xlt) apply simp done (* FIXME: MOVE *) lemma shiftr_mask_eq: fixes x :: "'a :: len word" shows "(x >> n) && mask (size x - n) = x >> n" apply (rule word_eqI) apply (simp add: word_size nth_shiftr) apply (rule iffI) apply clarsimp apply (clarsimp) apply (drule test_bit_size) apply (simp add: word_size) done (* FIXME: move *) lemma shiftr_mask_eq': fixes x :: "'a :: len word" shows "m = (size x - n) \<Longrightarrow> (x >> n) && mask m = x >> n" by (simp add: shiftr_mask_eq) lemma zipWith_Nil2 : "zipWith f xs [] = []" unfolding zipWith_def by simp lemma zip_upt_Cons: "a < b \<Longrightarrow> zip [a ..< b] (x # xs) = (a, x) # zip [Suc a ..< b] xs" by (simp add: upt_conv_Cons) lemma map_comp_eq: "(f \<circ>\<^sub>m g) = (case_option None f \<circ> g)" apply (rule ext) apply (case_tac "g x") apply simp apply simp done lemma dom_If_Some: "dom (\<lambda>x. if x \<in> S then Some v else f x) = (S \<union> dom f)" by (auto split: split_if) lemma foldl_fun_upd_const: "foldl (\<lambda>s x. s(f x := v)) s xs = (\<lambda>x. if x \<in> f ` set xs then v else s x)" apply (induct xs arbitrary: s) apply simp apply (rule ext, simp) done lemma foldl_id: "foldl (\<lambda>s x. s) s xs = s" apply (induct xs) apply simp apply simp done lemma SucSucMinus: "2 \<le> n \<Longrightarrow> Suc (Suc (n - 2)) = n" by arith lemma ball_to_all: "(\<And>x. (x \<in> A) = (P x)) \<Longrightarrow> (\<forall>x \<in> A. B x) = (\<forall>x. P x \<longrightarrow> B x)" by blast lemma bang_big: "n \<ge> size (x::'a::len0 word) \<Longrightarrow> (x !! n) = False" by (simp add: test_bit_bl word_size) lemma bang_conj_lt: fixes x :: "'a :: len word" shows "(x !! m \<and> m < len_of TYPE('a)) = x !! m" apply (cases "m < len_of TYPE('a)") apply simp apply (simp add: not_less bang_big word_size) done lemma dom_if: "dom (\<lambda>a. if a \<in> addrs then Some (f a) else g a) = addrs \<union> dom g" by (auto simp: dom_def split: split_if) lemma less_is_non_zero_p1: fixes a :: "'a :: len word" shows "a < k \<Longrightarrow> a + 1 \<noteq> 0" apply (erule contrapos_pn) apply (drule max_word_wrap) apply (simp add: not_less) done lemma lt_word_bits_lt_pow: "sz < word_bits \<Longrightarrow> sz < 2 ^ word_bits" by (simp add: word_bits_conv) (* FIXME: shadows an existing thm *) lemma of_nat_mono_maybe_le: "\<lbrakk>X < 2 ^ len_of TYPE('a); Y < 2 ^ len_of TYPE('a)\<rbrakk> \<Longrightarrow> (Y \<le> X) = ((of_nat Y :: 'a :: len word) \<le> of_nat X)" apply (clarsimp simp: le_less) apply (rule disj_cong) apply (rule of_nat_mono_maybe', assumption+) apply (simp add: word_unat.norm_eq_iff [symmetric]) done lemma neg_mask_bang: "(~~ mask n :: 'a :: len word) !! m = (n \<le> m \<and> m < len_of TYPE('a))" apply (cases "m < len_of TYPE('a)") apply (simp add: word_ops_nth_size word_size not_less) apply (simp add: not_less bang_big word_size) done lemma mask_AND_NOT_mask: "(w && ~~ mask n) && mask n = 0" by (rule word_eqI) (clarsimp simp add: word_size neg_mask_bang) lemma AND_NOT_mask_plus_AND_mask_eq: "(w && ~~ mask n) + (w && mask n) = w" apply (rule word_eqI) apply (rename_tac m) apply (simp add: word_size) apply (cut_tac word_plus_and_or_coroll[of "w && ~~ mask n" "w && mask n"]) apply (simp add: word_ao_dist2[symmetric] word_size neg_mask_bang) apply (rule word_eqI) apply (rename_tac m) apply (simp add: word_size neg_mask_bang) done lemma mask_eqI: fixes x :: "'a :: len word" assumes m1: "x && mask n = y && mask n" and m2: "x && ~~ mask n = y && ~~ mask n" shows "x = y" proof (subst bang_eq, rule allI) fix m show "x !! m = y !! m" proof (cases "m < n") case True hence "x !! m = ((x && mask n) !! m)" by (simp add: word_size bang_conj_lt) also have "\<dots> = ((y && mask n) !! m)" using m1 by simp also have "\<dots> = y !! m" using True by (simp add: word_size bang_conj_lt) finally show ?thesis . next case False hence "x !! m = ((x && ~~ mask n) !! m)" by (simp add: neg_mask_bang bang_conj_lt) also have "\<dots> = ((y && ~~ mask n) !! m)" using m2 by simp also have "\<dots> = y !! m" using False by (simp add: neg_mask_bang bang_conj_lt) finally show ?thesis . qed qed lemma nat_less_power_trans2: fixes n :: nat shows "\<lbrakk>n < 2 ^ (m - k); k \<le> m\<rbrakk> \<Longrightarrow> n * 2 ^ k < 2 ^ m" by (subst mult.commute, erule (1) nat_less_power_trans) lemma nat_move_sub_le: "(a::nat) + b \<le> c \<Longrightarrow> a \<le> c - b" by arith lemma neq_0_no_wrap: fixes x :: "'a :: len word" shows "\<lbrakk> x \<le> x + y; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x + y \<noteq> 0" by clarsimp lemma plus_minus_one_rewrite: "v + (- 1 :: ('a :: {ring, one, uminus})) \<equiv> v - 1" by (simp add: field_simps) lemmas plus_minus_one_rewrite32 = plus_minus_one_rewrite[where 'a=word32, simplified] lemma power_minus_is_div: "b \<le> a \<Longrightarrow> (2 :: nat) ^ (a - b) = 2 ^ a div 2 ^ b" apply (induct a arbitrary: b) apply simp apply (erule le_SucE) apply (clarsimp simp:Suc_diff_le le_iff_add power_add) apply simp done lemma two_pow_div_gt_le: "v < 2 ^ n div (2 ^ m :: nat) \<Longrightarrow> m \<le> n" by (clarsimp dest!: less_two_pow_divD) lemma unat_less_word_bits: fixes y :: word32 shows "x < unat y \<Longrightarrow> x < 2 ^ word_bits" unfolding word_bits_def by (rule order_less_trans [OF _ unat_lt2p]) lemma word_add_power_off: fixes a :: word32 assumes ak: "a < k" and kw: "k < 2 ^ (word_bits - m)" and mw: "m < word_bits" and off: "off < 2 ^ m" shows "(a * 2 ^ m) + off < k * 2 ^ m" proof (cases "m = 0") case True thus ?thesis using off ak by simp next case False from ak have ak1: "a + 1 \<le> k" by (rule inc_le) hence "(a + 1) * 2 ^ m \<noteq> 0" apply - apply (rule word_power_nonzero) apply (erule order_le_less_trans [OF _ kw]) apply (rule mw) apply (rule less_is_non_zero_p1 [OF ak]) done hence "(a * 2 ^ m) + off < ((a + 1) * 2 ^ m)" using kw mw apply - apply (simp add: distrib_right) apply (rule word_plus_strict_mono_right [OF off]) apply (rule is_aligned_no_overflow'') apply (rule is_aligned_mult_triv2) apply assumption done also have "\<dots> \<le> k * 2 ^ m" using ak1 mw kw False apply - apply (erule word_mult_le_mono1) apply (simp add: p2_gt_0 word_bits_def) apply (simp add: word_bits_len_of word_less_nat_alt word_bits_def) apply (rule nat_less_power_trans2[where m=32, simplified]) apply (simp add: word_less_nat_alt) apply simp done finally show ?thesis . qed lemma word_of_nat_less: "\<lbrakk> n < unat x \<rbrakk> \<Longrightarrow> of_nat n < x" apply (simp add: word_less_nat_alt) apply (erule order_le_less_trans[rotated]) apply (simp add: unat_of_nat) done lemma word_rsplit_0: "word_rsplit (0 :: word32) = [0, 0, 0, 0 :: word8]" apply (simp add: word_rsplit_def bin_rsplit_def Let_def) done lemma word_of_nat_le: "n \<le> unat x \<Longrightarrow> of_nat n \<le> x" apply (simp add: word_le_nat_alt unat_of_nat) apply (erule order_trans[rotated]) apply simp done lemma word_unat_less_le: "a \<le> of_nat b \<Longrightarrow> unat a \<le> b" by (metis eq_iff le_cases le_unat_uoi word_of_nat_le) lemma filter_eq_If: "distinct xs \<Longrightarrow> filter (\<lambda>v. v = x) xs = (if x \<in> set xs then [x] else [])" apply (induct xs) apply simp apply (clarsimp split: split_if) done (*FIXME: isabelle-2012 *) lemma (in semigroup_add) foldl_assoc: shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)" by (induct zs arbitrary: y) (simp_all add:add.assoc) lemma (in monoid_add) foldl_absorb0: shows "x + (foldl op+ 0 zs) = foldl op+ x zs" by (induct zs) (simp_all add:foldl_assoc) lemma foldl_conv_concat: "foldl (op @) xs xss = xs @ concat xss" proof (induct xss arbitrary: xs) case Nil show ?case by simp next interpret monoid_add "op @" "[]" proof qed simp_all case Cons then show ?case by (simp add: foldl_absorb0) qed lemma foldl_concat_concat: "foldl op @ [] (xs @ ys) = foldl op @ [] xs @ foldl op @ [] ys" by (simp add: foldl_conv_concat) lemma foldl_does_nothing: "\<lbrakk> \<And>x. x \<in> set xs \<Longrightarrow> f s x = s \<rbrakk> \<Longrightarrow> foldl f s xs = s" by (induct xs, simp_all) lemma foldl_use_filter: "\<lbrakk> \<And>v x. \<lbrakk> \<not> g x; x \<in> set xs \<rbrakk> \<Longrightarrow> f v x = v \<rbrakk> \<Longrightarrow> foldl f v xs = foldl f v (filter g xs)" apply (induct xs arbitrary: v) apply simp apply (simp split: split_if) done lemma split_upt_on_n: "n < m \<Longrightarrow> [0 ..< m] = [0 ..< n] @ [n] @ [Suc n ..< m]" apply (subst upt_add_eq_append', simp, erule order_less_imp_le) apply (simp add: upt_conv_Cons) done lemma unat_ucast_10_32 : fixes x :: "10 word" shows "unat (ucast x :: word32) = unat x" unfolding ucast_def unat_def apply (subst int_word_uint) apply (subst mod_pos_pos_trivial) apply simp apply (rule lt2p_lem) apply simp apply simp done lemma map_comp_update_lift: assumes fv: "f v = Some v'" shows "(f \<circ>\<^sub>m (g(ptr \<mapsto> v))) = ((f \<circ>\<^sub>m g)(ptr \<mapsto> v'))" unfolding map_comp_def apply (rule ext) apply (simp add: fv) done lemma restrict_map_cong: assumes sv: "S = S'" and rl: "\<And>p. p \<in> S' \<Longrightarrow> mp p = mp' p" shows "mp |` S = mp' |` S'" apply (simp add: sv) apply (rule ext) apply (case_tac "x \<in> S'") apply (simp add: rl ) apply simp done lemma and_eq_0_is_nth: fixes x :: "('a :: len) word" shows "y = 1 << n \<Longrightarrow> ((x && y) = 0) = (\<not> (x !! n))" apply safe apply (drule_tac u="(x && (1 << n))" and x=n in word_eqD) apply (simp add: nth_w2p) apply (simp add: test_bit_bin) apply (rule word_eqI) apply (simp add: nth_w2p) done lemmas and_neq_0_is_nth = arg_cong [where f=Not, OF and_eq_0_is_nth, simplified] lemma ucast_le_ucast_8_32: "(ucast x \<le> (ucast y :: word32)) = (x \<le> (y :: word8))" by (simp add: word_le_nat_alt unat_ucast_8_32) lemma mask_Suc_0 : "mask (Suc 0) = 1" by (simp add: mask_def) lemma ucast_ucast_add: fixes x :: "('a :: len) word" fixes y :: "('b :: len) word" shows "len_of TYPE('b) \<ge> len_of TYPE('a) \<Longrightarrow> ucast (ucast x + y) = x + ucast y" apply (rule word_unat.Rep_eqD) apply (simp add: unat_ucast unat_word_ariths mod_mod_power min.absorb2 unat_of_nat) apply (subst mod_add_left_eq) apply (simp add: mod_mod_power min.absorb2) apply (subst mod_add_right_eq) apply simp done lemma word_shift_zero: "\<lbrakk> x << n = 0; x \<le> 2^m; m + n < len_of TYPE('a)\<rbrakk> \<Longrightarrow> (x::'a::len word) = 0" apply (rule ccontr) apply (drule (2) word_shift_nonzero) apply simp done lemma neg_mask_mono_le: "(x :: 'a :: len word) \<le> y \<Longrightarrow> x && ~~ mask n \<le> y && ~~ mask n" proof (rule ccontr, simp add: linorder_not_le, cases "n < len_of TYPE('a)") case False show "y && ~~ mask n < x && ~~ mask n \<Longrightarrow> False" using False by (simp add: mask_def linorder_not_less power_overflow) next case True assume a: "x \<le> y" and b: "y && ~~ mask n < x && ~~ mask n" have word_bits: "n < len_of TYPE('a)" using True by assumption have "y \<le> (y && ~~ mask n) + (y && mask n)" by (simp add: word_plus_and_or_coroll2 add.commute) also have "\<dots> \<le> (y && ~~ mask n) + 2 ^ n" apply (rule word_plus_mono_right) apply (rule order_less_imp_le, rule and_mask_less_size) apply (simp add: word_size word_bits) apply (rule is_aligned_no_overflow'', simp_all add: is_aligned_neg_mask word_bits) apply (rule not_greatest_aligned, rule b) apply (simp_all add: is_aligned_neg_mask) done also have "\<dots> \<le> x && ~~ mask n" using b apply - apply (subst add.commute, rule le_plus) apply (rule aligned_at_least_t2n_diff, simp_all add: is_aligned_neg_mask) apply (rule ccontr, simp add: linorder_not_le) apply (drule aligned_small_is_0[rotated], simp_all add: is_aligned_neg_mask) done also have "\<dots> \<le> x" by (rule word_and_le2) also have "x \<le> y" by fact finally show "False" using b by simp qed lemma isRight_right_map: "isRight (case_sum Inl (Inr o f) v) = isRight v" by (simp add: isRight_def split: sum.split) lemma bool_mask [simp]: fixes x :: word32 shows "(0 < x && 1) = (x && 1 = 1)" apply (rule iffI) prefer 2 apply simp apply (subgoal_tac "x && mask 1 < 2^1") prefer 2 apply (rule and_mask_less_size) apply (simp add: word_size) apply (simp add: mask_def) apply (drule word_less_cases [where y=2]) apply (erule disjE, simp) apply simp done lemma option_case_over_if: "case_option P Q (if G then None else Some v) = (if G then P else Q v)" "case_option P Q (if G then Some v else None) = (if G then Q v else P)" by (simp split: split_if)+ lemma scast_eq_ucast: "\<not> msb x \<Longrightarrow> scast x = ucast x" by (simp add: scast_def ucast_def sint_eq_uint) (* MOVE *) lemma lt1_neq0: fixes x :: "'a :: len word" shows "(1 \<le> x) = (x \<noteq> 0)" by unat_arith lemma word_plus_one_nonzero: fixes x :: "'a :: len word" shows "\<lbrakk>x \<le> x + y; y \<noteq> 0\<rbrakk> \<Longrightarrow> x + 1 \<noteq> 0" apply (subst lt1_neq0 [symmetric]) apply (subst olen_add_eqv [symmetric]) apply (erule word_random) apply (simp add: lt1_neq0) done lemma word_sub_plus_one_nonzero: fixes n :: "'a :: len word" shows "\<lbrakk>n' \<le> n; n' \<noteq> 0\<rbrakk> \<Longrightarrow> (n - n') + 1 \<noteq> 0" apply (subst lt1_neq0 [symmetric]) apply (subst olen_add_eqv [symmetric]) apply (rule word_random [where x' = n']) apply simp apply (erule word_sub_le) apply (simp add: lt1_neq0) done lemma word_le_minus_mono_right: fixes x :: "'a :: len word" shows "\<lbrakk> z \<le> y; y \<le> x; z \<le> x \<rbrakk> \<Longrightarrow> x - y \<le> x - z" apply (rule word_sub_mono) apply simp apply assumption apply (erule word_sub_le) apply (erule word_sub_le) done lemma drop_append_miracle: "n = length xs \<Longrightarrow> drop n (xs @ ys) = ys" by simp lemma foldr_does_nothing_to_xf: "\<lbrakk> \<And>x s. x \<in> set xs \<Longrightarrow> xf (f x s) = xf s \<rbrakk> \<Longrightarrow> xf (foldr f xs s) = xf s" by (induct xs, simp_all) lemma nat_less_mult_monoish: "\<lbrakk> a < b; c < (d :: nat) \<rbrakk> \<Longrightarrow> (a + 1) * (c + 1) <= b * d" apply (drule Suc_leI)+ apply (drule(1) mult_le_mono) apply simp done lemma word_0_sle_from_less[unfolded word_size]: "\<lbrakk> x < 2 ^ (size x - 1) \<rbrakk> \<Longrightarrow> 0 <=s x" apply (clarsimp simp: word_sle_msb_le) apply (simp add: word_msb_nth) apply (subst (asm) word_test_bit_def [symmetric]) apply (drule less_mask_eq) apply (drule_tac x="size x - 1" in word_eqD) apply (simp add: word_size) done lemma not_msb_from_less: "(v :: 'a word) < 2 ^ (len_of TYPE('a :: len) - 1) \<Longrightarrow> \<not> msb v" apply (clarsimp simp add: msb_nth) apply (drule less_mask_eq) apply (drule word_eqD, drule(1) iffD2) apply simp done lemma distinct_lemma: "f x \<noteq> f y \<Longrightarrow> x \<noteq> y" by auto lemma ucast_sub_ucast: fixes x :: "'a::len word" assumes "y \<le> x" assumes T: "len_of TYPE('a) \<le> len_of TYPE('b)" shows "ucast (x - y) = (ucast x - ucast y :: 'b::len word)" proof - from T have P: "unat x < 2 ^ len_of TYPE('b)" "unat y < 2 ^ len_of TYPE('b)" by (fastforce intro!: less_le_trans[OF unat_lt2p])+ thus ?thesis by (simp add: unat_arith_simps unat_ucast split assms[simplified unat_arith_simps]) qed lemma word_1_0: "\<lbrakk>a + (1::('a::len) word) \<le> b; a < of_nat ((2::nat) ^ len_of TYPE(32) - 1)\<rbrakk> \<Longrightarrow> a < b" by unat_arith lemma unat_of_nat_less:"\<lbrakk> a < b; unat b = c \<rbrakk> \<Longrightarrow> a < of_nat c" by fastforce lemma word_le_plus_1: "\<lbrakk> (y::('a::len) word) < y + n; a < n \<rbrakk> \<Longrightarrow> y + a \<le> y + a + 1" by unat_arith lemma word_le_plus:"\<lbrakk>(a::('a::len) word) < a + b; c < b\<rbrakk> \<Longrightarrow> a \<le> a + c" by (metis order_less_imp_le word_random) (* * Basic signed arithemetic properties. *) lemma sint_minus1 [simp]: "(sint x = -1) = (x = -1)" by (metis sint_n1 word_sint.Rep_inverse') lemma sint_0 [simp]: "(sint x = 0) = (x = 0)" by (metis sint_0 word_sint.Rep_inverse') (* It is not always that case that "sint 1 = 1", because of 1-bit word sizes. * This lemma produces the different cases. *) lemma sint_1_cases: "\<lbrakk> \<lbrakk> len_of TYPE ('a::len) = 1; (a::'a word) = 0; sint a = 0 \<rbrakk> \<Longrightarrow> P; \<lbrakk> len_of TYPE ('a) = 1; a = 1; sint (1 :: 'a word) = -1 \<rbrakk> \<Longrightarrow> P; \<lbrakk> len_of TYPE ('a) > 1; sint (1 :: 'a word) = 1 \<rbrakk> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" apply atomize_elim apply (case_tac "len_of TYPE ('a) = 1") apply clarsimp apply (subgoal_tac "(UNIV :: 'a word set) = {0, 1}") apply (metis UNIV_I insert_iff singletonE) apply (subst word_unat.univ) apply (clarsimp simp: unats_def image_def) apply (rule set_eqI, rule iffI) apply clarsimp apply (metis One_nat_def less_2_cases of_nat_1 semiring_1_class.of_nat_0) apply clarsimp apply (metis Abs_fnat_hom_0 Suc_1 lessI of_nat_1 zero_less_Suc) apply clarsimp apply (metis One_nat_def arith_is_1 le_def len_gt_0 sint_eq_uint uint_1 word_msb_1) done lemma sint_int_min: "sint (- (2 ^ (len_of TYPE('a) - Suc 0)) :: ('a::len) word) = - (2 ^ (len_of TYPE('a) - Suc 0))" apply (subst word_sint.Abs_inverse' [where r="- (2 ^ (len_of TYPE('a) - Suc 0))"]) apply (clarsimp simp: sints_num) apply (clarsimp simp: wi_hom_syms word_of_int_2p) apply clarsimp done lemma sint_int_max_plus_1: "sint (2 ^ (len_of TYPE('a) - Suc 0) :: ('a::len) word) = - (2 ^ (len_of TYPE('a) - Suc 0))" apply (subst word_of_int_2p [symmetric]) apply (subst int_word_sint) apply (clarsimp simp: comm_semiring_1_class.normalizing_semiring_rules(27)) done lemma word32_bounds: "- (2 ^ (size (x :: word32) - 1)) = (-2147483648 :: int)" "((2 ^ (size (x :: word32) - 1)) - 1) = (2147483647 :: int)" "- (2 ^ (size (y :: 32 signed word) - 1)) = (-2147483648 :: int)" "((2 ^ (size (y :: 32 signed word) - 1)) - 1) = (2147483647 :: int)" by (simp_all add: word_size) lemma sbintrunc_If: "- 3 * (2 ^ n) \<le> x \<and> x < 3 * (2 ^ n) \<Longrightarrow> sbintrunc n x = (if x < - (2 ^ n) then x + 2 * (2 ^ n) else if x \<ge> 2 ^ n then x - 2 * (2 ^ n) else x)" apply (simp add: no_sbintr_alt2, safe) apply (simp add: mod_pos_geq mod_pos_pos_trivial) apply (subst mod_add_self1[symmetric], simp) apply (simp add: mod_pos_pos_trivial) apply (simp add: mod_pos_pos_trivial) done lemma signed_arith_eq_checks_to_ord: "(sint a + sint b = sint (a + b )) = ((a <=s a + b) = (0 <=s b))" "(sint a - sint b = sint (a - b )) = ((0 <=s a - b) = (b <=s a))" "(- sint a = sint (- a)) = (0 <=s (- a) = (a <=s 0))" using sint_range'[where x=a] sint_range'[where x=b] apply (simp_all add: sint_word_ariths word_sle_def word_sless_alt sbintrunc_If) apply arith+ done (* Basic proofs that signed word div/mod operations are * truncations of their integer counterparts. *) lemma signed_div_arith: "sint ((a::('a::len) word) sdiv b) = sbintrunc (len_of TYPE('a) - 1) (sint a sdiv sint b)" apply (subst word_sbin.norm_Rep [symmetric]) apply (subst bin_sbin_eq_iff' [symmetric]) apply simp apply (subst uint_sint [symmetric]) apply (clarsimp simp: sdiv_int_def sdiv_word_def) apply (metis word_ubin.eq_norm) done lemma signed_mod_arith: "sint ((a::('a::len) word) smod b) = sbintrunc (len_of TYPE('a) - 1) (sint a smod sint b)" apply (subst word_sbin.norm_Rep [symmetric]) apply (subst bin_sbin_eq_iff' [symmetric]) apply simp apply (subst uint_sint [symmetric]) apply (clarsimp simp: smod_int_def smod_word_def) apply (metis word_ubin.eq_norm) done (* Signed word arithmetic overflow constraints. *) lemma signed_arith_ineq_checks_to_eq: "((- (2 ^ (size a - 1)) \<le> (sint a + sint b)) \<and> (sint a + sint b \<le> (2 ^ (size a - 1) - 1))) = (sint a + sint b = sint (a + b ))" "((- (2 ^ (size a - 1)) \<le> (sint a - sint b)) \<and> (sint a - sint b \<le> (2 ^ (size a - 1) - 1))) = (sint a - sint b = sint (a - b))" "((- (2 ^ (size a - 1)) \<le> (- sint a)) \<and> (- sint a) \<le> (2 ^ (size a - 1) - 1)) = ((- sint a) = sint (- a))" "((- (2 ^ (size a - 1)) \<le> (sint a * sint b)) \<and> (sint a * sint b \<le> (2 ^ (size a - 1) - 1))) = (sint a * sint b = sint (a * b))" "((- (2 ^ (size a - 1)) \<le> (sint a sdiv sint b)) \<and> (sint a sdiv sint b \<le> (2 ^ (size a - 1) - 1))) = (sint a sdiv sint b = sint (a sdiv b))" "((- (2 ^ (size a - 1)) \<le> (sint a smod sint b)) \<and> (sint a smod sint b \<le> (2 ^ (size a - 1) - 1))) = (sint a smod sint b = sint (a smod b))" by (auto simp: sint_word_ariths word_size signed_div_arith signed_mod_arith sbintrunc_eq_in_range range_sbintrunc) lemmas signed_arith_ineq_checks_to_eq_word32 = signed_arith_ineq_checks_to_eq[where 'a=32, unfolded word32_bounds] signed_arith_ineq_checks_to_eq[where 'a="32 signed", unfolded word32_bounds] lemma signed_arith_sint: "((- (2 ^ (size a - 1)) \<le> (sint a + sint b)) \<and> (sint a + sint b \<le> (2 ^ (size a - 1) - 1))) \<Longrightarrow> sint (a + b) = (sint a + sint b)" "((- (2 ^ (size a - 1)) \<le> (sint a - sint b)) \<and> (sint a - sint b \<le> (2 ^ (size a - 1) - 1))) \<Longrightarrow> sint (a - b) = (sint a - sint b)" "((- (2 ^ (size a - 1)) \<le> (- sint a)) \<and> (- sint a) \<le> (2 ^ (size a - 1) - 1)) \<Longrightarrow> sint (- a) = (- sint a)" "((- (2 ^ (size a - 1)) \<le> (sint a * sint b)) \<and> (sint a * sint b \<le> (2 ^ (size a - 1) - 1))) \<Longrightarrow> sint (a * b) = (sint a * sint b)" "((- (2 ^ (size a - 1)) \<le> (sint a sdiv sint b)) \<and> (sint a sdiv sint b \<le> (2 ^ (size a - 1) - 1))) \<Longrightarrow> sint (a sdiv b) = (sint a sdiv sint b)" "((- (2 ^ (size a - 1)) \<le> (sint a smod sint b)) \<and> (sint a smod sint b \<le> (2 ^ (size a - 1) - 1))) \<Longrightarrow> sint (a smod b) = (sint a smod sint b)" by (metis signed_arith_ineq_checks_to_eq)+ lemma signed_mult_eq_checks_double_size: assumes mult_le: "(2 ^ (len_of TYPE ('a) - 1) + 1) ^ 2 \<le> (2 :: int) ^ (len_of TYPE ('b) - 1)" and le: "2 ^ (len_of TYPE('a) - 1) \<le> (2 :: int) ^ (len_of TYPE ('b) - 1)" shows "(sint (a :: ('a :: len) word) * sint b = sint (a * b)) = (scast a * scast b = (scast (a * b) :: ('b :: len) word))" proof - have P: "sbintrunc (size a - 1) (sint a * sint b) \<in> range (sbintrunc (size a - 1))" by simp have abs: "!! x :: 'a word. abs (sint x) < 2 ^ (size a - 1) + 1" apply (cut_tac x=x in sint_range') apply (simp add: abs_le_iff word_size) done have abs_ab: "abs (sint a * sint b) < 2 ^ (len_of TYPE('b) - 1)" using abs_mult_less[OF abs[where x=a] abs[where x=b]] mult_le by (simp add: abs_mult power2_eq_square word_size) show ?thesis using P[unfolded range_sbintrunc] abs_ab le apply (simp add: sint_word_ariths scast_def) apply (simp add: wi_hom_mult) apply (subst word_sint.Abs_inject, simp_all) apply (simp add: sints_def range_sbintrunc abs_less_iff) apply clarsimp apply (simp add: sints_def range_sbintrunc word_size) apply (auto elim: order_less_le_trans order_trans[rotated]) done qed lemmas signed_mult_eq_checks32_to_64 = signed_mult_eq_checks_double_size[where 'a=32 and 'b=64, simplified] signed_mult_eq_checks_double_size[where 'a="32 signed" and 'b=64, simplified] (* Properties about signed division. *) lemma int_sdiv_simps [simp]: "(a :: int) sdiv 1 = a" "(a :: int) sdiv 0 = 0" "(a :: int) sdiv -1 = -a" apply (auto simp: sdiv_int_def sgn_if) done lemma sgn_div_eq_sgn_mult: "a div b \<noteq> 0 \<Longrightarrow> sgn ((a :: int) div b) = sgn (a * b)" apply (clarsimp simp: sgn_if zero_le_mult_iff neg_imp_zdiv_nonneg_iff not_less) apply (metis less_le mult_le_0_iff neg_imp_zdiv_neg_iff not_less pos_imp_zdiv_neg_iff zdiv_eq_0_iff) done lemma sgn_sdiv_eq_sgn_mult: "a sdiv b \<noteq> 0 \<Longrightarrow> sgn ((a :: int) sdiv b) = sgn (a * b)" apply (clarsimp simp: sdiv_int_def sgn_times) apply (subst sgn_div_eq_sgn_mult) apply simp apply (clarsimp simp: sgn_times) apply (metis abs_mult div_0 div_mult_self2_is_id sgn_0_0 sgn_1_pos sgn_times zero_less_abs_iff) done lemma int_sdiv_same_is_1 [simp]: "a \<noteq> 0 \<Longrightarrow> ((a :: int) sdiv b = a) = (b = 1)" apply (rule iffI) apply (clarsimp simp: sdiv_int_def) apply (subgoal_tac "b > 0") apply (case_tac "a > 0") apply (clarsimp simp: sgn_if sign_simps) apply (clarsimp simp: sign_simps not_less) apply (metis int_div_same_is_1 le_neq_trans minus_minus neg_0_le_iff_le neg_equal_0_iff_equal) apply (case_tac "a > 0") apply (case_tac "b = 0") apply (clarsimp simp: sign_simps) apply (rule classical) apply (clarsimp simp: sign_simps sgn_times not_less) apply (metis le_less neg_0_less_iff_less not_less_iff_gr_or_eq pos_imp_zdiv_neg_iff) apply (rule classical) apply (clarsimp simp: sign_simps sgn_times not_less sgn_if split: if_splits) apply (metis antisym less_le neg_imp_zdiv_nonneg_iff) apply (clarsimp simp: sdiv_int_def sgn_if) done lemma int_sdiv_negated_is_minus1 [simp]: "a \<noteq> 0 \<Longrightarrow> ((a :: int) sdiv b = - a) = (b = -1)" apply (clarsimp simp: sdiv_int_def) apply (rule iffI) apply (subgoal_tac "b < 0") apply (case_tac "a > 0") apply (clarsimp simp: sgn_if sign_simps not_less) apply (case_tac "sgn (a * b) = -1") apply (clarsimp simp: not_less sign_simps) apply (clarsimp simp: sign_simps not_less) apply (rule classical) apply (case_tac "b = 0") apply (clarsimp simp: sign_simps not_less sgn_times) apply (case_tac "a > 0") apply (clarsimp simp: sign_simps not_less sgn_times) apply (metis less_le neg_less_0_iff_less not_less_iff_gr_or_eq pos_imp_zdiv_neg_iff) apply (clarsimp simp: sign_simps not_less sgn_times) apply (metis div_minus_right eq_iff neg_0_le_iff_le neg_imp_zdiv_nonneg_iff not_leE) apply (clarsimp simp: sgn_if) done lemma sdiv_int_range: "(a :: int) sdiv b \<in> { - (abs a) .. (abs a) }" apply (unfold sdiv_int_def) apply (subgoal_tac "(abs a) div (abs b) \<le> (abs a)") apply (clarsimp simp: sgn_if) apply (metis Divides.transfer_nat_int_function_closures(1) abs_ge_zero abs_less_iff abs_of_nonneg less_asym less_minus_iff not_less) apply (metis abs_eq_0 abs_ge_zero div_by_0 zdiv_le_dividend zero_less_abs_iff) done lemma sdiv_int_div_0 [simp]: "(x :: int) sdiv 0 = 0" by (clarsimp simp: sdiv_int_def) lemma sdiv_int_0_div [simp]: "0 sdiv (x :: int) = 0" by (clarsimp simp: sdiv_int_def) lemma word_sdiv_div0 [simp]: "(a :: ('a::len) word) sdiv 0 = 0" apply (auto simp: sdiv_word_def sdiv_int_def sgn_if) done lemma word_sdiv_div_minus1 [simp]: "(a :: ('a::len) word) sdiv -1 = -a" apply (auto simp: sdiv_word_def sdiv_int_def sgn_if) apply (metis wi_hom_neg word_sint.Rep_inverse') done lemma word_sdiv_0 [simp]: "(x :: ('a::len) word) sdiv 0 = 0" by (clarsimp simp: sdiv_word_def) lemma sdiv_word_min: "- (2 ^ (size a - 1)) \<le> sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word)" apply (clarsimp simp: word_size) apply (cut_tac sint_range' [where x=a]) apply (cut_tac sint_range' [where x=b]) apply clarsimp apply (insert sdiv_int_range [where a="sint a" and b="sint b"]) apply (clarsimp simp: max_def abs_if split: split_if_asm) done lemma sdiv_word_max: "(sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word) < (2 ^ (size a - 1))) = ((a \<noteq> - (2 ^ (size a - 1)) \<or> (b \<noteq> -1)))" (is "?lhs = (\<not> ?a_int_min \<or> \<not> ?b_minus1)") proof (rule classical) assume not_thesis: "\<not> ?thesis" have not_zero: "b \<noteq> 0" using not_thesis by (clarsimp) have result_range: "sint a sdiv sint b \<in> (sints (size a)) \<union> {2 ^ (size a - 1)}" apply (cut_tac sdiv_int_range [where a="sint a" and b="sint b"]) apply (erule rev_subsetD) using sint_range' [where x=a] sint_range' [where x=b] apply (auto simp: max_def abs_if word_size sints_num) done have result_range_overflow: "(sint a sdiv sint b = 2 ^ (size a - 1)) = (?a_int_min \<and> ?b_minus1)" apply (rule iffI [rotated]) apply (clarsimp simp: sdiv_int_def sgn_if word_size sint_int_min) apply (rule classical) apply (case_tac "?a_int_min") apply (clarsimp simp: word_size sint_int_min) apply (metis diff_0_right int_sdiv_negated_is_minus1 minus_diff_eq minus_int_code(2) power_eq_0_iff sint_minus1 zero_neq_numeral) apply (subgoal_tac "abs (sint a) < 2 ^ (size a - 1)") apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply (clarsimp simp: word_size) apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply (insert word_sint.Rep [where x="a"])[1] apply (clarsimp simp: minus_le_iff word_size abs_if sints_num split: split_if_asm) apply (metis minus_minus sint_int_min word_sint.Rep_inject) done have result_range_simple: "(sint a sdiv sint b \<in> (sints (size a))) \<Longrightarrow> ?thesis" apply (insert sdiv_int_range [where a="sint a" and b="sint b"]) apply (clarsimp simp: word_size sints_num sint_int_min) done show ?thesis apply (rule UnE [OF result_range result_range_simple]) apply simp apply (clarsimp simp: word_size) using result_range_overflow apply (clarsimp simp: word_size) done qed lemmas sdiv_word_min' = sdiv_word_min [simplified word_size, simplified] lemmas sdiv_word_max' = sdiv_word_max [simplified word_size, simplified] lemmas sdiv_word32_max = sdiv_word_max [where 'a=32, simplified word_size, simplified] sdiv_word_max [where 'a="32 signed", simplified word_size, simplified] lemmas sdiv_word32_min = sdiv_word_min [where 'a=32, simplified word_size, simplified] sdiv_word_min [where 'a="32 signed", simplified word_size, simplified] (* * Signed modulo properties. *) lemma smod_int_alt_def: "(a::int) smod b = sgn (a) * (abs a mod abs b)" apply (clarsimp simp: smod_int_def sdiv_int_def) apply (clarsimp simp: zmod_zdiv_equality' abs_sgn sgn_times sgn_if sign_simps) done lemma smod_int_range: "b \<noteq> 0 \<Longrightarrow> (a::int) smod b \<in> { - abs b + 1 .. abs b - 1 }" apply (case_tac "b > 0") apply (insert pos_mod_conj [where a=a and b=b])[1] apply (insert pos_mod_conj [where a="-a" and b=b])[1] apply (clarsimp simp: smod_int_alt_def sign_simps sgn_if abs_if not_less add1_zle_eq [simplified add.commute]) apply (metis add_le_cancel_left comm_monoid_add_class.add.right_neutral int_one_le_iff_zero_less less_le_trans mod_minus_right neg_less_0_iff_less neg_mod_conj not_less pos_mod_conj) apply (insert neg_mod_conj [where a=a and b="b"])[1] apply (insert neg_mod_conj [where a="-a" and b="b"])[1] apply (clarsimp simp: smod_int_alt_def sign_simps sgn_if abs_if not_less add1_zle_eq [simplified add.commute]) apply (metis neg_0_less_iff_less neg_mod_conj not_le not_less_iff_gr_or_eq order_trans pos_mod_conj) done lemma smod_int_compares: "\<lbrakk> 0 \<le> a; 0 < b \<rbrakk> \<Longrightarrow> (a :: int) smod b < b" "\<lbrakk> 0 \<le> a; 0 < b \<rbrakk> \<Longrightarrow> 0 \<le> (a :: int) smod b" "\<lbrakk> a \<le> 0; 0 < b \<rbrakk> \<Longrightarrow> -b < (a :: int) smod b" "\<lbrakk> a \<le> 0; 0 < b \<rbrakk> \<Longrightarrow> (a :: int) smod b \<le> 0" "\<lbrakk> 0 \<le> a; b < 0 \<rbrakk> \<Longrightarrow> (a :: int) smod b < - b" "\<lbrakk> 0 \<le> a; b < 0 \<rbrakk> \<Longrightarrow> 0 \<le> (a :: int) smod b" "\<lbrakk> a \<le> 0; b < 0 \<rbrakk> \<Longrightarrow> (a :: int) smod b \<le> 0" "\<lbrakk> a \<le> 0; b < 0 \<rbrakk> \<Longrightarrow> b \<le> (a :: int) smod b" apply (insert smod_int_range [where a=a and b=b]) apply (auto simp: add1_zle_eq smod_int_alt_def sgn_if) done lemma smod_int_mod_0 [simp]: "x smod (0 :: int) = x" by (clarsimp simp: smod_int_def) lemma smod_int_0_mod [simp]: "0 smod (x :: int) = 0" by (clarsimp simp: smod_int_alt_def) lemma smod_word_mod_0 [simp]: "x smod (0 :: ('a::len) word) = x" by (clarsimp simp: smod_word_def) lemma smod_word_0_mod [simp]: "0 smod (x :: ('a::len) word) = 0" by (clarsimp simp: smod_word_def) lemma smod_word_max: "sint (a::'a word) smod sint (b::'a word) < 2 ^ (len_of TYPE('a::len) - Suc 0)" apply (case_tac "b = 0") apply (insert word_sint.Rep [where x=a, simplified sints_num])[1] apply (clarsimp) apply (insert word_sint.Rep [where x="b", simplified sints_num])[1] apply (insert smod_int_range [where a="sint a" and b="sint b"]) apply (clarsimp simp: abs_if split: split_if_asm) done lemma smod_word_min: "- (2 ^ (len_of TYPE('a::len) - Suc 0)) \<le> sint (a::'a word) smod sint (b::'a word)" apply (case_tac "b = 0") apply (insert word_sint.Rep [where x=a, simplified sints_num])[1] apply clarsimp apply (insert word_sint.Rep [where x=b, simplified sints_num])[1] apply (insert smod_int_range [where a="sint a" and b="sint b"]) apply (clarsimp simp: abs_if add1_zle_eq split: split_if_asm) done lemma smod_word_alt_def: "(a :: ('a::len) word) smod b = a - (a sdiv b) * b" apply (case_tac "a \<noteq> - (2 ^ (len_of TYPE('a) - 1)) \<or> b \<noteq> -1") apply (clarsimp simp: smod_word_def sdiv_word_def smod_int_def minus_word.abs_eq [symmetric] times_word.abs_eq [symmetric]) apply (clarsimp simp: smod_word_def smod_int_def) done lemma sint_of_int_eq: "\<lbrakk> - (2 ^ (len_of TYPE('a) - 1)) \<le> x; x < 2 ^ (len_of TYPE('a) - 1) \<rbrakk> \<Longrightarrow> sint (of_int x :: ('a::len) word) = x" apply (clarsimp simp: word_of_int int_word_sint) apply (subst int_mod_eq') apply simp apply (subst (2) power_minus_simp) apply clarsimp apply clarsimp apply clarsimp done lemmas sint32_of_int_eq = sint_of_int_eq [where 'a=32, simplified] lemma of_int_sint [simp]: "of_int (sint a) = a" apply (insert word_sint.Rep [where x=a]) apply (clarsimp simp: word_of_int) done lemma ucast_of_nats [simp]: "(ucast (of_nat x :: word32) :: sword32) = (of_nat x)" "(ucast (of_nat x :: word32) :: sword16) = (of_nat x)" "(ucast (of_nat x :: word32) :: sword8) = (of_nat x)" "(ucast (of_nat x :: word16) :: sword16) = (of_nat x)" "(ucast (of_nat x :: word16) :: sword8) = (of_nat x)" "(ucast (of_nat x :: word8) :: sword8) = (of_nat x)" apply (auto simp: ucast_of_nat is_down) done lemma nth_w2p_scast [simp]: "((scast ((2::'a::len signed word) ^ n) :: 'a word) !! m) \<longleftrightarrow> ((((2::'a::len word) ^ n) :: 'a word) !! m)" apply (subst nth_w2p) apply (case_tac "n \<ge> len_of TYPE('a)") apply (subst power_overflow, simp) apply clarsimp apply (metis nth_w2p scast_def bang_conj_lt len_signed nth_word_of_int word_sint.Rep_inverse) done lemma scast_2_power [simp]: "scast ((2 :: 'a::len signed word) ^ x) = ((2 :: 'a word) ^ x)" by (clarsimp simp: word_eq_iff) lemma scast_bit_test [simp]: "scast ((1 :: 'a::len signed word) << n) = (1 :: 'a word) << n" by (clarsimp simp: word_eq_iff) lemma ucast_nat_def': "of_nat (unat x) = (ucast :: ('a :: len) word \<Rightarrow> ('b :: len) signed word) x" by (simp add: ucast_def word_of_int_nat unat_def) lemma mod_mod_power_int: fixes k :: int shows "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ (min m n)" by (metis bintrunc_bintrunc_min bintrunc_mod2p min.commute) (* Normalise combinations of scast and ucast. *) lemma ucast_distrib: fixes M :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" fixes M' :: "'b::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word" fixes L :: "int \<Rightarrow> int \<Rightarrow> int" assumes lift_M: "\<And>x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ len_of TYPE('a)" assumes lift_M': "\<And>x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ len_of TYPE('b)" assumes distrib: "\<And>x y. (L (x mod (2 ^ len_of TYPE('b))) (y mod (2 ^ len_of TYPE('b)))) mod (2 ^ len_of TYPE('b)) = (L x y) mod (2 ^ len_of TYPE('b))" assumes is_down: "is_down (ucast :: 'a word \<Rightarrow> 'b word)" shows "ucast (M a b) = M' (ucast a) (ucast b)" apply (clarsimp simp: word_of_int ucast_def) apply (subst lift_M) apply (subst of_int_uint [symmetric], subst lift_M') apply (subst (1 2) int_word_uint) apply (subst word_of_int) apply (subst word.abs_eq_iff) apply (subst (1 2) bintrunc_mod2p) apply (insert is_down) apply (unfold is_down_def) apply (clarsimp simp: target_size source_size) apply (clarsimp simp: mod_mod_power_int min_def) apply (rule distrib [symmetric]) done lemma ucast_down_add: "is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) + b) = (ucast a + ucast b :: 'b::len word)" by (rule ucast_distrib [where L="op +"], (clarsimp simp: uint_word_ariths)+, presburger, simp) lemma ucast_down_minus: "is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) - b) = (ucast a - ucast b :: 'b::len word)" apply (rule ucast_distrib [where L="op -"], (clarsimp simp: uint_word_ariths)+) apply (metis zdiff_zmod_left zdiff_zmod_right) apply simp done lemma ucast_down_mult: "is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) * b) = (ucast a * ucast b :: 'b::len word)" apply (rule ucast_distrib [where L="op *"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_mult_eq) apply simp done lemma scast_distrib: fixes M :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" fixes M' :: "'b::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word" fixes L :: "int \<Rightarrow> int \<Rightarrow> int" assumes lift_M: "\<And>x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ len_of TYPE('a)" assumes lift_M': "\<And>x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ len_of TYPE('b)" assumes distrib: "\<And>x y. (L (x mod (2 ^ len_of TYPE('b))) (y mod (2 ^ len_of TYPE('b)))) mod (2 ^ len_of TYPE('b)) = (L x y) mod (2 ^ len_of TYPE('b))" assumes is_down: "is_down (scast :: 'a word \<Rightarrow> 'b word)" shows "scast (M a b) = M' (scast a) (scast b)" apply (subst (1 2 3) down_cast_same [symmetric]) apply (insert is_down) apply (clarsimp simp: is_down_def target_size source_size is_down) apply (rule ucast_distrib [where L=L, OF lift_M lift_M' distrib]) apply (insert is_down) apply (clarsimp simp: is_down_def target_size source_size is_down) done lemma scast_down_add: "is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) + b) = (scast a + scast b :: 'b::len word)" by (rule scast_distrib [where L="op +"], (clarsimp simp: uint_word_ariths)+, presburger, simp) lemma scast_down_minus: "is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) - b) = (scast a - scast b :: 'b::len word)" apply (rule scast_distrib [where L="op -"], (clarsimp simp: uint_word_ariths)+) apply (metis zdiff_zmod_left zdiff_zmod_right) apply simp done lemma scast_down_mult: "is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) * b) = (scast a * scast b :: 'b::len word)" apply (rule scast_distrib [where L="op *"], (clarsimp simp: uint_word_ariths)+) apply (metis mod_mult_eq) apply simp done lemma scast_ucast_3: "\<lbrakk> is_down (ucast :: 'a word \<Rightarrow> 'c word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow> (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_def ucast_down_wi) lemma scast_ucast_4: "\<lbrakk> is_up (ucast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow> (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_def ucast_down_wi) lemma scast_scast_b: "\<lbrakk> is_up (scast :: 'a word \<Rightarrow> 'b word) \<rbrakk> \<Longrightarrow> (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_def sint_up_scast) lemma ucast_scast_1: "\<lbrakk> is_down (scast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow> (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis scast_def ucast_down_wi) lemma ucast_scast_4: "\<lbrakk> is_up (scast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow> (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" by (metis down_cast_same scast_def sint_up_scast) lemma ucast_ucast_a: "\<lbrakk> is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow> (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis down_cast_same ucast_def ucast_down_wi) lemma ucast_ucast_b: "\<lbrakk> is_up (ucast :: 'a word \<Rightarrow> 'b word) \<rbrakk> \<Longrightarrow> (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a" by (metis ucast_up_ucast) lemma scast_scast_a: "\<lbrakk> is_down (scast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow> (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a" apply (clarsimp simp: scast_def) apply (metis down_cast_same is_up_down scast_def ucast_down_wi) done lemma scast_down_wi [OF refl]: "uc = scast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x" by (metis down_cast_same is_up_down ucast_down_wi) lemmas cast_simps = is_down is_up scast_down_add scast_down_minus scast_down_mult ucast_down_add ucast_down_minus ucast_down_mult scast_ucast_1 scast_ucast_3 scast_ucast_4 ucast_scast_1 ucast_scast_3 ucast_scast_4 ucast_ucast_a ucast_ucast_b scast_scast_a scast_scast_b ucast_down_bl ucast_down_wi scast_down_wi ucast_of_nat scast_of_nat uint_up_ucast sint_up_scast up_scast_surj up_ucast_surj lemma smod_mod_positive: "\<lbrakk> 0 \<le> (a :: int); 0 \<le> b \<rbrakk> \<Longrightarrow> a smod b = a mod b" by (clarsimp simp: smod_int_alt_def zsgn_def) lemmas signed_shift_guard_simpler_32 = power_strict_increasing_iff[where b="2 :: nat" and y=31, simplified] lemma nat_mult_power_less_eq: "b > 0 \<Longrightarrow> (a * b ^ n < (b :: nat) ^ m) = (a < b ^ (m - n))" using mult_less_cancel2[where m = a and k = "b ^ n" and n="b ^ (m - n)"] mult_less_cancel2[where m="a * b ^ (n - m)" and k="b ^ m" and n=1] apply (simp only: power_add[symmetric] nat_minus_add_max) apply (simp only: power_add[symmetric] nat_minus_add_max ac_simps) apply (simp add: max_def split: split_if_asm) done lemma signed_shift_guard_to_word: "\<lbrakk> n < len_of TYPE ('a); n > 0 \<rbrakk> \<Longrightarrow> (unat (x :: ('a :: len) word) * 2 ^ y < 2 ^ n) = (x = 0 \<or> x < (1 << n >> y))" apply (simp only: nat_mult_power_less_eq) apply (cases "y \<le> n") apply (simp only: shiftl_shiftr1) apply (subst less_mask_eq) apply (simp add: word_less_nat_alt word_size) apply (rule order_less_le_trans[rotated], rule power_increasing[where n=1]) apply simp apply simp apply simp apply (simp add: nat_mult_power_less_eq word_less_nat_alt word_size) apply auto[1] apply (simp only: shiftl_shiftr2, simp add: unat_eq_0) done lemma word32_31_less: "31 < len_of TYPE (32 signed)" "31 > (0 :: nat)" "31 < len_of TYPE (32)" "31 > (0 :: nat)" by auto lemmas signed_shift_guard_to_word_32 = signed_shift_guard_to_word[OF word32_31_less(1-2)] signed_shift_guard_to_word[OF word32_31_less(3-4)] lemma sint_ucast_eq_uint: "\<lbrakk> \<not> is_down (ucast :: ('a::len word \<Rightarrow> 'b::len word)) \<rbrakk> \<Longrightarrow> sint ((ucast :: ('a::len word \<Rightarrow> 'b::len word)) x) = uint x" apply (subst sint_eq_uint) apply (clarsimp simp: msb_nth nth_ucast is_down) apply (metis Suc_leI Suc_pred bang_conj_lt len_gt_0) apply (clarsimp simp: uint_up_ucast is_up is_down) done lemma word_less_nowrapI': "(x :: 'a :: len0 word) \<le> z - k \<Longrightarrow> k \<le> z \<Longrightarrow> 0 < k \<Longrightarrow> x < x + k" by uint_arith lemma mask_plus_1: "mask n + 1 = 2 ^ n" by (clarsimp simp: mask_def) lemma unat_inj: "inj unat" by (metis eq_iff injI word_le_nat_alt) lemma unat_ucast_upcast: "is_up (ucast :: 'b word \<Rightarrow> 'a word) \<Longrightarrow> unat (ucast x :: ('a::len) word) = unat (x :: ('b::len) word)" unfolding ucast_def unat_def apply (subst int_word_uint) apply (subst mod_pos_pos_trivial) apply simp apply (rule lt2p_lem) apply (clarsimp simp: is_up) apply simp done lemma ucast_mono: "\<lbrakk> (x :: 'b :: len word) < y; y < 2 ^ len_of TYPE('a) \<rbrakk> \<Longrightarrow> ucast x < ((ucast y) :: ('a :: len) word)" apply (simp add: ucast_nat_def [symmetric]) apply (rule of_nat_mono_maybe) apply (rule unat_less_helper) apply (simp add: Power.of_nat_power) apply (simp add: word_less_nat_alt) done lemma ucast_mono_le: "\<lbrakk>x \<le> y; y < 2 ^ len_of TYPE('b)\<rbrakk> \<Longrightarrow> (ucast (x :: 'a :: len word) :: 'b :: len word) \<le> ucast y" apply (simp add: ucast_nat_def [symmetric]) apply (subst of_nat_mono_maybe_le[symmetric]) apply (rule unat_less_helper) apply (simp add: Power.of_nat_power) apply (rule unat_less_helper) apply (erule le_less_trans) apply (simp add: Power.of_nat_power) apply (simp add: word_le_nat_alt) done lemma zero_sle_ucast_up: "\<not> is_down (ucast :: 'a word \<Rightarrow> 'b signed word) \<Longrightarrow> (0 <=s ((ucast (b::('a::len) word)) :: ('b::len) signed word))" apply (subgoal_tac "\<not> msb (ucast b :: 'b signed word)") apply (clarsimp simp: word_sle_msb_le) apply (clarsimp simp: is_down not_le msb_nth nth_ucast) apply (subst (asm) bang_conj_lt [symmetric]) apply clarsimp apply arith done lemma msb_ucast_eq: "len_of TYPE('a) = len_of TYPE('b) \<Longrightarrow> msb (ucast x :: ('a::len) word) = msb (x :: ('b::len) word)" apply (clarsimp simp: word_msb_alt) apply (subst ucast_down_drop [where n=0]) apply (clarsimp simp: source_size_def target_size_def word_size) apply clarsimp done lemma msb_big: "msb (a :: ('a::len) word) = (a \<ge> 2 ^ (len_of TYPE('a) - Suc 0))" apply (rule iffI) apply (clarsimp simp: msb_nth) apply (drule bang_is_le) apply simp apply (rule ccontr) apply (subgoal_tac "a = a && mask (len_of TYPE('a) - Suc 0)") apply (cut_tac and_mask_less' [where w=a and n="len_of TYPE('a) - Suc 0"]) apply (clarsimp simp: word_not_le [symmetric]) apply clarsimp apply (rule sym, subst and_mask_eq_iff_shiftr_0) apply (clarsimp simp: msb_shift) done lemma zero_sle_ucast: "(0 <=s ((ucast (b::('a::len) word)) :: ('a::len) signed word)) = (uint b < 2 ^ (len_of (TYPE('a)) - 1))" apply (case_tac "msb b") apply (clarsimp simp: word_sle_msb_le not_less msb_ucast_eq del: notI) apply (clarsimp simp: msb_big word_le_def uint_2p_alt) apply (clarsimp simp: word_sle_msb_le not_less msb_ucast_eq del: notI) apply (clarsimp simp: msb_big word_le_def uint_2p_alt) done (* to_bool / from_bool. *) definition from_bool :: "bool \<Rightarrow> 'a::len word" where "from_bool b \<equiv> case b of True \<Rightarrow> of_nat 1 | False \<Rightarrow> of_nat 0" lemma from_bool_0: "(from_bool x = 0) = (\<not> x)" by (simp add: from_bool_def split: bool.split) definition to_bool :: "'a::len word \<Rightarrow> bool" where "to_bool \<equiv> (op \<noteq>) 0" lemma to_bool_and_1: "to_bool (x && 1) = (x !! 0)" apply (simp add: to_bool_def del: word_neq_0_conv) apply (rule iffI) apply (rule classical, erule notE, rule word_eqI) apply clarsimp apply (case_tac n, simp_all)[1] apply (rule notI, drule word_eqD[where x=0]) apply simp done lemma to_bool_from_bool: "to_bool (from_bool r) = r" unfolding from_bool_def to_bool_def by (simp split: bool.splits) lemma from_bool_neq_0: "(from_bool b \<noteq> 0) = b" by (simp add: from_bool_def split: bool.splits) lemma from_bool_mask_simp: "((from_bool r) :: word32) && 1 = from_bool r" unfolding from_bool_def apply (clarsimp split: bool.splits) done lemma scast_from_bool: "scast (from_bool P::word32) = (from_bool P::word32)" by (clarsimp simp: from_bool_def scast_id split: bool.splits) lemma from_bool_1: "(from_bool P = 1) = P" by (simp add: from_bool_def split: bool.splits) lemma ge_0_from_bool: "(0 < from_bool P) = P" by (simp add: from_bool_def split: bool.splits) lemma limited_and_from_bool: "limited_and (from_bool b) 1" by (simp add: from_bool_def limited_and_def split: bool.split) lemma to_bool_1 [simp]: "to_bool 1" by (simp add: to_bool_def) lemma to_bool_0 [simp]: "\<not>to_bool 0" by (simp add: to_bool_def) lemma from_bool_eq_if: "(from_bool Q = (if P then 1 else 0)) = (P = Q)" by (simp add: case_bool_If from_bool_def split: split_if) lemma to_bool_eq_0: "(\<not> to_bool x) = (x = 0)" by (simp add: to_bool_def) lemma to_bool_neq_0: "(to_bool x) = (x \<noteq> 0)" by (simp add: to_bool_def) lemma from_bool_all_helper: "(\<forall>bool. from_bool bool = val \<longrightarrow> P bool) = ((\<exists>bool. from_bool bool = val) \<longrightarrow> P (val \<noteq> 0))" by (auto simp: from_bool_0) lemma word_rsplit_upt: "\<lbrakk> size x = len_of TYPE('a :: len) * n; n \<noteq> 0 \<rbrakk> \<Longrightarrow> word_rsplit x = map (\<lambda>i. ucast (x >> i * len_of TYPE ('a)) :: 'a word) (rev [0 ..< n])" apply (subgoal_tac "length (word_rsplit x :: 'a word list) = n") apply (rule nth_equalityI, simp) apply (intro allI word_eqI impI) apply (simp add: test_bit_rsplit_alt word_size) apply (simp add: nth_ucast nth_shiftr nth_rev field_simps) apply (simp add: length_word_rsplit_exp_size) apply (metis mult.commute given_quot_alt word_size word_size_gt_0) done end
! { dg-do compile } ! ! PR 48291: [4.6/4.7 Regression] [OOP] internal compiler error, new_symbol(): Symbol name too long ! ! Contributed by Adrian Prantl <[email protected]> module Overload_AnException_Impl type :: Overload_AnException_impl_t end type contains subroutine ctor_impl(self) class(Overload_AnException_impl_t) :: self end subroutine end module
The view that a game of chess should end in a draw given best play prevails . Even if it cannot be proved , this assumption is considered " safe " by Rowson and " logical " by Adorján . Watson agrees that " the proper result of a perfectly played chess game ... is a draw . ... Of course , I can 't prove this , but I doubt that you can find a single strong player who would disagree . ... I remember Kasparov , after a last @-@ round draw , explaining to the waiting reporters : ' Well , chess is a draw . ' " World Champion Bobby Fischer thought that was almost definitely so .
(* Copyright (C) 2017 M.A.L. Marques This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. *) (* type: gga_exc *) (* prefix: gga_x_rpbe_params *params; assert(p->params != NULL); params = (gga_x_rpbe_params * )(p->params); *) $ifdef gga_x_rpbe_params params_a_rpbe_kappa := KAPPA_PBE: params_a_rpbe_mu := MU_PBE: $endif rpbe_f0 := s -> 1 + params_a_rpbe_kappa * ( 1 - exp(-params_a_rpbe_mu*s^2/params_a_rpbe_kappa) ): rpbe_f := x -> rpbe_f0(X2S*x): f := (rs, zeta, xt, xs0, xs1) -> gga_exchange(rpbe_f, rs, zeta, xs0, xs1):
module RecordInWhere2 fd : Int fd = 5 where data X : Type where gd : Int gd = 5 where data X : Type where fr : Int fr = 5 where record X where gr : Int gr = 5 where record X where
lemma real_polynomial_function_separable: fixes x :: "'a::euclidean_space" assumes "x \<noteq> y" shows "\<exists>f. real_polynomial_function f \<and> f x \<noteq> f y"
/- Copyright (c) 2021 Bhavik Mehta, Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta, Alena Gusakov, Yaël Dillies -/ import algebra.big_operators.basic import data.nat.interval import order.antichain /-! # `r`-sets and slice This file defines the `r`-th slice of a set family and provides a way to say that a set family is made of `r`-sets. An `r`-set is a finset of cardinality `r` (aka of *size* `r`). The `r`-th slice of a set family is the set family made of its `r`-sets. ## Main declarations * `set.sized`: `A.sized r` means that `A` only contains `r`-sets. * `finset.slice`: `A.slice r` is the set of `r`-sets in `A`. ## Notation `A # r` is notation for `A.slice r` in locale `finset_family`. -/ open finset nat open_locale big_operators variables {α : Type*} {ι : Sort*} {κ : ι → Sort*} namespace set variables {A B : set (finset α)} {r : ℕ} /-! ### Families of `r`-sets -/ /-- `sized r A` means that every finset in `A` has size `r`. -/ def sized (r : ℕ) (A : set (finset α)) : Prop := ∀ ⦃x⦄, x ∈ A → card x = r lemma sized.mono (h : A ⊆ B) (hB : B.sized r) : A.sized r := λ x hx, hB $ h hx lemma sized_union : (A ∪ B).sized r ↔ A.sized r ∧ B.sized r := ⟨λ hA, ⟨hA.mono $ subset_union_left _ _, hA.mono $ subset_union_right _ _⟩, λ hA x hx, hx.elim (λ h, hA.1 h) $ λ h, hA.2 h⟩ alias sized_union ↔ _ set.sized.union --TODO: A `forall_Union` lemma would be handy here. @[simp] lemma sized_Union {f : ι → set (finset α)} : (⋃ i, f i).sized r ↔ ∀ i, (f i).sized r := by { simp_rw [set.sized, set.mem_Union, forall_exists_index], exact forall_swap } @[simp] lemma sized_Union₂ {f : Π i, κ i → set (finset α)} : (⋃ i j, f i j).sized r ↔ ∀ i j, (f i j).sized r := by simp_rw sized_Union protected lemma sized.is_antichain (hA : A.sized r) : is_antichain (⊆) A := λ s hs t ht h hst, h $ finset.eq_of_subset_of_card_le hst ((hA ht).trans (hA hs).symm).le protected lemma sized.subsingleton (hA : A.sized 0) : A.subsingleton := subsingleton_of_forall_eq ∅ $ λ s hs, card_eq_zero.1 $ hA hs lemma sized.subsingleton' [fintype α] (hA : A.sized (fintype.card α)) : A.subsingleton := subsingleton_of_forall_eq finset.univ $ λ s hs, s.card_eq_iff_eq_univ.1 $ hA hs lemma sized.empty_mem_iff (hA : A.sized r) : ∅ ∈ A ↔ A = {∅} := hA.is_antichain.bot_mem_iff lemma sized.univ_mem_iff [fintype α] (hA : A.sized r) : finset.univ ∈ A ↔ A = {finset.univ} := hA.is_antichain.top_mem_iff lemma sized_powerset_len (s : finset α) (r : ℕ) : (powerset_len r s : set (finset α)).sized r := λ t ht, (mem_powerset_len.1 ht).2 end set namespace finset section sized variables [fintype α] {𝒜 : finset (finset α)} {s : finset α} {r : ℕ} lemma subset_powerset_len_univ_iff : 𝒜 ⊆ powerset_len r univ ↔ (𝒜 : set (finset α)).sized r := forall_congr $ λ A, by rw [mem_powerset_len_univ_iff, mem_coe] alias subset_powerset_len_univ_iff ↔ _ set.sized.subset_powerset_len_univ lemma _root_.set.sized.card_le (h𝒜 : (𝒜 : set (finset α)).sized r) : card 𝒜 ≤ (fintype.card α).choose r := begin rw [fintype.card, ←card_powerset_len], exact card_le_of_subset h𝒜.subset_powerset_len_univ, end end sized /-! ### Slices -/ section slice variables {𝒜 : finset (finset α)} {A A₁ A₂ : finset α} {r r₁ r₂ : ℕ} /-- The `r`-th slice of a set family is the subset of its elements which have cardinality `r`. -/ def slice (𝒜 : finset (finset α)) (r : ℕ) : finset (finset α) := 𝒜.filter (λ i, i.card = r) localized "infix ` # `:90 := finset.slice" in finset_family /-- `A` is in the `r`-th slice of `𝒜` iff it's in `𝒜` and has cardinality `r`. -/ lemma mem_slice : A ∈ 𝒜 # r ↔ A ∈ 𝒜 ∧ A.card = r := mem_filter /-- The `r`-th slice of `𝒜` is a subset of `𝒜`. -/ lemma slice_subset : 𝒜 # r ⊆ 𝒜 := filter_subset _ _ /-- Everything in the `r`-th slice of `𝒜` has size `r`. -/ lemma sized_slice : (𝒜 # r : set (finset α)).sized r := λ _, and.right ∘ mem_slice.mp lemma eq_of_mem_slice (h₁ : A ∈ 𝒜 # r₁) (h₂ : A ∈ 𝒜 # r₂) : r₁ = r₂ := (sized_slice h₁).symm.trans $ sized_slice h₂ /-- Elements in distinct slices must be distinct. -/ lemma ne_of_mem_slice (h₁ : A₁ ∈ 𝒜 # r₁) (h₂ : A₂ ∈ 𝒜 # r₂) : r₁ ≠ r₂ → A₁ ≠ A₂ := mt $ λ h, (sized_slice h₁).symm.trans ((congr_arg card h).trans (sized_slice h₂)) lemma pairwise_disjoint_slice [decidable_eq α] : (set.univ : set ℕ).pairwise_disjoint (slice 𝒜) := λ m _ n _ hmn, disjoint_filter.2 $ λ s hs hm hn, hmn $ hm.symm.trans hn variables [fintype α] (𝒜) @[simp] lemma bUnion_slice [decidable_eq α] : (Iic $ fintype.card α).bUnion 𝒜.slice = 𝒜 := subset.antisymm (bUnion_subset.2 $ λ r _, slice_subset) $ λ s hs, mem_bUnion.2 ⟨s.card, mem_Iic.2 $ s.card_le_univ, mem_slice.2 $ ⟨hs, rfl⟩⟩ @[simp] lemma sum_card_slice : ∑ r in Iic (fintype.card α), (𝒜 # r).card = 𝒜.card := by { rw [←card_bUnion (finset.pairwise_disjoint_slice.subset (set.subset_univ _)), bUnion_slice], exact classical.dec_eq _ } end slice end finset
(* Copyright (C) 2017 M.A.L. Marques This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. *) (* type: gga_exc *) $include "lda_c_rc04.mpl" msigma := 1.43: malpha := 2.30: Bs := s -> 1/(1 + msigma*s^malpha): f_tcs := (rs, z, xt) -> f_rc04(rs, z)*Bs(X2S*2^(1/3)*xt): f := (rs, z, xt, xs0, xs1) -> f_tcs(rs, z, xt):
! H0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ! H0 X ! H0 X libAtoms+QUIP: atomistic simulation library ! H0 X ! H0 X Portions of this code were written by ! H0 X Albert Bartok-Partay, Silvia Cereda, Gabor Csanyi, James Kermode, ! H0 X Ivan Solt, Wojciech Szlachta, Csilla Varnai, Steven Winfield. ! H0 X ! H0 X Copyright 2006-2010. ! H0 X ! H0 X These portions of the source code are released under the GNU General ! H0 X Public License, version 2, http://www.gnu.org/copyleft/gpl.html ! H0 X ! H0 X If you would like to license the source code under different terms, ! H0 X please contact Gabor Csanyi, [email protected] ! H0 X ! H0 X Portions of this code were written by Noam Bernstein as part of ! H0 X his employment for the U.S. Government, and are not subject ! H0 X to copyright in the USA. ! H0 X ! H0 X ! H0 X When using this software, please cite the following reference: ! H0 X ! H0 X http://www.libatoms.org ! H0 X ! H0 X Additional contributions by ! H0 X Alessio Comisso, Chiara Gattinoni, and Gianpietro Moras ! H0 X ! H0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX !X !X IPModel_Morse module !X !% Module for Morse pair potential. !% \begin{equation} !% \nonumber !% V(r) = D \left( \exp(-2 \alpha (r-r_0)) - 2 \exp( -\alpha (r-r_0)) \right) !% \end{equation} !% !% The IPModel_Morse object contains all the parameters read from a !% 'Morse_params' XML stanza. !X !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX #include "error.inc" module IPModel_Morse_module use error_module use system_module, only : dp, inoutput, print, verbosity_push_decrement, verbosity_pop, split_string_simple, operator(//) use dictionary_module use paramreader_module use linearalgebra_module use atoms_types_module use atoms_module use mpi_context_module use QUIP_Common_module implicit none private include 'IPModel_interface.h' public :: IPModel_Morse type IPModel_Morse integer :: n_types = 0 !% Number of atomic types. integer, allocatable :: atomic_num(:), type_of_atomic_num(:) !% Atomic number dimensioned as \texttt{n_types}. real(dp) :: cutoff = 0.0_dp !% Cutoff for computing connection. real(dp), allocatable :: D(:,:), alpha(:,:), r0(:,:), cutoff_a(:,:) !% IP parameters. character(len=STRING_LENGTH) label end type IPModel_Morse logical, private :: parse_in_ip, parse_matched_label type(IPModel_Morse), private, pointer :: parse_ip interface Initialise module procedure IPModel_Morse_Initialise_str end interface Initialise interface Finalise module procedure IPModel_Morse_Finalise end interface Finalise interface Print module procedure IPModel_Morse_Print end interface Print interface Calc module procedure IPModel_Morse_Calc end interface Calc contains subroutine IPModel_Morse_Initialise_str(this, args_str, param_str) type(IPModel_Morse), intent(inout) :: this character(len=*), intent(in) :: args_str, param_str type(Dictionary) :: params call Finalise(this) call initialise(params) this%label = '' call param_register(params, 'label', '', this%label, help_string="No help yet. This source file was $LastChangedBy$") if (.not. param_read_line(params, args_str, ignore_unknown=.true.,task='IPModel_Morse_Initialise_str args_str')) then call system_abort("IPModel_Morse_Initialise_str failed to parse label from args_str="//trim(args_str)) endif call finalise(params) call IPModel_Morse_read_params_xml(this, param_str) this%cutoff = maxval(this%cutoff_a) end subroutine IPModel_Morse_Initialise_str subroutine IPModel_Morse_Finalise(this) type(IPModel_Morse), intent(inout) :: this if (allocated(this%atomic_num)) deallocate(this%atomic_num) if (allocated(this%type_of_atomic_num)) deallocate(this%type_of_atomic_num) if (allocated(this%r0)) deallocate(this%r0) if (allocated(this%D)) deallocate(this%D) if (allocated(this%alpha)) deallocate(this%alpha) if (allocated(this%cutoff_a)) deallocate(this%cutoff_a) this%n_types = 0 this%label = '' end subroutine IPModel_Morse_Finalise !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX !X !% The potential calculator: this routine computes energy, forces and the virial. !X !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX subroutine IPModel_Morse_Calc(this, at, e, local_e, f, virial, local_virial, args_str, mpi, error) type(IPModel_Morse), intent(inout) :: this type(Atoms), intent(inout) :: at real(dp), intent(out), optional :: e, local_e(:) !% \texttt{e} = System total energy, \texttt{local_e} = energy of each atom, vector dimensioned as \texttt{at%N}. real(dp), intent(out), optional :: f(:,:), local_virial(:,:) !% Forces, dimensioned as \texttt{f(3,at%N)}, local virials, dimensioned as \texttt{local_virial(9,at%N)} real(dp), intent(out), optional :: virial(3,3) !% Virial character(len=*), intent(in), optional :: args_str type(MPI_Context), intent(in), optional :: mpi integer, intent(out), optional :: error real(dp), pointer :: w_e(:) integer i, ji, j, ti, tj real(dp) :: dr(3), dr_mag real(dp) :: de, de_dr logical :: i_is_min_image integer :: i_calc, n_extra_calcs character(len=20) :: extra_calcs_list(10) logical :: do_flux = .false. real(dp), pointer :: velo(:,:) real(dp) :: flux(3) type(Dictionary) :: params logical :: has_atom_mask_name character(STRING_LENGTH) :: atom_mask_name real(dp) :: r_scale, E_scale logical :: do_rescale_r, do_rescale_E INIT_ERROR(error) if (present(e)) e = 0.0_dp if (present(local_e)) then call check_size('Local_E',local_e,(/at%N/),'IPModel_Morse_Calc', error) local_e = 0.0_dp endif if (present(f)) then call check_size('Force',f,(/3,at%N/),'IPModel_Morse_Calc', error) f = 0.0_dp end if if (present(virial)) virial = 0.0_dp if (present(local_virial)) then call check_size('Local_virial',local_virial,(/9,at%N/),'IPModel_Morse_Calc', error) local_virial = 0.0_dp RAISE_ERROR("IPModel_Morse_Calc: local_virial calculation requested but not supported yet.", error) endif if (present(args_str)) then if (len_trim(args_str) > 0) then n_extra_calcs = parse_extra_calcs(args_str, extra_calcs_list) if (n_extra_calcs > 0) then do i_calc=1, n_extra_calcs select case(trim(extra_calcs_list(i_calc))) case("flux") if (.not. assign_pointer(at, "velo", velo)) & call system_abort("IPModel_Morse_Calc Flux calculation requires velo field") do_flux = .true. flux = 0.0_dp case default call system_abort("Unsupported extra_calc '"//trim(extra_calcs_list(i_calc))//"'") end select end do endif ! n_extra_calcs endif ! len_trim(args_str) call initialise(params) call param_register(params, 'atom_mask_name', 'NONE', atom_mask_name, has_value_target=has_atom_mask_name, help_string="No help yet. This source file was $LastChangedBy$") call param_register(params, 'r_scale', '1.0',r_scale, has_value_target=do_rescale_r, help_string="Recaling factor for distances. Default 1.0.") call param_register(params, 'E_scale', '1.0',E_scale, has_value_target=do_rescale_E, help_string="Recaling factor for energy. Default 1.0.") if(.not. param_read_line(params, args_str, ignore_unknown=.true.,task='IPModel_Morse_Calc args_str')) then RAISE_ERROR("IPModel_Morse_Calc failed to parse args_str='"//trim(args_str)//"'",error) endif call finalise(params) if(has_atom_mask_name) then RAISE_ERROR('IPModel_Morse_Calc: atom_mask_name found, but not supported', error) endif if (do_rescale_r .or. do_rescale_E) then RAISE_ERROR("IPModel_Morse_Calc: rescaling of potential with r_scale and E_scale not yet implemented!", error) end if endif ! present(args_str) if (.not. assign_pointer(at, "weight", w_e)) nullify(w_e) do i = 1, at%N i_is_min_image = at%connect%is_min_image(i) if (present(mpi)) then if (mpi%active) then if (mod(i-1, mpi%n_procs) /= mpi%my_proc) cycle endif endif do ji = 1, n_neighbours(at, i) j = neighbour(at, i, ji, dr_mag, cosines = dr) if (dr_mag .feq. 0.0_dp) cycle if ((i < j) .and. i_is_min_image) cycle ti = get_type(this%type_of_atomic_num, at%Z(i)) tj = get_type(this%type_of_atomic_num, at%Z(j)) if (present(e) .or. present(local_e)) then de = IPModel_Morse_pairenergy(this, ti, tj, dr_mag) if (present(local_e)) then local_e(i) = local_e(i) + 0.5_dp*de if(i_is_min_image) local_e(j) = local_e(j) + 0.5_dp*de endif if (present(e)) then if (associated(w_e)) then de = de*0.5_dp*(w_e(i)+w_e(j)) endif if(i_is_min_image) then e = e + de else e = e + 0.5_dp*de endif endif endif if (present(f) .or. present(virial) .or. do_flux) then de_dr = IPModel_Morse_pairenergy_deriv(this, ti, tj, dr_mag) if (associated(w_e)) then de_dr = de_dr*0.5_dp*(w_e(i)+w_e(j)) endif if (present(f)) then f(:,i) = f(:,i) + de_dr*dr if(i_is_min_image) f(:,j) = f(:,j) - de_dr*dr endif if (do_flux) then ! -0.5 (v_i + v_j) . F_ij * dr_ij flux = flux - 0.5_dp*sum((velo(:,i)+velo(:,j))*(de_dr*dr))*(dr*dr_mag) endif if (present(virial)) then if(i_is_min_image) then virial = virial - de_dr*(dr .outer. dr)*dr_mag else virial = virial - 0.5_dp*de_dr*(dr .outer. dr)*dr_mag endif endif endif end do end do if (present(mpi)) then if (present(e)) e = sum(mpi, e) if (present(local_e)) call sum_in_place(mpi, local_e) if (present(virial)) call sum_in_place(mpi, virial) if (present(f)) call sum_in_place(mpi, f) endif if (do_flux) then flux = flux / cell_volume(at) if (present(mpi)) call sum_in_place(mpi, flux) call set_value(at%params, "Flux", flux) endif end subroutine IPModel_Morse_Calc !% This routine computes the two-body term for a pair of atoms separated by a distance r. function IPModel_Morse_pairenergy(this, ti, tj, r) type(IPModel_Morse), intent(in) :: this integer, intent(in) :: ti, tj !% Atomic types. real(dp), intent(in) :: r !% Distance. real(dp) :: IPModel_Morse_pairenergy real(dp) :: texp if ((r .feq. 0.0_dp) .or. (r > this%cutoff_a(ti,tj))) then IPModel_Morse_pairenergy = 0.0 return endif texp = exp(-this%alpha(ti,tj)*(r-this%r0(ti,tj))) IPModel_Morse_pairenergy = this%D(ti,tj) * ( texp*texp - 2.0_dp*texp ) end function IPModel_Morse_pairenergy !% Derivative of the two-body term. function IPModel_Morse_pairenergy_deriv(this, ti, tj, r) type(IPModel_Morse), intent(in) :: this integer, intent(in) :: ti, tj !% Atomic types. real(dp), intent(in) :: r !% Distance. real(dp) :: IPModel_Morse_pairenergy_deriv real(dp) :: texp, texp_d if ((r .feq. 0.0_dp) .or. (r > this%cutoff_a(ti,tj))) then IPModel_Morse_pairenergy_deriv = 0.0 return endif texp = exp(-this%alpha(ti,tj)*(r-this%r0(ti,tj))) texp_d = -this%alpha(ti,tj) * texp IPModel_Morse_pairenergy_deriv = this%D(ti,tj) * ( 2.0_dp*texp*texp_d - 2.0_dp * texp_d) end function IPModel_Morse_pairenergy_deriv !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX !X !% XML param reader functions. !% An example for XML stanza is given below. Please notice that !% these are simply dummy parameters for testing purposes, with no physical meaning. !% !%> <Morse_params n_types="2" label="default"> !%> <pair atnum_i="6" atnum_j="6" r0="2.0" D="1.0" alpha="0.1" cutoff="4.0" /> !%> <pair atnum_i="6" atnum_j="14" r0="2.5" D="2.0" alpha="0.15" cutoff="5.0" /> !%> <pair atnum_i="14" atnum_j="14" r0="3.0" D="3.0" alpha="0.2" cutoff="6.0" /> !%> </Morse_params> !% !% cutoff defaults to r0 - log(1e-8) / alpha !X !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX subroutine IPModel_startElement_handler(URI, localname, name, attributes) character(len=*), intent(in) :: URI character(len=*), intent(in) :: localname character(len=*), intent(in) :: name type(dictionary_t), intent(in) :: attributes integer :: status character(len=1024) :: value integer atnum_i, atnum_j, ti, tj, ti_a(1) if (name == 'Morse_params') then ! new Morse stanza if (parse_in_ip) & call system_abort("IPModel_startElement_handler entered Morse_params with parse_in true. Probably a bug in FoX (4.0.1, e.g.)") if (parse_matched_label) return ! we already found an exact match for this label call QUIP_FoX_get_value(attributes, 'label', value, status) if (status /= 0) value = '' if (len(trim(parse_ip%label)) > 0) then ! we were passed in a label if (value == parse_ip%label) then ! exact match parse_matched_label = .true. parse_in_ip = .true. else ! no match parse_in_ip = .false. endif else ! no label passed in parse_in_ip = .true. endif if (parse_in_ip) then if (parse_ip%n_types /= 0) then call finalise(parse_ip) endif call QUIP_FoX_get_value(attributes, 'n_types', value, status) if (status == 0) then read (value, *) parse_ip%n_types else call system_abort("Can't find n_types in Morse_params") endif allocate(parse_ip%atomic_num(parse_ip%n_types)) parse_ip%atomic_num = 0 allocate(parse_ip%r0(parse_ip%n_types,parse_ip%n_types)) allocate(parse_ip%D(parse_ip%n_types,parse_ip%n_types)) allocate(parse_ip%alpha(parse_ip%n_types,parse_ip%n_types)) allocate(parse_ip%cutoff_a(parse_ip%n_types,parse_ip%n_types)) parse_ip%r0 = 0.0_dp parse_ip%D = 0.0_dp parse_ip%alpha = 0.0_dp endif ! parse_in_ip elseif (parse_in_ip .and. name == 'pair') then call QUIP_FoX_get_value(attributes, "atnum_i", value, status) if (status /= 0) call system_abort ("IPModel_Morse_read_params_xml cannot find atnum_i") read (value, *) atnum_i call QUIP_FoX_get_value(attributes, "atnum_j", value, status) if (status /= 0) call system_abort ("IPModel_Morse_read_params_xml cannot find atnum_j") read (value, *) atnum_j if (all(parse_ip%atomic_num /= atnum_i)) then ti_a = minloc(parse_ip%atomic_num) parse_ip%atomic_num(ti_a(1)) = atnum_i endif if (all(parse_ip%atomic_num /= atnum_j)) then ti_a = minloc(parse_ip%atomic_num) parse_ip%atomic_num(ti_a(1)) = atnum_j endif if (allocated(parse_ip%type_of_atomic_num)) deallocate(parse_ip%type_of_atomic_num) allocate(parse_ip%type_of_atomic_num(maxval(parse_ip%atomic_num))) parse_ip%type_of_atomic_num = 0 do ti=1, parse_ip%n_types if (parse_ip%atomic_num(ti) > 0) & parse_ip%type_of_atomic_num(parse_ip%atomic_num(ti)) = ti end do ti = parse_ip%type_of_atomic_num(atnum_i) tj = parse_ip%type_of_atomic_num(atnum_j) call QUIP_FoX_get_value(attributes, "r0", value, status) if (status /= 0) call system_abort ("IPModel_Morse_read_params_xml cannot find r0") read (value, *) parse_ip%r0(ti,tj) call QUIP_FoX_get_value(attributes, "D", value, status) if (status /= 0) call system_abort ("IPModel_Morse_read_params_xml cannot find D") read (value, *) parse_ip%D(ti,tj) call QUIP_FoX_get_value(attributes, "alpha", value, status) if (status /= 0) call system_abort ("IPModel_Morse_read_params_xml cannot find alpha") read (value, *) parse_ip%alpha(ti,tj) parse_ip%cutoff_a(ti,tj) = -1.0_dp call QUIP_FoX_get_value(attributes, "cutoff", value, status) if (status == 0) read (value, *) parse_ip%cutoff_a(ti,tj) if (ti /= tj) then parse_ip%r0(tj,ti) = parse_ip%r0(ti,tj) parse_ip%D(tj,ti) = parse_ip%D(ti,tj) parse_ip%alpha(tj,ti) = parse_ip%alpha(ti,tj) parse_ip%cutoff_a(tj,ti) = parse_ip%cutoff_a(ti,tj) endif endif ! parse_in_ip .and. name = 'Morse' end subroutine IPModel_startElement_handler subroutine IPModel_endElement_handler(URI, localname, name) character(len=*), intent(in) :: URI character(len=*), intent(in) :: localname character(len=*), intent(in) :: name if (parse_in_ip) then if (name == 'Morse_params') then parse_in_ip = .false. end if endif end subroutine IPModel_endElement_handler subroutine IPModel_Morse_read_params_xml(this, param_str) type(IPModel_Morse), intent(inout), target :: this character(len=*), intent(in) :: param_str type(xml_t) :: fxml integer :: ti, tj if (len(trim(param_str)) <= 0) return parse_in_ip = .false. parse_matched_label = .false. parse_ip => this call open_xml_string(fxml, param_str) call parse(fxml, & startElement_handler = IPModel_startElement_handler, & endElement_handler = IPModel_endElement_handler) call close_xml_t(fxml) if (this%n_types == 0) then call system_abort("IPModel_Morse_read_params_xml parsed file, but n_types = 0") endif ! default cutoff: ! exp(-alpha (r-r0)) < 1e-8 ! -alpha (r-r0) < log(1e-8) ! r - r0 < log(1e-8) / -alpha ! r < r0 + log(1e-8) / -alpha ! r < r0 + 13.8 / alpha do ti=1, this%n_types do tj=1, this%n_types if (this%cutoff_a(ti,tj) < 0.0_dp) this%cutoff_a(ti,tj) = this%r0(ti,tj) - log(1.0e-8_dp) / this%alpha(ti,tj) end do end do this%cutoff = maxval(this%cutoff_a) end subroutine IPModel_Morse_read_params_xml !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX !X !% Printing of Morse parameters: number of different types, cutoff radius, atomic numbers, etc. !X !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX subroutine IPModel_Morse_Print (this, file) type(IPModel_Morse), intent(in) :: this type(Inoutput), intent(inout),optional :: file integer :: ti, tj call Print("IPModel_Morse : Morse", file=file) call Print("IPModel_Morse : n_types = " // this%n_types // " cutoff = " // this%cutoff, file=file) do ti=1, this%n_types call Print ("IPModel_Morse : type " // ti // " atomic_num " // this%atomic_num(ti), file=file) call verbosity_push_decrement() do tj=1, this%n_types call Print ("IPModel_Morse : interaction " // ti // " " // tj // " r0 " // this%r0(ti,tj) // " D " // & this%D(ti,tj) // " alpha " // this%alpha(ti,tj) // " cutoff_a " // this%cutoff_a(ti,tj), file=file) end do call verbosity_pop() end do end subroutine IPModel_Morse_Print function parse_extra_calcs(args_str, extra_calcs_list) result(n_extra_calcs) character(len=*), intent(in) :: args_str character(len=*), intent(out) :: extra_calcs_list(:) integer :: n_extra_calcs character(len=STRING_LENGTH) :: extra_calcs_str type(Dictionary) :: params n_extra_calcs = 0 call initialise(params) call param_register(params, "extra_calcs", "", extra_calcs_str, help_string="No help yet. This source file was $LastChangedBy$") if (param_read_line(params, args_str, ignore_unknown=.true.,task='parse_extra_calcs')) then if (len_trim(extra_calcs_str) > 0) then call split_string_simple(extra_calcs_str, extra_calcs_list, n_extra_calcs, ":") end if end if call finalise(params) end function parse_extra_calcs end module IPModel_Morse_module
function Retain_Img = RemoveMinorCC(SegImg,reject_T) if nargin < 2 reject_T = 0.2; end Retain_Img = zeros(size(SegImg)); % class 2 Img_C2 = (SegImg==2); Retain_C2 = Connection_Judge_3D(Img_C2,reject_T); Retain_C2 = imfill(Retain_C2,'hole'); Retain_Img(Retain_C2) = 2; % class 1 Img_C1 = (SegImg==1); Retain_C1 = Connection_Judge_3D(Img_C1,reject_T); Retain_C1 = imfill(Retain_C1,'hole'); Retain_Img(Retain_C1) = 1; end
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Construct.Matrix {k ℓ} (K : Field k ℓ) where open import Level using (_⊔_) open import Data.Product hiding (map) open import Data.Fin using (Fin; toℕ; fromℕ; _≤_) open import Data.Fin.Properties using (¬Fin0) open import Data.Nat hiding (_⊔_; _≤_) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_) open import Data.Nat.Properties using (1+n≢0) open import Relation.Binary import Data.Vec.Relation.Binary.Pointwise.Inductive as PW open import Algebra.Linear.Core import Data.Vec.Properties as VP open import Algebra.Structures.Field.Utils K import Algebra.Linear.Construct.Vector K as V open V using (Vec; zipWith; replicate) renaming ( _+_ to _+v_ ; _∙_ to _∙v_ ; -_ to -v_ ) open import Relation.Binary.PropositionalEquality as P using (_≡_; subst; subst-subst-sym; _≗_) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans ) import Algebra.Linear.Structures.VectorSpace as VS open VS.VectorSpaceField K open import Data.Nat.Properties using ( ≤-refl ; ≤-reflexive ; ≤-antisym ; n∸n≡0 ; m+[n∸m]≡n ; m≤m+n ; suc-injective ) renaming ( +-identityˡ to +ℕ-identityˡ ; +-identityʳ to +ℕ-identityʳ  ) Matrix : ℕ -> ℕ -> Set k Matrix n p = Vec (Vec K' p) n private M : ℕ -> ℕ -> Set k M = Matrix _≈ʰ_ : ∀ {n p n' p'} (A : M n p) (B : M n' p') → Set (k ⊔ ℓ) _≈ʰ_ = PW.Pointwise V._≈ʰ_ module _ {n p} where setoid : Setoid k (k ⊔ ℓ) setoid = record { Carrier = M n p ; _≈_ = _≈ʰ_ {n} {p} ; isEquivalence = PW.isEquivalence (V.≈-isEquiv {p}) n } open Setoid setoid public renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ; reflexive to ≈-reflexive ; isEquivalence to ≈-isEquiv ) import Algebra.FunctionProperties as FP tabulate : ∀ {n p} -> (Fin n -> Fin p -> K') -> M n p tabulate f = V.tabulate λ i -> V.tabulate λ j -> f i j tabulate⁺ : ∀ {n p} {f g : Fin n -> Fin p -> K'} -> (∀ i j -> f i j ≈ᵏ g i j) -> tabulate f ≈ tabulate g tabulate⁺ {0} r = PW.[] tabulate⁺ {suc n} {p} {f} {g} r = (PW.tabulate⁺ (r Fin.zero)) PW.∷ tabulate⁺ {n} {p} λ i j → r (Fin.suc i) j fromVec : ∀ {n p} -> V.Vec K' (n *ℕ p) -> M n p fromVec {0} V.[] = V.[] fromVec {suc n} {p} xs = let (vp , vnp , _) = V.splitAt p xs in vp V.∷ fromVec {n} vnp toVec : ∀ {n p} -> M n p -> V.Vec K' (n *ℕ p) toVec {n} {p} = V.concat {m = p} {n = n} concat∘fromVec : ∀ {n p} (v : V.Vec K' (n *ℕ p)) -> toVec {n} {p} (fromVec v) V.≈ v concat∘fromVec {0} V.[] = PW.[] concat∘fromVec {suc n} {p} v = let (vn , vnp , r) = V.splitAt p v in begin toVec {suc n} {p} (fromVec v) ≡⟨⟩ vn V.++ toVec {n} {p} (fromVec vnp) ≈⟨ V.++-cong {p} {n *ℕ p} V.≈-refl (concat∘fromVec {n} {p} vnp) ⟩ vn V.++ vnp ≈⟨ V.≈-sym (V.≈-reflexive r) ⟩ v ∎ where open import Relation.Binary.EqReasoning (V.setoid (suc n *ℕ p)) _++_ : ∀ {n p q} -> M n p -> M n q -> M n (p +ℕ q) _++_ = zipWith V._++_ _‡_ : ∀ {n m p} -> M n p -> M m p -> M (n +ℕ m) p _‡_ = V._++_ lookup : ∀ {n p} -> M n p -> Fin n -> Fin p -> K' lookup A i j = V.lookup (V.lookup A i) j _⟪_,_⟫ : ∀ {n p} -> M n p -> Fin n -> Fin p -> K' _⟪_,_⟫ = lookup lookup-cong : ∀ {n p} {A B : M n p} (i : Fin n) (j : Fin p) -> A ≈ B -> (A ⟪ i , j ⟫) ≈ᵏ (B ⟪ i , j ⟫) lookup-cong i j rs = PW.lookup (PW.lookup rs i) j tabulate∘lookup : ∀ {n p} (A : M n p) → tabulate (lookup A) ≡ A tabulate∘lookup A = begin tabulate (lookup A) ≡⟨⟩ V.tabulate (λ i -> V.tabulate λ j -> V.lookup (V.lookup A i) j) ≡⟨ VP.tabulate-cong (λ i → VP.tabulate∘lookup (V.lookup A i)) ⟩ V.tabulate (λ i -> V.lookup A i) ≡⟨ VP.tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning lookup∘tabulate : ∀ {n p} (f : Fin n -> Fin p -> K') (i : Fin n) (j : Fin p) -> lookup (tabulate f) i j ≡ f i j lookup∘tabulate {suc n} f i j = begin lookup (tabulate f) i j ≡⟨⟩ V.lookup (V.lookup (V.tabulate λ i′ -> V.tabulate λ j′ -> f i′ j′) i) j ≡⟨ cong (λ u → V.lookup u j) (VP.lookup∘tabulate (λ i′ -> V.tabulate λ j′ -> f i′ j′) i) ⟩ V.lookup (V.tabulate λ j′ -> f i j′) j ≡⟨ VP.lookup∘tabulate (λ j′ -> f i j′) j ⟩ f i j ∎ where open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning tabulate-cong-≡ : ∀ {n p} {f g : Fin n -> Fin p -> K'} -> (∀ i j -> f i j ≡ g i j) -> tabulate f ≡ tabulate g tabulate-cong-≡ {f = f} {g = g} r = VP.tabulate-cong (λ i → VP.tabulate-cong (λ j → r i j)) tabulate-cong : ∀ {n p} {f g : Fin n -> Fin p -> K'} -> (∀ i j -> f i j ≈ᵏ g i j) -> tabulate f ≈ tabulate g tabulate-cong {f = f} {g = g} r = PW.tabulate⁺ (λ i → V.tabulate-cong (λ j → r i j)) transpose : ∀ {n p} -> M n p -> M p n transpose A = tabulate λ i j -> A ⟪ j , i ⟫ _ᵀ : ∀ {n p} -> M n p -> M p n _ᵀ = transpose transpose-involutive : ∀ {n p} (A : M n p) -> ((A ᵀ) ᵀ) ≡ A transpose-involutive A = begin ((A ᵀ)ᵀ) ≡⟨⟩ (tabulate λ i j -> (tabulate λ i′ j′ -> A ⟪ j′ , i′ ⟫) ⟪ j , i ⟫) ≡⟨ tabulate-cong-≡ (λ i j → lookup∘tabulate (λ i′ j′ -> A ⟪ j′ , i′ ⟫) j i) ⟩ (tabulate λ i j -> A ⟪ i , j ⟫) ≡⟨ tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning map : ∀ {n p} -> (K' -> K') -> M n p -> M n p map f = V.map (V.map f) mapRows : ∀ {n p q} -> (V.Vec K' p -> V.Vec K' q) -> M n p -> M n q mapRows = V.map mapCols : ∀ {n m p} -> (V.Vec K' n -> V.Vec K' m) -> M n p -> M m p mapCols f A = (V.map f (A ᵀ)) ᵀ map-cong : ∀ {n p} {f g : K' -> K'} -> f ≗ g -> map {n} {p} f ≗ map g map-cong r = VP.map-cong (VP.map-cong r) mapRows-cong : ∀ {n p q} {f g : V.Vec K' p -> V.Vec K' q} -> f ≗ g -> mapRows {n} f ≗ mapRows g mapRows-cong = VP.map-cong mapCols-cong : ∀ {n m p} {f g : V.Vec K' n -> V.Vec K' m} -> f ≗ g -> mapCols {n} {m} {p} f ≗ mapCols g mapCols-cong r A = P.cong transpose (VP.map-cong r (transpose A)) open import Data.Nat.DivMod _+_ : ∀ {n p} -> FP.Op₂ (M n p) _+_ = zipWith V._+_ _∙_ : ∀ {n p} -> ScalarMultiplication K' (M n p) _∙_ k = V.map (k V.∙_) -_ : ∀ {n p} -> FP.Op₁ (M n p) -_ = V.map V.-_ 0# : ∀ {n p} -> M n p 0# = replicate V.0# +-cong : ∀ {n p} {A B C D : M n p} -> A ≈ B -> C ≈ D -> (A + C) ≈ (B + D) +-cong PW.[] PW.[] = PW.[] +-cong (r₁ PW.∷ rs₁) (r₂ PW.∷ rs₂) = V.+-cong r₁ r₂ PW.∷ +-cong rs₁ rs₂ +-assoc : ∀ {n p} (A B C : M n p) -> ((A + B) + C) ≈ (A + (B + C)) +-assoc V.[] V.[] V.[] = PW.[] +-assoc (u V.∷ us) (v V.∷ vs) (w V.∷ ws) = V.+-assoc u v w PW.∷ +-assoc us vs ws +-identityˡ : ∀ {n p} (A : M n p) -> (0# + A) ≈ A +-identityˡ V.[] = PW.[] +-identityˡ (u V.∷ us) = V.+-identityˡ u PW.∷ +-identityˡ us +-identityʳ : ∀ {n p} (A : M n p) -> (A + 0#) ≈ A +-identityʳ V.[] = PW.[] +-identityʳ (u V.∷ us) = V.+-identityʳ u PW.∷ +-identityʳ us +-identity : ∀ {n p} -> ((∀ (A : M n p) -> ((0# + A) ≈ A)) × (∀ (A : M n p) -> ((A + 0#) ≈ A))) +-identity = +-identityˡ , +-identityʳ +-comm : ∀ {n p} (A B : M n p) -> (A + B) ≈ (B + A) +-comm V.[] V.[] = PW.[] +-comm (u V.∷ us) (v V.∷ vs) = (V.+-comm u v) PW.∷ (+-comm us vs) *ᵏ-∙-compat : ∀ {n p} (a b : K') (A : M n p) -> ((a *ᵏ b) ∙ A) ≈ (a ∙ (b ∙ A)) *ᵏ-∙-compat a b V.[] = PW.[] *ᵏ-∙-compat a b (u V.∷ us) = (V.*ᵏ-∙-compat a b u) PW.∷ (*ᵏ-∙-compat a b us) ∙-+-distrib : ∀ {n p} (a : K') (A B : M n p) -> (a ∙ (A + B)) ≈ ((a ∙ A) + (a ∙ B)) ∙-+-distrib a V.[] V.[] = PW.[] ∙-+-distrib a (u V.∷ us) (v V.∷ vs) = (V.∙-+-distrib a u v) PW.∷ (∙-+-distrib a us vs) ∙-+ᵏ-distrib : ∀ {n p} (a b : K') (A : M n p) -> ((a +ᵏ b) ∙ A) ≈ ((a ∙ A) + (b ∙ A)) ∙-+ᵏ-distrib a b V.[] = PW.[] ∙-+ᵏ-distrib a b (u V.∷ us) = (V.∙-+ᵏ-distrib a b u) PW.∷ (∙-+ᵏ-distrib a b us) ∙-cong : ∀ {n p} {a b : K'} {A B : M n p} → a ≈ᵏ b -> A ≈ B -> (a ∙ A) ≈ (b ∙ B) ∙-cong rᵏ PW.[] = PW.[] ∙-cong rᵏ (r PW.∷ rs) = (V.∙-cong rᵏ r) PW.∷ (∙-cong rᵏ rs) ∙-identity : ∀ {n p} (A : M n p) → (1ᵏ ∙ A) ≈ A ∙-identity V.[] = PW.[] ∙-identity (u V.∷ us) = (V.∙-identity u) PW.∷ (∙-identity us) ∙-absorbˡ : ∀ {n p} (A : M n p) → (0ᵏ ∙ A) ≈ 0# ∙-absorbˡ V.[] = PW.[] ∙-absorbˡ (u V.∷ us) = (V.∙-absorbˡ u) PW.∷ (∙-absorbˡ us) -‿inverseˡ : ∀ {n p} (A : M n p) -> ((- A) + A) ≈ 0# -‿inverseˡ V.[] = PW.[] -‿inverseˡ (u V.∷ us) = (V.-‿inverseˡ u) PW.∷ (-‿inverseˡ us) -‿inverseʳ : ∀ {n p} (A : M n p) -> (A + (- A)) ≈ 0# -‿inverseʳ V.[] = PW.[] -‿inverseʳ (u V.∷ us) = (V.-‿inverseʳ u) PW.∷ (-‿inverseʳ us) -‿inverse : ∀ {n p} → (∀ (A : M n p) -> ((- A) + A) ≈ 0#) × (∀ (A : M n p) -> (A + (- A)) ≈ 0#) -‿inverse = -‿inverseˡ , -‿inverseʳ -‿cong : ∀ {n p} {A B : M n p} -> A ≈ B -> (- A) ≈ (- B) -‿cong PW.[] = PW.[] -‿cong (r PW.∷ rs) = (V.-‿cong r) PW.∷ (-‿cong rs) concat-+ : ∀ {n p} (A B : M n p) -> V.concat (V.zipWith V._+_ A B) V.≈ (V.concat A) +v (V.concat B) concat-+ {0} {p} V.[] V.[] = V.≈-trans (PW.concat⁺ {m = p} {p = 0} PW.[]) (V.≈-sym (V.+-identityˡ V.[])) concat-+ {suc n} {p} (u V.∷ us) (v V.∷ vs) = begin V.concat (V.zipWith V._+_ (u V.∷ us) (v V.∷ vs)) ≡⟨⟩ (u V.+ v) V.++ V.concat (V.zipWith V._+_ us vs) ≈⟨ V.++-cong V.≈-refl (concat-+ {n} {p} us vs) ⟩ (u V.+ v) V.++ (V.concat us V.+ V.concat vs) ≈⟨ V.≈-sym (V.+-++-distrib u (V.concat us) v (V.concat vs)) ⟩ (V.concat (u V.∷ us)) V.+ (V.concat (v V.∷ vs)) ∎ where open import Relation.Binary.EqReasoning (V.setoid (p +ℕ n *ℕ p)) concat-0# : ∀ {n p} -> V.concat (0# {n} {p}) V.≈ (V.0# {n *ℕ p}) concat-0# {0} = PW.[] concat-0# {suc n} {p} = begin V.concat (0# {suc n} {p}) ≡⟨⟩ V.0# {p} V.++ V.concat (0# {n} {p}) ≈⟨ PW.++⁺ V.≈-refl (concat-0# {n} {p}) ⟩ V.0# {p} V.++ V.0# {n *ℕ p} ≈⟨ V.0++0≈0 {p} {n *ℕ p} ⟩ V.0# {p +ℕ n *ℕ p} ∎ where open import Relation.Binary.EqReasoning (V.setoid (p +ℕ n *ℕ p)) concat-∙ : ∀ {n p} (c : K') (A : M n p) -> V.concat (c ∙ A) V.≈ (c V.∙ V.concat A) concat-∙ {0} c V.[] = PW.[] concat-∙ {suc n} {p} c (u V.∷ us) = begin V.concat ((c V.∙ u) V.∷ (c ∙ us)) ≡⟨⟩ (c V.∙ u) V.++ (V.concat (c ∙ us)) ≈⟨ V.++-cong V.≈-refl (concat-∙ {n} {p} c us) ⟩ (c V.∙ u) V.++ (c V.∙ V.concat us) ≈⟨ V.≈-sym (V.∙-++-distrib c u (V.concat us)) ⟩ c V.∙ V.concat (u V.∷ us) ∎ where open import Relation.Binary.EqReasoning (V.setoid (p +ℕ n *ℕ p)) I : ∀ {n p} -> M n p I = tabulate δ _*_ : ∀ {n p q} -> M n p -> M p q -> M n q A * B = tabulate λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (B ⟪ k , j ⟫) *-cong : ∀ {n p q} {A B : M n p} {C D : M p q} -> A ≈ B -> C ≈ D -> (A * C) ≈ (B * D) *-cong {n} {q = q} {A} {B} {C} {D} r₁ r₂ = begin A * C ≡⟨⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (C ⟪ k , j ⟫)) ≈⟨ tabulate⁺ (λ i j -> V.sum-tab-cong λ k → *ᵏ-cong (lookup-cong i k r₁) (lookup-cong k j r₂)) ⟩ B * D ∎ where open import Relation.Binary.EqReasoning (setoid {n} {q}) *-assoc : ∀ {n p q r} (A : M n p) (B : M p q) (C : M q r) -> ((A * B) * C) ≈ (A * (B * C)) *-assoc {n} {r = r} A B C = tabulate⁺ λ i j -> begin V.sum-tab (λ k′ -> ((A * B) ⟪ i , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) ≈⟨ V.sum-tab-cong (λ k′ -> *ᵏ-cong (≈ᵏ-reflexive (lookup∘tabulate (λ i′ j′ -> V.sum-tab λ k -> (A ⟪ i′ , k ⟫) *ᵏ (B ⟪ k , j′ ⟫)) i k′)) ≈ᵏ-refl) ⟩ V.sum-tab (λ k′ -> (V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (B ⟪ k , k′ ⟫)) *ᵏ (C ⟪ k′ , j ⟫)) ≈⟨ V.sum-tab-cong (λ k′ -> V.*ᵏ-sum-tab-distribʳ (C ⟪ k′ , j ⟫) λ k -> (A ⟪ i , k ⟫) *ᵏ (B ⟪ k , k′ ⟫)) ⟩ V.sum-tab (λ k′ -> V.sum-tab λ k -> ((A ⟪ i , k ⟫) *ᵏ (B ⟪ k , k′ ⟫)) *ᵏ (C ⟪ k′ , j ⟫)) ≈⟨ V.sum-tab-cong (λ k′ -> V.sum-tab-cong λ k -> *ᵏ-assoc (A ⟪ i , k ⟫) (B ⟪ k , k′ ⟫) (C ⟪ k′ , j ⟫)) ⟩ V.sum-tab (λ k′ -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) ≈⟨ V.sum-tab-cong (λ k′ -> V.sum-tab-cong λ k -> *ᵏ-comm (A ⟪ i , k ⟫) ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) ⟩ V.sum-tab (λ k′ -> V.sum-tab λ k -> ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) *ᵏ (A ⟪ i , k ⟫)) ≈⟨ V.sum-tab-swap (λ k k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) (λ k -> A ⟪ i , k ⟫) ⟩ V.sum-tab (λ k -> V.sum-tab λ k′ -> ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) *ᵏ (A ⟪ i , k ⟫)) ≈⟨ V.sum-tab-cong (λ k -> ≈ᵏ-trans (≈ᵏ-sym (V.*ᵏ-sum-tab-distribʳ (A ⟪ i , k ⟫) λ k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) (*ᵏ-comm (V.sum-tab λ k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) (A ⟪ i , k ⟫))) ⟩ V.sum-tab (λ k -> (A ⟪ i , k ⟫) *ᵏ V.sum-tab (λ k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) ≈⟨ V.sum-tab-cong (λ k -> *ᵏ-cong ≈ᵏ-refl (≈ᵏ-sym (≈ᵏ-reflexive (lookup∘tabulate (λ i′ j′ -> V.sum-tab λ k′ -> (B ⟪ i′ , k′ ⟫) *ᵏ (C ⟪ k′ , j′ ⟫)) k j)))) ⟩ V.sum-tab (λ k -> (A ⟪ i , k ⟫) *ᵏ ((B * C) ⟪ k , j ⟫)) ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) *-identityˡ : ∀ {n p} (A : M n p) -> I * A ≈ A *-identityˡ {n} {p} A = begin I * A ≡⟨⟩ tabulate (λ i j -> V.sum-tab λ k -> (I ⟪ i , k ⟫) *ᵏ (A ⟪ k , j ⟫)) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-cong {n} λ k -> *ᵏ-cong (≈ᵏ-reflexive (lookup∘tabulate δ i k)) ≈ᵏ-refl) ⟩ tabulate (λ i j -> V.sum-tab λ k -> δ i k *ᵏ (A ⟪ k , j ⟫)) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-δ (λ k -> A ⟪ k , j ⟫) i) ⟩ tabulate (λ i j -> A ⟪ i , j ⟫) ≡⟨ tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.EqReasoning (setoid {n} {p}) *-identityʳ : ∀ {n p} (A : M n p) -> A * I ≈ A *-identityʳ {n} {p} A = begin A * I ≡⟨⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (I ⟪ k , j ⟫)) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-cong {p} λ k -> *ᵏ-cong ≈ᵏ-refl (≈ᵏ-reflexive (lookup∘tabulate δ k j))) ⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ δ k j) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-cong {p} λ k -> *ᵏ-cong ≈ᵏ-refl (δ-comm k j)) ⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ δ j k) ≈⟨ tabulate-cong (λ i j -> ≈ᵏ-trans (V.sum-tab-cong {p} (λ k -> *ᵏ-comm ((A ⟪ i , k ⟫)) (δ j k))) (V.sum-tab-δ (λ k -> A ⟪ i , k ⟫) j)) ⟩ tabulate (λ i j -> A ⟪ i , j ⟫) ≡⟨ tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.EqReasoning (setoid {n} {p}) module _ {n p} where open IsEquivalence (≈-isEquiv {n} {p}) public using () renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ) open FP (_≈_ {n} {p}) open import Algebra.Structures (_≈_ {n} {p}) open import Algebra.Linear.Structures.Bundles isMagma : IsMagma _+_ isMagma = record { isEquivalence = ≈-isEquiv ; ∙-cong = +-cong } isSemigroup : IsSemigroup _+_ isSemigroup = record { isMagma = isMagma ; assoc = +-assoc } isMonoid : IsMonoid _+_ 0# isMonoid = record { isSemigroup = isSemigroup ; identity = +-identity } isGroup : IsGroup _+_ 0# -_ isGroup = record { isMonoid = isMonoid ; inverse = -‿inverse ; ⁻¹-cong = -‿cong } isAbelianGroup : IsAbelianGroup _+_ 0# -_ isAbelianGroup = record { isGroup = isGroup ; comm = +-comm } open VS K isVectorSpace : VS.IsVectorSpace K (_≈_ {n}) _+_ _∙_ -_ 0# isVectorSpace = record { isAbelianGroup = isAbelianGroup ; *ᵏ-∙-compat = *ᵏ-∙-compat ; ∙-+-distrib = ∙-+-distrib ; ∙-+ᵏ-distrib = ∙-+ᵏ-distrib ; ∙-cong = ∙-cong ; ∙-identity = ∙-identity ; ∙-absorbˡ = ∙-absorbˡ } vectorSpace : VectorSpace K k (k ⊔ ℓ) vectorSpace = record { isVectorSpace = isVectorSpace } open import Algebra.Linear.Structures.FiniteDimensional K open import Algebra.Linear.Morphism.VectorSpace K open import Algebra.Linear.Morphism.Bundles K open import Algebra.Morphism.Definitions (M n p) (Vec K' (n *ℕ p)) V._≈_ open import Algebra.Linear.Morphism.Definitions K (M n p) (Vec K' (n *ℕ p)) V._≈_ import Relation.Binary.Morphism.Definitions (M n p) (Vec K' (n *ℕ p)) as R open import Function open import Relation.Binary.EqReasoning (V.setoid (n *ℕ p)) ⟦_⟧ : M n p -> Vec K' (n *ℕ p) ⟦_⟧ = V.concat ⟦⟧-cong : R.Homomorphic₂ _≈_ (V._≈_ {n *ℕ p}) ⟦_⟧ ⟦⟧-cong = PW.concat⁺ +-homo : Homomorphic₂ ⟦_⟧ _+_ _+v_ +-homo = concat-+ 0#-homo : Homomorphic₀ ⟦_⟧ 0# V.0# 0#-homo = concat-0# {n} {p} ∙-homo : ScalarHomomorphism ⟦_⟧ _∙_ _∙v_ ∙-homo = concat-∙ ⟦⟧-injective : Injective (_≈_ {n} {p}) (V._≈_ {n *ℕ p}) ⟦_⟧ ⟦⟧-injective {A} {B} r = PW.concat⁻ A B r ⟦⟧-surjective : Surjective (_≈_ {n} {p}) (V._≈_ {n *ℕ p}) ⟦_⟧ ⟦⟧-surjective v = fromVec {n} {p} v , concat∘fromVec {n} {p} v embed : LinearIsomorphism vectorSpace (V.vectorSpace {n *ℕ p}) embed = record { ⟦_⟧ = ⟦_⟧ ; isLinearIsomorphism = record { isLinearMonomorphism = record { isLinearMap = record { isAbelianGroupMorphism = record { gp-homo = record { mn-homo = record { sm-homo = record { ⟦⟧-cong = ⟦⟧-cong ; ∙-homo = +-homo } ; ε-homo = 0#-homo } } } ; ∙-homo = ∙-homo } ; injective = ⟦⟧-injective } ; surjective = ⟦⟧-surjective } } isFiniteDimensional : IsFiniteDimensional _≈_ _+_ _∙_ -_ 0# (n *ℕ p) isFiniteDimensional = record { isVectorSpace = isVectorSpace ; embed = embed }
lemma Inf_insert: fixes S :: "real set" shows "bounded S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSFpyr(IM, HEIGHT, ORDER, TWIDTH) % % Construct a steerable pyramid on matrix IM, in the Fourier domain. % This is similar to buildSpyr, except that: % % + Reconstruction is exact (within floating point errors) % + It can produce any number of orientation bands. % - Typically slower, especially for non-power-of-two sizes. % - Boundary-handling is circular. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(size(IM),size(FILT)); % % The squared radial functions tile the Fourier plane, with a raised-cosine % falloff. Angular functions are cos(theta-k\pi/(K+1))^K, where K is % the ORDER (one less than the number of orientation bands, default= 3). % % TWIDTH is the width of the transition region of the radial lowpass % function, in octaves (default = 1, which gives a raised cosine for % the bandpass filters). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % See the function STEER for a description of STEERMTX and HARMONICS. % Eero Simoncelli, 5/97. % See http://www.cis.upenn.edu/~eero/steerpyr.html for more % information about the Steerable Pyramid image decomposition. function [pyr,pind,steermtx,harmonics] = buildSFpyr(im, ht, order, twidth) %----------------------------------------------------------------- %% DEFAULTS: max_ht = floor(log2(min(size(im)))+2); if (exist('ht') ~= 1) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (exist('order') ~= 1) order = 3; elseif ((order > 15) | (order < 0)) fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n'); order = min(max(order,0),15); else order = round(order); end nbands = order+1; if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %----------------------------------------------------------------- %% Steering stuff: if (mod((nbands),2) == 0) harmonics = [0:(nbands/2)-1]'*2 + 1; else harmonics = [0:(nbands-1)/2]'*2; end steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even'); %----------------------------------------------------------------- dims = size(im); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); imdft = fftshift(fft2(im)); lo0dft = imdft .* lo0mask; [pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands); hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); hi0dft = imdft .* hi0mask; hi0 = ifft2(ifftshift(hi0dft)); pyr = [real(hi0(:)) ; pyr]; pind = [size(hi0); pind];
(* Title: HOL/Auth/n_german_lemma_inv__9_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_german Protocol Case Study*} theory n_german_lemma_inv__9_on_rules imports n_german_lemma_on_inv__9 begin section{*All lemmas on causal relation between inv__9*} lemma lemma_inv__9_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__9 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqSVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__0Vsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__1Vsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqEVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__9) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__9) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov ! This file was ported from Lean 3 source module data.set.list ! leanprover-community/mathlib commit 2ec920d35348cb2d13ac0e1a2ad9df0fdf1a76b4 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Data.Set.Image import Mathbin.Data.List.Basic import Mathbin.Data.Fin.Basic /-! # Lemmas about `list`s and `set.range` In this file we prove lemmas about range of some operations on lists. -/ open List variable {α β : Type _} (l : List α) namespace Set #print Set.range_list_map /- theorem range_list_map (f : α → β) : range (map f) = { l | ∀ x ∈ l, x ∈ range f } := by refine' subset.antisymm (range_subset_iff.2 fun l => forall_mem_map_iff.2 fun y _ => mem_range_self _) fun l hl => _ induction' l with a l ihl; · exact ⟨[], rfl⟩ rcases ihl fun x hx => hl x <| subset_cons _ _ hx with ⟨l, rfl⟩ rcases hl a (mem_cons_self _ _) with ⟨a, rfl⟩ exact ⟨a :: l, map_cons _ _ _⟩ #align set.range_list_map Set.range_list_map -/ #print Set.range_list_map_coe /- theorem range_list_map_coe (s : Set α) : range (map (coe : s → α)) = { l | ∀ x ∈ l, x ∈ s } := by rw [range_list_map, Subtype.range_coe] #align set.range_list_map_coe Set.range_list_map_coe -/ #print Set.range_list_nthLe /- @[simp] theorem range_list_nthLe : (range fun k : Fin l.length => l.nthLe k k.2) = { x | x ∈ l } := by ext x rw [mem_set_of_eq, mem_iff_nth_le] exact ⟨fun ⟨⟨n, h₁⟩, h₂⟩ => ⟨n, h₁, h₂⟩, fun ⟨n, h₁, h₂⟩ => ⟨⟨n, h₁⟩, h₂⟩⟩ #align set.range_list_nth_le Set.range_list_nthLe -/ #print Set.range_list_get? /- theorem range_list_get? : range l.get? = insert none (some '' { x | x ∈ l }) := by rw [← range_list_nth_le, ← range_comp] refine' (range_subset_iff.2 fun n => _).antisymm (insert_subset.2 ⟨_, _⟩) exacts[(le_or_lt l.length n).imp nth_eq_none_iff.2 fun hlt => ⟨⟨_, _⟩, (nth_le_nth hlt).symm⟩, ⟨_, nth_eq_none_iff.2 le_rfl⟩, range_subset_iff.2 fun k => ⟨_, nth_le_nth _⟩] #align set.range_list_nth Set.range_list_get? -/ #print Set.range_list_getD /- @[simp] theorem range_list_getD (d : α) : (range fun n => l.getD n d) = insert d { x | x ∈ l } := calc (range fun n => l.getD n d) = (fun o : Option α => o.getD d) '' range l.get? := by simp only [← range_comp, (· ∘ ·), nthd_eq_get_or_else_nth] _ = insert d { x | x ∈ l } := by simp only [range_list_nth, image_insert_eq, Option.getD, image_image, image_id'] #align set.range_list_nthd Set.range_list_getD -/ #print Set.range_list_getI /- @[simp] theorem range_list_getI [Inhabited α] (l : List α) : range l.getI = insert default { x | x ∈ l } := range_list_getD l default #align set.range_list_inth Set.range_list_getI -/ end Set #print List.canLift /- /-- If each element of a list can be lifted to some type, then the whole list can be lifted to this type. -/ instance List.canLift (c) (p) [CanLift α β c p] : CanLift (List α) (List β) (List.map c) fun l => ∀ x ∈ l, p x where prf l H := by rw [← Set.mem_range, Set.range_list_map] exact fun a ha => CanLift.prf a (H a ha) #align list.can_lift List.canLift -/
import NLPModels: grad, cons, jac """ unconstrained: return the infinite norm of the gradient of the objective function required: state.gx (filled if nothing) """ function unconstrained_check(pb :: AbstractNLPModel, state :: NLPAtX; pnorm :: Float64 = Inf, kwargs...) if state.gx == nothing # should be filled if empty update!(state, gx = grad(pb, state.x)) end res = norm(state.gx, pnorm) return res end """ unconstrained 2nd: check the norm of the gradient and the smallest eigenvalue of the hessian. required: state.gx, state.Hx (filled if nothing) """ function unconstrained2nd_check(pb :: AbstractNLPModel, state :: NLPAtX; pnorm :: Float64 = Inf, kwargs...) if state.gx == nothing # should be filled if empty update!(state, gx = grad(pb, state.x)) end if state.Hx == nothing update!(state, Hx = hess(pb, state.x)) end res = max(norm(state.gx, pnorm), max(- eigmin(state.Hx + state.Hx' - diagm(0 => diag(state.Hx))), 0.0)) return res end """ optim_check_bounded: gradient of the objective function projected required: state.gx (filled if void) """ function optim_check_bounded(pb :: AbstractNLPModel, state :: NLPAtX; pnorm :: Float64 = Inf, kwargs...) if state.gx == nothing # should be filled if void update!(state, gx = grad(pb, state.x)) end proj = max.(min.(state.x - state.gx, pb.meta.uvar), pb.meta.lvar) gradproj = state.x - proj res = norm(gradproj, pnorm) return res end """ constrained: return the violation of the KKT conditions length(lambda) > 0 """ function _grad_lagrangian(pb :: AbstractNLPModel, state :: NLPAtX) if (pb.meta.ncon == 0) & !has_bounds(pb) return state.gx elseif pb.meta.ncon == 0 return state.gx + state.mu else return state.gx + state.mu + state.Jx' * state.lambda end end function _sign_multipliers_bounds(pb :: AbstractNLPModel, state :: NLPAtX) if has_bounds(pb) return vcat(min.(max.( state.mu,0.0), - state.x + pb.meta.uvar), min.(max.(-state.mu,0.0), state.x - pb.meta.lvar)) else return zeros(0) end end function _sign_multipliers_nonlin(pb :: AbstractNLPModel, state :: NLPAtX) if pb.meta.ncon == 0 return zeros(0) else return vcat(min.(max.( state.lambda,0.0), - state.cx + pb.meta.ucon), min.(max.(-state.lambda,0.0), state.cx - pb.meta.lcon)) end end function _feasibility(pb :: AbstractNLPModel, state :: NLPAtX) if pb.meta.ncon == 0 return vcat(max.( state.x - pb.meta.uvar,0.0), max.(- state.x + pb.meta.lvar,0.0)) else return vcat(max.( state.cx - pb.meta.ucon,0.0), max.(- state.cx + pb.meta.lcon,0.0), max.( state.x - pb.meta.uvar,0.0), max.(- state.x + pb.meta.lvar,0.0)) end end """ KKT: verifies the KKT conditions required: state.gx + if bounds: state.mu + if constraints: state.cx, state.Jx, state.lambda """ function KKT(pb :: AbstractNLPModel, state :: NLPAtX; pnorm :: Float64 = Inf, kwargs...) #Check the gradient of the Lagrangian gLagx = _grad_lagrangian(pb, state) #Check the complementarity condition for the bounds res_bounds = _sign_multipliers_bounds(pb, state) #Check the complementarity condition for the constraints res_nonlin = _sign_multipliers_nonlin(pb, state) #Check the feasibility feas = _feasibility(pb, state) res = vcat(gLagx, feas, res_bounds, res_nonlin) return norm(res, pnorm) end
Formal statement is: lemma continuous_on_inv_into: fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" assumes s: "continuous_on s f" "compact s" and f: "inj_on f s" shows "continuous_on (f ` s) (the_inv_into s f)" Informal statement is: If $f$ is a continuous injective map from a compact space to a Hausdorff space, then the inverse of $f$ is continuous.
lemma get_integrable_path: assumes "open s" "connected (s-pts)" "finite pts" "f holomorphic_on (s-pts) " "a\<in>s-pts" "b\<in>s-pts" obtains g where "valid_path g" "pathstart g = a" "pathfinish g = b" "path_image g \<subseteq> s-pts" "f contour_integrable_on g"
check_use <- function(use) { match.arg( tolower(use), c("everything", "all.obs", "complete.obs", "pairwise.complete.obs") ) } is.vec <- function(x) { is.vector(x) && !is.list(x) } check.is.flag <- function(x) { if (!(is.logical(x) && length(x) == 1 && (!is.na(x)))) { nm <- deparse(substitute(x)) stop(paste0("argument '", nm, "' must be TRUE or FALSE")) } invisible() } #' @useDynLib coop R_check_badvals check_badvals <- function(x) { .Call(R_check_badvals, x) }
[GOAL] α : Type u_1 β : α → Type u δ : α → Sort v inst✝ : DecidableEq α a : α b : δ a s : Finset α hs : ¬a ∈ s e₁ e₂ : (a : α) → a ∈ s → δ a eq : cons s a b e₁ = cons s a b e₂ e : α h : e ∈ a ::ₘ s.val ⊢ e ∈ insert a s [PROOFSTEP] simpa only [Multiset.mem_cons, mem_insert] using h [GOAL] α : Type u_1 β : α → Type u δ : α → Sort v inst✝ : DecidableEq α a : α b : δ a s : Finset α hs : ¬a ∈ s e₁ e₂ : (a : α) → a ∈ s → δ a eq : cons s a b e₁ = cons s a b e₂ e : α h : e ∈ a ::ₘ s.val ⊢ e ∈ insert a s [PROOFSTEP] simpa only [Multiset.mem_cons, mem_insert] using h [GOAL] α : Type u_1 β : α → Type u δ : α → Sort v inst✝ : DecidableEq α a : α b : δ a s : Finset α hs : ¬a ∈ s e₁ e₂ : (a : α) → a ∈ s → δ a eq : cons s a b e₁ = cons s a b e₂ e : α h : e ∈ a ::ₘ s.val ⊢ cons s a b e₁ e (_ : e ∈ insert a s) = cons s a b e₂ e (_ : e ∈ insert a s) [PROOFSTEP] rw [eq] [GOAL] α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s ⊢ pi (insert a s) t = Finset.biUnion (t a) fun b => image (Pi.cons s a b) (pi s t) [PROOFSTEP] apply eq_of_veq [GOAL] case a α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s ⊢ (pi (insert a s) t).val = (Finset.biUnion (t a) fun b => image (Pi.cons s a b) (pi s t)).val [PROOFSTEP] rw [← (pi (insert a s) t).2.dedup] [GOAL] case a α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s ⊢ dedup (pi (insert a s) t).val = (Finset.biUnion (t a) fun b => image (Pi.cons s a b) (pi s t)).val [PROOFSTEP] refine' (fun s' (h : s' = a ::ₘ s.1) => (_ : dedup (Multiset.pi s' fun a => (t a).1) = dedup ((t a).1.bind fun b => dedup <| (Multiset.pi s.1 fun a : α => (t a).val).map fun f a' h' => Multiset.Pi.cons s.1 a b f a' (h ▸ h')))) _ (insert_val_of_not_mem ha) [GOAL] case a α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s s' : Multiset α h : s' = a ::ₘ s.val ⊢ dedup (Multiset.pi s' fun a => (t a).val) = dedup (Multiset.bind (t a).val fun b => dedup (Multiset.map (fun f a' h' => Multiset.Pi.cons s.val a b f a' (_ : a' ∈ a ::ₘ s.val)) (Multiset.pi s.val fun a => (t a).val))) [PROOFSTEP] subst s' [GOAL] case a α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s ⊢ dedup (Multiset.pi (a ::ₘ s.val) fun a => (t a).val) = dedup (Multiset.bind (t a).val fun b => dedup (Multiset.map (fun f a' h' => Multiset.Pi.cons s.val a b f a' (_ : a' ∈ a ::ₘ s.val)) (Multiset.pi s.val fun a => (t a).val))) [PROOFSTEP] rw [pi_cons] [GOAL] case a α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s ⊢ dedup (Multiset.bind (t a).val fun b => Multiset.map (Multiset.Pi.cons s.val a b) (Multiset.pi s.val fun a => (t a).val)) = dedup (Multiset.bind (t a).val fun b => dedup (Multiset.map (fun f a' h' => Multiset.Pi.cons s.val a b f a' (_ : a' ∈ a ::ₘ s.val)) (Multiset.pi s.val fun a => (t a).val))) [PROOFSTEP] congr [GOAL] case a.e_s.e_f α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s ⊢ (fun b => Multiset.map (Multiset.Pi.cons s.val a b) (Multiset.pi s.val fun a => (t a).val)) = fun b => dedup (Multiset.map (fun f a' h' => Multiset.Pi.cons s.val a b f a' (_ : a' ∈ a ::ₘ s.val)) (Multiset.pi s.val fun a => (t a).val)) [PROOFSTEP] funext b [GOAL] case a.e_s.e_f.h α : Type u_1 β : α → Type u δ : α → Sort v inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : ¬a ∈ s b : β a ⊢ Multiset.map (Multiset.Pi.cons s.val a b) (Multiset.pi s.val fun a => (t a).val) = dedup (Multiset.map (fun f a' h' => Multiset.Pi.cons s.val a b f a' (_ : a' ∈ a ::ₘ s.val)) (Multiset.pi s.val fun a => (t a).val)) [PROOFSTEP] exact ((pi s t).nodup.map <| Multiset.Pi.cons_injective ha).dedup.symm [GOAL] α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β ⊢ (pi s fun a => {f a}) = {fun a x => f a} [PROOFSTEP] rw [eq_singleton_iff_unique_mem] [GOAL] α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β ⊢ ((fun a x => f a) ∈ pi s fun a => {f a}) ∧ ∀ (x : (a : α) → a ∈ s → β), (x ∈ pi s fun a => {f a}) → x = fun a x => f a [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β ⊢ (fun a x => f a) ∈ pi s fun a => {f a} [PROOFSTEP] simp [GOAL] case right α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β ⊢ ∀ (x : (a : α) → a ∈ s → β), (x ∈ pi s fun a => {f a}) → x = fun a x => f a [PROOFSTEP] intro a ha [GOAL] case right α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β a : (a : α) → a ∈ s → β ha : a ∈ pi s fun a => {f a} ⊢ a = fun a x => f a [PROOFSTEP] ext i hi [GOAL] case right.h.h α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β a : (a : α) → a ∈ s → β ha : a ∈ pi s fun a => {f a} i : α hi : i ∈ s ⊢ a i hi = f i [PROOFSTEP] rw [mem_pi] at ha [GOAL] case right.h.h α : Type u_1 β✝ : α → Type u δ : α → Sort v inst✝ : DecidableEq α β : Type u_2 s : Finset α f : α → β a : (a : α) → a ∈ s → β ha : ∀ (a_1 : α) (h : a_1 ∈ s), a a_1 h ∈ {f a_1} i : α hi : i ∈ s ⊢ a i hi = f i [PROOFSTEP] simpa using ha i hi
[GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxz : IsMaximal x (x ⊔ y) hyz : IsMaximal y (x ⊔ y) ⊢ IsMaximal (x ⊓ y) y [PROOFSTEP] rw [inf_comm] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxz : IsMaximal x (x ⊔ y) hyz : IsMaximal y (x ⊔ y) ⊢ IsMaximal (y ⊓ x) y [PROOFSTEP] rw [sup_comm] at hxz hyz [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxz : IsMaximal x (y ⊔ x) hyz : IsMaximal y (y ⊔ x) ⊢ IsMaximal (y ⊓ x) y [PROOFSTEP] exact isMaximal_inf_left_of_isMaximal_sup hyz hxz [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x b a y : X ha : x ⊓ y = a hxy : x ≠ y hxb : IsMaximal x b hyb : IsMaximal y b ⊢ IsMaximal a y [PROOFSTEP] have hb : x ⊔ y = b := sup_eq_of_isMaximal hxb hyb hxy [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x b a y : X ha : x ⊓ y = a hxy : x ≠ y hxb : IsMaximal x b hyb : IsMaximal y b hb : x ⊔ y = b ⊢ IsMaximal a y [PROOFSTEP] substs a b [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxy : x ≠ y hxb : IsMaximal x (x ⊔ y) hyb : IsMaximal y (x ⊔ y) ⊢ IsMaximal (x ⊓ y) y [PROOFSTEP] exact isMaximal_inf_right_of_isMaximal_sup hxb hyb [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y a b : X hm : IsMaximal x a ha : x ⊔ y = a hb : x ⊓ y = b ⊢ Iso (x, a) (b, y) [PROOFSTEP] substs a b [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hm : IsMaximal x (x ⊔ y) ⊢ Iso (x, x ⊔ y) (x ⊓ y, y) [PROOFSTEP] exact second_iso hm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hx : x ∈ s hy : y ∈ s ⊢ x ≤ y ∨ y ≤ x [PROOFSTEP] rcases Set.mem_range.1 hx with ⟨i, rfl⟩ [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X y : X hy : y ∈ s i : Fin (s.length + 1) hx : series s i ∈ s ⊢ series s i ≤ y ∨ y ≤ series s i [PROOFSTEP] rcases Set.mem_range.1 hy with ⟨j, rfl⟩ [GOAL] case intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ∈ s j : Fin (s.length + 1) hy : series s j ∈ s ⊢ series s i ≤ series s j ∨ series s j ≤ series s i [PROOFSTEP] rw [s.strictMono.le_iff_le, s.strictMono.le_iff_le] [GOAL] case intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ∈ s j : Fin (s.length + 1) hy : series s j ∈ s ⊢ i ≤ j ∨ j ≤ i [PROOFSTEP] exact le_total i j [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hl : s₁.length = s₂.length h : ∀ (i : Fin (s₁.length + 1)), series s₁ i = series s₂ (↑(Fin.castIso (_ : Nat.succ s₁.length = Nat.succ s₂.length)) i) ⊢ s₁ = s₂ [PROOFSTEP] cases s₁ [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₂ : CompositionSeries X length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) hl : { length := length✝, series := series✝, step' := step'✝ }.length = s₂.length h : ∀ (i : Fin ({ length := length✝, series := series✝, step' := step'✝ }.length + 1)), series { length := length✝, series := series✝, step' := step'✝ } i = series s₂ (↑(Fin.castIso (_ : Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length = Nat.succ s₂.length)) i) ⊢ { length := length✝, series := series✝, step' := step'✝ } = s₂ [PROOFSTEP] cases s₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) hl : { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = { length := length✝, series := series✝, step' := step'✝ }.length h : ∀ (i : Fin ({ length := length✝¹, series := series✝¹, step' := step'✝¹ }.length + 1)), series { length := length✝¹, series := series✝¹, step' := step'✝¹ } i = series { length := length✝, series := series✝, step' := step'✝ } (↑(Fin.castIso (_ : Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] dsimp at hl h [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) hl : length✝¹ = length✝ h : ∀ (i : Fin (length✝¹ + 1)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝¹ = Nat.succ length✝)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] subst hl [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : ∀ (i : Fin (length✝ + 1)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i) ⊢ { length := length✝, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] simpa [Function.funext_iff] using h [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ List.length (toList s) = s.length + 1 [PROOFSTEP] rw [toList, List.length_ofFn] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ toList s ≠ [] [PROOFSTEP] rw [← List.length_pos_iff_ne_nil, length_toList] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ 0 < s.length + 1 [PROOFSTEP] exact Nat.succ_pos _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : List.ofFn s₁.series = List.ofFn s₂.series ⊢ s₁ = s₂ [PROOFSTEP] have h₁ : s₁.length = s₂.length := Nat.succ_injective ((List.length_ofFn s₁).symm.trans <| (congr_arg List.length h).trans <| List.length_ofFn s₂) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : List.ofFn s₁.series = List.ofFn s₂.series h₁ : s₁.length = s₂.length ⊢ s₁ = s₂ [PROOFSTEP] have h₂ : ∀ i : Fin s₁.length.succ, s₁ i = s₂ (Fin.castIso (congr_arg Nat.succ h₁) i) := -- Porting note: `List.nthLe_ofFn` has been deprecated but `List.get_ofFn` has a -- different type, so we do golf here.congr_fun <| List.ofFn_injective <| h.trans <| List.ofFn_congr (congr_arg Nat.succ h₁).symm _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : List.ofFn s₁.series = List.ofFn s₂.series h₁ : s₁.length = s₂.length h₂ : ∀ (i : Fin (Nat.succ s₁.length)), series s₁ i = series s₂ (↑(Fin.castIso (_ : Nat.succ s₁.length = Nat.succ s₂.length)) i) ⊢ s₁ = s₂ [PROOFSTEP] cases s₁ [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₂ : CompositionSeries X length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn { length := length✝, series := series✝, step' := step'✝ }.series = List.ofFn s₂.series h₁ : { length := length✝, series := series✝, step' := step'✝ }.length = s₂.length h₂ : ∀ (i : Fin (Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)), series { length := length✝, series := series✝, step' := step'✝ } i = series s₂ (↑(Fin.castIso (_ : Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length = Nat.succ s₂.length)) i) ⊢ { length := length✝, series := series✝, step' := step'✝ } = s₂ [PROOFSTEP] cases s₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn { length := length✝¹, series := series✝¹, step' := step'✝¹ }.series = List.ofFn { length := length✝, series := series✝, step' := step'✝ }.series h₁ : { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = { length := length✝, series := series✝, step' := step'✝ }.length h₂ : ∀ (i : Fin (Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length)), series { length := length✝¹, series := series✝¹, step' := step'✝¹ } i = series { length := length✝, series := series✝, step' := step'✝ } (↑(Fin.castIso (_ : Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] dsimp at h h₁ h₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₁ : length✝¹ = length✝ h₂ : ∀ (i : Fin (Nat.succ length✝¹)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝¹ = Nat.succ length✝)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] subst h₁ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i) ⊢ { length := length✝, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] simp only [mk.injEq, heq_eq_eq, true_and] [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i) ⊢ series✝¹ = series✝ [PROOFSTEP] simp only [Fin.castIso_refl] at h₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(OrderIso.refl (Fin (Nat.succ length✝))) i) ⊢ series✝¹ = series✝ [PROOFSTEP] exact funext h₂ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ∀ (i : ℕ) (h : i < List.length (toList s) - 1), IsMaximal (List.get (toList s) { val := i, isLt := (_ : i < List.length (toList s)) }) (List.get (toList s) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) }) [PROOFSTEP] intro i hi [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi : i < List.length (toList s) - 1 ⊢ IsMaximal (List.get (toList s) { val := i, isLt := (_ : i < List.length (toList s)) }) (List.get (toList s) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) }) [PROOFSTEP] simp only [toList, List.get_ofFn] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi : i < List.length (toList s) - 1 ⊢ IsMaximal (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i, isLt := (_ : i < List.length (toList s)) })) (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) })) [PROOFSTEP] rw [length_toList] at hi [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi✝ : i < List.length (toList s) - 1 hi : i < s.length + 1 - 1 ⊢ IsMaximal (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i, isLt := (_ : i < List.length (toList s)) })) (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) })) [PROOFSTEP] exact s.step ⟨i, hi⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i j : Fin (List.length (toList s)) h : i < j ⊢ List.get (toList s) i < List.get (toList s) j [PROOFSTEP] dsimp [toList] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i j : Fin (List.length (toList s)) h : i < j ⊢ List.get (List.ofFn s.series) i < List.get (List.ofFn s.series) j [PROOFSTEP] rw [List.get_ofFn, List.get_ofFn] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i j : Fin (List.length (toList s)) h : i < j ⊢ series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) i) < series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) j) [PROOFSTEP] exact s.strictMono h [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X ⊢ x ∈ toList s ↔ x ∈ s [PROOFSTEP] rw [toList, List.mem_ofFn, mem_def] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) ⊢ ↑i < List.length l [PROOFSTEP] conv_rhs => rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) | List.length l [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) | List.length l [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) | List.length l [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) ⊢ ↑i < List.length l - Nat.succ 0 + Nat.succ 0 [PROOFSTEP] exact i.2 [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s)) = s [PROOFSTEP] refine' ext_fun _ _ [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = s.length [PROOFSTEP] rw [length_ofList, length_toList, Nat.succ_sub_one] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ∀ (i : Fin ((ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length + 1)), series (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))) i = series s (↑(Fin.castIso (_ : Nat.succ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = Nat.succ s.length)) i) [PROOFSTEP] rintro ⟨i, hi⟩ -- Porting note: Was `dsimp [ofList, toList]; rw [List.nthLe_ofFn']`. [GOAL] case refine'_2.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi : i < (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length + 1 ⊢ series (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))) { val := i, isLt := hi } = series s (↑(Fin.castIso (_ : Nat.succ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = Nat.succ s.length)) { val := i, isLt := hi }) [PROOFSTEP] simp [ofList, toList, -List.ofFn_succ] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l ⊢ toList (ofList l hl hc) = l [PROOFSTEP] refine' List.ext_get _ _ [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l ⊢ List.length (toList (ofList l hl hc)) = List.length l [PROOFSTEP] rw [length_toList, length_ofList, tsub_add_cancel_of_le (Nat.succ_le_of_lt <| List.length_pos_of_ne_nil hl)] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l ⊢ ∀ (n : ℕ) (h₁ : n < List.length (toList (ofList l hl hc))) (h₂ : n < List.length l), List.get (toList (ofList l hl hc)) { val := n, isLt := h₁ } = List.get l { val := n, isLt := h₂ } [PROOFSTEP] intro i hi hi' [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : ℕ hi : i < List.length (toList (ofList l hl hc)) hi' : i < List.length l ⊢ List.get (toList (ofList l hl hc)) { val := i, isLt := hi } = List.get l { val := i, isLt := hi' } [PROOFSTEP] dsimp [ofList, toList] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : ℕ hi : i < List.length (toList (ofList l hl hc)) hi' : i < List.length l ⊢ List.get (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) { val := i, isLt := hi } = List.get l { val := i, isLt := hi' } [PROOFSTEP] rw [List.get_ofFn] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : ℕ hi : i < List.length (toList (ofList l hl hc)) hi' : i < List.length l ⊢ List.nthLe l ↑(↑(Fin.castIso (_ : List.length (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) = List.length l - 1 + 1)) { val := i, isLt := hi }) (_ : ↑(↑(Fin.castIso (_ : List.length (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) = List.length l - 1 + 1)) { val := i, isLt := hi }) < List.length l) = List.get l { val := i, isLt := hi' } [PROOFSTEP] rfl [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂ ⊢ toList s₁ ~ toList s₂ [PROOFSTEP] classical exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂ ⊢ toList s₁ ~ toList s₂ [PROOFSTEP] exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂ ⊢ ∀ (a : X), a ∈ List.toFinset (toList s₁) ↔ a ∈ List.toFinset (toList s₂) [PROOFSTEP] simp [*] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length - 1) ⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc i)) ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ i)) [PROOFSTEP] have := s.step ⟨i, lt_of_lt_of_le i.2 tsub_le_self⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length - 1) this : IsMaximal (series s (Fin.castSucc { val := ↑i, isLt := (_ : ↑i < s.length) })) (series s (Fin.succ { val := ↑i, isLt := (_ : ↑i < s.length) })) ⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc i)) ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ i)) [PROOFSTEP] cases i [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X val✝ : ℕ isLt✝ : val✝ < s.length - 1 this : IsMaximal (series s (Fin.castSucc { val := ↑{ val := val✝, isLt := isLt✝ }, isLt := (_ : ↑{ val := val✝, isLt := isLt✝ } < s.length) })) (series s (Fin.succ { val := ↑{ val := val✝, isLt := isLt✝ }, isLt := (_ : ↑{ val := val✝, isLt := isLt✝ } < s.length) })) ⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc { val := val✝, isLt := isLt✝ })) ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ { val := val✝, isLt := isLt✝ })) [PROOFSTEP] exact this [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ { val := ↑(Fin.last (eraseTop s).length), isLt := (_ : ↑(Fin.last (eraseTop s).length) < s.length + 1) } = { val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) } [PROOFSTEP] ext [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ↑{ val := ↑(Fin.last (eraseTop s).length), isLt := (_ : ↑(Fin.last (eraseTop s).length) < s.length + 1) } = ↑{ val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) } [PROOFSTEP] simp only [eraseTop_length, Fin.val_last, Fin.coe_castSucc, Fin.coe_ofNat_eq_mod, Fin.val_mk] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ top (eraseTop s) ≤ top s [PROOFSTEP] simp [eraseTop, top, s.strictMono.le_iff_le, Fin.le_iff_val_le_val, tsub_le_self] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hx : x ≠ top s hxs : x ∈ s ⊢ x ∈ eraseTop s [PROOFSTEP] rcases hxs with ⟨i, rfl⟩ [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ series s i ∈ eraseTop s [PROOFSTEP] have hi : (i : ℕ) < (s.length - 1).succ := by conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ ↑i < Nat.succ (s.length - 1) [PROOFSTEP] conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s | Nat.succ (s.length - 1) [PROOFSTEP] rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s | Nat.succ (s.length - 1) [PROOFSTEP] rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s | Nat.succ (s.length - 1) [PROOFSTEP] rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ ↑i < s.length [PROOFSTEP] exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ ↑i ≠ s.length [PROOFSTEP] simpa [top, s.inj, Fin.ext_iff] using hx [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s hi : ↑i < Nat.succ (s.length - 1) ⊢ series s i ∈ eraseTop s [PROOFSTEP] refine' ⟨Fin.castSucc (n := s.length + 1) i, _⟩ [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s hi : ↑i < Nat.succ (s.length - 1) ⊢ series (eraseTop s) ↑↑(Fin.castSucc i) = series s i [PROOFSTEP] simp [Fin.ext_iff, Nat.mod_eq_of_lt hi] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ x ∈ eraseTop s ↔ x ≠ top s ∧ x ∈ s [PROOFSTEP] simp only [mem_def] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ x ∈ range (eraseTop s).series ↔ x ≠ top s ∧ x ∈ range s.series [PROOFSTEP] dsimp only [eraseTop] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ (x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) ↔ x ≠ top s ∧ x ∈ range s.series [PROOFSTEP] constructor [GOAL] case mp X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ (x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) → x ≠ top s ∧ x ∈ range s.series [PROOFSTEP] rintro ⟨i, rfl⟩ [GOAL] case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ≠ top s ∧ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ∈ range s.series [PROOFSTEP] have hi : (i : ℕ) < s.length := by conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] exact i.2 -- Porting note: Was `simp [top, Fin.ext_iff, ne_of_lt hi]`. [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ ↑i < s.length [PROOFSTEP] conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ ↑i < Nat.succ (s.length - Nat.succ 0) [PROOFSTEP] exact i.2 -- Porting note: Was `simp [top, Fin.ext_iff, ne_of_lt hi]`. [GOAL] case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) hi : ↑i < s.length ⊢ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ≠ top s ∧ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ∈ range s.series [PROOFSTEP] simp [top, Fin.ext_iff, ne_of_lt hi, -Set.mem_range, Set.mem_range_self] [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ x ≠ top s ∧ x ∈ range s.series → x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) } [PROOFSTEP] intro h [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h✝ : 0 < s.length h : x ≠ top s ∧ x ∈ range s.series ⊢ x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) } [PROOFSTEP] exact mem_eraseTop_of_ne_of_mem h.1 h.2 [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length ⊢ IsMaximal (top (eraseTop s)) (top s) [PROOFSTEP] have : s.length - 1 + 1 = s.length := by conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length ⊢ s.length - 1 + 1 = s.length [PROOFSTEP] conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | Nat.succ s.length - 1 [PROOFSTEP] rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ IsMaximal (top (eraseTop s)) (top s) [PROOFSTEP] rw [top_eraseTop, top] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ IsMaximal (series s { val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) }) (series s (Fin.last s.length)) [PROOFSTEP] convert s.step ⟨s.length - 1, Nat.sub_lt h zero_lt_one⟩ [GOAL] case h.e'_5.h.e'_5 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ Fin.last s.length = Fin.succ { val := s.length - 1, isLt := (_ : s.length - 1 < s.length) } [PROOFSTEP] ext [GOAL] case h.e'_5.h.e'_5.h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ ↑(Fin.last s.length) = ↑(Fin.succ { val := s.length - 1, isLt := (_ : s.length - 1 < s.length) }) [PROOFSTEP] simp [this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin m ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.castAdd n i)) = a (Fin.castSucc i) [PROOFSTEP] cases i [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α val✝ : ℕ isLt✝ : val✝ < m ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.castAdd n { val := val✝, isLt := isLt✝ })) = a (Fin.castSucc { val := val✝, isLt := isLt✝ }) [PROOFSTEP] simp [Matrix.vecAppend_eq_ite, *] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin m h : a (Fin.last m) = b 0 ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.castAdd n i)) = a (Fin.succ i) [PROOFSTEP] cases' i with i hi [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.castAdd n { val := i, isLt := hi })) = a (Fin.succ { val := i, isLt := hi }) [PROOFSTEP] simp only [Matrix.vecAppend_eq_ite, hi, Fin.succ_mk, Function.comp_apply, Fin.castSucc_mk, Fin.val_mk, Fin.castAdd_mk] [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m ⊢ (if h : i + 1 < m then a { val := i + 1, isLt := (_ : i + 1 < Nat.succ m) } else b { val := i + 1 - m, isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) }) = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] split_ifs with h_1 [GOAL] case pos X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : i + 1 < m ⊢ a { val := i + 1, isLt := (_ : i + 1 < Nat.succ m) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] rfl [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m ⊢ b { val := i + 1 - m, isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] have : i + 1 = m := le_antisymm hi (le_of_not_gt h_1) [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ b { val := i + 1 - m, isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] calc b ⟨i + 1 - m, by simp [this]⟩ = b 0 := congr_arg b (by simp [Fin.ext_iff, this]) _ = a (Fin.last _) := h.symm _ = _ := congr_arg a (by simp [Fin.ext_iff, this]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ i + 1 - m < Nat.succ n [PROOFSTEP] simp [this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ { val := i + 1 - m, isLt := (_ : i + 1 - m < Nat.succ n) } = 0 [PROOFSTEP] simp [Fin.ext_iff, this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ Fin.last m = { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] simp [Fin.ext_iff, this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.natAdd m i)) = b (Fin.castSucc i) [PROOFSTEP] cases i [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α val✝ : ℕ isLt✝ : val✝ < n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.natAdd m { val := val✝, isLt := isLt✝ })) = b (Fin.castSucc { val := val✝, isLt := isLt✝ }) [PROOFSTEP] simp only [Matrix.vecAppend_eq_ite, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, dif_neg, Fin.castSucc_mk, not_false_iff, Fin.val_mk] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.natAdd m i)) = b (Fin.succ i) [PROOFSTEP] cases' i with i hi [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : ℕ hi : i < n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.natAdd m { val := i, isLt := hi })) = b (Fin.succ { val := i, isLt := hi }) [PROOFSTEP] simp only [Matrix.vecAppend_eq_ite, add_assoc, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, Fin.succ_mk, dif_neg, not_false_iff, Fin.val_mk] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin (s₁.length + s₂.length) ⊢ IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc i)) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ i)) [PROOFSTEP] refine' Fin.addCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin (s₁.length + s₂.length) ⊢ ∀ (i : Fin s₁.length), IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.castAdd s₂.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.castAdd s₂.length i))) [PROOFSTEP] intro i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₁.length ⊢ IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.castAdd s₂.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.castAdd s₂.length i))) [PROOFSTEP] rw [append_succ_castAdd_aux _ _ _ h, append_castAdd_aux] [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₁.length ⊢ IsMaximal (series s₁ (Fin.castSucc i)) (series s₁ (Fin.succ i)) [PROOFSTEP] exact s₁.step i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin (s₁.length + s₂.length) ⊢ ∀ (i : Fin s₂.length), IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.natAdd s₁.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.natAdd s₁.length i))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₂.length ⊢ IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.natAdd s₁.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.natAdd s₁.length i))) [PROOFSTEP] rw [append_natAdd_aux, append_succ_natAdd_aux] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₂.length ⊢ IsMaximal (series s₂ (Fin.castSucc i)) (series s₂ (Fin.succ i)) [PROOFSTEP] exact s₂.step i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₁.length ⊢ series (append s₁ s₂ h) (Fin.castSucc (Fin.castAdd s₂.length i)) = series s₁ (Fin.castSucc i) [PROOFSTEP] rw [coe_append, append_castAdd_aux _ _ i] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₁.length ⊢ series (append s₁ s₂ h) (Fin.succ (Fin.castAdd s₂.length i)) = series s₁ (Fin.succ i) [PROOFSTEP] rw [coe_append, append_succ_castAdd_aux _ _ _ h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₂.length ⊢ series (append s₁ s₂ h) (Fin.castSucc (Fin.natAdd s₁.length i)) = series s₂ (Fin.castSucc i) [PROOFSTEP] rw [coe_append, append_natAdd_aux _ _ i] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₂.length ⊢ series (append s₁ s₂ h) (Fin.succ (Fin.natAdd s₁.length i)) = series s₂ (Fin.succ i) [PROOFSTEP] rw [coe_append, append_succ_natAdd_aux _ _ i] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc i)) (Fin.snoc s.series x (Fin.succ i)) [PROOFSTEP] refine' Fin.lastCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.last s.length))) (Fin.snoc s.series x (Fin.succ (Fin.last s.length))) [PROOFSTEP] rwa [Fin.snoc_castSucc, Fin.succ_last, Fin.snoc_last, ← top] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ ∀ (i : Fin s.length), IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.castSucc i))) (Fin.snoc s.series x (Fin.succ (Fin.castSucc i))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1) i : Fin s.length ⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.castSucc i))) (Fin.snoc s.series x (Fin.succ (Fin.castSucc i))) [PROOFSTEP] rw [Fin.snoc_castSucc, ← Fin.castSucc_fin_succ, Fin.snoc_castSucc] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1) i : Fin s.length ⊢ IsMaximal (series s (Fin.castSucc i)) (series s (Fin.succ i)) [PROOFSTEP] exact s.step _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x ⊢ bot (snoc s x hsat) = bot s [PROOFSTEP] rw [bot, bot, ← snoc_castSucc s x hsat 0, Fin.castSucc_zero' (n := s.length + 1)] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ snoc s x hsat ↔ y ∈ s ∨ y = x [PROOFSTEP] simp only [snoc, mem_def] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ range (Fin.snoc s.series x) ↔ y ∈ range s.series ∨ y = x [PROOFSTEP] constructor [GOAL] case mp X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ range (Fin.snoc s.series x) → y ∈ range s.series ∨ y = x [PROOFSTEP] rintro ⟨i, rfl⟩ [GOAL] case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1 + 1) ⊢ Fin.snoc s.series x i ∈ range s.series ∨ Fin.snoc s.series x i = x [PROOFSTEP] refine' Fin.lastCases _ (fun i => _) i [GOAL] case mp.intro.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1 + 1) ⊢ Fin.snoc s.series x (Fin.last (s.length + 1)) ∈ range s.series ∨ Fin.snoc s.series x (Fin.last (s.length + 1)) = x [PROOFSTEP] right [GOAL] case mp.intro.refine'_1.h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1 + 1) ⊢ Fin.snoc s.series x (Fin.last (s.length + 1)) = x [PROOFSTEP] simp [GOAL] case mp.intro.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1 + 1) i : Fin (s.length + 1) ⊢ Fin.snoc s.series x (Fin.castSucc i) ∈ range s.series ∨ Fin.snoc s.series x (Fin.castSucc i) = x [PROOFSTEP] left [GOAL] case mp.intro.refine'_2.h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1 + 1) i : Fin (s.length + 1) ⊢ Fin.snoc s.series x (Fin.castSucc i) ∈ range s.series [PROOFSTEP] simp [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ range s.series ∨ y = x → y ∈ range (Fin.snoc s.series x) [PROOFSTEP] intro h [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x h : y ∈ range s.series ∨ y = x ⊢ y ∈ range (Fin.snoc s.series x) [PROOFSTEP] rcases h with (⟨i, rfl⟩ | rfl) [GOAL] case mpr.inl.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ series s i ∈ range (Fin.snoc s.series x) [PROOFSTEP] use Fin.castSucc i [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ Fin.snoc s.series x (Fin.castSucc i) = series s i [PROOFSTEP] simp [GOAL] case mpr.inr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X y : X hsat : IsMaximal (top s) y ⊢ y ∈ range (Fin.snoc s.series y) [PROOFSTEP] use Fin.last _ [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X y : X hsat : IsMaximal (top s) y ⊢ Fin.snoc s.series y (Fin.last (s.length + 1)) = y [PROOFSTEP] simp [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length ⊢ s = snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s)) [PROOFSTEP] ext x [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length x : X ⊢ x ∈ s ↔ x ∈ snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s)) [PROOFSTEP] simp [mem_snoc, mem_eraseTop h] [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length x : X ⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s [PROOFSTEP] by_cases h : x = s.top [GOAL] case pos X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h✝ : 0 < s.length x : X h : x = top s ⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s [PROOFSTEP] simp [*, s.top_mem] [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h✝ : 0 < s.length x : X h : ¬x = top s ⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s [PROOFSTEP] simp [*, s.top_mem] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : IsMaximal (top (eraseTop s)) (top s) ⊢ s.length ≠ 0 [PROOFSTEP] intro hs [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : IsMaximal (top (eraseTop s)) (top s) hs : s.length = 0 ⊢ False [PROOFSTEP] refine' ne_of_gt (lt_of_isMaximal h) _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : IsMaximal (top (eraseTop s)) (top s) hs : s.length = 0 ⊢ top s = top (eraseTop s) [PROOFSTEP] simp [top, Fin.ext_iff, hs] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : Equivalent s₁ s₂ i : Fin s₂.length ⊢ Iso (series s₁ (Fin.castSucc (↑(Exists.choose h).symm i)), series s₁ (Fin.succ (↑(Exists.choose h).symm i))) (series s₂ (Fin.castSucc i), series s₂ (Fin.succ i)) [PROOFSTEP] simpa using h.choose_spec (h.choose.symm i) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv ⊢ ∀ (i : Fin (CompositionSeries.append s₁ s₂ hs).length), Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc i), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ i)) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e i)), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e i))) [PROOFSTEP] intro i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i : Fin (CompositionSeries.append s₁ s₂ hs).length ⊢ Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc i), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ i)) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e i)), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e i))) [PROOFSTEP] refine' Fin.addCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i : Fin (CompositionSeries.append s₁ s₂ hs).length ⊢ ∀ (i : Fin s₁.length), Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.castAdd s₂.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.castAdd s₂.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.castAdd s₂.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.castAdd s₂.length i)))) [PROOFSTEP] intro i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i✝ : Fin (CompositionSeries.append s₁ s₂ hs).length i : Fin s₁.length ⊢ Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.castAdd s₂.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.castAdd s₂.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.castAdd s₂.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.castAdd s₂.length i)))) [PROOFSTEP] simpa [top, bot] using h₁.choose_spec i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i : Fin (CompositionSeries.append s₁ s₂ hs).length ⊢ ∀ (i : Fin s₂.length), Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.natAdd s₁.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.natAdd s₁.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.natAdd s₁.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.natAdd s₁.length i)))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i✝ : Fin (CompositionSeries.append s₁ s₂ hs).length i : Fin s₂.length ⊢ Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.natAdd s₁.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.natAdd s₁.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.natAdd s₁.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.natAdd s₁.length i)))) [PROOFSTEP] simpa [top, bot] using h₂.choose_spec i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i : Fin (snoc s₁ x₁ hsat₁).length ⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc i), series (snoc s₁ x₁ hsat₁) (Fin.succ i)) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e i)), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e i))) [PROOFSTEP] refine' Fin.lastCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i : Fin (snoc s₁ x₁ hsat₁).length ⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.last s₁.length)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.last s₁.length))) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.last s₁.length))), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.last s₁.length)))) [PROOFSTEP] simpa [top] using htop [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i : Fin (snoc s₁ x₁ hsat₁).length ⊢ ∀ (i : Fin s₁.length), Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.castSucc i)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.castSucc i))) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.castSucc i))), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.castSucc i)))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i✝ : Fin (snoc s₁ x₁ hsat₁).length i : Fin s₁.length ⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.castSucc i)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.castSucc i))) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.castSucc i))), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.castSucc i)))) [PROOFSTEP] simpa [Fin.succ_castSucc] using hequiv.choose_spec i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : Equivalent s₁ s₂ ⊢ s₁.length = s₂.length [PROOFSTEP] simpa using Fintype.card_congr h.choose [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) x✝ : Fin s.length ⊢ Fin.castSucc (Fin.castSucc x✝) < Fin.castSucc (Fin.last s.length) [PROOFSTEP] simp [Fin.castSucc_lt_last] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) x✝ : Fin s.length ⊢ Fin.castSucc (Fin.castSucc x✝) < Fin.last (s.length + 1) [PROOFSTEP] simp [Fin.castSucc_lt_last] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) ⊢ ∀ (i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length), Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i)) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑e i)), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑e i))) [PROOFSTEP] intro i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i)) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑e i)), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑e i))) [PROOFSTEP] dsimp only [] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i)) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) i)), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) i))) [PROOFSTEP] refine' Fin.lastCases _ (fun i => _) i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.last (snoc s x₁ hsat₁).length)), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.last (snoc s x₁ hsat₁).length))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.last (snoc s x₁ hsat₁).length))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.last (snoc s x₁ hsat₁).length)))) [PROOFSTEP] erw [Equiv.swap_apply_left, snoc_castSucc, snoc_last, Fin.succ_last, snoc_last, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, Fin.succ_last, snoc_last] [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (x₁, y₁) (series s (Fin.last s.length), x₂) [PROOFSTEP] exact hr₂ [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i : Fin (snoc s x₁ hsat₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc i)), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc i))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc i))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc i)))) [PROOFSTEP] refine' Fin.lastCases _ (fun i => _) i [GOAL] case refine'_2.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i : Fin (snoc s x₁ hsat₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc (Fin.last s.length))), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc (Fin.last s.length)))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.last s.length)))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.last s.length))))) [PROOFSTEP] erw [Equiv.swap_apply_right, snoc_castSucc, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, Fin.succ_last, snoc_last, snoc_last, Fin.succ_last, snoc_last] [GOAL] case refine'_2.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i : Fin (snoc s x₁ hsat₁).length ⊢ Iso (series s (Fin.last s.length), x₁) (x₂, y₂) [PROOFSTEP] exact hr₁ [GOAL] case refine'_2.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝¹ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i✝ : Fin (snoc s x₁ hsat₁).length i : Fin s.length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc (Fin.castSucc i))), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc (Fin.castSucc i)))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.castSucc i)))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.castSucc i))))) [PROOFSTEP] erw [Equiv.swap_apply_of_ne_of_ne h2 h1, snoc_castSucc, snoc_castSucc, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, snoc_castSucc, snoc_castSucc] [GOAL] case refine'_2.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝¹ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i✝ : Fin (snoc s x₁ hsat₁).length i : Fin s.length ⊢ Iso (series s (Fin.castSucc i), series s (Fin.succ i)) (series s (Fin.castSucc i), series s (Fin.succ i)) [PROOFSTEP] exact (s.step i).iso_refl [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 ⊢ s₂.length = 0 [PROOFSTEP] have : s₁.bot = s₁.top := congr_arg s₁ (Fin.ext (by simp [hs₁])) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 ⊢ ↑0 = ↑(Fin.last s₁.length) [PROOFSTEP] simp [hs₁] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 this : bot s₁ = top s₁ ⊢ s₂.length = 0 [PROOFSTEP] have : Fin.last s₂.length = (0 : Fin s₂.length.succ) := s₂.injective (hb.symm.trans (this.trans ht)).symm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 this✝ : bot s₁ = top s₁ this : Fin.last s₂.length = 0 ⊢ s₂.length = 0 [PROOFSTEP] rw [Fin.ext_iff] at this [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 this✝ : bot s₁ = top s₁ this : ↑(Fin.last s₂.length) = ↑0 ⊢ s₂.length = 0 [PROOFSTEP] simpa [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ ⊢ ¬0 < s₂.length → ¬0 < s₁.length [PROOFSTEP] simp only [pos_iff_ne_zero, Ne.def, not_iff_not, Classical.not_not] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ ⊢ s₂.length = 0 → s₁.length = 0 [PROOFSTEP] exact length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb.symm ht.symm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 ⊢ s₁ = s₂ [PROOFSTEP] have : ∀ x, x ∈ s₁ ↔ x = s₁.top := fun x => ⟨fun hx => forall_mem_eq_of_length_eq_zero hs₁0 hx s₁.top_mem, fun hx => hx.symm ▸ s₁.top_mem⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 this : ∀ (x : X), x ∈ s₁ ↔ x = top s₁ ⊢ s₁ = s₂ [PROOFSTEP] have : ∀ x, x ∈ s₂ ↔ x = s₂.top := fun x => ⟨fun hx => forall_mem_eq_of_length_eq_zero (length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hs₁0) hx s₂.top_mem, fun hx => hx.symm ▸ s₂.top_mem⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 this✝ : ∀ (x : X), x ∈ s₁ ↔ x = top s₁ this : ∀ (x : X), x ∈ s₂ ↔ x = top s₂ ⊢ s₁ = s₂ [PROOFSTEP] ext [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 this✝ : ∀ (x : X), x ∈ s₁ ↔ x = top s₁ this : ∀ (x : X), x ∈ s₂ ↔ x = top s₂ x✝ : X ⊢ x✝ ∈ s₁ ↔ x✝ ∈ s₂ [PROOFSTEP] simp [*] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = s.length ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] induction' hn : s.length with n ih generalizing s x [GOAL] case zero X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.zero ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.zero ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] exact (ne_of_gt (lt_of_le_of_lt hb (lt_of_isMaximal hm)) (forall_mem_eq_of_length_eq_zero hn s.top_mem s.bot_mem)).elim [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have h0s : 0 < s.length := hn.symm ▸ Nat.succ_pos _ [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] by_cases hetx : s.eraseTop.top = x [GOAL] case pos X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : top (eraseTop s) = x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] use s.eraseTop [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : top (eraseTop s) = x ⊢ bot (eraseTop s) = bot s ∧ (eraseTop s).length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s))) [PROOFSTEP] simp [← hetx, hn] -- Porting note: `rfl` is required. [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : top (eraseTop s) = x ⊢ Equivalent s s [PROOFSTEP] rfl [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have imxs : IsMaximal (x ⊓ s.eraseTop.top) s.eraseTop.top := isMaximal_of_eq_inf x s.top rfl (Ne.symm hetx) hm (isMaximal_eraseTop_top h0s) [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have := ih _ _ imxs (le_inf (by simpa) (le_top_of_mem s.eraseTop.bot_mem)) (by simp [hn]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) ⊢ bot (eraseTop s) ≤ x [PROOFSTEP] simpa [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) ⊢ (eraseTop s).length = n [PROOFSTEP] simp [hn] [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) this : ∃ t, bot t = bot (eraseTop s) ∧ t.length + 1 = n ∧ ∃ htx, Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] rcases this with ⟨t, htb, htl, htt, hteqv⟩ [GOAL] case neg.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have hmtx : IsMaximal t.top x := isMaximal_of_eq_inf s.eraseTop.top s.top (by rw [inf_comm, htt]) hetx (isMaximal_eraseTop_top h0s) hm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) ⊢ top (eraseTop s) ⊓ x = top t [PROOFSTEP] rw [inf_comm, htt] [GOAL] case neg.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] use snoc t x hmtx [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ bot (snoc t x hmtx) = bot s ∧ (snoc t x hmtx).length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] refine' ⟨by simp [htb], by simp [htl], by simp, _⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ bot (snoc t x hmtx) = bot s [PROOFSTEP] simp [htb] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ (snoc t x hmtx).length + 1 = Nat.succ n [PROOFSTEP] simp [htl] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ top (snoc t x hmtx) = x [PROOFSTEP] simp [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] have : s.Equivalent ((snoc t s.eraseTop.top (htt.symm ▸ imxs)).snoc s.top (by simpa using isMaximal_eraseTop_top h0s)) := by conv_lhs => rw [eq_snoc_eraseTop h0s] exact Equivalent.snoc hteqv (by simpa using (isMaximal_eraseTop_top h0s).iso_refl) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s) [PROOFSTEP] simpa using isMaximal_eraseTop_top h0s [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) [PROOFSTEP] conv_lhs => rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x | s [PROOFSTEP] rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x | s [PROOFSTEP] rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x | s [PROOFSTEP] rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Equivalent (snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s))) (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) [PROOFSTEP] exact Equivalent.snoc hteqv (by simpa using (isMaximal_eraseTop_top h0s).iso_refl) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Iso (top (eraseTop s), top s) (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))), top s) [PROOFSTEP] simpa using (isMaximal_eraseTop_top h0s).iso_refl [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] refine' this.trans _ [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Equivalent (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] refine' Equivalent.snoc_snoc_swap _ _ [GOAL] case h.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Iso (top t, top (eraseTop s)) (x, top s) [PROOFSTEP] exact iso_symm (second_iso_of_eq hm (sup_eq_of_isMaximal hm (isMaximal_eraseTop_top h0s) (Ne.symm hetx)) htt.symm) [GOAL] case h.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Iso (top (eraseTop s), top s) (top t, x) [PROOFSTEP] exact second_iso_of_eq (isMaximal_eraseTop_top h0s) (sup_eq_of_isMaximal (isMaximal_eraseTop_top h0s) hm hetx) (by rw [inf_comm, htt]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ top (eraseTop s) ⊓ x = top t [PROOFSTEP] rw [inf_comm, htt] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ ⊢ Equivalent s₁ s₂ [PROOFSTEP] induction' hle : s₁.length with n ih generalizing s₁ s₂ [GOAL] case zero X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.zero ⊢ Equivalent s₁ s₂ [PROOFSTEP] rw [eq_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hle] [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n ⊢ Equivalent s₁ s₂ [PROOFSTEP] have h0s₂ : 0 < s₂.length := length_pos_of_bot_eq_bot_of_top_eq_top_of_length_pos hb ht (hle.symm ▸ Nat.succ_pos _) [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length ⊢ Equivalent s₁ s₂ [PROOFSTEP] rcases exists_top_eq_snoc_equivalant s₁ s₂.eraseTop.top (ht.symm ▸ isMaximal_eraseTop_top h0s₂) (hb.symm ▸ s₂.bot_eraseTop ▸ bot_le_of_mem (top_mem _)) with ⟨t, htb, htl, htt, hteq⟩ [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) ⊢ Equivalent s₁ s₂ [PROOFSTEP] have := ih t s₂.eraseTop (by simp [htb, ← hb]) htt (Nat.succ_inj'.1 (htl.trans hle)) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) ⊢ bot t = bot (eraseTop s₂) [PROOFSTEP] simp [htb, ← hb] [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent s₁ s₂ [PROOFSTEP] refine' hteq.trans _ [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) s₂ [PROOFSTEP] conv_rhs => rw [eq_snoc_eraseTop h0s₂] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) | s₂ [PROOFSTEP] rw [eq_snoc_eraseTop h0s₂] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) | s₂ [PROOFSTEP] rw [eq_snoc_eraseTop h0s₂] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) | s₂ [PROOFSTEP] rw [eq_snoc_eraseTop h0s₂] [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) (snoc (eraseTop s₂) (top s₂) (_ : IsMaximal (top (eraseTop s₂)) (top s₂))) [PROOFSTEP] simp only [ht] [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent (snoc t (top s₂) (_ : IsMaximal (top t) (top s₂))) (snoc (eraseTop s₂) (top s₂) (_ : IsMaximal (top (eraseTop s₂)) (top s₂))) [PROOFSTEP] exact Equivalent.snoc this (by simp [htt, (isMaximal_eraseTop_top h0s₂).iso_refl]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Iso (top t, top s₂) (top (eraseTop s₂), top s₂) [PROOFSTEP] simp [htt, (isMaximal_eraseTop_top h0s₂).iso_refl]
module Web.Internal.IndexedDBPrim import JS import Web.Internal.Types %default total -------------------------------------------------------------------------------- -- Interfaces -------------------------------------------------------------------------------- namespace IDBCursor export %foreign "browser:lambda:x=>x.direction" prim__direction : IDBCursor -> PrimIO String export %foreign "browser:lambda:x=>x.key" prim__key : IDBCursor -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.primaryKey" prim__primaryKey : IDBCursor -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.request" prim__request : IDBCursor -> PrimIO IDBRequest export %foreign "browser:lambda:x=>x.source" prim__source : IDBCursor -> PrimIO (Union2 IDBObjectStore IDBIndex) export %foreign "browser:lambda:(x,a)=>x.advance(a)" prim__advance : IDBCursor -> Bits32 -> PrimIO () export %foreign "browser:lambda:(x,a)=>x.continue(a)" prim__continue : IDBCursor -> UndefOr AnyPtr -> PrimIO () export %foreign "browser:lambda:(x,a,b)=>x.continuePrimaryKey(a,b)" prim__continuePrimaryKey : IDBCursor -> AnyPtr -> AnyPtr -> PrimIO () export %foreign "browser:lambda:x=>x.delete()" prim__delete : IDBCursor -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.update(a)" prim__update : IDBCursor -> AnyPtr -> PrimIO IDBRequest namespace IDBCursorWithValue export %foreign "browser:lambda:x=>x.value" prim__value : IDBCursorWithValue -> PrimIO AnyPtr namespace IDBDatabase export %foreign "browser:lambda:x=>x.name" prim__name : IDBDatabase -> PrimIO String export %foreign "browser:lambda:x=>x.objectStoreNames" prim__objectStoreNames : IDBDatabase -> PrimIO DOMStringList export %foreign "browser:lambda:x=>x.onabort" prim__onabort : IDBDatabase -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onabort = v}" prim__setOnabort : IDBDatabase -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.onclose" prim__onclose : IDBDatabase -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onclose = v}" prim__setOnclose : IDBDatabase -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.onerror" prim__onerror : IDBDatabase -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onerror = v}" prim__setOnerror : IDBDatabase -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.onversionchange" prim__onversionchange : IDBDatabase -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onversionchange = v}" prim__setOnversionchange : IDBDatabase -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.version" prim__version : IDBDatabase -> PrimIO JSBits64 export %foreign "browser:lambda:x=>x.close()" prim__close : IDBDatabase -> PrimIO () export %foreign "browser:lambda:(x,a,b)=>x.createObjectStore(a,b)" prim__createObjectStore : IDBDatabase -> String -> UndefOr IDBObjectStoreParameters -> PrimIO IDBObjectStore export %foreign "browser:lambda:(x,a)=>x.deleteObjectStore(a)" prim__deleteObjectStore : IDBDatabase -> String -> PrimIO () export %foreign "browser:lambda:(x,a,b,c)=>x.transaction(a,b,c)" prim__transaction : IDBDatabase -> Union2 String (Array String) -> UndefOr String -> UndefOr IDBTransactionOptions -> PrimIO IDBTransaction namespace IDBFactory export %foreign "browser:lambda:(x,a,b)=>x.cmp(a,b)" prim__cmp : IDBFactory -> AnyPtr -> AnyPtr -> PrimIO Int16 export %foreign "browser:lambda:x=>x.databases()" prim__databases : IDBFactory -> PrimIO (Promise (Array IDBDatabaseInfo)) export %foreign "browser:lambda:(x,a)=>x.deleteDatabase(a)" prim__deleteDatabase : IDBFactory -> String -> PrimIO IDBOpenDBRequest export %foreign "browser:lambda:(x,a,b)=>x.open(a,b)" prim__open : IDBFactory -> String -> UndefOr JSBits64 -> PrimIO IDBOpenDBRequest namespace IDBIndex export %foreign "browser:lambda:x=>x.keyPath" prim__keyPath : IDBIndex -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.multiEntry" prim__multiEntry : IDBIndex -> PrimIO Boolean export %foreign "browser:lambda:x=>x.name" prim__name : IDBIndex -> PrimIO String export %foreign "browser:lambda:(x,v)=>{x.name = v}" prim__setName : IDBIndex -> String -> PrimIO () export %foreign "browser:lambda:x=>x.objectStore" prim__objectStore : IDBIndex -> PrimIO IDBObjectStore export %foreign "browser:lambda:x=>x.unique" prim__unique : IDBIndex -> PrimIO Boolean export %foreign "browser:lambda:(x,a)=>x.count(a)" prim__count : IDBIndex -> UndefOr AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.getAll(a,b)" prim__getAll : IDBIndex -> UndefOr AnyPtr -> UndefOr Bits32 -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.getAllKeys(a,b)" prim__getAllKeys : IDBIndex -> UndefOr AnyPtr -> UndefOr Bits32 -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.get(a)" prim__get : IDBIndex -> AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.getKey(a)" prim__getKey : IDBIndex -> AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.openCursor(a,b)" prim__openCursor : IDBIndex -> UndefOr AnyPtr -> UndefOr String -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.openKeyCursor(a,b)" prim__openKeyCursor : IDBIndex -> UndefOr AnyPtr -> UndefOr String -> PrimIO IDBRequest namespace IDBKeyRange export %foreign "browser:lambda:(a,b,c,d)=>IDBKeyRange.bound(a,b,c,d)" prim__bound : AnyPtr -> AnyPtr -> UndefOr Boolean -> UndefOr Boolean -> PrimIO IDBKeyRange export %foreign "browser:lambda:(a,b)=>IDBKeyRange.lowerBound(a,b)" prim__lowerBound : AnyPtr -> UndefOr Boolean -> PrimIO IDBKeyRange export %foreign "browser:lambda:(a)=>IDBKeyRange.only(a)" prim__only : AnyPtr -> PrimIO IDBKeyRange export %foreign "browser:lambda:(a,b)=>IDBKeyRange.upperBound(a,b)" prim__upperBound : AnyPtr -> UndefOr Boolean -> PrimIO IDBKeyRange export %foreign "browser:lambda:x=>x.lower" prim__lower : IDBKeyRange -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.lowerOpen" prim__lowerOpen : IDBKeyRange -> PrimIO Boolean export %foreign "browser:lambda:x=>x.upper" prim__upper : IDBKeyRange -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.upperOpen" prim__upperOpen : IDBKeyRange -> PrimIO Boolean export %foreign "browser:lambda:(x,a)=>x.includes(a)" prim__includes : IDBKeyRange -> AnyPtr -> PrimIO Boolean namespace IDBObjectStore export %foreign "browser:lambda:x=>x.autoIncrement" prim__autoIncrement : IDBObjectStore -> PrimIO Boolean export %foreign "browser:lambda:x=>x.indexNames" prim__indexNames : IDBObjectStore -> PrimIO DOMStringList export %foreign "browser:lambda:x=>x.keyPath" prim__keyPath : IDBObjectStore -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.name" prim__name : IDBObjectStore -> PrimIO String export %foreign "browser:lambda:(x,v)=>{x.name = v}" prim__setName : IDBObjectStore -> String -> PrimIO () export %foreign "browser:lambda:x=>x.transaction" prim__transaction : IDBObjectStore -> PrimIO IDBTransaction export %foreign "browser:lambda:(x,a,b)=>x.add(a,b)" prim__add : IDBObjectStore -> AnyPtr -> UndefOr AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:x=>x.clear()" prim__clear : IDBObjectStore -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.count(a)" prim__count : IDBObjectStore -> UndefOr AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b,c)=>x.createIndex(a,b,c)" prim__createIndex : IDBObjectStore -> String -> Union2 String (Array String) -> UndefOr IDBIndexParameters -> PrimIO IDBIndex export %foreign "browser:lambda:(x,a)=>x.delete(a)" prim__delete : IDBObjectStore -> AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.deleteIndex(a)" prim__deleteIndex : IDBObjectStore -> String -> PrimIO () export %foreign "browser:lambda:(x,a,b)=>x.getAll(a,b)" prim__getAll : IDBObjectStore -> UndefOr AnyPtr -> UndefOr Bits32 -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.getAllKeys(a,b)" prim__getAllKeys : IDBObjectStore -> UndefOr AnyPtr -> UndefOr Bits32 -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.get(a)" prim__get : IDBObjectStore -> AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.getKey(a)" prim__getKey : IDBObjectStore -> AnyPtr -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a)=>x.index(a)" prim__index : IDBObjectStore -> String -> PrimIO IDBIndex export %foreign "browser:lambda:(x,a,b)=>x.openCursor(a,b)" prim__openCursor : IDBObjectStore -> UndefOr AnyPtr -> UndefOr String -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.openKeyCursor(a,b)" prim__openKeyCursor : IDBObjectStore -> UndefOr AnyPtr -> UndefOr String -> PrimIO IDBRequest export %foreign "browser:lambda:(x,a,b)=>x.put(a,b)" prim__put : IDBObjectStore -> AnyPtr -> UndefOr AnyPtr -> PrimIO IDBRequest namespace IDBOpenDBRequest export %foreign "browser:lambda:x=>x.onblocked" prim__onblocked : IDBOpenDBRequest -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onblocked = v}" prim__setOnblocked : IDBOpenDBRequest -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.onupgradeneeded" prim__onupgradeneeded : IDBOpenDBRequest -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onupgradeneeded = v}" prim__setOnupgradeneeded : IDBOpenDBRequest -> Nullable EventHandlerNonNull -> PrimIO () namespace IDBRequest export %foreign "browser:lambda:x=>x.error" prim__error : IDBRequest -> PrimIO (Nullable DOMException) export %foreign "browser:lambda:x=>x.onerror" prim__onerror : IDBRequest -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onerror = v}" prim__setOnerror : IDBRequest -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.onsuccess" prim__onsuccess : IDBRequest -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onsuccess = v}" prim__setOnsuccess : IDBRequest -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.readyState" prim__readyState : IDBRequest -> PrimIO String export %foreign "browser:lambda:x=>x.result" prim__result : IDBRequest -> PrimIO AnyPtr export %foreign "browser:lambda:x=>x.source" prim__source : IDBRequest -> PrimIO (Nullable (Union3 IDBObjectStore IDBIndex IDBCursor)) export %foreign "browser:lambda:x=>x.transaction" prim__transaction : IDBRequest -> PrimIO (Nullable IDBTransaction) namespace IDBTransaction export %foreign "browser:lambda:x=>x.db" prim__db : IDBTransaction -> PrimIO IDBDatabase export %foreign "browser:lambda:x=>x.durability" prim__durability : IDBTransaction -> PrimIO String export %foreign "browser:lambda:x=>x.error" prim__error : IDBTransaction -> PrimIO (Nullable DOMException) export %foreign "browser:lambda:x=>x.mode" prim__mode : IDBTransaction -> PrimIO String export %foreign "browser:lambda:x=>x.objectStoreNames" prim__objectStoreNames : IDBTransaction -> PrimIO DOMStringList export %foreign "browser:lambda:x=>x.onabort" prim__onabort : IDBTransaction -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onabort = v}" prim__setOnabort : IDBTransaction -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.oncomplete" prim__oncomplete : IDBTransaction -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.oncomplete = v}" prim__setOncomplete : IDBTransaction -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.onerror" prim__onerror : IDBTransaction -> PrimIO (Nullable EventHandlerNonNull) export %foreign "browser:lambda:(x,v)=>{x.onerror = v}" prim__setOnerror : IDBTransaction -> Nullable EventHandlerNonNull -> PrimIO () export %foreign "browser:lambda:x=>x.abort()" prim__abort : IDBTransaction -> PrimIO () export %foreign "browser:lambda:x=>x.commit()" prim__commit : IDBTransaction -> PrimIO () export %foreign "browser:lambda:(x,a)=>x.objectStore(a)" prim__objectStore : IDBTransaction -> String -> PrimIO IDBObjectStore namespace IDBVersionChangeEvent export %foreign "browser:lambda:(a,b)=> new IDBVersionChangeEvent(a,b)" prim__new : String -> UndefOr IDBVersionChangeEventInit -> PrimIO IDBVersionChangeEvent export %foreign "browser:lambda:x=>x.newVersion" prim__newVersion : IDBVersionChangeEvent -> PrimIO (Nullable JSBits64) export %foreign "browser:lambda:x=>x.oldVersion" prim__oldVersion : IDBVersionChangeEvent -> PrimIO JSBits64 -------------------------------------------------------------------------------- -- Dictionaries -------------------------------------------------------------------------------- namespace IDBDatabaseInfo export %foreign "browser:lambda:(a,b)=> ({name: a,version: b})" prim__new : UndefOr String -> UndefOr JSBits64 -> PrimIO IDBDatabaseInfo export %foreign "browser:lambda:x=>x.name" prim__name : IDBDatabaseInfo -> PrimIO (UndefOr String) export %foreign "browser:lambda:(x,v)=>{x.name = v}" prim__setName : IDBDatabaseInfo -> UndefOr String -> PrimIO () export %foreign "browser:lambda:x=>x.version" prim__version : IDBDatabaseInfo -> PrimIO (UndefOr JSBits64) export %foreign "browser:lambda:(x,v)=>{x.version = v}" prim__setVersion : IDBDatabaseInfo -> UndefOr JSBits64 -> PrimIO () namespace IDBIndexParameters export %foreign "browser:lambda:(a,b)=> ({unique: a,multiEntry: b})" prim__new : UndefOr Boolean -> UndefOr Boolean -> PrimIO IDBIndexParameters export %foreign "browser:lambda:x=>x.multiEntry" prim__multiEntry : IDBIndexParameters -> PrimIO (UndefOr Boolean) export %foreign "browser:lambda:(x,v)=>{x.multiEntry = v}" prim__setMultiEntry : IDBIndexParameters -> UndefOr Boolean -> PrimIO () export %foreign "browser:lambda:x=>x.unique" prim__unique : IDBIndexParameters -> PrimIO (UndefOr Boolean) export %foreign "browser:lambda:(x,v)=>{x.unique = v}" prim__setUnique : IDBIndexParameters -> UndefOr Boolean -> PrimIO () namespace IDBObjectStoreParameters export %foreign "browser:lambda:(a,b)=> ({keyPath: a,autoIncrement: b})" prim__new : UndefOr (Nullable (Union2 String (Array String))) -> UndefOr Boolean -> PrimIO IDBObjectStoreParameters export %foreign "browser:lambda:x=>x.autoIncrement" prim__autoIncrement : IDBObjectStoreParameters -> PrimIO (UndefOr Boolean) export %foreign "browser:lambda:(x,v)=>{x.autoIncrement = v}" prim__setAutoIncrement : IDBObjectStoreParameters -> UndefOr Boolean -> PrimIO () export %foreign "browser:lambda:x=>x.keyPath" prim__keyPath : IDBObjectStoreParameters -> PrimIO (UndefOr (Nullable (Union2 String (Array String)))) export %foreign "browser:lambda:(x,v)=>{x.keyPath = v}" prim__setKeyPath : IDBObjectStoreParameters -> UndefOr (Nullable (Union2 String (Array String))) -> PrimIO () namespace IDBTransactionOptions export %foreign "browser:lambda:(a)=> ({durability: a})" prim__new : UndefOr String -> PrimIO IDBTransactionOptions export %foreign "browser:lambda:x=>x.durability" prim__durability : IDBTransactionOptions -> PrimIO (UndefOr String) export %foreign "browser:lambda:(x,v)=>{x.durability = v}" prim__setDurability : IDBTransactionOptions -> UndefOr String -> PrimIO () namespace IDBVersionChangeEventInit export %foreign "browser:lambda:(a,b)=> ({oldVersion: a,newVersion: b})" prim__new : UndefOr JSBits64 -> UndefOr (Nullable JSBits64) -> PrimIO IDBVersionChangeEventInit export %foreign "browser:lambda:x=>x.newVersion" prim__newVersion : IDBVersionChangeEventInit -> PrimIO (UndefOr (Nullable JSBits64)) export %foreign "browser:lambda:(x,v)=>{x.newVersion = v}" prim__setNewVersion : IDBVersionChangeEventInit -> UndefOr (Nullable JSBits64) -> PrimIO () export %foreign "browser:lambda:x=>x.oldVersion" prim__oldVersion : IDBVersionChangeEventInit -> PrimIO (UndefOr JSBits64) export %foreign "browser:lambda:(x,v)=>{x.oldVersion = v}" prim__setOldVersion : IDBVersionChangeEventInit -> UndefOr JSBits64 -> PrimIO ()
Formal statement is: lemma emeasure_countably_additive: "countably_additive (sets M) (emeasure M)" Informal statement is: The measure $\mu$ is countably additive.
(* Title: HOL/Auth/n_germanSimp_lemma_on_inv__38.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSimp Protocol Case Study*} theory n_germanSimp_lemma_on_inv__38 imports n_germanSimp_base begin section{*All lemmas on causal relation between inv__38 and some rule r*} lemma n_SendInv__part__0Vsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__0 i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInv__part__1Vsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__1 i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInvAckVsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInvAck i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvInvAckVsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvInvAck i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" have "?P2 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } moreover { assume b1: "(i~=p__Inv4)" have "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Ident ''ExGntd'')) (Const true)) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Ident ''ExGntd'')) (Const true))) s))" have "?P2 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntSVsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntS i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntEVsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntE N i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv4) ''Cmd'')) (Const GntS)) (eqn (IVar (Para (Ident ''ShrSet'') p__Inv4)) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntSVsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntS i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntEVsinv__38: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntE i" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__38 p__Inv4" apply fastforce done have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_StoreVsinv__38: assumes a1: "\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqE__part__0Vsinv__38: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqE__part__1Vsinv__38: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqSVsinv__38: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqS N i" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__38 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done end
# -*- coding: utf-8 -*- """ Created on Sun Dec 24 17:48:22 2017 @author: lee """ import numpy as np import scipy.linalg as la import numpy.linalg as na import os import aaweights import sys def ROPE(S, rho): p=S.shape[0] S=S try: LM=na.eigh(S) except: LM=la.eigh(S) L=LM[0] M=LM[1] for i in range(len(L)): if L[i]<0: L[i]=0 lamda=2.0/(L+np.sqrt(np.power(L,2)+8*rho)) indexlamda=np.argsort(-lamda) lamda=np.diag(-np.sort(-lamda)[:p]) hattheta=np.dot(M[:,indexlamda],lamda) hattheta=np.dot(hattheta,M[:,indexlamda].transpose()) return hattheta def blockshaped(arr,dim=21): p=arr.shape[0]//dim re=np.zeros([dim*dim,p,p]) for i in range(p): for j in range(p): re[:,i,j]=arr[i*dim:i*dim+dim,j*dim:j*dim+dim].flatten() return re def computepre(msafile,weightfile): msa=aaweights.read_msa(msafile) weights=np.genfromtxt(weightfile).flatten() cov=(aaweights.cal_large_matrix1(msa,weights)) rho2=np.exp((np.arange(80)-60)/5.0)[30] pre=ROPE(cov,rho2) #print(pre) return blockshaped(pre) def computeapre(msafile,weightfile,savefile): print(msafile) #if not os.path.isfile(savefile+'.npy222'): pre=computepre(msafile,weightfile) pre=pre.astype('float32') np.save(savefile,pre)
-- ∀x A(x) -> (∀x B(x) -> ∀y(A(y) ∧ B(y))) variable U: Type variables A B: U -> Prop example : (∀ x, A x) -> (∀ x, B x) -> (∀ x, A x ∧ B x) := assume hA: ∀ x, A x, assume hB: ∀ x, B x, assume y, have pAy: A y, from hA y, have pBy: B y, from hB y, show A y ∧ B y, from and.intro pAy pBy
## 12장. interactive graph #### 12-1 plotly 패키지로 인터랙티브 그래프 만들기#### ## ------------- 인터랙티브 그래프 만들기 ----------------- ## install.packages('htmlwidgets') install.packages("plotly") library(plotly) library(ggplot2) p <- ggplot(data = mpg, aes(x = displ, y = hwy, col = drv)) + geom_point() ggplotly(p) # clarity : http://dsmarket.tistory.com/155 p <- ggplot(data = diamonds, aes(x = cut, fill = clarity)) + geom_bar(position = "dodge") ggplotly(p) library(htmlwidgets) saveWidget(ggplotly(p), file = "plotly.html") #### 12-2 dygraphs 패키지로 인터랙티브 시계열 그래프 만들기 #### ## ---------- 인터랙티브 시계열 그래프 만들기 ------------- ## install.packages("dygraphs") library(dygraphs) economics <- ggplot2::economics head(economics) # - ggplot을 이용하여 date를 x축으로 unemploy y축으로 시계열 # - 그래프를 그래보세요. library(xts) eco <- xts(economics$unemploy, order.by = economics$date) head(eco) class(eco) str(eco) # 그래프 생성 dygraph(eco) # 날짜 범위 선택 기능 dygraph(eco) %>% dyRangeSelector() # 저축률 : personal saving rate eco_a <- xts(economics$psavert, order.by = economics$date) # 실업자 수 eco_b <- xts(economics$unemploy/1000, order.by = economics$date) eco2 <- cbind(eco_a, eco_b) # 데이터 결합 colnames(eco2) <- c("psavert", "unemploy") # 변수명 바꾸기 head(eco2) dygraph(eco2) %>% dyRangeSelector()
module JS.Number import Data.DPair import Data.Bits import JS.Inheritance import JS.Marshall import JS.Util -------------------------------------------------------------------------------- -- Primitives -------------------------------------------------------------------------------- %foreign "javascript:lambda:(a,b)=>a % b" prim__mod : Double -> Double -> Double %foreign "javascript:lambda:(a,b)=>Math.trunc(a / b)" prim__div : Double -> Double -> Double %foreign "javascript:lambda:v=>Number.isInteger(v)?v:Math.trunc(v)" prim__toIntegral : AnyPtr -> AnyPtr %foreign "javascript:lambda:(v,b)=>v >= b || v < (-b)?v%b:v" prim__truncSigned : Double -> Double -> Double %foreign "javascript:lambda:(v,b)=>v >= b || v < 0?Math.abs(v)%b:v" prim__truncUnsigned : Double -> Double -> Double %foreign "javascript:lambda:(a,b)=>a & b" prim__and : Double -> Double -> Double %foreign "javascript:lambda:(a,b)=>a | b" prim__or : Double -> Double -> Double %foreign "javascript:lambda:(a,b)=>a ^ b" prim__xor : Double -> Double -> Double %foreign "javascript:lambda:(a,b)=>a >> b" prim__shr : Double -> Double -> Double %foreign "javascript:lambda:(a,x,b)=>{ res = a << b; res & x ? res | (-x) : res & (x-1) }" prim__shlSigned : Double -> Double -> Double -> Double %foreign "javascript:lambda:(a,x,b)=> (a << b) & x" prim__shlUnsigned : Double -> Double -> Double -> Double %foreign "javascript:lambda:x=> Number.isInteger(x)?1:0" prim__isInteger : AnyPtr -> Double -------------------------------------------------------------------------------- -- JSInt64 -------------------------------------------------------------------------------- ||| A 64-bit signed integer in the range [-9223372036854775808,9223372036854775807] ||| ||| This corresponds to the `Long Long` WebIDL type. ||| Internally, the number is represented by a ||| Javascript `Number`. ||| Note, that arithmetic operations on this type might result ||| in rounding errors, since values might be outside the range ||| of safe integral arithmetics (up to 2^53). Use this type only for ||| interacting with external API requiring values of this type. export data JSInt64 : Type where [external] export fromJSInt64 : JSInt64 -> Double fromJSInt64 = believe_me -- internal precondition: v is an integer toJSInt64 : Double -> JSInt64 toJSInt64 = believe_me -- internal precondition: v is an integer truncToJSInt64 : Double -> JSInt64 truncToJSInt64 v = toJSInt64 (prim__truncSigned v 9223372036854775808.0) export Show JSInt64 where show = jsShow export Eq JSInt64 where (==) = (==) `on` fromJSInt64 export Ord JSInt64 where compare = compare `on` fromJSInt64 export Num JSInt64 where a + b = truncToJSInt64 $ fromJSInt64 a + fromJSInt64 b a * b = truncToJSInt64 $ fromJSInt64 a * fromJSInt64 b fromInteger = truncToJSInt64 . fromInteger export Neg JSInt64 where negate = truncToJSInt64 . negate . fromJSInt64 a - b = truncToJSInt64 $ fromJSInt64 a - fromJSInt64 b export Integral JSInt64 where a `div` b = toJSInt64 $ prim__div (fromJSInt64 a) (fromJSInt64 b) a `mod` b = toJSInt64 $ prim__mod (fromJSInt64 a) (fromJSInt64 b) export ToFFI JSInt64 JSInt64 where toFFI = id export FromFFI JSInt64 JSInt64 where fromFFI = Just export SafeCast JSInt64 where safeCast = bounded (-9223372036854775808) 9223372036854775808 -------------------------------------------------------------------------------- -- JSBits64 -------------------------------------------------------------------------------- ||| A 64-bit unsigned integer in the range [0,18446744073709551615]. ||| ||| This corresponds to the `Unsigned Long Long` WebIDL type. ||| Internally, the number is represented by a Javascript `Number`. ||| Note, that this type is therefore susceptible to ||| rounding errors, since values might be outside the range ||| of safe integral arithmetics (up to 2^53). Use this type only for ||| interacting with external API requiring values of this type. export data JSBits64 : Type where [external] export fromUInt64 : JSBits64 -> Double fromUInt64 = believe_me -- internal precondition: v is a non-negative integer toUInt64 : Double -> JSBits64 toUInt64 = believe_me -- internal precondition: v is an integer truncToUInt64 : Double -> JSBits64 truncToUInt64 v = toUInt64 (prim__truncUnsigned v 18446744073709551616.0) export Show JSBits64 where show = jsShow export Eq JSBits64 where (==) = (==) `on` fromUInt64 export Ord JSBits64 where compare = compare `on` fromUInt64 export Num JSBits64 where a + b = truncToUInt64 $ fromUInt64 a + fromUInt64 b a * b = truncToUInt64 $ fromUInt64 a * fromUInt64 b fromInteger = truncToUInt64 . fromInteger export Integral JSBits64 where a `div` b = toUInt64 $ prim__div (fromUInt64 a) (fromUInt64 b) a `mod` b = toUInt64 $ prim__mod (fromUInt64 a) (fromUInt64 b) export ToFFI JSBits64 JSBits64 where toFFI = id export FromFFI JSBits64 JSBits64 where fromFFI = Just export SafeCast JSBits64 where safeCast = bounded 0 18446744073709551615
lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
/- Copyright (c) 2021 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Anne Baanen -/ import logic.function.iterate import order.galois_connection import order.hom.basic /-! # Lattice structure on order homomorphisms This file defines the lattice structure on order homomorphisms, which are bundled monotone functions. ## Main definitions * `order_hom.complete_lattice`: if `β` is a complete lattice, so is `α →o β` ## Tags monotone map, bundled morphism -/ namespace order_hom variables {α β : Type*} section preorder variables [preorder α] @[simps] instance [semilattice_sup β] : has_sup (α →o β) := { sup := λ f g, ⟨λ a, f a ⊔ g a, f.mono.sup g.mono⟩ } instance [semilattice_sup β] : semilattice_sup (α →o β) := { sup := has_sup.sup, le_sup_left := λ a b x, le_sup_left, le_sup_right := λ a b x, le_sup_right, sup_le := λ a b c h₀ h₁ x, sup_le (h₀ x) (h₁ x), .. (_ : partial_order (α →o β)) } @[simps] instance [semilattice_inf β] : has_inf (α →o β) := { inf := λ f g, ⟨λ a, f a ⊓ g a, f.mono.inf g.mono⟩ } instance [semilattice_inf β] : semilattice_inf (α →o β) := { inf := (⊓), .. (_ : partial_order (α →o β)), .. (dual_iso α β).symm.to_galois_insertion.lift_semilattice_inf } instance [lattice β] : lattice (α →o β) := { .. (_ : semilattice_sup (α →o β)), .. (_ : semilattice_inf (α →o β)) } @[simps] instance [preorder β] [order_bot β] : has_bot (α →o β) := { bot := const α ⊥ } instance [preorder β] [order_bot β] : order_bot (α →o β) := { bot := ⊥, bot_le := λ a x, bot_le } @[simps] instance [preorder β] [order_top β] : has_top (α →o β) := { top := const α ⊤ } instance [preorder β] [order_top β] : order_top (α →o β) := { top := ⊤, le_top := λ a x, le_top } instance [complete_lattice β] : has_Inf (α →o β) := { Inf := λ s, ⟨λ x, ⨅ f ∈ s, (f : _) x, λ x y h, infi₂_mono $ λ f _, f.mono h⟩ } @[simp] lemma Inf_apply [complete_lattice β] (s : set (α →o β)) (x : α) : Inf s x = ⨅ f ∈ s, (f : _) x := rfl lemma infi_apply {ι : Sort*} [complete_lattice β] (f : ι → α →o β) (x : α) : (⨅ i, f i) x = ⨅ i, f i x := (Inf_apply _ _).trans infi_range @[simp, norm_cast] lemma coe_infi {ι : Sort*} [complete_lattice β] (f : ι → α →o β) : ((⨅ i, f i : α →o β) : α → β) = ⨅ i, f i := funext $ λ x, (infi_apply f x).trans (@_root_.infi_apply _ _ _ _ (λ i, f i) _).symm instance [complete_lattice β] : has_Sup (α →o β) := { Sup := λ s, ⟨λ x, ⨆ f ∈ s, (f : _) x, λ x y h, supr₂_mono (λ f _, f.mono h)⟩ } @[simp] lemma Sup_apply [complete_lattice β] (s : set (α →o β)) (x : α) : Sup s x = ⨆ f ∈ s, (f : _) x := rfl lemma supr_apply {ι : Sort*} [complete_lattice β] (f : ι → α →o β) (x : α) : (⨆ i, f i) x = ⨆ i, f i x := (Sup_apply _ _).trans supr_range @[simp, norm_cast] lemma coe_supr {ι : Sort*} [complete_lattice β] (f : ι → α →o β) : ((⨆ i, f i : α →o β) : α → β) = ⨆ i, f i := funext $ λ x, (supr_apply f x).trans (@_root_.supr_apply _ _ _ _ (λ i, f i) _).symm instance [complete_lattice β] : complete_lattice (α →o β) := { Sup := Sup, le_Sup := λ s f hf x, le_supr_of_le f (le_supr _ hf), Sup_le := λ s f hf x, supr₂_le (λ g hg, hf g hg x), Inf := Inf, le_Inf := λ s f hf x, le_infi₂ (λ g hg, hf g hg x), Inf_le := λ s f hf x, infi_le_of_le f (infi_le _ hf), .. (_ : lattice (α →o β)), .. order_hom.order_top, .. order_hom.order_bot } lemma iterate_sup_le_sup_iff {α : Type*} [semilattice_sup α] (f : α →o α) : (∀ n₁ n₂ a₁ a₂, f^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (f^[n₁] a₁) ⊔ (f^[n₂] a₂)) ↔ (∀ a₁ a₂, f (a₁ ⊔ a₂) ≤ (f a₁) ⊔ a₂) := begin split; intros h, { exact h 1 0, }, { intros n₁ n₂ a₁ a₂, have h' : ∀ n a₁ a₂, f^[n] (a₁ ⊔ a₂) ≤ (f^[n] a₁) ⊔ a₂, { intros n, induction n with n ih; intros a₁ a₂, { refl, }, { calc f^[n + 1] (a₁ ⊔ a₂) = (f^[n] (f (a₁ ⊔ a₂))) : function.iterate_succ_apply f n _ ... ≤ (f^[n] ((f a₁) ⊔ a₂)) : f.mono.iterate n (h a₁ a₂) ... ≤ (f^[n] (f a₁)) ⊔ a₂ : ih _ _ ... = (f^[n + 1] a₁) ⊔ a₂ : by rw ← function.iterate_succ_apply, }, }, calc f^[n₁ + n₂] (a₁ ⊔ a₂) = (f^[n₁] (f^[n₂] (a₁ ⊔ a₂))) : function.iterate_add_apply f n₁ n₂ _ ... = (f^[n₁] (f^[n₂] (a₂ ⊔ a₁))) : by rw sup_comm ... ≤ (f^[n₁] ((f^[n₂] a₂) ⊔ a₁)) : f.mono.iterate n₁ (h' n₂ _ _) ... = (f^[n₁] (a₁ ⊔ (f^[n₂] a₂))) : by rw sup_comm ... ≤ (f^[n₁] a₁) ⊔ (f^[n₂] a₂) : h' n₁ a₁ _, }, end end preorder end order_hom
\subsection{Embeddings and immersions} Whitney embedding theroem: all manfiolds can be embedded in \(R^n\) space for some \(n\).
(* D_diamond (D<>) T ::= Bot | Top | p.Type | { Type: S..U } | (z: T) -> T^z | T1 /\ T2 | T1 \/ T2 t ::= p | t t p ::= x | v v ::= { Type = T } | lambda x:T.t *) (* based on *) (*************************************************************************** * Preservation and Progress for System-F with Subtyping - Definitions * * Brian Aydemir & Arthur Charguéraud, March 2007 * ***************************************************************************) Set Implicit Arguments. Require Import LibLN. Implicit Types x : var. (* ********************************************************************** *) (** * Description of the Language *) (** Representation of pre-types *) Inductive typ : Set := | typ_bot : typ | typ_top : typ | typ_and : typ -> typ -> typ | typ_or : typ -> typ -> typ | typ_sel : trm -> typ | typ_mem : typ -> typ -> typ | typ_all : typ -> typ -> typ (** Representation of pre-terms *) with trm : Set := | trm_bvar : nat -> trm | trm_fvar : var -> trm | trm_abs : typ -> trm -> trm | trm_mem : typ -> trm | trm_app : trm -> trm -> trm. Fixpoint open_t_rec (k : nat) (f : trm) (T : typ) {struct T} : typ := match T with | typ_bot => typ_bot | typ_top => typ_top | typ_and T1 T2 => typ_and (open_t_rec k f T1) (open_t_rec k f T2) | typ_or T1 T2 => typ_or (open_t_rec k f T1) (open_t_rec k f T2) | typ_sel t => typ_sel (open_e_rec k f t) | typ_mem T1 T2 => typ_mem (open_t_rec k f T1) (open_t_rec k f T2) | typ_all T1 T2 => typ_all (open_t_rec k f T1) (open_t_rec (S k) f T2) end (** Opening up a term binder occuring in a term *) with open_e_rec (k : nat) (f : trm) (e : trm) {struct e} : trm := match e with | trm_bvar i => If k = i then f else (trm_bvar i) | trm_fvar x => trm_fvar x | trm_abs V e1 => trm_abs (open_t_rec k f V) (open_e_rec (S k) f e1) | trm_mem T => trm_mem (open_t_rec k f T) | trm_app e1 e2 => trm_app (open_e_rec k f e1) (open_e_rec k f e2) end. Definition open_t T f := open_t_rec 0 f T. Definition open_e t u := open_e_rec 0 u t. (** Notation for opening up binders with variables *) Notation "t 'open_t_var' x" := (open_t t (trm_fvar x)) (at level 67). Notation "t 'open_e_var' x" := (open_e t (trm_fvar x)) (at level 67). (** Types as locally closed pre-types *) Inductive type : typ -> Prop := | type_bot : type typ_bot | type_top : type typ_top | type_and : forall T1 T2, type T1 -> type T2 -> type (typ_and T1 T2) | type_or : forall T1 T2, type T1 -> type T2 -> type (typ_or T1 T2) | type_sel : forall e1, term e1 -> type (typ_sel e1) | type_mem : forall T1 T2, type T1 -> type T2 -> type (typ_mem T1 T2) | type_all : forall L T1 T2, type T1 -> (forall x, x \notin L -> type (T2 open_t_var x)) -> type (typ_all T1 T2) (** Terms as locally closed pre-terms *) with term : trm -> Prop := | term_var : forall x, term (trm_fvar x) | term_abs : forall L V e1, type V -> (forall x, x \notin L -> term (e1 open_e_var x)) -> term (trm_abs V e1) | term_mem : forall T1, type T1 -> term (trm_mem T1) | term_app : forall e1 e2, term e1 -> term e2 -> term (trm_app e1 e2). (** Values *) Inductive value : trm -> Prop := | value_abs : forall V e1, term (trm_abs V e1) -> value (trm_abs V e1) | value_mem : forall V, term (trm_mem V) -> value (trm_mem V). (** Environment is an associative list of bindings. *) Definition env := LibEnv.env typ. (** Well-formedness of a pre-type T in an environment E: all the type variables of T must be bound via a subtyping relation in E. This predicates implies that T is a type *) Inductive wft : env -> typ -> Prop := | wft_bot : forall E, wft E typ_bot | wft_top : forall E, wft E typ_top | wft_and : forall E T1 T2, wft E T1 -> wft E T2 -> wft E (typ_and T1 T2) | wft_or : forall E T1 T2, wft E T1 -> wft E T2 -> wft E (typ_or T1 T2) | wft_sel : forall E e, value e \/ (exists x, trm_fvar x = e) -> wfe E e -> wft E (typ_sel e) | wft_mem : forall E T1 T2, wft E T1 -> wft E T2 -> wft E (typ_mem T1 T2) | wft_all : forall L E T1 T2, wft E T1 -> (forall x, x \notin L -> wft (E & x ~ T1) (T2 open_t_var x)) -> wft E (typ_all T1 T2) with wfe : env -> trm -> Prop := | wfe_var : forall U E x, binds x U E -> wfe E (trm_fvar x) | wfe_abs : forall L E V e, wft E V -> (forall x, x \notin L -> wfe (E & x ~ V) (e open_e_var x)) -> wfe E (trm_abs V e) | wfe_mem : forall E T, wft E T -> wfe E (trm_mem T) | wfe_app : forall E e1 e2, wfe E e1 -> wfe E e2 -> wfe E (trm_app e1 e2) . (** A environment E is well-formed if it contains no duplicate bindings and if each type in it is well-formed with respect to the environment it is pushed on to. *) Inductive okt : env -> Prop := | okt_empty : okt empty | okt_push : forall E x T, okt E -> wft E T -> x # E -> okt (E & x ~ T). (** Subtyping relation *) Inductive sub : env -> typ -> typ -> Prop := | sub_bot : forall E T, okt E -> wft E T -> sub E typ_bot T | sub_top : forall E S, okt E -> wft E S -> sub E S typ_top | sub_and11 : forall E T1 T2 T, wft E T2 -> sub E T1 T -> sub E (typ_and T1 T2) T | sub_and12 : forall E T1 T2 T, wft E T1 -> sub E T2 T -> sub E (typ_and T1 T2) T | sub_and2 : forall E T T1 T2, sub E T T1 -> sub E T T2 -> sub E T (typ_and T1 T2) | sub_or21 : forall E T T1 T2, wft E T2 -> sub E T T1 -> sub E T (typ_or T1 T2) | sub_or22 : forall E T T1 T2, wft E T1 -> sub E T T2 -> sub E T (typ_or T1 T2) | sub_or1 : forall E T1 T2 T, sub E T1 T-> sub E T2 T -> sub E (typ_or T1 T2) T | sub_refl_sel : forall E t, okt E -> wft E (typ_sel t) -> sub E (typ_sel t) (typ_sel t) | sub_sel1 : forall E S U t, has E t (typ_mem S U) -> sub E (typ_sel t) U | sub_sel2 : forall E S U t, has E t (typ_mem S U) -> sub E S (typ_sel t) | sub_mem : forall E S1 U1 S2 U2, sub E S2 S1 -> sub E U1 U2 -> sub E (typ_mem S1 U1) (typ_mem S2 U2) | sub_all : forall L E S1 S2 T1 T2, sub E T1 S1 -> (forall x, x \notin L -> sub (E & x ~ T1) (S2 open_t_var x) (T2 open_t_var x)) -> sub E (typ_all S1 S2) (typ_all T1 T2) | sub_trans : forall E S T U, sub E S T -> sub E T U -> sub E S U with has : env -> trm -> typ -> Prop := | has_var : forall E x T, okt E -> binds x T E -> has E (trm_fvar x) T | has_mem : forall E T, okt E -> wft E T -> has E (trm_mem T) (typ_mem T T) | has_abs : forall E V e T,(* dummy case for smooth substitution lemma, see val_typing_has *) okt E -> wfe E (trm_abs V e) -> wft E (typ_all V T) -> has E (trm_abs V e) (typ_all V T) (* return typ doesn't matter, as long as it's moot for sel1 and sel2 *) | has_sub : forall E t T U, has E t T -> sub E T U -> has E t U . (** Typing relation *) Inductive typing : env -> trm -> typ -> Prop := | typing_var : forall E x T, okt E -> binds x T E -> typing E (trm_fvar x) T | typing_abs : forall L E V e1 T1, (forall x, x \notin L -> typing (E & x ~ V) (e1 open_e_var x) (T1 open_t_var x)) -> typing E (trm_abs V e1) (typ_all V T1) | typing_mem : forall E T1, okt E -> wft E T1 -> typing E (trm_mem T1) (typ_mem T1 T1) | typing_app : forall T1 E e1 e2 T2, typing E e1 (typ_all T1 T2) -> typing E e2 T1 -> wft E T2 -> typing E (trm_app e1 e2) T2 | typing_appvar : forall T1 E e1 e2 T2 T2' M, typing E e1 (typ_all T1 T2) -> typing E e2 T1 -> has E e2 M -> T2' = open_t T2 e2 -> wft E T2' -> typing E (trm_app e1 e2) T2' | typing_sub : forall S E e T, typing E e S -> sub E S T -> typing E e T. (** One-step reduction *) Inductive red : trm -> trm -> Prop := | red_app_1 : forall e1 e1' e2, term e2 -> red e1 e1' -> red (trm_app e1 e2) (trm_app e1' e2) | red_app_2 : forall e1 e2 e2', value e1 -> red e2 e2' -> red (trm_app e1 e2) (trm_app e1 e2') | red_abs : forall V e1 v2, term (trm_abs V e1) -> value v2 -> red (trm_app (trm_abs V e1) v2) (open_e e1 v2). (** Our goal is to prove preservation and progress *) Definition preservation := forall e e' T, typing empty e T -> red e e' -> typing empty e' T. Definition progress := forall e T, typing empty e T -> value e \/ exists e', red e e'. (*************************************************************************** * Preservation and Progress for System-F with Subtyping - Infrastructure * ***************************************************************************) (* ********************************************************************** *) (** * Additional Definitions Used in the Proofs *) (** Computing free variables in a type *) Fixpoint fv_t (T : typ) {struct T} : vars := match T with | typ_bot => \{} | typ_top => \{} | typ_and T1 T2 => (fv_t T1) \u (fv_t T2) | typ_or T1 T2 => (fv_t T1) \u (fv_t T2) | typ_sel t => fv_e t | typ_mem T1 T2 => (fv_t T1) \u (fv_t T2) | typ_all T1 T2 => (fv_t T1) \u (fv_t T2) end (** Computing free variables in a term *) with fv_e (e : trm) {struct e} : vars := match e with | trm_bvar i => \{} | trm_fvar x => \{x} | trm_abs V e1 => (fv_t V) \u (fv_e e1) | trm_mem T => fv_t T | trm_app e1 e2 => (fv_e e1) \u (fv_e e2) end. (** Substitution for free type variables in types. *) Fixpoint subst_t (z : var) (u : trm) (T : typ) {struct T} : typ := match T with | typ_bot => typ_bot | typ_top => typ_top | typ_and T1 T2 => typ_and (subst_t z u T1) (subst_t z u T2) | typ_or T1 T2 => typ_or (subst_t z u T1) (subst_t z u T2) | typ_sel t => typ_sel (subst_e z u t) | typ_mem T1 T2 => typ_mem (subst_t z u T1) (subst_t z u T2) | typ_all T1 T2 => typ_all (subst_t z u T1) (subst_t z u T2) end (** Substitution for free term variables in terms. *) with subst_e (z : var) (u : trm) (e : trm) {struct e} : trm := match e with | trm_bvar i => trm_bvar i | trm_fvar x => If x = z then u else (trm_fvar x) | trm_abs V e1 => trm_abs (subst_t z u V) (subst_e z u e1) | trm_mem T1 => trm_mem (subst_t z u T1) | trm_app e1 e2 => trm_app (subst_e z u e1) (subst_e z u e2) end. (* ********************************************************************** *) (** * Tactics *) (** Constructors as hints. *) Hint Constructors type term wft wfe ok okt value red. Hint Resolve sub_bot sub_top sub_refl_sel typing_var typing_app typing_sub. (** Gathering free names already used in the proofs *) Ltac gather_vars := let A := gather_vars_with (fun x : vars => x) in let B := gather_vars_with (fun x : var => \{x}) in let C := gather_vars_with (fun x : typ => fv_t x) in let D := gather_vars_with (fun x : trm => fv_e x) in let E := gather_vars_with (fun x : env => dom x) in constr:(A \u B \u C \u D \u E). (** "pick_fresh x" tactic create a fresh variable with name x *) Ltac pick_fresh x := let L := gather_vars in (pick_fresh_gen L x). (** "apply_fresh T as x" is used to apply inductive rule which use an universal quantification over a cofinite set *) Tactic Notation "apply_fresh" constr(T) "as" ident(x) := apply_fresh_base T gather_vars x. Tactic Notation "apply_fresh" "*" constr(T) "as" ident(x) := apply_fresh T as x; auto*. (** These tactics help applying a lemma which conclusion mentions an environment (E & F) in the particular case when F is empty *) Ltac get_env := match goal with | |- wft ?E _ => E | |- wfe ?E _ => E | |- sub ?E _ _ => E | |- has ?E _ _ => E | |- typing ?E _ _ => E end. Tactic Notation "apply_empty_bis" tactic(get_env) constr(lemma) := let E := get_env in rewrite <- (concat_empty_r E); eapply lemma; try rewrite concat_empty_r. Tactic Notation "apply_empty" constr(F) := apply_empty_bis (get_env) F. Tactic Notation "apply_empty" "*" constr(F) := apply_empty F; auto*. Scheme typ_mut := Induction for typ Sort Prop with trm_mut := Induction for trm Sort Prop. Combined Scheme typ_trm_mutind from typ_mut, trm_mut. Scheme type_mut := Induction for type Sort Prop with term_mut := Induction for term Sort Prop. Combined Scheme lc_mutind from type_mut, term_mut. Scheme wft_mut := Induction for wft Sort Prop with wfe_mut := Induction for wfe Sort Prop. Combined Scheme wf_mutind from wft_mut, wfe_mut. Scheme sub_mut := Induction for sub Sort Prop with has_mut := Induction for has Sort Prop. Combined Scheme sub_has_mutind from sub_mut, has_mut. (* ********************************************************************** *) (** * Properties of Substitutions *) (** Substitution on indices is identity on well-formed terms. *) Lemma open_rec_lc_core : (forall T j v u i, i <> j -> (open_t_rec j v T) = open_t_rec i u (open_t_rec j v T) -> T = open_t_rec i u T) /\ (forall e j v u i, i <> j -> open_e_rec j v e = open_e_rec i u (open_e_rec j v e) -> e = open_e_rec i u e). Proof. apply typ_trm_mutind; try (introv IH1 IH2 Neq H); try (introv IH Neq H); try (introv Neq H); simpl in *; inversion H; f_equal*. case_nat*. case_nat*. Qed. Lemma open_rec_lc : (forall T, type T -> forall u k, T = open_t_rec k u T) /\ (forall e, term e -> forall u k, e = open_e_rec k u e). Proof. apply lc_mutind; intros; simpl; f_equal*. pick_fresh x. apply* ((proj1 open_rec_lc_core) T2 0 (trm_fvar x)). pick_fresh x. apply* ((proj2 open_rec_lc_core) e1 0 (trm_fvar x)). Qed. Lemma open_t_var_type : forall x T, type T -> T open_t_var x = T. Proof. intros. unfold open_t. rewrite* <- (proj1 open_rec_lc). Qed. (** Substitution for a fresh name is identity. *) Lemma subst_fresh : (forall T z u, z \notin fv_t T -> subst_t z u T = T) /\ (forall e z u, z \notin fv_e e -> subst_e z u e = e). Proof. apply typ_trm_mutind; simpl; intros; f_equal*. case_var*. Qed. (** Substitution distributes on the open operation. *) Lemma subst_open_rec : (forall T1 t2 x u n, term u -> subst_t x u (open_t_rec n t2 T1) = open_t_rec n (subst_e x u t2) (subst_t x u T1)) /\ (forall t1 t2 x u n, term u -> subst_e x u (open_e_rec n t2 t1) = open_e_rec n (subst_e x u t2) (subst_e x u t1)). Proof. apply typ_trm_mutind; intros; simpls; f_equal*. case_nat*. case_var*. rewrite* <- (proj2 open_rec_lc). Qed. Lemma subst_t_open_t : forall T1 t2 x u, term u -> subst_t x u (open_t T1 t2) = open_t (subst_t x u T1) (subst_e x u t2). Proof. unfold open_t. auto* (proj1 subst_open_rec). Qed. Lemma subst_e_open_e : forall t1 t2 x u, term u -> subst_e x u (open_e t1 t2) = open_e (subst_e x u t1) (subst_e x u t2). Proof. unfold open_e. auto* (proj2 subst_open_rec). Qed. (** Substitution and open_var for distinct names commute. *) Lemma subst_t_open_t_var : forall x y u T, y <> x -> term u -> (subst_t x u T) open_t_var y = subst_t x u (T open_t_var y). Proof. introv Neq Wu. rewrite* subst_t_open_t. simpl. case_var*. Qed. Lemma subst_e_open_e_var : forall x y u e, y <> x -> term u -> (subst_e x u e) open_e_var y = subst_e x u (e open_e_var y). Proof. introv Neq Wu. rewrite* subst_e_open_e. simpl. case_var*. Qed. (** Opening up a body t with a type u is the same as opening up the abstraction with a fresh name x and then substituting u for x. *) Lemma subst_t_intro : forall x T2 u, x \notin fv_t T2 -> term u -> open_t T2 u = subst_t x u (T2 open_t_var x). Proof. introv Fr Wu. rewrite* subst_t_open_t. rewrite* (proj1 subst_fresh). simpl. case_var*. Qed. Lemma subst_e_intro : forall x t2 u, x \notin fv_e t2 -> term u -> open_e t2 u = subst_e x u (t2 open_e_var x). Proof. introv Fr Wu. rewrite* subst_e_open_e. rewrite* (proj2 subst_fresh). simpl. case_var*. Qed. (** Substitutions preserve local closure. *) Lemma subst_lc : (forall T, type T -> forall z u, term u -> type (subst_t z u T)) /\ (forall e, term e -> forall z u, term u -> term (subst_e z u e)). Proof. apply lc_mutind; intros; simpl; auto. apply_fresh* type_all as X. rewrite* subst_t_open_t_var. case_var*. apply_fresh* term_abs as y. rewrite* subst_e_open_e_var. Qed. Lemma subst_t_type : forall T z u, type T -> term u -> type (subst_t z u T). Proof. intros. apply* (proj1 subst_lc). Qed. Lemma subst_e_term : forall e1 z e2, term e1 -> term e2 -> term (subst_e z e2 e1). Proof. intros. apply* (proj2 subst_lc). Qed. Lemma subst_e_value : forall e1 z e2, value e1 -> term e2 -> value (subst_e z e2 e1). Proof. intros. inversion H; subst; simpl. - apply value_abs. assert (trm_abs (subst_t z e2 V) (subst_e z e2 e0) = subst_e z e2 (trm_abs V e0)) as A. { simpl. reflexivity. } rewrite A. apply* subst_e_term. - apply value_mem. assert (trm_mem (subst_t z e2 V) = subst_e z e2 (trm_mem V)) as A. { simpl. reflexivity. } rewrite A. apply* subst_e_term. Qed. Lemma value_is_term: forall e, value e -> term e. Proof. introv H. inversion H; subst; eauto. Qed. Hint Resolve subst_t_type subst_e_term subst_e_value value_is_term. (* ********************************************************************** *) (** * Properties of well-formedness of a type in an environment *) (** If a type is well-formed in an environment then it is locally closed. *) Lemma wf_lc : (forall E T, wft E T -> type T) /\ (forall E e, wfe E e -> term e). Proof. apply wf_mutind; eauto. Qed. Lemma wft_type : forall E T, wft E T -> type T. Proof. intros. eapply (proj1 wf_lc); eauto. Qed. Lemma wfe_term : forall E e, wfe E e -> term e. Proof. intros. eapply (proj2 wf_lc); eauto. Qed. (** Through weakening *) Lemma wf_weaken : (forall E0 T, wft E0 T -> forall E F G, E0 = E & G -> ok (E & F & G) -> wft (E & F & G) T) /\ (forall E0 e, wfe E0 e -> forall E F G, E0 = E & G -> ok (E & F & G) -> wfe (E & F & G) e). Proof. apply wf_mutind; intros; subst; eauto. apply_fresh* wft_all as Y. apply_ih_bind* H0. apply (@wfe_var U). apply* binds_weaken. apply_fresh* wfe_abs as y. apply_ih_bind* H0. Qed. Lemma wft_weaken : forall G T E F, wft (E & G) T -> ok (E & F & G) -> wft (E & F & G) T. Proof. intros. eapply (proj1 wf_weaken); eauto. Qed. Lemma wft_weaken_empty : forall T E, wft empty T -> ok E -> wft E T. Proof. intros. assert (E = empty & E & empty) as A. { rewrite concat_empty_l. rewrite concat_empty_r. reflexivity. } rewrite A. apply wft_weaken. rewrite concat_empty_l. auto. rewrite concat_empty_l. rewrite concat_empty_r. auto. Qed. Lemma wfe_weaken : forall G T E F, wfe (E & G) T -> ok (E & F & G) -> wfe (E & F & G) T. Proof. intros. eapply (proj2 wf_weaken); eauto. Qed. Lemma wfe_weaken_empty : forall T E, wfe empty T -> ok E -> wfe E T. Proof. intros. assert (E = empty & E & empty) as A. { rewrite concat_empty_l. rewrite concat_empty_r. reflexivity. } rewrite A. apply wfe_weaken. rewrite concat_empty_l. auto. rewrite concat_empty_l. rewrite concat_empty_r. auto. Qed. (** Through narrowing *) Lemma wf_narrow : (forall E0 T, wft E0 T -> forall V F U E x, E0 = (E & x ~ V & F) -> ok (E & x ~ U & F) -> wft (E & x ~ U & F) T) /\ (forall E0 e, wfe E0 e -> forall V F U E x, E0 = (E & x ~ V & F) -> ok (E & x ~ U & F) -> wfe (E & x ~ U & F) e). Proof. apply wf_mutind; intros; subst; eauto. apply_fresh* wft_all as Y. apply_ih_bind* H0. destruct (binds_middle_inv b) as [K|[K|K]]; try destructs K. applys wfe_var. apply* binds_concat_right. subst. applys wfe_var. apply~ binds_middle_eq. applys wfe_var. apply~ binds_concat_left. apply* binds_concat_left. apply_fresh* wfe_abs as y. apply_ih_bind* H0. Qed. Lemma wft_narrow : forall V F U T E x, wft (E & x ~ V & F) T -> ok (E & x ~ U & F) -> wft (E & x ~ U & F) T. Proof. intros. eapply (proj1 wf_narrow); eauto. Qed. (** Through substitution *) Lemma wf_subst : (forall E0 T, wft E0 T -> forall F Q E Z u, E0 = E & Z ~ Q & F -> (value u \/ exists x, trm_fvar x = u) -> wfe E u -> ok (E & map (subst_t Z u) F) -> wft (E & map (subst_t Z u) F) (subst_t Z u T)) /\ (forall E0 e, wfe E0 e -> forall F Q E Z u, E0 = E & Z ~ Q & F -> (value u \/ exists x, trm_fvar x = u) -> wfe E u -> ok (E & map (subst_t Z u) F) -> wfe (E & map (subst_t Z u) F) (subst_e Z u e)). Proof. apply wf_mutind; intros; subst; simpl; eauto. - destruct o as [? | [? ?]]. + apply* wft_sel. left. apply subst_e_value. assumption. apply* wfe_term. + subst. simpl. case_var*. * apply_empty* wft_weaken. * apply* wft_sel. rewrite* <- ((proj2 subst_fresh) (trm_fvar x) Z u). simpl. auto. - apply_fresh* wft_all as Y. lets: wft_type. rewrite* subst_t_open_t_var. apply_ih_map_bind* H0. apply* wfe_term. - case_var*. + apply_empty* (proj2 wf_weaken). + destruct (binds_concat_inv b) as [?|[? ?]]. apply (@wfe_var (subst_t Z u U)). apply~ binds_concat_right. destruct (binds_push_inv H3) as [[? ?]|[? ?]]. subst. false~. applys wfe_var. apply* binds_concat_left. - apply_fresh* wfe_abs as y. lets: (proj2 wf_lc). rewrite* subst_e_open_e_var. apply_ih_map_bind* H0. Qed. Lemma wft_subst : forall F Q E Z u T, wft (E & Z ~ Q & F) T -> (value u \/ exists x, trm_fvar x = u) -> wfe E u -> ok (E & map (subst_t Z u) F) -> wft (E & map (subst_t Z u) F) (subst_t Z u T). Proof. intros. eapply (proj1 wf_subst); eauto. Qed. Lemma wft_subst1 : forall F Q Z u T, wft (Z ~ Q & F) T -> (value u \/ exists x, trm_fvar x = u) -> wfe empty u -> ok (map (subst_t Z u) F) -> wft (map (subst_t Z u) F) (subst_t Z u T). Proof. intros. rewrite <- (@concat_empty_l typ (map (subst_t Z u) F)). apply* wft_subst. rewrite concat_empty_l. eassumption. rewrite concat_empty_l. eassumption. Qed. Lemma wft_subst_empty : forall Q Z u T, wft (Z ~ Q) T -> (value u \/ exists x, trm_fvar x = u) -> wfe empty u -> wft empty (subst_t Z u T). Proof. intros. assert (empty & map (subst_t Z u) empty = empty) as A. { rewrite map_empty. rewrite concat_empty_l. reflexivity. } rewrite <- A. eapply wft_subst; eauto. rewrite concat_empty_l. rewrite concat_empty_r. eauto. rewrite A. eauto. Qed. (** Through type reduction *) Lemma wft_open : forall E u T1 T2, ok E -> wft E (typ_all T1 T2) -> (value u \/ exists x, trm_fvar x = u) -> wfe E u -> wft E (open_t T2 u). Proof. introv Ok WA VU WU. inversions WA. pick_fresh X. auto* wft_type. rewrite* (@subst_t_intro X). lets K: (@wft_subst empty). specializes_vars K. clean_empty K. apply* K. apply* wfe_term. Qed. (* ********************************************************************** *) (** * Relations between well-formed environment and types well-formed in environments *) (** If an environment is well-formed, then it does not contain duplicated keys. *) Lemma ok_from_okt : forall E, okt E -> ok E. Proof. induction 1; auto. Qed. Hint Extern 1 (ok _) => apply ok_from_okt. (** Extraction from an assumption in a well-formed environments *) Lemma wft_from_env_has : forall x U E, okt E -> binds x U E -> wft E U. Proof. induction E using env_ind; intros Ok B. false* binds_empty_inv. inversions Ok. false (empty_push_inv H0). destruct (eq_push_inv H) as [? [? ?]]. subst. clear H. destruct (binds_push_inv B) as [[? ?]|[? ?]]. subst. apply_empty* wft_weaken. apply_empty* wft_weaken. Qed. (** Extraction from a well-formed environment *) Lemma wft_from_okt : forall x T E, okt (E & x ~ T) -> wft E T. Proof. intros. inversions* H. false (empty_push_inv H1). destruct (eq_push_inv H0) as [? [? ?]]. subst. assumption. Qed. (** Automation *) Lemma wft_weaken_right : forall T E F, wft E T -> ok (E & F) -> wft (E & F) T. Proof. intros. apply_empty* wft_weaken. Qed. Hint Resolve wft_weaken_right. Hint Resolve wft_from_okt. Hint Immediate wft_from_env_has. Hint Resolve wft_subst. (* ********************************************************************** *) (** ** Properties of well-formedness of an environment *) (** Inversion lemma *) Lemma okt_push_inv : forall E x T, okt (E & x ~ T) -> okt E /\ wft E T /\ x # E. Proof. introv O. inverts O. false* empty_push_inv. lets (?&M&?): (eq_push_inv H). subst. eauto. Qed. Lemma okt_push_type : forall E x T, okt (E & x ~ T) -> type T. Proof. intros. applys wft_type. forwards*: okt_push_inv. Qed. Hint Immediate okt_push_type. (** Through narrowing *) Lemma okt_narrow : forall V (E F:env) U x, okt (E & x ~ V & F) -> wft E U -> okt (E & x ~ U & F). Proof. introv O W. induction F using env_ind. rewrite concat_empty_r in *. lets*: (okt_push_inv O). rewrite concat_assoc in *. lets (?&?&?): (okt_push_inv O). applys~ okt_push. applys* wft_narrow. Qed. (** Through substitution *) Lemma okt_subst : forall Q Z u (E F:env), okt (E & Z ~ Q & F) -> (value u \/ exists x, trm_fvar x = u) -> wfe E u -> okt (E & map (subst_t Z u) F). Proof. introv O V W. induction F using env_ind. rewrite map_empty. rewrite concat_empty_r in *. lets*: (okt_push_inv O). rewrite map_push. rewrite concat_assoc in *. lets*: (okt_push_inv O). apply okt_push. apply* IHF. apply* wft_subst. auto*. Qed. Lemma okt_subst1 : forall Q Z u (F:env), okt (Z ~ Q & F) -> (value u \/ exists x, trm_fvar x = u) -> wfe empty u -> okt (map (subst_t Z u) F). Proof. intros. rewrite <- concat_empty_l. apply* okt_subst. rewrite concat_empty_l. eassumption. Qed. (** Automation *) Hint Resolve okt_narrow okt_subst wft_weaken. (* ********************************************************************** *) (** ** Environment is unchanged by substitution from a fresh name *) Ltac destruct_notin_union := match goal with | H: _ \notin _ \u _ |- _ => eapply notin_union in H; destruct H end. Lemma notin_fv_open_rec : (forall T k y x, x \notin fv_t (open_t_rec k (trm_fvar y) T) -> x \notin fv_t T) /\ (forall e k y x, x \notin fv_e (open_e_rec k (trm_fvar y) e) -> x \notin fv_e e). Proof. apply typ_trm_mutind; simpl; intros; repeat destruct_notin_union; eauto using notin_union_l. Qed. Lemma notin_fv_t_open : forall y x T, x \notin fv_t (T open_t_var y) -> x \notin fv_t T. Proof. unfold open_t. intros. apply* (proj1 notin_fv_open_rec). Qed. Lemma notin_fv_e_open : forall y x e, x \notin fv_e (e open_e_var y) -> x \notin fv_e e. Proof. unfold open_e. intros. apply* (proj2 notin_fv_open_rec). Qed. Lemma notin_fv_wf_rec : (forall E T, wft E T -> forall x, x # E -> x \notin fv_t T) /\ (forall E e, wfe E e -> forall x, x # E -> x \notin fv_e e). Proof. apply wf_mutind; intros; simpl; eauto. notin_simpl; auto. pick_fresh Y. apply* (@notin_fv_t_open Y). rewrite notin_singleton. intro. subst. applys binds_fresh_inv b H. notin_simpl; auto. pick_fresh y. apply* (@notin_fv_e_open y). Qed. Lemma notin_fv_wf : forall E x T, wft E T -> x # E -> x \notin fv_t T. Proof. intros. eapply (proj1 notin_fv_wf_rec); eauto. Qed. Lemma map_subst_id : forall G z u, okt G -> z # G -> G = map (subst_t z u) G. Proof. induction 1; intros Fr; autorewrite with rew_env_map; simpl. auto. rewrite* <- IHokt. rewrite* (proj1 subst_fresh). apply* notin_fv_wf. Qed. (* ********************************************************************** *) (** ** Regularity of relations *) (** The subtyping relation is restricted to well-formed objects. *) Lemma sub_has_regular : (forall E S T, sub E S T -> okt E /\ wft E S /\ wft E T) /\ (forall E p T, has E p T -> okt E /\ wft E (typ_sel p) /\ wft E T). Proof. apply sub_has_mutind; intros; try auto*. splits*. destruct H as [? [? A]]. inversion A; subst. assumption. splits*. destruct H as [? [? A]]. inversion A; subst. assumption. split. auto*. split; apply_fresh* wft_all as Y; forwards~: (H0 Y); apply_empty* (@wft_narrow T1). splits*. apply wft_sel. left. apply value_mem. apply* wfe_term. apply* wfe_mem. splits*. apply wft_sel. left. apply value_abs. apply* wfe_term. assumption. Qed. Lemma sub_regular : forall E S T, sub E S T -> okt E /\ wft E S /\ wft E T. Proof. intros. apply* (proj1 sub_has_regular). Qed. Lemma has_regular : forall E p T, has E p T -> okt E /\ wft E (typ_sel p) /\ wft E T. Proof. intros. apply* (proj2 sub_has_regular). Qed. Lemma has_regular_e : forall E p T, has E p T -> (value p \/ (exists x, trm_fvar x = p)) /\ wfe E p. Proof. intros. apply has_regular in H. destruct H as [? [A ?]]. inversion A; subst. split; assumption. Qed. (** The typing relation is restricted to well-formed objects. *) Lemma typing_regular : forall E e T, typing E e T -> okt E /\ wfe E e /\ wft E T. Proof. induction 1. splits*. splits. pick_fresh y. specializes H0 y. destructs~ H0. forwards*: okt_push_inv. apply_fresh* wfe_abs as y. pick_fresh y. forwards~ K: (H0 y). destructs K. forwards*: okt_push_inv. forwards~ K: (H0 y). destructs K. auto. apply_fresh* wft_all as Y. pick_fresh y. forwards~ K: (H0 y). destructs K. forwards*: okt_push_inv. forwards~ K: (H0 Y). destructs K. forwards*: okt_push_inv. splits*. splits*. splits*. splits*. destructs~ (sub_regular H0). Qed. (** The value relation is restricted to well-formed objects. *) Lemma value_regular : forall t, value t -> term t. Proof. induction 1; auto*. Qed. (** The reduction relation is restricted to well-formed objects. *) Lemma red_regular : forall t t', red t t' -> term t /\ term t'. Proof. induction 1; split; auto* value_regular. inversions H. pick_fresh y. rewrite* (@subst_e_intro y). Qed. (** Automation *) Hint Extern 1 (okt ?E) => match goal with | H: sub _ _ _ |- _ => apply (proj31 (sub_regular H)) | H: has _ _ _ |- _ => apply (proj31 (has_regular H)) | H: typing _ _ _ |- _ => apply (proj31 (typing_regular H)) end. Hint Extern 1 (wft ?E ?T) => match goal with | H: typing E _ T |- _ => apply (proj33 (typing_regular H)) | H: sub E T _ |- _ => apply (proj32 (sub_regular H)) | H: sub E _ T |- _ => apply (proj33 (sub_regular H)) | H: has E _ T |- _ => apply (proj33 (has_regular H)) end. Hint Extern 1 (wfe ?E ?e) => match goal with | H: typing E e _ |- _ => apply (proj32 (typing_regular H)) | H: has E e _ |- _ => apply (proj2 (has_regular_e H)) end. Hint Extern 1 (type ?T) => let go E := apply (@wft_type E); auto in match goal with | H: typing ?E _ T |- _ => go E | H: sub ?E T _ |- _ => go E | H: sub ?E _ T |- _ => go E end. Hint Extern 1 (term ?e) => match goal with | H: typing _ ?e _ |- _ => apply (wfe_term (proj32 (typing_regular H))) | H: red ?e _ |- _ => apply (proj1 (red_regular H)) | H: red _ ?e |- _ => apply (proj2 (red_regular H)) end. (*************************************************************************** * Preservation and Progress for System-F with Subtyping - Proofs * ***************************************************************************) (** In parentheses are given the label of the corresponding lemma in the description of the POPLMark Challenge. *) (* ********************************************************************** *) (** * Properties of Subtyping *) (* ********************************************************************** *) (** Reflexivity (1) *) Lemma sub_reflexivity : forall E T, okt E -> wft E T -> sub E T T . Proof. introv Ok WI. lets W: (wft_type WI). gen E. induction W; intros; inversions WI; eauto. apply* sub_and2. apply* sub_and11. apply* sub_and12. apply* sub_or1. apply* sub_or21. apply* sub_or22. apply* sub_mem. apply_fresh* sub_all as Y. Qed. (* ********************************************************************** *) (** Weakening (2) *) Lemma sub_has_weakening : (forall E0 S T, sub E0 S T -> forall E F G, E0 = E & G -> okt (E & F & G) -> sub (E & F & G) S T) /\ (forall E0 p T, has E0 p T -> forall E F G, E0 = E & G -> okt (E & F & G) -> has (E & F & G) p T). Proof. apply sub_has_mutind; intros; subst; auto. apply* sub_and11. apply* sub_and12. apply* sub_and2. apply* sub_or21. apply* sub_or22. apply* sub_or1. apply* sub_sel1. apply* sub_sel2. apply* sub_mem. apply_fresh* sub_all as Y. apply_ih_bind* H0. apply* sub_trans. apply* has_var. apply* binds_weaken. apply* has_mem. apply* has_abs. apply* wfe_weaken. apply* has_sub. Qed. Lemma sub_weakening : forall E F G S T, sub (E & G) S T -> okt (E & F & G) -> sub (E & F & G) S T. Proof. intros. apply* (proj1 sub_has_weakening). Qed. Lemma sub_weakening1 : forall E F G S T, sub E S T -> okt (E & F & G) -> sub (E & F & G) S T. Proof. intros. assert (E & F & G = E & (F & G) & empty) as A. { rewrite concat_empty_r. rewrite concat_assoc. reflexivity. } rewrite A. apply* sub_weakening. rewrite concat_empty_r. assumption. rewrite <- A. assumption. Qed. Lemma sub_weakening_empty : forall E S T, sub empty S T -> okt E -> sub E S T. Proof. intros. assert (empty & E & empty = E) as A. { rewrite concat_empty_r. rewrite concat_empty_l. reflexivity. } rewrite <- A. apply* sub_weakening. rewrite concat_empty_r. assumption. rewrite A. assumption. Qed. Lemma has_weakening : forall E F G p T, has (E & G) p T -> okt (E & F & G) -> has (E & F & G) p T. Proof. intros. apply* (proj2 sub_has_weakening). Qed. Lemma has_weakening1 : forall E F G p T, has E p T -> okt (E & F & G) -> has (E & F & G) p T. Proof. intros. assert (E & F & G = E & (F & G) & empty) as A. { rewrite concat_empty_r. rewrite concat_assoc. reflexivity. } rewrite A. apply* has_weakening. rewrite concat_empty_r. assumption. rewrite <- A. assumption. Qed. Lemma has_weakening_empty : forall E p T, has empty p T -> okt E -> has E p T. Proof. intros. assert (empty & E & empty = E) as A. { rewrite concat_empty_r. rewrite concat_empty_l. reflexivity. } rewrite <- A. apply* has_weakening. rewrite concat_empty_r. assumption. rewrite A. assumption. Qed. (* ********************************************************************** *) (** Narrowing and transitivity (3) *) Section NarrowTrans. Hint Resolve wft_narrow. Lemma sub_has_narrowing_aux : (forall E0 S T, sub E0 S T -> forall Q E F z P, E0 = (E & z ~ Q & F) -> sub E P Q -> sub (E & z ~ P & F) S T) /\ (forall E0 p T, has E0 p T -> forall Q E F z P, E0 = (E & z ~ Q & F) -> sub E P Q -> has (E & z ~ P & F) p T). Proof. Hint Constructors sub has. apply sub_has_mutind; intros; subst; eauto 4. apply* sub_bot. apply* sub_top. apply* sub_and11. apply* sub_and12. apply* sub_or21. apply* sub_or22. apply* sub_refl_sel. apply_fresh sub_all as Y. auto*. apply_ih_bind H0; eauto 4. tests EQ: (x = z). lets M: (@okt_narrow Q). apply binds_middle_eq_inv in b. subst. eapply has_sub. eapply has_var. apply* M. apply binds_middle_eq. eapply ok_from_okt in o. eapply ok_middle_inv in o. destruct o as [o1 o2]. apply o2. eapply sub_weakening1; eauto. auto*. eapply has_var; eauto. binds_cases b; auto. apply* has_mem. apply* has_abs. eapply (proj2 wf_narrow); eauto. Qed. Lemma sub_narrowing : forall Q E F Z P S T, sub E P Q -> sub (E & Z ~ Q & F) S T -> sub (E & Z ~ P & F) S T. Proof. intros. apply* (proj1 sub_has_narrowing_aux). Qed. Lemma sub_narrowing_empty : forall Q Z P S T, sub empty P Q -> sub (Z ~ Q) S T -> sub (Z ~ P) S T. Proof. intros. rewrite <- (concat_empty_r (Z ~ P)). rewrite <- (concat_empty_l (Z ~ P)). eapply sub_narrowing; eauto 4. rewrite concat_empty_r. rewrite concat_empty_l. auto. Qed. End NarrowTrans. (* ********************************************************************** *) (** Substitution preserves subtyping (10) *) Lemma has_value_var : forall E u T, has E u T -> (value u \/ exists x, trm_fvar x = u). Proof. intros. apply has_regular_e in H. destruct H as [A ?]. apply A. Qed. Hint Resolve has_value_var. Lemma var_typing_has: forall E x Q, typing E (trm_fvar x) Q -> has E (trm_fvar x) Q. Proof. introv H. remember (trm_fvar x) as t. gen Heqt. induction H; intros; subst; try solve [inversion Heqt]. - inversion Heqt. subst. apply* has_var. - eapply has_sub. eapply IHtyping; eauto. assumption. Qed. Lemma val_typing_has: forall E u Q, value u -> typing E u Q -> has E u Q. Proof. introv Hv H. lets R: (typing_regular H). induction H; intros; subst; try solve [inversion Hv]. - apply* has_abs. - apply* has_mem. - apply* has_sub. Qed. Lemma sub_has_through_subst : (forall E0 S T, sub E0 S T -> forall Q E F Z u, E0 = (E & Z ~ Q & F) -> (value u \/ exists x, trm_fvar x = u) -> typing E u Q -> sub (E & map (subst_t Z u) F) (subst_t Z u S) (subst_t Z u T)) /\ (forall E0 p T, has E0 p T -> forall Q E F Z u, E0 = (E & Z ~ Q & F) -> (value u \/ exists x, trm_fvar x = u) -> typing E u Q -> has (E & map (subst_t Z u) F) (subst_e Z u p) (subst_t Z u T)). Proof. apply sub_has_mutind; intros; subst; simpl. - apply* sub_bot. - apply* sub_top. - apply* sub_and11. - apply* sub_and12. - apply* sub_and2. - apply* sub_or21. - apply* sub_or22. - apply* sub_or1. - simpl. apply* sub_refl_sel. assert (typ_sel (subst_e Z u t) = subst_t Z u (typ_sel t)) as A by auto. rewrite A. auto*. - apply* sub_sel1. eapply H. reflexivity. auto. auto. - apply* sub_sel2. eapply H. reflexivity. auto. auto. - apply* sub_mem. - apply_fresh* sub_all as X. rewrite* subst_t_open_t_var. rewrite* subst_t_open_t_var. apply_ih_map_bind* H0. - apply* sub_trans. - case_var. + apply binds_middle_eq_inv in b; eauto. subst. destruct H0 as [H0 | [x H0]]. * apply_empty* has_weakening1. rewrite (proj1 subst_fresh). apply* val_typing_has. apply* (@notin_fv_wf E0). * subst. rewrite (proj1 subst_fresh). apply_empty* has_weakening1. apply var_typing_has. assumption. apply* (@notin_fv_wf E0). + destruct (binds_concat_inv b) as [?|[? ?]]. * eapply has_var. auto*. apply binds_concat_right. apply binds_map. eassumption. * applys has_var. apply* okt_subst. assert (T = subst_t Z u T) as B. { rewrite (proj1 subst_fresh). reflexivity. apply* (@notin_fv_wf E0). apply* wft_from_env_has. apply binds_concat_left_inv in H2. eassumption. auto*. } apply binds_concat_left. rewrite <- B. apply binds_concat_left_inv in H2. apply H2. auto*. auto*. - apply* has_mem. - apply* has_abs. assert (trm_abs (subst_t Z u V) (subst_e Z u e) = subst_e Z u (trm_abs V e)) as A by solve [simpl; reflexivity]. rewrite A. eapply (proj2 wf_subst); eauto. assert (typ_all (subst_t Z u V) (subst_t Z u T) = subst_t Z u (typ_all V T)) as B by solve [simpl; reflexivity]. rewrite B. apply* wft_subst. - apply* has_sub. Qed. (* ********************************************************************** *) (** * Properties of Typing *) (* ********************************************************************** *) (** Weakening (5) *) Lemma typing_weakening : forall E F G e T, typing (E & G) e T -> okt (E & F & G) -> typing (E & F & G) e T. Proof. introv Typ. gen F. inductions Typ; introv Ok. apply* typing_var. apply* binds_weaken. apply_fresh* typing_abs as x. forwards~ K: (H x). apply_ih_bind (H0 x); eauto. apply* typing_mem. apply* typing_app. eapply typing_appvar; eauto. eapply (proj2 sub_has_weakening); eauto. apply* typing_sub. apply* sub_weakening. Qed. (************************************************************************ *) (** Preservation by Type Narrowing (7) *) Lemma typing_narrowing : forall Q E F X P e T, sub E P Q -> typing (E & X ~ Q & F) e T -> typing (E & X ~ P & F) e T. Proof. introv PsubQ Typ. gen_eq E': (E & X ~ Q & F). gen F. inductions Typ; introv EQ; subst; simpl. - binds_cases H0. + apply* typing_var. + subst. apply* typing_sub. apply* sub_weakening1. + apply* typing_var. - apply_fresh* typing_abs as y. apply_ih_bind* H0. - apply* typing_mem. apply* wft_narrow. - apply* typing_app. apply* wft_narrow. - apply* typing_appvar. apply* (proj2 sub_has_narrowing_aux). apply* wft_narrow. - apply* typing_sub. apply* (@sub_narrowing Q). Qed. Lemma typing_narrowing_empty : forall Q X P e T, sub empty P Q -> typing (X ~ Q) e T -> typing (X ~ P) e T. Proof. intros. rewrite <- (concat_empty_r (X ~ P)). rewrite <- (concat_empty_l (X ~ P)). eapply typing_narrowing; eauto. rewrite concat_empty_r. rewrite concat_empty_l. auto. Qed. (************************************************************************ *) (** Preservation by Substitution (8) *) Lemma typing_through_subst : forall U E F z T e u, typing (E & z ~ U & F) e T -> (value u \/ exists x, trm_fvar x = u) -> typing E u U -> typing (E & (map (subst_t z u) F)) (subst_e z u e) (subst_t z u T). Proof. introv TypT Hu TypU. inductions TypT; introv; subst; simpl. - case_var. + binds_get H0. rewrite (proj1 subst_fresh). apply_empty typing_weakening. assumption. apply* okt_subst. apply* (@notin_fv_wf E). + binds_cases H0. rewrite (proj1 subst_fresh). eapply typing_var; eauto. apply (@notin_fv_wf E). eapply wft_from_env_has. auto*. eapply B0. auto*. apply* typing_var. - apply_fresh* typing_abs as y. rewrite* subst_e_open_e_var. rewrite* subst_t_open_t_var. rewrite <- concat_assoc_map_push. eapply H0; eauto. rewrite concat_assoc. auto. - apply* typing_mem. - eapply typing_app. eapply IHTypT1; eauto. eapply IHTypT2; eauto. apply* wft_subst. - eapply typing_appvar. eapply IHTypT1; eauto. eapply IHTypT2; eauto. apply* (proj2 sub_has_through_subst). eapply subst_t_open_t. auto*. apply* wft_subst. - eapply typing_sub. eapply IHTypT; eauto. eapply (proj1 sub_has_through_subst); eauto. Qed. (* ********************************************************************** *) (** * Preservation *) (* ********************************************************************** *) (** Inversions for Typing (13) *) Inductive psub : typ -> typ -> Prop := | psub_bot : forall U, wft empty U -> psub typ_bot U | psub_top : forall S, wft empty S -> psub S typ_top | psub_and11 : forall T1 T2 T, wft empty T2 -> psub T1 T -> psub (typ_and T1 T2) T | psub_and12 : forall T1 T2 T, wft empty T1 -> psub T2 T -> psub (typ_and T1 T2) T | psub_and2 : forall T T1 T2, psub T T1 -> psub T T2 -> psub T (typ_and T1 T2) | psub_or21 : forall T T1 T2, wft empty T2 -> psub T T1 -> psub T (typ_or T1 T2) | psub_or22 : forall T T1 T2, wft empty T1 -> psub T T2 -> psub T (typ_or T1 T2) | psub_or1 : forall T1 T2 T, psub T1 T-> psub T2 T -> psub (typ_or T1 T2) T | psub_refl_sel : forall t, wft empty (typ_sel t) -> psub (typ_sel t) (typ_sel t) | psub_sel1 : forall U, wft empty U -> psub (typ_sel (trm_mem U)) U | psub_sel2 : forall S, wft empty S -> psub S (typ_sel (trm_mem S)) | psub_mem : forall S1 U1 S2 U2, psub S2 S1 -> psub U1 U2 -> psub (typ_mem S1 U1) (typ_mem S2 U2) | psub_all : forall L S1 S2 T1 T2, psub T1 S1 -> (forall x, x \notin L -> sub (x ~ T1) (S2 open_t_var x) (T2 open_t_var x)) -> psub (typ_all S1 S2) (typ_all T1 T2) | psub_trans : forall S T U, psub S T -> psub T U -> psub S U . Lemma has_empty_value: forall p T, has empty p T -> value p. Proof. intros. apply has_regular_e in H. destruct H as [[HV | [x Eq]] Hwf]. - assumption. - subst. inversion Hwf; subst. false. apply* binds_empty_inv. Qed. Hint Constructors psub. Lemma psub_sub: forall S T, psub S T -> sub empty S T. Proof. intros. induction H; eauto. - apply* sub_and11. - apply* sub_and12. - apply* sub_and2. - apply* sub_or21. - apply* sub_or22. - apply* sub_or1. - apply* sub_sel1. apply* has_mem. - apply* sub_sel2. apply* has_mem. - apply* sub_mem. - apply_fresh* sub_all as y. rewrite concat_empty_l. auto*. - eapply sub_trans; eauto. Qed. Inductive possible_types : nat -> trm -> typ -> Prop := | pt_top : forall n v, value v -> wfe empty v -> possible_types n v typ_top | pt_mem : forall n T S U, psub S T -> psub T U -> possible_types n (trm_mem T) (typ_mem S U) | pt_all : forall L n V V' e1 T1 T1', (forall X, X \notin L -> typing (X ~ V) (e1 open_e_var X) (T1 open_t_var X)) -> psub V' V -> (forall X, X \notin L -> sub (X ~ V') (T1 open_t_var X) (T1' open_t_var X)) -> possible_types (S n) (trm_abs V e1) (typ_all V' T1') | pt_all_shallow : forall V V' e1 T1', wfe empty (trm_abs V e1) -> wft empty (typ_all V' T1') -> possible_types 0 (trm_abs V e1) (typ_all V' T1') | pt_sel : forall n v S, possible_types n v S -> possible_types n v (typ_sel (trm_mem S)) | pt_and : forall n v T1 T2, possible_types n v T1 -> possible_types n v T2 -> possible_types n v (typ_and T1 T2) | pt_or1 : forall n v T1 T2, possible_types n v T1 -> wft empty T2 -> possible_types n v (typ_or T1 T2) | pt_or2 : forall n v T1 T2, possible_types n v T2 -> wft empty T1 -> possible_types n v (typ_or T1 T2) . Lemma possible_types_value : forall n p T, possible_types n p T -> value p. Proof. introv Hpt. induction Hpt; eauto. - apply psub_sub in H. auto*. - apply value_abs. apply_fresh* term_abs as y. apply psub_sub in H0. auto*. assert (y \notin L) as Fr by auto. specialize (H y Fr). apply typing_regular in H. destruct H as [? [A ?]]. apply* wfe_term. - apply value_abs. apply* wfe_term. Qed. Lemma possible_types_wfe : forall n p T, possible_types n p T -> wfe empty p. Proof. introv Hpt. induction Hpt; eauto. - apply psub_sub in H. auto*. - apply_fresh* wfe_abs as y. apply psub_sub in H0. auto*. assert (y \notin L) as FrL by auto. specialize (H y FrL). apply typing_regular in H. destruct H as [? [A ?]]. rewrite concat_empty_l. assumption. Qed. Lemma possible_types_wft : forall n p T, possible_types n p T -> wft empty T. Proof. introv Hpt. induction Hpt; eauto. - apply psub_sub in H. apply psub_sub in H0. apply* wft_mem. - apply_fresh* wft_all as y. apply psub_sub in H0. auto*. assert (y \notin L) as FrL by auto. specialize (H1 y FrL). apply sub_regular in H1. destruct H1 as [? [? A]]. rewrite concat_empty_l. assumption. - apply wft_sel. left. apply value_mem. apply* wfe_term. apply* wfe_mem. Grab Existential Variables. pick_fresh y. apply y. pick_fresh y. apply y. pick_fresh y. apply y. Qed. Lemma has_empty_var_false: forall x T, has empty (trm_fvar x) T -> False. Proof. intros. remember (trm_fvar x) as p. generalize dependent x. remember empty as E. gen HeqE. induction H; intros; subst; eauto. - apply* binds_empty_inv. - inversion Heqp. - inversion Heqp. Qed. Lemma possible_types_closure_psub : forall n v T U, possible_types n v T -> psub T U -> possible_types n v U. Proof. introv Hpt Hsub. generalize dependent v. induction Hsub; intros; subst; eauto. - inversion Hpt. - apply pt_top. apply* possible_types_value. apply* possible_types_wfe. - inversion Hpt; subst. apply IHHsub. assumption. - inversion Hpt; subst. apply IHHsub. assumption. - apply* pt_and. - apply* pt_or1. - apply* pt_or2. - inversion Hpt; subst. apply IHHsub1. assumption. apply IHHsub2. assumption. - inversion Hpt; subst. assumption. - apply* pt_sel. - inversion Hpt; subst. apply pt_mem. eapply psub_trans; eauto. eapply psub_trans; eauto. - inversion Hpt; subst. apply_fresh* pt_all as y. eapply sub_trans. eapply sub_narrowing_empty. eapply psub_sub. eassumption. auto*. auto*. apply pt_all_shallow; eauto. apply_fresh* wft_all as y. apply psub_sub in Hsub. auto*. rewrite concat_empty_l. assert (y \notin L) as Fr by auto. specialize (H y Fr). auto*. Qed. Lemma psub_reflexivity : forall T, wft empty T -> psub T T . Proof. introv WI. lets W: (wft_type WI). remember empty as E. gen E. induction W; intros; inversions WI; eauto 4. apply* psub_and2. apply* psub_or1. apply_fresh* psub_all as y. assert (y \notin L0)as Fr0 by auto. specialize (H5 y Fr0). rewrite concat_empty_l in H5. apply* sub_reflexivity. rewrite <- concat_empty_l. apply* okt_push. Qed. Lemma sub_psub_aux: (forall E S T, sub E S T -> E = empty -> psub S T) /\ (forall E p T, has E p T -> E = empty -> possible_types 0 p T). Proof. apply sub_has_mutind; intros; subst; eauto 4. - specialize (H eq_refl). inversion H; subst. eapply psub_trans. eapply psub_sel1. apply psub_sub in H4. auto*. assumption. - specialize (H eq_refl). inversion H; subst. eapply psub_trans. eassumption. eapply psub_sel2. apply psub_sub in H4. auto*. - apply_fresh* psub_all as y. rewrite <- (@concat_empty_l typ (y ~ T1)). auto*. - false. apply* binds_empty_inv. - apply pt_mem; eauto. - apply* pt_all_shallow. - eapply possible_types_closure_psub; eauto. Qed. Lemma sub_psub: forall S T, sub empty S T -> psub S T. Proof. intros. apply* (proj1 sub_psub_aux). Qed. Lemma possible_types_closure : forall n v T U, possible_types n v T -> sub empty T U -> possible_types n v U. Proof. intros. eapply possible_types_closure_psub; eauto 4. apply* sub_psub. Qed. Lemma possible_types_typing : forall v T, typing empty v T -> value v -> possible_types 1 v T. Proof. introv Ht Hv. remember Ht as Hc. clear HeqHc. remember empty as E. generalize HeqE. generalize Hc. induction Ht; intros; subst; eauto; try solve [inversion Hv]. - eapply typing_regular in Hc. destruct Hc as [? [? Hc]]. inversion Hc; subst. apply_fresh pt_all as Y. assert (Y \notin L) as Fr by eauto. specialize (H Y Fr). rewrite concat_empty_l in H. eapply H. eapply psub_reflexivity; eauto. eapply sub_reflexivity; eauto. rewrite <- concat_empty_l. eauto. assert (Y \notin L0) as Fr by eauto. specialize (H7 Y Fr). rewrite concat_empty_l in H7. eapply H7. - apply pt_mem. apply* psub_reflexivity. apply* psub_reflexivity. - eapply possible_types_closure; eauto. Qed. Lemma typing_inv_abs : forall S1 e1 T, typing empty (trm_abs S1 e1) T -> forall U1 U2, sub empty T (typ_all U1 U2) -> sub empty U1 S1 /\ exists S2, exists L, forall x, x \notin L -> typing (x ~ S1) (e1 open_e_var x) (S2 open_t_var x) /\ sub (x ~ U1) (S2 open_t_var x) (U2 open_t_var x). Proof. introv Typ Hsub. apply possible_types_typing in Typ; eauto. assert (possible_types 1 (trm_abs S1 e1) (typ_all U1 U2)) as Hc. { eapply possible_types_closure; eauto. } inversion Hc; subst. repeat eexists; eauto. apply* psub_sub. Qed. (** Canonical Forms (14) *) Lemma canonical_form_abs : forall t U1 U2, value t -> typing empty t (typ_all U1 U2) -> exists V, exists e1, t = trm_abs V e1. Proof. introv Val Typ. eapply possible_types_typing in Typ; eauto. inversion Typ; subst; eauto. Qed. Lemma canonical_form_mem : forall t b T, value t -> typing empty t (typ_mem b T) -> exists V, t = trm_mem V. Proof. introv Val Typ. eapply possible_types_typing in Typ; eauto. inversion Typ; subst; eauto. Qed. Lemma typing_through_subst1 : forall V y v e T, typing (y ~ V) e T -> value v -> typing empty v V -> typing empty (subst_e y v e) (subst_t y v T). Proof. intros. assert (empty & map (subst_t y v) empty = empty) as A. { rewrite concat_empty_l. rewrite map_empty. reflexivity. } rewrite <- A. eapply typing_through_subst. rewrite concat_empty_l. rewrite concat_empty_r. eauto. left. assumption. assumption. Qed. (* ********************************************************************** *) (** Preservation Result (20) *) Lemma value_red_contra: forall e e', value e -> red e e' -> False. Proof. introv Hv Hr. inversion Hv; subst; inversion Hr; subst; eauto. Qed. Lemma preservation_result : preservation. Proof. introv Typ. gen_eq E: (@empty typ). gen e'. induction Typ; introv QEQ; introv Red; try solve [inversion Typ; congruence]; try solve [ inversion Red ]. - (* case: app *) inversions Red; try solve [ apply* typing_app ]. destruct~ (typing_inv_abs Typ1 (U1:=T1) (U2:=T2)) as [P1 [S2 [L P2]]]. apply* sub_reflexivity. pick_fresh X. forwards~ K: (P2 X). destruct K. rewrite* (@subst_e_intro X). erewrite <- (proj1 subst_fresh). eapply typing_through_subst1. eapply typing_sub. eapply typing_narrowing_empty. eapply P1. eassumption. rewrite <- (@open_t_var_type X). assert (X \notin L) as FrL by auto. specialize (P2 X FrL). destruct P2 as [P2t P2s]. eassumption. apply* wft_type. assumption. assumption. auto*. - (* case: appvar *) inversions Red; try solve [ apply* typing_appvar ]. lets HV2: (has_empty_value H). false. eapply value_red_contra in HV2; eauto. destruct~ (typing_inv_abs Typ1 (U1:=T1) (U2:=T2)) as [P1 [S2 [L P2]]]. apply* sub_reflexivity. pick_fresh X. forwards~ K: (P2 X). destruct K. rewrite* (@subst_t_intro X). rewrite* (@subst_e_intro X). eapply typing_through_subst1. eapply typing_sub. eapply typing_narrowing_empty. eapply P1. eassumption. assert (X \notin L) as FrL by auto. specialize (P2 X FrL). destruct P2 as [P2t P2s]. eassumption. assumption. assumption. - (* case sub *) apply* typing_sub. Qed. (* ********************************************************************** *) (** * Progress *) (* ********************************************************************** *) (* ********************************************************************** *) (** Progress Result (16) *) Lemma progress_result : progress. Proof. introv Typ. gen_eq E: (@empty typ). lets Typ': Typ. induction Typ; intros EQ; subst. - (* case: var *) false* binds_empty_inv. - (* case: abs *) left*. - (* case: mem *) left*. - (* case: app *) right. destruct* IHTyp1 as [Val1 | [e1' Rede1']]. destruct* IHTyp2 as [Val2 | [e2' Rede2']]. destruct (canonical_form_abs Val1 Typ1) as [S [e3 EQ]]. subst. exists* (open_e e3 e2). - (* case: appvar *) right. destruct* IHTyp1 as [Val1 | [e1' Rede1']]. destruct* IHTyp2 as [Val2 | [e2' Rede2']]. destruct (canonical_form_abs Val1 Typ1) as [S [e3 EQ]]. subst. exists* (open_e e3 e2). - (* case: sub *) auto*. Qed.
!! these functions could be implemented via C runtime library, !! but for speed/ease of implementation, for now we use !! compiler-specific intrinsic functions submodule (pathlib) pathlib_gcc implicit none (type, external) contains module procedure cwd integer :: i character(4096) :: work i = getcwd(work) if(i /= 0) error stop "could not get CWD" cwd = trim(work) end procedure cwd module procedure is_dir integer :: i, statb(13) character(:), allocatable :: wk wk = expanduser(path) !! must not have trailing slash on Windows i = len_trim(wk) if (wk(i:i) == '/') wk = wk(1:i-1) inquire(file=wk, exist=is_dir) if(.not.is_dir) return i = stat(wk, statb) if(i /= 0) then is_dir = .false. return endif i = iand(statb(3), O'0040000') is_dir = i == 16384 ! print '(O8)', statb(3) end procedure is_dir module procedure size_bytes character(:), allocatable :: wk integer :: s(13), i size_bytes = 0 wk = expanduser(path) i = stat(wk, s) if(i /= 0) then write(stderr,*) "size_bytes: could not stat file: ", wk return endif if (iand(s(3), O'0040000') == 16384) then write(stderr,*) "size_bytes: is a directory: ", wk return endif size_bytes = s(8) end procedure size_bytes module procedure is_exe character(:), allocatable :: wk integer :: s(13), iu, ig, i is_exe = .false. wk = expanduser(path) i = stat(wk, s) if(i /= 0) then write(stderr,*) "is_exe: could not stat file: ", wk return endif if (iand(s(3), O'0040000') == 16384) then write(stderr,*) "is_exe: is a directory: ", wk return endif iu = iand(s(3), O'0000100') ig = iand(s(3), O'0000010') is_exe = (iu == 64 .or. ig == 8) end procedure is_exe end submodule pathlib_gcc
module ModSizeGitm integer, parameter :: nLons = 10 integer, parameter :: nLats = 10 integer, parameter :: nAlts = 50 integer, parameter :: nBlocksMax = 4 integer :: nBlocks end module ModSizeGitm
(** * MoreCoq: Mas Sobre Coq *) Require Export Poly. (** Este capitulo introduce varias tacticas que, en conjunto, nos ayudan a demostrar muchos teoremas sobre los programas funcionales que estuvimos escribiendo. *) (* ###################################################### *) (** * La Tactica [apply] *) (** Usualmente nos encontramos en situaciones en que el objetivo a ser demostrado es exactamente lo mismo que alguna hipotesis en el contexto o un lema previo. *) Theorem silly1 : forall (n m o p : nat), n = m -> [n;o] = [n;p] -> [n;o] = [m;p]. Proof. intros n m o p eq1 eq2. rewrite <- eq1. (* En este punto, podemos concluir con "[rewrite -> eq2. reflexivity.]" como hemos hecho varias veces anteriormente. Pero podemos lograr lo mismo en un solo paso usando la tactica [apply]: *) apply eq2. Qed. (** La tactica [apply] tambien funciona con hipotesis _condicionales_ y lemas: si el lema siendo aplicado es una implicacion, entonces las premisas de esta implicacion van a ser agregadas a nuestra lista de sub-objetivos a demostrar. *) Theorem silly2 : forall (n m o p : nat), n = m -> (forall (q r : nat), q = r -> [q;o] = [r;p]) -> [n;o] = [m;p]. Proof. intros n m o p eq1 eq2. apply eq2. apply eq1. Qed. (** Puede encontrar instructivo experimentar con esta prueba y ver si existe forma de utilizar [rewrite] para resolverla, en vez de [apply]. *) (** Tipicamente, cuando usamos [apply H], el lema (o hipotesis) [H] va a comenzar con un ligador [forall] ligando _variables universales_. Cuando Coq "matchea" (unifica) el objetivo actual contra la conclusion de [H], va a intentar encontrar valores apropiados para estas variables. Por ejemplo, cuando hacemos [apply eq2] en la siguente prueba, la variable universal [q] en [eq2] es instanciada con [n] y [r] es instanciada con [m]. *) Theorem silly2a : forall (n m : nat), (n,n) = (m,m) -> (forall (q r : nat), (q,q) = (r,r) -> [q] = [r]) -> [n] = [m]. Proof. intros n m eq1 eq2. apply eq2. apply eq1. Qed. (** **** Ejercicio: 2 stars, opcional (silly_ex) *) (** Complete la siguiente prueba sin utilizar [simpl]. *) Theorem silly_ex : (forall n, evenb n = true -> oddb (S n) = true) -> evenb 3 = true -> oddb 4 = true. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Para usar la tactica [apply], la (conclusion del) lema siendo aplicado tiene que matchear el objetivo _exactamente_ -- por ejemplo, [apply] no va a funcionar si el lado izquierdo y el lado derecho de la igualdad estan intercambiados. *) Theorem silly3_firsttry : forall (n : nat), true = beq_nat n 5 -> beq_nat (S (S n)) 7 = true. Proof. intros n H. simpl. (* Aqui no podemos utilizar la tactica [apply] directamente *) Abort. (** En este caso podemos utilizar la tactica [symmetry], que intercambia los lados izquierdo y derecho de una igualdad en el objetivo. *) Theorem silly3 : forall (n : nat), true = beq_nat n 5 -> beq_nat (S (S n)) 7 = true. Proof. intros n H. symmetry. simpl. (* De hecho, este [simpl] no es necesario, puesto que [apply] hace un paso de [simpl] primero. *) apply H. Qed. (** **** Ejercicio: 3 stars (apply_exercise1) *) (** Ayuda: usted puede usar [apply] con lemas definidos previamente, no solo hipotesis en el contexto. Recuerde que [SearchAbout] es su amigo! *) Theorem rev_exercise1 : forall (l l' : list nat), l = rev l' -> l' = rev l. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 1 star, optional (apply_rewrite) *) (** Explique brevemente la diferencia entre las tacticas [apply] y [rewrite]. Hay situaciones en las que ambas puedan ser exitosamente aplicadas? (* FILL IN HERE *) *) (** [] *) (* ###################################################### *) (** * La Tactica [apply ... with ...] *) (** El siguiente ejemplo tonto utiliza dos rewrites seguidos para ir de [[a,b]] a [[e,f]]. *) Example trans_eq_example : forall (a b c d e f : nat), [a;b] = [c;d] -> [c;d] = [e;f] -> [a;b] = [e;f]. Proof. intros a b c d e f eq1 eq2. rewrite -> eq1. rewrite -> eq2. reflexivity. Qed. (** Como es comun tener este tipo de situaciones, podemos abstraer en un lema el hecho de que la igualdad es transitiva. *) Theorem trans_eq : forall (X:Type) (n m o : X), n = m -> m = o -> n = o. Proof. intros X n m o eq1 eq2. rewrite -> eq1. rewrite -> eq2. reflexivity. Qed. (** Ahora, deberiamos poder utilizar [trans_eq] para provar el ejemplo de mas arriba. Sin embargo, para hacer esto necesitamos una pequenia variacion de la tactica [apply]. *) Example trans_eq_example' : forall (a b c d e f : nat), [a;b] = [c;d] -> [c;d] = [e;f] -> [a;b] = [e;f]. Proof. intros a b c d e f eq1 eq2. (* Si le decimos a Coq simplemente [apply trans_eq] en este punto, puede deducir (mediante el matcheo del objetivo con la conclusion del lema) que debe instanciar [X] con [[nat]], [n] con [[a,b]], y [o] con [[e,f]]. Sin embargo, el proceso de matcheo no determina una instanciacion para [m]: tenemos que suplir uno explicitamnete agregando [with (m:=[c,d])] a la invocacion de [apply]. *) apply trans_eq with (m:=[c;d]). apply eq1. apply eq2. Qed. (** De hecho, usualmente no tenemos que incluir el nombre [m] en la clausula [with]; Coq es muchas veces inteligente y puede darse cuenta de que instanciacion estamos proveyendo. Podemos escribir entonces: [apply trans_eq with [c,d]]. *) (** **** Ejercicio: 3 stars, opcional (apply_with_exercise) *) Example trans_eq_exercise : forall (n m o p : nat), m = (minustwo o) -> (n + p) = m -> (n + p) = (minustwo o). Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################### *) (** * La Tactica [inversion] *) (** Recuerde la definicion de numeros naturales: Inductive nat : Type := | O : nat | S : nat -> nat. Es claro de esta definicion que cada numero tiene una de dos formas: o es el constructor [O] o esta construido a partir de aplicar el constructor [S] a otro numero. Pero hay mas aqui que lo que el ojo puede ver: implicito en esta definicion (y en nuestra forma de entender informalmente como las declaraciones de tipo funcionan en otros lenguajes de programacion) tambien hay otros dos hechos: - El constructor [S] es _inyectivo_. Es decir, la unica forma de tener [S n = S m] es si [n = m]. - Los constructores [O] y [S] son _disjuntos_. Es decir, [O] no es igual a [S n] para ningun [n]. *) (** Principios similares se aplican a todos los tipos definidos inductivamente: todos los constructores son inyectivos, y los valores construidos con distintos constructores son diferentes. Para listas, el constructor [cons] es inyectivo y [nil] es diferente de cualquier lista no vacia. Para booleanos, [true] and [false] son diferentes. (Como [true] y [false] no toman ningun argumento, su inyectividad es irrelevante). *) (** Coq provee una tactica llamada [inversion] que nos permite explotar estos principios en una prueba. La tactica [inversion] es usada de la siguiente forma. Suponga que [H] es una hipotesis en el context (o un lema ya establecido) de la forma c a1 a2 ... an = d b1 b2 ... bm para dos constructores [c] y [d] y argumentos [a1 ... an] y [b1 ... bm]. Entonces [inversion H] instruye a Coq a "invertir" esta igualdad para extraer la informacion que contiene acerca de estos terminos: - Si [c] y [d] son el mismo constructor, entonces sabemos, por el principio de inyectividad de este constructor, que [a1 = b1], [a2 = b2], etc.; [inversion H] agrega estos conocimientos al contexto, e intenta utilizarlos para reescribir el objetivo. - Si [c] y [d] son constructores diferentes, entonces la hipotesis [H] es contradictoria. Es decir, una premisa falsa ha aparecido en nuestro contexto, y esto significa que cualquier objetivo es demostrable! En este caso, [inversion H] marca el objetivo actual como completo y lo saca del stack de objetivos por resolver. *) (** Posiblemente la tactica [inversion] sea mas facil de entender viendola en accion que en descripciones generales como la de arriba. Abajo va a encontrar ejemplos de teoremas que muestran el uso de [inversion] y ejercicios para probar su entendimiento. *) Theorem eq_add_S : forall (n m : nat), S n = S m -> n = m. Proof. intros n m eq. inversion eq. reflexivity. Qed. Theorem silly4 : forall (n m : nat), [n] = [m] -> n = m. Proof. intros n o eq. inversion eq. reflexivity. Qed. (** Como conveniencia, la tactica [inversion] tambien puede destruir igualdades entre valores complejos, ligando multiples variables a la vez. *) Theorem silly5 : forall (n m o : nat), [n;m] = [o;o] -> [n] = [m]. Proof. intros n m o eq. inversion eq. reflexivity. Qed. (** **** Ejercicio: 1 star (sillyex1) *) Example sillyex1 : forall (X : Type) (x y z : X) (l j : list X), x :: y :: l = z :: j -> y :: l = x :: j -> x = y. Proof. (* FILL IN HERE *) Admitted. (** [] *) Theorem silly6 : forall (n : nat), S n = O -> 2 + 2 = 5. Proof. intros n contra. inversion contra. Qed. Theorem silly7 : forall (n m : nat), false = true -> [n] = [m]. Proof. intros n m contra. inversion contra. Qed. (** **** Ejercicio: 1 star (sillyex2) *) Example sillyex2 : forall (X : Type) (x y z : X) (l j : list X), x :: y :: l = [] -> y :: l = z :: j -> x = z. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** Mientras que la inyectividad de los constructores nos permite razonar acerca de [forall (n m : nat), S n = S m -> n = m], la direccion inversa de la implicacion es una instancia de un caso mas general acerca de constructores y funciones, que vamos a encontrar util: *) Theorem f_equal : forall (A B : Type) (f: A -> B) (x y: A), x = y -> f x = f y. Proof. intros A B f x y eq. rewrite eq. reflexivity. Qed. (** Aqui hay otro ejemplo de [inversion]. Este ejemplo es una modificacion de lo que probamos arriba. Las igualdades extras nos forzan a hacer un poco de razonamiento ecuacional y ejercitar las tacticas que vimos recientemente. *) Theorem length_snoc' : forall (X : Type) (v : X) (l : list X) (n : nat), length l = n -> length (snoc l v) = S n. Proof. intros X v l. induction l as [| v' l']. Case "l = []". intros n eq. rewrite <- eq. reflexivity. Case "l = v' :: l'". intros n eq. simpl. destruct n as [| n']. SCase "n = 0". inversion eq. SCase "n = S n'". apply f_equal. apply IHl'. inversion eq. reflexivity. Qed. (** **** Ejercicio: 2 stars, opcional (practice) *) (** Un par de ejemplos no triviales pero tampoco tan complicados para ejercitar estos conceptos. Pueden requerir lemas ya provados anteriormente. *) Theorem beq_nat_0_l : forall n, beq_nat 0 n = true -> n = 0. Proof. (* FILL IN HERE *) Admitted. Theorem beq_nat_0_r : forall n, beq_nat n 0 = true -> n = 0. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################### *) (** * Usando Tacticas en las Hipotesis *) (** Por defecto, la mayoria de las tacticas funcionan en el objetivo y dejan el contexto sin cambiar. Sin embargo, la mayoria de las tacticas tambien tienen una variante que realiza una operacion similar en una premisa del contexto. Por ejemplo, la tactica [simpl in H] realiza una simplificaion en la hipotesis llamada [H] en el contexto. *) Theorem S_inj : forall (n m : nat) (b : bool), beq_nat (S n) (S m) = b -> beq_nat n m = b. Proof. intros n m b H. simpl in H. apply H. Qed. (** De forma similar, la tactica [apply L in H] matchea algun lema o hipotesis condicional [L] (de la forma [L1 -> L2], digamos) contra una hipotesis [H] en el contexto. Sin embargo, a diferencia del [apply] ordinario (que reescribe el objetivo matcheando [L2] en el sub-objetivo [L1]), [apply L in H] matchea [H] contra [L1] y, si es exitoso, lo reemplaza con [L2]. En otras palabras, [apply L in H] nos da una forma de "razonamiento hacia adelante" -- de [L1 -> L2] y una hipotesis matcheando [L1], nos da una hipotesis matcheando [L2]. En contraste, [apply L] es "razonamiento hacia atras" -- dice que si sabemos [L1->L2] y queremos probar [L2], es suficiente con probar [L1]. Aqui hay una variante de una prueba de arriba, usando razonamiento hacia adelante en toda la prueba, en vez de hacia atras. *) Theorem silly3' : forall (n : nat), (beq_nat n 5 = true -> beq_nat (S (S n)) 7 = true) -> true = beq_nat n 5 -> true = beq_nat (S (S n)) 7. Proof. intros n eq H. symmetry in H. apply eq in H. symmetry in H. apply H. Qed. (** El razonamiento hacia adelante empieza desde lo que esta _dado_ (las premisas, teoremas provados anteriormente), e iterativamente obtiene conclusiones desde ellos hasta que el objetivo es encontrado. El razonamiento hacia atras empieza desde el _objetivo_, e iterativamente razona acerca que puede implicar el objetivo, hasta llegar a las premisas o teoremas existentes. Si usted ha visto pruebas informales antes (por ejemplo, en matematica o en una clase de ciencias de la computacion), probablemente hayan utilizado razonamiento hacia adelante. En general, Coq tiende a favorecer razonamiento hacia atras, pero en algunas situaciones el estilo de razonamiento hacia adelante puede ser mas facil de usar o de pensar. *) (** **** Ejercicio: 3 stars (plus_n_n_injective) *) (** Practique utilizando variantes de "in" en este ejercicio. *) Theorem plus_n_n_injective : forall n m, n + n = m + m -> n = m. Proof. intros n. induction n as [| n']. (* Ayuda: utilice el lema plus_n_Sm *) (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################### *) (** * Variando la Hipotesis Inductiva *) (** A veces es importante controlar la forma exacta de la hipotesis inductiva. En particular, necesitamos ser cuidadosos acerca de que premisas movemos del objetivo al contexto (usando [intros]) antes de invocar la tactica [induction]. Por ejemplo, suponga que queremos mostrar que la funcion [double] es inyectiva -- es decir, que siempre mapea diferentes argumentos a diferentes resultados: Theorem double_injective: forall n m, double n = double m -> n = m. La forma que _empezamos_ esta demostracion es un poco delicada: si comenzamos con [intros n. induction n.] todo va bien. Pero si comenzamos con [intros n m. induction n.] nos quedamos estancados en el medio del caso inductivo... *) Theorem double_injective_FAILED : forall n m, double n = double m -> n = m. Proof. intros n m. induction n as [| n']. Case "n = O". simpl. intros eq. destruct m as [| m']. SCase "m = O". reflexivity. SCase "m = S m'". inversion eq. Case "n = S n'". intros eq. destruct m as [| m']. SCase "m = O". inversion eq. SCase "m = S m'". apply f_equal. (* Aqui estamos estancados. La hipotesis inductiva, [IHn'], nos da [n' = m'] -- hay un extra [S] en el camino -- asi que este objetivo no es demostrable. *) Abort. (** Que salio mal? *) (** El problema es que, en el punto en que invocamos la hipotesis inductiva, ya hemos introducido [m] en el contexto -- intuitivamente le dijimos a Coq "Consideremos unos [n] y [m] particulares..." y ahora vamos a demostrar que, si [double n = double m] para _este [n] y [m] en particular_, entonces [n = m]. La siguiente tactica, [induction n], le dice a Coq: Ahora vamos a mostrar el objetivo por induccion en [n]. Es decir, vamos a provar que la proposicion - [P n] = "si [double n = double m], entonces [n = m]" vale para todo [n] mostrando - [P O] (es decir, "si [double O = double m] entonces [O = m]") - [P n -> P (S n)] (es decir, "si [double n = double m] entonces [n = m]" implica "si [double (S n) = double m] entonces [S n = m]"). Si miramos en detalle al segundo objetivo, esta diciendo algo un poco extranio: dice que, para un [m] _en particular_, si sabemos - "si [double n = double m] entonces [n = m]" podemos probar - "si [double (S n) = double m] entonces [S n = m]". Para ver porque esto es extranio, pensemos en un [m] particular -- digamos, [5]. Este objetivo dice que, si sabemos - [Q] = "si [double n = 10] entonces [n = 5]" entonces podemos probar - [R] = "si [double (S n) = 10] entonces [S n = 5]". Pero sabiendo [Q] no nos ayuda a probar [R]! (Si intentaramos probar [R] a partir de [Q], deberiamos decir algo como "Suponga [double (S n) = 10]..." pero entonces nos quedamos estancados: sabiendo que [double (S n)] is [10] no nos dice nada acerca de que [double n] es [10], asi que [Q] es inutil.) *) (** Para sumarizar: Intentar hacer esta prueba por induccion en [n] cuando [m] esta en el contexto no funciona porque estamos tratando de probar una relacion involucrando _todo_ [n] pero solo un _unico_ [m]. *) (** La prueba adecuada de [double_injective] deja [m] en el objetivo antes de invocar [induction] en [n]: *) Theorem double_injective : forall n m, double n = double m -> n = m. Proof. intros n. induction n as [| n']. Case "n = O". simpl. intros m eq. destruct m as [| m']. SCase "m = O". reflexivity. SCase "m = S m'". inversion eq. Case "n = S n'". (* Note que ahora el objetivo y la hipotesis inductiva cambiaron: el objetivo pide demostrar algo mas general (es decir, probar la propiedad para _todo_ [m]), pero la hipotesis inductiva es correspondientemente mas flexible, permitiendonos elegir cualquier [m] que queramos cuando la apliquemos. *) intros m eq. (* Ahora elegimos al [m] en particular e introducimos la premisa que [double n = double m]. Como estamos haciendo analisis por caso en [n], tenemos que hacer analisis por caso en [m] para mantener las dos "sincronizadas". *) destruct m as [| m']. SCase "m = O". (* El caso 0 es trivial *) inversion eq. SCase "m = S m'". apply f_equal. (* En este punto, como estamos en la segunda rama de [destruct m], la variable [m'] mencionada en el contexto en este punto es de hecho el predecesor de la que veniamos hablando. Y como ademas estamos la rama [S] de la induccion, esto es perfecto: si instanciamos la [m] generica de la hipotesis inductiva con el [m'] que estamos mencionando ahora (instanciacion hecha automaticamente por [apply]), entonces [IHn'] nos da exactamente lo que necesitamos para terminar la prueba. *) apply IHn'. inversion eq. reflexivity. Qed. (** Lo que esto nos ensenia es que tenemos que ser cuidadosos cuando usamos induccion para evitar caer en un caso muy especifico: Si estamos provando una propiedad en [n] y [m] por induccion en [n], tal vez sea una buena idea idea dejar [m] generica. *) (** La demostracion de este teorema tiene que ser tratada similarmente: *) (** **** Ejercicio: 2 stars (beq_nat_true) *) Theorem beq_nat_true : forall n m, beq_nat n m = true -> n = m. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 2 stars, avanzado (beq_nat_true_informal) *) (** De una prueba informal de [beq_nat_true], siendo tan explicita como se pueda acerca de los cuantificadores. *) (* FILL IN HERE *) (** [] *) (** La estrategia de hacer menos [intros] antes de una [induction] no funciona siempre; a veces se necesita hacer un pequenia _reorganizacion_ de las variabes cuantificadas. Suponga, por ejemplo, que quisieramos demostrar [double_injective] por induccion en [m] en vez de [n]. *) Theorem double_injective_take2_FAILED : forall n m, double n = double m -> n = m. Proof. intros n m. induction m as [| m']. Case "m = O". simpl. intros eq. destruct n as [| n']. SCase "n = O". reflexivity. SCase "n = S n'". inversion eq. Case "m = S m'". intros eq. destruct n as [| n']. SCase "n = O". inversion eq. SCase "n = S n'". apply f_equal. (* Estancados aca de nuevo, igual que antes. *) Abort. (** El problema es que, para acer induccion en [m], queremos pimero introducir [n]. (Si simplemente decimos [induction m] sin introducir nada antes, Coq va a introducir automaticamente [n] por nosotros!) *) (** Que podemos hacer con esto? Una posibilidad es reescribir el lema de forma que [m] sea cuantificada antes que [n]. Esto funciona, pero no es elegante: No queremos adaptar los lemas para satisfacer las necesidades de la estrategia de la prueba -- queremos especificarlo en la forma mas natural y comprensible. *) (** Lo que podemos hacer, en vez, es introducir todas las variables cuantificadas y luego _re-generalizar_ ona o mas variables, tomandolas del contexto y poniendolas de vuelta en el objetivo. La tactica [generalize dependent] hace esto. *) Theorem double_injective_take2 : forall n m, double n = double m -> n = m. Proof. intros n m. (* [n] y [m] estan las dos en el contexto *) generalize dependent n. (* Ahora [n] esta devuelta en el objetivo, y ahora podemos hacer induccion en [m] y obtener una HI suficientemente general. *) induction m as [| m']. Case "m = O". simpl. intros n eq. destruct n as [| n']. SCase "n = O". reflexivity. SCase "n = S n'". inversion eq. Case "m = S m'". intros n eq. destruct n as [| n']. SCase "n = O". inversion eq. SCase "n = S n'". apply f_equal. apply IHm'. inversion eq. reflexivity. Qed. (** Miremos a una prueba informal de este teorema. Note que la proposicion que provamos por induccion deja [n] cuantificado, correspondiendo al uso de [generalize dependent] en la prueba formal. _Teorema_: Para todos naturales [n] y [m], si [double n = double m], entonces [n = m]. _Demostracion_: Sea [m] un [nat]. Provamos por induccion en [m] que, para cualquier [n], si [double n = double m] entonces [n = m]. - Primero suponga [m = 0], y suponga que [n] es un numero tal que [double n = double m]. Debemos mostrar que [n = 0]. Como [m = 0], por definicion de [double] tenemos [double n = 0]. Tenemos que considerar dos casos para [n]. Si [n = 0] entonces ya esta, puesto que esto es lo que queriamos probar. En otro caso, si [n = S n'] para algun [n'], derivamos una contradiccion: por la definicion de [double] obtenemos que [double n = S (S (double n'))], pero esto contradice la premisa de que [double n = 0]. - En otro caso, suponga [m = S m'] y que [n] es, de vuelta, un number tal que [double n = double m]. Debemos mostrar que [n = S m'], con la hipotesis inductiva que para cualquier numero [s], si [double s = double m'] entonces [s = m']. Dado que [m = S m'] y la definicion de [double], tenemos que [double n = S (S (double m'))]. Hay dos casos que considerar para [n]. Si [n = 0], entonces por definicion [double n = 0], una contradiccion. Entonces, tenemos que asumir que [n = S n'] para algun [n'], y de vuelta por definicion de [double] tenemos [S (S (double n')) = S (S (double m'))], que por inversion implica [double n' = double m']. Instanciando la hipotesis inductiva con [n'] entonces nos permite concluir que [n' = m'], y en consecuencia, [S n' = S m']. Como [S n' = n] y [S m' = m], esto es justo lo que queriamos probar. [] *) (** **** Ejercicio: 3 stars (gen_dep_practice) *) (** Demuestre por induccion en [l]. *) Theorem index_after_last: forall (n : nat) (X : Type) (l : list X), length l = n -> index n l = None. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars, avanzado, opcional (index_after_last_informal) *) (** Escriba una prueba informal correspondiendo a su prueba de Coq de [index_after_last]: _Teorema_: Para todo conjunto [X], listas [l : list X], y numero [n], si [length l = n] entonces [index n l = None]. _Demostracion_: (* FILL IN HERE *) [] *) (** **** Ejercicio: 3 stars, opcional (gen_dep_practice_more) *) (** Demuestre lo siguiente por induccion en [l]. *) Theorem length_snoc''' : forall (n : nat) (X : Type) (v : X) (l : list X), length l = n -> length (snoc l v) = S n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars, opcional (app_length_cons) *) (** Demuestre esto por induccion en [l1], sin utilizar [app_length]. *) Theorem app_length_cons : forall (X : Type) (l1 l2 : list X) (x : X) (n : nat), length (l1 ++ (x :: l2)) = n -> S (length (l1 ++ l2)) = n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 4 stars, opcional (app_length_twice) *) (** Demuestre esto por induccion en [l], sin utilizar [app_length]. *) Theorem app_length_twice : forall (X:Type) (n:nat) (l:list X), length l = n -> length (l ++ l) = n + n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ###################################################### *) (** * Usando [destruct] en Expresiones Compuestas *) (** Vimos muchos ejemplos donde la tactica [destruct] es utilizada para realizar analisis por caso en el valor de una variable. Pero a veces necesitamos razonar por casos en el resultado de alguna _expresion_. Tambien podemos hacer esto con [destruct]. Aqui hay unos ejemplos: *) Definition sillyfun (n : nat) : bool := if beq_nat n 3 then false else if beq_nat n 5 then false else false. Theorem sillyfun_false : forall (n : nat), sillyfun n = false. Proof. intros n. unfold sillyfun. destruct (beq_nat n 3). Case "beq_nat n 3 = true". reflexivity. Case "beq_nat n 3 = false". destruct (beq_nat n 5). SCase "beq_nat n 5 = true". reflexivity. SCase "beq_nat n 5 = false". reflexivity. Qed. (** Luego de expandir (unfold) [sillyfun] en la definicion de arriba, nos encontramos con que estamos varados en [if (beq_nat n 3) then ... else ...]. Bueno, o [n] es igual a [3] o no lo es, asi que [destruct (beq_nat n 3)] nos permite razonar acerca de los dos casos. En general, la tactica [destruct] puede ser utilizada para realizar analisis por caso en los resultados de computaciones arbitrarias. Si [e] es una expresion cuyo tipo es algun tipo definido inductivamente [T], entonces, para cada constructor [c] de [T], [destruct e] genera un sub-objetivo en el cual todas las ocurrencias de [e] (en el objetivo y en el contexto) son reemplazadas por [c]. *) (** **** Ejercicio: 1 star (override_shadow) *) Theorem override_shadow : forall (X:Type) x1 x2 k1 k2 (f : nat->X), (override (override f k1 x2) k1 x1) k2 = (override f k1 x1) k2. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars, opcional (combine_split) *) (** Complete la demostracion de abajo *) Theorem combine_split : forall X Y (l : list (X * Y)) l1 l2, split l = (l1, l2) -> combine l1 l2 = l. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** A veces, haciendo un [destruct] en una expresion compuesta (una no-variable) puede borrar informacion que necesitamos para concluir la prueba. *) (** Por ejemplo, suponga que definimos la funcion [sillyfun1] de la siguiente forma: *) Definition sillyfun1 (n : nat) : bool := if beq_nat n 3 then true else if beq_nat n 5 then true else false. (** Y suponga que queremos convencer a Coq de la observacion bastante obvia que [sillyfun1 n] retorna [true] solo cuando [n] es impar. En analogia con las demostraciones que hicimos con [sillyfun] de arriba, es natural pensar la prueba de la siguiente manera: *) Theorem sillyfun1_odd_FAILED : forall (n : nat), sillyfun1 n = true -> oddb n = true. Proof. intros n eq. unfold sillyfun1 in eq. destruct (beq_nat n 3). (* stuck... *) Abort. (** Nos quedamos estancados en este punto porque el contexto no contiene suficiente informacion para probar el objetivo! El problema es que la sustitucion realizada por [destruct] es demasiado brutal -- tira todas las ocurrencias de [beq_nat n 3], pero a veces es necesario quedarnos con algun recuerdo de esta expresion y como ha sido destruida, porque debemos ser capaces de razonar que, en esta rama del analisis por caso, [beq_nat n 3 = true], y ergo debe ser que [n = 3], de lo cual concluimos que [n] es impar. Lo que realmente quisieramos es sustituir todas las ocurrencias de [beq_nat n 3], pero a la vez quedarnos con una ecuacion en el contexto que indique en que caso estamos. el modificador [_eqn:] (o simplemente [eqn:] en Coq 8.4) nos permite obtener esta ecuacion (con el nombre que querramos ponerle). *) Theorem sillyfun1_odd : forall (n : nat), sillyfun1 n = true -> oddb n = true. Proof. intros n eq. unfold sillyfun1 in eq. destruct (beq_nat n 3) as [] _eqn:Heqe3. (* Ahora estamos en el mismo punto en el que estabamos cuando nos quedamos estancados arriba, excepto que ahora tenemos lo que necesitamos para poder progresar en la demostracion. *) Case "e3 = true". apply beq_nat_true in Heqe3. rewrite -> Heqe3. reflexivity. Case "e3 = false". (* Cuando llegamos al segundo test de igualdad, podemos utilizar [_eqn:] de vuelta para poder concluir la prueba. *) destruct (beq_nat n 5) as [] _eqn:Heqe5. SCase "e5 = true". apply beq_nat_true in Heqe5. rewrite -> Heqe5. reflexivity. SCase "e5 = false". inversion eq. Qed. (** **** Ejercicio: 2 stars (destruct_eqn_practice) *) Theorem bool_fn_applied_thrice : forall (f : bool -> bool) (b : bool), f (f (f b)) = f b. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 2 stars (override_same) *) Theorem override_same : forall (X:Type) x1 k1 k2 (f : nat->X), f k1 = x1 -> (override f k1 x1) k2 = f k2. Proof. (* FILL IN HERE *) Admitted. (** [] *) (* ################################################################## *) (** * Resumen *) (** Ahora hemos visto una serie de tacticas fundamentales en Coq. Vamos a introducir algunas mas a medida que avanzemos en los capitulos, y mas adelante veremos algunas tacticas poderosas para _automatizar_ mucho del trabajo. Pero basicamente tenemos todo lo necesario para poder trabajar. Aqui estan las que hemos vistos: - [intros]: mueve las hipotesis/variables desde el objetivo al contexto. - [reflexivity]: concluye la demostracion cuando el objetivo es de la forma [e = e]. - [apply]: demuestra el objetivo utilizando una hipotesis, lema, o constructor. - [apply... in H]: aplica una hipotesis, lema, o constructor a otra hipotesis en el contexto (razonamiento hacia adelante). - [apply... with...]: explicita los valores especificos para las variables que no pueden ser determinadas por simple matcheo. - [simpl]: simplifica (reduce cuidadosamente) las computaciones en el objetivo... - [simpl in H]: ... on en una hipotesis. - [rewrite]: utiliza una premisa (o lema) de igualdad para reescribir el objetivo... - [rewrite ... in H]: ... o una hipotesis. - [symmetry]: cambia un objetivo de la forma [t=u] en [u=t]. - [symmetry in H]: cambia una hipotesis de la forma [t=u] en [u=t] - [unfold]: reemplaza la definicion de una constante en el objetivo... - [unfold... in H]: ... o en una hipotesis - [destruct... as...]: analiza por casos los valores de tipos definidos inductivamente. - [destruct... _eqn:...]: especifica el nombre de la ecuacion a ser agregada en el contexto, guardando el resultado del analisis por caso. - [induction... as...]: induccion en variables de un tipo inductivo. - [inversion]: razonamiento por inyectividad y distincion de constructores. - [assert (e) as H]: introduce un "lema local" [e] y lo llama [H]. - [generalize dependent x]: mueve la variable [x] (y todo lo que dependa de ella) desde el contexto hacia el objetivo. *) (* ###################################################### *) (** * Ejercicios Adicionales *) (** **** Ejercicio: 3 stars (beq_nat_sym) *) Theorem beq_nat_sym : forall (n m : nat), beq_nat n m = beq_nat m n. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars, avanzado, opcional (beq_nat_sym_informal) *) (** De una prueba informal a este lema que corresponda con la demostracion formal suya de arriba: Teorema: Para todos [nat]s [n] [m], [beq_nat n m = beq_nat m n]. Demostracion: (* FILL IN HERE *) [] *) (** **** Ejercicio: 3 stars, opcional (beq_nat_trans) *) Theorem beq_nat_trans : forall n m p, beq_nat n m = true -> beq_nat m p = true -> beq_nat n p = true. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars, avanzado (split_combine) *) (** Hemos demostrado que para todas las listas de pares, [combine] es el inverso de [split]. Como formalizaria el hecho de que [split] es el inverso de [combine]? Complete la definicion de [split_combine_statement] de abajo con una propiedad que estalece que [split] es el inverso de [combine]. Luego, pruebe que esta propiedad vale. (Asegurese de dejar su hipotesis inductiva general evitando introducir mas cosas que las necesarias. Ayuda: que propiedad necesita de [l1] y [l2] para [split] que haga cierto [combine l1 l2 = (l1,l2)]?) *) Definition split_combine_statement : Prop := (* FILL IN HERE *) admit. Theorem split_combine : split_combine_statement. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars (override_permute) *) Theorem override_permute : forall (X:Type) x1 x2 k1 k2 k3 (f : nat->X), beq_nat k2 k1 = false -> (override (override f k2 x2) k1 x1) k3 = (override (override f k1 x1) k2 x2) k3. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 3 stars, avanzado (filter_exercise) *) (** Este es un poco dificil. Preste atencion a la forma de su HI. *) Theorem filter_exercise : forall (X : Type) (test : X -> bool) (x : X) (l lf : list X), filter test l = x :: lf -> test x = true. Proof. (* FILL IN HERE *) Admitted. (** [] *) (** **** Ejercicio: 4 stars, avanzado (forall_exists_challenge) *) (** Defina dos [Fixpoints], [forallb] y [existsb]. El primero verifica que todo elemento de una lista dada satisfaga una predicado dado: forallb oddb [1;3;5;7;9] = true forallb negb [false;false] = true forallb evenb [0;2;4;5] = false forallb (beq_nat 5) [] = true El segundo verifica que existe al menos un elmento de la lista que satisfaga el predicado dado: existsb (beq_nat 5) [0;2;3;6] = false existsb (andb true) [true;true;false] = true existsb oddb [1;0;0;0;0;3] = true existsb evenb [] = false A continuacion, defina una version _no recursiva_ de [existsb] -- llamela [existsb'] -- usando [forallb] y [negb]. Demuestre que [existsb'] y [existsb] tienen el mismo comportamiento. *) (* FILL IN HERE *) (** [] *) (* $Date: 2013-07-17 16:19:11 -0400 (Wed, 17 Jul 2013) $ *)