text
stringlengths 0
3.34M
|
---|
module Main
%foreign "Dart:cantUseBool,lib.dart"
cantUseBool : Bool -> Int
main : IO ()
main = printLn (cantUseBool True)
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <php.h>
#include <cblas.h>
#include <lapacke.h>
#include "kernel/operators.h"
/**
* Matrix-matrix multiplication i.e. linear transformation of matrices A and B.
*
* @param return_value
* @param a
* @param b
*/
void tensor_matmul(zval * return_value, zval * a, zval * b)
{
unsigned int i, j;
Bucket * row;
zval rowC, c;
zend_array * aa = Z_ARR_P(a);
zend_array * ab = Z_ARR_P(b);
Bucket * ba = aa->arData;
Bucket * bb = ab->arData;
unsigned int m = zend_array_count(aa);
unsigned int p = zend_array_count(ab);
unsigned int n = zend_array_count(Z_ARR(bb[0].val));
double * va = emalloc(m * p * sizeof(double));
double * vb = emalloc(n * p * sizeof(double));
double * vc = emalloc(m * n * sizeof(double));
for (i = 0; i < m; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < p; ++j) {
va[i * p + j] = zephir_get_doubleval(&row[j].val);
}
}
for (i = 0; i < p; ++i) {
row = Z_ARR(bb[i].val)->arData;
for (j = 0; j < n; ++j) {
vb[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, 1.0, va, p, vb, n, 0.0, vc, n);
array_init_size(&c, m);
for (i = 0; i < m; ++i) {
array_init_size(&rowC, n);
for (j = 0; j < n; ++j) {
add_next_index_double(&rowC, vc[i * n + j]);
}
add_next_index_zval(&c, &rowC);
}
RETVAL_ARR(Z_ARR(c));
efree(va);
efree(vb);
efree(vc);
}
/**
* Dot product between vectors A and B.
*
* @param return_value
* @param a
* @param b
*/
void tensor_dot(zval * return_value, zval * a, zval * b)
{
unsigned int i;
zend_array * aa = Z_ARR_P(a);
zend_array * ab = Z_ARR_P(b);
Bucket * ba = aa->arData;
Bucket * bb = ab->arData;
unsigned int n = zend_array_count(aa);
double sigma = 0.0;
for (i = 0; i < n; ++i) {
sigma += zephir_get_doubleval(&ba[i].val) * zephir_get_doubleval(&bb[i].val);
}
RETVAL_DOUBLE(sigma);
}
/**
* Return the multiplicative inverse of a square matrix A.
*
* @param return_value
* @param a
*/
void tensor_inverse(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval rowB, b;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int n = zend_array_count(aa);
double * va = emalloc(n * n * sizeof(double));
int * pivots = emalloc(n * sizeof(int));
for (i = 0; i < n; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status;
status = LAPACKE_dgetrf(LAPACK_ROW_MAJOR, n, n, va, n, pivots);
if (status != 0) {
RETURN_NULL();
}
status = LAPACKE_dgetri(LAPACK_ROW_MAJOR, n, va, n, pivots);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&b, n);
for (i = 0; i < n; ++i) {
array_init_size(&rowB, n);
for (j = 0; j < n; ++j) {
add_next_index_double(&rowB, va[i * n + j]);
}
add_next_index_zval(&b, &rowB);
}
RETVAL_ARR(Z_ARR(b));
efree(va);
efree(pivots);
}
/**
* Return the (Moore-Penrose) pseudoinverse of a general matrix A.
*
* @param return_value
* @param a
*/
void tensor_pseudoinverse(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval b, rowB;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int m = zend_array_count(aa);
unsigned int n = zend_array_count(Z_ARR(ba[0].val));
unsigned int k = MIN(m, n);
double * va = emalloc(m * n * sizeof(double));
double * vu = emalloc(m * m * sizeof(double));
double * vs = emalloc(k * sizeof(double));
double * vvt = emalloc(n * n * sizeof(double));
double * vb = emalloc(n * m * sizeof(double));
for (i = 0; i < m; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dgesdd(LAPACK_ROW_MAJOR, 'A', m, n, va, n, vs, vu, m, vvt, n);
if (status != 0) {
RETURN_NULL();
}
for (i = 0; i < k; ++i) {
cblas_dscal(m, 1.0 / vs[i], &vu[i], m);
}
cblas_dgemm(CblasRowMajor, CblasTrans, CblasTrans, n, m, m, 1.0, vvt, n, vu, m, 0.0, vb, m);
array_init_size(&b, n);
for (i = 0; i < n; ++i) {
array_init_size(&rowB, m);
for (j = 0; j < m; ++j) {
add_next_index_double(&rowB, vb[i * m + j]);
}
add_next_index_zval(&b, &rowB);
}
RETVAL_ARR(Z_ARR(b));
efree(va);
efree(vu);
efree(vs);
efree(vvt);
efree(vb);
}
/**
* Return the row echelon form of matrix A.
*
* @param return_value
* @param a
*/
void tensor_ref(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval rowB, b;
zval tuple;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int m = zend_array_count(aa);
unsigned int n = zend_array_count(Z_ARR(ba[0].val));
double * va = emalloc(m * n * sizeof(double));
int * pivots = emalloc(MIN(m, n) * sizeof(int));
for (i = 0; i < m; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dgetrf(LAPACK_ROW_MAJOR, m, n, va, n, pivots);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&b, m);
long swaps = 0;
for (i = 0; i < m; ++i) {
array_init_size(&rowB, n);
for (j = 0; j < i; ++j) {
add_next_index_double(&rowB, 0.0);
}
for (j = i; j < n; ++j) {
add_next_index_double(&rowB, va[i * n + j]);
}
add_next_index_zval(&b, &rowB);
if (i + 1 != pivots[i]) {
++swaps;
}
}
array_init_size(&tuple, 2);
add_next_index_zval(&tuple, &b);
add_next_index_long(&tuple, swaps);
RETVAL_ARR(Z_ARR(tuple));
efree(va);
efree(pivots);
}
/**
* Compute the Cholesky decomposition of matrix A and return the lower triangular matrix.
*
* @param return_value
* @param a
*/
void tensor_cholesky(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval rowB, b;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int n = zend_array_count(aa);
double * va = emalloc(n * n * sizeof(double));
for (i = 0; i < n; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dpotrf(LAPACK_ROW_MAJOR, 'L', n, va, n);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&b, n);
for (i = 0; i < n; ++i) {
array_init_size(&rowB, n);
for (j = 0; j <= i; ++j) {
add_next_index_double(&rowB, va[i * n + j]);
}
for (j = i + 1; j < n; ++j) {
add_next_index_double(&rowB, 0.0);
}
add_next_index_zval(&b, &rowB);
}
RETVAL_ARR(Z_ARR(b));
efree(va);
}
/**
* Compute the LU factorization of matrix A and return a tuple with lower, upper, and permutation matrices.
*
* @param return_value
* @param a
*/
void tensor_lu(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval rowL, l, rowU, u, rowP, p;
zval tuple;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int n = zend_array_count(aa);
double * va = emalloc(n * n * sizeof(double));
int * pivots = emalloc(n * sizeof(int));
for (i = 0; i < n; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dgetrf(LAPACK_ROW_MAJOR, n, n, va, n, pivots);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&l, n);
array_init_size(&u, n);
array_init_size(&p, n);
for (i = 0; i < n; ++i) {
array_init_size(&rowL, n);
for (j = 0; j < i; ++j) {
add_next_index_double(&rowL, va[i * n + j]);
}
add_next_index_double(&rowL, 1.0);
for (j = i + 1; j < n; ++j) {
add_next_index_double(&rowL, 0.0);
}
add_next_index_zval(&l, &rowL);
}
for (i = 0; i < n; ++i) {
array_init_size(&rowU, n);
for (j = 0; j < i; ++j) {
add_next_index_double(&rowU, 0.0);
}
for (j = i; j < n; ++j) {
add_next_index_double(&rowU, va[i * n + j]);
}
add_next_index_zval(&u, &rowU);
}
for (i = 0; i < n; ++i) {
array_init_size(&rowP, n);
for (j = 0; j < n; ++j) {
if (j == pivots[i] - 1) {
add_next_index_long(&rowP, 1);
} else {
add_next_index_long(&rowP, 0);
}
}
add_next_index_zval(&p, &rowP);
}
array_init_size(&tuple, 3);
add_next_index_zval(&tuple, &l);
add_next_index_zval(&tuple, &u);
add_next_index_zval(&tuple, &p);
RETVAL_ARR(Z_ARR(tuple));
efree(va);
efree(pivots);
}
/**
* Compute the eigendecomposition of a general matrix A and return the eigenvalues and eigenvectors in a tuple.
*
* @param return_value
* @param a
*/
void tensor_eig(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval eigenvalues;
zval eigenvectors;
zval eigenvector;
zval tuple;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int n = zend_array_count(aa);
double * va = emalloc(n * n * sizeof(double));
double * wr = emalloc(n * sizeof(double));
double * wi = emalloc(n * sizeof(double));
double * vr = emalloc(n * n * sizeof(double));
for (i = 0; i < n; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dgeev(LAPACK_ROW_MAJOR, 'N', 'V', n, va, n, wr, wi, NULL, n, vr, n);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&eigenvalues, n);
array_init_size(&eigenvectors, n);
for (i = 0; i < n; ++i) {
add_next_index_double(&eigenvalues, wr[i]);
array_init_size(&eigenvector, n);
for (j = 0; j < n; ++j) {
add_next_index_double(&eigenvector, vr[i * n + j]);
}
add_next_index_zval(&eigenvectors, &eigenvector);
}
array_init_size(&tuple, 2);
add_next_index_zval(&tuple, &eigenvalues);
add_next_index_zval(&tuple, &eigenvectors);
RETVAL_ARR(Z_ARR(tuple));
efree(va);
efree(wr);
efree(wi);
efree(vr);
}
/**
* Compute the eigendecomposition of a symmetric matrix A and return the eigenvalues and eigenvectors in a tuple.
*
* @param return_value
* @param a
*/
void tensor_eig_symmetric(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval eigenvalues;
zval eigenvectors;
zval eigenvector;
zval tuple;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int n = zend_array_count(aa);
double * va = emalloc(n * n * sizeof(double));
double * wr = emalloc(n * sizeof(double));
for (i = 0; i < n; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dsyev(LAPACK_ROW_MAJOR, 'V', 'U', n, va, n, wr);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&eigenvalues, n);
array_init_size(&eigenvectors, n);
for (i = 0; i < n; ++i) {
add_next_index_double(&eigenvalues, wr[i]);
array_init_size(&eigenvector, n);
for (j = 0; j < n; ++j) {
add_next_index_double(&eigenvector, va[i * n + j]);
}
add_next_index_zval(&eigenvectors, &eigenvector);
}
array_init_size(&tuple, 2);
add_next_index_zval(&tuple, &eigenvalues);
add_next_index_zval(&tuple, &eigenvectors);
RETVAL_ARR(Z_ARR(tuple));
efree(va);
efree(wr);
}
/**
* Compute the singular value decomposition of a matrix A and return the singular values, and unitary matrices U and VT in a tuple.
*
* @param return_value
* @param a
*/
void tensor_svd(zval * return_value, zval * a)
{
unsigned int i, j;
Bucket * row;
zval u, rowU;
zval s;
zval vt, rowVt;
zval tuple;
zend_array * aa = Z_ARR_P(a);
Bucket * ba = aa->arData;
unsigned int m = zend_array_count(aa);
unsigned int n = zend_array_count(Z_ARR(ba[0].val));
unsigned int k = MIN(m, n);
double * va = emalloc(m * n * sizeof(double));
double * vu = emalloc(m * m * sizeof(double));
double * vs = emalloc(k * sizeof(double));
double * vvt = emalloc(n * n * sizeof(double));
for (i = 0; i < m; ++i) {
row = Z_ARR(ba[i].val)->arData;
for (j = 0; j < n; ++j) {
va[i * n + j] = zephir_get_doubleval(&row[j].val);
}
}
lapack_int status = LAPACKE_dgesdd(LAPACK_ROW_MAJOR, 'A', m, n, va, n, vs, vu, m, vvt, n);
if (status != 0) {
RETURN_NULL();
}
array_init_size(&u, m);
array_init_size(&s, k);
array_init_size(&vt, n);
for (i = 0; i < m; ++i) {
array_init_size(&rowU, m);
for (j = 0; j < m; ++j) {
add_next_index_double(&rowU, vu[i * m + j]);
}
add_next_index_zval(&u, &rowU);
}
for (i = 0; i < k; ++i) {
add_next_index_double(&s, vs[i]);
}
for (i = 0; i < n; ++i) {
array_init_size(&rowVt, n);
for (j = 0; j < n; ++j) {
add_next_index_double(&rowVt, vvt[i * n + j]);
}
add_next_index_zval(&vt, &rowVt);
}
array_init_size(&tuple, 3);
add_next_index_zval(&tuple, &u);
add_next_index_zval(&tuple, &s);
add_next_index_zval(&tuple, &vt);
RETVAL_ARR(Z_ARR(tuple));
efree(va);
efree(vu);
efree(vs);
efree(vvt);
}
|
import topology.sheaves.sheaf
import algebra.category.Group.limits
import oc
import data.nat.parity
import new.unordered.C
import lemmas.about_opens
import lemmas.lemmas
noncomputable theory
section
open topological_space Top Top.sheaf
open category_theory
open opposite
universe u
variables {X : Top.{u}} (𝓕 : sheaf Ab X) (U : X.oc)
structure vec_o (n : ℕ) : Type u :=
(to_fun : fin n → U.ι)
(is_strict_mono : strict_mono to_fun)
def vec_o.zero : vec_o U 0 :=
{ to_fun := λ ⟨i, hi⟩, by linarith,
is_strict_mono := λ ⟨i, hi⟩ _ _, by linarith }
@[ext] lemma vec_o_ext {n : ℕ} {α β : vec_o U n} (h1 : α.to_fun = β.to_fun) :
α = β :=
begin
cases α,
cases β,
dsimp at *,
subst h1,
end
lemma vec_o.zero_uniq (α : vec_o U 0) :
α = vec_o.zero _ :=
begin
ext j,
rcases j with ⟨j, hj⟩,
linarith
end
instance (n : ℕ) : has_coe_to_fun (vec_o U n) (λ _, fin n → U.ι) :=
{ coe := λ α, α.to_fun }
instance (n : ℕ) : has_coe (vec_o U n) (fin n → U.ι) :=
{ coe := λ α, α.to_fun }
def C_o.pre (n : ℕ) : Type u :=
Π (α : vec_o U n), 𝓕.1.obj (op $ face α)
section
variables {𝓕 U}
lemma map_congr.vec_o_eq {n} (f : C_o.pre 𝓕 U n) {α β : vec_o U n} (EQ : α = β) :
f α = 𝓕.1.map (eq_to_hom $ by rw EQ).op (f β) :=
begin
subst EQ,
rw [eq_to_hom_op, eq_to_hom_map, eq_to_hom_refl, id_apply],
end
end
namespace C_o_pre
variable (n : ℕ)
variables {𝓕 U}
instance : has_add (C_o.pre 𝓕 U n) :=
{ add := λ f g α, f α + g α }
lemma add_assoc (f g h : C_o.pre 𝓕 U n) :
f + g + h = f + (g + h) :=
begin
ext α,
simp [pi.add_apply, add_assoc],
end
lemma add_comm (f g : C_o.pre 𝓕 U n) :
f + g = g + f :=
funext $ λ _, by simp [add_comm]
instance : has_zero (C_o.pre 𝓕 U n) :=
{ zero := λ α, 0 }
lemma zero_add (f : C_o.pre 𝓕 U n) :
0 + f = f :=
funext $ λ α, by simp
lemma add_zero (f : C_o.pre 𝓕 U n) :
f + 0 = f :=
funext $ λ _, by simp
instance (α : Type*) [Π (O : opens X), has_scalar α (𝓕.1.obj (op O))] :
has_scalar α (C_o.pre 𝓕 U n) :=
{ smul := λ m f β, m • (f β) }
lemma nsmul_zero (f : C_o.pre 𝓕 U n):
0 • f = 0 :=
funext $ λ _, by simp
lemma zsmul_zero (f : C_o.pre 𝓕 U n) :
(0 : ℤ) • f = 0 :=
funext $ λ _, by simp
lemma nsmul_succ (m : ℕ) (f : C_o.pre 𝓕 U n) :
m.succ • f = f + m • f :=
funext $ λ α, by simp [add_nsmul, nat.succ_eq_add_one, _root_.add_comm]
lemma zsmul_succ (m : ℕ) (f : C_o.pre 𝓕 U n) :
int.of_nat (m.succ) • f = f + int.of_nat m • f :=
funext $ λ α, by simp [add_smul, _root_.add_comm]
instance : has_neg (C_o.pre 𝓕 U n) :=
{ neg := λ f α, - f α }
lemma add_left_neg (f : C_o.pre 𝓕 U n) :
(-f) + f = 0 :=
funext $ λ _, by simp
instance : has_sub (C_o.pre 𝓕 U n) :=
{ sub := λ f g α, f α - g α }
lemma sub_eq_add_neg (f g : C_o.pre 𝓕 U n) :
f - g = f + (- g) :=
funext $ λ α,
calc (f - g) α
= f α - g α : rfl
... = f α + (- g α) : by abel
end C_o_pre
instance (n : ℕ) : add_comm_group (C_o.pre 𝓕 U n) :=
{ add := (+),
add_assoc := C_o_pre.add_assoc n,
zero := 0,
zero_add := C_o_pre.zero_add n,
add_zero := C_o_pre.add_zero n,
nsmul := (•),
nsmul_zero' := C_o_pre.nsmul_zero n,
nsmul_succ' := C_o_pre.nsmul_succ n,
neg := has_neg.neg,
sub := has_sub.sub,
sub_eq_add_neg := C_o_pre.sub_eq_add_neg n,
zsmul := (•),
zsmul_zero' := C_o_pre.zsmul_zero n,
zsmul_succ' := C_o_pre.zsmul_succ n,
zsmul_neg' := λ m f, funext $ λ α, by simp [add_smul],
add_left_neg := C_o_pre.add_left_neg n,
add_comm := C_o_pre.add_comm n }
def C_o (n : ℕ) : Ab := AddCommGroup.of (C_o.pre 𝓕 U n)
section ignore_o
variable (n : ℕ)
variables {U 𝓕 n}
def ignore_o (α : vec_o U (n + 1)) (k : fin (n + 1)) : vec_o U n :=
{ to_fun := ignore α.to_fun k,
is_strict_mono := λ i j h, begin
by_cases ineq1 : j.1 < k.1,
{ rw ignore.apply_lt,
work_on_goal 2
{ transitivity j.1,
exact h,
exact ineq1, },
rw ignore.apply_lt,
work_on_goal 2
{ assumption, },
apply α.2,
exact h },
-- rw not_lt at ineq1,
{ rw ignore.apply_not_lt α.1 _ ineq1,
rw not_lt at ineq1,
rw ignore.apply_ite,
split_ifs with ineq2,
{ apply α.2,
change i.1 < j.1.pred,
sorry },
{ apply α.2,
change i.1.pred < j.1.pred,
sorry }, },
end }
def ignore_o₂ (α : vec_o U (n + 2)) (i : fin (n + 2)) (j : fin (n + 1)) :
vec_o U n :=
ignore_o (ignore_o α i) j
lemma ignore_o₂_symm' {n : ℕ} (α : vec_o U (n+2))
{i : ℕ} (hi : i ∈ finset.range n.succ)
{j : ℕ} (hj : j ∈ finset.Ico i n.succ) : -- i ≤ j
ignore_o₂ α ⟨j + 1, begin
rw finset.mem_Ico at hj,
rw nat.succ_lt_succ_iff,
exact hj.2
end⟩ ⟨i, finset.mem_range.mp hi⟩ = ignore_o₂ α ⟨i, lt_trans (finset.mem_range.mp hi) (lt_add_one _)⟩ ⟨j, (finset.mem_Ico.mp hj).2⟩ :=
begin
sorry
end
lemma ignore_o.apply_lt (α : vec_o U (n + 1)) (k : fin (n + 1)) (i : fin n)
(ineq : i.1 < k.1) :
ignore_o α k i = α ⟨i.1, lt_trans i.2 (lt_add_one _)⟩ :=
begin
change ignore α.to_fun k i = α.1 _,
rw ignore.apply_lt,
exact ineq
end
lemma ignore_o.apply_not_lt (α : vec_o U (n + 1)) (k : fin (n + 1)) (i : fin n)
(ineq : ¬ i.1 < k.1) :
ignore_o α k i = α ⟨i.1.pred, begin
rw nat.lt_succ_iff,
refine le_of_lt _,
exact lt_of_le_of_lt (nat.pred_le _) i.2,
end⟩ :=
begin
change ignore α.to_fun k i = α.1 _,
rw ignore.apply_not_lt,
exact ineq,
end
def face_o (α : vec_o U n) : opens X :=
infi (λ (k : fin n), U.cover $ α k)
lemma face.le_ignore_o (α : vec_o U (n + 1)) (k : fin (n + 1)) :
face_o α ≤ face_o (ignore_o α k) := λ p hp,
begin
rw opens.mem_coe at hp ⊢,
erw opens.fintype_infi at hp ⊢,
rintros ⟨i, hi⟩,
by_cases ineq : i < k.1,
{ specialize hp ⟨i, _⟩,
{ refine lt_trans hi _,
exact lt_add_one n, },
rw ignore_o.apply_lt,
swap, exact ineq,
exact hp, },
{ specialize hp ⟨i.pred, _⟩,
{ rw nat.lt_succ_iff,
by_cases i = 0,
{ subst h,
exact nat.zero_le _, },
refine le_of_lt _,
refine lt_trans _ hi,
exact nat.pred_lt h, },
rw ignore_o.apply_not_lt,
convert hp,
exact ineq, }
end
lemma face.le_ignore_o₂ (α : vec_o U (n + 2)) (i : fin (n + 2)) (j : fin (n + 1)) :
face_o α ≤ face_o (ignore_o₂ α i j) :=
le_trans (face.le_ignore_o _ i) (face.le_ignore_o _ _)
lemma face.vec_o_zero :
face (vec_o.zero U) = ⊤ :=
begin
rw eq_top_iff,
rintros p -,
erw [opens.mem_coe, opens.fintype_infi],
rintros ⟨j, hj⟩,
linarith,
end
end ignore_o
def C_o.zeroth :
C_o 𝓕 U 0 ≅ 𝓕.1.obj (op ⊤) :=
{ hom :=
{ to_fun := λ f, 𝓕.1.map (eq_to_hom (face.vec_o_zero).symm).op $ f (vec_o.zero U),
map_zero' := begin
rw [pi.zero_apply, map_zero],
end,
map_add' := λ f g, begin
rw [pi.add_apply, map_add],
end },
inv :=
{ to_fun := λ s α, 𝓕.1.map (hom_of_le $ le_top).op s,
map_zero' := begin
ext α,
rw [map_zero, pi.zero_apply],
end,
map_add' := λ f g, begin
ext α,
rw [pi.add_apply, map_add],
end },
hom_inv_id' := begin
ext f α,
change (𝓕.1.map _ ≫ 𝓕.1.map _) _ = _,
simp only [id_apply],
rw map_congr.vec_o_eq f (vec_o.zero_uniq U α),
rw ← 𝓕.1.map_comp,
congr,
end,
inv_hom_id' := begin
ext f,
change (𝓕.1.map _ ≫ 𝓕.1.map _) _ = _,
rw [id_apply, ← 𝓕.1.map_comp],
have : 𝓕.val.map (𝟙 (op ⊤)) f = f,
{ rw 𝓕.1.map_id,
rw id_apply, },
convert this,
end }
section d_o
open nat
open_locale big_operators
variable (n : ℕ)
variables {𝓕 U n}
def d_o.to_fun.component' (α : vec_o U (n + 1)) (k : fin (n + 1)) (f : C_o.pre 𝓕 U n) :
𝓕.1.obj (op (face α)) :=
(ite (even k.1) id (has_neg.neg)) $
𝓕.1.map (hom_of_le $ face.le_ignore α k).op $ f (ignore_o α k)
def d_o.to_fun.component (k : fin (n + 1)) :
C_o.pre 𝓕 U n → C_o.pre 𝓕 U (n + 1) :=
λ f α, d_o.to_fun.component' α k f
def d_o.to_fun (f : C_o.pre 𝓕 U n) (α : vec_o U (n + 1)) : 𝓕.1.obj (op (face α)) :=
∑ (k : fin (n + 1)), d_o.to_fun.component k f α
variables (n 𝓕 U)
def d_o : C_o 𝓕 U n ⟶ C_o 𝓕 U (n + 1) :=
{ to_fun := d_o.to_fun,
map_zero' := funext $ λ α, begin
simp only [pi.zero_apply],
change ∑ _, _ = _,
rw finset.sum_eq_zero,
intros i hi,
change (ite _ id has_neg.neg) _ = _,
split_ifs with e,
{ rw [id, pi.zero_apply, map_zero], },
{ rw [pi.zero_apply, map_zero, neg_zero], },
end,
map_add' := λ f g, funext $ λ α, begin
rw pi.add_apply,
change ∑ _, _ = ∑ _, _ + ∑ _, _,
rw ← finset.sum_add_distrib,
rw finset.sum_congr rfl,
intros i _,
change (ite _ id _) _ = (ite _ id _) _ + (ite _ id _) _,
split_ifs with e,
{ rw [id, id, id, pi.add_apply, map_add], },
{ rw [pi.add_apply, map_add, neg_add], },
end }
abbreviation dd_o : C_o 𝓕 U n ⟶ C_o 𝓕 U (n + 2) :=
d_o _ _ _ ≫ d_o _ _ _
namespace dd_o_aux
lemma d_o_def (f : C_o 𝓕 U n) (α : vec_o U (n + 1)) :
d_o 𝓕 U n f α =
∑ (i : fin (n+1)),
(ite (even i.1) id has_neg.neg)
𝓕.1.map (hom_of_le $ face.le_ignore_o α i).op (f (ignore_o α i)) :=
begin
rw [d_o],
simp only [add_monoid_hom.coe_mk, fin.val_eq_coe],
change ∑ _, _ = _,
rw finset.sum_congr rfl,
intros i _,
change (ite _ id _) _ = _,
split_ifs,
{ rw [id, id],
refl, },
{ simpa, },
end
lemma eq1 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
d_o 𝓕 U (n + 1) (d_o 𝓕 U n f) α := rfl
lemma eq2 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore_o α i)).op (d_o 𝓕 U n f (ignore_o α i))) :=
begin
rw [eq1, d_o_def, finset.sum_congr rfl],
intros i _,
split_ifs,
{ simp },
{ simp },
end
lemma eq3 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore α i)).op
(∑ (j : fin (n + 1)),
(ite (even j.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore (ignore_o α i) j)).op (f (ignore_o (ignore_o α i) j))))) :=
begin
rw [eq2, finset.sum_congr rfl],
intros i _,
rw [d_o_def],
split_ifs,
{ simp only [id.def],
rw [add_monoid_hom.map_sum, add_monoid_hom.map_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id],
refl, },
{ simp only [pi.neg_apply, add_monoid_hom.neg_apply],
refl, }, },
{ congr' 2,
rw [finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id],
refl, },
{ simp only [pi.neg_apply, add_monoid_hom.neg_apply, neg_inj],
refl, } },
end
lemma eq4 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(∑ (j : fin (n + 1)),
𝓕.1.map (hom_of_le (face.le_ignore_o α i)).op
((ite (even j.1) id has_neg.neg)
𝓕.1.map (hom_of_le (face.le_ignore_o (ignore_o α i) j)).op
(f (ignore_o (ignore_o α i) j)))) :=
begin
rw [eq3, finset.sum_congr rfl],
intros i _,
split_ifs,
{ rw [add_monoid_hom.map_sum, id, id, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id],
refl, },
{ simpa }, },
{ rw [add_monoid_hom.map_sum, finset.neg_sum, finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id],
refl, },
{ simpa }, },
end
lemma eq5 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(∑ (j : fin (n + 1)),
(ite (even j.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore_o α i)).op
(𝓕.1.map (hom_of_le (face.le_ignore_o (ignore_o α i) j)).op
(f (ignore_o (ignore_o α i) j))))) :=
begin
rw [eq4, finset.sum_congr rfl],
intros i _,
split_ifs,
{ rw [id, id, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id], },
{ simp }, },
{ rw [finset.neg_sum, finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id], },
{ simp, }, },
end
lemma eq6₀ (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(∑ (j : fin (n + 1)),
(ite (even j.1) id has_neg.neg)
(𝓕.1.map ((hom_of_le (face.le_ignore (ignore α i) j)).op ≫ (hom_of_le (face.le_ignore α i)).op)
(f (ignore_o (ignore_o α i) j)))) :=
begin
rw [eq5, finset.sum_congr rfl],
intros i _,
split_ifs,
{ rw [id, id, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id, 𝓕.1.map_comp, comp_apply],
refl, },
{ rw [𝓕.1.map_comp, comp_apply],
refl, }, },
{ rw [finset.neg_sum, finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id, 𝓕.1.map_comp, comp_apply],
refl, },
{ rw [neg_neg, neg_neg, 𝓕.1.map_comp, comp_apply],
refl, }, }
end
lemma eq6₁ (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(∑ (j : fin (n + 1)),
(ite (even j.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore α i) ≫ hom_of_le (face.le_ignore (ignore α i) j)).op)
(f (ignore_o (ignore_o α i) j))) :=
begin
rw [eq6₀, finset.sum_congr rfl],
intros i _,
split_ifs,
{ rw [id, id, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id, op_comp], },
{ rw [op_comp],
simp }, },
{ rw [finset.neg_sum, finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id, op_comp] },
{ rw [op_comp],
simp }, }
end
lemma eq6₂ (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
(ite (even i.1) id has_neg.neg)
(∑ (j : fin (n + 1)),
(ite (even j.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore_o₂ α i j)).op)
(f (ignore_o₂ α i j))) :=
begin
rw [eq6₁, finset.sum_congr rfl],
intros i _,
split_ifs,
{ rw [id, id, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id], congr, },
{ congr, }, },
{ rw [finset.neg_sum, finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id], congr, },
{ congr }, },
end
lemma eq7 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)), ∑ (j : fin (n + 1)),
(ite (even i.1) id has_neg.neg)
(ite (even j.1) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore_o₂ α i j)).op)
(f (ignore_o₂ α i j)) :=
begin
rw [eq6₂, finset.sum_congr rfl],
intros i _,
split_ifs,
{ rw [id, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, id, id], },
{ rw [id], }, },
{ rw [finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs,
{ rw [id, pi.neg_apply, id], congr, },
{ rw [pi.neg_apply, neg_neg, add_monoid_hom.neg_apply, neg_neg], }, },
end
lemma eq8 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)), ∑ (j : fin (n + 1)),
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i j)).op)
(f (ignore_o₂ α i j)) :=
begin
rw [eq7, finset.sum_congr rfl],
intros i _,
rw [finset.sum_congr rfl],
intros j _,
split_ifs with h1 h2 h12,
{ refl, },
{ exfalso,
apply h12,
exact even.add_even h1 h2 },
{ exfalso,
rw ← nat.odd_iff_not_even at h2,
have := even.add_odd h1 h2,
rw nat.odd_iff_not_even at this,
apply this,
exact h, },
{ rw [id],
refl, },
{ rw ← nat.odd_iff_not_even at h1,
have := odd.add_even h1 h,
rw nat.odd_iff_not_even at this,
exfalso,
apply this,
assumption, },
{ rw [pi.neg_apply, id],
refl, },
{ rw [pi.neg_apply, neg_neg, id],
refl, },
{ rw ← nat.odd_iff_not_even at *,
have := odd.add_odd h1 h,
rw nat.even_iff_not_odd at this,
exfalso,
apply this,
assumption },
end
lemma eq9 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
∑ (i : fin (n + 2)),
((∑ (j : fin (n + 1)) in finset.univ.filter (λ (j : fin (n + 1)), i.1 ≤ j.1),
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i j)).op)
(f (ignore_o₂ α i j))) +
(∑ (j : fin (n + 1)) in finset.univ.filter (λ (j : fin (n + 1)), j.1 < i.1),
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i j)).op)
(f (ignore_o₂ α i j)))) :=
begin
rw [eq8, finset.sum_congr rfl],
intros i _,
have :
(finset.univ.filter (λ (j : fin (n + 1)), j.1 < i.val)) =
(finset.univ.filter (λ (j : fin (n + 1)), i.val ≤ j.val))ᶜ,
{ ext1 k,
split;
intros hk;
simp only [finset.compl_filter, not_le, finset.mem_filter, finset.mem_univ, true_and] at hk ⊢;
assumption, },
rw [this, finset.sum_add_sum_compl],
end
lemma eq11 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ (j : fin (n + 1)) in finset.univ.filter (λ (j : fin (n + 1)), i.1 ≤ j.1),
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i j)).op)
(f (ignore_o₂ α i j))) +
(∑ (i : fin (n + 2)), ∑ (j : fin (n + 1)) in finset.univ.filter (λ (j : fin (n + 1)), j.1 < i.1),
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i j)).op)
(f (ignore_o₂ α i j))) :=
begin
rw [eq9, finset.sum_add_distrib],
end
lemma eq13 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ (i : fin (n + 2)), ∑ (j : fin (n + 1)) in finset.univ.filter (λ (j : fin (n + 1)), j.1 < i.1),
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i j)).op)
(f (ignore_o₂ α i j))) :=
begin
rw [eq11],
congr' 1,
rw [finset.sum_congr rfl],
intros i _,
apply finset.sum_bij,
work_on_goal 5
{ intros j hj,
refine ⟨j.1, _⟩,
rw finset.mem_Ico,
rw finset.mem_filter at hj,
refine ⟨hj.2, _⟩,
exact j.2 },
{ intros j hj,
dsimp only,
rw finset.mem_filter at hj,
apply finset.mem_attach, },
{ intros j hj,
dsimp only,
split_ifs,
{ rw [id, id],
rw map_congr.vec_o_eq f (_ : ignore_o₂ α i j = ignore_o₂ α i ⟨j.1, _⟩),
rw [← comp_apply, ← 𝓕.1.map_comp, ← op_comp],
congr,
congr' 1,
rw subtype.ext_iff_val, },
{ rw [add_monoid_hom.neg_apply, add_monoid_hom.neg_apply],
rw map_congr.vec_o_eq f (_ : ignore_o₂ α i j = ignore_o₂ α i ⟨j.1, _⟩),
rw [← comp_apply, ← 𝓕.1.map_comp, ← op_comp],
congr,
congr' 1,
rw subtype.ext_iff_val, }, },
{ intros j1 j2 h1 h2 H,
dsimp only at H,
rw subtype.ext_iff_val at *,
assumption },
{ intros j _,
have hj := j.2,
rw finset.mem_Ico at hj,
refine ⟨⟨j.1, hj.2⟩, _, _⟩,
rw finset.mem_filter,
refine ⟨finset.mem_univ ⟨j.val, _⟩, hj.1⟩,
dsimp only,
rw subtype.ext_iff_val, },
end
lemma eq14 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ (i : fin (n + 2)), ∑ j in (finset.range i.1).attach,
(ite (even (i.1 + j)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_range at hj,
have hi : i.1 ≤ n+1,
{ linarith [i.2], },
linarith,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) :=
begin
rw [eq13],
congr' 1,
rw [finset.sum_congr rfl],
intros i hi,
apply finset.sum_bij',
work_on_goal 4
{ intros j hj,
rw finset.mem_filter at hj,
refine ⟨j.1, _⟩,
rw finset.mem_range,
exact hj.2 },
work_on_goal 5
{ intros j _,
have hj := j.2,
rw finset.mem_range at hj,
refine ⟨j.1, _⟩,
linarith [i.2], },
{ intros j hj,
dsimp only,
split_ifs,
{ rw [id, id],
rw map_congr.vec_o_eq f (_ : ignore_o₂ α i j = ignore_o₂ α i ⟨j.1, _⟩),
rw [← comp_apply, ← 𝓕.1.map_comp, ← op_comp],
congr,
congr' 1,
rw subtype.ext_iff_val, },
{ rw [add_monoid_hom.neg_apply, add_monoid_hom.neg_apply],
rw map_congr.vec_o_eq f (_ : ignore_o₂ α i j = ignore_o₂ α i ⟨j.1, _⟩),
rw [← comp_apply, ← 𝓕.1.map_comp, ← op_comp],
congr,
congr' 1,
rw subtype.ext_iff_val, }, },
{ intros j hj,
dsimp only,
rw subtype.ext_iff_val, },
{ intros j hj,
rw subtype.ext_iff_val, },
{ intros j hj,
apply finset.mem_attach, },
{ intros j _,
have hj := j.2,
rw finset.mem_range at hj,
rw finset.mem_filter,
dsimp only,
refine ⟨_, hj⟩,
apply finset.mem_univ, },
end
lemma eq15 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ j in (finset.range n.succ).attach, ∑ i in (finset.Ico j.1.succ n.succ.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rwa finset.mem_Ico at hi,
exact hi.2,
end⟩ ⟨j.1, begin
have hj := j.2,
rwa finset.mem_range at hj,
end⟩)).op)
(f (ignore_o₂ α _ _))) :=
begin
rw [eq14],
congr' 1,
rw [finset.sum_sigma', finset.sum_sigma'],
apply finset.sum_bij',
work_on_goal 4
{ refine λ x h, ⟨⟨x.2.1, begin
have hx2 := x.2.2,
have hx1 := x.1.2,
rw finset.mem_range at hx2 ⊢,
have : x.1.1 ≤ n + 1,
{ linarith },
refine lt_of_lt_of_le hx2 this,
end⟩, ⟨x.1.1, _⟩⟩, },
work_on_goal 6
{ refine λ x h, ⟨⟨x.2.1, begin
have hx1 := x.1.2,
have hx2 := x.2.2,
rw finset.mem_range at hx1,
rw finset.mem_Ico at hx2,
exact hx2.2,
end⟩, ⟨x.1.1, begin
have hx1 := x.1.2,
have hx2 := x.2.2,
rw finset.mem_range at hx1 ⊢,
rw finset.mem_Ico at hx2,
refine lt_of_le_of_lt _ hx2.1,
refl,
end⟩⟩, },
{ rintros ⟨⟨i, hi⟩, j⟩ h,
dsimp only,
congr, },
{ rintros ⟨⟨i, hi⟩, j⟩ h,
simp only,
split,
refl,
rw heq_iff_eq,
rw subtype.ext_iff_val, },
{ rintros ⟨i, j⟩ h,
simp only,
split,
rw subtype.ext_iff_val,
rw heq_iff_eq,
rw subtype.ext_iff_val, },
{ have hx1 := x.1.2,
have hx2 := x.2.2,
rw finset.mem_range at hx2,
rw finset.mem_Ico,
refine ⟨_, hx1⟩,
exact hx2, },
{ rintros ⟨i, j⟩ h,
rw finset.mem_sigma,
split,
apply finset.mem_attach,
apply finset.mem_attach },
{ intros x h,
rw finset.mem_sigma,
split,
apply finset.mem_univ,
apply finset.mem_attach, },
end
lemma eq16 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, ∑ j in (finset.Ico i.1.succ n.succ.succ).attach,
(ite (even (j.1 + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨j.1, begin
have hi := j.2,
rwa finset.mem_Ico at hi,
exact hi.2,
end⟩ ⟨i.1, begin
have hj := i.2,
rwa finset.mem_range at hj,
end⟩)).op)
(f (ignore_o₂ α _ _))) :=
begin
rw [eq15],
end
lemma eq17 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even ((j.1 + 1) + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨j.1 + 1, begin
have hi := j.2,
rw finset.mem_Ico at hi,
rw succ_lt_succ_iff,
exact hi.2,
end⟩ ⟨i.1, begin
have hj := i.2,
rwa finset.mem_range at hj,
end⟩)).op)
(f (ignore_o₂ α ⟨j.1 + 1, _⟩ ⟨i.1, _⟩))) :=
begin
rw [eq16],
congr' 1,
rw finset.sum_congr rfl,
intros i hi,
apply finset.sum_bij',
work_on_goal 4
{ intros j _, refine ⟨j.1.pred, _⟩,
have hj := j.2,
rw finset.mem_Ico at hj ⊢,
rcases hj with ⟨hj1, hj2⟩,
have ineq0 : 0 < j.1,
{ refine lt_of_lt_of_le _ hj1,
exact nat.zero_lt_succ _, },
have eq1 : j.1 = j.1.pred.succ,
{ rwa nat.succ_pred_eq_of_pos, },
split,
rw eq1 at hj1,
rwa succ_le_succ_iff at hj1,
rw eq1 at hj2,
rwa succ_lt_succ_iff at hj2 },
work_on_goal 5
{ intros j _, refine ⟨j.1 + 1, _⟩,
have hj := j.2,
rw finset.mem_Ico at hj ⊢,
rcases hj with ⟨hj1, hj2⟩,
split,
rwa succ_le_succ_iff,
rwa succ_lt_succ_iff,
},
{ intros j hj,
dsimp only,
rw map_congr.vec_o_eq f (_ : ignore_o₂ α ⟨j.1, _⟩ ⟨i.1, _⟩ = ignore_o₂ α ⟨j.1.pred + 1, _⟩ ⟨i.1, _⟩),
by_cases e1 : even (j.1 + i.1),
{ rw [if_pos e1, if_pos, id, id, ← comp_apply, ← 𝓕.1.map_comp], congr,
rwa [← nat.succ_eq_add_one, nat.succ_pred_eq_of_pos],
have hj := j.2,
rw finset.mem_Ico at hj,
refine lt_of_lt_of_le _ hj.1,
exact nat.zero_lt_succ _, },
{ rw [if_neg e1, if_neg, add_monoid_hom.neg_apply, add_monoid_hom.neg_apply, ← comp_apply, ← 𝓕.1.map_comp],
congr,
rwa [← nat.succ_eq_add_one, nat.succ_pred_eq_of_pos],
have hj := j.2,
rw finset.mem_Ico at hj,
refine lt_of_lt_of_le _ hj.1,
exact nat.zero_lt_succ _, },
congr,
rwa [← nat.succ_eq_add_one, nat.succ_pred_eq_of_pos],
have hj := j.2,
rw finset.mem_Ico at hj,
refine lt_of_lt_of_le _ hj.1,
exact nat.zero_lt_succ _, },
{ intros j hj,
simp only,
rw subtype.ext_iff_val,
dsimp only,
rw [← nat.succ_eq_add_one, nat.succ_pred_eq_of_pos],
have hj := j.2,
rw finset.mem_Ico at hj,
refine lt_of_lt_of_le _ hj.1,
exact nat.zero_lt_succ _, },
{ intros j hj,
simp only,
rw subtype.ext_iff_val,
dsimp only,
rw nat.pred_succ, },
{ intros j hj,
apply finset.mem_attach, },
{ intros j hj,
apply finset.mem_attach, },
end
lemma eq18 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even ((j.1 + 1) + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) :=
begin
rw eq17 𝓕 U n f α,
apply congr_arg2 (+) rfl _,
rw [finset.sum_congr rfl],
intros i hi,
rw [finset.sum_congr rfl],
intros j hj,
generalize_proofs _ h1 h2 h3 h4 h5,
rw map_congr.vec_o_eq f (_ : ignore_o₂ α ⟨j.1 + 1, h1⟩ ⟨i.1, h2⟩ = ignore_o₂ α ⟨i.1, h4⟩ ⟨j.1, _⟩),
split_ifs,
{ rw [id, id, ← comp_apply, ← 𝓕.1.map_comp],
congr },
{ rw [add_monoid_hom.neg_apply, add_monoid_hom.neg_apply, ← comp_apply, ← 𝓕.1.map_comp],
congr },
have := ignore_o₂_symm' α i.2 j.2,
convert ← this,
end
lemma eq19 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ (i : fin (n + 2)), ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α i ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α i ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, - ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (j.1 + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) :=
begin
rw [eq18],
congr' 1,
rw [finset.sum_congr rfl],
intros i _,
rw [finset.neg_sum, finset.sum_congr rfl],
intros j _,
split_ifs with h1 h2,
{ exfalso,
have o1 : odd (1 : ℕ) := odd_one,
have := even.add_odd h2 o1,
rw nat.odd_iff_not_even at this,
apply this,
convert h1 using 1,
abel, },
{ rw [id, add_monoid_hom.neg_apply, neg_neg], },
{ rw [id, add_monoid_hom.neg_apply], },
{ rw ← nat.odd_iff_not_even at h h1,
have o1 : odd (1 : ℕ) := odd_one,
have := odd.add_odd h o1,
rw nat.even_iff_not_odd at this,
exfalso,
apply this,
convert h1 using 1,
abel, },
end
lemma eq20₀ (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ i in (finset.range (n+2)).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
exact finset.mem_range.mp hi,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, - ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (j.1 + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) :=
begin
rw [eq19],
congr' 1,
rw finset.sum_fin_eq_sum_range,
rw ← finset.sum_attach,
rw finset.sum_congr rfl,
intros i hi,
rw dif_pos,
refl,
end
lemma eq20₁ (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ i in (finset.range (n+1)).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
refine lt_trans (finset.mem_range.mp hi) _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) +
(∑ j in (finset.Ico n.succ n.succ).attach,
(ite (even (n.succ + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨n.succ, begin
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨n.succ, _⟩ ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, - ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (j.1 + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) :=
have eq0 :
∑ i in (finset.range (n+2)).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
exact finset.mem_range.mp hi,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩)) =
∑ i in (insert n.succ (finset.range (n+1))).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_insert at hi,
cases hi,
rw hi, exact lt_add_one _,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩)),
begin
rw finset.sum_bij',
work_on_goal 4
{ intros a _,
refine ⟨a.1, _⟩,
rw finset.mem_insert,
have ha := a.2,
by_cases a.1 = n.succ,
left, assumption,
right,
rw finset.mem_range at ha ⊢,
contrapose! h,
have ha' : a.1 ≤ n+1,
linarith,
refine le_antisymm ha' h, },
work_on_goal 5
{ intros a _,
refine ⟨a.1, _⟩,
have ha := a.2,
rw finset.mem_insert at ha,
rw finset.mem_range at ha ⊢,
cases ha,
rw ha, exact lt_add_one _,
linarith, },
{ intros, simp only, },
{ intros, simp only, rw subtype.ext_iff_val, },
{ intros, simp only, rw subtype.ext_iff_val, },
{ intros, simp only,
apply finset.mem_attach },
{ intros, apply finset.mem_attach },
end,
begin
rw [eq20₀],
apply congr_arg2 (+) _ rfl,
rw eq0,
rw finset.attach_insert,
rw finset.sum_insert,
conv_lhs { simp only [add_comm] },
congr' 1,
{ simp only [finset.sum_image, subtype.forall, subtype.coe_mk, imp_self, implies_true_iff], },
{ rw finset.mem_image,
push_neg,
intros a _,
have ha := a.2,
rw finset.mem_range at ha,
intro r,
rw r at ha,
apply lt_irrefl _ ha, },
end
lemma eq21 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ i in (finset.range (n+1)).attach, ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
refine lt_trans (finset.mem_range.mp hi) _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) +
(∑ i in (finset.range n.succ).attach, - ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (j.1 + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) +
(∑ j in (finset.Ico n.succ n.succ).attach,
(ite (even (n.succ + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨n.succ, begin
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨n.succ, _⟩ ⟨j.1, _⟩))) :=
begin
rw [eq20₁],
abel,
end
lemma eq22 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ i in (finset.range (n+1)).attach,
((∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (i.1 + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
refine lt_trans (finset.mem_range.mp hi) _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))) +
(- ∑ j in (finset.Ico i.1 n.succ).attach,
(ite (even (j.1 + i.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨i.1, begin
have hi := i.2,
rw finset.mem_range at hi,
refine lt_trans hi _,
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨i.1, _⟩ ⟨j.1, _⟩))))) +
(∑ j in (finset.Ico n.succ n.succ).attach,
(ite (even (n.succ + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨n.succ, begin
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨n.succ, _⟩ ⟨j.1, _⟩))) :=
begin
rw [eq21, finset.sum_add_distrib],
end
lemma eq23 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α =
(∑ i in (finset.range (n+1)).attach, 0) +
(∑ j in (finset.Ico n.succ n.succ).attach,
(ite (even (n.succ + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨n.succ, begin
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨n.succ, _⟩ ⟨j.1, _⟩))) :=
begin
rw [eq22],
congr' 1,
rw finset.sum_congr rfl,
intros i _,
simp_rw [add_comm],
rw add_neg_eq_zero,
end
lemma eq24 (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α = 0 +
(∑ j in (finset.Ico n.succ n.succ).attach,
(ite (even (n.succ + j.1)) id has_neg.neg)
(𝓕.1.map (hom_of_le (face.le_ignore₂ α ⟨n.succ, begin
exact lt_add_one _,
end⟩ ⟨j.1, begin
have hj := j.2,
rw finset.mem_Ico at hj,
exact hj.2,
end⟩)).op)
(f (ignore_o₂ α ⟨n.succ, _⟩ ⟨j.1, _⟩))) :=
begin
rw [eq23],
congr',
rw finset.sum_eq_zero,
intros, refl,
end
lemma eq_zero (f : C_o 𝓕 U n) (α : vec_o U (n+2)) :
dd_o 𝓕 U n f α = 0 :=
begin
rw [eq24, zero_add],
convert finset.sum_empty,
rw finset.Ico_self,
rw finset.attach_empty
end
end dd_o_aux
lemma dd_o_eq_zero' (n : ℕ) : dd_o 𝓕 U n = 0 :=
begin
ext f α,
convert dd_o_aux.eq_zero 𝓕 U n f α,
end
lemma dd_o_eq_zero (n : ℕ) (f α) :
d_o 𝓕 U (n+1) (d_o 𝓕 U n f) α = 0 :=
begin
have : dd_o 𝓕 U n f α = 0,
{ rw dd_o_eq_zero',
simp },
exact this,
end
end d_o
namespace d_o_small
open_locale big_operators
lemma vec_one_ignore_eq (α : vec_o U 1) :
ignore_o α 0 =
vec_o.zero U :=
begin
ext j,
rcases j with ⟨j, hj⟩,
linarith,
end
lemma d_o.zeroth_apply (f : C_o 𝓕 U 0) (α : vec_o U 1) :
d_o 𝓕 U _ f α =
𝓕.1.map (hom_of_le $ begin
rw face.vec_o_zero,
exact le_top,
end).op (f (vec_o.zero U)) :=
begin
rw dd_o_aux.d_o_def,
rw finset.sum_fin_eq_sum_range,
rw finset.sum_range_one,
rw dif_pos,
swap, exact nat.zero_lt_succ _,
rw if_pos,
swap, exact even_zero,
rw [id],
erw map_congr.vec_o_eq f (vec_one_ignore_eq U α),
rw [← comp_apply, ← 𝓕.1.map_comp],
congr' 1,
end
lemma d_o.one_apply (f : C_o 𝓕 U 1) (α : vec_o U 2) :
d_o 𝓕 U 1 f α =
𝓕.1.map (hom_of_le (face.le_ignore_o _ _)).op (f (ignore_o α 0)) -
𝓕.1.map (hom_of_le (face.le_ignore_o _ _)).op (f (ignore_o α 1)) :=
begin
rw dd_o_aux.d_o_def,
rw finset.sum_fin_eq_sum_range,
have seteq : finset.range (1 + 1) = {0, 1},
{ norm_num,
ext,
split,
{ intros h,
rw finset.mem_range at h,
rw [finset.mem_insert, finset.mem_singleton],
interval_cases a;
cc, },
{ intros h,
rw [finset.mem_insert, finset.mem_singleton] at h,
rw finset.mem_range,
rcases h with rfl|rfl;
linarith, }, },
rw [seteq, finset.sum_pair],
swap, linarith,
rw [dif_pos (nat.zero_lt_succ _), if_pos (even_zero), id, dif_pos (lt_add_one 1), if_neg],
swap,
rw ← nat.odd_iff_not_even,
exact odd_one,
change _ + (- 𝓕.1.map _ _) = _,
rw ← sub_eq_add_neg,
refl,
end
end d_o_small
end |
\documentclass[./main.tex]{subfiles}
\begin{document}
\chapter{Eldritch Influences}
\subfile{new_mechanics/eldritch_influences/monstrosity.tex}
\subfile{new_mechanics/eldritch_influences/crossingover.tex}
\subfile{new_mechanics/eldritch_influences/eldritchbloodline.tex}
\chapter{Grand Strategy}
\subfile{new_mechanics/grand_strategy/overview.tex}
\chapter{Elixirs and Gadgets}
\subfile{new_mechanics/elixirs/elixirs.tex}
\subfile{new_mechanics/gadgets/gadgets.tex}
\end{document} |
Require Import Coq.Lists.List.
Module List.
Definition enumerate {A} (ls : list A) : list (nat * A)
:= combine (seq 0 (length ls)) ls.
Definition find_index {A} (f : A -> bool) (xs : list A) : option nat
:= option_map (@fst _ _) (find (fun v => f (snd v)) (enumerate xs)).
End List.
|
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Yury Kudryashov
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.logic.function.basic
import Mathlib.PostPort
universes u_1 u_2 u_3
namespace Mathlib
/-!
# Semiconjugate and commuting maps
We define the following predicates:
* `function.semiconj`: `f : α → β` semiconjugates `ga : α → α` to `gb : β → β` if `f ∘ ga = gb ∘ f`;
* `function.semiconj₂: `f : α → β` semiconjugates a binary operation `ga : α → α → α`
to `gb : β → β → β` if `f (ga x y) = gb (f x) (f y)`;
* `f : α → α` commutes with `g : α → α` if `f ∘ g = g ∘ f`, or equivalently `semiconj f g g`.
-/
namespace function
/-- We say that `f : α → β` semiconjugates `ga : α → α` to `gb : β → β` if `f ∘ ga = gb ∘ f`. -/
def semiconj {α : Type u_1} {β : Type u_2} (f : α → β) (ga : α → α) (gb : β → β) :=
∀ (x : α), f (ga x) = gb (f x)
namespace semiconj
protected theorem comp_eq {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α} {gb : β → β} (h : semiconj f ga gb) : f ∘ ga = gb ∘ f :=
funext h
protected theorem eq {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α} {gb : β → β} (h : semiconj f ga gb) (x : α) : f (ga x) = gb (f x) :=
h x
theorem comp_right {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α} {ga' : α → α} {gb : β → β} {gb' : β → β} (h : semiconj f ga gb) (h' : semiconj f ga' gb') : semiconj f (ga ∘ ga') (gb ∘ gb') := sorry
theorem comp_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {fab : α → β} {fbc : β → γ} {ga : α → α} {gb : β → β} {gc : γ → γ} (hab : semiconj fab ga gb) (hbc : semiconj fbc gb gc) : semiconj (fbc ∘ fab) ga gc := sorry
theorem id_right {α : Type u_1} {β : Type u_2} {f : α → β} : semiconj f id id :=
fun (_x : α) => rfl
theorem id_left {α : Type u_1} {ga : α → α} : semiconj id ga ga :=
fun (_x : α) => rfl
theorem inverses_right {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α} {ga' : α → α} {gb : β → β} {gb' : β → β} (h : semiconj f ga gb) (ha : right_inverse ga' ga) (hb : left_inverse gb' gb) : semiconj f ga' gb' := sorry
end semiconj
/-- Two maps `f g : α → α` commute if `f ∘ g = g ∘ f`. -/
def commute {α : Type u_1} (f : α → α) (g : α → α) :=
semiconj f g g
theorem semiconj.commute {α : Type u_1} {f : α → α} {g : α → α} (h : semiconj f g g) : commute f g :=
h
namespace commute
theorem refl {α : Type u_1} (f : α → α) : commute f f :=
fun (_x : α) => Eq.refl (f (f _x))
theorem symm {α : Type u_1} {f : α → α} {g : α → α} (h : commute f g) : commute g f :=
fun (x : α) => Eq.symm (h x)
theorem comp_right {α : Type u_1} {f : α → α} {g : α → α} {g' : α → α} (h : commute f g) (h' : commute f g') : commute f (g ∘ g') :=
semiconj.comp_right h h'
theorem comp_left {α : Type u_1} {f : α → α} {f' : α → α} {g : α → α} (h : commute f g) (h' : commute f' g) : commute (f ∘ f') g :=
symm (comp_right (symm h) (symm h'))
theorem id_right {α : Type u_1} {f : α → α} : commute f id :=
semiconj.id_right
theorem id_left {α : Type u_1} {f : α → α} : commute id f :=
semiconj.id_left
end commute
/-- A map `f` semiconjugates a binary operation `ga` to a binary operation `gb` if
for all `x`, `y` we have `f (ga x y) = gb (f x) (f y)`. E.g., a `monoid_hom`
semiconjugates `(*)` to `(*)`. -/
def semiconj₂ {α : Type u_1} {β : Type u_2} (f : α → β) (ga : α → α → α) (gb : β → β → β) :=
∀ (x y : α), f (ga x y) = gb (f x) (f y)
namespace semiconj₂
protected theorem eq {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α → α} {gb : β → β → β} (h : semiconj₂ f ga gb) (x : α) (y : α) : f (ga x y) = gb (f x) (f y) :=
h x y
protected theorem comp_eq {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α → α} {gb : β → β → β} (h : semiconj₂ f ga gb) : bicompr f ga = bicompl gb f f :=
funext fun (x : α) => funext (h x)
theorem id_left {α : Type u_1} (op : α → α → α) : semiconj₂ id op op :=
fun (_x _x_1 : α) => rfl
theorem comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : α → β} {ga : α → α → α} {gb : β → β → β} {f' : β → γ} {gc : γ → γ → γ} (hf' : semiconj₂ f' gb gc) (hf : semiconj₂ f ga gb) : semiconj₂ (f' ∘ f) ga gc := sorry
theorem is_associative_right {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α → α} {gb : β → β → β} [is_associative α ga] (h : semiconj₂ f ga gb) (h_surj : surjective f) : is_associative β gb := sorry
theorem is_associative_left {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α → α} {gb : β → β → β} [is_associative β gb] (h : semiconj₂ f ga gb) (h_inj : injective f) : is_associative α ga := sorry
theorem is_idempotent_right {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α → α} {gb : β → β → β} [is_idempotent α ga] (h : semiconj₂ f ga gb) (h_surj : surjective f) : is_idempotent β gb := sorry
theorem is_idempotent_left {α : Type u_1} {β : Type u_2} {f : α → β} {ga : α → α → α} {gb : β → β → β} [is_idempotent β gb] (h : semiconj₂ f ga gb) (h_inj : injective f) : is_idempotent α ga := sorry
|
The coefficient of the $i$th term of the sum of polynomials is the sum of the coefficients of the $i$th term of each polynomial. |
# QGS model: Manually setting the basis and the inner products definition
## Atmosphere coupled to an ocean with special boundary conditions
In this notebook, we describe how to setup a user-defined basis for one of the model’s component. We will do it for the ocean, but the approach is similar for the other components. We will project the ocean equations on four modes proposed in
* S. Pierini. *Low-frequency variability, coherence resonance, and phase selection in a low-order model of the wind-driven ocean circulation.* Journal of Physical Oceanography, **41**(9):1585–1604, 2011. [doi:10.1175/JPO-D-10-05018.1](https://journals.ametsoc.org/doi/full/10.1175/JPO-D-10-05018.1).
* S. Vannitsem and L. De Cruz. *A 24-variable low-order coupled ocean–atmosphere model: OA-QG-WS v2*. Geoscientific Model Development, 7(2):649–662, 2014. [doi:10.5194/gmd-7-649-2014](https://doi.org/10.5194/gmd-7-649-2014).
These four modes are given by
* $\tilde\phi_1(x,y)=2 \, e^{−\alpha x} \sin(n x/2) \sin(y)$
* $\tilde\phi_2(x,y)=2 \, e^{−\alpha x} \sin(n x) \sin(y)$
* $\tilde\phi_3(x,y)=2 \, e^{−\alpha x} \sin(n x/2) \sin(2y)$
* $\tilde\phi_4(x,y)=2 \, e^{−\alpha x} \sin(n x) \sin(2y)$
The exponential factors represent an intensification of the flows, forcings and heat exchanges in the western part of the domain.
This ocean is then connected to a channel atmosphere using a symbolic basis of functions.
### Warning !
This initialization method is not yet well-defined in qgs. It builds the model block by block to construct an ad-hoc model version. It is an advanced and somewhat experimental feature of the model.
## Modules import
First, setting the path and loading of some modules
```python
import sys, os, warnings
```
```python
sys.path.extend([os.path.abspath('../')])
```
```python
import numpy as np
import matplotlib.pyplot as plt
from numba import njit
```
```python
from matplotlib import rc
rc('font',**{'family':'serif','sans-serif':['Times'],'size':12})
```
Initializing the random number generator (for reproducibility). -- Disable if needed.
```python
np.random.seed(210217)
```
Importing the model's modules
```python
from qgs.params.params import QgParams
from qgs.basis.base import SymbolicBasis
from qgs.inner_products.definition import StandardSymbolicInnerProductDefinition
from qgs.inner_products.symbolic import AtmosphericSymbolicInnerProducts, OceanicSymbolicInnerProducts
from qgs.tensors.qgtensor import QgsTensor
from qgs.functions.sparse_mul import sparse_mul3
from qgs.integrators.integrator import RungeKuttaIntegrator
```
and diagnostics
```python
from qgs.diagnostics.streamfunctions import MiddleAtmosphericStreamfunctionDiagnostic, OceanicLayerStreamfunctionDiagnostic
from qgs.diagnostics.temperatures import MiddleAtmosphericTemperatureDiagnostic, OceanicLayerTemperatureDiagnostic
from qgs.diagnostics.variables import VariablesDiagnostic, GeopotentialHeightDifferenceDiagnostic
from qgs.diagnostics.multi import MultiDiagnostic
```
and some SymPy functions
```python
from sympy import symbols, sin, exp, pi
```
## Systems definition
General parameters
```python
# Time parameters
dt = 0.1
# Saving the model state n steps
write_steps = 100
number_of_trajectories = 1
```
Setting some model parameters and setting the atmosphere basis
```python
# Model parameters instantiation with some non-default specs
model_parameters = QgParams({'n': 1.5})
# Mode truncation at the wavenumber 2 in both x and y spatial
# coordinates for the atmosphere
model_parameters.set_atmospheric_channel_fourier_modes(2, 2, mode="symbolic")
```
Creating the ocean basis
```python
ocean_basis = SymbolicBasis()
x, y = symbols('x y') # x and y coordinates on the model's spatial domain
n, al = symbols('n al', real=True, nonnegative=True) # aspect ratio and alpha coefficients
for i in range(1, 3):
for j in range(1, 3):
ocean_basis.functions.append(2 * exp(- al * x) * sin(j * n * x / 2) * sin(i * y))
```
We then set the value of the parameter α to a certain value (here α=1). Please note that the α is then an extrinsic parameter of the model that you have to specify through a substitution:
```python
ocean_basis.substitutions.append((al, 1.))
ocean_basis.substitutions.append((n, model_parameters.scale_params.n))
```
Setting now the ocean basis
```python
model_parameters.set_oceanic_modes(ocean_basis)
```
Additionally, for these particular ocean basis functions, a special inner product needs to be defined instead of the standard one proposed. We consider thus as in the publication linked above the following inner product:
```python
class UserInnerProductDefinition(StandardSymbolicInnerProductDefinition):
def symbolic_inner_product(self, S, G, symbolic_expr=False, integrand=False):
"""Function defining the inner product to be computed symbolically:
:math:`(S, G) = \\frac{n}{2\\pi^2}\\int_0^\\pi\\int_0^{2\\pi/n} e^{2 \\alpha x} \\, S(x,y)\\, G(x,y)\\, \\mathrm{d} x \\, \\mathrm{d} y`.
Parameters
----------
S: Sympy expression
Left-hand side function of the product.
G: Sympy expression
Right-hand side function of the product.
symbolic_expr: bool, optional
If `True`, return the integral as a symbolic expression object. Else, return the integral performed symbolically.
integrand: bool, optional
If `True`, return the integrand of the integral and its integration limits as a list of symbolic expression object. Else, return the integral performed symbolically.
Returns
-------
Sympy expression
The result of the symbolic integration
"""
expr = (n / (2 * pi ** 2)) * exp(2 * al * x) * S * G
if integrand:
return expr, (x, 0, 2 * pi / n), (y, 0, pi)
else:
return self.integrate_over_domain(self.optimizer(expr), symbolic_expr=symbolic_expr)
```
Finally setting some other model's parameters:
```python
# Setting MAOOAM parameters according to the publication linked above
model_parameters.set_params({'kd': 0.029, 'kdp': 0.029, 'r': 1.0e-7,
'h': 136.5, 'd': 1.1e-7})
model_parameters.atemperature_params.set_params({'eps': 0.76, 'T0': 289.3,
'hlambda': 15.06})
model_parameters.gotemperature_params.set_params({'gamma': 5.6e8, 'T0': 301.46})
```
Setting the short-wave radiation component as in the publication above: $C_{\text{a},1}$ and $C_{\text{o},1}$
```python
model_parameters.atemperature_params.set_insolation(103.3333, 0)
model_parameters.gotemperature_params.set_insolation(310, 0)
```
Printing the model's parameters
```python
model_parameters.print_params()
```
We now construct the tendencies of the model by first constructing the ocean and atmosphere inner products objects. In addition, a inner product definition instance defined above must be passed to the ocean inner products object:
```python
with warnings.catch_warnings():
warnings.simplefilter("ignore")
ip = UserInnerProductDefinition()
aip = AtmosphericSymbolicInnerProducts(model_parameters)
oip = OceanicSymbolicInnerProducts(model_parameters, inner_product_definition=ip)
```
and finally we create manually the tendencies function, first by creating the tensor object:
```python
aotensor = QgsTensor(model_parameters, aip, oip)
```
and then the Python-[Numba](https://numba.pydata.org/) callable for the model’s tendencies $\boldsymbol{f}$ :
```python
coo = aotensor.tensor.coords.T
val = aotensor.tensor.data
@njit
def f(t, x):
xx = np.concatenate((np.full((1,), 1.), x))
xr = sparse_mul3(coo, val, xx, xx)
return xr[1:]
```
## Time integration
Defining an integrator
```python
integrator = RungeKuttaIntegrator()
integrator.set_func(f)
```
Start on a random initial condition and integrate over a transient time to obtain an initial condition on the attractors
```python
%%time
## Might take several minutes, depending on your cpu computational power.
ic = np.random.rand(model_parameters.ndim)*0.0001
integrator.integrate(0., 3000000., dt, ic=ic, write_steps=0)
time, ic = integrator.get_trajectories()
```
Now integrate to obtain a trajectory on the attractor
```python
%%time
integrator.integrate(0., 500000., dt, ic=ic, write_steps=write_steps)
reference_time, reference_traj = integrator.get_trajectories()
```
Plotting the result in 3D and 2D
```python
varx = 21
vary = 25
varz = 0
fig = plt.figure(figsize=(10, 8))
axi = fig.add_subplot(111, projection='3d')
axi.scatter(reference_traj[varx], reference_traj[vary], reference_traj[varz], s=0.2);
axi.set_xlabel('$'+model_parameters.latex_var_string[varx]+'$')
axi.set_ylabel('$'+model_parameters.latex_var_string[vary]+'$')
axi.set_zlabel('$'+model_parameters.latex_var_string[varz]+'$');
```
```python
varx = 21
vary = 25
plt.figure(figsize=(10, 8))
plt.plot(reference_traj[varx], reference_traj[vary], marker='o', ms=0.1, ls='')
plt.xlabel('$'+model_parameters.latex_var_string[varx]+'$')
plt.ylabel('$'+model_parameters.latex_var_string[vary]+'$');
```
```python
var = 21
plt.figure(figsize=(10, 8))
plt.plot(model_parameters.dimensional_time*reference_time, reference_traj[var])
plt.xlabel('time (days)')
plt.ylabel('$'+model_parameters.latex_var_string[var]+'$');
```
## Showing the resulting fields (animation)
Here, we want to show that the diagnostics adapt to the manually set basis.
This is an advanced feature showing the time evolution of diagnostic of the model. It shows simultaneously a scatter plot of the variable $\psi_{{\rm a}, 1}$, $\psi_{{\rm o}, 2}$ and $\theta_{{\rm o}, 2}$, with the corresponding atmospheric and oceanic streamfunctions and temperature at 500 hPa. Please read the documentation for more information.
Creating the diagnostics (for field plots, we must specify the grid step):
* For the 500hPa geopotential height:
```python
psi_a = MiddleAtmosphericStreamfunctionDiagnostic(model_parameters, delta_x=0.1, delta_y=0.1, geopotential=True)
```
* For the 500hPa atmospheric temperature:
```python
theta_a = MiddleAtmosphericTemperatureDiagnostic(model_parameters, delta_x=0.1, delta_y=0.1)
```
* For the ocean streamfunction:
```python
psi_o = OceanicLayerStreamfunctionDiagnostic(model_parameters, delta_x=0.1, delta_y=0.1, conserved=False)
```
* For the ocean temperature:
```python
theta_o = OceanicLayerTemperatureDiagnostic(model_parameters, delta_x=0.1, delta_y=0.1)
```
* For the nondimensional variables $\psi_{{\rm a}, 1}$, $\psi_{{\rm o}, 2}$ and $\theta_{{\rm o}, 2}$:
```python
variable_nondim = VariablesDiagnostic([21, 25, 0], model_parameters, False)
```
* For the geopotential height difference between North and South:
```python
geopot_dim = GeopotentialHeightDifferenceDiagnostic([[[np.pi/model_parameters.scale_params.n, np.pi/4], [np.pi/model_parameters.scale_params.n, 3*np.pi/4]]],
model_parameters, True)
```
```python
# setting also the background
background = VariablesDiagnostic([21, 25, 0], model_parameters, False)
background.set_data(reference_time, reference_traj)
```
Selecting a subset of the data to plot:
```python
stride = 10
time = reference_time[10000:10000+5200*stride:stride]
traj = reference_traj[:, 10000:10000+5200*stride:stride]
```
Creating a multi diagnostic with both:
```python
m = MultiDiagnostic(2,3)
m.add_diagnostic(geopot_dim, diagnostic_kwargs={'style':'moving-timeserie'})
m.add_diagnostic(theta_a, diagnostic_kwargs={'show_time':False})
m.add_diagnostic(theta_o, diagnostic_kwargs={'show_time':False})
m.add_diagnostic(variable_nondim, diagnostic_kwargs={'show_time':False, 'background': background, 'style':'3Dscatter'}, plot_kwargs={'ms': 0.2})
m.add_diagnostic(psi_a, diagnostic_kwargs={'show_time':False})
m.add_diagnostic(psi_o, diagnostic_kwargs={'show_time':False})
m.set_data(time, traj)
```
and show an interactive animation:
```python
rc('font',**{'family':'serif','sans-serif':['Times'],'size':12})
m.animate(figsize=(23,12))
```
or a movie (may takes some minutes to compute):
```python
%%time
rc('font',**{'family':'serif','sans-serif':['Times'],'size':12})
m.movie(figsize=(23.5,12), anim_kwargs={'interval': 100, 'frames':2000})
```
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import analysis.specific_limits.basic
import topology.metric_space.isometry
import topology.instances.ennreal
/-!
# Hausdorff distance
The Hausdorff distance on subsets of a metric (or emetric) space.
Given two subsets `s` and `t` of a metric space, their Hausdorff distance is the smallest `d`
such that any point `s` is within `d` of a point in `t`, and conversely. This quantity
is often infinite (think of `s` bounded and `t` unbounded), and therefore better
expressed in the setting of emetric spaces.
## Main definitions
This files introduces:
* `inf_edist x s`, the infimum edistance of a point `x` to a set `s` in an emetric space
* `Hausdorff_edist s t`, the Hausdorff edistance of two sets in an emetric space
* Versions of these notions on metric spaces, called respectively `inf_dist` and `Hausdorff_dist`
* `thickening δ s`, the open thickening by radius `δ` of a set `s` in a pseudo emetric space.
* `cthickening δ s`, the closed thickening by radius `δ` of a set `s` in a pseudo emetric space.
-/
noncomputable theory
open_locale classical nnreal ennreal topological_space
universes u v w
open classical set function topological_space filter
variables {ι : Sort*} {α : Type u} {β : Type v}
namespace emetric
section inf_edist
variables [pseudo_emetric_space α] [pseudo_emetric_space β] {x y : α} {s t : set α} {Φ : α → β}
/-! ### Distance of a point to a set as a function into `ℝ≥0∞`. -/
/-- The minimal edistance of a point to a set -/
def inf_edist (x : α) (s : set α) : ℝ≥0∞ := ⨅ y ∈ s, edist x y
@[simp] lemma inf_edist_empty : inf_edist x ∅ = ∞ := infi_emptyset
lemma le_inf_edist {d} : d ≤ inf_edist x s ↔ ∀ y ∈ s, d ≤ edist x y :=
by simp only [inf_edist, le_infi_iff]
/-- The edist to a union is the minimum of the edists -/
@[simp] lemma inf_edist_union : inf_edist x (s ∪ t) = inf_edist x s ⊓ inf_edist x t :=
infi_union
@[simp] lemma inf_edist_Union (f : ι → set α) (x : α) :
inf_edist x (⋃ i, f i) = ⨅ i, inf_edist x (f i) :=
infi_Union f _
/-- The edist to a singleton is the edistance to the single point of this singleton -/
@[simp] lemma inf_edist_singleton : inf_edist x {y} = edist x y :=
infi_singleton
/-- The edist to a set is bounded above by the edist to any of its points -/
lemma inf_edist_le_edist_of_mem (h : y ∈ s) : inf_edist x s ≤ edist x y := infi₂_le _ h
/-- If a point `x` belongs to `s`, then its edist to `s` vanishes -/
lemma inf_edist_zero_of_mem (h : x ∈ s) : inf_edist x s = 0 :=
nonpos_iff_eq_zero.1 $ @edist_self _ _ x ▸ inf_edist_le_edist_of_mem h
/-- The edist is antitone with respect to inclusion. -/
lemma inf_edist_anti (h : s ⊆ t) : inf_edist x t ≤ inf_edist x s := infi_le_infi_of_subset h
/-- The edist to a set is `< r` iff there exists a point in the set at edistance `< r` -/
lemma inf_edist_lt_iff {r : ℝ≥0∞} : inf_edist x s < r ↔ ∃ y ∈ s, edist x y < r :=
by simp_rw [inf_edist, infi_lt_iff]
/-- The edist of `x` to `s` is bounded by the sum of the edist of `y` to `s` and
the edist from `x` to `y` -/
lemma inf_edist_le_inf_edist_add_edist : inf_edist x s ≤ inf_edist y s + edist x y :=
calc (⨅ z ∈ s, edist x z) ≤ ⨅ z ∈ s, edist y z + edist x y :
infi₂_mono $ λ z hz, (edist_triangle _ _ _).trans_eq (add_comm _ _)
... = (⨅ z ∈ s, edist y z) + edist x y : by simp only [ennreal.infi_add]
lemma inf_edist_le_edist_add_inf_edist : inf_edist x s ≤ edist x y + inf_edist y s :=
by { rw add_comm, exact inf_edist_le_inf_edist_add_edist }
/-- The edist to a set depends continuously on the point -/
@[continuity]
lemma continuous_inf_edist : continuous (λx, inf_edist x s) :=
continuous_of_le_add_edist 1 (by simp) $
by simp only [one_mul, inf_edist_le_inf_edist_add_edist, forall_2_true_iff]
/-- The edist to a set and to its closure coincide -/
lemma inf_edist_closure : inf_edist x (closure s) = inf_edist x s :=
begin
refine le_antisymm (inf_edist_anti subset_closure) _,
refine ennreal.le_of_forall_pos_le_add (λε εpos h, _),
have ε0 : 0 < (ε / 2 : ℝ≥0∞) := by simpa [pos_iff_ne_zero] using εpos,
have : inf_edist x (closure s) < inf_edist x (closure s) + ε/2,
from ennreal.lt_add_right h.ne ε0.ne',
rcases inf_edist_lt_iff.mp this with ⟨y, ycs, hy⟩,
-- y : α, ycs : y ∈ closure s, hy : edist x y < inf_edist x (closure s) + ↑ε / 2
rcases emetric.mem_closure_iff.1 ycs (ε/2) ε0 with ⟨z, zs, dyz⟩,
-- z : α, zs : z ∈ s, dyz : edist y z < ↑ε / 2
calc inf_edist x s ≤ edist x z : inf_edist_le_edist_of_mem zs
... ≤ edist x y + edist y z : edist_triangle _ _ _
... ≤ (inf_edist x (closure s) + ε / 2) + (ε/2) : add_le_add (le_of_lt hy) (le_of_lt dyz)
... = inf_edist x (closure s) + ↑ε : by rw [add_assoc, ennreal.add_halves]
end
/-- A point belongs to the closure of `s` iff its infimum edistance to this set vanishes -/
lemma mem_closure_iff_inf_edist_zero : x ∈ closure s ↔ inf_edist x s = 0 :=
⟨λ h, by { rw ← inf_edist_closure, exact inf_edist_zero_of_mem h },
λ h, emetric.mem_closure_iff.2 $ λ ε εpos, inf_edist_lt_iff.mp $ by rwa h⟩
/-- Given a closed set `s`, a point belongs to `s` iff its infimum edistance to this set vanishes -/
lemma mem_iff_inf_edist_zero_of_closed (h : is_closed s) : x ∈ s ↔ inf_edist x s = 0 :=
begin
convert ← mem_closure_iff_inf_edist_zero,
exact h.closure_eq
end
lemma disjoint_closed_ball_of_lt_inf_edist {r : ℝ≥0∞} (h : r < inf_edist x s) :
disjoint (closed_ball x r) s :=
begin
rw disjoint_left,
assume y hy h'y,
apply lt_irrefl (inf_edist x s),
calc inf_edist x s ≤ edist x y : inf_edist_le_edist_of_mem h'y
... ≤ r : by rwa [mem_closed_ball, edist_comm] at hy
... < inf_edist x s : h
end
/-- The infimum edistance is invariant under isometries -/
lemma inf_edist_image (hΦ : isometry Φ) :
inf_edist (Φ x) (Φ '' t) = inf_edist x t :=
by simp only [inf_edist, infi_image, hΦ.edist_eq]
lemma _root_.is_open.exists_Union_is_closed {U : set α} (hU : is_open U) :
∃ F : ℕ → set α, (∀ n, is_closed (F n)) ∧ (∀ n, F n ⊆ U) ∧ ((⋃ n, F n) = U) ∧ monotone F :=
begin
obtain ⟨a, a_pos, a_lt_one⟩ : ∃ (a : ℝ≥0∞), 0 < a ∧ a < 1 := exists_between (ennreal.zero_lt_one),
let F := λ (n : ℕ), (λ x, inf_edist x Uᶜ) ⁻¹' (Ici (a^n)),
have F_subset : ∀ n, F n ⊆ U,
{ assume n x hx,
have : inf_edist x Uᶜ ≠ 0 := ((ennreal.pow_pos a_pos _).trans_le hx).ne',
contrapose! this,
exact inf_edist_zero_of_mem this },
refine ⟨F, λ n, is_closed.preimage continuous_inf_edist is_closed_Ici, F_subset, _, _⟩,
show monotone F,
{ assume m n hmn x hx,
simp only [mem_Ici, mem_preimage] at hx ⊢,
apply le_trans (ennreal.pow_le_pow_of_le_one a_lt_one.le hmn) hx },
show (⋃ n, F n) = U,
{ refine subset.antisymm (by simp only [Union_subset_iff, F_subset, forall_const]) (λ x hx, _),
have : ¬(x ∈ Uᶜ), by simpa using hx,
rw mem_iff_inf_edist_zero_of_closed hU.is_closed_compl at this,
have B : 0 < inf_edist x Uᶜ, by simpa [pos_iff_ne_zero] using this,
have : filter.tendsto (λ n, a^n) at_top (𝓝 0) :=
ennreal.tendsto_pow_at_top_nhds_0_of_lt_1 a_lt_one,
rcases ((tendsto_order.1 this).2 _ B).exists with ⟨n, hn⟩,
simp only [mem_Union, mem_Ici, mem_preimage],
exact ⟨n, hn.le⟩ },
end
lemma _root_.is_compact.exists_inf_edist_eq_edist (hs : is_compact s) (hne : s.nonempty) (x : α) :
∃ y ∈ s, inf_edist x s = edist x y :=
begin
have A : continuous (λ y, edist x y) := continuous_const.edist continuous_id,
obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, ∀ z, z ∈ s → edist x y ≤ edist x z :=
hs.exists_forall_le hne A.continuous_on,
exact ⟨y, ys, le_antisymm (inf_edist_le_edist_of_mem ys) (by rwa le_inf_edist)⟩
end
lemma exists_pos_forall_le_edist (hs : is_compact s) (hs' : s.nonempty) (ht : is_closed t)
(hst : disjoint s t) :
∃ r, 0 < r ∧ ∀ (x ∈ s) (y ∈ t), r ≤ edist x y :=
begin
obtain ⟨x, hx, h⟩ : ∃ x ∈ s, ∀ y ∈ s, inf_edist x t ≤ inf_edist y t :=
hs.exists_forall_le hs' continuous_inf_edist.continuous_on,
refine ⟨inf_edist x t, pos_iff_ne_zero.2 $ λ H, hst ⟨hx, _⟩, λ y hy, le_inf_edist.1 $ h y hy⟩,
rw ←ht.closure_eq,
exact mem_closure_iff_inf_edist_zero.2 H,
end
end inf_edist --section
/-! ### The Hausdorff distance as a function into `ℝ≥0∞`. -/
/-- The Hausdorff edistance between two sets is the smallest `r` such that each set
is contained in the `r`-neighborhood of the other one -/
@[irreducible] def Hausdorff_edist {α : Type u} [pseudo_emetric_space α] (s t : set α) : ℝ≥0∞ :=
(⨆ x ∈ s, inf_edist x t) ⊔ (⨆ y ∈ t, inf_edist y s)
lemma Hausdorff_edist_def {α : Type u} [pseudo_emetric_space α] (s t : set α) :
Hausdorff_edist s t = (⨆ x ∈ s, inf_edist x t) ⊔ (⨆ y ∈ t, inf_edist y s) :=
by rw Hausdorff_edist
section Hausdorff_edist
variables [pseudo_emetric_space α] [pseudo_emetric_space β] {x y : α} {s t u : set α} {Φ : α → β}
/-- The Hausdorff edistance of a set to itself vanishes -/
@[simp] lemma Hausdorff_edist_self : Hausdorff_edist s s = 0 :=
begin
simp only [Hausdorff_edist_def, sup_idem, ennreal.supr_eq_zero],
exact λ x hx, inf_edist_zero_of_mem hx
end
/-- The Haudorff edistances of `s` to `t` and of `t` to `s` coincide -/
lemma Hausdorff_edist_comm : Hausdorff_edist s t = Hausdorff_edist t s :=
by unfold Hausdorff_edist; apply sup_comm
/-- Bounding the Hausdorff edistance by bounding the edistance of any point
in each set to the other set -/
lemma Hausdorff_edist_le_of_inf_edist {r : ℝ≥0∞}
(H1 : ∀x ∈ s, inf_edist x t ≤ r) (H2 : ∀x ∈ t, inf_edist x s ≤ r) :
Hausdorff_edist s t ≤ r :=
begin
simp only [Hausdorff_edist, sup_le_iff, supr_le_iff],
exact ⟨H1, H2⟩
end
/-- Bounding the Hausdorff edistance by exhibiting, for any point in each set,
another point in the other set at controlled distance -/
lemma Hausdorff_edist_le_of_mem_edist {r : ℝ≥0∞}
(H1 : ∀x ∈ s, ∃y ∈ t, edist x y ≤ r) (H2 : ∀x ∈ t, ∃y ∈ s, edist x y ≤ r) :
Hausdorff_edist s t ≤ r :=
begin
refine Hausdorff_edist_le_of_inf_edist _ _,
{ assume x xs,
rcases H1 x xs with ⟨y, yt, hy⟩,
exact le_trans (inf_edist_le_edist_of_mem yt) hy },
{ assume x xt,
rcases H2 x xt with ⟨y, ys, hy⟩,
exact le_trans (inf_edist_le_edist_of_mem ys) hy }
end
/-- The distance to a set is controlled by the Hausdorff distance -/
lemma inf_edist_le_Hausdorff_edist_of_mem (h : x ∈ s) : inf_edist x t ≤ Hausdorff_edist s t :=
begin
rw Hausdorff_edist_def,
refine le_trans _ le_sup_left,
exact le_supr₂ x h
end
/-- If the Hausdorff distance is `<r`, then any point in one of the sets has
a corresponding point at distance `<r` in the other set -/
lemma exists_edist_lt_of_Hausdorff_edist_lt {r : ℝ≥0∞} (h : x ∈ s)
(H : Hausdorff_edist s t < r) : ∃ y ∈ t, edist x y < r :=
inf_edist_lt_iff.mp $ calc
inf_edist x t ≤ Hausdorff_edist s t : inf_edist_le_Hausdorff_edist_of_mem h
... < r : H
/-- The distance from `x` to `s` or `t` is controlled in terms of the Hausdorff distance
between `s` and `t` -/
lemma inf_edist_le_inf_edist_add_Hausdorff_edist :
inf_edist x t ≤ inf_edist x s + Hausdorff_edist s t :=
ennreal.le_of_forall_pos_le_add $ λε εpos h, begin
have ε0 : (ε / 2 : ℝ≥0∞) ≠ 0 := by simpa [pos_iff_ne_zero] using εpos,
have : inf_edist x s < inf_edist x s + ε/2 :=
ennreal.lt_add_right (ennreal.add_lt_top.1 h).1.ne ε0,
rcases inf_edist_lt_iff.mp this with ⟨y, ys, dxy⟩,
-- y : α, ys : y ∈ s, dxy : edist x y < inf_edist x s + ↑ε / 2
have : Hausdorff_edist s t < Hausdorff_edist s t + ε/2 :=
ennreal.lt_add_right (ennreal.add_lt_top.1 h).2.ne ε0,
rcases exists_edist_lt_of_Hausdorff_edist_lt ys this with ⟨z, zt, dyz⟩,
-- z : α, zt : z ∈ t, dyz : edist y z < Hausdorff_edist s t + ↑ε / 2
calc inf_edist x t ≤ edist x z : inf_edist_le_edist_of_mem zt
... ≤ edist x y + edist y z : edist_triangle _ _ _
... ≤ (inf_edist x s + ε/2) + (Hausdorff_edist s t + ε/2) : add_le_add dxy.le dyz.le
... = inf_edist x s + Hausdorff_edist s t + ε :
by simp [ennreal.add_halves, add_comm, add_left_comm]
end
/-- The Hausdorff edistance is invariant under eisometries -/
lemma Hausdorff_edist_image (h : isometry Φ) :
Hausdorff_edist (Φ '' s) (Φ '' t) = Hausdorff_edist s t :=
by simp only [Hausdorff_edist_def, supr_image, inf_edist_image h]
/-- The Hausdorff distance is controlled by the diameter of the union -/
lemma Hausdorff_edist_le_ediam (hs : s.nonempty) (ht : t.nonempty) :
Hausdorff_edist s t ≤ diam (s ∪ t) :=
begin
rcases hs with ⟨x, xs⟩,
rcases ht with ⟨y, yt⟩,
refine Hausdorff_edist_le_of_mem_edist _ _,
{ intros z hz,
exact ⟨y, yt, edist_le_diam_of_mem (subset_union_left _ _ hz) (subset_union_right _ _ yt)⟩ },
{ intros z hz,
exact ⟨x, xs, edist_le_diam_of_mem (subset_union_right _ _ hz) (subset_union_left _ _ xs)⟩ }
end
/-- The Hausdorff distance satisfies the triangular inequality -/
lemma Hausdorff_edist_triangle : Hausdorff_edist s u ≤ Hausdorff_edist s t + Hausdorff_edist t u :=
begin
rw Hausdorff_edist_def,
simp only [sup_le_iff, supr_le_iff],
split,
show ∀x ∈ s, inf_edist x u ≤ Hausdorff_edist s t + Hausdorff_edist t u, from λx xs, calc
inf_edist x u ≤ inf_edist x t + Hausdorff_edist t u : inf_edist_le_inf_edist_add_Hausdorff_edist
... ≤ Hausdorff_edist s t + Hausdorff_edist t u :
add_le_add_right (inf_edist_le_Hausdorff_edist_of_mem xs) _,
show ∀x ∈ u, inf_edist x s ≤ Hausdorff_edist s t + Hausdorff_edist t u, from λx xu, calc
inf_edist x s ≤ inf_edist x t + Hausdorff_edist t s : inf_edist_le_inf_edist_add_Hausdorff_edist
... ≤ Hausdorff_edist u t + Hausdorff_edist t s :
add_le_add_right (inf_edist_le_Hausdorff_edist_of_mem xu) _
... = Hausdorff_edist s t + Hausdorff_edist t u : by simp [Hausdorff_edist_comm, add_comm]
end
/-- Two sets are at zero Hausdorff edistance if and only if they have the same closure -/
lemma Hausdorff_edist_zero_iff_closure_eq_closure :
Hausdorff_edist s t = 0 ↔ closure s = closure t :=
calc Hausdorff_edist s t = 0 ↔ s ⊆ closure t ∧ t ⊆ closure s :
by simp only [Hausdorff_edist_def, ennreal.sup_eq_zero, ennreal.supr_eq_zero,
← mem_closure_iff_inf_edist_zero, subset_def]
... ↔ closure s = closure t :
⟨λ h, subset.antisymm (closure_minimal h.1 is_closed_closure)
(closure_minimal h.2 is_closed_closure),
λ h, ⟨h ▸ subset_closure, h.symm ▸ subset_closure⟩⟩
/-- The Hausdorff edistance between a set and its closure vanishes -/
@[simp, priority 1100]
lemma Hausdorff_edist_self_closure : Hausdorff_edist s (closure s) = 0 :=
by rw [Hausdorff_edist_zero_iff_closure_eq_closure, closure_closure]
/-- Replacing a set by its closure does not change the Hausdorff edistance. -/
@[simp] lemma Hausdorff_edist_closure₁ : Hausdorff_edist (closure s) t = Hausdorff_edist s t :=
begin
refine le_antisymm _ _,
{ calc _ ≤ Hausdorff_edist (closure s) s + Hausdorff_edist s t : Hausdorff_edist_triangle
... = Hausdorff_edist s t : by simp [Hausdorff_edist_comm] },
{ calc _ ≤ Hausdorff_edist s (closure s) + Hausdorff_edist (closure s) t :
Hausdorff_edist_triangle
... = Hausdorff_edist (closure s) t : by simp }
end
/-- Replacing a set by its closure does not change the Hausdorff edistance. -/
@[simp] lemma Hausdorff_edist_closure₂ : Hausdorff_edist s (closure t) = Hausdorff_edist s t :=
by simp [@Hausdorff_edist_comm _ _ s _]
/-- The Hausdorff edistance between sets or their closures is the same -/
@[simp] lemma Hausdorff_edist_closure :
Hausdorff_edist (closure s) (closure t) = Hausdorff_edist s t :=
by simp
/-- Two closed sets are at zero Hausdorff edistance if and only if they coincide -/
lemma Hausdorff_edist_zero_iff_eq_of_closed (hs : is_closed s) (ht : is_closed t) :
Hausdorff_edist s t = 0 ↔ s = t :=
by rw [Hausdorff_edist_zero_iff_closure_eq_closure, hs.closure_eq, ht.closure_eq]
/-- The Haudorff edistance to the empty set is infinite -/
lemma Hausdorff_edist_empty (ne : s.nonempty) : Hausdorff_edist s ∅ = ∞ :=
begin
rcases ne with ⟨x, xs⟩,
have : inf_edist x ∅ ≤ Hausdorff_edist s ∅ := inf_edist_le_Hausdorff_edist_of_mem xs,
simpa using this,
end
/-- If a set is at finite Hausdorff edistance of a nonempty set, it is nonempty -/
lemma nonempty_of_Hausdorff_edist_ne_top (hs : s.nonempty) (fin : Hausdorff_edist s t ≠ ⊤) :
t.nonempty :=
t.eq_empty_or_nonempty.elim (λ ht, (fin $ ht.symm ▸ Hausdorff_edist_empty hs).elim) id
lemma empty_or_nonempty_of_Hausdorff_edist_ne_top (fin : Hausdorff_edist s t ≠ ⊤) :
s = ∅ ∧ t = ∅ ∨ s.nonempty ∧ t.nonempty :=
begin
cases s.eq_empty_or_nonempty with hs hs,
{ cases t.eq_empty_or_nonempty with ht ht,
{ exact or.inl ⟨hs, ht⟩ },
{ rw Hausdorff_edist_comm at fin,
exact or.inr ⟨nonempty_of_Hausdorff_edist_ne_top ht fin, ht⟩ } },
{ exact or.inr ⟨hs, nonempty_of_Hausdorff_edist_ne_top hs fin⟩ }
end
end Hausdorff_edist -- section
end emetric --namespace
/-! Now, we turn to the same notions in metric spaces. To avoid the difficulties related to
`Inf` and `Sup` on `ℝ` (which is only conditionally complete), we use the notions in `ℝ≥0∞`
formulated in terms of the edistance, and coerce them to `ℝ`.
Then their properties follow readily from the corresponding properties in `ℝ≥0∞`,
modulo some tedious rewriting of inequalities from one to the other. -/
namespace metric
section
variables [pseudo_metric_space α] [pseudo_metric_space β] {s t u : set α} {x y : α} {Φ : α → β}
open emetric
/-! ### Distance of a point to a set as a function into `ℝ`. -/
/-- The minimal distance of a point to a set -/
def inf_dist (x : α) (s : set α) : ℝ := ennreal.to_real (inf_edist x s)
/-- the minimal distance is always nonnegative -/
lemma inf_dist_nonneg : 0 ≤ inf_dist x s := by simp [inf_dist]
/-- the minimal distance to the empty set is 0 (if you want to have the more reasonable
value ∞ instead, use `inf_edist`, which takes values in ℝ≥0∞) -/
@[simp] lemma inf_dist_empty : inf_dist x ∅ = 0 :=
by simp [inf_dist]
/-- In a metric space, the minimal edistance to a nonempty set is finite -/
lemma inf_edist_ne_top (h : s.nonempty) : inf_edist x s ≠ ⊤ :=
begin
rcases h with ⟨y, hy⟩,
apply lt_top_iff_ne_top.1,
calc inf_edist x s ≤ edist x y : inf_edist_le_edist_of_mem hy
... < ⊤ : lt_top_iff_ne_top.2 (edist_ne_top _ _)
end
/-- The minimal distance of a point to a set containing it vanishes -/
lemma inf_dist_zero_of_mem (h : x ∈ s) : inf_dist x s = 0 :=
by simp [inf_edist_zero_of_mem h, inf_dist]
/-- The minimal distance to a singleton is the distance to the unique point in this singleton -/
@[simp] lemma inf_dist_singleton : inf_dist x {y} = dist x y :=
by simp [inf_dist, inf_edist, dist_edist]
/-- The minimal distance to a set is bounded by the distance to any point in this set -/
lemma inf_dist_le_dist_of_mem (h : y ∈ s) : inf_dist x s ≤ dist x y :=
begin
rw [dist_edist, inf_dist,
ennreal.to_real_le_to_real (inf_edist_ne_top ⟨_, h⟩) (edist_ne_top _ _)],
exact inf_edist_le_edist_of_mem h
end
/-- The minimal distance is monotonous with respect to inclusion -/
lemma inf_dist_le_inf_dist_of_subset (h : s ⊆ t) (hs : s.nonempty) :
inf_dist x t ≤ inf_dist x s :=
begin
have ht : t.nonempty := hs.mono h,
rw [inf_dist, inf_dist, ennreal.to_real_le_to_real (inf_edist_ne_top ht) (inf_edist_ne_top hs)],
exact inf_edist_anti h
end
/-- The minimal distance to a set is `< r` iff there exists a point in this set at distance `< r` -/
lemma inf_dist_lt_iff {r : ℝ} (hs : s.nonempty) :
inf_dist x s < r ↔ ∃ y ∈ s, dist x y < r :=
by simp_rw [inf_dist, ← ennreal.lt_of_real_iff_to_real_lt (inf_edist_ne_top hs), inf_edist_lt_iff,
ennreal.lt_of_real_iff_to_real_lt (edist_ne_top _ _), ← dist_edist]
/-- The minimal distance from `x` to `s` is bounded by the distance from `y` to `s`, modulo
the distance between `x` and `y` -/
lemma inf_dist_le_inf_dist_add_dist : inf_dist x s ≤ inf_dist y s + dist x y :=
begin
cases s.eq_empty_or_nonempty with hs hs,
{ simp [hs, dist_nonneg] },
{ rw [inf_dist, inf_dist, dist_edist,
← ennreal.to_real_add (inf_edist_ne_top hs) (edist_ne_top _ _),
ennreal.to_real_le_to_real (inf_edist_ne_top hs)],
{ exact inf_edist_le_inf_edist_add_edist },
{ simp [ennreal.add_eq_top, inf_edist_ne_top hs, edist_ne_top] }}
end
lemma not_mem_of_dist_lt_inf_dist (h : dist x y < inf_dist x s) : y ∉ s :=
λ hy, h.not_le $ inf_dist_le_dist_of_mem hy
lemma disjoint_ball_inf_dist : disjoint (ball x (inf_dist x s)) s :=
disjoint_left.2 $ λ y hy, not_mem_of_dist_lt_inf_dist $
calc dist x y = dist y x : dist_comm _ _
... < inf_dist x s : hy
lemma ball_inf_dist_subset_compl : ball x (inf_dist x s) ⊆ sᶜ :=
disjoint_iff_subset_compl_right.1 disjoint_ball_inf_dist
lemma ball_inf_dist_compl_subset : ball x (inf_dist x sᶜ) ⊆ s :=
ball_inf_dist_subset_compl.trans (compl_compl s).subset
lemma disjoint_closed_ball_of_lt_inf_dist {r : ℝ} (h : r < inf_dist x s) :
disjoint (closed_ball x r) s :=
disjoint_ball_inf_dist.mono_left $ closed_ball_subset_ball h
variable (s)
/-- The minimal distance to a set is Lipschitz in point with constant 1 -/
lemma lipschitz_inf_dist_pt : lipschitz_with 1 (λx, inf_dist x s) :=
lipschitz_with.of_le_add $ λ x y, inf_dist_le_inf_dist_add_dist
/-- The minimal distance to a set is uniformly continuous in point -/
/-- The minimal distance to a set is continuous in point -/
@[continuity]
lemma continuous_inf_dist_pt : continuous (λx, inf_dist x s) :=
(uniform_continuous_inf_dist_pt s).continuous
variable {s}
/-- The minimal distance to a set and its closure coincide -/
lemma inf_dist_eq_closure : inf_dist x (closure s) = inf_dist x s :=
by simp [inf_dist, inf_edist_closure]
/-- If a point belongs to the closure of `s`, then its infimum distance to `s` equals zero.
The converse is true provided that `s` is nonempty, see `mem_closure_iff_inf_dist_zero`. -/
lemma inf_dist_zero_of_mem_closure (hx : x ∈ closure s) : inf_dist x s = 0 :=
by { rw ← inf_dist_eq_closure, exact inf_dist_zero_of_mem hx }
/-- A point belongs to the closure of `s` iff its infimum distance to this set vanishes -/
lemma mem_closure_iff_inf_dist_zero (h : s.nonempty) : x ∈ closure s ↔ inf_dist x s = 0 :=
by simp [mem_closure_iff_inf_edist_zero, inf_dist, ennreal.to_real_eq_zero_iff, inf_edist_ne_top h]
/-- Given a closed set `s`, a point belongs to `s` iff its infimum distance to this set vanishes -/
lemma _root_.is_closed.mem_iff_inf_dist_zero (h : is_closed s) (hs : s.nonempty) :
x ∈ s ↔ inf_dist x s = 0 :=
by rw [←mem_closure_iff_inf_dist_zero hs, h.closure_eq]
/-- Given a closed set `s`, a point belongs to `s` iff its infimum distance to this set vanishes -/
lemma _root_.is_closed.not_mem_iff_inf_dist_pos (h : is_closed s) (hs : s.nonempty) :
x ∉ s ↔ 0 < inf_dist x s :=
begin
rw ← not_iff_not,
push_neg,
simp [h.mem_iff_inf_dist_zero hs, le_antisymm_iff, inf_dist_nonneg],
end
/-- The infimum distance is invariant under isometries -/
lemma inf_dist_image (hΦ : isometry Φ) :
inf_dist (Φ x) (Φ '' t) = inf_dist x t :=
by simp [inf_dist, inf_edist_image hΦ]
lemma inf_dist_inter_closed_ball_of_mem (h : y ∈ s) :
inf_dist x (s ∩ closed_ball x (dist y x)) = inf_dist x s :=
begin
replace h : y ∈ s ∩ closed_ball x (dist y x) := ⟨h, mem_closed_ball.2 le_rfl⟩,
refine le_antisymm _ (inf_dist_le_inf_dist_of_subset (inter_subset_left _ _) ⟨y, h⟩),
refine not_lt.1 (λ hlt, _),
rcases (inf_dist_lt_iff ⟨y, h.1⟩).mp hlt with ⟨z, hzs, hz⟩,
cases le_or_lt (dist z x) (dist y x) with hle hlt,
{ exact hz.not_le (inf_dist_le_dist_of_mem ⟨hzs, hle⟩) },
{ rw [dist_comm z, dist_comm y] at hlt,
exact (hlt.trans hz).not_le (inf_dist_le_dist_of_mem h) }
end
lemma _root_.is_compact.exists_inf_dist_eq_dist (h : is_compact s) (hne : s.nonempty) (x : α) :
∃ y ∈ s, inf_dist x s = dist x y :=
let ⟨y, hys, hy⟩ := h.exists_inf_edist_eq_edist hne x
in ⟨y, hys, by rw [inf_dist, dist_edist, hy]⟩
lemma _root_.is_closed.exists_inf_dist_eq_dist [proper_space α]
(h : is_closed s) (hne : s.nonempty) (x : α) :
∃ y ∈ s, inf_dist x s = dist x y :=
begin
rcases hne with ⟨z, hz⟩,
rw ← inf_dist_inter_closed_ball_of_mem hz,
set t := s ∩ closed_ball x (dist z x),
have htc : is_compact t := (is_compact_closed_ball x (dist z x)).inter_left h,
have htne : t.nonempty := ⟨z, hz, mem_closed_ball.2 le_rfl⟩,
obtain ⟨y, ⟨hys, hyx⟩, hyd⟩ : ∃ y ∈ t, inf_dist x t = dist x y :=
htc.exists_inf_dist_eq_dist htne x,
exact ⟨y, hys, hyd⟩
end
lemma exists_mem_closure_inf_dist_eq_dist [proper_space α] (hne : s.nonempty) (x : α) :
∃ y ∈ closure s, inf_dist x s = dist x y :=
by simpa only [inf_dist_eq_closure] using is_closed_closure.exists_inf_dist_eq_dist hne.closure x
/-! ### Distance of a point to a set as a function into `ℝ≥0`. -/
/-- The minimal distance of a point to a set as a `ℝ≥0` -/
def inf_nndist (x : α) (s : set α) : ℝ≥0 := ennreal.to_nnreal (inf_edist x s)
@[simp] lemma coe_inf_nndist : (inf_nndist x s : ℝ) = inf_dist x s := rfl
/-- The minimal distance to a set (as `ℝ≥0`) is Lipschitz in point with constant 1 -/
lemma lipschitz_inf_nndist_pt (s : set α) : lipschitz_with 1 (λx, inf_nndist x s) :=
lipschitz_with.of_le_add $ λ x y, inf_dist_le_inf_dist_add_dist
/-- The minimal distance to a set (as `ℝ≥0`) is uniformly continuous in point -/
lemma uniform_continuous_inf_nndist_pt (s : set α) :
uniform_continuous (λx, inf_nndist x s) :=
(lipschitz_inf_nndist_pt s).uniform_continuous
/-- The minimal distance to a set (as `ℝ≥0`) is continuous in point -/
lemma continuous_inf_nndist_pt (s : set α) : continuous (λx, inf_nndist x s) :=
(uniform_continuous_inf_nndist_pt s).continuous
/-! ### The Hausdorff distance as a function into `ℝ`. -/
/-- The Hausdorff distance between two sets is the smallest nonnegative `r` such that each set is
included in the `r`-neighborhood of the other. If there is no such `r`, it is defined to
be `0`, arbitrarily -/
def Hausdorff_dist (s t : set α) : ℝ := ennreal.to_real (Hausdorff_edist s t)
/-- The Hausdorff distance is nonnegative -/
lemma Hausdorff_dist_nonneg : 0 ≤ Hausdorff_dist s t :=
by simp [Hausdorff_dist]
/-- If two sets are nonempty and bounded in a metric space, they are at finite Hausdorff
edistance. -/
lemma Hausdorff_edist_ne_top_of_nonempty_of_bounded (hs : s.nonempty) (ht : t.nonempty)
(bs : bounded s) (bt : bounded t) : Hausdorff_edist s t ≠ ⊤ :=
begin
rcases hs with ⟨cs, hcs⟩,
rcases ht with ⟨ct, hct⟩,
rcases (bounded_iff_subset_ball ct).1 bs with ⟨rs, hrs⟩,
rcases (bounded_iff_subset_ball cs).1 bt with ⟨rt, hrt⟩,
have : Hausdorff_edist s t ≤ ennreal.of_real (max rs rt),
{ apply Hausdorff_edist_le_of_mem_edist,
{ assume x xs,
existsi [ct, hct],
have : dist x ct ≤ max rs rt := le_trans (hrs xs) (le_max_left _ _),
rwa [edist_dist, ennreal.of_real_le_of_real_iff],
exact le_trans dist_nonneg this },
{ assume x xt,
existsi [cs, hcs],
have : dist x cs ≤ max rs rt := le_trans (hrt xt) (le_max_right _ _),
rwa [edist_dist, ennreal.of_real_le_of_real_iff],
exact le_trans dist_nonneg this }},
exact ne_top_of_le_ne_top ennreal.of_real_ne_top this
end
/-- The Hausdorff distance between a set and itself is zero -/
@[simp] lemma Hausdorff_dist_self_zero : Hausdorff_dist s s = 0 :=
by simp [Hausdorff_dist]
/-- The Hausdorff distance from `s` to `t` and from `t` to `s` coincide -/
lemma Hausdorff_dist_comm : Hausdorff_dist s t = Hausdorff_dist t s :=
by simp [Hausdorff_dist, Hausdorff_edist_comm]
/-- The Hausdorff distance to the empty set vanishes (if you want to have the more reasonable
value ∞ instead, use `Hausdorff_edist`, which takes values in ℝ≥0∞) -/
@[simp] lemma Hausdorff_dist_empty : Hausdorff_dist s ∅ = 0 :=
begin
cases s.eq_empty_or_nonempty with h h,
{ simp [h] },
{ simp [Hausdorff_dist, Hausdorff_edist_empty h] }
end
/-- The Hausdorff distance to the empty set vanishes (if you want to have the more reasonable
value ∞ instead, use `Hausdorff_edist`, which takes values in ℝ≥0∞) -/
@[simp] lemma Hausdorff_dist_empty' : Hausdorff_dist ∅ s = 0 :=
by simp [Hausdorff_dist_comm]
/-- Bounding the Hausdorff distance by bounding the distance of any point
in each set to the other set -/
lemma Hausdorff_dist_le_of_inf_dist {r : ℝ} (hr : 0 ≤ r)
(H1 : ∀x ∈ s, inf_dist x t ≤ r) (H2 : ∀x ∈ t, inf_dist x s ≤ r) :
Hausdorff_dist s t ≤ r :=
begin
by_cases h1 : Hausdorff_edist s t = ⊤,
{ rwa [Hausdorff_dist, h1, ennreal.top_to_real] },
cases s.eq_empty_or_nonempty with hs hs,
{ rwa [hs, Hausdorff_dist_empty'] },
cases t.eq_empty_or_nonempty with ht ht,
{ rwa [ht, Hausdorff_dist_empty] },
have : Hausdorff_edist s t ≤ ennreal.of_real r,
{ apply Hausdorff_edist_le_of_inf_edist _ _,
{ assume x hx,
have I := H1 x hx,
rwa [inf_dist, ← ennreal.to_real_of_real hr,
ennreal.to_real_le_to_real (inf_edist_ne_top ht) ennreal.of_real_ne_top] at I },
{ assume x hx,
have I := H2 x hx,
rwa [inf_dist, ← ennreal.to_real_of_real hr,
ennreal.to_real_le_to_real (inf_edist_ne_top hs) ennreal.of_real_ne_top] at I }},
rwa [Hausdorff_dist, ← ennreal.to_real_of_real hr,
ennreal.to_real_le_to_real h1 ennreal.of_real_ne_top]
end
/-- Bounding the Hausdorff distance by exhibiting, for any point in each set,
another point in the other set at controlled distance -/
lemma Hausdorff_dist_le_of_mem_dist {r : ℝ} (hr : 0 ≤ r)
(H1 : ∀x ∈ s, ∃y ∈ t, dist x y ≤ r) (H2 : ∀x ∈ t, ∃y ∈ s, dist x y ≤ r) :
Hausdorff_dist s t ≤ r :=
begin
apply Hausdorff_dist_le_of_inf_dist hr,
{ assume x xs,
rcases H1 x xs with ⟨y, yt, hy⟩,
exact le_trans (inf_dist_le_dist_of_mem yt) hy },
{ assume x xt,
rcases H2 x xt with ⟨y, ys, hy⟩,
exact le_trans (inf_dist_le_dist_of_mem ys) hy }
end
/-- The Hausdorff distance is controlled by the diameter of the union -/
lemma Hausdorff_dist_le_diam (hs : s.nonempty) (bs : bounded s) (ht : t.nonempty) (bt : bounded t) :
Hausdorff_dist s t ≤ diam (s ∪ t) :=
begin
rcases hs with ⟨x, xs⟩,
rcases ht with ⟨y, yt⟩,
refine Hausdorff_dist_le_of_mem_dist diam_nonneg _ _,
{ exact λz hz, ⟨y, yt, dist_le_diam_of_mem (bounded_union.2 ⟨bs, bt⟩)
(subset_union_left _ _ hz) (subset_union_right _ _ yt)⟩ },
{ exact λz hz, ⟨x, xs, dist_le_diam_of_mem (bounded_union.2 ⟨bs, bt⟩)
(subset_union_right _ _ hz) (subset_union_left _ _ xs)⟩ }
end
/-- The distance to a set is controlled by the Hausdorff distance -/
lemma inf_dist_le_Hausdorff_dist_of_mem (hx : x ∈ s) (fin : Hausdorff_edist s t ≠ ⊤) :
inf_dist x t ≤ Hausdorff_dist s t :=
begin
have ht : t.nonempty := nonempty_of_Hausdorff_edist_ne_top ⟨x, hx⟩ fin,
rw [Hausdorff_dist, inf_dist, ennreal.to_real_le_to_real (inf_edist_ne_top ht) fin],
exact inf_edist_le_Hausdorff_edist_of_mem hx
end
/-- If the Hausdorff distance is `<r`, then any point in one of the sets is at distance
`<r` of a point in the other set -/
lemma exists_dist_lt_of_Hausdorff_dist_lt {r : ℝ} (h : x ∈ s) (H : Hausdorff_dist s t < r)
(fin : Hausdorff_edist s t ≠ ⊤) : ∃y∈t, dist x y < r :=
begin
have r0 : 0 < r := lt_of_le_of_lt (Hausdorff_dist_nonneg) H,
have : Hausdorff_edist s t < ennreal.of_real r,
{ rwa [Hausdorff_dist, ← ennreal.to_real_of_real (le_of_lt r0),
ennreal.to_real_lt_to_real fin (ennreal.of_real_ne_top)] at H },
rcases exists_edist_lt_of_Hausdorff_edist_lt h this with ⟨y, hy, yr⟩,
rw [edist_dist, ennreal.of_real_lt_of_real_iff r0] at yr,
exact ⟨y, hy, yr⟩
end
/-- If the Hausdorff distance is `<r`, then any point in one of the sets is at distance
`<r` of a point in the other set -/
lemma exists_dist_lt_of_Hausdorff_dist_lt' {r : ℝ} (h : y ∈ t) (H : Hausdorff_dist s t < r)
(fin : Hausdorff_edist s t ≠ ⊤) : ∃x∈s, dist x y < r :=
begin
rw Hausdorff_dist_comm at H,
rw Hausdorff_edist_comm at fin,
simpa [dist_comm] using exists_dist_lt_of_Hausdorff_dist_lt h H fin
end
/-- The infimum distance to `s` and `t` are the same, up to the Hausdorff distance
between `s` and `t` -/
lemma inf_dist_le_inf_dist_add_Hausdorff_dist (fin : Hausdorff_edist s t ≠ ⊤) :
inf_dist x t ≤ inf_dist x s + Hausdorff_dist s t :=
begin
rcases empty_or_nonempty_of_Hausdorff_edist_ne_top fin with ⟨hs,ht⟩|⟨hs,ht⟩,
{ simp only [hs, ht, Hausdorff_dist_empty, inf_dist_empty, zero_add] },
rw [inf_dist, inf_dist, Hausdorff_dist, ← ennreal.to_real_add (inf_edist_ne_top hs) fin,
ennreal.to_real_le_to_real (inf_edist_ne_top ht)],
{ exact inf_edist_le_inf_edist_add_Hausdorff_edist },
{ exact ennreal.add_ne_top.2 ⟨inf_edist_ne_top hs, fin⟩ }
end
/-- The Hausdorff distance is invariant under isometries -/
lemma Hausdorff_dist_image (h : isometry Φ) :
Hausdorff_dist (Φ '' s) (Φ '' t) = Hausdorff_dist s t :=
by simp [Hausdorff_dist, Hausdorff_edist_image h]
/-- The Hausdorff distance satisfies the triangular inequality -/
lemma Hausdorff_dist_triangle (fin : Hausdorff_edist s t ≠ ⊤) :
Hausdorff_dist s u ≤ Hausdorff_dist s t + Hausdorff_dist t u :=
begin
by_cases Hausdorff_edist s u = ⊤,
{ calc Hausdorff_dist s u = 0 + 0 : by simp [Hausdorff_dist, h]
... ≤ Hausdorff_dist s t + Hausdorff_dist t u :
add_le_add (Hausdorff_dist_nonneg) (Hausdorff_dist_nonneg) },
{ have Dtu : Hausdorff_edist t u < ⊤ := calc
Hausdorff_edist t u ≤ Hausdorff_edist t s + Hausdorff_edist s u : Hausdorff_edist_triangle
... = Hausdorff_edist s t + Hausdorff_edist s u : by simp [Hausdorff_edist_comm]
... < ⊤ : lt_top_iff_ne_top.mpr $ ennreal.add_ne_top.mpr ⟨fin, h⟩,
rw [Hausdorff_dist, Hausdorff_dist, Hausdorff_dist,
← ennreal.to_real_add fin Dtu.ne, ennreal.to_real_le_to_real h],
{ exact Hausdorff_edist_triangle },
{ simp [ennreal.add_eq_top, lt_top_iff_ne_top.1 Dtu, fin] }}
end
/-- The Hausdorff distance satisfies the triangular inequality -/
lemma Hausdorff_dist_triangle' (fin : Hausdorff_edist t u ≠ ⊤) :
Hausdorff_dist s u ≤ Hausdorff_dist s t + Hausdorff_dist t u :=
begin
rw Hausdorff_edist_comm at fin,
have I : Hausdorff_dist u s ≤ Hausdorff_dist u t + Hausdorff_dist t s :=
Hausdorff_dist_triangle fin,
simpa [add_comm, Hausdorff_dist_comm] using I
end
/-- The Hausdorff distance between a set and its closure vanish -/
@[simp, priority 1100]
lemma Hausdorff_dist_self_closure : Hausdorff_dist s (closure s) = 0 :=
by simp [Hausdorff_dist]
/-- Replacing a set by its closure does not change the Hausdorff distance. -/
@[simp] lemma Hausdorff_dist_closure₁ : Hausdorff_dist (closure s) t = Hausdorff_dist s t :=
by simp [Hausdorff_dist]
/-- Replacing a set by its closure does not change the Hausdorff distance. -/
@[simp] lemma Hausdorff_dist_closure₂ : Hausdorff_dist s (closure t) = Hausdorff_dist s t :=
by simp [Hausdorff_dist]
/-- The Hausdorff distance between two sets and their closures coincide -/
@[simp] lemma Hausdorff_dist_closure :
Hausdorff_dist (closure s) (closure t) = Hausdorff_dist s t :=
by simp [Hausdorff_dist]
/-- Two sets are at zero Hausdorff distance if and only if they have the same closures -/
lemma Hausdorff_dist_zero_iff_closure_eq_closure (fin : Hausdorff_edist s t ≠ ⊤) :
Hausdorff_dist s t = 0 ↔ closure s = closure t :=
by simp [Hausdorff_edist_zero_iff_closure_eq_closure.symm, Hausdorff_dist,
ennreal.to_real_eq_zero_iff, fin]
/-- Two closed sets are at zero Hausdorff distance if and only if they coincide -/
lemma _root_.is_closed.Hausdorff_dist_zero_iff_eq (hs : is_closed s) (ht : is_closed t)
(fin : Hausdorff_edist s t ≠ ⊤) : Hausdorff_dist s t = 0 ↔ s = t :=
by simp [←Hausdorff_edist_zero_iff_eq_of_closed hs ht, Hausdorff_dist,
ennreal.to_real_eq_zero_iff, fin]
end --section
section thickening
variables [pseudo_emetric_space α] {δ : ℝ} {s : set α} {x : α}
open emetric
/-- The (open) `δ`-thickening `thickening δ E` of a subset `E` in a pseudo emetric space consists
of those points that are at distance less than `δ` from some point of `E`. -/
def thickening (δ : ℝ) (E : set α) : set α := {x : α | inf_edist x E < ennreal.of_real δ}
lemma mem_thickening_iff_inf_edist_lt : x ∈ thickening δ s ↔ inf_edist x s < ennreal.of_real δ :=
iff.rfl
/-- The (open) thickening equals the preimage of an open interval under `inf_edist`. -/
lemma thickening_eq_preimage_inf_edist (δ : ℝ) (E : set α) :
thickening δ E = (λ x, inf_edist x E) ⁻¹' (Iio (ennreal.of_real δ)) := rfl
/-- The (open) thickening is an open set. -/
lemma is_open_thickening {δ : ℝ} {E : set α} : is_open (thickening δ E) :=
continuous.is_open_preimage continuous_inf_edist _ is_open_Iio
/-- The (open) thickening of the empty set is empty. -/
@[simp] lemma thickening_empty (δ : ℝ) : thickening δ (∅ : set α) = ∅ :=
by simp only [thickening, set_of_false, inf_edist_empty, not_top_lt]
lemma thickening_of_nonpos (hδ : δ ≤ 0) (s : set α) : thickening δ s = ∅ :=
eq_empty_of_forall_not_mem $ λ x, ((ennreal.of_real_of_nonpos hδ).trans_le bot_le).not_lt
/-- The (open) thickening `thickening δ E` of a fixed subset `E` is an increasing function of the
thickening radius `δ`. -/
lemma thickening_mono {δ₁ δ₂ : ℝ} (hle : δ₁ ≤ δ₂) (E : set α) :
thickening δ₁ E ⊆ thickening δ₂ E :=
preimage_mono (Iio_subset_Iio (ennreal.of_real_le_of_real hle))
/-- The (open) thickening `thickening δ E` with a fixed thickening radius `δ` is
an increasing function of the subset `E`. -/
lemma thickening_subset_of_subset (δ : ℝ) {E₁ E₂ : set α} (h : E₁ ⊆ E₂) :
thickening δ E₁ ⊆ thickening δ E₂ :=
λ _ hx, lt_of_le_of_lt (inf_edist_anti h) hx
lemma mem_thickening_iff_exists_edist_lt {δ : ℝ} (E : set α) (x : α) :
x ∈ thickening δ E ↔ ∃ z ∈ E, edist x z < ennreal.of_real δ :=
inf_edist_lt_iff
variables {X : Type u} [pseudo_metric_space X]
/-- A point in a metric space belongs to the (open) `δ`-thickening of a subset `E` if and only if
it is at distance less than `δ` from some point of `E`. -/
lemma mem_thickening_iff {E : set X} {x : X} :
x ∈ thickening δ E ↔ (∃ z ∈ E, dist x z < δ) :=
begin
have key_iff : ∀ (z : X), edist x z < ennreal.of_real δ ↔ dist x z < δ,
{ intros z,
rw dist_edist,
have d_lt_top : edist x z < ∞, by simp only [edist_dist, ennreal.of_real_lt_top],
have key := (@ennreal.of_real_lt_of_real_iff_of_nonneg
((edist x z).to_real) δ (ennreal.to_real_nonneg)),
rwa ennreal.of_real_to_real d_lt_top.ne at key, },
simp_rw [mem_thickening_iff_exists_edist_lt, key_iff],
end
@[simp] lemma thickening_singleton (δ : ℝ) (x : X) :
thickening δ ({x} : set X) = ball x δ :=
by { ext, simp [mem_thickening_iff] }
/-- The (open) `δ`-thickening `thickening δ E` of a subset `E` in a metric space equals the
union of balls of radius `δ` centered at points of `E`. -/
lemma thickening_eq_bUnion_ball {δ : ℝ} {E : set X} :
thickening δ E = ⋃ x ∈ E, ball x δ :=
by { ext x, rw mem_Union₂, exact mem_thickening_iff }
lemma bounded.thickening {δ : ℝ} {E : set X} (h : bounded E) :
bounded (thickening δ E) :=
begin
refine bounded_iff_mem_bounded.2 (λ x hx, _),
rcases h.subset_ball x with ⟨R, hR⟩,
refine (bounded_iff_subset_ball x).2 ⟨R + δ, _⟩,
assume y hy,
rcases mem_thickening_iff.1 hy with ⟨z, zE, hz⟩,
calc dist y x ≤ dist z x + dist y z : by { rw add_comm, exact dist_triangle _ _ _ }
... ≤ R + δ : add_le_add (hR zE) hz.le
end
end thickening --section
section cthickening
variables [pseudo_emetric_space α] {δ ε : ℝ} {s t : set α} {x : α}
open emetric
/-- The closed `δ`-thickening `cthickening δ E` of a subset `E` in a pseudo emetric space consists
of those points that are at infimum distance at most `δ` from `E`. -/
def cthickening (δ : ℝ) (E : set α) : set α := {x : α | inf_edist x E ≤ ennreal.of_real δ}
@[simp] lemma mem_cthickening_iff : x ∈ cthickening δ s ↔ inf_edist x s ≤ ennreal.of_real δ :=
iff.rfl
lemma mem_cthickening_of_edist_le (x y : α) (δ : ℝ) (E : set α) (h : y ∈ E)
(h' : edist x y ≤ ennreal.of_real δ) :
x ∈ cthickening δ E :=
(inf_edist_le_edist_of_mem h).trans h'
lemma mem_cthickening_of_dist_le {α : Type*} [pseudo_metric_space α]
(x y : α) (δ : ℝ) (E : set α) (h : y ∈ E) (h' : dist x y ≤ δ) :
x ∈ cthickening δ E :=
begin
apply mem_cthickening_of_edist_le x y δ E h,
rw edist_dist,
exact ennreal.of_real_le_of_real h',
end
lemma cthickening_eq_preimage_inf_edist (δ : ℝ) (E : set α) :
cthickening δ E = (λ x, inf_edist x E) ⁻¹' (Iic (ennreal.of_real δ)) := rfl
/-- The closed thickening is a closed set. -/
lemma is_closed_cthickening {δ : ℝ} {E : set α} : is_closed (cthickening δ E) :=
is_closed.preimage continuous_inf_edist is_closed_Iic
/-- The closed thickening of the empty set is empty. -/
@[simp] lemma cthickening_empty (δ : ℝ) : cthickening δ (∅ : set α) = ∅ :=
by simp only [cthickening, ennreal.of_real_ne_top, set_of_false, inf_edist_empty, top_le_iff]
lemma cthickening_of_nonpos {δ : ℝ} (hδ : δ ≤ 0) (E : set α) :
cthickening δ E = closure E :=
by { ext x, simp [mem_closure_iff_inf_edist_zero, cthickening, ennreal.of_real_eq_zero.2 hδ] }
/-- The closed thickening with radius zero is the closure of the set. -/
@[simp] lemma cthickening_zero (E : set α) : cthickening 0 E = closure E :=
cthickening_of_nonpos le_rfl E
/-- The closed thickening `cthickening δ E` of a fixed subset `E` is an increasing function of
the thickening radius `δ`. -/
lemma cthickening_mono {δ₁ δ₂ : ℝ} (hle : δ₁ ≤ δ₂) (E : set α) :
cthickening δ₁ E ⊆ cthickening δ₂ E :=
preimage_mono (Iic_subset_Iic.mpr (ennreal.of_real_le_of_real hle))
@[simp] lemma cthickening_singleton {α : Type*} [pseudo_metric_space α]
(x : α) {δ : ℝ} (hδ : 0 ≤ δ) :
cthickening δ ({x} : set α) = closed_ball x δ :=
by { ext y, simp [cthickening, edist_dist, ennreal.of_real_le_of_real_iff hδ] }
lemma closed_ball_subset_cthickening_singleton {α : Type*} [pseudo_metric_space α]
(x : α) (δ : ℝ) :
closed_ball x δ ⊆ cthickening δ ({x} : set α) :=
begin
rcases lt_or_le δ 0 with hδ|hδ,
{ simp only [closed_ball_eq_empty.mpr hδ, empty_subset] },
{ simp only [cthickening_singleton x hδ] }
end
/-- The closed thickening `cthickening δ E` with a fixed thickening radius `δ` is
an increasing function of the subset `E`. -/
lemma cthickening_subset_of_subset (δ : ℝ) {E₁ E₂ : set α} (h : E₁ ⊆ E₂) :
cthickening δ E₁ ⊆ cthickening δ E₂ :=
λ _ hx, le_trans (inf_edist_anti h) hx
lemma cthickening_subset_thickening {δ₁ : ℝ≥0} {δ₂ : ℝ} (hlt : (δ₁ : ℝ) < δ₂) (E : set α) :
cthickening δ₁ E ⊆ thickening δ₂ E :=
λ _ hx, lt_of_le_of_lt hx ((ennreal.of_real_lt_of_real_iff (lt_of_le_of_lt δ₁.prop hlt)).mpr hlt)
/-- The closed thickening `cthickening δ₁ E` is contained in the open thickening `thickening δ₂ E`
if the radius of the latter is positive and larger. -/
lemma cthickening_subset_thickening' {δ₁ δ₂ : ℝ} (δ₂_pos : 0 < δ₂) (hlt : δ₁ < δ₂) (E : set α) :
cthickening δ₁ E ⊆ thickening δ₂ E :=
λ _ hx, lt_of_le_of_lt hx ((ennreal.of_real_lt_of_real_iff δ₂_pos).mpr hlt)
/-- The open thickening `thickening δ E` is contained in the closed thickening `cthickening δ E`
with the same radius. -/
lemma thickening_subset_cthickening (δ : ℝ) (E : set α) :
thickening δ E ⊆ cthickening δ E :=
by { intros x hx, rw [thickening, mem_set_of_eq] at hx, exact hx.le, }
lemma thickening_subset_cthickening_of_le {δ₁ δ₂ : ℝ} (hle : δ₁ ≤ δ₂) (E : set α) :
thickening δ₁ E ⊆ cthickening δ₂ E :=
(thickening_subset_cthickening δ₁ E).trans (cthickening_mono hle E)
lemma bounded.cthickening {α : Type*} [pseudo_metric_space α] {δ : ℝ} {E : set α} (h : bounded E) :
bounded (cthickening δ E) :=
begin
have : bounded (thickening (max (δ + 1) 1) E) := h.thickening,
apply bounded.mono _ this,
exact cthickening_subset_thickening' (zero_lt_one.trans_le (le_max_right _ _))
((lt_add_one _).trans_le (le_max_left _ _)) _
end
lemma thickening_subset_interior_cthickening (δ : ℝ) (E : set α) :
thickening δ E ⊆ interior (cthickening δ E) :=
(subset_interior_iff_open.mpr (is_open_thickening)).trans
(interior_mono (thickening_subset_cthickening δ E))
lemma closure_thickening_subset_cthickening (δ : ℝ) (E : set α) :
closure (thickening δ E) ⊆ cthickening δ E :=
(closure_mono (thickening_subset_cthickening δ E)).trans is_closed_cthickening.closure_subset
/-- The closed thickening of a set contains the closure of the set. -/
lemma closure_subset_cthickening (δ : ℝ) (E : set α) :
closure E ⊆ cthickening δ E :=
by { rw ← cthickening_of_nonpos (min_le_right δ 0), exact cthickening_mono (min_le_left δ 0) E, }
/-- The (open) thickening of a set contains the closure of the set. -/
lemma closure_subset_thickening {δ : ℝ} (δ_pos : 0 < δ) (E : set α) :
closure E ⊆ thickening δ E :=
by { rw ← cthickening_zero, exact cthickening_subset_thickening' δ_pos δ_pos E, }
/-- A set is contained in its own (open) thickening. -/
lemma self_subset_thickening {δ : ℝ} (δ_pos : 0 < δ) (E : set α) :
E ⊆ thickening δ E :=
(@subset_closure _ _ E).trans (closure_subset_thickening δ_pos E)
/-- A set is contained in its own closed thickening. -/
lemma self_subset_cthickening {δ : ℝ} (E : set α) :
E ⊆ cthickening δ E :=
subset_closure.trans (closure_subset_cthickening δ E)
@[simp] lemma thickening_union (δ : ℝ) (s t : set α) :
thickening δ (s ∪ t) = thickening δ s ∪ thickening δ t :=
by simp_rw [thickening, inf_edist_union, inf_eq_min, min_lt_iff, set_of_or]
@[simp] lemma cthickening_union (δ : ℝ) (s t : set α) :
cthickening δ (s ∪ t) = cthickening δ s ∪ cthickening δ t :=
by simp_rw [cthickening, inf_edist_union, inf_eq_min, min_le_iff, set_of_or]
@[simp] lemma thickening_Union (δ : ℝ) (f : ι → set α) :
thickening δ (⋃ i, f i) = ⋃ i, thickening δ (f i) :=
by simp_rw [thickening, inf_edist_Union, infi_lt_iff, set_of_exists]
@[simp] lemma thickening_closure : thickening δ (closure s) = thickening δ s :=
by simp_rw [thickening, inf_edist_closure]
@[simp] lemma cthickening_closure : cthickening δ (closure s) = cthickening δ s :=
by simp_rw [cthickening, inf_edist_closure]
open ennreal
lemma _root_.disjoint.exists_thickenings (hst : disjoint s t) (hs : is_compact s)
(ht : is_closed t) :
∃ δ, 0 < δ ∧ disjoint (thickening δ s) (thickening δ t) :=
begin
obtain rfl | hs' := s.eq_empty_or_nonempty,
{ simp_rw thickening_empty,
exact ⟨1, zero_lt_one, empty_disjoint _⟩ },
obtain ⟨r, hr, h⟩ := exists_pos_forall_le_edist hs hs' ht hst,
refine ⟨(min 1 (r/2)).to_real, to_real_pos (lt_min ennreal.zero_lt_one $ half_pos hr.ne').ne'
(min_lt_of_left_lt one_lt_top).ne, _⟩,
rintro z ⟨hzs, hzt⟩,
rw mem_thickening_iff_exists_edist_lt at hzs hzt,
obtain ⟨x, hx, hzx⟩ := hzs,
obtain ⟨y, hy, hzy⟩ := hzt,
refine (((h _ hx _ hy).trans $ edist_triangle_left _ _ _).trans_lt $
ennreal.add_lt_add hzx hzy).not_le _,
rw ←two_mul,
exact ennreal.mul_le_of_le_div' (of_real_to_real_le.trans $ min_le_right _ _),
end
lemma _root_.disjoint.exists_cthickenings (hst : disjoint s t) (hs : is_compact s)
(ht : is_closed t) :
∃ δ, 0 < δ ∧ disjoint (cthickening δ s) (cthickening δ t) :=
begin
obtain ⟨δ, hδ, h⟩ := hst.exists_thickenings hs ht,
refine ⟨δ / 2, half_pos hδ, h.mono _ _⟩;
exact (cthickening_subset_thickening' hδ (half_lt_self hδ) _),
end
lemma cthickening_eq_Inter_cthickening' {δ : ℝ}
(s : set ℝ) (hsδ : s ⊆ Ioi δ) (hs : ∀ ε, δ < ε → (s ∩ (Ioc δ ε)).nonempty) (E : set α) :
cthickening δ E = ⋂ ε ∈ s, cthickening ε E :=
begin
apply subset.antisymm,
{ exact subset_Inter₂ (λ _ hε, cthickening_mono (le_of_lt (hsδ hε)) E), },
{ unfold thickening cthickening,
intros x hx,
simp only [mem_Inter, mem_set_of_eq] at *,
apply ennreal.le_of_forall_pos_le_add,
intros η η_pos _,
rcases hs (δ + η) (lt_add_of_pos_right _ (nnreal.coe_pos.mpr η_pos)) with ⟨ε, ⟨hsε, hε⟩⟩,
apply ((hx ε hsε).trans (ennreal.of_real_le_of_real hε.2)).trans,
rw ennreal.coe_nnreal_eq η,
exact ennreal.of_real_add_le, },
end
lemma cthickening_eq_Inter_cthickening {δ : ℝ} (E : set α) :
cthickening δ E = ⋂ (ε : ℝ) (h : δ < ε), cthickening ε E :=
begin
apply cthickening_eq_Inter_cthickening' (Ioi δ) rfl.subset,
simp_rw inter_eq_right_iff_subset.mpr Ioc_subset_Ioi_self,
exact λ _ hε, nonempty_Ioc.mpr hε,
end
lemma cthickening_eq_Inter_thickening' {δ : ℝ} (δ_nn : 0 ≤ δ)
(s : set ℝ) (hsδ : s ⊆ Ioi δ) (hs : ∀ ε, δ < ε → (s ∩ (Ioc δ ε)).nonempty) (E : set α) :
cthickening δ E = ⋂ ε ∈ s, thickening ε E :=
begin
refine (subset_Inter₂ $ λ ε hε, _).antisymm _,
{ obtain ⟨ε', hsε', hε'⟩ := hs ε (hsδ hε),
have ss := cthickening_subset_thickening' (lt_of_le_of_lt δ_nn hε'.1) hε'.1 E,
exact ss.trans (thickening_mono hε'.2 E), },
{ rw cthickening_eq_Inter_cthickening' s hsδ hs E,
exact Inter₂_mono (λ ε hε, thickening_subset_cthickening ε E) }
end
lemma cthickening_eq_Inter_thickening {δ : ℝ} (δ_nn : 0 ≤ δ) (E : set α) :
cthickening δ E = ⋂ (ε : ℝ) (h : δ < ε), thickening ε E :=
begin
apply cthickening_eq_Inter_thickening' δ_nn (Ioi δ) rfl.subset,
simp_rw inter_eq_right_iff_subset.mpr Ioc_subset_Ioi_self,
exact λ _ hε, nonempty_Ioc.mpr hε,
end
/-- The closure of a set equals the intersection of its closed thickenings of positive radii
accumulating at zero. -/
lemma closure_eq_Inter_cthickening' (E : set α)
(s : set ℝ) (hs : ∀ ε, 0 < ε → (s ∩ (Ioc 0 ε)).nonempty) :
closure E = ⋂ δ ∈ s, cthickening δ E :=
begin
by_cases hs₀ : s ⊆ Ioi 0,
{ rw ← cthickening_zero, apply cthickening_eq_Inter_cthickening' _ hs₀ hs, },
obtain ⟨δ, hδs, δ_nonpos⟩ := not_subset.mp hs₀,
rw [set.mem_Ioi, not_lt] at δ_nonpos,
apply subset.antisymm,
{ exact subset_Inter₂ (λ ε _, closure_subset_cthickening ε E), },
{ rw ← cthickening_of_nonpos δ_nonpos E,
exact bInter_subset_of_mem hδs, },
end
/-- The closure of a set equals the intersection of its closed thickenings of positive radii. -/
lemma closure_eq_Inter_cthickening (E : set α) :
closure E = ⋂ (δ : ℝ) (h : 0 < δ), cthickening δ E :=
by { rw ← cthickening_zero, exact cthickening_eq_Inter_cthickening E, }
/-- The closure of a set equals the intersection of its open thickenings of positive radii
accumulating at zero. -/
lemma closure_eq_Inter_thickening' (E : set α)
(s : set ℝ) (hs₀ : s ⊆ Ioi 0) (hs : ∀ ε, 0 < ε → (s ∩ (Ioc 0 ε)).nonempty) :
closure E = ⋂ δ ∈ s, thickening δ E :=
by { rw ← cthickening_zero, apply cthickening_eq_Inter_thickening' le_rfl _ hs₀ hs, }
/-- The closure of a set equals the intersection of its (open) thickenings of positive radii. -/
lemma closure_eq_Inter_thickening (E : set α) :
closure E = ⋂ (δ : ℝ) (h : 0 < δ), thickening δ E :=
by { rw ← cthickening_zero, exact cthickening_eq_Inter_thickening rfl.ge E, }
/-- The frontier of the (open) thickening of a set is contained in an `inf_edist` level set. -/
lemma frontier_thickening_subset (E : set α) {δ : ℝ} (δ_pos : 0 < δ) :
frontier (thickening δ E) ⊆ {x : α | inf_edist x E = ennreal.of_real δ} :=
begin
have singleton_preim :
{x : α | inf_edist x E = ennreal.of_real δ } = (λ x , inf_edist x E) ⁻¹' {ennreal.of_real δ},
{ simp only [preimage, mem_singleton_iff] },
rw [thickening_eq_preimage_inf_edist, singleton_preim,
← (frontier_Iio' ⟨(0 : ℝ≥0∞), ennreal.of_real_pos.mpr δ_pos⟩)],
exact continuous_inf_edist.frontier_preimage_subset (Iio (ennreal.of_real δ)),
end
/-- The frontier of the closed thickening of a set is contained in an `inf_edist` level set. -/
lemma frontier_cthickening_subset (E : set α) {δ : ℝ} :
frontier (cthickening δ E) ⊆ {x : α | inf_edist x E = ennreal.of_real δ} :=
begin
have singleton_preim :
{x : α | inf_edist x E = ennreal.of_real δ } = (λ x , inf_edist x E) ⁻¹' {ennreal.of_real δ},
{ simp only [preimage, mem_singleton_iff] },
rw [cthickening_eq_preimage_inf_edist, singleton_preim,
← frontier_Iic' ⟨∞, ennreal.of_real_lt_top⟩],
exact continuous_inf_edist.frontier_preimage_subset (Iic (ennreal.of_real δ)),
end
/-- The closed ball of radius `δ` centered at a point of `E` is included in the closed
thickening of `E`. -/
lemma closed_ball_subset_cthickening {α : Type*} [pseudo_metric_space α]
{x : α} {E : set α} (hx : x ∈ E) (δ : ℝ) :
closed_ball x δ ⊆ cthickening δ E :=
begin
refine (closed_ball_subset_cthickening_singleton _ _).trans (cthickening_subset_of_subset _ _),
simpa using hx,
end
/-- The closed thickening of a compact set `E` is the union of the balls `closed_ball x δ` over
`x ∈ E`. -/
lemma _root_.is_compact.cthickening_eq_bUnion_closed_ball
{α : Type*} [pseudo_metric_space α] {δ : ℝ} {E : set α} (hE : is_compact E) (hδ : 0 ≤ δ) :
cthickening δ E = ⋃ x ∈ E, closed_ball x δ :=
begin
rcases eq_empty_or_nonempty E with rfl|hne,
{ simp only [cthickening_empty, Union_false, Union_empty] },
refine subset.antisymm (λ x hx, _) (Union₂_subset $ λ x hx, closed_ball_subset_cthickening hx _),
obtain ⟨y, yE, hy⟩ : ∃ y ∈ E, emetric.inf_edist x E = edist x y :=
hE.exists_inf_edist_eq_edist hne _,
have D1 : edist x y ≤ ennreal.of_real δ := (le_of_eq hy.symm).trans hx,
have D2 : dist x y ≤ δ,
{ rw edist_dist at D1,
exact (ennreal.of_real_le_of_real_iff hδ).1 D1 },
exact mem_bUnion yE D2,
end
/-- For the equality, see `inf_edist_cthickening`. -/
lemma inf_edist_le_inf_edist_cthickening_add :
inf_edist x s ≤ inf_edist x (cthickening δ s) + ennreal.of_real δ :=
begin
refine le_of_forall_lt' (λ r h, _),
simp_rw [←lt_tsub_iff_right, inf_edist_lt_iff, mem_cthickening_iff] at h,
obtain ⟨y, hy, hxy⟩ := h,
exact inf_edist_le_edist_add_inf_edist.trans_lt ((ennreal.add_lt_add_of_lt_of_le
(hy.trans_lt ennreal.of_real_lt_top).ne hxy hy).trans_le
(tsub_add_cancel_of_le $ le_self_add.trans (lt_tsub_iff_left.1 hxy).le).le),
end
/-- For the equality, see `inf_edist_thickening`. -/
lemma inf_edist_le_inf_edist_thickening_add :
inf_edist x s ≤ inf_edist x (thickening δ s) + ennreal.of_real δ :=
inf_edist_le_inf_edist_cthickening_add.trans $
add_le_add_right (inf_edist_anti $ thickening_subset_cthickening _ _) _
/-- For the equality, see `thickening_thickening`. -/
@[simp] lemma thickening_thickening_subset (ε δ : ℝ) (s : set α) :
thickening ε (thickening δ s) ⊆ thickening (ε + δ) s :=
begin
obtain hε | hε := le_total ε 0,
{ simp only [thickening_of_nonpos hε, empty_subset] },
obtain hδ | hδ := le_total δ 0,
{ simp only [thickening_of_nonpos hδ, thickening_empty, empty_subset] },
intros x,
simp_rw [mem_thickening_iff_exists_edist_lt, ennreal.of_real_add hε hδ],
exact λ ⟨y, ⟨z, hz, hy⟩, hx⟩, ⟨z, hz, (edist_triangle _ _ _).trans_lt $ ennreal.add_lt_add hx hy⟩,
end
/-- For the equality, see `thickening_cthickening`. -/
@[simp] lemma thickening_cthickening_subset (ε : ℝ) (hδ : 0 ≤ δ) (s : set α) :
thickening ε (cthickening δ s) ⊆ thickening (ε + δ) s :=
begin
obtain hε | hε := le_total ε 0,
{ simp only [thickening_of_nonpos hε, empty_subset] },
intro x,
simp_rw [mem_thickening_iff_exists_edist_lt, mem_cthickening_iff, ←inf_edist_lt_iff,
ennreal.of_real_add hε hδ],
rintro ⟨y, hy, hxy⟩,
exact inf_edist_le_edist_add_inf_edist.trans_lt
(ennreal.add_lt_add_of_lt_of_le (hy.trans_lt ennreal.of_real_lt_top).ne hxy hy),
end
/-- For the equality, see `cthickening_thickening`. -/
@[simp] lemma cthickening_thickening_subset (hε : 0 ≤ ε) (δ : ℝ) (s : set α) :
cthickening ε (thickening δ s) ⊆ cthickening (ε + δ) s :=
begin
obtain hδ | hδ := le_total δ 0,
{ simp only [thickening_of_nonpos hδ, cthickening_empty, empty_subset] },
intro x,
simp_rw [mem_cthickening_iff, ennreal.of_real_add hε hδ],
exact λ hx, inf_edist_le_inf_edist_thickening_add.trans (add_le_add_right hx _),
end
/-- For the equality, see `cthickening_cthickening`. -/
@[simp] lemma cthickening_cthickening_subset (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (s : set α) :
cthickening ε (cthickening δ s) ⊆ cthickening (ε + δ) s :=
begin
intro x,
simp_rw [mem_cthickening_iff, ennreal.of_real_add hε hδ],
exact λ hx, inf_edist_le_inf_edist_cthickening_add.trans (add_le_add_right hx _),
end
end cthickening --section
end metric --namespace
|
Vanille opens with a shot of rum flavored with an orange rind and spiced with cloves. Amber and tonka further warm up this brew as ylang-ylang's sharp sweetness joins with rich vanilla. Gaiac wood adds incensey smoke as woody notes from vetiver and sandalwood help to create an elegant finish.
But the real star of the show, not surprisingly, is vanilla. Instead of using ethyl vanillin, one of vanilla's main components that can come across as powdery and sugary, Mona di Orio used pure vanilla in this elixir. For a moment — amid this elegant orchestral arrangement of notes in the key of Vanilla — the pulpy, sensual creaminess of a split vanilla bean is right there in front of your nose. Delicious!
Great and yes I would buy from you again. |
#!/usr/bin/env python3
import numpy as np
from scipy import interpolate
def interpolate_traj(x_queue, x, y, interpolate_kind):
# if interpolate_kind == 'traj'
# interpolate the desired trajectory by time value
# x_queue is the interpolated point/points
# if x_queue is 1-D numpy array, then the output is 2-D numpy array
# if x_queue is a float, then the output is 2-D numpy array, but only has one column
# x is 1-D numpy array (1 by n), y is 2-D numpy array (m by n)
# default is linear interpolation
# when x_queue exceeds the range of x, function returns the boundary value of y
# if interpolate_kind == 'cmd'
# interpolate the commands by the machine time by Zero-Order Hold
# x_queue is the interpolated machine time
# assume x_queue is always 1-D numpy array, and the output is 2-D numpy array
# time before the first timestamp, commands are zeros
# time after the last timestamp, commands are the last ones.
if interpolate_kind == 'traj':
boundary = (y[:, 0], y[:, -1])
f = interpolate.interp1d(x, y, kind='linear', bounds_error=False, fill_value=boundary)
y_raw = f(x_queue)
if isinstance(x_queue, float):
y_queue = y_raw.reshape(y_raw.shape[0], -1)
else:
y_queue = y_raw
elif interpolate_kind == 'cmd':
boundary = (np.zeros(4), y[:, -1])
f = interpolate.interp1d(x, y, kind='zero', bounds_error=False, fill_value=boundary)
y_queue = f(x_queue)
else:
y_queue = []
raise Exception("The interpolation type is wrong!")
return y_queue
if __name__ == "__main__":
x = np.array([0, 2, 4, 6, 8, 10])
y = np.array([[0, 1, 2, 3, 4, 5], [0, -1, -2, -3, -4, -5], [10, 20, 30, 40, 50, 60], [-10, -20, -30, -40, -50, -60], [0.5, 1.5, 2.5, 3.5, 4.5, 5.5]])
x_queue = 1
print(x)
print(y)
y_queue = interpolate_traj(x_queue, x, y, 'traj')
print(y_queue)
|
(* Definitions and Properties of First-Order Terms *)
(* with holes in [nat] for de Bruijn indices *)
From Coq Require Export PeanoNat List.
From OLlibs Require Import List_more.
From OLlibs Require Export dectype.
From Quantifiers Require Export term_tactics.
Set Implicit Arguments.
(* Extensional equality of functions *)
Definition ext_eq {A B} (f g : A -> B) := forall a, f a = g a.
Notation " f ~ g " := (ext_eq f g) (at level 60).
(** * First-Order Terms *)
Section Terms.
Context {vatom : DecType} {tatom : Type}.
(** terms with quantifiable variables
arity not given meaning that we have a copy of each function name for each arity
- [evar] for De Bruijn style eigen variables in proofs,
type for these indices as parameter called the eigen type,
but mostly used with [nat].
Other values can be used (for terms without indices, use [Empty_set]).
- [tvar] for quantified variables in formulas *)
Inductive term T :=
| evar : T -> term T
| tvar : vatom -> term T
| tconstr : tatom -> list (term T) -> term T.
Arguments evar {T}.
(** appropriate induction for [term] (with list inside): so called "nested fix" *)
Fixpoint term_ind_list_Forall T t :
forall P : term T -> Prop,
(forall n, P (evar n)) ->
(forall x, P (tvar T x)) ->
(forall f l, Forall P l -> P (tconstr f l)) -> P t :=
fun P Pevar Ptvar Pconstr =>
match t with
| evar n => Pevar n
| tvar _ x => Ptvar x
| tconstr c l => Pconstr c l
((fix l_ind l' : Forall P l' :=
match l' with
| nil => Forall_nil P
| cons t1 l1 => Forall_cons _
(term_ind_list_Forall t1 Pevar Ptvar Pconstr)
(l_ind l1)
end) l)
end.
Ltac term_induction t :=
(try intros until t);
let nn := fresh "n" in
let xx := fresh "x" in
let cc := fresh "c" in
let ll := fresh "l" in
let IHll := fresh "IHl" in
let i := fresh "i" in
let Hi := fresh "Hi" in
apply (term_ind_list_Forall t);
[ intros nn; try (now intuition); simpl
| intros xx; try (now intuition); simpl
| intros cc ll IHll; simpl; intros;
try (apply (f_equal (tconstr _)));
rewrite ? flat_map_concat_map, ? map_map;
try (apply (f_equal (@concat _)));
match goal with
| |- map _ ?l = ?l => rewrite <- (map_id l) at 2
| _ => idtac
end;
try (apply map_ext_in; intros i Hi; specialize_Forall_all i);
try (apply Forall_forall; intros i Hi; specialize_Forall_all i);
try (intuition; fail) ];
try (now rcauto).
(** * Monad structure on [term] via substitution *)
(** substitutes the [term] [r n] for index [n] in [term] [t] *)
Fixpoint tesubs T1 T2 (r : T1 -> term T2) (t : term T1) :=
match t with
| tvar _ x => tvar T2 x
| evar k => r k
| tconstr f l => tconstr f (map (tesubs r) l)
end.
Notation "t ⟦ r ⟧" := (tesubs r t) (at level 8, left associativity, format "t ⟦ r ⟧").
(** monad structure induced on [term] *)
Lemma evar_tesubs T1 T2 (r : T1 -> term T2) x : (evar x)⟦r⟧ = r x.
Proof. reflexivity. Qed.
Hint Rewrite evar_tesubs : term_db.
Lemma tesubs_evar T (t : term T) : t⟦evar⟧ = t.
Proof. term_induction t. Qed.
Hint Rewrite tesubs_evar : term_db.
Definition fecomp T1 T2 T3 (r : T1 -> term T2) (s : T2 -> term T3) := fun x => (r x)⟦s⟧.
Notation "r ;; s" := (fecomp r s) (at level 20, format "r ;; s").
Lemma tesubs_comp T1 T2 T3 (r : T1 -> term T2) (s : T2 -> term T3) t : t⟦r⟧⟦s⟧ = t⟦r ;; s⟧.
Proof. term_induction t. Qed.
Hint Rewrite tesubs_comp : term_db.
(* the result of substitution depends extensionnaly on the substituting function *)
Lemma tesubs_ext T1 T2 (r1 r2 : T1 -> term T2) : r1 ~ r2 -> forall t, t⟦r1⟧ = t⟦r2⟧.
Proof. term_induction t. Qed.
Hint Resolve tesubs_ext : term_db.
(* TODO could be turned into a morphism *)
Section Fixed_Eigen_Type.
Variable T : Type.
Implicit Type t : term T.
Arguments tvar {T} _.
(** * Term substitution *)
(** substitutes [term] [u] for variable [x] in [term] [t] *)
Fixpoint tsubs x u t :=
match t with
| tvar y => if eq_dt_dec y x then u else tvar y
| evar k => evar k
| tconstr c l => tconstr c (map (tsubs x u) l)
end.
Notation "t [ u // x ]" := (tsubs x u t) (at level 8, format "t [ u // x ]").
Lemma tsubs_tsubs_eq : forall x u v t, t[v//x][u//x] = t[v[u//x]//x].
Proof. term_induction t. Qed.
Hint Rewrite tsubs_tsubs_eq : term_db.
(** * Variables *)
Fixpoint tvars t :=
match t with
| tvar x => x :: nil
| evar _ => nil
| tconstr _ l => flat_map tvars l
end.
Notation "x ∈ t" := (In x (tvars t)) (at level 30).
Notation "x ∉ t" := (~ In x (tvars t)) (at level 30).
Notation closed t := (tvars t = nil).
Lemma closed_notvars t x : closed t -> x ∉ t.
Proof. intros -> []. Qed.
Hint Resolve closed_notvars : term_db.
Lemma tvars_tsubs_closed x u (Hc : closed u) t : tvars t[u//x] = remove eq_dt_dec x (tvars t).
Proof. term_induction t.
rewrite remove_concat, flat_map_concat_map, map_map. f_equal.
apply map_ext_in. intros v Hv. specialize_Forall IHl with v. exact IHl.
Qed.
Hint Rewrite tvars_tsubs_closed using intuition; fail : term_db.
Lemma notin_tsubs : forall x u t, x ∉ t -> t[u//x] = t.
Proof. term_induction t; try rcauto.
apply IHl. intros Hx. apply H, in_flat_map. exists i. split; assumption.
Qed.
Hint Rewrite notin_tsubs using try (intuition; fail); try apply closed_notvars; intuition; fail : term_db.
Lemma tsubs_tsubs x v y u : x <> y -> x ∉ u -> forall t,
t[v//x][u//y] = t[u//y][v[u//y]//x].
Proof. term_induction t. Qed.
Hint Rewrite tsubs_tsubs using try (intuition; fail); try apply closed_notvars; intuition; fail : term_db.
Lemma notin_tsubs_bivar x y t : x ∉ t -> t[tvar x//y][tvar y//x] = t.
Proof. term_induction t.
apply IHl. intros Hx. apply H, in_flat_map. exists i. split; assumption.
Qed.
Hint Rewrite notin_tsubs_bivar using try (intuition; fail); try apply closed_notvars; (intuition; fail) : term_db.
End Fixed_Eigen_Type.
Section Two_Eigen_Types.
Variable T1 T2 : Type.
Variable r : T1 -> term T2.
Notation closed t := (tvars t = nil).
Notation rclosed := (forall n, closed (r n)).
Notation "t [ u // x ]" := (tsubs x u t) (at level 8, format "t [ u // x ]").
Hint Rewrite notin_tsubs using try (intuition; fail); try apply closed_notvars; intuition; fail : term_db.
(** * Additional results with variable eigen type *)
Lemma tvars_tesubs_closed t : rclosed -> tvars t⟦r⟧ = tvars t.
Proof. term_induction t. Qed.
Hint Rewrite tvars_tesubs_closed using intuition; fail : term_db.
Lemma tsubs_tesubs x u t : rclosed -> t[u//x]⟦r⟧ = t⟦r⟧[u⟦r⟧//x].
Proof. term_induction t. Qed.
Hint Rewrite tsubs_tesubs using intuition; fail : term_db.
End Two_Eigen_Types.
(* We restrict to [term nat] *)
Section Eigen_nat.
Hint Rewrite tvars_tesubs_closed using intuition; fail : term_db.
Notation term := (term nat).
Notation tvar := (tvar nat).
Notation "t [ u // x ]" := (tsubs x u t) (at level 8, format "t [ u // x ]").
Notation "x ∈ t" := (In x (tvars t)) (at level 30).
Notation "x ∉ t" := (~ In x (tvars t)) (at level 30).
Notation closed t := (tvars t = nil).
Notation rclosed r := (forall n, closed (r n)).
Definition fup := fun n => evar (S n).
Notation "⇑" := fup.
Notation "t ↑" := (t⟦⇑⟧) (at level 8, format "t ↑").
Lemma closed_fup : rclosed ⇑.
Proof. reflexivity. Qed.
Hint Rewrite closed_fup : term_db.
Lemma tvars_fup t : tvars t↑ = tvars t.
Proof. rcauto. Qed.
Hint Rewrite tvars_fup : term_db.
(* general shape, unused, generated through ↑
Definition fesubs k v := fun n =>
match n ?= k with
| Lt => evar n
| Eq => v
| Gt => evar (pred n)
end.
Notation "v // ↓ k" := (fesubs k v) (at level 18, format "v // ↓ k").
Lemma closed_fesubs : forall k v, closed v -> rclosed (v//↓k).
Proof. e_case_intuition unfolding fesubs. Qed.
Hint Resolve closed_fesubs : term_db.
Lemma fesubs_fup k v : ⇑ ;; v↑//↓(S k) == v//↓k ;; ⇑.
Proof. intros ?; unfold fesubs, fup, fecomp; e_case_intuition. Qed.
*)
Definition fesubs v := fun n =>
match n with
| 0 => v
| S n => evar n
end.
Notation "v ⇓" := (fesubs v) (at level 18, format "v ⇓").
Lemma closed_fesubs v : closed v -> rclosed (v⇓).
Proof. now intros Hc [|]. Qed.
Hint Resolve closed_fesubs : term_db.
Lemma fesubs_fup v : ⇑ ;; v⇓ ~ evar.
Proof. intro. reflexivity. Qed.
Lemma tesubs_fup v t : t↑⟦v⇓⟧ = t.
Proof. rcauto. Qed.
Hint Rewrite tesubs_fup : term_db.
(* In practive only the case [u = evar 0] will be used *)
Definition felift u r := fun n =>
match n with
| 0 => u
| S k => (r k)↑
end.
Notation "⇑[ u ] r" := (felift u r) (at level 25, format "⇑[ u ] r").
Lemma closed_felift u r : closed u -> rclosed r -> rclosed (⇑[u]r).
Proof. rnow intros ? ? [|]. Qed.
Hint Resolve closed_felift : term_db.
Lemma felift_comp u r : r ;; ⇑ ~ ⇑ ;; ⇑[u]r.
Proof. intro. reflexivity. Qed.
Hint Rewrite felift_comp : term_db.
Lemma felift_tesubs u r t : t⟦r⟧↑ = t↑⟦⇑[u]r⟧.
Proof. rcauto. Qed.
Hint Rewrite felift_tesubs : term_db.
End Eigen_nat.
End Terms.
Ltac term_induction t :=
(try intros until t);
let nn := fresh "n" in
let xx := fresh "x" in
let cc := fresh "c" in
let ll := fresh "l" in
let IHll := fresh "IHl" in
let i := fresh "i" in
let Hi := fresh "Hi" in
apply (term_ind_list_Forall t);
[ intros nn; try (now intuition); simpl
| intros xx; try (now intuition); simpl
| intros cc ll IHll; simpl; intros;
try (apply (f_equal (tconstr _)));
rewrite ? flat_map_concat_map, ? map_map;
try (apply (f_equal (@concat _)));
match goal with
| |- map _ ?l = ?l => rewrite <- (map_id l) at 2
| _ => idtac
end;
try (apply map_ext_in; intros i Hi; specialize_Forall_all i);
try (apply Forall_forall; intros i Hi; specialize_Forall_all i);
try (now intuition) ];
try (now (rnow idtac)); try (now rcauto).
|
// Copyright 2015-2020 The ALMA Project Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
/// @file
/// Test whether the functions designed to deal with the "/scattering"
/// group in HDF5 files work correctly.
#include <iostream>
#include <string>
#include <boost/filesystem.hpp>
#include <boost/mpi.hpp>
#include "gtest/gtest.h"
#include <vasp_io.hpp>
#include <qpoint_grid.hpp>
#include <processes.hpp>
#include <bulk_hdf5.hpp>
TEST(hdf5_scattering_case, hdf5_scattering_test) {
boost::mpi::environment env;
// Load some data for Si.
auto basedir = boost::filesystem::path(TEST_RESOURCE_DIR);
auto si_dir = basedir / boost::filesystem::path("Si");
auto poscar_path = si_dir / boost::filesystem::path("POSCAR");
auto ifc_path = si_dir / boost::filesystem::path("FORCE_CONSTANTS");
auto thirdorder_path =
si_dir / boost::filesystem::path("FORCE_CONSTANTS_3RD");
auto poscar = alma::load_POSCAR(poscar_path.string().c_str());
auto syms = alma::Symmetry_operations(*poscar);
auto force_constants =
alma::load_FORCE_CONSTANTS(ifc_path.string().c_str(), *poscar, 5, 5, 5);
auto thirdorder = alma::load_FORCE_CONSTANTS_3RD(
thirdorder_path.string().c_str(), *poscar);
// Create a trivially small q point grid.
auto grid = std::make_unique<alma::Gamma_grid>(
*poscar, syms, *force_constants, 4, 4, 4);
grid->enforce_asr();
// Look for three-phonon processes.
boost::mpi::communicator world;
auto my_id = world.rank();
auto processes = alma::find_allowed_threeph(*grid, world, 0.1);
// Precompute everything possible.
for (auto& p : processes) {
p.compute_gaussian();
p.compute_vp2(*poscar, *grid, *thirdorder);
}
// Create a temporary file name to write the information.
auto h5fn = boost::filesystem::unique_path();
alma::save_bulk_hdf5(h5fn.string().c_str(),
"Si test",
*poscar,
syms,
*grid,
processes,
world);
// Get a list of scattering subgroups in the file (should be empty
// at this point).
auto subgroups =
alma::list_scattering_subgroups(h5fn.string().c_str(), world);
ASSERT_EQ(0u, subgroups.size());
// Add a subgroup (containing random data) to the file.
std::size_t nmodes = grid->get_spectrum_at_q(0).omega.size();
std::size_t nqpoints = grid->nqpoints;
Eigen::ArrayXXd w0{nmodes, nqpoints};
if (my_id == 0)
w0.setRandom(nmodes, nqpoints);
boost::mpi::broadcast(world, w0.data(), w0.size(), 0);
alma::Scattering_subgroup subgroup{
"test_subgroup", false, "This is a test subgroup", w0};
alma::write_scattering_subgroup(h5fn.string().c_str(), subgroup, world);
// Try to add a second subgroup with the wrong shape, and test
// that the code throws an exception.
if (my_id == 0) {
Eigen::ArrayXXd w0p{nmodes / 3, nqpoints};
alma::Scattering_subgroup subgroup2{
"test_subgroup", false, "This is a test subgroup", w0p};
EXPECT_THROW(alma::write_scattering_subgroup(
h5fn.string().c_str(), subgroup2, world),
alma::value_error);
}
// Now there should be one subgroup.
subgroups = alma::list_scattering_subgroups(h5fn.string().c_str(), world);
ASSERT_EQ(1u, subgroups.size());
// Test that everything has been written correctly and can be
// loaded.
auto loaded = alma::load_scattering_subgroup(
h5fn.string().c_str(), "test_subgroup", world);
EXPECT_EQ(loaded.name, subgroup.name);
EXPECT_EQ(loaded.preserves_symmetry, subgroup.preserves_symmetry);
EXPECT_EQ(loaded.description, subgroup.description);
EXPECT_EQ(loaded.w0.rows(), subgroup.w0.rows());
EXPECT_EQ(loaded.w0.cols(), subgroup.w0.cols());
for (std::size_t i = 0; i < nmodes; ++i)
for (std::size_t j = 0; j < nqpoints; ++j)
EXPECT_TRUE(alma::almost_equal(loaded.w0(i, j), subgroup.w0(i, j)));
EXPECT_EQ(loaded.attributes, subgroup.attributes);
EXPECT_EQ(loaded.datasets, subgroup.datasets);
EXPECT_EQ(loaded.groups, subgroup.groups);
// Remove the temporary file.
if (my_id == 0)
boost::filesystem::remove(h5fn);
}
|
import tactic
set_option pp.generalized_field_notation false
open nat
namespace training
def powerOf2 : ℕ → ℕ
| 0 := 1
| (n+1) := 2 * powerOf2 n
lemma lowerBoundPowerOf2 (n : ℕ) :
1 ≤ powerOf2 n :=
begin
induction n; simp [powerOf2], linarith,
end
lemma sumSamePowerOf2 (n : ℕ) :
powerOf2 n + powerOf2 n == 2 * powerOf2 n :=
by ring
lemma monotonicPowerOf2 :
∀ {n m}, n ≤ m → powerOf2 n ≤ powerOf2 m
| 0 m le := lowerBoundPowerOf2 m
| (n+1) 0 le := by cases le
| (n+1) (m+1) le := begin simp [powerOf2], apply monotonicPowerOf2, linarith, end
lemma addPowerOf2 (n m : ℕ) :
powerOf2 n * powerOf2 m = powerOf2 (n + m) :=
begin
induction n; simp [powerOf2], rw [mul_assoc, n_ih, succ_add], simp [powerOf2],
end
inductive tree : Type
| leaf : tree
| node : tree → tree → tree
namespace tree
def height : tree → ℕ
| leaf := 1
| (node l r) := max (height l) (height r) + 1
def nodeCount : tree → ℕ
| leaf := 1
| (node l r) := nodeCount l + nodeCount r + 1
def leafCount : tree → ℕ
| leaf := 1
| (node l r) := leafCount l + leafCount r
-- Move - 1 to LHS to avoid nat subtraction
lemma upperboundForNodeCount (root : tree) :
nodeCount root + 1 ≤ powerOf2 (height root) :=
begin
induction root with l r ih_l ih_r;
simp [height, nodeCount, powerOf2],
set hl := height l,
set hr := height r,
calc
nodeCount (node l r) + 1
= nodeCount l + nodeCount r + 1 + 1 : rfl
... ≤ powerOf2 hl + powerOf2 hr : by linarith
... ≤ powerOf2 (max hl hr) + powerOf2 (max hl hr) :
by linarith [ monotonicPowerOf2 (le_max_left hl hr)
, monotonicPowerOf2 (le_max_right hl hr) ]
... = 2 * powerOf2 (max hl hr) : by ring
... = powerOf2 (max hl hr + 1) : rfl
... = powerOf2 (height (node l r)) : rfl
end
end tree
end training
|
MODULE xlinbcg_data_sp
USE mo_kind, ONLY: sprs2_sp
TYPE(sprs2_sp) :: sa
END MODULE xlinbcg_data_sp
|
! { dg-do run }
! PR42090 Problems reading partial records in formatted direct access files
! Test case from PR, prepared by Jerry DeLisle <[email protected]>
program da_good_now
implicit none
real :: a, b
a = 1.111111111
b = 2.222222222
open( 10, file = 't.dat', form = 'formatted', access = 'direct', recl = 12 )
write( 10, rec = 1, fmt = '( f6.4, /, f6.4 )' ) a, b
close( 10 )
a = -1.0
b = -1.0
open( 10, file = 't.dat', form = 'formatted', access = 'direct', recl = 12 )
read( 10, rec = 1, fmt = '( f6.4, /, f6.4 )' ) a, b
!write( *, '( "partial record 1", t25, 2( f6.4, 1x ) )' ) a, b
a = -1.0
b = -1.0
read( 10, rec = 1, fmt = '( f6.4 )' ) a, b
!write( *, '( "partial record 2", t25, 2( f6.4, 1x ) )' ) a, b
if (a /= 1.1111 .and. b /= 2.2222) STOP 1
a = -1.0
b = -1.0
read( 10, rec = 1, fmt = '( f12.4, /, f12.4 )' ) a, b
!write( *, '( "full record 1", t25, 2( f6.4, 1x ) )' ) a, b
if (a /= 1.1111 .and. b /= 2.2222) STOP 2
a = -1.0
b = -1.0
read( 10, rec = 1, fmt = '( f12.4 )' ) a, b
!write( *, '( "full record 2", t25, 2( f6.4, 1x ) )' ) a, b
if (a /= 1.1111 .and. b /= 2.2222) STOP 3
a = -1.0
b = -1.0
read( 10, rec = 1, fmt = '( f6.4, 6x, /, f6.4, 6x )' ) a, b
!write( *, '( "full record with 6x", t25, 2( f6.4, 1x ) )' ) a, b
if (a /= 1.1111 .and. b /= 2.2222) STOP 4
a = -1.0
b = -1.0
read( 10, rec = 1, fmt = '( f6.4 )' ) a
read( 10, rec = 2, fmt = '( f6.4 )' ) b
!write( *, '( "record at a time", t25, 2( f6.4, 1x ) )' ) a, b
if (a /= 1.1111 .and. b /= 2.2222) STOP 5
close( 10, status="delete")
end program da_good_now
|
= = = Hereford United = = =
|
data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a
%name Vect xs, ys, zs
transpose : {m : Nat} -> Vect n (Vect m a) -> Vect m (Vect n a)
transpose [] = ?empties
transpose (x :: xs) = let xs_trans = transpose xs in
?transposeHelper
|
-- Exponential and compatible strengths
module SOAS.Abstract.ExpStrength {T : Set} where
open import SOAS.Families.Core {T}
open import SOAS.Context
open import SOAS.Variable
open import SOAS.ContextMaps.Combinators
open import SOAS.ContextMaps.CategoryOfRenamings
open import SOAS.Common
open import SOAS.Coalgebraic.Strength
import SOAS.Abstract.Coalgebra as →□
open →□.Sorted
open →□.Unsorted using (⊤ᵇ) renaming (Coalg to UCoalg ; Coalg⇒ to UCoalg⇒ ; □ᵇ to □ᵘᵇ)
import SOAS.Abstract.Box as □ ; open □.Sorted
open import SOAS.Families.BCCC using (⊤ₘ)
private
variable
X : Family
𝒴 𝒵 : Familyₛ
Γ Δ Θ : Ctx
α : T
-- Mixed-sorted Cartesian and linear exponentials
_⇨_ : Family → Familyₛ → Familyₛ
(X ⇨ 𝒴) τ Γ = X Γ → 𝒴 τ Γ
_➡_ : Family → Familyₛ → Familyₛ
X ➡ 𝒴 = □ (X ⇨ 𝒴)
_⊸_ : Family → Familyₛ → Familyₛ
(X ⊸ 𝒴) α Γ = {Δ : Ctx} → X Δ → 𝒴 α (Γ ∔ Δ)
[_⊸_] : Familyₛ → Familyₛ → Family
[ 𝒳 ⊸ 𝒴 ] Γ = {τ : T}{Δ : Ctx} → 𝒳 τ Δ → 𝒴 τ (Δ ∔ Γ)
-- Linear exponential [ 𝒳 ⊸ 𝒴 ] is an unsorted coalgebra if 𝒴 is sorted coalgebra
[_⊸_]ᵇ : (𝒳 {𝒴} : Familyₛ) → Coalg 𝒴 → UCoalg ([ 𝒳 ⊸ 𝒴 ])
[ 𝒳 ⊸ 𝒴ᵇ ]ᵇ = record
{ r = λ l ρ {_}{Δ} x → r (l x) (Δ ∔∣ ρ)
; counit = λ{ {Γ = Γ}{t = l} → iext (dext λ {Δ} ρ → trans (r≈₂ (Concatʳ.identity Γ {Δ})) counit) }
; comult = λ{ {Γ = Γ}{Δ}{Θ}{ρ = ρ}{ϱ}{l} → iext (dext λ {Ξ} x → trans (r≈₂ (Functor.homomorphism (Ξ ∔F-))) comult) } }
where
open Coalg 𝒴ᵇ
-- Shorthands
⟅_⇨_⟆ : Familyₛ → Familyₛ → Familyₛ
⟅ 𝒳 ⇨ 𝒴 ⟆ = [ 𝒳 ⊸ 𝒴 ] ⇨ 𝒴
⟅_➡_⟆ : Familyₛ → Familyₛ → Familyₛ
⟅ 𝒳 ➡ 𝒴 ⟆ = [ 𝒳 ⊸ 𝒴 ] ➡ 𝒴
⟅_⊸_⟆ : Familyₛ → Familyₛ → Familyₛ
⟅ 𝒳 ⊸ 𝒴 ⟆ = [ 𝒳 ⊸ 𝒴 ] ⊸ 𝒴
-- Exponential strength of an endofunctor
record ExpStrength (Fᶠ : Functor 𝔽amiliesₛ 𝔽amiliesₛ) : Set₁ where
open Functor Fᶠ
field
-- Strength transformation that lifts a 𝒫-substitution over an endofunctor F₀
estr : {X : Family}(Xᵇ : UCoalg X)(𝒴 : Familyₛ)
→ F₀ (X ⇨ 𝒴) ⇾̣ (X ⇨ F₀ 𝒴)
-- Naturality conditions for the two components
estr-nat₁ : {X X′ : Family}{Xᵇ : UCoalg X}{X′ᵇ : UCoalg X′}{𝒴 : Familyₛ}
→ {f : X′ ⇾ X}(fᵇ⇒ : UCoalg⇒ X′ᵇ Xᵇ f)
→ (e : F₀ (X ⇨ 𝒴) α Γ) (x : X′ Γ)
→ estr Xᵇ 𝒴 e (f x)
≡ estr X′ᵇ 𝒴 (F₁ (λ e x → e (f x)) e) x
estr-nat₂ : {X : Family}{Xᵇ : UCoalg X}{𝒴 𝒴′ : Familyₛ}
→ (g : 𝒴 ⇾̣ 𝒴′)(e : F₀ (X ⇨ 𝒴) α Γ)(x : X Γ)
→ estr Xᵇ 𝒴′ (F₁ (λ e x → g (e x)) e) x
≡ F₁ g (estr Xᵇ 𝒴 e x)
estr-unit : {𝒴 : Familyₛ}{e : F₀ (⊤ₘ ⇨ 𝒴) α Γ}
→ estr ⊤ᵇ 𝒴 e tt ≡ F₁ (λ e′ → e′ tt) e
-- Derived unit law
estr-unit′ : {X : Family}{Xᵇ : UCoalg X}{𝒴 : Familyₛ}{e : F₀ (X ⇨ 𝒴) α Γ}
{x : {Γ : Ctx} → X Γ}(fᵇ⇒ : UCoalg⇒ ⊤ᵇ Xᵇ (λ _ → x))
→ estr Xᵇ 𝒴 e x ≡ F₁ (λ e′ → e′ x) e
estr-unit′ {X = X}{Xᵇ}{𝒴}{e}{x} fᵇ⇒ = begin
estr Xᵇ 𝒴 e x ≡⟨⟩
estr Xᵇ 𝒴 e ((λ _ → x) tt) ≡⟨ estr-nat₁ fᵇ⇒ e tt ⟩
estr ⊤ᵇ 𝒴 (F₁ (λ e′ _ → e′ x) e) tt ≡⟨ estr-unit ⟩
F₁ (λ e′ → e′ tt) (F₁ (λ e′ _ → e′ x) e) ≡˘⟨ homomorphism ⟩
F₁ (λ e′ → e′ x) e
∎ where open ≡-Reasoning
-- Combination of coalgebraic and exponential strength over X ➡ 𝒴 = □ (X ⇨ 𝒴)
module ➡-Strength (F:Str : Strength Fᶠ) where
open Strength F:Str
open ≡-Reasoning
□estr : (Xᵇ : UCoalg X)(𝒴 : Familyₛ)
→ F₀ (X ➡ 𝒴) ⇾̣ (X ➡ F₀ 𝒴)
□estr {X} Xᵇ 𝒴 e ρ x = estr Xᵇ 𝒴 (str ℐᴮ (X ⇨ 𝒴) e ρ) x
-- Compatible exponential and coalgebraic strengths
-- (for now no extra condition)
record CompatStrengths (Fᶠ : Functor 𝔽amiliesₛ 𝔽amiliesₛ) : Set₁ where
open Functor Fᶠ
field
CoalgStr : Strength Fᶠ
ExpStr : ExpStrength Fᶠ
open Strength CoalgStr public
open ExpStrength ExpStr public
open ➡-Strength CoalgStr public
|
(***************************************************************************
* Safety for Simply Typed Lambda Calculus (CBV) - Definitions *
* Brian Aydemir & Arthur Chargueraud, July 2007 *
***************************************************************************)
Set Implicit Arguments.
Require Import LibLN.
Implicit Types x : var.
(** Grammar of types. *)
Inductive typ : Set :=
| typ_var : var -> typ
| typ_arrow : typ -> typ -> typ.
(** Grammar of pre-terms. *)
Inductive trm : Set :=
| trm_bvar : nat -> trm
| trm_fvar : var -> trm
| trm_abs : trm -> trm
| trm_app : trm -> trm -> trm.
(** Opening up abstractions *)
Fixpoint open_rec (k : nat) (u : trm) (t : trm) {struct t} : trm :=
match t with
| trm_bvar i => If k = i then u else (trm_bvar i)
| trm_fvar x => trm_fvar x
| trm_abs t1 => trm_abs (open_rec (S k) u t1)
| trm_app t1 t2 => trm_app (open_rec k u t1) (open_rec k u t2)
end.
Definition open t u := open_rec 0 u t.
Notation "{ k ~> u } t" := (open_rec k u t) (at level 67).
Notation "t ^^ u" := (open t u) (at level 67).
Notation "t ^ x" := (open t (trm_fvar x)).
(** Terms are locally-closed pre-terms *)
Inductive term : trm -> Prop :=
| term_var : forall x,
term (trm_fvar x)
| term_abs : forall L t1,
(forall x, x \notin L -> term (t1 ^ x)) ->
term (trm_abs t1)
| term_app : forall t1 t2,
term t1 ->
term t2 ->
term (trm_app t1 t2).
(** Environment is an associative list mapping variables to types. *)
Definition env := LibEnv.env typ.
(** Typing relation *)
Reserved Notation "E |= t ~: T" (at level 69).
Inductive typing : env -> trm -> typ -> Prop :=
| typing_var : forall E x T,
ok E ->
binds x T E ->
E |= (trm_fvar x) ~: T
| typing_abs : forall L E U T t1,
(forall x, x \notin L ->
(E & x ~ U) |= t1 ^ x ~: T) ->
E |= (trm_abs t1) ~: (typ_arrow U T)
| typing_app : forall S T E t1 t2,
E |= t1 ~: (typ_arrow S T) ->
E |= t2 ~: S ->
E |= (trm_app t1 t2) ~: T
where "E |= t ~: T" := (typing E t T).
(** Definition of values (only abstractions are values) *)
Inductive value : trm -> Prop :=
| value_abs : forall t1,
term (trm_abs t1) -> value (trm_abs t1).
(** Reduction relation - one step in call-by-value *)
Inductive red : trm -> trm -> Prop :=
| red_beta : forall t1 t2,
term (trm_abs t1) ->
value t2 ->
red (trm_app (trm_abs t1) t2) (t1 ^^ t2)
| red_app_1 : forall t1 t1' t2,
term t2 ->
red t1 t1' ->
red (trm_app t1 t2) (trm_app t1' t2)
| red_app_2 : forall t1 t2 t2',
value t1 ->
red t2 t2' ->
red (trm_app t1 t2) (trm_app t1 t2').
Notation "t --> t'" := (red t t') (at level 68).
(** Goal is to prove preservation and progress *)
Definition preservation := forall E t t' T,
E |= t ~: T ->
t --> t' ->
E |= t' ~: T.
Definition progress := forall t T,
empty |= t ~: T ->
value t
\/ exists t', t --> t'.
|
lemma residue_lmul: assumes "open s" "z \<in> s" and f_holo: "f holomorphic_on s - {z}" shows "residue (\<lambda>z. c * (f z)) z= c * residue f z" |
(* Title: HOL/Probability/Discrete_Topology.thy
Author: Fabian Immler, TU München
*)
theory Discrete_Topology
imports "HOL-Analysis.Analysis"
begin
text \<open>Copy of discrete types with discrete topology. This space is polish.\<close>
typedef 'a discrete = "UNIV::'a set"
morphisms of_discrete discrete
..
instantiation discrete :: (type) metric_space
begin
definition dist_discrete :: "'a discrete \<Rightarrow> 'a discrete \<Rightarrow> real"
where "dist_discrete n m = (if n = m then 0 else 1)"
definition uniformity_discrete :: "('a discrete \<times> 'a discrete) filter" where
"(uniformity::('a discrete \<times> 'a discrete) filter) = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
definition "open_discrete" :: "'a discrete set \<Rightarrow> bool" where
"(open::'a discrete set \<Rightarrow> bool) U \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)"
instance proof qed (auto simp: uniformity_discrete_def open_discrete_def dist_discrete_def intro: exI[where x=1])
end
lemma open_discrete: "open (S :: 'a discrete set)"
unfolding open_dist dist_discrete_def by (auto intro!: exI[of _ "1 / 2"])
instance discrete :: (type) complete_space
proof
fix X::"nat\<Rightarrow>'a discrete" assume "Cauchy X"
hence "\<exists>n. \<forall>m\<ge>n. X n = X m"
by (force simp: dist_discrete_def Cauchy_def split: if_split_asm dest:spec[where x=1])
then guess n ..
thus "convergent X"
by (intro convergentI[where L="X n"] tendstoI eventually_sequentiallyI[of n])
(simp add: dist_discrete_def)
qed
instance discrete :: (countable) countable
proof
have "inj (\<lambda>c::'a discrete. to_nat (of_discrete c))"
by (simp add: inj_on_def of_discrete_inject)
thus "\<exists>f::'a discrete \<Rightarrow> nat. inj f" by blast
qed
instance discrete :: (countable) second_countable_topology
proof
let ?B = "range (\<lambda>n::'a discrete. {n})"
have "\<And>S. generate_topology ?B (\<Union>x\<in>S. {x})"
by (intro generate_topology_Union) (auto intro: generate_topology.intros)
then have "open = generate_topology ?B"
by (auto intro!: ext simp: open_discrete)
moreover have "countable ?B" by simp
ultimately show "\<exists>B::'a discrete set set. countable B \<and> open = generate_topology B" by blast
qed
instance discrete :: (countable) polish_space ..
end
|
-- -------------------------------------------------------------- [ Lens.idr ]
-- Description : Idris port of Control.Lens
-- Copyright : (c) Huw Campbell
-- --------------------------------------------------------------------- [ EOH ]
module Control.Lens.Types
import Control.Lens.Const
import Data.Contravariant
import Control.Lens.First
import Control.Monad.Identity
import Data.Bifunctor
import Data.Profunctor
import Data.Tagged
%default total
public export
Optic : (Type -> Type -> Type) -> (Type -> Type) -> Type -> Type -> Type -> Type -> Type
Optic p f s t a b = p a (f b) -> p s (f t)
public export
Simple : (Type -> Type -> Type -> Type -> Type) -> Type -> Type -> Type
Simple p s a = p s s a a
public export
Optic' : (Type -> Type -> Type) -> (Type -> Type) -> Type -> Type -> Type
Optic' p f = Simple (Optic p f)
public export
LensLike : (Type -> Type) -> Type -> Type -> Type -> Type -> Type
LensLike = Optic Morphism
public export
LensLike' : (Type -> Type) -> Type -> Type -> Type
LensLike' f = Simple (LensLike f)
-- type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t
public export
Lens : Type -> Type -> Type -> Type -> Type
Lens s t a b = { f : Type -> Type } -> Functor f => LensLike f s t a b
-- type Lens' s a = Lens s s a a
public export
Lens' : Type -> Type -> Type
Lens' = Simple Lens
-- type Getting r s a = (a -> Const r a) -> s -> Const r s
public export
Getting : Type -> Type -> Type -> Type
Getting r = LensLike' (Const r)
-- type Getter s a = forall f. (Contravariant f, Functor f) => (a -> f a) -> s -> f s
public export
Getter : Type -> Type -> Type
Getter s a = { f : Type -> Type } -> (Contravariant f, Functor f) => LensLike' f s a
-- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
public export
Setter : Type -> Type -> Type -> Type -> Type
Setter = LensLike Identity
public export
Setter' : Type -> Type -> Type
Setter' = Simple Setter
-- type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t
public export
Traversal : Type -> Type -> Type -> Type -> Type
Traversal s t a b = { f : Type -> Type } -> Applicative f => LensLike f s t a b
-- type Traversal' s a = Traversal s s a a
public export
Traversal' : Type -> Type -> Type
Traversal' = Simple Traversal
-- type Prism s t a b = forall p f. (Choice p, Applicative f) => p a (f b) -> p s (f t)
-- The choice of `Choice p` for a valid `Traversal` is the `(->)` implementation. Which is used
-- when using a prism as a getter or setter.
public export
Prism : Type -> Type -> Type -> Type -> Type
Prism s t a b = {p : Type -> Type -> Type} -> { f : Type -> Type } ->
(Choice p,Applicative f) => Optic p f s t a b
public export
Prism' : Type -> Type -> Type
Prism' = Simple Prism
public export
Iso : Type -> Type -> Type -> Type -> Type
Iso s t a b = {p : Type -> Type -> Type} -> {f : Type -> Type} ->
(Profunctor p,Functor f) => Optic p f s t a b
public export
Iso' : Type -> Type -> Type
Iso' = Simple Iso
-- type Review t b = forall p f. (Choice p, Bifunctor p, Settable f) => Optic' p f t b
public export
Review : Type -> Type -> Type -> Type -> Type
Review s t a b = { p : Type -> Type -> Type } -> { f : Type -> Type } ->
(Choice p, Bifunctor p) => Optic p Identity s t a b
-- type AReview t b = Optic' Tagged Identity t b
public export
AReview : Type -> Type -> Type
AReview t b = Optic' Tagged Identity t b
-- --------------------------------------------------------------------- [ EOF ]
|
#include "compi.hpp"
#include <complex>
#include <unordered_map>
#include <algorithm>
#include <utility>
#include <boost/math/quadrature/gauss_kronrod.hpp>
#include <boost/math/tools/precision.hpp>
extern "C" {
#include "integration_routines.h"
}
#include "integration_routines_template.hpp"
#include "IntegrandFunctionWrapper.hpp"
#include "utils.hpp"
struct GaussKronrodParameters: public RoutineParametersBase{
Real x_min;
Real x_max;
unsigned points = 31;
GaussKronrodParameters(PyObject* routine_args, PyObject* routine_kwargs){
constexpr std::array<const char*,0> dumby_arg = {};
constexpr std::array<const char*,1> keyword_only_args = {"points"};
constexpr auto keywords = generate_keyword_list<IntegralRange::finite>(dumby_arg,dumby_arg,keyword_only_args);
if(!PyArg_ParseTupleAndKeywords(routine_args,routine_kwargs,"Odd|OO$pIdI",const_cast<char**>(keywords.data()),
&integrand,&x_min,&x_max,
&args,&kw,
&full_output, &max_levels,&tolerance,&points)){
throw could_not_parse_arguments("Unable to parse python arguments to C variables");
}
}
};
GaussKronrodParameters::result_type run_integration_routine(const compi_internal::IntegrandFunctionWrapper& f, const GaussKronrodParameters& parameters){
using std::complex;
using namespace compi_internal;
using boost::math::quadrature::gauss_kronrod;
using IntegrationRoutine = complex<Real>(*)(IntegrandFunctionWrapper, Real, Real, unsigned, Real, Real*, Real*);
// The possible tempates for the different allowed numbers of divisions are instasiated,
// so that the Python runtime can select which one to use
static const std::unordered_map<unsigned,IntegrationRoutine> integration_routines{{15,gauss_kronrod<Real,15>::integrate},
{31,gauss_kronrod<Real,31>::integrate},
{41,gauss_kronrod<Real,41>::integrate},
{51,gauss_kronrod<Real,51>::integrate},
{61,gauss_kronrod<Real,61>::integrate}
};
GaussKronrodParameters::result_type result;
try{
result.result = integration_routines.at(parameters.points)(f,parameters.x_min,parameters.x_max,parameters.max_levels,parameters.tolerance,&(result.err),&(result.l1));
} catch (const std::out_of_range& e){
PyErr_SetString(PyExc_ValueError,"Invalid number of points for gauss_kronrod");
throw unable_to_call_integration_routine("Invalid number of points for gauss_kronrod");
}
return result;
}
template<unsigned points>
std::pair<PyObject*, PyObject*> get_abscissa_and_weights() noexcept{
auto abscissa = compi_internal::py_list_from_real_container(boost::math::quadrature::gauss_kronrod<Real,points>::abscissa());
if(abscissa == NULL){
return std::make_pair<PyObject*,PyObject*>(NULL,NULL);
}
auto weights = compi_internal::py_list_from_real_container(boost::math::quadrature::gauss_kronrod<Real,points>::weights());
if(weights == NULL){
Py_DECREF(abscissa);
return std::make_pair<PyObject*,PyObject*>(NULL,NULL);
}
return std::make_pair(abscissa,weights);
}
template<>
PyObject* generate_full_output_dict(const GaussKronrodParameters::result_type& result, const GaussKronrodParameters& parameters) noexcept{
// The boost API returning the abscissa and weights simply spesifies that
// they are returned as a (reference to a) random access container.
// Since this could (reasonably) depend on points (e.g. array<Real,points>)
// it is awkward to use the map based appraoch in run_integation_routine
// and instead we use more verbose a template/switch based approach
std::pair<PyObject*,PyObject*> abscissa_and_weights;
switch(parameters.points){
case 15:
abscissa_and_weights = get_abscissa_and_weights<15>();
break;
case 31:
abscissa_and_weights = get_abscissa_and_weights<31>();
break;
case 41:
abscissa_and_weights = get_abscissa_and_weights<41>();
break;
case 51:
abscissa_and_weights = get_abscissa_and_weights<51>();
break;
case 61:
abscissa_and_weights = get_abscissa_and_weights<61>();
break;
default:
// Should never get here as have already checked the value of points is valid
PyErr_SetString(PyExc_NotImplementedError,"Unable to generate abscissa and weights for the given number of points.\nPlease report this bug");
return NULL;
}
if(abscissa_and_weights.first == NULL || abscissa_and_weights.second == NULL){
return NULL;
}
return Py_BuildValue("{sfsOsO}","L1 norm",result.l1,"abscissa",abscissa_and_weights.first,"weights",abscissa_and_weights.second);
}
// Integrates a Python function returning a complex over a finite interval using
// Gauss-Kronrod adaptive quadrature
extern "C" PyObject* gauss_kronrod(PyObject* self, PyObject* args, PyObject* kwargs){
return integration_routine<GaussKronrodParameters>(args,kwargs);
}
|
[STATEMENT]
lemma monotone_rel_prod_iff:
"monotone (rel_prod orda ordb) ordc f \<longleftrightarrow>
(\<forall>a. monotone ordb ordc (\<lambda>b. f (a, b))) \<and>
(\<forall>b. monotone orda ordc (\<lambda>a. f (a, b)))"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. monotone (rel_prod orda ordb) ordc f = ((\<forall>a. monotone ordb ordc (\<lambda>b. f (a, b))) \<and> (\<forall>b. monotone orda ordc (\<lambda>a. f (a, b))))
[PROOF STEP]
using a b c
[PROOF STATE]
proof (prove)
using this:
class.preorder orda (mk_less orda)
class.preorder ordb (mk_less ordb)
class.preorder ordc (mk_less ordc)
goal (1 subgoal):
1. monotone (rel_prod orda ordb) ordc f = ((\<forall>a. monotone ordb ordc (\<lambda>b. f (a, b))) \<and> (\<forall>b. monotone orda ordc (\<lambda>a. f (a, b))))
[PROOF STEP]
by(blast intro: monotone_rel_prodI dest: monotone_rel_prodD1 monotone_rel_prodD2) |
Formal statement is: lemma continuous_map_real_mult_right: "continuous_map X euclideanreal f \<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. f x * c)" Informal statement is: If $f$ is a continuous real-valued function, then so is $f \cdot c$ for any constant $c$. |
/-
Copyright (c) 2020 The Xena project. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard.
Thanks: Imperial College London, leanprover-community
-/
-- We will assume that the real numbers are a field.
import data.real.basic
/-!
# The complex numbers
We define the complex numbers, and prove that they are a ring.
We also "extract some basic API" (e.g. we prove that
two complex numbers are equal iff they have the same
real and imaginary parts)
This file has no `sorry`s in. All of the other levels:
`Level_01_of_real.lean`
`Level_02_I.lean`
`Level_03_conj.lean`
`Level_04_norm_sq.lean`
`Level_05_field.lean`
`Level_06_alg_closed.lean`
have sorrys, indicating puzzles to be solved.
# Main Definitions
`zero` : the complex number 0
`one` : the complex number 1
`add` -- addition of two complex numbers
`neg` -- negation of a complex number
`mul` -- multiplication of two complex numbers
# Main Theorem
`comm_ring` : The complex numbers are a commutative ring.
-/
/-- A complex number is defined to be a structure consisting of two real
numbers, the real part and the imaginary part of the complex numberd. -/
structure complex : Type :=
(re : ℝ) (im : ℝ)
-- Let's use the usual notation for the complex numbers
notation `ℂ` := complex
-- You make the complex number with real part 3 and imaginary part 4 like this:
example : ℂ :=
{ re := 3,
im := 4 }
-- Or like this:
example : ℂ := complex.mk 3 4
-- or like this:
example : ℂ := ⟨3, 4⟩
-- They all give the same complex number.
example : complex.mk 3 4 = ⟨3, 4⟩ := begin refl end -- "true by definition"
-- All of our definitions, like `zero` and `one`, will all
-- live in the `complex` namespace.
namespace complex
-- If you have a complex number, then you can get its real and
-- imaginary parts with the `re` and `im` functions.
example : ℝ := re(mk 3 4) -- this term is (3 : ℝ)
example : re(mk 3 4) = 3 := begin refl end
-- Computer scientists prefer the style `z.re` to `re(z)` for some reason.
example : (mk 3 4).re = 3 := begin refl end
example (z : ℂ) : re(z) = z.re := begin refl end
-- Before we start making the basic
-- We now prove the basic theorems and make the basic definitions for
-- complex numbers. For example, we will define addition and multiplication on
-- the complex numbers, and prove that it is a commutative ring.
-- TODO fix
/-! # Defining the ring structure on ℂ -/
-- Our main goal is to prove that the complexes are a ring. Let's
-- define the structure first; the zero, one, addition and multiplication
-- on the complexes.
/-! ## zero (0) -/
/-- The complex number with real part 0 and imaginary part 0 -/
def zero : ℂ := ⟨0, 0⟩
-- Now we set up notation so that `0 : ℂ` will mean `zero`.
/-- notation `0` for `zero` -/
instance : has_zero ℂ := ⟨zero⟩
-- Let's prove the two basic properties, both of which are true by definition,
-- and then tag them with the appropriate attributes.
@[simp] lemma zero_re : re(0 : ℂ) = 0 := begin refl end
@[simp] lemma zero_im : im(0 : ℂ) = 0 := begin refl end
/-! ## one (1) -/
-- Now let's do the same thing for 1.
/-- The complex number with real part 1 and imaginary part 0 -/
def one : ℂ := ⟨1, 0⟩
/-- Notation `1` for `one` -/
instance : has_one ℂ := ⟨one⟩
-- name the basic properties and tag them with `simp`
@[simp] lemma one_re : re(1 : ℂ) = 1 := begin refl end
@[simp] lemma one_im : im(1 : ℂ) = 0 := begin refl end
/-! ## add (+) -/
-- Now let's define addition
/-- addition `z+w` of complex numbers -/
def add (z w : ℂ) : ℂ := ⟨z.re + w.re, z.im + w.im⟩
/-- Notation `+` for addition -/
instance : has_add ℂ := ⟨add⟩
-- basic properties
@[simp] lemma add_re (z w : ℂ) : re(z + w) = re(z) + re(w) := begin refl end
@[simp] lemma add_im (z w : ℂ) : im(z + w) = im(z) + im(w) := begin refl end
/-! ## neg (-) -/
-- negation
/-- The negation `-z` of a complex number `z` -/
def neg (z : ℂ) : ℂ := ⟨-re(z), -im(z)⟩
/-- Notation `-` for negation -/
instance : has_neg ℂ := ⟨neg⟩
-- how neg interacts with re and im
@[simp] lemma neg_re (z : ℂ) : re(-z) = -re(z) := begin refl end
@[simp] lemma neg_im (z : ℂ) : im(-z) = -im(z) := begin refl end
/-! ## mul (*) -/
-- multiplication
/-- Multiplication `z*w` of two complex numbers -/
def mul (z w : ℂ) : ℂ :=
⟨re(z) * re(w) - im(z) * im(w), re(z) * im(w) + im(z) * re(w)⟩
/-- Notation `*` for multiplication -/
instance : has_mul ℂ := ⟨mul⟩
-- how `mul` reacts with `re` and `im`
@[simp] lemma mul_re (z w : ℂ) : re(z * w) = re(z) * re(w) - im(z) * im(w) :=
begin
refl
end
@[simp] lemma mul_im (z w : ℂ) : im(z * w) = re(z) * im(w) + im(z) * re(w) :=
rfl
/-! ## Example of what `simp` can now do
example (a b c : ℂ) :
re(a*(b+c)) = re(a) * (re(b) + re(c)) - im(a) * (im(b) + im(c)) :=
begin
simp,
end
-/
/-! # `ext` : A mathematical triviality -/
/-
Two complex numbers with the same and imaginary parts are equal. This is an
"extensionality lemma", i.e. a lemma of the form "if two things are made from
the same pieces, they are equal". This is not hard to prove, but we want to
give the result a name so we can tag it with the `ext` attribute, meaning that
the `ext` tactic will know it. To add to the confusion, let's call the
theorem `ext` :-)
-/
/-- If two complex numbers z and w have equal real and imaginary parts,
they are equal -/
@[ext] theorem ext {z w : ℂ}
(hre : re(z) = re(w)) (him : im(z) = im(w)) : z = w :=
begin
cases z with zr zi,
cases w with ww wi,
simp * at *,
end
/-! # Theorem: The complex numbers are a commutative ring
Proof: we've defined all the structure, and every axiom can be checked by
reducing it to checking real and imaginary parts with `ext`, expanding
everything out with `simp`, and then using the fact that the real numbers are
a commutative ring (which we already know)
-/
/-- The complex numbers are a commutative ring -/
instance : comm_ring ℂ :=
begin
-- first the data
refine_struct {
zero := (0 : ℂ), add := (+), neg := has_neg.neg, one := 1, mul := (*),
..};
-- now the axioms
-- of which there seem to be 11
-- Note the semicolons, which mean "apply next tactic to all goals".
-- First introduce the variables
intros;
-- we now have to prove an equality between two complex numbers.
-- It suffices to check on real and imaginary parts
ext;
-- the simplifier can simplify stuff like re(a+0)
simp;
-- all the goals now are identities between *real* numbers,
-- and the reals are already known to be a ring
ring,
end
/-
That is the end of the proof that the complexes form a ring. We built
a basic API which was honed towards the general idea that to prove
certain statements about the complex numbers, for example distributivity,
we could just check on real and imaginary parts. We trained the
simplifier to expand out things like re(z*w) in terms
of re(z), im(z), re(w), im(w).
-/
/-!
# Optional (for mathematicians) : more basic infrastructure, and term mode
-/
/-!
## `ext` revisited
Recall extensionality:
theorem ext {z w : ℂ}
(hre : re(z) = re(w)) (him : im(z) = im(w)) : z = w := ...
Here is another tactic mode proof of extensionality. Note that we have moved
the hypotheses to the other side of the colon; this does not
change the theorem. This proof shows the power
of the `rintros` tactic.
-/
theorem ext' : ∀ z w : ℂ, z.re = w.re → z.im = w.im → z = w :=
begin
rintros ⟨zr, zi⟩ ⟨_, _⟩ ⟨rfl⟩ ⟨rfl⟩,
refl,
end
/-!
Explanation: `rintros` does `cases` as many times as you like using this cool
`⟨ ⟩` syntax for the case splits. Note that if you say that a proof of `a = b`
is `rfl` then Lean will define a to be b, or b to be a, and not even introduce
new notation for it.
-/
-- Here is the same proof in term mode.
theorem ext'' : ∀ {z w : ℂ}, z.re = w.re → z.im = w.im → z = w
| ⟨zr, zi⟩ ⟨_, _⟩ rfl rfl := rfl
/-!
## `eta`
-/
/-
We prove the mathematically obvious statement that the
complex number whose real part is re(z) and whose imaginary
part is im(z) is of course equal to z.
-/
/-- ⟨z.re, z.im⟩ is equal to z -/
@[simp] theorem eta : ∀ z : ℂ, complex.mk z.re z.im = z :=
begin
intro z,
cases z with x y,
/-
goal now looks complicated, and contains terms which look
like {re := a, im := b}.re which obviously simplify to a.
The `dsimp` tactic will do some tidying up for us, although
it is not logically necessary. `dsimp` does definitional simplification.
-/
dsimp,
-- Now we see the goal can be solved by reflexivity
refl,
end
/-
The proof was "unfold everything, and it's true by definition".
This proof does not teach a mathematician anything, so we may as well write
it in term mode. Many tactics have term mode equivalent.
The equation compiler does the `intro` and `cases` steps,
and `dsimp` was unnecessary -- the two sides of the equation
were definitionally equal.
-/
theorem eta' : ∀ z : ℂ, complex.mk z.re z.im = z
| ⟨x, y⟩ := rfl
/-!
## ext_iff
-/
/-
Note that `ext` is an implication -- if re(z)=re(w) and im(z)=im(w) then z=w.
The below variant `ext_iff` is the two-way implication: two complex
numbers are equal if and only if they have the same real and imaginary part.
Let's first see a tactic mode proof. See how the `ext` tactic is used?
After it is applied, we have two goals, both of which are hypotheses.
The semicolon means "apply the next tactic to all the goals
produced by this one"
-/
theorem ext_iff {z w : ℂ} : z = w ↔ z.re = w.re ∧ z.im = w.im :=
begin
split,
{ intro H,
simp [H]},
{
rintro ⟨hre, him⟩,
ext; assumption,
}
end
-- Again this is easy to write in term mode, and no mathematician
-- wants to read the proof anyway.
theorem ext_iff' {z w : ℂ} : z = w ↔ z.re = w.re ∧ z.im = w.im :=
⟨λ H, by simp [H], and.rec ext⟩
end complex
/-!
# some last comments on the `simp` tactic
Some equalities, even if obvious, had to be given names, because we want `simp`
to be able to use them. In short, the `simp` tactic tries to solve
goals of the form A = B, when `refl` doesn't work (i.e. the goals are
not definitionally equal) but when any mathematician would be able
to simplify A and B via "obvious" steps such as `0 + x = x` or
`⟨z.re, z.im⟩ = z`. These things are sometimes not true by definition,
but they should be tagged as being well-known ways to simplify an equality.
When building our API for the complex numbers, if we prove a theorem of the
form `A = B` where `B` is a bit simpler than `A`, we should probably
tag it with the `@[simp]` attribute, so `simp` can use it.
Note: `simp` does *not* prove "all simple things". It proves *equalities*.
It proves `A = B` when, and only when, it can do it by applying
its "simplification rules", where a simplification rule is simply a proof
of a theorem of the form `A = B` and `B` is simpler than `A`.
-/
|
C Copyright(C) 1999-2020 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C See packages/seacas/LICENSE for details
C=======================================================================
SUBROUTINE PLTMG2(MAP,N,XV,YV,NO,XVO,YVO)
REAL MAP(*)
INTEGER N
REAL XV(*),YV(*)
INTEGER NO
REAL XVO(*),YVO(*)
REAL XWORK(50),YWORK(50)
INTEGER NWORK
NOSAVE = NO
AXX = MAP(1)
AYY = MAP(4)
AXY = MAP(3)
AYX = MAP(2)
BX = MAP(5)
BY = MAP(6)
DO 2220 I = 1,N
XVO(I) = AXX*XV(I) + AXY*YV(I) + BX
YVO(I) = AYX*XV(I) + AYY*YV(I) + BY
2220 CONTINUE
NWORK = 50
CALL PLTCG2(N,XVO,YVO,NWORK,XWORK,YWORK,MAP(7),MAP(9))
NO = NOSAVE
CALL PLTCG2(NWORK,XWORK,YWORK,NO,XVO,YVO,MAP(9),MAP(11))
NWORK = 50
CALL PLTCG2(NO,XVO,YVO,NWORK,XWORK,YWORK,MAP(11),MAP(13))
NO = NOSAVE
CALL PLTCG2(NWORK,XWORK,YWORK,NO,XVO,YVO,MAP(13),MAP(7))
RETURN
END
|
If the degree of a polynomial $p$ is less than $n$, then the coefficient of $x^n$ in $p$ is zero. |
import numpy as np
import pandas as pd
from tqdm import tqdm
def rle_decode(rle_mask):
'''
rle_mask: run-length as string formated (start length)
shape: (height,width) of array to return
Returns numpy array, 1 - mask, 0 - background
'''
s = rle_mask.split()
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
img = np.zeros(101*101, dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 1
return img.reshape(101,101)
"""
used for converting the decoded image to rle mask
"""
def rle_encode(im):
'''
im: numpy array, 1 - mask, 0 - background
Returns run length as string formated
'''
pixels = im.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
df_1 = pd.read_csv('../submission/submission_1.csv')
df_2 = pd.read_csv('../submission/submission_2.csv')
df_3 = pd.read_csv('../submission/submission_3.csv')
df_4 = pd.read_csv('../submission/submission_4.csv')
df_5 = pd.read_csv('../submission/submission_5.csv')
df_1_id = pd.read_csv('../submission/submission_1.csv', index_col="rle_mask")
df_2_id = pd.read_csv('../submission/submission_2.csv', index_col="rle_mask")
df_3_id = pd.read_csv('../submission/submission_3.csv', index_col="rle_mask")
df_4_id = pd.read_csv('../submission/submission_4.csv', index_col="rle_mask")
df_5_id = pd.read_csv('../submission/submission_5.csv', index_col="rle_mask")
d1 = df_1_id.values.tolist()
d2 = df_2_id.values.tolist()
d3 = df_3_id.values.tolist()
d4 = df_4_id.values.tolist()
d5 = df_5_id.values.tolist()
"""
Applying vote on the predicted mask
"""
for i in tqdm(range(df_1.shape[0])):
name = df_1_id.values[i]
index_1 = d1.index(name)
index_2 = d2.index(name)
index_3 = d3.index(name)
index_4 = d4.index(name)
index_5 = d5.index(name)
if str(df_1.loc[index_1,'rle_mask'])!=str(np.nan):
decoded_mask_1 = rle_decode(df_1.loc[index_1,'rle_mask'])
else:
decoded_mask_1 = np.zeros((101, 101), np.int8)
if str(df_2.loc[index_2, 'rle_mask']) != str(np.nan):
decoded_mask_2 = rle_decode(df_2.loc[index_2, 'rle_mask'])
else:
decoded_mask_2 = np.zeros((101, 101), np.int8)
if str(df_3.loc[index_3, 'rle_mask']) != str(np.nan):
decoded_mask_3 = rle_decode(df_3.loc[index_3, 'rle_mask'])
else:
decoded_mask_3 = np.zeros((101, 101), np.int8)
if str(df_4.loc[index_4, 'rle_mask']) != str(np.nan):
decoded_mask_4 = rle_decode(df_4.loc[index_4, 'rle_mask'])
else:
decoded_mask_4 = np.zeros((101, 101), np.int8)
if str(df_5.loc[index_5, 'rle_mask']) != str(np.nan):
decoded_mask_5 = rle_decode(df_5.loc[index_5, 'rle_mask'])
else:
decoded_mask_5 = np.zeros((101, 101), np.int8)
decoded_masks = decoded_mask_1 + decoded_mask_2 + decoded_mask_3 + decoded_mask_4 + decoded_mask_5
decoded_masks = decoded_masks / 5.0
df_1.loc[index_1, 'rle_mask'] = rle_encode(np.round(decoded_masks >= 0.5))
df_1.to_csv('../submission/vote_correction.csv',index=False)
|
Formal statement is: lemma summable_imp_bounded: fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" shows "summable f \<Longrightarrow> bounded (range f)" Informal statement is: If a sequence of real numbers is summable, then the sequence is bounded. |
[STATEMENT]
lemma mult_bot_omega:
"(x * bot)\<^sup>\<omega> = x * bot"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (x * bot)\<^sup>\<omega> = x * bot
[PROOF STEP]
by (metis mult_left_zero omega_slide) |
State Before: α : Sort u_1
β : Sort u_2
inst✝ : Nonempty α
f : α → β
a : α
b✝ : β
g : β → α
hf : Injective f
hg : RightInverse g f
b : β
⊢ f (invFun f b) = f (g b) State After: α : Sort u_1
β : Sort u_2
inst✝ : Nonempty α
f : α → β
a : α
b✝ : β
g : β → α
hf : Injective f
hg : RightInverse g f
b : β
⊢ f (invFun f b) = b Tactic: rw [hg b] State Before: α : Sort u_1
β : Sort u_2
inst✝ : Nonempty α
f : α → β
a : α
b✝ : β
g : β → α
hf : Injective f
hg : RightInverse g f
b : β
⊢ f (invFun f b) = b State After: no goals Tactic: exact invFun_eq ⟨g b, hg b⟩ |
State Before: ι : Type ?u.2724
F : Type u_3
α : Type u_1
β : Type u_2
γ : Type ?u.2736
δ : Type ?u.2739
inst✝³ : Group α
inst✝² : CommSemigroup β
inst✝¹ : LE β
inst✝ : SubmultiplicativeHomClass F α β
f : F
a b : α
⊢ ↑f a ≤ ↑f b * ↑f (a / b) State After: no goals Tactic: simpa only [mul_comm, div_mul_cancel'] using map_mul_le_mul f (a / b) b |
library(extraDistr)
# sample: r, pdf: d, cdf: p, quantile: q
x = 3
lRange = 1; uRange = 9; rdunif(1,lRange,uRange); ddunif(x,lRange,uRange); pdunif(x,lRange,uRange); qdunif(0.2,lRange,uRange); # from extraDistr
p = 0.8; rbern(1,p); dbern(1,p); pbern(1,p); qbern(0.2,p); # from extraDistr
n = 20; p = 0.8; rbinom(1,n,p); dbinom(x,n,p); pbinom(x,n,p); qbinom(0.2,n,p);
ps = c(0.2,0.5,0.2,0.1); rcat(1,ps); dcat(x,ps); pcat(x,ps); qcat(0.2,ps); # from extraDistr
p = 0.2; rgeom(1,p); dgeom(x,p); pgeom(x,p); qgeom(0.2,p);
sAv = 10; fAv = 20; nTrials = 3; rhyper(1, sAv, fAv, nTrials); dhyper(x, sAv, fAv, nTrials); phyper(x, sAv, fAv, nTrials); qhyper(0.2, sAv, fAv, nTrials)
rate = 10; rpois(1,rate); dpois(x,rate); ppois(x,rate); qpois(0.2,rate)
nSucc =10; p = 0.2; rnbinom(1, nSucc,p); dnbinom(x, nSucc,p); pnbinom(1, nSucc,p); qnbinom(0.2, nSucc,p); # Return the number of failures before n successes instead of total trials to n successes
lRange = 1; uRange = 9; runif(1,lRange,uRange); dunif(x,lRange,uRange); punif(x,lRange,uRange); qunif(0.2,lRange,uRange);
rate = 2.5; rexp(1,rate); dexp(x,rate); pexp(x,rate); qexp(0.2,rate);
μ = 2; σsq = 5 ; rnorm(1,μ,sqrt(σsq)); dnorm(x,μ,sqrt(σsq)); pnorm(x,μ,sqrt(σsq)); qnorm(0.2,μ,sqrt(σsq));
n = 5; rate = 2.5; #use gamma, as erlang special case of it when shape is integer
μ = 2.5; σ = 2.5; rcauchy(1,μ,σ); dcauchy(x,μ,σ); pcauchy(x,μ,σ); qcauchy(0.2,μ,σ)
df = 3; rchisq(1,df); dchisq(x,df); pchisq(x,df); qchisq(0.2,df);
df = 4.5; rt(1,df); dt(x,df); pt(x,df); qt(0.2,df);
df1 = 6 ; df2 = 7; rf(1,df1,df2); df(x,df1,df2); pf(x,df1,df2); qf(0.2,df1,df2);
shapeα = 2.5; shapeβ=4.5; rbeta(1,shapeα,shapeβ); dbeta(x,shapeα,shapeβ); pbeta(x,shapeα,shapeβ); qbeta(0.2,shapeα,shapeβ)
shapeα = 2.5; rateβ = 4.5; rgamma(1,shapeα,1/rateβ); dgamma(x,shapeα,1/rateβ); pgamma(x,shapeα,1/rateβ); qgamma(0.2,shapeα,1/rateβ)
xs = c(3,12,5)
n=20; ps = c(0.2,0.5,0.3); rmnom(1,n,ps); dmnom(xs,n,ps); # from extraDistr
initialNByCat = c(5,14,7); nTrials=20 ; rmvhyper(1,initialNByCat,nTrials); dmvhyper(xs,initialNByCat,nTrials) # from extraDistr
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Bhavik Mehta
! This file was ported from Lean 3 source module category_theory.limits.preserves.limits
! leanprover-community/mathlib commit e97cf15cd1aec9bd5c193b2ffac5a6dc9118912b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.CategoryTheory.Limits.Preserves.Basic
/-!
# Isomorphisms about functors which preserve (co)limits
If `G` preserves limits, and `C` and `D` have limits, then for any diagram `F : J ⥤ C` we have a
canonical isomorphism `preservesLimitsIso : G.obj (Limit F) ≅ Limit (F ⋙ G)`.
We also show that we can commute `IsLimit.lift` of a preserved limit with `functor.map_cone`:
`(PreservesLimit.preserves t).lift (G.mapCone c₂) = G.map (t.lift c₂)`.
The duals of these are also given. For functors which preserve (co)limits of specific shapes, see
`preserves/shapes.lean`.
-/
universe w' w v₁ v₂ u₁ u₂
noncomputable section
namespace CategoryTheory
open Category Limits
variable {C : Type u₁} [Category.{v₁} C]
variable {D : Type u₂} [Category.{v₂} D]
variable (G : C ⥤ D)
variable {J : Type w} [Category.{w'} J]
variable (F : J ⥤ C)
section
variable [PreservesLimit F G]
@[simp]
theorem preserves_lift_mapCone (c₁ c₂ : Cone F) (t : IsLimit c₁) :
(PreservesLimit.preserves t).lift (G.mapCone c₂) = G.map (t.lift c₂) :=
((PreservesLimit.preserves t).uniq (G.mapCone c₂) _ (by simp [← G.map_comp])).symm
#align category_theory.preserves_lift_map_cone CategoryTheory.preserves_lift_mapCone
variable [HasLimit F] [HasLimit (F ⋙ G)]
/-- If `G` preserves limits, we have an isomorphism from the image of the limit of a functor `F`
to the limit of the functor `F ⋙ G`.
-/
def preservesLimitIso : G.obj (limit F) ≅ limit (F ⋙ G) :=
(PreservesLimit.preserves (limit.isLimit _)).conePointUniqueUpToIso (limit.isLimit _)
#align category_theory.preserves_limit_iso CategoryTheory.preservesLimitIso
@[reassoc (attr := simp)]
theorem preservesLimitsIso_hom_π (j) :
(preservesLimitIso G F).hom ≫ limit.π _ j = G.map (limit.π F j) :=
IsLimit.conePointUniqueUpToIso_hom_comp _ _ j
#align category_theory.preserves_limits_iso_hom_π CategoryTheory.preservesLimitsIso_hom_π
@[reassoc (attr := simp)]
theorem preservesLimitsIso_inv_π (j) :
(preservesLimitIso G F).inv ≫ G.map (limit.π F j) = limit.π _ j :=
IsLimit.conePointUniqueUpToIso_inv_comp _ _ j
#align category_theory.preserves_limits_iso_inv_π CategoryTheory.preservesLimitsIso_inv_π
@[reassoc (attr := simp)]
theorem lift_comp_preservesLimitsIso_hom (t : Cone F) :
G.map (limit.lift _ t) ≫ (preservesLimitIso G F).hom =
limit.lift (F ⋙ G) (G.mapCone _) := by
ext
simp [← G.map_comp]
#align category_theory.lift_comp_preserves_limits_iso_hom CategoryTheory.lift_comp_preservesLimitsIso_hom
variable [PreservesLimitsOfShape J G] [HasLimitsOfShape J D] [HasLimitsOfShape J C]
/-- If `C, D` has all limits of shape `J`, and `G` preserves them, then `preservesLimitsIso` is
functorial wrt `F`. -/
@[simps!]
def preservesLimitNatIso : lim ⋙ G ≅ (whiskeringRight J C D).obj G ⋙ lim :=
NatIso.ofComponents (fun F => preservesLimitIso G F)
(by
intro _ _ f
apply Limits.limit.hom_ext; intro j
dsimp
simp only [preservesLimitsIso_hom_π, whiskerRight_app, limMap_π, Category.assoc,
preservesLimitsIso_hom_π_assoc, ← G.map_comp])
#align category_theory.preserves_limit_nat_iso CategoryTheory.preservesLimitNatIso
end
section
variable [PreservesColimit F G]
@[simp]
theorem preserves_desc_mapCocone (c₁ c₂ : Cocone F) (t : IsColimit c₁) :
(PreservesColimit.preserves t).desc (G.mapCocone _) = G.map (t.desc c₂) :=
((PreservesColimit.preserves t).uniq (G.mapCocone _) _ (by simp [← G.map_comp])).symm
#align category_theory.preserves_desc_map_cocone CategoryTheory.preserves_desc_mapCocone
variable [HasColimit F] [HasColimit (F ⋙ G)]
-- TODO: think about swapping the order here
/-- If `G` preserves colimits, we have an isomorphism from the image of the colimit of a functor `F`
to the colimit of the functor `F ⋙ G`.
-/
def preservesColimitIso : G.obj (colimit F) ≅ colimit (F ⋙ G) :=
(PreservesColimit.preserves (colimit.isColimit _)).coconePointUniqueUpToIso (colimit.isColimit _)
#align category_theory.preserves_colimit_iso CategoryTheory.preservesColimitIso
@[reassoc (attr := simp)]
theorem ι_preservesColimitsIso_inv (j : J) :
colimit.ι _ j ≫ (preservesColimitIso G F).inv = G.map (colimit.ι F j) :=
IsColimit.comp_coconePointUniqueUpToIso_inv _ (colimit.isColimit (F ⋙ G)) j
#align category_theory.ι_preserves_colimits_iso_inv CategoryTheory.ι_preservesColimitsIso_inv
@[reassoc (attr := simp)]
theorem ι_preservesColimitsIso_hom (j : J) :
G.map (colimit.ι F j) ≫ (preservesColimitIso G F).hom = colimit.ι (F ⋙ G) j :=
(PreservesColimit.preserves (colimit.isColimit _)).comp_coconePointUniqueUpToIso_hom _ j
#align category_theory.ι_preserves_colimits_iso_hom CategoryTheory.ι_preservesColimitsIso_hom
@[reassoc (attr := simp)]
theorem preservesColimitsIso_inv_comp_desc (t : Cocone F) :
(preservesColimitIso G F).inv ≫ G.map (colimit.desc _ t) =
colimit.desc _ (G.mapCocone t) := by
ext
simp [← G.map_comp]
#align category_theory.preserves_colimits_iso_inv_comp_desc CategoryTheory.preservesColimitsIso_inv_comp_desc
variable [PreservesColimitsOfShape J G] [HasColimitsOfShape J D] [HasColimitsOfShape J C]
/-- If `C, D` has all colimits of shape `J`, and `G` preserves them, then `preservesColimitIso`
is functorial wrt `F`. -/
@[simps!]
def preservesColimitNatIso : colim ⋙ G ≅ (whiskeringRight J C D).obj G ⋙ colim :=
NatIso.ofComponents (fun F => preservesColimitIso G F)
(by
intro _ _ f
rw [← Iso.inv_comp_eq, ← Category.assoc, ← Iso.eq_comp_inv]
apply Limits.colimit.hom_ext; intro j
dsimp
erw [ι_colimMap_assoc]
simp only [ι_preservesColimitsIso_inv, whiskerRight_app, Category.assoc,
ι_preservesColimitsIso_inv_assoc, ← G.map_comp]
erw [ι_colimMap])
#align category_theory.preserves_colimit_nat_iso CategoryTheory.preservesColimitNatIso
end
end CategoryTheory
|
[STATEMENT]
lemma node_relatorD: "node_relator x y \<Longrightarrow> x \<in> y"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. node_relator x y \<Longrightarrow> x \<in> y
[PROOF STEP]
unfolding node_relator_def
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. x \<in> y \<Longrightarrow> x \<in> y
[PROOF STEP]
. |
module OCaml.IO
%default total
%access public export
--------- The OCaml FFI
data OCamlRaw : Type -> Type where
MkOCamlRaw : (x:t) -> OCamlRaw t
%used MkOCamlRaw x
data Module : List (String, Type) -> Type
val : String -> Type -> (String, Type)
val s t = (s,t)
data Abstr1 : Type -> Type
mutual
data OCaml_IntTypes : Type -> Type where
OCaml_IntChar : OCaml_IntTypes Char
OCaml_IntNative : OCaml_IntTypes Int
OCaml_IntBits32 : OCaml_IntTypes Bits32
OCaml_IntBits64 : OCaml_IntTypes Bits64
data OCaml_FnTypes : Type -> Type where
OCaml_Fn : OCaml_Types s -> OCaml_FnTypes t -> OCaml_FnTypes (s -> t)
OCaml_FnIO : OCaml_Types s -> OCaml_Types t -> OCaml_FnTypes (s -> IO' l t)
OCaml_FnBase : OCaml_Types s -> OCaml_Types t -> OCaml_FnTypes (s -> t)
data OCamlTypeList : List (String, Type) -> Type where
Done : OCamlTypeList []
Next : OCaml_Types a -> OCamlTypeList tys -> OCamlTypeList ((l, a) :: tys)
data OCaml_Types : Type -> Type where
OCaml_Str : OCaml_Types String
OCaml_Float : OCaml_Types Double
OCaml_Bool : OCaml_Types Bool
OCaml_Abstr1: OCaml_Types (Abstr1 a)
OCaml_Ptr : OCaml_Types Ptr
OCaml_Unit : OCaml_Types ()
OCaml_Any : OCaml_Types (OCamlRaw a)
OCaml_FnT : OCaml_FnTypes a -> OCaml_Types a
OCaml_Pair : OCaml_Types a -> OCaml_Types b -> OCaml_Types (a, b)
OCaml_List : OCaml_Types a -> OCaml_Types (List a)
OCaml_Maybe : OCaml_Types a -> OCaml_Types (Maybe a)
OCaml_IntT : OCaml_IntTypes i -> OCaml_Types i
OCaml_Mod : OCamlTypeList tys -> OCaml_Types (Module tys)
%error_reverse
FFI_OCaml : FFI
FFI_OCaml = MkFFI OCaml_Types String String
%error_reverse
OCaml_IO : Type -> Type
OCaml_IO = IO' FFI_OCaml
mutual
-- Translates an OCaml-conventions function to an Idris-conventions
-- one by inserting an additional dummy 'world' argument.
--%inline
fromOCamlFn : OCaml_FnTypes a -> a -> a
fromOCamlFn (OCaml_Fn s t) f = \x => fromOCamlFn t (f (toOCaml s x))
fromOCamlFn (OCaml_FnIO s t) f = \x => pure (fromOCaml t (believe_me (f (toOCaml s x))))
fromOCamlFn (OCaml_FnBase s t) f = \x => fromOCaml t (f (toOCaml s x))
-- %inline
fromOCaml : OCaml_Types a -> a -> a
fromOCaml OCaml_Str s = s
fromOCaml OCaml_Float f = f
fromOCaml OCaml_Bool b = b
fromOCaml OCaml_Ptr p = p
fromOCaml OCaml_Abstr1 x = x
fromOCaml OCaml_Unit u = u
fromOCaml OCaml_Any a = a
fromOCaml (OCaml_FnT t) f = fromOCamlFn t f
fromOCaml (OCaml_Pair s t) p = (fromOCaml s (fst p), fromOCaml t (snd p))
fromOCaml (OCaml_List s) l = map (fromOCaml s) l
fromOCaml (OCaml_Maybe s) m = map (fromOCaml s) m
fromOCaml (OCaml_IntT _) i = i
fromOCaml (OCaml_Mod ts) m = m
--%inline
toOCamlFn : OCaml_FnTypes a -> a -> a
toOCamlFn (OCaml_Fn s t) f = \x => toOCamlFn t (f (fromOCaml s x))
toOCamlFn (OCaml_FnIO s t) f = \x => believe_me (toOCaml t (unsafePerformIO (f (fromOCaml s x))))
toOCamlFn (OCaml_FnBase s t) f = \x => toOCaml t (f (fromOCaml s x))
-- %inline
toOCaml : OCaml_Types a -> a -> a
toOCaml OCaml_Str s = s
toOCaml OCaml_Float f = f
toOCaml OCaml_Bool b = b
toOCaml OCaml_Ptr p = p
toOCaml OCaml_Abstr1 x = x
toOCaml OCaml_Unit u = u
toOCaml OCaml_Any a = a
toOCaml (OCaml_FnT t) f = toOCamlFn t f
toOCaml (OCaml_Pair s t) p = (toOCaml s (fst p), toOCaml t (snd p))
toOCaml (OCaml_List s) l = map (toOCaml s) l
toOCaml (OCaml_Maybe s) m = map (toOCaml s) m
toOCaml (OCaml_IntT _) i = i
toOCaml (OCaml_Mod ts) m = m
%inline
fromOCamlFTy : FTy FFI_OCaml xs ty -> ty -> ty
fromOCamlFTy (FRet t) f = do x <- f; pure (fromOCaml t x)
fromOCamlFTy (FFun s t) f = \x => fromOCamlFTy t (f (toOCaml s x))
%inline
ocamlCall : (fname : String) -> (ty : Type) ->
{auto fty : FTy FFI_OCaml [] ty} -> ty
ocamlCall fname ty {fty} = fromOCamlFTy fty (foreign FFI_OCaml fname ty)
printLn : Show a => a -> OCaml_IO ()
printLn = printLn'
putStrLn : String -> OCaml_IO ()
putStrLn = putStrLn'
print : Show a => a -> OCaml_IO ()
print = print'
putStr : String -> OCaml_IO ()
putStr = putStr'
getLine : OCaml_IO String
getLine = getLine'
-- Some specific functions from the Stdlib module
print_endline : String -> OCaml_IO ()
print_endline s =
ocamlCall "Stdlib.print_endline" (String -> OCaml_IO ()) s
-- Modules
data StrItem : String -> Type -> Type where
Let : (s : String) -> t -> StrItem s t
data Values : List (String, Type) -> Type where
Nil : Values []
(::) : StrItem s t -> Values tys -> Values ((s, t) :: tys)
assocIdx : String -> Int -> List (String, Type) -> Maybe (Int, Type)
assocIdx k i [] = Nothing
assocIdx k i ((k',t)::tys) = if k == k' then Just (i,t) else assocIdx k (i+1) tys
infixl 1 #
%inline
(#) : Module tys -> (nm : String) ->
{auto ok : assocIdx nm 0 tys = Just (i, a)} ->
{auto p : OCaml_Types a} ->
{auto q : OCamlTypeList tys} ->
a
(#) {tys} {a} {i} m nm = unsafePerformIO $
ocamlCall "Idrisobj.field" (Module tys -> Int -> OCaml_IO a) m i
%inline
struct : Values tys -> {auto p : OCamlTypeList tys} -> Module tys
struct {tys} vs {p} = unsafePerformIO (go vs p 0) where
%inline
go : Values tys2 -> OCamlTypeList tys2 -> Int -> OCaml_IO (Module tys)
go {tys2 = []} Nil Done n =
ocamlCall "Idrisobj.new_block" (Int -> Int -> OCaml_IO (Module tys)) 0 n
go {tys2 = (_, ty) :: tys2} (Let _ v :: vs) (Next t q) n = do
m <- go vs q (n + 1)
ocamlCall "Idrisobj.set_field" (Module tys -> Int -> ty -> OCaml_IO ()) m n v
pure m
|
module Package.IkanAst
import Package.IpkgAst
import Control.Monad.Freer
import Debug.Trace
import Control.Monad.Id
import Data.Fin
import Control.Monad.State
%access public export
data IkanData : Type -> Type where
AddDependencies : List String -> IkanData Unit
AddSourcepaths : List String -> IkanData Unit
IkanDataT : Type
IkanDataT = Freer IkanData Unit
implicit liftd : IkanData a -> Freer IkanData a
liftd = liftF
{-
ex1:IkanDataT
ex1 = do
AddDependencies []
AddSourcepaths []
-}
|
With changing times, it has almost become the need of the hour for every member of a household to have a personal laptop! While the proposition has a very appealing sound to it, this can often become a daunting idea after all. We say so, for the simple reason, that every once in a while, your laptop might need a good services in terms of the hardware or software, for it to run smoothly, more efficiently. As you must have experienced, quite often a good laptop service center is the solution for this problem. But how do you what makes a service center good or bad? Well, let’s take a look with respect to what a good service center should constitute of, and then you can be the judge of it yourself!
Since working schedules are becoming tighter with each passing day especially in large cosmopolitan cities, it is extremely important that your laptop is up and running at all times. This however is possible only when your Laptop Service Center in Noida is open on all days and avails it services rather instantaneously.
For the simple reason that money is rather difficult to come by and then stay, it is important for us all to save as much money as we can. This makes it imperative for our Laptop Service Centre to offer the best of services priced in an optimal manner so that it doesn’t burn a hole in our pockets.
As clichéd as it may sound, we all know that what makes for a good Dell Service Center is the fact that it offers quite a friendly environment, that doesn’t let you think twice before entering it. And to think about it, it’s rather important for things to be so, considering that it’ll help you a great deal in explain to the technicians the problems that you’re facing and coming up with an optimal solution for the same through an open dialogue with them.
This goes almost without saying that a trusted Service Center must offer all services with utmost efficiency, without any inadmissible lag in the time taken for the delivery of the repaired laptop, or discrepancy in the final billing for the services offered! |
-- BOTH:
import analysis.special_functions.log.basic
variables a b c d e : ℝ
open real
/- TEXT:
.. _using_theorems_and_lemmas:
Using Theorems and Lemmas
-------------------------
.. index:: inequalities
Rewriting is great for proving equations,
but what about other sorts of theorems?
For example, how can we prove an inequality,
like the fact that :math:`a + e^b \le a + e^c` holds whenever :math:`b \le c`?
We have already seen that theorems can be applied to arguments and hypotheses,
and that the ``apply`` and ``exact`` tactics can be used to solve goals.
In this section, we will make good use of these tools.
Consider the library theorems ``le_refl`` and ``le_trans``:
TEXT. -/
-- QUOTE:
#check (le_refl : ∀ a : ℝ, a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
-- QUOTE.
/- TEXT:
As we explain in more detail in :numref:`implication_and_the_universal_quantifier`,
the implicit parentheses in the statement of ``le_trans``
associate to the right, so it should be interpreted as ``a ≤ b → (b ≤ c → a ≤ c)``.
The library designers have set the arguments to ``le_trans`` implicit,
so that Lean will *not* let you provide them explicitly (unless you
really insist, as we will discuss later).
Rather, it expects to infer them from the context in which they are used.
For example, when hypotheses ``h : a ≤ b`` and ``h' : b ≤ c``
are in the context,
all the following work:
TEXT. -/
section
-- QUOTE:
variables (h : a ≤ b) (h' : b ≤ c)
#check (le_refl : ∀ a : real, a ≤ a)
#check (le_refl a : a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
#check (le_trans h : b ≤ c → a ≤ c)
#check (le_trans h h' : a ≤ c)
-- QUOTE.
end
/- TEXT:
.. index:: apply, tactics ; apply
The ``apply`` tactic takes a proof of a general statement or implication,
tries to match the conclusion with the current goal,
and leaves the hypotheses, if any, as new goals.
If the given proof matches the goal exactly
(modulo *definitional* equality),
you can use the ``exact`` tactic instead of ``apply``.
So, all of these work:
TEXT. -/
-- QUOTE:
example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z :=
begin
apply le_trans,
{ apply h₀ },
apply h₁
end
example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z :=
begin
apply le_trans h₀,
apply h₁
end
example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z :=
by exact le_trans h₀ h₁
example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z :=
le_trans h₀ h₁
example (x : ℝ) : x ≤ x :=
by apply le_refl
example (x : ℝ) : x ≤ x :=
by exact le_refl x
example (x : ℝ) : x ≤ x :=
le_refl x
-- QUOTE.
/- TEXT:
In the first example, applying ``le_trans``
creates two goals,
and we use the curly braces to enclose the proof
of the first one.
In the fourth example and in the last example,
we avoid going into tactic mode entirely:
``le_trans h₀ h₁`` and ``le_refl x`` are the proof terms we need.
Here are a few more library theorems:
TEXT. -/
-- QUOTE:
#check (le_refl : ∀ a, a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
#check (lt_of_le_of_lt : a ≤ b → b < c → a < c)
#check (lt_of_lt_of_le : a < b → b ≤ c → a < c)
#check (lt_trans : a < b → b < c → a < c)
-- QUOTE.
/- TEXT:
Use them together with ``apply`` and ``exact`` to prove the following:
TEXT. -/
/- Try this. -/
-- QUOTE:
example (h₀ : a ≤ b) (h₁ : b < c) (h₂ : c ≤ d)
(h₃ : d < e) :
a < e :=
sorry
-- QUOTE.
-- SOLUTIONS:
example (h₀ : a ≤ b) (h₁ : b < c) (h₂ : c ≤ d)
(h₃ : d < e) :
a < e :=
begin
apply lt_of_le_of_lt h₀,
apply lt_trans h₁,
exact lt_of_le_of_lt h₂ h₃
end
/- TEXT:
.. index:: linarith, tactics ; linarith
In fact, Lean has a tactic that does this sort of thing automatically:
TEXT. -/
-- QUOTE:
example (h₀ : a ≤ b) (h₁ : b < c) (h₂ : c ≤ d)
(h₃ : d < e) :
a < e :=
by linarith
-- QUOTE.
/- TEXT:
The ``linarith`` tactic is designed to handle *linear arithmetic*.
TEXT. -/
section
-- QUOTE:
example (h : 2 * a ≤ 3 * b) (h' : 1 ≤ a) (h'' : d = 2) :
d + a ≤ 5 * b :=
by linarith
-- QUOTE.
end
/- TEXT:
In addition to equations and inequalities in the context,
``linarith`` will use additional inequalities that you pass as arguments.
In the next example, ``exp_le_exp.mpr h'`` is a proof of
``exp b ≤ exp c``, as we will explain in a moment.
Notice that, in Lean, we write ``f x`` to denote the application
of a function ``f`` to the argument ``x``,
exactly the same way we write ``h x`` to denote the result of
applying a fact or theorem ``h`` to the argument ``x``.
Parentheses are only needed for compound arguments,
as in ``f (x + y)``. Without the parentheses, ``f x + y``
would be parsed as ``(f x) + y``.
TEXT. -/
-- QUOTE:
example (h : 1 ≤ a) (h' : b ≤ c) :
2 + a + exp b ≤ 3 * a + exp c :=
by linarith [exp_le_exp.mpr h']
-- QUOTE.
/- TEXT:
.. index:: exponential, logarithm
Here are some more theorems in the library that can be used to establish
inequalities on the real numbers.
TEXT. -/
-- QUOTE:
#check (exp_le_exp : exp a ≤ exp b ↔ a ≤ b)
#check (exp_lt_exp : exp a < exp b ↔ a < b)
#check (log_le_log : 0 < a → 0 < b → (log a ≤ log b ↔ a ≤ b))
#check (log_lt_log : 0 < a → a < b → log a < log b)
#check (add_le_add : a ≤ b → c ≤ d → a + c ≤ b + d)
#check (add_le_add_left : a ≤ b → ∀ c, c + a ≤ c + b)
#check (add_le_add_right : a ≤ b → ∀ c, a + c ≤ b + c)
#check (add_lt_add_of_le_of_lt : a ≤ b → c < d → a + c < b + d)
#check (add_lt_add_of_lt_of_le : a < b → c ≤ d → a + c < b + d)
#check (add_lt_add_left : a < b → ∀ c, c + a < c + b)
#check (add_lt_add_right : a < b → ∀ c, a + c < b + c)
#check (add_nonneg : 0 ≤ a → 0 ≤ b → 0 ≤ a + b)
#check (add_pos : 0 < a → 0 < b → 0 < a + b)
#check (add_pos_of_pos_of_nonneg : 0 < a → 0 ≤ b → 0 < a + b)
#check (exp_pos : ∀ a, 0 < exp a)
#check @add_le_add_left
-- QUOTE.
/- TEXT:
Some of the theorems, ``exp_le_exp``, ``exp_lt_exp``, and ``log_le_log``
use a *bi-implication*, which represents the
phrase "if and only if."
(You can type it in VS Code with ``\lr`` of ``\iff``).
We will discuss this connective in greater detail in the next chapter.
Such a theorem can be used with ``rw`` to rewrite a goal to
an equivalent one:
TEXT. -/
-- QUOTE:
example (h : a ≤ b) : exp a ≤ exp b :=
begin
rw exp_le_exp,
exact h
end
-- QUOTE.
/- TEXT:
In this section, however, we will use the fact that if ``h : A ↔ B``
is such an equivalence,
then ``h.mp`` establishes the forward direction, ``A → B``,
and ``h.mpr`` establishes the reverse direction, ``B → A``.
Here, ``mp`` stands for "modus ponens" and
``mpr`` stands for "modus ponens reverse."
You can also use ``h.1`` and ``h.2`` for ``h.mp`` and ``h.mpr``,
respectively, if you prefer.
Thus the following proof works:
TEXT. -/
-- QUOTE:
example (h₀ : a ≤ b) (h₁ : c < d) : a + exp c + e < b + exp d + e :=
begin
apply add_lt_add_of_lt_of_le,
{ apply add_lt_add_of_le_of_lt h₀,
apply exp_lt_exp.mpr h₁ },
apply le_refl
end
-- QUOTE.
/- TEXT:
The first line, ``apply add_lt_add_of_lt_of_le``,
creates two goals,
and once again we use the curly brackets to separate the
proof of the first from the proof of the second.
.. index:: norm_num, tactics ; norm_num
Try the following examples on your own.
The example in the middle shows you that the ``norm_num``
tactic can be used to solve concrete numeric goals.
TEXT. -/
-- QUOTE:
example (h₀ : d ≤ e) : c + exp (a + d) ≤ c + exp (a + e) :=
begin
sorry
end
example : (0 : ℝ) < 1 :=
by norm_num
example (h : a ≤ b) : log (1 + exp a) ≤ log (1 + exp b) :=
begin
have h₀ : 0 < 1 + exp a,
{ sorry },
have h₁ : 0 < 1 + exp b,
{ sorry },
apply (log_le_log h₀ h₁).mpr,
sorry
end
-- QUOTE.
-- SOLUTIONS:
example (h₀ : d ≤ e) : c + exp (a + d) ≤ c + exp (a + e) :=
begin
apply add_le_add_left,
rw exp_le_exp,
apply add_le_add_left h₀
end
-- an alterantive using `linarith`.
example (h₀ : d ≤ e) : c + exp (a + d) ≤ c + exp (a + e) :=
begin
have : exp (a + d) ≤ exp (a + e),
{ rw exp_le_exp, linarith },
linarith [this]
end
example (h : a ≤ b) : log (1 + exp a) ≤ log (1 + exp b) :=
begin
have h₀ : 0 < 1 + exp a,
{ linarith [exp_pos a]},
have h₁ : 0 < 1 + exp b,
{ linarith [exp_pos b] },
apply (log_le_log h₀ h₁).mpr,
apply add_le_add_left (exp_le_exp.mpr h),
end
-- SOLUTION.
/- TEXT:
From these examples, it should be clear that being able to
find the library theorems you need constitutes an important
part of formalization.
There are a number of strategies you can use:
* You can browse mathlib in its
`GitHub repository <https://github.com/leanprover-community/mathlib>`_.
* You can use the API documentation on the mathlib
`web pages <https://leanprover-community.github.io/mathlib_docs/>`_.
* You can rely on mathlib naming conventions and tab completion in
the editor to guess a theorem name.
In Lean, a theorem named ``A_of_B_of_C`` establishes
something of the form ``A`` from hypotheses of the form ``B`` and ``C``,
where ``A``, ``B``, and ``C``
approximate the way we might read the goals out loud.
So a theorem establishing something like ``x + y ≤ ...`` will probably
start with ``add_le``.
Typing ``add_le`` and hitting tab will give you some helpful choices.
* If you right-click on an existing theorem name in VS Code,
the editor will show a menu with the option to
jump to the file where the theorem is defined,
and you can find similar theorems nearby.
* You can use the ``library_search`` tactic,
which tries to find the relevant theorem in the library.
TEXT. -/
-- QUOTE:
example : 0 ≤ a^2 :=
begin
-- library_search,
exact pow_two_nonneg a
end
-- QUOTE.
/- TEXT:
To try out ``library_search`` in this example,
delete the ``exact`` command and uncomment the previous line.
If you replace ``library_search`` with ``suggest``,
you'll see a long list of suggestions.
In this case, the suggestions are not helpful, but in other cases
it does better.
Using these tricks,
see if you can find what you need to do the
next example:
TEXT. -/
-- QUOTE:
example (h : a ≤ b) : c - exp b ≤ c - exp a :=
sorry
-- QUOTE.
-- SOLUTIONS:
example (h : a ≤ b) : c - exp b ≤ c - exp a :=
begin
apply sub_le_sub_left,
exact exp_le_exp.mpr h
end
-- alternatively:
example (h : a ≤ b) : c - exp b ≤ c - exp a :=
by linarith [exp_le_exp.mpr h]
/- TEXT:
Using the same tricks, confirm that ``linarith`` instead of ``library_search``
can also finish the job.
Here is another example of an inequality:
TEXT. -/
-- QUOTE:
example : 2*a*b ≤ a^2 + b^2 :=
begin
have h : 0 ≤ a^2 - 2*a*b + b^2,
calc
a^2 - 2*a*b + b^2 = (a - b)^2 : by ring
... ≥ 0 : by apply pow_two_nonneg,
calc
2*a*b
= 2*a*b + 0 : by ring
... ≤ 2*a*b + (a^2 - 2*a*b + b^2) : add_le_add (le_refl _) h
... = a^2 + b^2 : by ring
end
-- QUOTE.
/- TEXT:
Mathlib tends to put spaces around binary operations like ``*`` and ``^``,
but in this example, the more compressed format increases readability.
There are a number of things worth noticing.
First, an expression ``s ≥ t`` is definitionally equivalent to ``t ≤ s``.
In principle, this means one should be able to use them interchangeably.
But some of Lean's automation does not recognize the equivalence,
so mathlib tends to favor ``≤`` over ``≥``.
Second, we have used the ``ring`` tactic extensively.
It is a real timesaver!
Finally, notice that in the second line of the
second ``calc`` proof,
instead of writing ``by exact add_le_add (le_refl _) h``,
we can simply write the proof term ``add_le_add (le_refl _) h``.
In fact, the only cleverness in the proof above is figuring
out the hypothesis ``h``.
Once we have it, the second calculation involves only
linear arithmetic, and ``linarith`` can handle it:
TEXT. -/
-- QUOTE:
example : 2*a*b ≤ a^2 + b^2 :=
begin
have h : 0 ≤ a^2 - 2*a*b + b^2,
calc
a^2 - 2*a*b + b^2 = (a - b)^2 : by ring
... ≥ 0 : by apply pow_two_nonneg,
linarith
end
-- QUOTE.
/- TEXT:
How nice! We challenge you to use these ideas to prove the
following theorem. You can use the theorem ``abs_le'.mpr``.
TEXT. -/
-- QUOTE:
example : abs (a*b) ≤ (a^2 + b^2) / 2 :=
sorry
#check abs_le'.mpr
-- QUOTE.
-- SOLUTIONS:
theorem fact1 : a*b*2 ≤ a^2 + b^2 :=
begin
have h : 0 ≤ a^2 - 2*a*b + b^2,
calc
a^2 - 2*a*b + b^2 = (a - b)^2 : by ring
... ≥ 0 : by apply pow_two_nonneg,
linarith
end
theorem fact2 : -(a*b)*2 ≤ a^2 + b^2 :=
begin
have h : 0 ≤ a^2 + 2*a*b + b^2,
calc
a^2 + 2*a*b + b^2 = (a + b)^2 : by ring
... ≥ 0 : by apply pow_two_nonneg,
linarith
end
example : abs (a*b) ≤ (a^2 + b^2) / 2 :=
begin
have h : (0 : ℝ) < 2,
{ norm_num },
apply abs_le'.mpr,
split,
{ rw le_div_iff h,
apply fact1 },
rw le_div_iff h,
apply fact2,
end
/- TEXT:
If you managed to solve this, congratulations!
You are well on your way to becoming a master formalizer.
TEXT. -/ |
using Plots
using PyCall
using DifferentialEquations
using Statistics
using Base.Iterators
function rossler(du,u,p,t)
x, y, z = u
a, b, c = p
du[1] = -y -z
du[2] = x + a*y
du[3] = b + z*(x-c)
end
p = [0.1,0.1,18]
u0 = [5., 5., 1.]
tspan = (0.0,1000.0)
prob = ODEProblem(rossler, u0, tspan, p)
tmp = solve(prob, abstol=1e-9)
prob = ODEProblem(rossler, tmp.u[end], (0.0,5000.0), p)
sol = solve(prob, abstol=1e-9)
pyplot()
pygui(false)
plot(sol,vars=(1,2,3), lw=0.1, legend=false)
savefig("rossler_c13.pdf")
function local_maxima(x::Vector{T}) where T<:Real
y = []
for i in 2:length(x)-1
if x[i-1] < x[i] && x[i] > x[i+1]
push!(y, x[i])
end
end
return y
end
z = map(v->v[3], sol.u)
zmax = local_maxima(z)
pygui(false)
scatter(
[zmax[i] for i in 1:(length(zmax)-1)],
[zmax[i] for i in 2:length(zmax)],
markersize=1,
markerstrokealpha=0.0,
markercolor = :black,
legend=false,
xlabel = "z[k]",
ylabel = "z[k+1]"
)
include("FractalDimensions.jl")
d, N, ε = box_counting_dimension(sol.u, 8)
loglog_regression(N,ε)
plot(-log.(ε), log.(N), xlabel="-ln ε", ylabel="ln N", marker=:d, legend=false)
C, r = correlation_dimension(sol.u, 15)
loglog_regression(C,r)
plot(log.(r), log.(C), xlabel="ln r", ylabel="ln C", marker=:d, legend=false)
savefig("cordim_rossler.pdf")
using DynamicalSystems
using ChaosTools
# almost feels like cheating
r = Systems.roessler(a=0.1,b=0.1,c=18)
lyapunov(r,1000.0)
λ = lyapunovs(r,1000.0)
kaplanyorke_dim(λ) # Lyapunov dimension
crange = LinRange(1,18,1000)
n = 5000
Ttr = 2000
# bifurcation diagram of the Poincaré map of the z coordinate on the plane y=0
diagram = produce_orbitdiagram(r, (2,0.0), 3, 3, crange; n=n, Ttr=Ttr)
L = length(crange)
x = []
y = []
for j in 1:L, z in diagram[j]
push!(x,crange[j])
push!(y,z)
end
plotlyjs()
scatter(
x,
y,
markersize=0.5,
markerstrokealpha=0.0,
markercolor = :black,
legend=false,
grid = false,
xlabel = "c",
ylabel = "z"
)
savefig("rossler_bifurcation.pdf")
|
#=
# 301: 3D Laplace equation
([source code](SOURCE_URL))
=#
module Example301_Laplace3D
using VoronoiFVM,ExtendableGrids
using GridVisualize
## Flux function which describes the flux
## between neigboring control volumes
function g!(f,u,edge)
f[1]=u[1,1]-u[1,2]
end
function s(f,node)
n=view(node.coord,:,node.index)
f[1]=n[1]*sin(5.0*n[2])*exp(n[3])
end
function main(;Plotter=nothing,n=5)
nspecies=1
ispec=1
X=collect(0:1/n:1)
grid=VoronoiFVM.Grid(X,X,X)
physics=VoronoiFVM.Physics(flux=g!,source=s)
sys=VoronoiFVM.System(grid,physics)
enable_species!(sys,ispec,[1])
boundary_dirichlet!(sys,ispec,5,0.0)
boundary_dirichlet!(sys,ispec,6,0.0)
inival=unknowns(sys,inival=0)
solution=unknowns(sys)
solve!(solution,inival,sys)
scalarplot(grid,solution[1,:],Plotter=Plotter,zplane=0.5, flevel=0.5)
return solution[43]
end
## Called by unit test
function test()
main() ≈ 0.012234524449380824
end
end
|
proposition locally_connected_quotient_image: assumes lcS: "locally connected S" and oo: "\<And>T. T \<subseteq> f ` S \<Longrightarrow> openin (top_of_set S) (S \<inter> f -` T) \<longleftrightarrow> openin (top_of_set (f ` S)) T" shows "locally connected (f ` S)" |
State Before: α : Type ?u.304571
m n : PosNum
h : ↑m = ↑n
⊢ pos m = pos n State After: no goals Tactic: rw [← PosNum.of_to_nat, ← PosNum.of_to_nat, h] |
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
⊢ Periodic (circleTransformDeriv R z w f) (2 * π)
[PROOFSTEP]
have := periodic_circleMap
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
this : ∀ (c : ℂ) (R : ℝ), Periodic (circleMap c R) (2 * π)
⊢ Periodic (circleTransformDeriv R z w f) (2 * π)
[PROOFSTEP]
simp_rw [Periodic] at *
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
this : ∀ (c : ℂ) (R x : ℝ), circleMap c R (x + 2 * π) = circleMap c R x
⊢ ∀ (x : ℝ), circleTransformDeriv R z w f (x + 2 * π) = circleTransformDeriv R z w f x
[PROOFSTEP]
intro x
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
this : ∀ (c : ℂ) (R x : ℝ), circleMap c R (x + 2 * π) = circleMap c R x
x : ℝ
⊢ circleTransformDeriv R z w f (x + 2 * π) = circleTransformDeriv R z w f x
[PROOFSTEP]
simp_rw [circleTransformDeriv, this]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
this : ∀ (c : ℂ) (R x : ℝ), circleMap c R (x + 2 * π) = circleMap c R x
x : ℝ
⊢ (2 * ↑π * I)⁻¹ • deriv (circleMap z R) (x + 2 * π) • ((circleMap z R x - w) ^ 2)⁻¹ • f (circleMap z R x) =
(2 * ↑π * I)⁻¹ • deriv (circleMap z R) x • ((circleMap z R x - w) ^ 2)⁻¹ • f (circleMap z R x)
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
this : ∀ (c : ℂ) (R x : ℝ), circleMap c R (x + 2 * π) = circleMap c R x
x : ℝ
⊢ deriv (circleMap z R) (x + 2 * π) = deriv (circleMap z R) x
[PROOFSTEP]
simp [this]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
⊢ circleTransformDeriv R z w f = fun θ => (circleMap z R θ - w)⁻¹ • circleTransform R z w f θ
[PROOFSTEP]
ext
[GOAL]
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
x✝ : ℝ
⊢ circleTransformDeriv R z w f x✝ = (circleMap z R x✝ - w)⁻¹ • circleTransform R z w f x✝
[PROOFSTEP]
simp_rw [circleTransformDeriv, circleTransform, ← mul_smul, ← mul_assoc]
[GOAL]
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
x✝ : ℝ
⊢ ((2 * ↑π * I)⁻¹ * deriv (circleMap z R) x✝ * ((circleMap z R x✝ - w) ^ 2)⁻¹) • f (circleMap z R x✝) =
((circleMap z R x✝ - w)⁻¹ * (2 * ↑π * I)⁻¹ * deriv (circleMap z R) x✝ * (circleMap z R x✝ - w)⁻¹) •
f (circleMap z R x✝)
[PROOFSTEP]
ring_nf
[GOAL]
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
x✝ : ℝ
⊢ ((↑π)⁻¹ * I⁻¹ * deriv (circleMap z R) x✝ * (-(circleMap z R x✝ * w * 2) + circleMap z R x✝ ^ 2 + w ^ 2)⁻¹ *
(↑(Int.ofNat 1) / ↑2)) •
f (circleMap z R x✝) =
((↑π)⁻¹ * I⁻¹ * deriv (circleMap z R) x✝ * (circleMap z R x✝ - w)⁻¹ ^ 2 * (↑(Int.ofNat 1) / ↑2)) •
f (circleMap z R x✝)
[PROOFSTEP]
rw [inv_pow]
[GOAL]
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
x✝ : ℝ
⊢ ((↑π)⁻¹ * I⁻¹ * deriv (circleMap z R) x✝ * (-(circleMap z R x✝ * w * 2) + circleMap z R x✝ ^ 2 + w ^ 2)⁻¹ *
(↑(Int.ofNat 1) / ↑2)) •
f (circleMap z R x✝) =
((↑π)⁻¹ * I⁻¹ * deriv (circleMap z R) x✝ * ((circleMap z R x✝ - w) ^ 2)⁻¹ * (↑(Int.ofNat 1) / ↑2)) •
f (circleMap z R x✝)
[PROOFSTEP]
congr
[GOAL]
case h.e_a.e_a.e_a.e_a
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
x✝ : ℝ
⊢ -(circleMap z R x✝ * w * 2) + circleMap z R x✝ ^ 2 + w ^ 2 = (circleMap z R x✝ - w) ^ 2
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
⊢ ∫ (θ : ℝ) in 0 ..2 * π, circleTransform R z w f θ = (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(z, R), (z - w)⁻¹ • f z
[PROOFSTEP]
simp_rw [circleTransform, circleIntegral, deriv_circleMap, circleMap]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R : ℝ
z w : ℂ
f : ℂ → E
⊢ ∫ (θ : ℝ) in 0 ..2 * π,
(2 * ↑π * I)⁻¹ • ((0 + ↑R * exp (↑θ * I)) * I) • (z + ↑R * exp (↑θ * I) - w)⁻¹ • f (z + ↑R * exp (↑θ * I)) =
(2 * ↑π * I)⁻¹ •
∫ (θ : ℝ) in 0 ..2 * π, ((0 + ↑R * exp (↑θ * I)) * I) • (z + ↑R * exp (↑θ * I) - w)⁻¹ • f (z + ↑R * exp (↑θ * I))
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous (circleTransform R z w f)
[PROOFSTEP]
apply_rules [Continuous.smul, continuous_const]
[GOAL]
case hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => deriv (circleMap z R) x
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => (circleMap z R x - w)⁻¹
case hg.hg.hg
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => f (circleMap z R x)
[PROOFSTEP]
simp_rw [deriv_circleMap]
[GOAL]
case hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => circleMap 0 R x * I
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => (circleMap z R x - w)⁻¹
case hg.hg.hg
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => f (circleMap z R x)
[PROOFSTEP]
apply_rules [Continuous.mul, continuous_circleMap 0 R, continuous_const]
[GOAL]
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => (circleMap z R x - w)⁻¹
[PROOFSTEP]
apply continuous_circleMap_inv hw
[GOAL]
case hg.hg.hg
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun x => f (circleMap z R x)
[PROOFSTEP]
apply ContinuousOn.comp_continuous hf (continuous_circleMap z R)
[GOAL]
case hg.hg.hg
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ ∀ (x : ℝ), circleMap z R x ∈ sphere z R
[PROOFSTEP]
exact fun _ => (circleMap_mem_sphere _ hR.le) _
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous (circleTransformDeriv R z w f)
[PROOFSTEP]
rw [circleTransformDeriv_eq]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w✝ : ℂ
R : ℝ
hR : 0 < R
f : ℂ → E
z w : ℂ
hf : ContinuousOn f (sphere z R)
hw : w ∈ ball z R
⊢ Continuous fun θ => (circleMap z R θ - w)⁻¹ • circleTransform R z w f θ
[PROOFSTEP]
exact (continuous_circleMap_inv hw).smul (continuous_circleTransform hR hf hw)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun w => (circleMap z R w.snd - w.fst)⁻¹ ^ 2) (closedBall z r ×ˢ univ)
[PROOFSTEP]
simp_rw [← one_div]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun w => (1 / (circleMap z R w.snd - w.fst)) ^ 2) (closedBall z r ×ˢ univ)
[PROOFSTEP]
apply_rules [ContinuousOn.pow, ContinuousOn.div, continuousOn_const]
[GOAL]
case hf.hg
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => circleMap z R x.snd - x.fst) (closedBall z r ×ˢ univ)
case hf.h₀
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ∀ (x : ℂ × ℝ), x ∈ closedBall z r ×ˢ univ → circleMap z R x.snd - x.fst ≠ 0
[PROOFSTEP]
refine'
((continuous_circleMap z R).continuousOn.comp continuousOn_snd fun _ => And.right).sub
(continuousOn_id.comp continuousOn_fst fun _ => And.left)
[GOAL]
case hf.h₀
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ∀ (x : ℂ × ℝ), x ∈ closedBall z r ×ˢ univ → circleMap z R x.snd - x.fst ≠ 0
[PROOFSTEP]
simp only [mem_prod, Ne.def, and_imp, Prod.forall]
[GOAL]
case hf.h₀
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ∀ (a : ℂ) (b : ℝ), a ∈ closedBall z r → b ∈ univ → ¬circleMap z R b - a = 0
[PROOFSTEP]
intro a b ha _
[GOAL]
case hf.h₀
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z a : ℂ
b : ℝ
ha : a ∈ closedBall z r
a✝ : b ∈ univ
⊢ ¬circleMap z R b - a = 0
[PROOFSTEP]
have ha2 : a ∈ ball z R := by simp at *; linarith
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z a : ℂ
b : ℝ
ha : a ∈ closedBall z r
a✝ : b ∈ univ
⊢ a ∈ ball z R
[PROOFSTEP]
simp at *
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z a : ℂ
b : ℝ
ha : dist a z ≤ r
a✝ : True
⊢ dist a z < R
[PROOFSTEP]
linarith
[GOAL]
case hf.h₀
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z a : ℂ
b : ℝ
ha : a ∈ closedBall z r
a✝ : b ∈ univ
ha2 : a ∈ ball z R
⊢ ¬circleMap z R b - a = 0
[PROOFSTEP]
exact sub_ne_zero.2 (circleMap_ne_mem_ball ha2 b)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
[PROOFSTEP]
have : ContinuousOn (circleTransformBoundingFunction R z) (closedBall z r ×ˢ (⊤ : Set ℝ)) :=
by
apply_rules [ContinuousOn.smul, continuousOn_const]
simp only [deriv_circleMap]
have c := (continuous_circleMap 0 R).continuousOn (s := ⊤)
apply_rules [ContinuousOn.mul, c.comp continuousOn_snd fun _ => And.right, continuousOn_const]
simp_rw [← inv_pow]
apply continuousOn_prod_circle_transform_function hr
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (circleTransformBoundingFunction R z) (closedBall z r ×ˢ ⊤)
[PROOFSTEP]
apply_rules [ContinuousOn.smul, continuousOn_const]
[GOAL]
case hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => deriv (circleMap z R) x.snd) (closedBall z r ×ˢ ⊤)
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => ((circleMap z R x.snd - x.fst) ^ 2)⁻¹) (closedBall z r ×ˢ ⊤)
[PROOFSTEP]
simp only [deriv_circleMap]
[GOAL]
case hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => circleMap 0 R x.snd * I) (closedBall z r ×ˢ ⊤)
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => ((circleMap z R x.snd - x.fst) ^ 2)⁻¹) (closedBall z r ×ˢ ⊤)
[PROOFSTEP]
have c := (continuous_circleMap 0 R).continuousOn (s := ⊤)
[GOAL]
case hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
c : ContinuousOn (circleMap 0 R) ⊤
⊢ ContinuousOn (fun x => circleMap 0 R x.snd * I) (closedBall z r ×ˢ ⊤)
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => ((circleMap z R x.snd - x.fst) ^ 2)⁻¹) (closedBall z r ×ˢ ⊤)
[PROOFSTEP]
apply_rules [ContinuousOn.mul, c.comp continuousOn_snd fun _ => And.right, continuousOn_const]
[GOAL]
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => ((circleMap z R x.snd - x.fst) ^ 2)⁻¹) (closedBall z r ×ˢ ⊤)
[PROOFSTEP]
simp_rw [← inv_pow]
[GOAL]
case hg.hg.hf
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
⊢ ContinuousOn (fun x => (circleMap z R x.snd - x.fst)⁻¹ ^ 2) (closedBall z r ×ˢ ⊤)
[PROOFSTEP]
apply continuousOn_prod_circle_transform_function hr
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
this : ContinuousOn (circleTransformBoundingFunction R z) (closedBall z r ×ˢ ⊤)
⊢ ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
[PROOFSTEP]
refine' continuous_abs.continuousOn (s := ⊤).comp this _
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
this : ContinuousOn (circleTransformBoundingFunction R z) (closedBall z r ×ˢ ⊤)
⊢ MapsTo (fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ) ⊤
[PROOFSTEP]
show MapsTo _ _ (⊤ : Set ℂ)
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
z : ℂ
this : ContinuousOn (circleTransformBoundingFunction R z) (closedBall z r ×ˢ ⊤)
⊢ MapsTo (fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ) ⊤
[PROOFSTEP]
simp [MapsTo]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
⊢ ∃ x,
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤ ↑abs (circleTransformBoundingFunction R z ↑x)
[PROOFSTEP]
have cts := continuousOn_abs_circleTransformBoundingFunction hr z
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
⊢ ∃ x,
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤ ↑abs (circleTransformBoundingFunction R z ↑x)
[PROOFSTEP]
have comp : IsCompact (closedBall z r ×ˢ [[0, 2 * π]]) := by
apply_rules [IsCompact.prod, ProperSpace.isCompact_closedBall z r, isCompact_uIcc]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
⊢ IsCompact (closedBall z r ×ˢ [[0, 2 * π]])
[PROOFSTEP]
apply_rules [IsCompact.prod, ProperSpace.isCompact_closedBall z r, isCompact_uIcc]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
comp : IsCompact (closedBall z r ×ˢ [[0, 2 * π]])
⊢ ∃ x,
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤ ↑abs (circleTransformBoundingFunction R z ↑x)
[PROOFSTEP]
have none : (closedBall z r ×ˢ [[0, 2 * π]]).Nonempty := (nonempty_closedBall.2 hr').prod nonempty_uIcc
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
comp : IsCompact (closedBall z r ×ˢ [[0, 2 * π]])
none : Set.Nonempty (closedBall z r ×ˢ [[0, 2 * π]])
⊢ ∃ x,
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤ ↑abs (circleTransformBoundingFunction R z ↑x)
[PROOFSTEP]
have :=
IsCompact.exists_isMaxOn comp none
(cts.mono (by intro z; simp only [mem_prod, mem_closedBall, mem_univ, and_true_iff, and_imp]; tauto))
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
comp : IsCompact (closedBall z r ×ˢ [[0, 2 * π]])
none : Set.Nonempty (closedBall z r ×ˢ [[0, 2 * π]])
⊢ closedBall z r ×ˢ [[0, 2 * π]] ⊆ closedBall z r ×ˢ univ
[PROOFSTEP]
intro z
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝¹ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z✝ : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z✝ t) (closedBall z✝ r ×ˢ univ)
comp : IsCompact (closedBall z✝ r ×ˢ [[0, 2 * π]])
none : Set.Nonempty (closedBall z✝ r ×ˢ [[0, 2 * π]])
z : ℂ × ℝ
⊢ z ∈ closedBall z✝ r ×ˢ [[0, 2 * π]] → z ∈ closedBall z✝ r ×ˢ univ
[PROOFSTEP]
simp only [mem_prod, mem_closedBall, mem_univ, and_true_iff, and_imp]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝¹ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z✝ : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z✝ t) (closedBall z✝ r ×ˢ univ)
comp : IsCompact (closedBall z✝ r ×ˢ [[0, 2 * π]])
none : Set.Nonempty (closedBall z✝ r ×ˢ [[0, 2 * π]])
z : ℂ × ℝ
⊢ dist z.fst z✝ ≤ r → z.snd ∈ [[0, 2 * π]] → dist z.fst z✝ ≤ r
[PROOFSTEP]
tauto
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
comp : IsCompact (closedBall z r ×ˢ [[0, 2 * π]])
none : Set.Nonempty (closedBall z r ×ˢ [[0, 2 * π]])
this :
∃ x,
x ∈ closedBall z r ×ˢ [[0, 2 * π]] ∧
IsMaxOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ [[0, 2 * π]]) x
⊢ ∃ x,
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤ ↑abs (circleTransformBoundingFunction R z ↑x)
[PROOFSTEP]
simp only [IsMaxOn, IsMaxFilter] at this
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R r : ℝ
hr : r < R
hr' : 0 ≤ r
z : ℂ
cts : ContinuousOn (↑abs ∘ fun t => circleTransformBoundingFunction R z t) (closedBall z r ×ˢ univ)
comp : IsCompact (closedBall z r ×ˢ [[0, 2 * π]])
none : Set.Nonempty (closedBall z r ×ˢ [[0, 2 * π]])
this :
∃ x,
x ∈ closedBall z r ×ˢ [[0, 2 * π]] ∧
∀ᶠ (x_1 : ℂ × ℝ) in 𝓟 (closedBall z r ×ˢ [[0, 2 * π]]),
(↑abs ∘ fun t => circleTransformBoundingFunction R z t) x_1 ≤
(↑abs ∘ fun t => circleTransformBoundingFunction R z t) x
⊢ ∃ x,
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤ ↑abs (circleTransformBoundingFunction R z ↑x)
[PROOFSTEP]
simpa [SetCoe.forall, Subtype.coe_mk, SetCoe.exists]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
obtain ⟨r, hr, hrx⟩ := exists_lt_mem_ball_of_mem_ball hx
[GOAL]
case intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
obtain ⟨ε', hε', H⟩ := exists_ball_subset_ball hrx
[GOAL]
case intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
obtain ⟨⟨⟨a, b⟩, ⟨ha, hb⟩⟩, hab⟩ := abs_circleTransformBoundingFunction_le hr (pos_of_mem_ball hrx).le z
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
let V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun _ => 1) θ
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
have funccomp : ContinuousOn (fun r => abs (f r)) (sphere z R) :=
by
have cabs : ContinuousOn abs ⊤ := by apply continuous_abs.continuousOn
apply cabs.comp hf; rw [MapsTo]; tauto
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
⊢ ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
[PROOFSTEP]
have cabs : ContinuousOn abs ⊤ := by apply continuous_abs.continuousOn
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
⊢ ContinuousOn ↑abs ⊤
[PROOFSTEP]
apply continuous_abs.continuousOn
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
cabs : ContinuousOn ↑abs ⊤
⊢ ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
[PROOFSTEP]
apply cabs.comp hf
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
cabs : ContinuousOn ↑abs ⊤
⊢ MapsTo f (sphere z R) ⊤
[PROOFSTEP]
rw [MapsTo]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
cabs : ContinuousOn ↑abs ⊤
⊢ ∀ ⦃x : ℂ⦄, x ∈ sphere z R → f x ∈ ⊤
[PROOFSTEP]
tauto
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
have sbou := IsCompact.exists_isMaxOn (isCompact_sphere z R) (NormedSpace.sphere_nonempty.2 hR.le) funccomp
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
sbou : ∃ x, x ∈ sphere z R ∧ IsMaxOn (fun r => ↑abs (f r)) (sphere z R) x
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
obtain ⟨X, HX, HX2⟩ := sbou
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
⊢ ∃ B ε, 0 < ε ∧ ball x ε ⊆ ball z R ∧ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε → ‖circleTransformDeriv R z y f t‖ ≤ B
[PROOFSTEP]
refine' ⟨abs (V b a) * abs (f X), ε', hε', Subset.trans H (ball_subset_ball hr.le), _⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
⊢ ∀ (t : ℝ) (y : ℂ), y ∈ ball x ε' → ‖circleTransformDeriv R z y f t‖ ≤ ↑abs (V b a) * ↑abs (f X)
[PROOFSTEP]
intro y v hv
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
⊢ ‖circleTransformDeriv R z v f y‖ ≤ ↑abs (V b a) * ↑abs (f X)
[PROOFSTEP]
obtain ⟨y1, hy1, hfun⟩ := Periodic.exists_mem_Ico₀ (circleTransformDeriv_periodic R z v f) Real.two_pi_pos y
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
⊢ ‖circleTransformDeriv R z v f y‖ ≤ ↑abs (V b a) * ↑abs (f X)
[PROOFSTEP]
have hy2 : y1 ∈ [[0, 2 * π]] := by
convert Ico_subset_Icc_self hy1 using 1
simp [uIcc_of_le Real.two_pi_pos.le]
[GOAL]
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
⊢ y1 ∈ [[0, 2 * π]]
[PROOFSTEP]
convert Ico_subset_Icc_self hy1 using 1
[GOAL]
case h.e'_5
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
⊢ [[0, 2 * π]] = Icc 0 (2 * π)
[PROOFSTEP]
simp [uIcc_of_le Real.two_pi_pos.le]
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
HX2 : IsMaxOn (fun r => ↑abs (f r)) (sphere z R) X
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
hy2 : y1 ∈ [[0, 2 * π]]
⊢ ‖circleTransformDeriv R z v f y‖ ≤ ↑abs (V b a) * ↑abs (f X)
[PROOFSTEP]
simp only [IsMaxOn, IsMaxFilter, eventually_principal, mem_sphere_iff_norm, norm_eq_abs] at HX2
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
hy2 : y1 ∈ [[0, 2 * π]]
HX2 : ∀ (x : ℂ), ↑abs (x - z) = R → ↑abs (f x) ≤ ↑abs (f X)
⊢ ‖circleTransformDeriv R z v f y‖ ≤ ↑abs (V b a) * ↑abs (f X)
[PROOFSTEP]
have :=
mul_le_mul (hab ⟨⟨v, y1⟩, ⟨ball_subset_closedBall (H hv), hy2⟩⟩)
(HX2 (circleMap z R y1) (circleMap_mem_sphere z hR.le y1)) (Complex.abs.nonneg _) (Complex.abs.nonneg _)
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
hy2 : y1 ∈ [[0, 2 * π]]
HX2 : ∀ (x : ℂ), ↑abs (x - z) = R → ↑abs (f x) ≤ ↑abs (f X)
this :
↑abs
(circleTransformBoundingFunction R z
↑{ val := (v, y1), property := (_ : (v, y1).fst ∈ closedBall z r ∧ (v, y1).snd ∈ [[0, 2 * π]]) }) *
↑abs (f (circleMap z R y1)) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) }) *
↑abs (f X)
⊢ ‖circleTransformDeriv R z v f y‖ ≤ ↑abs (V b a) * ↑abs (f X)
[PROOFSTEP]
simp_rw [hfun]
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hx : x ∈ ball z R
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
hrx : x ∈ ball z r
ε' : ℝ
hε' : ε' > 0
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
hab :
∀ (y : ↑(closedBall z r ×ˢ [[0, 2 * π]])),
↑abs (circleTransformBoundingFunction R z ↑y) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) })
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
HX : X ∈ sphere z R
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hfun : circleTransformDeriv R z v f y = circleTransformDeriv R z v f y1
hy2 : y1 ∈ [[0, 2 * π]]
HX2 : ∀ (x : ℂ), ↑abs (x - z) = R → ↑abs (f x) ≤ ↑abs (f X)
this :
↑abs
(circleTransformBoundingFunction R z
↑{ val := (v, y1), property := (_ : (v, y1).fst ∈ closedBall z r ∧ (v, y1).snd ∈ [[0, 2 * π]]) }) *
↑abs (f (circleMap z R y1)) ≤
↑abs
(circleTransformBoundingFunction R z
↑{ val := (a, b), property := (_ : (a, b).fst ∈ closedBall z r ∧ (a, b).snd ∈ [[0, 2 * π]]) }) *
↑abs (f X)
⊢ ‖circleTransformDeriv R z v f y1‖ ≤ ↑abs (circleTransformDeriv R z a (fun x => 1) b) * ↑abs (f X)
[PROOFSTEP]
simp only [circleTransformBoundingFunction, circleTransformDeriv, norm_eq_abs, Algebra.id.smul_eq_mul, deriv_circleMap,
map_mul, abs_circleMap_zero, abs_I, mul_one, ← mul_assoc, mul_inv_rev, inv_I, abs_neg, abs_inv, abs_ofReal, one_mul,
abs_two, abs_pow, mem_ball, gt_iff_lt, Subtype.coe_mk, SetCoe.forall, mem_prod, mem_closedBall, and_imp, Prod.forall,
NormedSpace.sphere_nonempty, mem_sphere_iff_norm] at *
[GOAL]
case intro.intro.intro.intro.intro.mk.mk.intro.intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
R✝ : ℝ
z✝ w : ℂ
R : ℝ
hR : 0 < R
z x : ℂ
f : ℂ → ℂ
hf : ContinuousOn f (sphere z R)
r : ℝ
hr : r < R
ε' : ℝ
H : ball x ε' ⊆ ball z r
a : ℂ
b : ℝ
ha : (a, b).fst ∈ closedBall z r
hb : (a, b).snd ∈ [[0, 2 * π]]
V : ℝ → ℂ → ℂ := fun θ w => circleTransformDeriv R z w (fun x => 1) θ
funccomp : ContinuousOn (fun r => ↑abs (f r)) (sphere z R)
X : ℂ
y : ℝ
v : ℂ
hv : v ∈ ball x ε'
y1 : ℝ
hy1 : y1 ∈ Ico 0 (2 * π)
hy2 : y1 ∈ [[0, 2 * π]]
HX2 : ∀ (x : ℂ), ↑abs (x - z) = R → ↑abs (f x) ≤ ↑abs (f X)
hx : dist x z < R
hrx : dist x z < r
hε' : 0 < ε'
hab :
∀ (a_1 : ℂ) (b_1 : ℝ),
dist a_1 z ≤ r →
b_1 ∈ [[0, 2 * π]] →
↑abs (-I) * ↑abs (↑π)⁻¹ * ↑abs 2⁻¹ * |R| * ↑abs ((circleMap z R b_1 - a_1) ^ 2)⁻¹ ≤
↑abs (-I) * ↑abs (↑π)⁻¹ * ↑abs 2⁻¹ * |R| * ↑abs ((circleMap z R b - a) ^ 2)⁻¹
HX : ↑abs (X - z) = R
hfun :
-I * (↑π)⁻¹ * 2⁻¹ * circleMap 0 R y * I * ((circleMap z R y - v) ^ 2)⁻¹ * f (circleMap z R y) =
-I * (↑π)⁻¹ * 2⁻¹ * circleMap 0 R y1 * I * ((circleMap z R y1 - v) ^ 2)⁻¹ * f (circleMap z R y1)
this :
↑abs (-I) * ↑abs (↑π)⁻¹ * ↑abs 2⁻¹ * |R| * ↑abs ((circleMap z R y1 - v) ^ 2)⁻¹ * ↑abs (f (circleMap z R y1)) ≤
↑abs (-I) * ↑abs (↑π)⁻¹ * ↑abs 2⁻¹ * |R| * ↑abs ((circleMap z R b - a) ^ 2)⁻¹ * ↑abs (f X)
⊢ ↑abs (-I) * ↑abs (↑π)⁻¹ * ↑abs 2⁻¹ * |R| * ↑abs ((circleMap z R y1 - v) ^ 2)⁻¹ * ↑abs (f (circleMap z R y1)) ≤
↑abs (-I) * ↑abs (↑π)⁻¹ * ↑abs 2⁻¹ * |R| * ↑abs ((circleMap z R b - a) ^ 2)⁻¹ * ↑abs (f X)
[PROOFSTEP]
exact this
|
# For today's code challenge you will be reviewing yesterdays lecture material. Have fun!
### if you get done early check out [these videos](https://www.3blue1brown.com/neural-networks).
# The Perceptron
The first and simplest kind of neural network that we could talk about is the perceptron. A perceptron is just a single node or neuron of a neural network with nothing else. It can take any number of inputs and spit out an output. What a neuron does is it takes each of the input values, multplies each of them by a weight, sums all of these products up, and then passes the sum through what is called an "activation function" the result of which is the final value.
I really like figure 2.1 found in this [pdf](http://www.uta.fi/sis/tie/neuro/index/Neurocomputing2.pdf) even though it doesn't have bias term represented there.
If we were to write what is happening in some verbose mathematical notation, it might look something like this:
\begin{align}
y = sigmoid(\sum(weight_{1}input_{1} + weight_{2}input_{2} + weight_{3}input_{3}) + bias)
\end{align}
Understanding what happens with a single neuron is important because this is the same pattern that will take place for all of our networks.
When imagining a neural network I like to think about the arrows as representing the weights, like a wire that has a certain amount of resistance and only lets a certain amount of current through. And I like to think about the node itselef as containing the prescribed activation function that neuron will use to decide how much signal to pass onto the next layer.
# Activation Functions (transfer functions)
In Neural Networks, each node has an activation function. Each node in a given layer typically has the same activation function. These activation functions are the biggest piece of neural networks that have been inspired by actual biology. The activation function decides whether a cell "fires" or not. Sometimes it is said that the cell is "activated" or not. In Artificial Neural Networks activation functions decide how much signal to pass onto the next layer. This is why they are sometimes referred to as transfer functions because they determine how much signal is transferred to the next layer.
## Common Activation Functions:
# Implementing a Perceptron from scratch in Python
### Establish training data
```python
import numpy as np
np.random.seed(812)
inputs = np.array([
[0, 0, 1],
[1, 1, 1],
[1, 0, 1],
[0, 1, 1]
])
correct_outputs = [[0], [1], [1], [0]]
```
### Sigmoid activation function and its derivative for updating weights
```python
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
sx = sigmoid(x)
return sx * (1 - sx)
```
## Updating weights with derivative of sigmoid function:
### Initialize random weights for our three inputs
```python
weights = np.random.rand(3,1)
weights
```
array([[0.32659171],
[0.59345002],
[0.25569456]])
### Calculate weighted sum of inputs and weights
```python
weighted_sum = np.dot(inputs,weights)
```
### Output the activated value for the end of 1 training epoch
```python
activated_value = sigmoid(weighted_sum)
activated_value
```
array([[0.56357763],
[0.76418031],
[0.64159331],
[0.70038767]])
### take difference of output and true values to calculate error
```python
error = correct_outputs - activated_value
error
```
array([[-0.56357763],
[ 0.23581969],
[ 0.35840669],
[-0.70038767]])
```python
derivative = sigmoid_derivative(error)
derivative
```
array([[0.23115422],
[0.24655628],
[0.24214035],
[0.22168396]])
### Put it all together
```python
weights += np.dot(inputs,derivative)
```
```python
```
|
[STATEMENT]
lemma \<Delta>_positive: "\<Delta> > 0"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (0::'a) < \<Delta>
[PROOF STEP]
unfolding \<Delta>_def
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (0::'a) < min (excess f u) (cf (u, v))
[PROOF STEP]
using excess_u_pos uv_cf_edge[unfolded cf.E_def] resE_positive
[PROOF STATE]
proof (prove)
using this:
(0::'a) < excess f u
(u, v) \<in> {(u, v). cf (u, v) \<noteq> (0::'a)}
?e \<in> cf.E \<Longrightarrow> (0::'a) < cf ?e
goal (1 subgoal):
1. (0::'a) < min (excess f u) (cf (u, v))
[PROOF STEP]
by auto |
module Main
import Control.App
import Control.App.Console
import Decidable.Equality
import Test.Unit.Spec
import Data.Strings
import Data.String.Missing
partial main : IO ()
main = run $ consoleRunSpecSimple $ do
describe "Data.String.Missing" $ do
describe "strIndexV" $ do
tests "basic" $ do
let str0 = "0123456789"
let len0 = length str0
assertEqual '0' $ strIndexV{pr0=believe_me (Refl{x=True})} 0 str0
assertEqual '1' $ strIndexV{pr0=believe_me (Refl{x=True})} 1 str0
assertEqual '9' $ strIndexV{pr0=believe_me (Refl{x=True})} 9 str0
describe "strSplit" $ do
tests "basic" $ do
let str0 = "0123456789"
assertEqual ("012", "3456789") $ strSplit 3 str0
assertEqual ("", "0123456789") $ strSplit 0 str0
assertEqual ("0123456789", "") $ strSplit 10 str0
assertEqual ("0123456789", "") $ strSplit 20 str0
describe "strFindV" $ do
tests "basic" $ do
let str0 = "01234567890123456789"
assertEqual (Just 0) $ map fst $ strFindrV (== '0') str0
assertEqual (Just 2) $ map fst $ strFindrV (== '2') str0
assertEqual (Just 9) $ map fst $ strFindrV (== '9') str0
assertEqual Nothing $ map fst $ strFindrV (== 'A') str0
describe "strFindrV" $ do
tests "basic" $ do
let str0 = "01234567890123456789"
assertEqual (Just 10) $ map fst $ strFindrV (== '0') str0
assertEqual (Just 12) $ map fst $ strFindrV (== '2') str0
assertEqual (Just 19) $ map fst $ strFindrV (== '9') str0
assertEqual Nothing $ map fst $ strFindrV (== 'A') str0
describe "isPrefixOf" $ do
tests "basic" $ do
assertTrue $ isPrefixOf "123" "123456"
assertTrue $ isPrefixOf "abcde" "abcde"
assertFalse $ isPrefixOf "123" "12456"
assertFalse $ isPrefixOf "abcde" ""
|
(*
Author: Norbert Schirmer
Maintainer: Norbert Schirmer, norbert.schirmer at web de
License: LGPL
*)
(* Title: Semantic.thy
Author: Norbert Schirmer, TU Muenchen
Copyright (C) 2004-2008 Norbert Schirmer
Some rights reserved, TU Muenchen
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
*)
section \<open>Big-Step Semantics for Simpl\<close>
theory Semantic imports Language begin
notation
restrict_map ("_|\<^bsub>_\<^esub>" [90, 91] 90)
datatype ('s,'f) xstate = Normal 's | Abrupt 's | Fault 'f | Stuck
definition isAbr::"('s,'f) xstate \<Rightarrow> bool"
where "isAbr S = (\<exists>s. S=Abrupt s)"
lemma isAbr_simps [simp]:
"isAbr (Normal s) = False"
"isAbr (Abrupt s) = True"
"isAbr (Fault f) = False"
"isAbr Stuck = False"
by (auto simp add: isAbr_def)
lemma isAbrE [consumes 1, elim?]: "\<lbrakk>isAbr S; \<And>s. S=Abrupt s \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (auto simp add: isAbr_def)
lemma not_isAbrD:
"\<not> isAbr s \<Longrightarrow> (\<exists>s'. s=Normal s') \<or> s = Stuck \<or> (\<exists>f. s=Fault f)"
by (cases s) auto
definition isFault:: "('s,'f) xstate \<Rightarrow> bool"
where "isFault S = (\<exists>f. S=Fault f)"
lemma isFault_simps [simp]:
"isFault (Normal s) = False"
"isFault (Abrupt s) = False"
"isFault (Fault f) = True"
"isFault Stuck = False"
by (auto simp add: isFault_def)
lemma isFaultE [consumes 1, elim?]: "\<lbrakk>isFault s; \<And>f. s=Fault f \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (auto simp add: isFault_def)
lemma not_isFault_iff: "(\<not> isFault t) = (\<forall>f. t \<noteq> Fault f)"
by (auto elim: isFaultE)
(* ************************************************************************* *)
subsection \<open>Big-Step Execution: \<open>\<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t\<close>\<close>
(* ************************************************************************* *)
text \<open>The procedure environment\<close>
type_synonym ('s,'p,'f) body = "'p \<Rightarrow> ('s,'p,'f) com option"
inductive
"exec"::"[('s,'p,'f) body,('s,'p,'f) com,('s,'f) xstate,('s,'f) xstate]
\<Rightarrow> bool" ("_\<turnstile> \<langle>_,_\<rangle> \<Rightarrow> _" [60,20,98,98] 89)
for \<Gamma>::"('s,'p,'f) body"
where
Skip: "\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> \<Rightarrow> Normal s"
| Guard: "\<lbrakk>s\<in>g; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow> t"
| GuardFault: "s\<notin>g \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow> Fault f"
| FaultProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> \<Rightarrow> Fault f"
| Basic: "\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> \<Rightarrow> Normal (f s)"
| Spec: "(s,t) \<in> r
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> \<Rightarrow> Normal t"
| SpecStuck: "\<forall>t. (s,t) \<notin> r
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> \<Rightarrow> Stuck"
| Seq: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,s'\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Seq c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t"
| CondTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t"
| CondFalse: "\<lbrakk>s \<notin> b; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t"
| WhileTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow> t"
| WhileFalse: "\<lbrakk>s \<notin> b\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow> Normal s"
| Call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow> t"
| CallUndefined: "\<lbrakk>\<Gamma> p=None\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow> Stuck"
| StuckProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> \<Rightarrow> Stuck"
| DynCom: "\<lbrakk>\<Gamma>\<turnstile>\<langle>(c s),Normal s\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> \<Rightarrow> t"
| Throw: "\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> \<Rightarrow> Abrupt s"
| AbruptProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> \<Rightarrow> Abrupt s"
| CatchMatch: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> Abrupt s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s'\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t"
| CatchMiss: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> t; \<not>isAbr t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t"
inductive_cases exec_elim_cases [cases set]:
"\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Skip,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Guard f g c,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Basic f,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Spec r,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Cond b c1 c2,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>While b c,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Call p,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>DynCom c,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Throw,s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> \<Rightarrow> t"
inductive_cases exec_Normal_elim_cases [cases set]:
"\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> \<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> \<Rightarrow> t"
lemma exec_block:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> \<Rightarrow> u\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> u"
apply (unfold block_def)
by (fastforce intro: exec.intros)
lemma exec_blockAbrupt:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> Abrupt (return s t)"
apply (unfold block_def)
by (fastforce intro: exec.intros)
lemma exec_blockFault:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> Fault f"
apply (unfold block_def)
by (fastforce intro: exec.intros)
lemma exec_blockStuck:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> Stuck"
apply (unfold block_def)
by (fastforce intro: exec.intros)
lemma exec_call:
"\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> \<Rightarrow> u\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> u"
apply (simp add: call_def)
apply (rule exec_block)
apply (erule (1) Call)
apply assumption
done
lemma exec_callAbrupt:
"\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Abrupt (return s t)"
apply (simp add: call_def)
apply (rule exec_blockAbrupt)
apply (erule (1) Call)
done
lemma exec_callFault:
"\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Fault f"
apply (simp add: call_def)
apply (rule exec_blockFault)
apply (erule (1) Call)
done
lemma exec_callStuck:
"\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Stuck"
apply (simp add: call_def)
apply (rule exec_blockStuck)
apply (erule (1) Call)
done
lemma exec_callUndefined:
"\<lbrakk>\<Gamma> p=None\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Stuck"
apply (simp add: call_def)
apply (rule exec_blockStuck)
apply (erule CallUndefined)
done
lemma Fault_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and s: "s=Fault f"
shows "t=Fault f"
using exec s by (induct) auto
lemma Stuck_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and s: "s=Stuck"
shows "t=Stuck"
using exec s by (induct) auto
lemma Abrupt_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and s: "s=Abrupt s'"
shows "t=Abrupt s'"
using exec s by (induct) auto
lemma exec_Call_body_aux:
"\<Gamma> p=Some bdy \<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p,s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>bdy,s\<rangle> \<Rightarrow> t"
apply (rule)
apply (fastforce elim: exec_elim_cases )
apply (cases s)
apply (cases t)
apply (auto intro: exec.intros dest: Fault_end Stuck_end Abrupt_end)
done
lemma exec_Call_body':
"p \<in> dom \<Gamma> \<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p,s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>the (\<Gamma> p),s\<rangle> \<Rightarrow> t"
apply clarsimp
by (rule exec_Call_body_aux)
lemma exec_block_Normal_elim [consumes 1]:
assumes exec_block: "\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> t"
assumes Normal:
"\<And>t'.
\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t';
\<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow> P"
assumes Abrupt:
"\<And>t'.
\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t';
t = Abrupt (return s t')\<rbrakk>
\<Longrightarrow> P"
assumes Fault:
"\<And>f.
\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f;
t = Fault f\<rbrakk>
\<Longrightarrow> P"
assumes Stuck:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck;
t = Stuck\<rbrakk>
\<Longrightarrow> P"
assumes
"\<lbrakk>\<Gamma> p = None; t = Stuck\<rbrakk> \<Longrightarrow> P"
shows "P"
using exec_block
apply (unfold block_def)
apply (elim exec_Normal_elim_cases)
apply simp_all
apply (case_tac s')
apply simp_all
apply (elim exec_Normal_elim_cases)
apply simp
apply (drule Abrupt_end) apply simp
apply (erule exec_Normal_elim_cases)
apply simp
apply (rule Abrupt,assumption+)
apply (drule Fault_end) apply simp
apply (erule exec_Normal_elim_cases)
apply simp
apply (drule Stuck_end) apply simp
apply (erule exec_Normal_elim_cases)
apply simp
apply (case_tac s')
apply simp_all
apply (elim exec_Normal_elim_cases)
apply simp
apply (rule Normal, assumption+)
apply (drule Fault_end) apply simp
apply (rule Fault,assumption+)
apply (drule Stuck_end) apply simp
apply (rule Stuck,assumption+)
done
lemma exec_call_Normal_elim [consumes 1]:
assumes exec_call: "\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> t"
assumes Normal:
"\<And>bdy t'.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t';
\<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow> P"
assumes Abrupt:
"\<And>bdy t'.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t';
t = Abrupt (return s t')\<rbrakk>
\<Longrightarrow> P"
assumes Fault:
"\<And>bdy f.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f;
t = Fault f\<rbrakk>
\<Longrightarrow> P"
assumes Stuck:
"\<And>bdy.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck;
t = Stuck\<rbrakk>
\<Longrightarrow> P"
assumes Undef:
"\<lbrakk>\<Gamma> p = None; t = Stuck\<rbrakk> \<Longrightarrow> P"
shows "P"
using exec_call
apply (unfold call_def)
apply (cases "\<Gamma> p")
apply (erule exec_block_Normal_elim)
apply (elim exec_Normal_elim_cases)
apply simp
apply simp
apply (elim exec_Normal_elim_cases)
apply simp
apply simp
apply (elim exec_Normal_elim_cases)
apply simp
apply simp
apply (elim exec_Normal_elim_cases)
apply simp
apply (rule Undef,assumption,assumption)
apply (rule Undef,assumption+)
apply (erule exec_block_Normal_elim)
apply (elim exec_Normal_elim_cases)
apply simp
apply (rule Normal,assumption+)
apply simp
apply (elim exec_Normal_elim_cases)
apply simp
apply (rule Abrupt,assumption+)
apply simp
apply (elim exec_Normal_elim_cases)
apply simp
apply (rule Fault, assumption+)
apply simp
apply (elim exec_Normal_elim_cases)
apply simp
apply (rule Stuck,assumption,assumption,assumption)
apply simp
apply (rule Undef,assumption+)
done
lemma exec_dynCall:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>call init (p s) return c,Normal s\<rangle> \<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>dynCall init p return c,Normal s\<rangle> \<Rightarrow> t"
apply (simp add: dynCall_def)
by (rule DynCom)
lemma exec_dynCall_Normal_elim:
assumes exec: "\<Gamma>\<turnstile>\<langle>dynCall init p return c,Normal s\<rangle> \<Rightarrow> t"
assumes call: "\<Gamma>\<turnstile>\<langle>call init (p s) return c,Normal s\<rangle> \<Rightarrow> t \<Longrightarrow> P"
shows "P"
using exec
apply (simp add: dynCall_def)
apply (erule exec_Normal_elim_cases)
apply (rule call,assumption)
done
lemma exec_Seq': "\<lbrakk>\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> \<Rightarrow> s''\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> s''"
apply (cases s)
apply (fastforce intro: exec.intros)
apply (fastforce dest: Abrupt_end)
apply (fastforce dest: Fault_end)
apply (fastforce dest: Stuck_end)
done
lemma exec_assoc: "\<Gamma>\<turnstile>\<langle>Seq c1 (Seq c2 c3),s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>Seq (Seq c1 c2) c3,s\<rangle> \<Rightarrow> t"
by (blast elim!: exec_elim_cases intro: exec_Seq' )
(* ************************************************************************* *)
subsection \<open>Big-Step Execution with Recursion Limit: \<open>\<Gamma>\<turnstile>\<langle>c, s\<rangle> =n\<Rightarrow> t\<close>\<close>
(* ************************************************************************* *)
inductive "execn"::"[('s,'p,'f) body,('s,'p,'f) com,('s,'f) xstate,nat,('s,'f) xstate]
\<Rightarrow> bool" ("_\<turnstile> \<langle>_,_\<rangle> =_\<Rightarrow> _" [60,20,98,65,98] 89)
for \<Gamma>::"('s,'p,'f) body"
where
Skip: "\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> =n\<Rightarrow> Normal s"
| Guard: "\<lbrakk>s\<in>g; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> =n\<Rightarrow> t"
| GuardFault: "s\<notin>g \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> =n\<Rightarrow> Fault f"
| FaultProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> =n\<Rightarrow> Fault f"
| Basic: "\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> =n\<Rightarrow> Normal (f s)"
| Spec: "(s,t) \<in> r
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> Normal t"
| SpecStuck: "\<forall>t. (s,t) \<notin> r
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> Stuck"
| Seq: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,s'\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Seq c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t"
| CondTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t"
| CondFalse: "\<lbrakk>s \<notin> b; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t"
| WhileTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> s';
\<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> t"
| WhileFalse: "\<lbrakk>s \<notin> b\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> Normal s"
| Call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> =Suc n\<Rightarrow> t"
| CallUndefined: "\<lbrakk>\<Gamma> p=None\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> =Suc n\<Rightarrow> Stuck"
| StuckProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> =n\<Rightarrow> Stuck"
| DynCom: "\<lbrakk>\<Gamma>\<turnstile>\<langle>(c s),Normal s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> =n\<Rightarrow> t"
| Throw: "\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> =n\<Rightarrow> Abrupt s"
| AbruptProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> =n\<Rightarrow> Abrupt s"
| CatchMatch: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s'\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t"
| CatchMiss: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> t; \<not>isAbr t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t"
inductive_cases execn_elim_cases [cases set]:
"\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Skip,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Guard f g c,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Basic f,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Spec r,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Cond b c1 c2,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>While b c,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Call p ,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>DynCom c,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Throw,s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> =n\<Rightarrow> t"
inductive_cases execn_Normal_elim_cases [cases set]:
"\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> =n\<Rightarrow> t"
"\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> =n\<Rightarrow> t"
lemma execn_Skip': "\<Gamma>\<turnstile>\<langle>Skip,t\<rangle> =n\<Rightarrow> t"
by (cases t) (auto intro: execn.intros)
lemma execn_Fault_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and s: "s=Fault f"
shows "t=Fault f"
using exec s by (induct) auto
lemma execn_Stuck_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and s: "s=Stuck"
shows "t=Stuck"
using exec s by (induct) auto
lemma execn_Abrupt_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and s: "s=Abrupt s'"
shows "t=Abrupt s'"
using exec s by (induct) auto
lemma execn_block:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> =n\<Rightarrow> u\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> u"
apply (unfold block_def)
by (fastforce intro: execn.intros)
lemma execn_blockAbrupt:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Abrupt t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> Abrupt (return s t)"
apply (unfold block_def)
by (fastforce intro: execn.intros)
lemma execn_blockFault:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Fault f\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> Fault f"
apply (unfold block_def)
by (fastforce intro: execn.intros)
lemma execn_blockStuck:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Stuck\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> Stuck"
apply (unfold block_def)
by (fastforce intro: execn.intros)
lemma execn_call:
"\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t;
\<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> u"
apply (simp add: call_def)
apply (rule execn_block)
apply (erule (1) Call)
apply assumption
done
lemma execn_callAbrupt:
"\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Abrupt t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Abrupt (return s t)"
apply (simp add: call_def)
apply (rule execn_blockAbrupt)
apply (erule (1) Call)
done
lemma execn_callFault:
"\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Fault f\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Fault f"
apply (simp add: call_def)
apply (rule execn_blockFault)
apply (erule (1) Call)
done
lemma execn_callStuck:
"\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Stuck\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Stuck"
apply (simp add: call_def)
apply (rule execn_blockStuck)
apply (erule (1) Call)
done
lemma execn_callUndefined:
"\<lbrakk>\<Gamma> p=None\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Stuck"
apply (simp add: call_def)
apply (rule execn_blockStuck)
apply (erule CallUndefined)
done
lemma execn_block_Normal_elim [consumes 1]:
assumes execn_block: "\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> t"
assumes Normal:
"\<And>t'.
\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t';
\<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow> P"
assumes Abrupt:
"\<And>t'.
\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Abrupt t';
t = Abrupt (return s t')\<rbrakk>
\<Longrightarrow> P"
assumes Fault:
"\<And>f.
\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Fault f;
t = Fault f\<rbrakk>
\<Longrightarrow> P"
assumes Stuck:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Stuck;
t = Stuck\<rbrakk>
\<Longrightarrow> P"
assumes Undef:
"\<lbrakk>\<Gamma> p = None; t = Stuck\<rbrakk> \<Longrightarrow> P"
shows "P"
using execn_block
apply (unfold block_def)
apply (elim execn_Normal_elim_cases)
apply simp_all
apply (case_tac s')
apply simp_all
apply (elim execn_Normal_elim_cases)
apply simp
apply (drule execn_Abrupt_end) apply simp
apply (erule execn_Normal_elim_cases)
apply simp
apply (rule Abrupt,assumption+)
apply (drule execn_Fault_end) apply simp
apply (erule execn_Normal_elim_cases)
apply simp
apply (drule execn_Stuck_end) apply simp
apply (erule execn_Normal_elim_cases)
apply simp
apply (case_tac s')
apply simp_all
apply (elim execn_Normal_elim_cases)
apply simp
apply (rule Normal,assumption+)
apply (drule execn_Fault_end) apply simp
apply (rule Fault,assumption+)
apply (drule execn_Stuck_end) apply simp
apply (rule Stuck,assumption+)
done
lemma execn_call_Normal_elim [consumes 1]:
assumes exec_call: "\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =n\<Rightarrow> t"
assumes Normal:
"\<And>bdy i t'.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Normal t';
\<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> =Suc i\<Rightarrow> t; n = Suc i\<rbrakk>
\<Longrightarrow> P"
assumes Abrupt:
"\<And>bdy i t'.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Abrupt t'; n = Suc i;
t = Abrupt (return s t')\<rbrakk>
\<Longrightarrow> P"
assumes Fault:
"\<And>bdy i f.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Fault f; n = Suc i;
t = Fault f\<rbrakk>
\<Longrightarrow> P"
assumes Stuck:
"\<And>bdy i.
\<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Stuck; n = Suc i;
t = Stuck\<rbrakk>
\<Longrightarrow> P"
assumes Undef:
"\<And>i. \<lbrakk>\<Gamma> p = None; n = Suc i; t = Stuck\<rbrakk> \<Longrightarrow> P"
shows "P"
using exec_call
apply (unfold call_def)
apply (cases n)
apply (simp only: block_def)
apply (fastforce elim: execn_Normal_elim_cases)
apply (cases "\<Gamma> p")
apply (erule execn_block_Normal_elim)
apply (elim execn_Normal_elim_cases)
apply simp
apply simp
apply (elim execn_Normal_elim_cases)
apply simp
apply simp
apply (elim execn_Normal_elim_cases)
apply simp
apply simp
apply (elim execn_Normal_elim_cases)
apply simp
apply (rule Undef,assumption,assumption,assumption)
apply (rule Undef,assumption+)
apply (erule execn_block_Normal_elim)
apply (elim execn_Normal_elim_cases)
apply simp
apply (rule Normal,assumption+)
apply simp
apply (elim execn_Normal_elim_cases)
apply simp
apply (rule Abrupt,assumption+)
apply simp
apply (elim execn_Normal_elim_cases)
apply simp
apply (rule Fault,assumption+)
apply simp
apply (elim execn_Normal_elim_cases)
apply simp
apply (rule Stuck,assumption,assumption,assumption,assumption)
apply (rule Undef,assumption,assumption,assumption)
apply (rule Undef,assumption+)
done
lemma execn_dynCall:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>call init (p s) return c,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>dynCall init p return c,Normal s\<rangle> =n\<Rightarrow> t"
apply (simp add: dynCall_def)
by (rule DynCom)
lemma execn_Seq':
"\<lbrakk>\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =n\<Rightarrow> s''\<rbrakk>
\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> s''"
apply (cases s)
apply (fastforce intro: execn.intros)
apply (fastforce dest: execn_Abrupt_end)
apply (fastforce dest: execn_Fault_end)
apply (fastforce dest: execn_Stuck_end)
done
lemma execn_mono:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<And> m. n \<le> m \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =m\<Rightarrow> t"
using exec
by (induct) (auto intro: execn.intros dest: Suc_le_D)
lemma execn_Suc:
"\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =Suc n\<Rightarrow> t"
by (rule execn_mono [OF _ le_refl [THEN le_SucI]])
lemma execn_assoc:
"\<Gamma>\<turnstile>\<langle>Seq c1 (Seq c2 c3),s\<rangle> =n\<Rightarrow> t = \<Gamma>\<turnstile>\<langle>Seq (Seq c1 c2) c3,s\<rangle> =n\<Rightarrow> t"
by (auto elim!: execn_elim_cases intro: execn_Seq')
lemma execn_to_exec:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
using execn
by induct (auto intro: exec.intros)
lemma exec_to_execn:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
shows "\<exists>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
using execn
proof (induct)
case Skip thus ?case by (iprover intro: execn.intros)
next
case Guard thus ?case by (iprover intro: execn.intros)
next
case GuardFault thus ?case by (iprover intro: execn.intros)
next
case FaultProp thus ?case by (iprover intro: execn.intros)
next
case Basic thus ?case by (iprover intro: execn.intros)
next
case Spec thus ?case by (iprover intro: execn.intros)
next
case SpecStuck thus ?case by (iprover intro: execn.intros)
next
case (Seq c1 s s' c2 s'')
then obtain n m where
"\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =m\<Rightarrow> s''"
by blast
then have
"\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =max n m\<Rightarrow> s'"
"\<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =max n m\<Rightarrow> s''"
by (auto elim!: execn_mono intro: max.cobounded1 max.cobounded2)
thus ?case
by (iprover intro: execn.intros)
next
case CondTrue thus ?case by (iprover intro: execn.intros)
next
case CondFalse thus ?case by (iprover intro: execn.intros)
next
case (WhileTrue s b c s' s'')
then obtain n m where
"\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> =m\<Rightarrow> s''"
by blast
then have
"\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =max n m\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> =max n m\<Rightarrow> s''"
by (auto elim!: execn_mono intro: max.cobounded1 max.cobounded2)
with WhileTrue
show ?case
by (iprover intro: execn.intros)
next
case WhileFalse thus ?case by (iprover intro: execn.intros)
next
case Call thus ?case by (iprover intro: execn.intros)
next
case CallUndefined thus ?case by (iprover intro: execn.intros)
next
case StuckProp thus ?case by (iprover intro: execn.intros)
next
case DynCom thus ?case by (iprover intro: execn.intros)
next
case Throw thus ?case by (iprover intro: execn.intros)
next
case AbruptProp thus ?case by (iprover intro: execn.intros)
next
case (CatchMatch c1 s s' c2 s'')
then obtain n m where
"\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =m\<Rightarrow> s''"
by blast
then have
"\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =max n m\<Rightarrow> Abrupt s'"
"\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =max n m\<Rightarrow> s''"
by (auto elim!: execn_mono intro: max.cobounded1 max.cobounded2)
with CatchMatch.hyps show ?case
by (iprover intro: execn.intros)
next
case CatchMiss thus ?case by (iprover intro: execn.intros)
qed
theorem exec_iff_execn: "(\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t) = (\<exists>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t)"
by (iprover intro: exec_to_execn execn_to_exec)
definition nfinal_notin:: "('s,'p,'f) body \<Rightarrow> ('s,'p,'f) com \<Rightarrow> ('s,'f) xstate \<Rightarrow> nat
\<Rightarrow> ('s,'f) xstate set \<Rightarrow> bool"
("_\<turnstile> \<langle>_,_\<rangle> =_\<Rightarrow>\<notin>_" [60,20,98,65,60] 89) where
"\<Gamma>\<turnstile> \<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T = (\<forall>t. \<Gamma>\<turnstile> \<langle>c,s\<rangle> =n\<Rightarrow> t \<longrightarrow> t\<notin>T)"
definition final_notin:: "('s,'p,'f) body \<Rightarrow> ('s,'p,'f) com \<Rightarrow> ('s,'f) xstate
\<Rightarrow> ('s,'f) xstate set \<Rightarrow> bool"
("_\<turnstile> \<langle>_,_\<rangle> \<Rightarrow>\<notin>_" [60,20,98,60] 89) where
"\<Gamma>\<turnstile> \<langle>c,s\<rangle> \<Rightarrow>\<notin>T = (\<forall>t. \<Gamma>\<turnstile> \<langle>c,s\<rangle> \<Rightarrow>t \<longrightarrow> t\<notin>T)"
lemma final_notinI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t \<Longrightarrow> t \<notin> T\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T"
by (simp add: final_notin_def)
lemma noFaultStuck_Call_body': "p \<in> dom \<Gamma> \<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F)) =
\<Gamma>\<turnstile>\<langle>the (\<Gamma> p),Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F))"
by (clarsimp simp add: final_notin_def exec_Call_body)
lemma noFault_startn:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "t\<noteq>Fault f"
shows "s\<noteq>Fault f"
using execn t by (induct) auto
lemma noFault_start:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and t: "t\<noteq>Fault f"
shows "s\<noteq>Fault f"
using exec t by (induct) auto
lemma noStuck_startn:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "t\<noteq>Stuck"
shows "s\<noteq>Stuck"
using execn t by (induct) auto
lemma noStuck_start:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and t: "t\<noteq>Stuck"
shows "s\<noteq>Stuck"
using exec t by (induct) auto
lemma noAbrupt_startn:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "\<forall>t'. t\<noteq>Abrupt t'"
shows "s\<noteq>Abrupt s'"
using execn t by (induct) auto
lemma noAbrupt_start:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and t: "\<forall>t'. t\<noteq>Abrupt t'"
shows "s\<noteq>Abrupt s'"
using exec t by (induct) auto
lemma noFaultn_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Fault f"
by (auto dest: noFault_startn)
lemma noFaultn_startD': "t\<noteq>Fault f \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> s \<noteq> Fault f"
by (auto dest: noFault_startn)
lemma noFault_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Fault f"
by (auto dest: noFault_start)
lemma noFault_startD': "t\<noteq>Fault f\<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t \<Longrightarrow> s \<noteq> Fault f"
by (auto dest: noFault_start)
lemma noStuckn_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Stuck"
by (auto dest: noStuck_startn)
lemma noStuckn_startD': "t\<noteq>Stuck \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> s \<noteq> Stuck"
by (auto dest: noStuck_startn)
lemma noStuck_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Stuck"
by (auto dest: noStuck_start)
lemma noStuck_startD': "t\<noteq>Stuck \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t \<Longrightarrow> s \<noteq> Stuck"
by (auto dest: noStuck_start)
lemma noAbruptn_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Abrupt s'"
by (auto dest: noAbrupt_startn)
lemma noAbrupt_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Abrupt s'"
by (auto dest: noAbrupt_start)
lemma noFaultnI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t \<Longrightarrow> t\<noteq>Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}"
by (simp add: nfinal_notin_def)
lemma noFaultnI':
assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f \<Longrightarrow> False"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}"
proof (rule noFaultnI)
fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
with contr show "t \<noteq> Fault f"
by (cases "t=Fault f") auto
qed
lemma noFaultn_def': "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f} = (\<not>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f)"
apply rule
apply (fastforce simp add: nfinal_notin_def)
apply (fastforce intro: noFaultnI')
done
lemma noStucknI':
assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Stuck \<Longrightarrow> False"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck}"
proof (rule noStucknI)
fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
with contr show "t \<noteq> Stuck"
by (cases t) auto
qed
lemma noStuckn_def': "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck} = (\<not>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Stuck)"
apply rule
apply (fastforce simp add: nfinal_notin_def)
apply (fastforce intro: noStucknI')
done
lemma noFaultI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t \<Longrightarrow> t\<noteq>Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}"
by (simp add: final_notin_def)
lemma noFaultI':
assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f\<Longrightarrow> False"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}"
proof (rule noFaultI)
fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
with contr show "t \<noteq> Fault f"
by (cases "t=Fault f") auto
qed
lemma noFaultE:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> P"
by (auto simp add: final_notin_def)
lemma noStuckI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t \<Longrightarrow> t\<noteq>Stuck\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (simp add: final_notin_def)
lemma noStuckI':
assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Stuck \<Longrightarrow> False"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}"
proof (rule noStuckI)
fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
with contr show "t \<noteq> Stuck"
by (cases t) auto
qed
lemma noStuckE:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Stuck\<rbrakk> \<Longrightarrow> P"
by (auto simp add: final_notin_def)
lemma noStuck_def': "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck} = (\<not>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Stuck)"
apply rule
apply (fastforce simp add: final_notin_def)
apply (fastforce intro: noStuckI')
done
lemma noFaultn_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Fault f"
by (simp add: nfinal_notin_def)
lemma noFault_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Fault f"
by (simp add: final_notin_def)
lemma noFaultn_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Fault f"
by (auto simp add: nfinal_notin_def dest: noFaultn_startD)
lemma noFault_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Fault f"
by (auto simp add: final_notin_def dest: noFault_startD)
lemma noStuckn_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Stuck"
by (simp add: nfinal_notin_def)
lemma noStuck_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Stuck"
by (simp add: final_notin_def)
lemma noStuckn_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Stuck"
by (auto simp add: nfinal_notin_def dest: noStuckn_startD)
lemma noStuck_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Stuck"
by (auto simp add: final_notin_def dest: noStuck_startD)
lemma noFaultStuckn_execD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault True,Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow>
t\<notin>{Fault True,Fault False,Stuck}"
by (simp add: nfinal_notin_def)
lemma noFaultStuck_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault True,Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk>
\<Longrightarrow> t\<notin>{Fault True,Fault False,Stuck}"
by (simp add: final_notin_def)
lemma noFaultStuckn_exec_startD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault True, Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk>
\<Longrightarrow> s\<notin>{Fault True,Fault False,Stuck}"
by (auto simp add: nfinal_notin_def )
lemma noFaultStuck_exec_startD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault True, Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk>
\<Longrightarrow> s\<notin>{Fault True,Fault False,Stuck}"
by (auto simp add: final_notin_def )
lemma noStuck_Call:
assumes noStuck: "\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
shows "p \<in> dom \<Gamma>"
proof (cases "p \<in> dom \<Gamma>")
case True thus ?thesis by simp
next
case False
hence "\<Gamma> p = None" by auto
hence "\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>Stuck"
by (rule exec.CallUndefined)
with noStuck show ?thesis
by (auto simp add: final_notin_def)
qed
lemma Guard_noFaultStuckD:
assumes "\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F))"
assumes "f \<notin> F"
shows "s \<in> g"
using assms
by (auto simp add: final_notin_def intro: exec.intros)
lemma final_notin_to_finaln:
assumes notin: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T"
proof (clarsimp simp add: nfinal_notin_def)
fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and "t\<in>T"
with notin show "False"
by (auto intro: execn_to_exec simp add: final_notin_def)
qed
lemma noFault_Call_body:
"\<Gamma> p=Some bdy\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> \<Rightarrow>\<notin>{Fault f} =
\<Gamma>\<turnstile>\<langle>the (\<Gamma> p),Normal s\<rangle> \<Rightarrow>\<notin>{Fault f}"
by (simp add: noFault_def' exec_Call_body)
lemma noStuck_Call_body:
"\<Gamma> p=Some bdy\<Longrightarrow>
\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck} =
\<Gamma>\<turnstile>\<langle>the (\<Gamma> p),Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (simp add: noStuck_def' exec_Call_body)
lemma exec_final_notin_to_execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T"
by (auto simp add: final_notin_def nfinal_notin_def dest: execn_to_exec)
lemma execn_final_notin_to_exec: "\<forall>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T"
by (auto simp add: final_notin_def nfinal_notin_def dest: exec_to_execn)
lemma exec_final_notin_iff_execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T = (\<forall>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T)"
by (auto intro: exec_final_notin_to_execn execn_final_notin_to_exec)
lemma Seq_NoFaultStuckD2:
assumes noabort: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)"
shows "\<forall>t. \<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t \<longrightarrow> t\<notin> ({Stuck} \<union> Fault ` F) \<longrightarrow>
\<Gamma>\<turnstile>\<langle>c2,t\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)"
using noabort
by (auto simp add: final_notin_def intro: exec_Seq') lemma Seq_NoFaultStuckD1:
assumes noabort: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)"
shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)"
proof (rule final_notinI)
fix t
assume exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t"
show "t \<notin> {Stuck} \<union> Fault ` F"
proof
assume "t \<in> {Stuck} \<union> Fault ` F"
moreover
{
assume "t = Stuck"
with exec_c1
have "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> Stuck"
by (auto intro: exec_Seq')
with noabort have False
by (auto simp add: final_notin_def)
hence False ..
}
moreover
{
assume "t \<in> Fault ` F"
then obtain f where
t: "t=Fault f" and f: "f \<in> F"
by auto
from t exec_c1
have "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> Fault f"
by (auto intro: exec_Seq')
with noabort f have False
by (auto simp add: final_notin_def)
hence False ..
}
ultimately show False by auto
qed
qed
lemma Seq_NoFaultStuckD2':
assumes noabort: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)"
shows "\<forall>t. \<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t \<longrightarrow> t\<notin> ({Stuck} \<union> Fault ` F) \<longrightarrow>
\<Gamma>\<turnstile>\<langle>c2,t\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)"
using noabort
by (auto simp add: final_notin_def intro: exec_Seq')
(* ************************************************************************* *)
subsection \<open>Lemmas about @{const "sequence"}, @{const "flatten"} and
@{const "normalize"}\<close>
(* ************************************************************************ *)
lemma execn_sequence_app: "\<And>s s' t.
\<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>sequence Seq (xs@ys),Normal s\<rangle> =n\<Rightarrow> t"
proof (induct xs)
case Nil
thus ?case by (auto elim: execn_Normal_elim_cases)
next
case (Cons x xs)
have exec_x_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq (x # xs),Normal s\<rangle> =n\<Rightarrow> s'" by fact
have exec_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases xs)
case Nil
with exec_x_xs have "\<Gamma>\<turnstile>\<langle>x,Normal s\<rangle> =n\<Rightarrow> s'"
by (auto elim: execn_Normal_elim_cases )
with Nil exec_ys show ?thesis
by (cases ys) (auto intro: execn.intros elim: execn_elim_cases)
next
case Cons
with exec_x_xs
obtain s'' where
exec_x: "\<Gamma>\<turnstile>\<langle>x,Normal s\<rangle> =n\<Rightarrow> s''" and
exec_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq xs,s''\<rangle> =n\<Rightarrow> s'"
by (auto elim: execn_Normal_elim_cases )
show ?thesis
proof (cases s'')
case (Normal s''')
from Cons.hyps [OF exec_xs [simplified Normal] exec_ys]
have "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s'''\<rangle> =n\<Rightarrow> t" .
with Cons exec_x Normal
show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s''')
with exec_xs have "s'=Abrupt s'''"
by (auto dest: execn_Abrupt_end)
with exec_ys have "t=Abrupt s'''"
by (auto dest: execn_Abrupt_end)
with exec_x Abrupt Cons show ?thesis
by (auto intro: execn.intros)
next
case (Fault f)
with exec_xs have "s'=Fault f"
by (auto dest: execn_Fault_end)
with exec_ys have "t=Fault f"
by (auto dest: execn_Fault_end)
with exec_x Fault Cons show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_xs have "s'=Stuck"
by (auto dest: execn_Stuck_end)
with exec_ys have "t=Stuck"
by (auto dest: execn_Stuck_end)
with exec_x Stuck Cons show ?thesis
by (auto intro: execn.intros)
qed
qed
qed
lemma execn_sequence_appD: "\<And>s t. \<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =n\<Rightarrow> t \<Longrightarrow>
\<exists>s'. \<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s' \<and> \<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t"
proof (induct xs)
case Nil
thus ?case
by (auto intro: execn.intros)
next
case (Cons x xs)
have exec_app: "\<Gamma>\<turnstile>\<langle>sequence Seq ((x # xs) @ ys),Normal s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases xs)
case Nil
with exec_app show ?thesis
by (cases ys) (auto elim: execn_Normal_elim_cases intro: execn_Skip')
next
case Cons
with exec_app obtain s' where
exec_x: "\<Gamma>\<turnstile>\<langle>x,Normal s\<rangle> =n\<Rightarrow> s'" and
exec_xs_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
show ?thesis
proof (cases s')
case (Normal s'')
from Cons.hyps [OF exec_xs_ys [simplified Normal]] Normal exec_x Cons
show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s'')
with exec_xs_ys have "t=Abrupt s''"
by (auto dest: execn_Abrupt_end)
with Abrupt exec_x Cons
show ?thesis
by (auto intro: execn.intros)
next
case (Fault f)
with exec_xs_ys have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault exec_x Cons
show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_xs_ys have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck exec_x Cons
show ?thesis
by (auto intro: execn.intros)
qed
qed
qed
lemma execn_sequence_appE [consumes 1]:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =n\<Rightarrow> t;
\<And>s'. \<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s';\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (auto dest: execn_sequence_appD)
lemma execn_to_execn_sequence_flatten:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> =n\<Rightarrow> t"
using exec
proof induct
case (Seq c1 c2 n s s' s'') thus ?case
by (auto intro: execn.intros execn_sequence_app)
qed (auto intro: execn.intros)
lemma execn_to_execn_normalize:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t"
using exec
proof induct
case (Seq c1 c2 n s s' s'') thus ?case
by (auto intro: execn_to_execn_sequence_flatten execn_sequence_app )
qed (auto intro: execn.intros)
lemma execn_sequence_flatten_to_execn:
shows "\<And>s t. \<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
proof (induct c)
case (Seq c1 c2)
have exec_seq: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (Seq c1 c2)),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Normal s')
with exec_seq obtain s'' where
"\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c1),Normal s'\<rangle> =n\<Rightarrow> s''" and
"\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c2),s''\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_sequence_appE)
with Seq.hyps Normal
show ?thesis
by (fastforce intro: execn.intros)
next
case Abrupt
with exec_seq
show ?thesis by (auto intro: execn.intros dest: execn_Abrupt_end)
next
case Fault
with exec_seq
show ?thesis by (auto intro: execn.intros dest: execn_Fault_end)
next
case Stuck
with exec_seq
show ?thesis by (auto intro: execn.intros dest: execn_Stuck_end)
qed
qed auto
lemma execn_normalize_to_execn:
shows "\<And>s t n. \<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
proof (induct c)
case Skip thus ?case by simp
next
case Basic thus ?case by simp
next
case Spec thus ?case by simp
next
case (Seq c1 c2)
have "\<Gamma>\<turnstile>\<langle>normalize (Seq c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
hence exec_norm_seq:
"\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (normalize c1) @ flatten (normalize c2)),s\<rangle> =n\<Rightarrow> t"
by simp
show ?case
proof (cases s)
case (Normal s')
with exec_norm_seq obtain s'' where
exec_norm_c1: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (normalize c1)),Normal s'\<rangle> =n\<Rightarrow> s''" and
exec_norm_c2: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (normalize c2)),s''\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_sequence_appE)
from execn_sequence_flatten_to_execn [OF exec_norm_c1]
execn_sequence_flatten_to_execn [OF exec_norm_c2] Seq.hyps Normal
show ?thesis
by (fastforce intro: execn.intros)
next
case (Abrupt s')
with exec_norm_seq have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by (auto intro: execn.intros)
next
case (Fault f)
with exec_norm_seq have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_norm_seq have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by (auto intro: execn.intros)
qed
next
case Cond thus ?case
by (auto intro: execn.intros elim!: execn_elim_cases)
next
case (While b c)
have "\<Gamma>\<turnstile>\<langle>normalize (While b c),s\<rangle> =n\<Rightarrow> t" by fact
hence exec_norm_w: "\<Gamma>\<turnstile>\<langle>While b (normalize c),s\<rangle> =n\<Rightarrow> t"
by simp
{
fix s t w
assume exec_w: "\<Gamma>\<turnstile>\<langle>w,s\<rangle> =n\<Rightarrow> t"
have "w=While b (normalize c) \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,s\<rangle> =n\<Rightarrow> t"
using exec_w
proof (induct)
case (WhileTrue s b' c' n w t)
from WhileTrue obtain
s_in_b: "s \<in> b" and
exec_c: "\<Gamma>\<turnstile>\<langle>normalize c,Normal s\<rangle> =n\<Rightarrow> w" and
hyp_w: "\<Gamma>\<turnstile>\<langle>While b c,w\<rangle> =n\<Rightarrow> t"
by simp
from While.hyps [OF exec_c]
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with hyp_w s_in_b
have "\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> t"
by (auto intro: execn.intros)
with WhileTrue show ?case by simp
qed (auto intro: execn.intros)
}
from this [OF exec_norm_w]
show ?case
by simp
next
case Call thus ?case by simp
next
case DynCom thus ?case by (auto intro: execn.intros elim!: execn_elim_cases)
next
case Guard thus ?case by (auto intro: execn.intros elim!: execn_elim_cases)
next
case Throw thus ?case by simp
next
case Catch thus ?case by (fastforce intro: execn.intros elim!: execn_elim_cases)
qed
lemma execn_normalize_iff_execn:
"\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t = \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (auto intro: execn_to_execn_normalize execn_normalize_to_execn)
lemma exec_sequence_app:
assumes exec_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> \<Rightarrow> s'"
assumes exec_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> \<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>sequence Seq (xs@ys),Normal s\<rangle> \<Rightarrow> t"
proof -
from exec_to_execn [OF exec_xs]
obtain n where
execn_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s'"..
from exec_to_execn [OF exec_ys]
obtain m where
execn_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =m\<Rightarrow> t"..
with execn_xs obtain
"\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =max n m\<Rightarrow> s'"
"\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =max n m\<Rightarrow> t"
by (auto intro: execn_mono max.cobounded1 max.cobounded2)
from execn_sequence_app [OF this]
have "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =max n m\<Rightarrow> t" .
thus ?thesis
by (rule execn_to_exec)
qed
lemma exec_sequence_appD:
assumes exec_xs_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> \<Rightarrow> t"
shows "\<exists>s'. \<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> \<Rightarrow> s' \<and> \<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> \<Rightarrow> t"
proof -
from exec_to_execn [OF exec_xs_ys]
obtain n where "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =n\<Rightarrow> t"..
thus ?thesis
by (cases rule: execn_sequence_appE) (auto intro: execn_to_exec)
qed
lemma exec_sequence_appE [consumes 1]:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> \<Rightarrow> t;
\<And>s'. \<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> \<Rightarrow> s';\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> P
\<rbrakk> \<Longrightarrow> P"
by (auto dest: exec_sequence_appD)
lemma exec_to_exec_sequence_flatten:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> \<Rightarrow> t"
proof -
from exec_to_execn [OF exec]
obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"..
from execn_to_execn_sequence_flatten [OF this]
show ?thesis
by (rule execn_to_exec)
qed
lemma exec_sequence_flatten_to_exec:
assumes exec_seq: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> \<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
proof -
from exec_to_execn [OF exec_seq]
obtain n where "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> =n\<Rightarrow> t"..
from execn_sequence_flatten_to_execn [OF this]
show ?thesis
by (rule execn_to_exec)
qed
lemma exec_to_exec_normalize:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> \<Rightarrow> t"
proof -
from exec_to_execn [OF exec] obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"..
hence "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t"
by (rule execn_to_execn_normalize)
thus ?thesis
by (rule execn_to_exec)
qed
lemma exec_normalize_to_exec:
assumes exec: "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> \<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
proof -
from exec_to_execn [OF exec] obtain n where "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t"..
hence "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (rule execn_normalize_to_execn)
thus ?thesis
by (rule execn_to_exec)
qed
(* ************************************************************************* *)
subsection \<open>Lemmas about @{term "c\<^sub>1 \<subseteq>\<^sub>g c\<^sub>2"}\<close>
(* ************************************************************************ *)
lemma execn_to_execn_subseteq_guards: "\<And>c s t n. \<lbrakk>c \<subseteq>\<^sub>g c'; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t\<rbrakk>
\<Longrightarrow> \<exists>t'. \<Gamma>\<turnstile>\<langle>c',s\<rangle> =n\<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and> (\<not> isFault t' \<longrightarrow> t'=t)"
proof (induct c')
case Skip thus ?case
by (fastforce dest: subseteq_guardsD elim: execn_elim_cases)
next
case Basic thus ?case
by (fastforce dest: subseteq_guardsD elim: execn_elim_cases)
next
case Spec thus ?case
by (fastforce dest: subseteq_guardsD elim: execn_elim_cases)
next
case (Seq c1' c2')
have "c \<subseteq>\<^sub>g Seq c1' c2'" by fact
from subseteq_guards_Seq [OF this]
obtain c1 c2 where
c: "c = Seq c1 c2" and
c1_c1': "c1 \<subseteq>\<^sub>g c1'" and
c2_c2': "c2 \<subseteq>\<^sub>g c2'"
by blast
have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact
with c obtain w where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> w" and
exec_c2: "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_elim_cases)
from exec_c1 Seq.hyps c1_c1'
obtain w' where
exec_c1': "\<Gamma>\<turnstile>\<langle>c1',s\<rangle> =n\<Rightarrow> w'" and
w_Fault: "isFault w \<longrightarrow> isFault w'" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w'=w"
by blast
show ?case
proof (cases "s")
case (Fault f)
with exec have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "isFault w")
case True
then obtain f where w': "w=Fault f"..
moreover with exec_c2
have t: "t=Fault f"
by (auto dest: execn_Fault_end)
ultimately show ?thesis
using Normal w_Fault exec_c1'
by (fastforce intro: execn.intros elim: isFaultE)
next
case False
note noFault_w = this
show ?thesis
proof (cases "isFault w'")
case True
then obtain f' where w': "w'=Fault f'"..
with Normal exec_c1'
have exec: "\<Gamma>\<turnstile>\<langle>Seq c1' c2',s\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
then show ?thesis
by auto
next
case False
with w'_noFault have w': "w'=w" by simp
from Seq.hyps exec_c2 c2_c2'
obtain t' where
"\<Gamma>\<turnstile>\<langle>c2',w\<rangle> =n\<Rightarrow> t'" and
"isFault t \<longrightarrow> isFault t'" and
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with Normal exec_c1' w'
show ?thesis
by (fastforce intro: execn.intros)
qed
qed
qed
next
case (Cond b c1' c2')
have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact
have "c \<subseteq>\<^sub>g Cond b c1' c2'" by fact
from subseteq_guards_Cond [OF this]
obtain c1 c2 where
c: "c = Cond b c1 c2" and
c1_c1': "c1 \<subseteq>\<^sub>g c1'" and
c2_c2': "c2 \<subseteq>\<^sub>g c2'"
by blast
show ?case
proof (cases "s")
case (Fault f)
with exec have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
from exec [simplified c Normal]
show ?thesis
proof (cases)
assume s'_in_b: "s' \<in> b"
assume "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t"
with c1_c1' Normal Cond.hyps obtain t' where
"\<Gamma>\<turnstile>\<langle>c1',Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with s'_in_b Normal show ?thesis
by (fastforce intro: execn.intros)
next
assume s'_notin_b: "s' \<notin> b"
assume "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =n\<Rightarrow> t"
with c2_c2' Normal Cond.hyps obtain t' where
"\<Gamma>\<turnstile>\<langle>c2',Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with s'_notin_b Normal show ?thesis
by (fastforce intro: execn.intros)
qed
qed
next
case (While b c')
have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact
have "c \<subseteq>\<^sub>g While b c'" by fact
from subseteq_guards_While [OF this]
obtain c'' where
c: "c = While b c''" and
c''_c': "c'' \<subseteq>\<^sub>g c'"
by blast
{
fix c r w
assume exec: "\<Gamma>\<turnstile>\<langle>c,r\<rangle> =n\<Rightarrow> w"
assume c: "c=While b c''"
have "\<exists>w'. \<Gamma>\<turnstile>\<langle>While b c',r\<rangle> =n\<Rightarrow> w' \<and>
(isFault w \<longrightarrow> isFault w') \<and> (\<not> isFault w' \<longrightarrow> w'=w)"
using exec c
proof (induct)
case (WhileTrue r b' ca n u w)
have eqs: "While b' ca = While b c''" by fact
from WhileTrue have r_in_b: "r \<in> b" by simp
from WhileTrue have exec_c'': "\<Gamma>\<turnstile>\<langle>c'',Normal r\<rangle> =n\<Rightarrow> u" by simp
from While.hyps [OF c''_c' exec_c''] obtain u' where
exec_c': "\<Gamma>\<turnstile>\<langle>c',Normal r\<rangle> =n\<Rightarrow> u'" and
u_Fault: "isFault u \<longrightarrow> isFault u' "and
u'_noFault: "\<not> isFault u' \<longrightarrow> u' = u"
by blast
from WhileTrue obtain w' where
exec_w: "\<Gamma>\<turnstile>\<langle>While b c',u\<rangle> =n\<Rightarrow> w'" and
w_Fault: "isFault w \<longrightarrow> isFault w'" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w' = w"
by blast
show ?case
proof (cases "isFault u'")
case True
with exec_c' r_in_b
show ?thesis
by (fastforce intro: execn.intros elim: isFaultE)
next
case False
with exec_c' r_in_b u'_noFault exec_w w_Fault w'_noFault
show ?thesis
by (fastforce intro: execn.intros)
qed
next
case WhileFalse thus ?case by (fastforce intro: execn.intros)
qed auto
}
from this [OF exec c]
show ?case .
next
case Call thus ?case
by (fastforce dest: subseteq_guardsD elim: execn_elim_cases)
next
case (DynCom C')
have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact
have "c \<subseteq>\<^sub>g DynCom C'" by fact
from subseteq_guards_DynCom [OF this] obtain C where
c: "c = DynCom C" and
C_C': "\<forall>s. C s \<subseteq>\<^sub>g C' s"
by blast
show ?case
proof (cases "s")
case (Fault f)
with exec have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
from exec [simplified c Normal]
have "\<Gamma>\<turnstile>\<langle>C s',Normal s'\<rangle> =n\<Rightarrow> t"
by cases
from DynCom.hyps C_C' [rule_format] this obtain t' where
"\<Gamma>\<turnstile>\<langle>C' s',Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal show ?thesis
by (fastforce intro: execn.intros)
qed
next
case (Guard f' g' c')
have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact
have "c \<subseteq>\<^sub>g Guard f' g' c'" by fact
hence subset_cases: "(c \<subseteq>\<^sub>g c') \<or> (\<exists>c''. c = Guard f' g' c'' \<and> (c'' \<subseteq>\<^sub>g c'))"
by (rule subseteq_guards_Guard)
show ?case
proof (cases "s")
case (Fault f)
with exec have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
from subset_cases show ?thesis
proof
assume c_c': "c \<subseteq>\<^sub>g c'"
from Guard.hyps [OF this exec] Normal obtain t' where
exec_c': "\<Gamma>\<turnstile>\<langle>c',Normal s'\<rangle> =n\<Rightarrow> t'" and
t_Fault: "isFault t \<longrightarrow> isFault t'" and
t_noFault: "\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal
show ?thesis
by (cases "s' \<in> g'") (fastforce intro: execn.intros)+
next
assume "\<exists>c''. c = Guard f' g' c'' \<and> (c'' \<subseteq>\<^sub>g c')"
then obtain c'' where
c: "c = Guard f' g' c''" and
c''_c': "c'' \<subseteq>\<^sub>g c'"
by blast
from c exec Normal
have exec_Guard': "\<Gamma>\<turnstile>\<langle>Guard f' g' c'',Normal s'\<rangle> =n\<Rightarrow> t"
by simp
thus ?thesis
proof (cases)
assume s'_in_g': "s' \<in> g'"
assume exec_c'': "\<Gamma>\<turnstile>\<langle>c'',Normal s'\<rangle> =n\<Rightarrow> t"
from Guard.hyps [OF c''_c' exec_c''] obtain t' where
exec_c': "\<Gamma>\<turnstile>\<langle>c',Normal s'\<rangle> =n\<Rightarrow> t'" and
t_Fault: "isFault t \<longrightarrow> isFault t'" and
t_noFault: "\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal s'_in_g'
show ?thesis
by (fastforce intro: execn.intros)
next
assume "s' \<notin> g'" "t=Fault f'"
with Normal show ?thesis
by (fastforce intro: execn.intros)
qed
qed
qed
next
case Throw thus ?case
by (fastforce dest: subseteq_guardsD intro: execn.intros
elim: execn_elim_cases)
next
case (Catch c1' c2')
have "c \<subseteq>\<^sub>g Catch c1' c2'" by fact
from subseteq_guards_Catch [OF this]
obtain c1 c2 where
c: "c = Catch c1 c2" and
c1_c1': "c1 \<subseteq>\<^sub>g c1'" and
c2_c2': "c2 \<subseteq>\<^sub>g c2'"
by blast
have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases "s")
case (Fault f)
with exec have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
from exec [simplified c Normal]
show ?thesis
proof (cases)
fix w
assume exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> Abrupt w"
assume exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t"
from Normal exec_c1 c1_c1' Catch.hyps obtain w' where
exec_c1': "\<Gamma>\<turnstile>\<langle>c1',Normal s'\<rangle> =n\<Rightarrow> w'" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w' = Abrupt w"
by blast
show ?thesis
proof (cases "isFault w'")
case True
with exec_c1' Normal show ?thesis
by (fastforce intro: execn.intros elim: isFaultE)
next
case False
with w'_noFault have w': "w'=Abrupt w" by simp
from Normal exec_c2 c2_c2' Catch.hyps obtain t' where
"\<Gamma>\<turnstile>\<langle>c2',Normal w\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with exec_c1' w' Normal
show ?thesis
by (fastforce intro: execn.intros )
qed
next
assume exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t"
assume t: "\<not> isAbr t"
from Normal exec_c1 c1_c1' Catch.hyps obtain t' where
exec_c1': "\<Gamma>\<turnstile>\<langle>c1',Normal s'\<rangle> =n\<Rightarrow> t'" and
t_Fault: "isFault t \<longrightarrow> isFault t'" and
t'_noFault: "\<not> isFault t' \<longrightarrow> t' = t"
by blast
show ?thesis
proof (cases "isFault t'")
case True
with exec_c1' Normal show ?thesis
by (fastforce intro: execn.intros elim: isFaultE)
next
case False
with exec_c1' Normal t_Fault t'_noFault t
show ?thesis
by (fastforce intro: execn.intros)
qed
qed
qed
qed
lemma exec_to_exec_subseteq_guards:
assumes c_c': "c \<subseteq>\<^sub>g c'"
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c',s\<rangle> \<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and> (\<not> isFault t' \<longrightarrow> t'=t)"
proof -
from exec_to_execn [OF exec] obtain n where
"\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" ..
from execn_to_execn_subseteq_guards [OF c_c' this]
show ?thesis
by (blast intro: execn_to_exec)
qed
(* ************************************************************************* *)
subsection \<open>Lemmas about @{const "merge_guards"}\<close>
(* ************************************************************************ *)
theorem execn_to_execn_merge_guards:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> =n\<Rightarrow> t "
using exec_c
proof (induct)
case (Guard s g c n t f)
have s_in_g: "s \<in> g" by fact
have exec_merge_c: "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases "\<exists>f' g' c'. merge_guards c = Guard f' g' c'")
case False
with exec_merge_c s_in_g
show ?thesis
by (cases "merge_guards c") (auto intro: execn.intros simp add: Let_def)
next
case True
then obtain f' g' c' where
merge_guards_c: "merge_guards c = Guard f' g' c'"
by iprover
show ?thesis
proof (cases "f=f'")
case False
from exec_merge_c s_in_g merge_guards_c False show ?thesis
by (auto intro: execn.intros simp add: Let_def)
next
case True
from exec_merge_c s_in_g merge_guards_c True show ?thesis
by (fastforce intro: execn.intros elim: execn.cases)
qed
qed
next
case (GuardFault s g f c n)
have s_notin_g: "s \<notin> g" by fact
show ?case
proof (cases "\<exists>f' g' c'. merge_guards c = Guard f' g' c'")
case False
with s_notin_g
show ?thesis
by (cases "merge_guards c") (auto intro: execn.intros simp add: Let_def)
next
case True
then obtain f' g' c' where
merge_guards_c: "merge_guards c = Guard f' g' c'"
by iprover
show ?thesis
proof (cases "f=f'")
case False
from s_notin_g merge_guards_c False show ?thesis
by (auto intro: execn.intros simp add: Let_def)
next
case True
from s_notin_g merge_guards_c True show ?thesis
by (fastforce intro: execn.intros)
qed
qed
qed (fastforce intro: execn.intros)+
lemma execn_merge_guards_to_execn_Normal:
"\<And>s n t. \<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t"
proof (induct c)
case Skip thus ?case by auto
next
case Basic thus ?case by auto
next
case Spec thus ?case by auto
next
case (Seq c1 c2)
have "\<Gamma>\<turnstile>\<langle>merge_guards (Seq c1 c2),Normal s\<rangle> =n\<Rightarrow> t" by fact
hence exec_merge: "\<Gamma>\<turnstile>\<langle>Seq (merge_guards c1) (merge_guards c2),Normal s\<rangle> =n\<Rightarrow> t"
by simp
then obtain s' where
exec_merge_c1: "\<Gamma>\<turnstile>\<langle>merge_guards c1,Normal s\<rangle> =n\<Rightarrow> s'" and
exec_merge_c2: "\<Gamma>\<turnstile>\<langle>merge_guards c2,s'\<rangle> =n\<Rightarrow> t"
by cases
from exec_merge_c1
have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> s'"
by (rule Seq.hyps)
show ?case
proof (cases s')
case (Normal s'')
with exec_merge_c2
have "\<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =n\<Rightarrow> t"
by (auto intro: Seq.hyps)
with exec_c1 show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s'')
with exec_merge_c2 have "t=Abrupt s''"
by (auto dest: execn_Abrupt_end)
with exec_c1 Abrupt
show ?thesis
by (auto intro: execn.intros)
next
case (Fault f)
with exec_merge_c2 have "t=Fault f"
by (auto dest: execn_Fault_end)
with exec_c1 Fault
show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_merge_c2 have "t=Stuck"
by (auto dest: execn_Stuck_end)
with exec_c1 Stuck
show ?thesis
by (auto intro: execn.intros)
qed
next
case Cond thus ?case
by (fastforce intro: execn.intros elim: execn_Normal_elim_cases)
next
case (While b c)
{
fix c' r w
assume exec_c': "\<Gamma>\<turnstile>\<langle>c',r\<rangle> =n\<Rightarrow> w"
assume c': "c'=While b (merge_guards c)"
have "\<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> w"
using exec_c' c'
proof (induct)
case (WhileTrue r b' c'' n u w)
have eqs: "While b' c'' = While b (merge_guards c)" by fact
from WhileTrue
have r_in_b: "r \<in> b"
by simp
from WhileTrue While.hyps have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal r\<rangle> =n\<Rightarrow> u"
by simp
from WhileTrue have exec_w: "\<Gamma>\<turnstile>\<langle>While b c,u\<rangle> =n\<Rightarrow> w"
by simp
from r_in_b exec_c exec_w
show ?case
by (rule execn.WhileTrue)
next
case WhileFalse thus ?case by (auto intro: execn.WhileFalse)
qed auto
}
with While.prems show ?case
by (auto)
next
case Call thus ?case by simp
next
case DynCom thus ?case
by (fastforce intro: execn.intros elim: execn_Normal_elim_cases)
next
case (Guard f g c)
have exec_merge: "\<Gamma>\<turnstile>\<langle>merge_guards (Guard f g c),Normal s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases "s \<in> g")
case False
with exec_merge have "t=Fault f"
by (auto split: com.splits if_split_asm elim: execn_Normal_elim_cases
simp add: Let_def is_Guard_def)
with False show ?thesis
by (auto intro: execn.intros)
next
case True
note s_in_g = this
show ?thesis
proof (cases "\<exists>f' g' c'. merge_guards c = Guard f' g' c'")
case False
then
have "merge_guards (Guard f g c) = Guard f g (merge_guards c)"
by (cases "merge_guards c") (auto simp add: Let_def)
with exec_merge s_in_g
obtain "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
from Guard.hyps [OF this] s_in_g
show ?thesis
by (auto intro: execn.intros)
next
case True
then obtain f' g' c' where
merge_guards_c: "merge_guards c = Guard f' g' c'"
by iprover
show ?thesis
proof (cases "f=f'")
case False
with merge_guards_c
have "merge_guards (Guard f g c) = Guard f g (merge_guards c)"
by (simp add: Let_def)
with exec_merge s_in_g
obtain "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
from Guard.hyps [OF this] s_in_g
show ?thesis
by (auto intro: execn.intros)
next
case True
note f_eq_f' = this
with merge_guards_c have
merge_guards_Guard: "merge_guards (Guard f g c) = Guard f (g \<inter> g') c'"
by simp
show ?thesis
proof (cases "s \<in> g'")
case True
with exec_merge merge_guards_Guard merge_guards_c s_in_g
have "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t"
by (auto intro: execn.intros elim: execn_Normal_elim_cases)
with Guard.hyps [OF this] s_in_g
show ?thesis
by (auto intro: execn.intros)
next
case False
with exec_merge merge_guards_Guard
have "t=Fault f"
by (auto elim: execn_Normal_elim_cases)
with merge_guards_c f_eq_f' False
have "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t"
by (auto intro: execn.intros)
from Guard.hyps [OF this] s_in_g
show ?thesis
by (auto intro: execn.intros)
qed
qed
qed
qed
next
case Throw thus ?case by simp
next
case (Catch c1 c2)
have "\<Gamma>\<turnstile>\<langle>merge_guards (Catch c1 c2),Normal s\<rangle> =n\<Rightarrow> t" by fact
hence "\<Gamma>\<turnstile>\<langle>Catch (merge_guards c1) (merge_guards c2),Normal s\<rangle> =n\<Rightarrow> t" by simp
thus ?case
by cases (auto intro: execn.intros Catch.hyps)
qed
theorem execn_merge_guards_to_execn:
"\<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c, s\<rangle> =n\<Rightarrow> t"
apply (cases s)
apply (fastforce intro: execn_merge_guards_to_execn_Normal)
apply (fastforce dest: execn_Abrupt_end)
apply (fastforce dest: execn_Fault_end)
apply (fastforce dest: execn_Stuck_end)
done
corollary execn_iff_execn_merge_guards:
"\<Gamma>\<turnstile>\<langle>c, s\<rangle> =n\<Rightarrow> t = \<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> =n\<Rightarrow> t"
by (blast intro: execn_merge_guards_to_execn execn_to_execn_merge_guards)
theorem exec_iff_exec_merge_guards:
"\<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> \<Rightarrow> t"
by (blast dest: exec_to_execn intro: execn_to_exec
intro: execn_to_execn_merge_guards
execn_merge_guards_to_execn)
corollary exec_to_exec_merge_guards:
"\<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> \<Rightarrow> t"
by (rule iffD1 [OF exec_iff_exec_merge_guards])
corollary exec_merge_guards_to_exec:
"\<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> \<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t"
by (rule iffD2 [OF exec_iff_exec_merge_guards])
(* ************************************************************************* *)
subsection \<open>Lemmas about @{const "mark_guards"}\<close>
(* ************************************************************************ *)
lemma execn_to_execn_mark_guards:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes t_not_Fault: "\<not> isFault t"
shows "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> =n\<Rightarrow> t "
using exec_c t_not_Fault [simplified not_isFault_iff]
by (induct) (auto intro: execn.intros dest: noFaultn_startD')
lemma execn_to_execn_mark_guards_Fault:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<And>f. \<lbrakk>t=Fault f\<rbrakk> \<Longrightarrow> \<exists>f'. \<Gamma>\<turnstile>\<langle>mark_guards x c,s\<rangle> =n\<Rightarrow> Fault f'"
using exec_c
proof (induct)
case Skip thus ?case by auto
next
case Guard thus ?case by (fastforce intro: execn.intros)
next
case GuardFault thus ?case by (fastforce intro: execn.intros)
next
case FaultProp thus ?case by auto
next
case Basic thus ?case by auto
next
case Spec thus ?case by auto
next
case SpecStuck thus ?case by auto
next
case (Seq c1 s n w c2 t)
have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> w" by fact
have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t" by fact
have t: "t=Fault f" by fact
show ?case
proof (cases w)
case (Fault f')
with exec_c2 t have "f'=f"
by (auto dest: execn_Fault_end)
with Fault Seq.hyps obtain f'' where
"\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> Fault f''"
by auto
moreover have "\<Gamma>\<turnstile>\<langle>mark_guards x c2,Fault f''\<rangle> =n\<Rightarrow> Fault f''"
by auto
ultimately show ?thesis
by (auto intro: execn.intros)
next
case (Normal s')
with execn_to_execn_mark_guards [OF exec_c1]
have exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with Seq.hyps t obtain f' where
"\<Gamma>\<turnstile>\<langle>mark_guards x c2,w\<rangle> =n\<Rightarrow> Fault f'"
by blast
with exec_mark_c1 show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s')
with execn_to_execn_mark_guards [OF exec_c1]
have exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with Seq.hyps t obtain f' where
"\<Gamma>\<turnstile>\<langle>mark_guards x c2,w\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with exec_mark_c1 show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_c2 have "t=Stuck"
by (auto dest: execn_Stuck_end)
with t show ?thesis by simp
qed
next
case CondTrue thus ?case by (fastforce intro: execn.intros)
next
case CondFalse thus ?case by (fastforce intro: execn.intros)
next
case (WhileTrue s b c n w t)
have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> w" by fact
have exec_w: "\<Gamma>\<turnstile>\<langle>While b c,w\<rangle> =n\<Rightarrow> t" by fact
have t: "t = Fault f" by fact
have s_in_b: "s \<in> b" by fact
show ?case
proof (cases w)
case (Fault f')
with exec_w t have "f'=f"
by (auto dest: execn_Fault_end)
with Fault WhileTrue.hyps obtain f'' where
"\<Gamma>\<turnstile>\<langle>mark_guards x c,Normal s\<rangle> =n\<Rightarrow> Fault f''"
by auto
moreover have "\<Gamma>\<turnstile>\<langle>mark_guards x (While b c),Fault f''\<rangle> =n\<Rightarrow> Fault f''"
by auto
ultimately show ?thesis
using s_in_b by (auto intro: execn.intros)
next
case (Normal s')
with execn_to_execn_mark_guards [OF exec_c]
have exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards x c,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with WhileTrue.hyps t obtain f' where
"\<Gamma>\<turnstile>\<langle>mark_guards x (While b c),w\<rangle> =n\<Rightarrow> Fault f'"
by blast
with exec_mark_c s_in_b show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s')
with execn_to_execn_mark_guards [OF exec_c]
have exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards x c,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with WhileTrue.hyps t obtain f' where
"\<Gamma>\<turnstile>\<langle>mark_guards x (While b c),w\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with exec_mark_c s_in_b show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_w have "t=Stuck"
by (auto dest: execn_Stuck_end)
with t show ?thesis by simp
qed
next
case WhileFalse thus ?case by (fastforce intro: execn.intros)
next
case Call thus ?case by (fastforce intro: execn.intros)
next
case CallUndefined thus ?case by simp
next
case StuckProp thus ?case by simp
next
case DynCom thus ?case by (fastforce intro: execn.intros)
next
case Throw thus ?case by simp
next
case AbruptProp thus ?case by simp
next
case (CatchMatch c1 s n w c2 t)
have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w" by fact
have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t" by fact
have t: "t = Fault f" by fact
from execn_to_execn_mark_guards [OF exec_c1]
have exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w"
by simp
with CatchMatch.hyps t obtain f' where
"\<Gamma>\<turnstile>\<langle>mark_guards x c2,Normal w\<rangle> =n\<Rightarrow> Fault f'"
by blast
with exec_mark_c1 show ?case
by (auto intro: execn.intros)
next
case CatchMiss thus ?case by (fastforce intro: execn.intros)
qed
lemma execn_mark_guards_to_execn:
"\<And>s n t. \<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> =n\<Rightarrow> t
\<Longrightarrow> \<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and>
(t' = Fault f \<longrightarrow> t'=t) \<and>
(isFault t' \<longrightarrow> isFault t) \<and>
(\<not> isFault t' \<longrightarrow> t'=t)"
proof (induct c)
case Skip thus ?case by auto
next
case Basic thus ?case by auto
next
case Spec thus ?case by auto
next
case (Seq c1 c2 s n t)
have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Seq c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
then obtain w where
exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards f c1,s\<rangle> =n\<Rightarrow> w" and
exec_mark_c2: "\<Gamma>\<turnstile>\<langle>mark_guards f c2,w\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_elim_cases)
from Seq.hyps exec_mark_c1
obtain w' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> w'" and
w_Fault: "isFault w \<longrightarrow> isFault w'" and
w'_Fault_f: "w' = Fault f \<longrightarrow> w'=w" and
w'_Fault: "isFault w' \<longrightarrow> isFault w" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w'=w"
by blast
show ?case
proof (cases "s")
case (Fault f)
with exec_mark have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_mark have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_mark have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "isFault w")
case True
then obtain f where w': "w=Fault f"..
moreover with exec_mark_c2
have t: "t=Fault f"
by (auto dest: execn_Fault_end)
ultimately show ?thesis
using Normal w_Fault w'_Fault_f exec_c1
by (fastforce intro: execn.intros elim: isFaultE)
next
case False
note noFault_w = this
show ?thesis
proof (cases "isFault w'")
case True
then obtain f' where w': "w'=Fault f'"..
with Normal exec_c1
have exec: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
from w'_Fault_f w' noFault_w
have "f' \<noteq> f"
by (cases w) auto
moreover
from w' w'_Fault exec_mark_c2 have "isFault t"
by (auto dest: execn_Fault_end elim: isFaultE)
ultimately
show ?thesis
using exec
by auto
next
case False
with w'_noFault have w': "w'=w" by simp
from Seq.hyps exec_mark_c2
obtain t' where
"\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t'" and
"isFault t \<longrightarrow> isFault t'" and
"t' = Fault f \<longrightarrow> t'=t" and
"isFault t' \<longrightarrow> isFault t" and
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with Normal exec_c1 w'
show ?thesis
by (fastforce intro: execn.intros)
qed
qed
qed
next
case (Cond b c1 c2 s n t)
have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Cond b c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Fault f)
with exec_mark have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_mark have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_mark have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "s'\<in> b")
case True
with Normal exec_mark
have "\<Gamma>\<turnstile>\<langle>mark_guards f c1 ,Normal s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
with Normal True Cond.hyps obtain t'
where "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' = Fault f \<longrightarrow> t'=t"
"isFault t' \<longrightarrow> isFault t"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal True
show ?thesis
by (blast intro: execn.intros)
next
case False
with Normal exec_mark
have "\<Gamma>\<turnstile>\<langle>mark_guards f c2 ,Normal s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
with Normal False Cond.hyps obtain t'
where "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' = Fault f \<longrightarrow> t'=t"
"isFault t' \<longrightarrow> isFault t"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal False
show ?thesis
by (blast intro: execn.intros)
qed
qed
next
case (While b c s n t)
have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (While b c),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Fault f)
with exec_mark have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_mark have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_mark have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
{
fix c' r w
assume exec_c': "\<Gamma>\<turnstile>\<langle>c',r\<rangle> =n\<Rightarrow> w"
assume c': "c'=While b (mark_guards f c)"
have "\<exists>w'. \<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> w' \<and> (isFault w \<longrightarrow> isFault w') \<and>
(w' = Fault f \<longrightarrow> w'=w) \<and> (isFault w' \<longrightarrow> isFault w) \<and>
(\<not> isFault w' \<longrightarrow> w'=w)"
using exec_c' c'
proof (induct)
case (WhileTrue r b' c'' n u w)
have eqs: "While b' c'' = While b (mark_guards f c)" by fact
from WhileTrue.hyps eqs
have r_in_b: "r\<in>b" by simp
from WhileTrue.hyps eqs
have exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal r\<rangle> =n\<Rightarrow> u" by simp
from WhileTrue.hyps eqs
have exec_mark_w: "\<Gamma>\<turnstile>\<langle>While b (mark_guards f c),u\<rangle> =n\<Rightarrow> w"
by simp
show ?case
proof -
from WhileTrue.hyps eqs have "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal r\<rangle> =n\<Rightarrow> u"
by simp
with While.hyps
obtain u' where
exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal r\<rangle> =n\<Rightarrow> u'" and
u_Fault: "isFault u \<longrightarrow> isFault u'" and
u'_Fault_f: "u' = Fault f \<longrightarrow> u'=u" and
u'_Fault: "isFault u' \<longrightarrow> isFault u" and
u'_noFault: "\<not> isFault u' \<longrightarrow> u'=u"
by blast
show ?thesis
proof (cases "isFault u'")
case False
with u'_noFault have u': "u'=u" by simp
from WhileTrue.hyps eqs obtain w' where
"\<Gamma>\<turnstile>\<langle>While b c,u\<rangle> =n\<Rightarrow> w'"
"isFault w \<longrightarrow> isFault w'"
"w' = Fault f \<longrightarrow> w'=w"
"isFault w' \<longrightarrow> isFault w"
"\<not> isFault w' \<longrightarrow> w' = w"
by blast
with u' exec_c r_in_b
show ?thesis
by (blast intro: execn.WhileTrue)
next
case True
then obtain f' where u': "u'=Fault f'"..
with exec_c r_in_b
have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Fault f'"
by (blast intro: execn.intros)
from True u'_Fault have "isFault u"
by simp
then obtain f where u: "u=Fault f"..
with exec_mark_w have "w=Fault f"
by (auto dest: execn_Fault_end)
with exec u' u u'_Fault_f
show ?thesis
by auto
qed
qed
next
case (WhileFalse r b' c'' n)
have eqs: "While b' c'' = While b (mark_guards f c)" by fact
from WhileFalse.hyps eqs
have r_not_in_b: "r\<notin>b" by simp
show ?case
proof -
from r_not_in_b
have "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Normal r"
by (rule execn.WhileFalse)
thus ?thesis
by blast
qed
qed auto
} note hyp_while = this
show ?thesis
proof (cases "s'\<in>b")
case False
with Normal exec_mark
have "t=s"
by (auto elim: execn_Normal_elim_cases)
with Normal False show ?thesis
by (auto intro: execn.intros)
next
case True note s'_in_b = this
with Normal exec_mark obtain r where
exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal s'\<rangle> =n\<Rightarrow> r" and
exec_mark_w: "\<Gamma>\<turnstile>\<langle>While b (mark_guards f c),r\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
from While.hyps exec_mark_c obtain r' where
exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> r'" and
r_Fault: "isFault r \<longrightarrow> isFault r'" and
r'_Fault_f: "r' = Fault f \<longrightarrow> r'=r" and
r'_Fault: "isFault r' \<longrightarrow> isFault r" and
r'_noFault: "\<not> isFault r' \<longrightarrow> r'=r"
by blast
show ?thesis
proof (cases "isFault r'")
case False
with r'_noFault have r': "r'=r" by simp
from hyp_while exec_mark_w
obtain t' where
"\<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' = Fault f \<longrightarrow> t'=t"
"isFault t' \<longrightarrow> isFault t"
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with r' exec_c Normal s'_in_b
show ?thesis
by (blast intro: execn.intros)
next
case True
then obtain f' where r': "r'=Fault f'"..
hence "\<Gamma>\<turnstile>\<langle>While b c,r'\<rangle> =n\<Rightarrow> Fault f'"
by auto
with Normal s'_in_b exec_c
have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal s'\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
from True r'_Fault
have "isFault r"
by simp
then obtain f where r: "r=Fault f"..
with exec_mark_w have "t=Fault f"
by (auto dest: execn_Fault_end)
with Normal exec r' r r'_Fault_f
show ?thesis
by auto
qed
qed
qed
next
case Call thus ?case by auto
next
case DynCom thus ?case
by (fastforce elim!: execn_elim_cases intro: execn.intros)
next
case (Guard f' g c s n t)
have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Guard f' g c),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Fault f)
with exec_mark have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_mark have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_mark have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "s'\<in>g")
case False
with Normal exec_mark have t: "t=Fault f"
by (auto elim: execn_Normal_elim_cases)
from False
have "\<Gamma>\<turnstile>\<langle>Guard f' g c,Normal s'\<rangle> =n\<Rightarrow> Fault f'"
by (blast intro: execn.intros)
with Normal t show ?thesis
by auto
next
case True
with exec_mark Normal
have "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
with Guard.hyps obtain t' where
"\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> t'" and
"isFault t \<longrightarrow> isFault t'" and
"t' = Fault f \<longrightarrow> t'=t" and
"isFault t' \<longrightarrow> isFault t" and
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with Normal True
show ?thesis
by (blast intro: execn.intros)
qed
qed
next
case Throw thus ?case by auto
next
case (Catch c1 c2 s n t)
have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Catch c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases "s")
case (Fault f)
with exec_mark have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_mark have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_mark have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s') note s=this
with exec_mark have
"\<Gamma>\<turnstile>\<langle>Catch (mark_guards f c1) (mark_guards f c2),Normal s'\<rangle> =n\<Rightarrow> t" by simp
thus ?thesis
proof (cases)
fix w
assume exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards f c1,Normal s'\<rangle> =n\<Rightarrow> Abrupt w"
assume exec_mark_c2: "\<Gamma>\<turnstile>\<langle>mark_guards f c2,Normal w\<rangle> =n\<Rightarrow> t"
from exec_mark_c1 Catch.hyps
obtain w' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> w'" and
w'_Fault_f: "w' = Fault f \<longrightarrow> w'=Abrupt w" and
w'_Fault: "isFault w' \<longrightarrow> isFault (Abrupt w)" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w'=Abrupt w"
by fastforce
show ?thesis
proof (cases "w'")
case (Fault f')
with Normal exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with w'_Fault Fault show ?thesis
by auto
next
case Stuck
with w'_noFault have False
by simp
thus ?thesis ..
next
case (Normal w'')
with w'_noFault have False by simp thus ?thesis ..
next
case (Abrupt w'')
with w'_noFault have w'': "w''=w" by simp
from exec_mark_c2 Catch.hyps
obtain t' where
"\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' = Fault f \<longrightarrow> t'=t"
"isFault t' \<longrightarrow> isFault t"
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with w'' Abrupt s exec_c1
show ?thesis
by (blast intro: execn.intros)
qed
next
assume t: "\<not> isAbr t"
assume "\<Gamma>\<turnstile>\<langle>mark_guards f c1,Normal s'\<rangle> =n\<Rightarrow> t"
with Catch.hyps
obtain t' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'" and
t_Fault: "isFault t \<longrightarrow> isFault t'" and
t'_Fault_f: "t' = Fault f \<longrightarrow> t'=t" and
t'_Fault: "isFault t' \<longrightarrow> isFault t" and
t'_noFault: "\<not> isFault t' \<longrightarrow> t'=t"
by blast
show ?thesis
proof (cases "isFault t'")
case True
then obtain f' where t': "t'=Fault f'"..
with exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s'\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with t'_Fault_f t'_Fault t' s show ?thesis
by auto
next
case False
with t'_noFault have "t'=t" by simp
with t exec_c1 s show ?thesis
by (blast intro: execn.intros)
qed
qed
qed
qed
lemma exec_to_exec_mark_guards:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes t_not_Fault: "\<not> isFault t"
shows "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> \<Rightarrow> t "
proof -
from exec_to_execn [OF exec_c] obtain n where
"\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" ..
from execn_to_execn_mark_guards [OF this t_not_Fault]
show ?thesis
by (blast intro: execn_to_exec)
qed
lemma exec_to_exec_mark_guards_Fault:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f"
shows "\<exists>f'. \<Gamma>\<turnstile>\<langle>mark_guards x c,s\<rangle> \<Rightarrow> Fault f'"
proof -
from exec_to_execn [OF exec_c] obtain n where
"\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f" ..
from execn_to_execn_mark_guards_Fault [OF this]
show ?thesis
by (blast intro: execn_to_exec)
qed
lemma exec_mark_guards_to_exec:
assumes exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> \<Rightarrow> t"
shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and>
(t' = Fault f \<longrightarrow> t'=t) \<and>
(isFault t' \<longrightarrow> isFault t) \<and>
(\<not> isFault t' \<longrightarrow> t'=t)"
proof -
from exec_to_execn [OF exec_mark] obtain n where
"\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> =n\<Rightarrow> t" ..
from execn_mark_guards_to_execn [OF this]
show ?thesis
by (blast intro: execn_to_exec)
qed
(* ************************************************************************* *)
subsection \<open>Lemmas about @{const "strip_guards"}\<close>
(* ************************************************************************* *)
lemma execn_to_execn_strip_guards:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes t_not_Fault: "\<not> isFault t"
shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t "
using exec_c t_not_Fault [simplified not_isFault_iff]
by (induct) (auto intro: execn.intros dest: noFaultn_startD')
lemma execn_to_execn_strip_guards_Fault:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<And>f. \<lbrakk>t=Fault f; f \<notin> F\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> Fault f"
using exec_c
proof (induct)
case Skip thus ?case by auto
next
case Guard thus ?case by (fastforce intro: execn.intros)
next
case GuardFault thus ?case by (fastforce intro: execn.intros)
next
case FaultProp thus ?case by auto
next
case Basic thus ?case by auto
next
case Spec thus ?case by auto
next
case SpecStuck thus ?case by auto
next
case (Seq c1 s n w c2 t)
have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> w" by fact
have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t" by fact
have t: "t=Fault f" by fact
have notinF: "f \<notin> F" by fact
show ?case
proof (cases w)
case (Fault f')
with exec_c2 t have "f'=f"
by (auto dest: execn_Fault_end)
with Fault notinF Seq.hyps
have "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> Fault f"
by auto
moreover have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,Fault f\<rangle> =n\<Rightarrow> Fault f"
by auto
ultimately show ?thesis
by (auto intro: execn.intros)
next
case (Normal s')
with execn_to_execn_strip_guards [OF exec_c1]
have exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with Seq.hyps t notinF
have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,w\<rangle> =n\<Rightarrow> Fault f"
by blast
with exec_strip_c1 show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s')
with execn_to_execn_strip_guards [OF exec_c1]
have exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with Seq.hyps t notinF
have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,w\<rangle> =n\<Rightarrow> Fault f"
by (auto intro: execn.intros)
with exec_strip_c1 show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_c2 have "t=Stuck"
by (auto dest: execn_Stuck_end)
with t show ?thesis by simp
qed
next
case CondTrue thus ?case by (fastforce intro: execn.intros)
next
case CondFalse thus ?case by (fastforce intro: execn.intros)
next
case (WhileTrue s b c n w t)
have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> w" by fact
have exec_w: "\<Gamma>\<turnstile>\<langle>While b c,w\<rangle> =n\<Rightarrow> t" by fact
have t: "t = Fault f" by fact
have notinF: "f \<notin> F" by fact
have s_in_b: "s \<in> b" by fact
show ?case
proof (cases w)
case (Fault f')
with exec_w t have "f'=f"
by (auto dest: execn_Fault_end)
with Fault notinF WhileTrue.hyps
have "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s\<rangle> =n\<Rightarrow> Fault f"
by auto
moreover have "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),Fault f\<rangle> =n\<Rightarrow> Fault f"
by auto
ultimately show ?thesis
using s_in_b by (auto intro: execn.intros)
next
case (Normal s')
with execn_to_execn_strip_guards [OF exec_c]
have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with WhileTrue.hyps t notinF
have "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),w\<rangle> =n\<Rightarrow> Fault f"
by blast
with exec_strip_c s_in_b show ?thesis
by (auto intro: execn.intros)
next
case (Abrupt s')
with execn_to_execn_strip_guards [OF exec_c]
have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s\<rangle> =n\<Rightarrow> w"
by simp
with WhileTrue.hyps t notinF
have "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),w\<rangle> =n\<Rightarrow> Fault f"
by (auto intro: execn.intros)
with exec_strip_c s_in_b show ?thesis
by (auto intro: execn.intros)
next
case Stuck
with exec_w have "t=Stuck"
by (auto dest: execn_Stuck_end)
with t show ?thesis by simp
qed
next
case WhileFalse thus ?case by (fastforce intro: execn.intros)
next
case Call thus ?case by (fastforce intro: execn.intros)
next
case CallUndefined thus ?case by simp
next
case StuckProp thus ?case by simp
next
case DynCom thus ?case by (fastforce intro: execn.intros)
next
case Throw thus ?case by simp
next
case AbruptProp thus ?case by simp
next
case (CatchMatch c1 s n w c2 t)
have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w" by fact
have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t" by fact
have t: "t = Fault f" by fact
have notinF: "f \<notin> F" by fact
from execn_to_execn_strip_guards [OF exec_c1]
have exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w"
by simp
with CatchMatch.hyps t notinF
have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,Normal w\<rangle> =n\<Rightarrow> Fault f"
by blast
with exec_strip_c1 show ?case
by (auto intro: execn.intros)
next
case CatchMiss thus ?case by (fastforce intro: execn.intros)
qed
lemma execn_to_execn_strip_guards':
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes t_not_Fault: "t \<notin> Fault ` F"
shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t"
proof (cases t)
case (Fault f)
with t_not_Fault exec_c show ?thesis
by (auto intro: execn_to_execn_strip_guards_Fault)
qed (insert exec_c, auto intro: execn_to_execn_strip_guards)
lemma execn_strip_guards_to_execn:
"\<And>s n t. \<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t
\<Longrightarrow> \<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and>
(t' \<in> Fault ` (- F) \<longrightarrow> t'=t) \<and>
(\<not> isFault t' \<longrightarrow> t'=t)"
proof (induct c)
case Skip thus ?case by auto
next
case Basic thus ?case by auto
next
case Spec thus ?case by auto
next
case (Seq c1 c2 s n t)
have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Seq c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
then obtain w where
exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,s\<rangle> =n\<Rightarrow> w" and
exec_strip_c2: "\<Gamma>\<turnstile>\<langle>strip_guards F c2,w\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_elim_cases)
from Seq.hyps exec_strip_c1
obtain w' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> w'" and
w_Fault: "isFault w \<longrightarrow> isFault w'" and
w'_Fault: "w' \<in> Fault ` (- F) \<longrightarrow> w'=w" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w'=w"
by blast
show ?case
proof (cases "s")
case (Fault f)
with exec_strip have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_strip have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_strip have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "isFault w")
case True
then obtain f where w': "w=Fault f"..
moreover with exec_strip_c2
have t: "t=Fault f"
by (auto dest: execn_Fault_end)
ultimately show ?thesis
using Normal w_Fault w'_Fault exec_c1
by (fastforce intro: execn.intros elim: isFaultE)
next
case False
note noFault_w = this
show ?thesis
proof (cases "isFault w'")
case True
then obtain f' where w': "w'=Fault f'"..
with Normal exec_c1
have exec: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
from w'_Fault w' noFault_w
have "f' \<in> F"
by (cases w) auto
with exec
show ?thesis
by auto
next
case False
with w'_noFault have w': "w'=w" by simp
from Seq.hyps exec_strip_c2
obtain t' where
"\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t'" and
"isFault t \<longrightarrow> isFault t'" and
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with Normal exec_c1 w'
show ?thesis
by (fastforce intro: execn.intros)
qed
qed
qed
next
next
case (Cond b c1 c2 s n t)
have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Cond b c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Fault f)
with exec_strip have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_strip have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_strip have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "s'\<in> b")
case True
with Normal exec_strip
have "\<Gamma>\<turnstile>\<langle>strip_guards F c1 ,Normal s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
with Normal True Cond.hyps obtain t'
where "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal True
show ?thesis
by (blast intro: execn.intros)
next
case False
with Normal exec_strip
have "\<Gamma>\<turnstile>\<langle>strip_guards F c2 ,Normal s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
with Normal False Cond.hyps obtain t'
where "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t"
"\<not> isFault t' \<longrightarrow> t' = t"
by blast
with Normal False
show ?thesis
by (blast intro: execn.intros)
qed
qed
next
case (While b c s n t)
have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Fault f)
with exec_strip have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_strip have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_strip have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
{
fix c' r w
assume exec_c': "\<Gamma>\<turnstile>\<langle>c',r\<rangle> =n\<Rightarrow> w"
assume c': "c'=While b (strip_guards F c)"
have "\<exists>w'. \<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> w' \<and> (isFault w \<longrightarrow> isFault w') \<and>
(w' \<in> Fault ` (-F) \<longrightarrow> w'=w) \<and>
(\<not> isFault w' \<longrightarrow> w'=w)"
using exec_c' c'
proof (induct)
case (WhileTrue r b' c'' n u w)
have eqs: "While b' c'' = While b (strip_guards F c)" by fact
from WhileTrue.hyps eqs
have r_in_b: "r\<in>b" by simp
from WhileTrue.hyps eqs
have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal r\<rangle> =n\<Rightarrow> u" by simp
from WhileTrue.hyps eqs
have exec_strip_w: "\<Gamma>\<turnstile>\<langle>While b (strip_guards F c),u\<rangle> =n\<Rightarrow> w"
by simp
show ?case
proof -
from WhileTrue.hyps eqs have "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal r\<rangle> =n\<Rightarrow> u"
by simp
with While.hyps
obtain u' where
exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal r\<rangle> =n\<Rightarrow> u'" and
u_Fault: "isFault u \<longrightarrow> isFault u'" and
u'_Fault: "u' \<in> Fault ` (-F) \<longrightarrow> u'=u" and
u'_noFault: "\<not> isFault u' \<longrightarrow> u'=u"
by blast
show ?thesis
proof (cases "isFault u'")
case False
with u'_noFault have u': "u'=u" by simp
from WhileTrue.hyps eqs obtain w' where
"\<Gamma>\<turnstile>\<langle>While b c,u\<rangle> =n\<Rightarrow> w'"
"isFault w \<longrightarrow> isFault w'"
"w' \<in> Fault ` (-F) \<longrightarrow> w'=w"
"\<not> isFault w' \<longrightarrow> w' = w"
by blast
with u' exec_c r_in_b
show ?thesis
by (blast intro: execn.WhileTrue)
next
case True
then obtain f' where u': "u'=Fault f'"..
with exec_c r_in_b
have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Fault f'"
by (blast intro: execn.intros)
show ?thesis
proof (cases "isFault u")
case True
then obtain f where u: "u=Fault f"..
with exec_strip_w have "w=Fault f"
by (auto dest: execn_Fault_end)
with exec u' u u'_Fault
show ?thesis
by auto
next
case False
with u'_Fault u' have "f' \<in> F"
by (cases u) auto
with exec show ?thesis
by auto
qed
qed
qed
next
case (WhileFalse r b' c'' n)
have eqs: "While b' c'' = While b (strip_guards F c)" by fact
from WhileFalse.hyps eqs
have r_not_in_b: "r\<notin>b" by simp
show ?case
proof -
from r_not_in_b
have "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Normal r"
by (rule execn.WhileFalse)
thus ?thesis
by blast
qed
qed auto
} note hyp_while = this
show ?thesis
proof (cases "s'\<in>b")
case False
with Normal exec_strip
have "t=s"
by (auto elim: execn_Normal_elim_cases)
with Normal False show ?thesis
by (auto intro: execn.intros)
next
case True note s'_in_b = this
with Normal exec_strip obtain r where
exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s'\<rangle> =n\<Rightarrow> r" and
exec_strip_w: "\<Gamma>\<turnstile>\<langle>While b (strip_guards F c),r\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
from While.hyps exec_strip_c obtain r' where
exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> r'" and
r_Fault: "isFault r \<longrightarrow> isFault r'" and
r'_Fault: "r' \<in> Fault ` (-F) \<longrightarrow> r'=r" and
r'_noFault: "\<not> isFault r' \<longrightarrow> r'=r"
by blast
show ?thesis
proof (cases "isFault r'")
case False
with r'_noFault have r': "r'=r" by simp
from hyp_while exec_strip_w
obtain t' where
"\<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t"
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with r' exec_c Normal s'_in_b
show ?thesis
by (blast intro: execn.intros)
next
case True
then obtain f' where r': "r'=Fault f'"..
hence "\<Gamma>\<turnstile>\<langle>While b c,r'\<rangle> =n\<Rightarrow> Fault f'"
by auto
with Normal s'_in_b exec_c
have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal s'\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
show ?thesis
proof (cases "isFault r")
case True
then obtain f where r: "r=Fault f"..
with exec_strip_w have "t=Fault f"
by (auto dest: execn_Fault_end)
with Normal exec r' r r'_Fault
show ?thesis
by auto
next
case False
with r'_Fault r' have "f' \<in> F"
by (cases r) auto
with Normal exec show ?thesis
by auto
qed
qed
qed
qed
next
case Call thus ?case by auto
next
case DynCom thus ?case
by (fastforce elim!: execn_elim_cases intro: execn.intros)
next
case (Guard f g c s n t)
have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Guard f g c),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases s)
case (Fault f)
with exec_strip have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_strip have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_strip have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s')
show ?thesis
proof (cases "f\<in>F")
case True
with exec_strip Normal
have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s'\<rangle> =n\<Rightarrow> t"
by simp
with Guard.hyps obtain t' where
"\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> t'" and
"isFault t \<longrightarrow> isFault t'" and
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with Normal True
show ?thesis
by (cases "s'\<in> g") (fastforce intro: execn.intros)+
next
case False
note f_notin_F = this
show ?thesis
proof (cases "s'\<in>g")
case False
with Normal exec_strip f_notin_F have t: "t=Fault f"
by (auto elim: execn_Normal_elim_cases)
from False
have "\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s'\<rangle> =n\<Rightarrow> Fault f"
by (blast intro: execn.intros)
with False Normal t show ?thesis
by auto
next
case True
with exec_strip Normal f_notin_F
have "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
with Guard.hyps obtain t' where
"\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> t'" and
"isFault t \<longrightarrow> isFault t'" and
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with Normal True
show ?thesis
by (blast intro: execn.intros)
qed
qed
qed
next
case Throw thus ?case by auto
next
case (Catch c1 c2 s n t)
have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Catch c1 c2),s\<rangle> =n\<Rightarrow> t" by fact
show ?case
proof (cases "s")
case (Fault f)
with exec_strip have "t=Fault f"
by (auto dest: execn_Fault_end)
with Fault show ?thesis
by auto
next
case Stuck
with exec_strip have "t=Stuck"
by (auto dest: execn_Stuck_end)
with Stuck show ?thesis
by auto
next
case (Abrupt s')
with exec_strip have "t=Abrupt s'"
by (auto dest: execn_Abrupt_end)
with Abrupt show ?thesis
by auto
next
case (Normal s') note s=this
with exec_strip have
"\<Gamma>\<turnstile>\<langle>Catch (strip_guards F c1) (strip_guards F c2),Normal s'\<rangle> =n\<Rightarrow> t" by simp
thus ?thesis
proof (cases)
fix w
assume exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s'\<rangle> =n\<Rightarrow> Abrupt w"
assume exec_strip_c2: "\<Gamma>\<turnstile>\<langle>strip_guards F c2,Normal w\<rangle> =n\<Rightarrow> t"
from exec_strip_c1 Catch.hyps
obtain w' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> w'" and
w'_Fault: "w' \<in> Fault ` (-F) \<longrightarrow> w'=Abrupt w" and
w'_noFault: "\<not> isFault w' \<longrightarrow> w'=Abrupt w"
by blast
show ?thesis
proof (cases "w'")
case (Fault f')
with Normal exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with w'_Fault Fault show ?thesis
by auto
next
case Stuck
with w'_noFault have False
by simp
thus ?thesis ..
next
case (Normal w'')
with w'_noFault have False by simp thus ?thesis ..
next
case (Abrupt w'')
with w'_noFault have w'': "w''=w" by simp
from exec_strip_c2 Catch.hyps
obtain t' where
"\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'"
"t' \<in> Fault ` (-F) \<longrightarrow> t'=t"
"\<not> isFault t' \<longrightarrow> t'=t"
by blast
with w'' Abrupt s exec_c1
show ?thesis
by (blast intro: execn.intros)
qed
next
assume t: "\<not> isAbr t"
assume "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s'\<rangle> =n\<Rightarrow> t"
with Catch.hyps
obtain t' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'" and
t_Fault: "isFault t \<longrightarrow> isFault t'" and
t'_Fault: "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and
t'_noFault: "\<not> isFault t' \<longrightarrow> t'=t"
by blast
show ?thesis
proof (cases "isFault t'")
case True
then obtain f' where t': "t'=Fault f'"..
with exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s'\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with t'_Fault t' s show ?thesis
by auto
next
case False
with t'_noFault have "t'=t" by simp
with t exec_c1 s show ?thesis
by (blast intro: execn.intros)
qed
qed
qed
qed
lemma execn_strip_to_execn:
assumes exec_strip: "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and>
(t' \<in> Fault ` (- F) \<longrightarrow> t'=t) \<and>
(\<not> isFault t' \<longrightarrow> t'=t)"
using exec_strip
proof (induct)
case Skip thus ?case by (blast intro: execn.intros)
next
case Guard thus ?case by (blast intro: execn.intros)
next
case GuardFault thus ?case by (blast intro: execn.intros)
next
case FaultProp thus ?case by (blast intro: execn.intros)
next
case Basic thus ?case by (blast intro: execn.intros)
next
case Spec thus ?case by (blast intro: execn.intros)
next
case SpecStuck thus ?case by (blast intro: execn.intros)
next
case Seq thus ?case by (blast intro: execn.intros elim: isFaultE)
next
case CondTrue thus ?case by (blast intro: execn.intros)
next
case CondFalse thus ?case by (blast intro: execn.intros)
next
case WhileTrue thus ?case by (blast intro: execn.intros elim: isFaultE)
next
case WhileFalse thus ?case by (blast intro: execn.intros)
next
case Call thus ?case
by simp (blast intro: execn.intros dest: execn_strip_guards_to_execn)
next
case CallUndefined thus ?case
by simp (blast intro: execn.intros)
next
case StuckProp thus ?case
by blast
next
case DynCom thus ?case by (blast intro: execn.intros)
next
case Throw thus ?case by (blast intro: execn.intros)
next
case AbruptProp thus ?case by (blast intro: execn.intros)
next
case (CatchMatch c1 s n r c2 t)
then obtain r' t' where
exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> r'" and
r'_Fault: "r' \<in> Fault ` (-F) \<longrightarrow> r' = Abrupt r" and
r'_noFault: "\<not> isFault r' \<longrightarrow> r' = Abrupt r" and
exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal r\<rangle> =n\<Rightarrow> t'" and
t_Fault: "isFault t \<longrightarrow> isFault t'" and
t'_Fault: "t' \<in> Fault ` (-F) \<longrightarrow> t' = t" and
t'_noFault: "\<not> isFault t' \<longrightarrow> t' = t"
by blast
show ?case
proof (cases "isFault r'")
case True
then obtain f' where r': "r'=Fault f'"..
with exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> =n\<Rightarrow> Fault f'"
by (auto intro: execn.intros)
with r' r'_Fault show ?thesis
by (auto intro: execn.intros)
next
case False
with r'_noFault have "r'=Abrupt r" by simp
with exec_c1 exec_c2 t_Fault t'_noFault t'_Fault
show ?thesis
by (blast intro: execn.intros)
qed
next
case CatchMiss thus ?case by (fastforce intro: execn.intros elim: isFaultE)
qed
lemma exec_strip_guards_to_exec:
assumes exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t"
shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and>
(t' \<in> Fault ` (-F) \<longrightarrow> t'=t) \<and>
(\<not> isFault t' \<longrightarrow> t'=t)"
proof -
from exec_strip obtain n where
execn_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t"
by (auto simp add: exec_iff_execn)
then obtain t' where
"\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t'=t"
by (blast dest: execn_strip_guards_to_execn)
thus ?thesis
by (blast intro: execn_to_exec)
qed
lemma exec_strip_to_exec:
assumes exec_strip: "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and>
(isFault t \<longrightarrow> isFault t') \<and>
(t' \<in> Fault ` (-F) \<longrightarrow> t'=t) \<and>
(\<not> isFault t' \<longrightarrow> t'=t)"
proof -
from exec_strip obtain n where
execn_strip: "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (auto simp add: exec_iff_execn)
then obtain t' where
"\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t'"
"isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t'=t"
by (blast dest: execn_strip_to_execn)
thus ?thesis
by (blast intro: execn_to_exec)
qed
lemma exec_to_exec_strip_guards:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes t_not_Fault: "\<not> isFault t"
shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t"
by (auto simp add: exec_iff_execn)
from this t_not_Fault
have "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t"
by (rule execn_to_execn_strip_guards )
thus "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t"
by (rule execn_to_exec)
qed
lemma exec_to_exec_strip_guards':
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes t_not_Fault: "t \<notin> Fault ` F"
shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t"
by (auto simp add: exec_iff_execn)
from this t_not_Fault
have "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t"
by (rule execn_to_execn_strip_guards' )
thus "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t"
by (rule execn_to_exec)
qed
lemma execn_to_execn_strip:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes t_not_Fault: "\<not> isFault t"
shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
using exec_c t_not_Fault
proof (induct)
case (Call p bdy s n s')
have bdy: "\<Gamma> p = Some bdy" by fact
from Call have "strip F \<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'"
by blast
from execn_to_execn_strip_guards [OF this] Call
have "strip F \<Gamma>\<turnstile>\<langle>strip_guards F bdy,Normal s\<rangle> =n\<Rightarrow> s'"
by simp
moreover from bdy have "(strip F \<Gamma>) p = Some (strip_guards F bdy)"
by simp
ultimately
show ?case
by (blast intro: execn.intros)
next
case CallUndefined thus ?case by (auto intro: execn.CallUndefined)
qed (auto intro: execn.intros dest: noFaultn_startD' simp add: not_isFault_iff)
lemma execn_to_execn_strip':
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes t_not_Fault: "t \<notin> Fault ` F"
shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
using exec_c t_not_Fault
proof (induct)
case (Call p bdy s n s')
have bdy: "\<Gamma> p = Some bdy" by fact
from Call have "strip F \<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'"
by blast
from execn_to_execn_strip_guards' [OF this] Call
have "strip F \<Gamma>\<turnstile>\<langle>strip_guards F bdy,Normal s\<rangle> =n\<Rightarrow> s'"
by simp
moreover from bdy have "(strip F \<Gamma>) p = Some (strip_guards F bdy)"
by simp
ultimately
show ?case
by (blast intro: execn.intros)
next
case CallUndefined thus ?case by (auto intro: execn.CallUndefined)
next
case (Seq c1 s n s' c2 t)
show ?case
proof (cases "isFault s'")
case False
with Seq show ?thesis
by (auto intro: execn.intros simp add: not_isFault_iff)
next
case True
then obtain f' where s': "s'=Fault f'" by (auto simp add: isFault_def)
with Seq obtain "t=Fault f'" and "f' \<notin> F"
by (force dest: execn_Fault_end)
with Seq s' show ?thesis
by (auto intro: execn.intros)
qed
next
case (WhileTrue b c s n s' t)
show ?case
proof (cases "isFault s'")
case False
with WhileTrue show ?thesis
by (auto intro: execn.intros simp add: not_isFault_iff)
next
case True
then obtain f' where s': "s'=Fault f'" by (auto simp add: isFault_def)
with WhileTrue obtain "t=Fault f'" and "f' \<notin> F"
by (force dest: execn_Fault_end)
with WhileTrue s' show ?thesis
by (auto intro: execn.intros)
qed
qed (auto intro: execn.intros)
lemma exec_to_exec_strip:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes t_not_Fault: "\<not> isFault t"
shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t"
by (auto simp add: exec_iff_execn)
from this t_not_Fault
have "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (rule execn_to_execn_strip)
thus "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
by (rule execn_to_exec)
qed
lemma exec_to_exec_strip':
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes t_not_Fault: "t \<notin> Fault ` F"
shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t"
by (auto simp add: exec_iff_execn)
from this t_not_Fault
have "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (rule execn_to_execn_strip' )
thus "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
by (rule execn_to_exec)
qed
lemma exec_to_exec_strip_guards_Fault:
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f"
assumes f_notin_F: "f \<notin> F"
shows"\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> Fault f"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>Fault f"
by (auto simp add: exec_iff_execn)
from execn_to_execn_strip_guards_Fault [OF this _ f_notin_F]
have "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> Fault f"
by simp
thus "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> Fault f"
by (rule execn_to_exec)
qed
(* ************************************************************************* *)
subsection \<open>Lemmas about @{term "c\<^sub>1 \<inter>\<^sub>g c\<^sub>2"}\<close>
(* ************************************************************************* *)
lemma inter_guards_execn_Normal_noFault:
"\<And>c c2 s t n. \<lbrakk>(c1 \<inter>\<^sub>g c2) = Some c; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t; \<not> isFault t\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,Normal s\<rangle> =n\<Rightarrow> t"
proof (induct c1)
case Skip
have "(Skip \<inter>\<^sub>g c2) = Some c" by fact
then obtain c2: "c2=Skip" and c: "c=Skip"
by (simp add: inter_guards_Skip)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c have "t=Normal s"
by (auto elim: execn_Normal_elim_cases)
with Skip c2
show ?case
by (auto intro: execn.intros)
next
case (Basic f)
have "(Basic f \<inter>\<^sub>g c2) = Some c" by fact
then obtain c2: "c2=Basic f" and c: "c=Basic f"
by (simp add: inter_guards_Basic)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c have "t=Normal (f s)"
by (auto elim: execn_Normal_elim_cases)
with Basic c2
show ?case
by (auto intro: execn.intros)
next
case (Spec r)
have "(Spec r \<inter>\<^sub>g c2) = Some c" by fact
then obtain c2: "c2=Spec r" and c: "c=Spec r"
by (simp add: inter_guards_Spec)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c have "\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> t" by simp
from this Spec c2 show ?case
by (cases) (auto intro: execn.intros)
next
case (Seq a1 a2)
have noFault: "\<not> isFault t" by fact
have "(Seq a1 a2 \<inter>\<^sub>g c2) = Some c" by fact
then obtain b1 b2 d1 d2 where
c2: "c2=Seq b1 b2" and
d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and
c: "c=Seq d1 d2"
by (auto simp add: inter_guards_Seq)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c obtain s' where
exec_d1: "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> s'" and
exec_d2: "\<Gamma>\<turnstile>\<langle>d2,s'\<rangle> =n\<Rightarrow> t"
by (auto elim: execn_Normal_elim_cases)
show ?case
proof (cases s')
case (Fault f')
with exec_d2 have "t=Fault f'"
by (auto intro: execn_Fault_end)
with noFault show ?thesis by simp
next
case (Normal s'')
with d1 exec_d1 Seq.hyps
obtain
"\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Normal s''" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Normal s''"
by auto
moreover
from Normal d2 exec_d2 noFault Seq.hyps
obtain "\<Gamma>\<turnstile>\<langle>a2,Normal s''\<rangle> =n\<Rightarrow> t" and "\<Gamma>\<turnstile>\<langle>b2,Normal s''\<rangle> =n\<Rightarrow> t"
by auto
ultimately
show ?thesis
using Normal c2 by (auto intro: execn.intros)
next
case (Abrupt s'')
with exec_d2 have "t=Abrupt s''"
by (auto simp add: execn_Abrupt_end)
moreover
from Abrupt d1 exec_d1 Seq.hyps
obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Abrupt s''" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Abrupt s''"
by auto
moreover
obtain
"\<Gamma>\<turnstile>\<langle>a2,Abrupt s''\<rangle> =n\<Rightarrow> Abrupt s''" and "\<Gamma>\<turnstile>\<langle>b2,Abrupt s''\<rangle> =n\<Rightarrow> Abrupt s''"
by auto
ultimately
show ?thesis
using Abrupt c2 by (auto intro: execn.intros)
next
case Stuck
with exec_d2 have "t=Stuck"
by (auto simp add: execn_Stuck_end)
moreover
from Stuck d1 exec_d1 Seq.hyps
obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Stuck" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Stuck"
by auto
moreover
obtain
"\<Gamma>\<turnstile>\<langle>a2,Stuck\<rangle> =n\<Rightarrow> Stuck" and "\<Gamma>\<turnstile>\<langle>b2,Stuck\<rangle> =n\<Rightarrow> Stuck"
by auto
ultimately
show ?thesis
using Stuck c2 by (auto intro: execn.intros)
qed
next
case (Cond b t1 e1)
have noFault: "\<not> isFault t" by fact
have "(Cond b t1 e1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain t2 e2 t3 e3 where
c2: "c2=Cond b t2 e2" and
t3: "(t1 \<inter>\<^sub>g t2) = Some t3" and
e3: "(e1 \<inter>\<^sub>g e2) = Some e3" and
c: "c=Cond b t3 e3"
by (auto simp add: inter_guards_Cond)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c have "\<Gamma>\<turnstile>\<langle>Cond b t3 e3,Normal s\<rangle> =n\<Rightarrow> t"
by simp
then show ?case
proof (cases)
assume s_in_b: "s\<in>b"
assume "\<Gamma>\<turnstile>\<langle>t3,Normal s\<rangle> =n\<Rightarrow> t"
with Cond.hyps t3 noFault
obtain "\<Gamma>\<turnstile>\<langle>t1,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>t2,Normal s\<rangle> =n\<Rightarrow> t"
by auto
with s_in_b c2 show ?thesis
by (auto intro: execn.intros)
next
assume s_notin_b: "s\<notin>b"
assume "\<Gamma>\<turnstile>\<langle>e3,Normal s\<rangle> =n\<Rightarrow> t"
with Cond.hyps e3 noFault
obtain "\<Gamma>\<turnstile>\<langle>e1,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>e2,Normal s\<rangle> =n\<Rightarrow> t"
by auto
with s_notin_b c2 show ?thesis
by (auto intro: execn.intros)
qed
next
case (While b bdy1)
have noFault: "\<not> isFault t" by fact
have "(While b bdy1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain bdy2 bdy where
c2: "c2=While b bdy2" and
bdy: "(bdy1 \<inter>\<^sub>g bdy2) = Some bdy" and
c: "c=While b bdy"
by (auto simp add: inter_guards_While)
have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
{
fix s t n w w1 w2
assume exec_w: "\<Gamma>\<turnstile>\<langle>w,Normal s\<rangle> =n\<Rightarrow> t"
assume w: "w=While b bdy"
assume noFault: "\<not> isFault t"
from exec_w w noFault
have "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s\<rangle> =n\<Rightarrow> t \<and>
\<Gamma>\<turnstile>\<langle>While b bdy2,Normal s\<rangle> =n\<Rightarrow> t"
proof (induct)
prefer 10
case (WhileTrue s b' bdy' n s' s'')
have eqs: "While b' bdy' = While b bdy" by fact
from WhileTrue have s_in_b: "s \<in> b" by simp
have noFault_s'': "\<not> isFault s''" by fact
from WhileTrue
have exec_bdy: "\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'" by simp
from WhileTrue
have exec_w: "\<Gamma>\<turnstile>\<langle>While b bdy,s'\<rangle> =n\<Rightarrow> s''" by simp
show ?case
proof (cases s')
case (Fault f)
with exec_w have "s''=Fault f"
by (auto intro: execn_Fault_end)
with noFault_s'' show ?thesis by simp
next
case (Normal s''')
with exec_bdy bdy While.hyps
obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Normal s'''"
"\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Normal s'''"
by auto
moreover
from Normal WhileTrue
obtain
"\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s'''\<rangle> =n\<Rightarrow> s''"
"\<Gamma>\<turnstile>\<langle>While b bdy2,Normal s'''\<rangle> =n\<Rightarrow> s''"
by simp
ultimately show ?thesis
using s_in_b Normal
by (auto intro: execn.intros)
next
case (Abrupt s''')
with exec_bdy bdy While.hyps
obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'''"
"\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Abrupt s'''"
by auto
moreover
from Abrupt WhileTrue
obtain
"\<Gamma>\<turnstile>\<langle>While b bdy1,Abrupt s'''\<rangle> =n\<Rightarrow> s''"
"\<Gamma>\<turnstile>\<langle>While b bdy2,Abrupt s'''\<rangle> =n\<Rightarrow> s''"
by simp
ultimately show ?thesis
using s_in_b Abrupt
by (auto intro: execn.intros)
next
case Stuck
with exec_bdy bdy While.hyps
obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Stuck"
"\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Stuck"
by auto
moreover
from Stuck WhileTrue
obtain
"\<Gamma>\<turnstile>\<langle>While b bdy1,Stuck\<rangle> =n\<Rightarrow> s''"
"\<Gamma>\<turnstile>\<langle>While b bdy2,Stuck\<rangle> =n\<Rightarrow> s''"
by simp
ultimately show ?thesis
using s_in_b Stuck
by (auto intro: execn.intros)
qed
next
case WhileFalse thus ?case by (auto intro: execn.intros)
qed (simp_all)
}
with this [OF exec_c c noFault] c2
show ?case
by auto
next
case Call thus ?case by (simp add: inter_guards_Call)
next
case (DynCom f1)
have noFault: "\<not> isFault t" by fact
have "(DynCom f1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain f2 f where
c2: "c2=DynCom f2" and
f_defined: "\<forall>s. ((f1 s) \<inter>\<^sub>g (f2 s)) \<noteq> None" and
c: "c=DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s)))"
by (auto simp add: inter_guards_DynCom)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c have "\<Gamma>\<turnstile>\<langle>DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s))),Normal s\<rangle> =n\<Rightarrow> t" by simp
then show ?case
proof (cases)
assume exec_f: "\<Gamma>\<turnstile>\<langle>the (f1 s \<inter>\<^sub>g f2 s),Normal s\<rangle> =n\<Rightarrow> t"
from f_defined obtain f where "(f1 s \<inter>\<^sub>g f2 s) = Some f"
by auto
with DynCom.hyps this exec_f c2 noFault
show ?thesis
using execn.DynCom by fastforce
qed
next
case Guard thus ?case
by (fastforce elim: execn_Normal_elim_cases intro: execn.intros
simp add: inter_guards_Guard)
next
case Throw thus ?case
by (fastforce elim: execn_Normal_elim_cases
simp add: inter_guards_Throw)
next
case (Catch a1 a2)
have noFault: "\<not> isFault t" by fact
have "(Catch a1 a2 \<inter>\<^sub>g c2) = Some c" by fact
then obtain b1 b2 d1 d2 where
c2: "c2=Catch b1 b2" and
d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and
c: "c=Catch d1 d2"
by (auto simp add: inter_guards_Catch)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact
with c have "\<Gamma>\<turnstile>\<langle>Catch d1 d2,Normal s\<rangle> =n\<Rightarrow> t" by simp
then show ?case
proof (cases)
fix s'
assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'"
with d1 Catch.hyps
obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'"
by auto
moreover
assume "\<Gamma>\<turnstile>\<langle>d2,Normal s'\<rangle> =n\<Rightarrow> t"
with d2 Catch.hyps noFault
obtain "\<Gamma>\<turnstile>\<langle>a2,Normal s'\<rangle> =n\<Rightarrow> t" and "\<Gamma>\<turnstile>\<langle>b2,Normal s'\<rangle> =n\<Rightarrow> t"
by auto
ultimately
show ?thesis
using c2 by (auto intro: execn.intros)
next
assume "\<not> isAbr t"
moreover
assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> t"
with d1 Catch.hyps noFault
obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> t" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> t"
by auto
ultimately
show ?thesis
using c2 by (auto intro: execn.intros)
qed
qed
lemma inter_guards_execn_noFault:
assumes c: "(c1 \<inter>\<^sub>g c2) = Some c"
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes noFault: "\<not> isFault t"
shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> t"
proof (cases s)
case (Fault f)
with exec_c have "t = Fault f"
by (auto intro: execn_Fault_end)
with noFault show ?thesis
by simp
next
case (Abrupt s')
with exec_c have "t=Abrupt s'"
by (simp add: execn_Abrupt_end)
with Abrupt show ?thesis by auto
next
case Stuck
with exec_c have "t=Stuck"
by (simp add: execn_Stuck_end)
with Stuck show ?thesis by auto
next
case (Normal s')
with exec_c noFault inter_guards_execn_Normal_noFault [OF c]
show ?thesis
by blast
qed
lemma inter_guards_exec_noFault:
assumes c: "(c1 \<inter>\<^sub>g c2) = Some c"
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes noFault: "\<not> isFault t"
shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> \<Rightarrow> t"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (auto simp add: exec_iff_execn)
from c this noFault
have "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> t"
by (rule inter_guards_execn_noFault)
thus ?thesis
by (auto intro: execn_to_exec)
qed
lemma inter_guards_execn_Normal_Fault:
"\<And>c c2 s n. \<lbrakk>(c1 \<inter>\<^sub>g c2) = Some c; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f\<rbrakk>
\<Longrightarrow> (\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,Normal s\<rangle> =n\<Rightarrow> Fault f)"
proof (induct c1)
case Skip thus ?case by (fastforce simp add: inter_guards_Skip)
next
case (Basic f) thus ?case by (fastforce simp add: inter_guards_Basic)
next
case (Spec r) thus ?case by (fastforce simp add: inter_guards_Spec)
next
case (Seq a1 a2)
have "(Seq a1 a2 \<inter>\<^sub>g c2) = Some c" by fact
then obtain b1 b2 d1 d2 where
c2: "c2=Seq b1 b2" and
d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and
c: "c=Seq d1 d2"
by (auto simp add: inter_guards_Seq)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact
with c obtain s' where
exec_d1: "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> s'" and
exec_d2: "\<Gamma>\<turnstile>\<langle>d2,s'\<rangle> =n\<Rightarrow> Fault f"
by (auto elim: execn_Normal_elim_cases)
show ?case
proof (cases s')
case (Fault f')
with exec_d2 have "f'=f"
by (auto dest: execn_Fault_end)
with Fault d1 exec_d1
have "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (auto dest: Seq.hyps)
thus ?thesis
proof (cases rule: disjE [consumes 1])
assume "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Fault f"
hence "\<Gamma>\<turnstile>\<langle>Seq a1 a2,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (auto intro: execn.intros)
thus ?thesis
by simp
next
assume "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Fault f"
hence "\<Gamma>\<turnstile>\<langle>Seq b1 b2,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (auto intro: execn.intros)
with c2 show ?thesis
by simp
qed
next
case Abrupt with exec_d2 show ?thesis by (auto dest: execn_Abrupt_end)
next
case Stuck with exec_d2 show ?thesis by (auto dest: execn_Stuck_end)
next
case (Normal s'')
with inter_guards_execn_noFault [OF d1 exec_d1] obtain
exec_a1: "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Normal s''" and
exec_b1: "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Normal s''"
by simp
moreover from d2 exec_d2 Normal
have "\<Gamma>\<turnstile>\<langle>a2,Normal s''\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b2,Normal s''\<rangle> =n\<Rightarrow> Fault f"
by (auto dest: Seq.hyps)
ultimately show ?thesis
using c2 by (auto intro: execn.intros)
qed
next
case (Cond b t1 e1)
have "(Cond b t1 e1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain t2 e2 t e where
c2: "c2=Cond b t2 e2" and
t: "(t1 \<inter>\<^sub>g t2) = Some t" and
e: "(e1 \<inter>\<^sub>g e2) = Some e" and
c: "c=Cond b t e"
by (auto simp add: inter_guards_Cond)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact
with c have "\<Gamma>\<turnstile>\<langle>Cond b t e,Normal s\<rangle> =n\<Rightarrow> Fault f" by simp
thus ?case
proof (cases)
assume "s \<in> b"
moreover assume "\<Gamma>\<turnstile>\<langle>t,Normal s\<rangle> =n\<Rightarrow> Fault f"
with t have "\<Gamma>\<turnstile>\<langle>t1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>t2,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (auto dest: Cond.hyps)
ultimately show ?thesis using c2 c by (fastforce intro: execn.intros)
next
assume "s \<notin> b"
moreover assume "\<Gamma>\<turnstile>\<langle>e,Normal s\<rangle> =n\<Rightarrow> Fault f"
with e have "\<Gamma>\<turnstile>\<langle>e1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>e2,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (auto dest: Cond.hyps)
ultimately show ?thesis using c2 c by (fastforce intro: execn.intros)
qed
next
case (While b bdy1)
have "(While b bdy1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain bdy2 bdy where
c2: "c2=While b bdy2" and
bdy: "(bdy1 \<inter>\<^sub>g bdy2) = Some bdy" and
c: "c=While b bdy"
by (auto simp add: inter_guards_While)
have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact
{
fix s t n w w1 w2
assume exec_w: "\<Gamma>\<turnstile>\<langle>w,Normal s\<rangle> =n\<Rightarrow> t"
assume w: "w=While b bdy"
assume Fault: "t=Fault f"
from exec_w w Fault
have "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s\<rangle> =n\<Rightarrow> Fault f\<or>
\<Gamma>\<turnstile>\<langle>While b bdy2,Normal s\<rangle> =n\<Rightarrow> Fault f"
proof (induct)
case (WhileTrue s b' bdy' n s' s'')
have eqs: "While b' bdy' = While b bdy" by fact
from WhileTrue have s_in_b: "s \<in> b" by simp
have Fault_s'': "s''=Fault f" by fact
from WhileTrue
have exec_bdy: "\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'" by simp
from WhileTrue
have exec_w: "\<Gamma>\<turnstile>\<langle>While b bdy,s'\<rangle> =n\<Rightarrow> s''" by simp
show ?case
proof (cases s')
case (Fault f')
with exec_w Fault_s'' have "f'=f"
by (auto dest: execn_Fault_end)
with Fault exec_bdy bdy While.hyps
have "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Fault f"
by auto
with s_in_b show ?thesis
by (fastforce intro: execn.intros)
next
case (Normal s''')
with inter_guards_execn_noFault [OF bdy exec_bdy]
obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Normal s'''"
"\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Normal s'''"
by auto
moreover
from Normal WhileTrue
have "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s'''\<rangle> =n\<Rightarrow> Fault f \<or>
\<Gamma>\<turnstile>\<langle>While b bdy2,Normal s'''\<rangle> =n\<Rightarrow> Fault f"
by simp
ultimately show ?thesis
using s_in_b by (fastforce intro: execn.intros)
next
case (Abrupt s''')
with exec_w Fault_s'' show ?thesis by (fastforce dest: execn_Abrupt_end)
next
case Stuck
with exec_w Fault_s'' show ?thesis by (fastforce dest: execn_Stuck_end)
qed
next
case WhileFalse thus ?case by (auto intro: execn.intros)
qed (simp_all)
}
with this [OF exec_c c] c2
show ?case
by auto
next
case Call thus ?case by (fastforce simp add: inter_guards_Call)
next
case (DynCom f1)
have "(DynCom f1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain f2 where
c2: "c2=DynCom f2" and
F_defined: "\<forall>s. ((f1 s) \<inter>\<^sub>g (f2 s)) \<noteq> None" and
c: "c=DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s)))"
by (auto simp add: inter_guards_DynCom)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact
with c have "\<Gamma>\<turnstile>\<langle>DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s))),Normal s\<rangle> =n\<Rightarrow> Fault f" by simp
then show ?case
proof (cases)
assume exec_F: "\<Gamma>\<turnstile>\<langle>the (f1 s \<inter>\<^sub>g f2 s),Normal s\<rangle> =n\<Rightarrow> Fault f"
from F_defined obtain F where "(f1 s \<inter>\<^sub>g f2 s) = Some F"
by auto
with DynCom.hyps this exec_F c2
show ?thesis
by (fastforce intro: execn.intros)
qed
next
case (Guard m g1 bdy1)
have "(Guard m g1 bdy1 \<inter>\<^sub>g c2) = Some c" by fact
then obtain g2 bdy2 bdy where
c2: "c2=Guard m g2 bdy2" and
bdy: "(bdy1 \<inter>\<^sub>g bdy2) = Some bdy" and
c: "c=Guard m (g1 \<inter> g2) bdy"
by (auto simp add: inter_guards_Guard)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact
with c have "\<Gamma>\<turnstile>\<langle>Guard m (g1 \<inter> g2) bdy,Normal s\<rangle> =n\<Rightarrow> Fault f"
by simp
thus ?case
proof (cases)
assume f_m: "Fault f = Fault m"
assume "s \<notin> g1 \<inter> g2"
hence "s\<notin>g1 \<or> s\<notin>g2"
by blast
with c2 f_m show ?thesis
by (auto intro: execn.intros)
next
assume "s \<in> g1 \<inter> g2"
moreover
assume "\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> Fault f"
with bdy have "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (rule Guard.hyps)
ultimately show ?thesis
using c2
by (auto intro: execn.intros)
qed
next
case Throw thus ?case by (fastforce simp add: inter_guards_Throw)
next
case (Catch a1 a2)
have "(Catch a1 a2 \<inter>\<^sub>g c2) = Some c" by fact
then obtain b1 b2 d1 d2 where
c2: "c2=Catch b1 b2" and
d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and
c: "c=Catch d1 d2"
by (auto simp add: inter_guards_Catch)
have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact
with c have "\<Gamma>\<turnstile>\<langle>Catch d1 d2,Normal s\<rangle> =n\<Rightarrow> Fault f" by simp
thus ?case
proof (cases)
fix s'
assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'"
from inter_guards_execn_noFault [OF d1 this] obtain
exec_a1: "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" and
exec_b1: "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'"
by simp
moreover assume "\<Gamma>\<turnstile>\<langle>d2,Normal s'\<rangle> =n\<Rightarrow> Fault f"
with d2
have "\<Gamma>\<turnstile>\<langle>a2,Normal s'\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b2,Normal s'\<rangle> =n\<Rightarrow> Fault f"
by (auto dest: Catch.hyps)
ultimately show ?thesis
using c2 by (fastforce intro: execn.intros)
next
assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> Fault f"
with d1 have "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Fault f"
by (auto dest: Catch.hyps)
with c2 show ?thesis
by (fastforce intro: execn.intros)
qed
qed
lemma inter_guards_execn_Fault:
assumes c: "(c1 \<inter>\<^sub>g c2) = Some c"
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f"
shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> Fault f"
proof (cases s)
case (Fault f)
with exec_c show ?thesis
by (auto dest: execn_Fault_end)
next
case (Abrupt s')
with exec_c show ?thesis
by (fastforce dest: execn_Abrupt_end)
next
case Stuck
with exec_c show ?thesis
by (fastforce dest: execn_Stuck_end)
next
case (Normal s')
with exec_c inter_guards_execn_Normal_Fault [OF c]
show ?thesis
by blast
qed
lemma inter_guards_exec_Fault:
assumes c: "(c1 \<inter>\<^sub>g c2) = Some c"
assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f"
shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> \<Rightarrow> Fault f"
proof -
from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f"
by (auto simp add: exec_iff_execn)
from c this
have "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> Fault f"
by (rule inter_guards_execn_Fault)
thus ?thesis
by (auto intro: execn_to_exec)
qed
(* ************************************************************************* *)
subsection "Restriction of Procedure Environment"
(* ************************************************************************* *)
lemma restrict_SomeD: "(m|\<^bsub>A\<^esub>) x = Some y \<Longrightarrow> m x = Some y"
by (auto simp add: restrict_map_def split: if_split_asm)
(* FIXME: To Map *)
lemma restrict_dom_same [simp]: "m|\<^bsub>dom m\<^esub> = m"
apply (rule ext)
apply (clarsimp simp add: restrict_map_def)
apply (simp only: not_None_eq [symmetric])
apply rule
apply (drule sym)
apply blast
done
lemma restrict_in_dom: "x \<in> A \<Longrightarrow> (m|\<^bsub>A\<^esub>) x = m x"
by (auto simp add: restrict_map_def)
lemma exec_restrict_to_exec:
assumes exec_restrict: "\<Gamma>|\<^bsub>A\<^esub>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes notStuck: "t\<noteq>Stuck"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
using exec_restrict notStuck
by (induct) (auto intro: exec.intros dest: restrict_SomeD Stuck_end)
lemma execn_restrict_to_execn:
assumes exec_restrict: "\<Gamma>|\<^bsub>A\<^esub>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes notStuck: "t\<noteq>Stuck"
shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
using exec_restrict notStuck
by (induct) (auto intro: execn.intros dest: restrict_SomeD execn_Stuck_end)
lemma restrict_NoneD: "m x = None \<Longrightarrow> (m|\<^bsub>A\<^esub>) x = None"
by (auto simp add: restrict_map_def split: if_split_asm)
lemma exec_to_exec_restrict:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
shows "\<exists>t'. \<Gamma>|\<^bsub>P\<^esub>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and> (t=Stuck \<longrightarrow> t'=Stuck) \<and>
(\<forall>f. t=Fault f\<longrightarrow> t'\<in>{Fault f,Stuck}) \<and> (t'\<noteq>Stuck \<longrightarrow> t'=t)"
proof -
from exec obtain n where
execn_strip: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
by (auto simp add: exec_iff_execn)
from execn_to_execn_restrict [where P=P,OF this]
obtain t' where
"\<Gamma>|\<^bsub>P\<^esub>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t'"
"t=Stuck \<longrightarrow> t'=Stuck" "\<forall>f. t=Fault f\<longrightarrow> t'\<in>{Fault f,Stuck}" "t'\<noteq>Stuck \<longrightarrow> t'=t"
by blast
thus ?thesis
by (blast intro: execn_to_exec)
qed
lemma notStuck_GuardD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Guard m g c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<in> g\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.Guard )
lemma notStuck_SeqD1:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.Seq )
lemma notStuck_SeqD2:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>s'\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.Seq )
lemma notStuck_SeqD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow>
\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck} \<and> (\<forall>s'. \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>s' \<longrightarrow> \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> \<Rightarrow>\<notin>{Stuck})"
by (auto simp add: final_notin_def dest: exec.Seq )
lemma notStuck_CondTrueD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<in> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.CondTrue)
lemma notStuck_CondFalseD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<notin> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.CondFalse)
lemma notStuck_WhileTrueD1:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<in> b\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.WhileTrue)
lemma notStuck_WhileTrueD2:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>s'; s \<in> b\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.WhileTrue)
lemma notStuck_CallD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma> p = Some bdy\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.Call)
lemma notStuck_CallDefinedD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk>
\<Longrightarrow> \<Gamma> p \<noteq> None"
by (cases "\<Gamma> p")
(auto simp add: final_notin_def dest: exec.CallUndefined)
lemma notStuck_DynComD:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>(c s),Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.DynCom)
lemma notStuck_CatchD1:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.CatchMatch exec.CatchMiss )
lemma notStuck_CatchD2:
"\<lbrakk>\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>Abrupt s'\<rbrakk>
\<Longrightarrow> \<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> \<Rightarrow>\<notin>{Stuck}"
by (auto simp add: final_notin_def dest: exec.CatchMatch)
(* ************************************************************************* *)
subsection "Miscellaneous"
(* ************************************************************************* *)
lemma execn_noguards_no_Fault:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes noguards_c: "noguards c"
assumes noguards_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. noguards (the (\<Gamma> p))"
assumes s_no_Fault: "\<not> isFault s"
shows "\<not> isFault t"
using execn noguards_c s_no_Fault
proof (induct)
case (Call p bdy n s t) with noguards_\<Gamma> show ?case
apply -
apply (drule bspec [where x=p])
apply auto
done
qed (auto)
lemma exec_noguards_no_Fault:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes noguards_c: "noguards c"
assumes noguards_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. noguards (the (\<Gamma> p))"
assumes s_no_Fault: "\<not> isFault s"
shows "\<not> isFault t"
using exec noguards_c s_no_Fault
proof (induct)
case (Call p bdy s t) with noguards_\<Gamma> show ?case
apply -
apply (drule bspec [where x=p])
apply auto
done
qed auto
lemma execn_nothrows_no_Abrupt:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t"
assumes nothrows_c: "nothrows c"
assumes nothrows_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. nothrows (the (\<Gamma> p))"
assumes s_no_Abrupt: "\<not>(isAbr s)"
shows "\<not>(isAbr t)"
using execn nothrows_c s_no_Abrupt
proof (induct)
case (Call p bdy n s t) with nothrows_\<Gamma> show ?case
apply -
apply (drule bspec [where x=p])
apply auto
done
qed (auto)
lemma exec_nothrows_no_Abrupt:
assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t"
assumes nothrows_c: "nothrows c"
assumes nothrows_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. nothrows (the (\<Gamma> p))"
assumes s_no_Abrupt: "\<not>(isAbr s)"
shows "\<not>(isAbr t)"
using exec nothrows_c s_no_Abrupt
proof (induct)
case (Call p bdy s t) with nothrows_\<Gamma> show ?case
apply -
apply (drule bspec [where x=p])
apply auto
done
qed (auto)
end
|
Require Export ct16.
Section DivConq.
Variable A : Type.
Variable le: A -> A -> Prop.
Variable le_dec: forall (x y: A), {le x y} + {~le x y}.
Implicit Type l : list A.
(* split_pivot:=
* takes an input term as pivot and list l and split into two sublists where the
* first sublist contains all element/s that is/are le_dec _ pivot and the
* second sublist contains the rest of the element/s.
*)
Fixpoint split_pivot (pivot : A) l : list A * list A :=
match l with
| nil => (nil, nil)
| a :: l' => let (l1, l2) := (split_pivot pivot l') in
if le_dec a pivot
then (a :: l1, l2) else (l1, a :: l2)
end.
(* split_pivot_wf:
* states that for any list ls, each of the sublists generated has length less
* than or equal to its original list's.
*)
Lemma split_pivot_wf1 : forall a l, length (fst (split_pivot a l)) <= length l.
Proof.
induction l; simpl; auto; destruct (le_dec a0 a); destruct (split_pivot a l);
simpl in *; auto; apply le_n_S; auto.
Defined.
Lemma split_pivot_wf2 : forall a l, length (snd (split_pivot a l)) <= length l.
Proof.
induction l; simpl; auto; destruct (le_dec a0 a); destruct (split_pivot a l);
simpl in *; auto; apply le_n_S; auto.
Defined.
(* div_conq_pivot:
* - another variation of div_conq_split, just that for this, it will use
* split_pivot instead.
* - To prove some proposition P holds for all lists ls, one needs to prove the
* following:
* 1. P holds for empty list, nil.
* 2. If P hold fst(split_pivot a l) and snd(split_pivot a l), then P must
* also hold for (a :: l).
*)
Theorem div_conq_pivot :
forall (P : list A -> Type),
P nil
-> (forall a l, P (fst (split_pivot a l)) -> P (snd (split_pivot a l))
-> P (a :: l))
-> forall l, P l.
Proof.
intros; eapply well_founded_induction_type. eapply lengthOrder_wf.
destruct x; intros; auto; apply X0; apply X1; apply le_lt_n_Sm.
apply split_pivot_wf1. apply split_pivot_wf2.
Defined.
Hypothesis notle_le: forall x y, ~ le x y -> le y x.
(* Forall_snd_split_pivot:
* le a x for every element, x, in snd(split_pivot a l).
*)
Lemma Forall_snd_split_pivot : forall a l, Forall (le a) (snd(split_pivot a l)).
Proof.
induction l; simpl; auto; destruct (le_dec a0 a); destruct (split_pivot a l);
simpl in *; auto.
Defined.
End DivConq.
Ltac div_conq_pivot := eapply div_conq_pivot. |
{-# OPTIONS --cubical-compatible #-}
open import Agda.Builtin.Equality
postulate
A : Set
B : A → Set
data H (@0 A : Set) : Set where
con : (@0 x : A) → H A
data G : Set where
con : (@0 x : A) → (@0 b : B x) → G
data D : Set where
con : (@0 x : A) → B x → D
|
/* histogram/get2d.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <config.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_histogram2d.h>
#include "find.c"
double
gsl_histogram2d_get (const gsl_histogram2d * h, const size_t i, const size_t j)
{
const size_t nx = h->nx;
const size_t ny = h->ny;
if (i >= nx)
{
GSL_ERROR_VAL ("index i lies outside valid range of 0 .. nx - 1",
GSL_EDOM, 0);
}
if (j >= ny)
{
GSL_ERROR_VAL ("index j lies outside valid range of 0 .. ny - 1",
GSL_EDOM, 0);
}
return h->bin[i * ny + j];
}
int
gsl_histogram2d_get_xrange (const gsl_histogram2d * h, const size_t i,
double *xlower, double *xupper)
{
const size_t nx = h->nx;
if (i >= nx)
{
GSL_ERROR ("index i lies outside valid range of 0 .. nx - 1", GSL_EDOM);
}
*xlower = h->xrange[i];
*xupper = h->xrange[i + 1];
return GSL_SUCCESS;
}
int
gsl_histogram2d_get_yrange (const gsl_histogram2d * h, const size_t j,
double *ylower, double *yupper)
{
const size_t ny = h->ny;
if (j >= ny)
{
GSL_ERROR ("index j lies outside valid range of 0 .. ny - 1", GSL_EDOM);
}
*ylower = h->yrange[j];
*yupper = h->yrange[j + 1];
return GSL_SUCCESS;
}
int
gsl_histogram2d_find (const gsl_histogram2d * h,
const double x, const double y,
size_t * i, size_t * j)
{
int status = find (h->nx, h->xrange, x, i);
if (status)
{
GSL_ERROR ("x not found in range of h", GSL_EDOM);
}
status = find (h->ny, h->yrange, y, j);
if (status)
{
GSL_ERROR ("y not found in range of h", GSL_EDOM);
}
return GSL_SUCCESS;
}
|
lemma algebra_single_set: "X \<subseteq> S \<Longrightarrow> algebra S { {}, X, S - X, S }" |
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# formats: ipynb,jl:hydrogen
# text_representation:
# extension: .jl
# format_name: hydrogen
# format_version: '1.3'
# jupytext_version: 1.10.3
# kernelspec:
# display_name: Julia 1.6.4
# language: julia
# name: julia-1.6
# ---
# %% [markdown]
# # Hamiltonian Monte Carlo with leapfrog
#
# Scalar version: https://github.com/genkuroki/public/blob/main/0018/HMC%20leapfrog.ipynb
# %% tags=[]
module My
using ConcreteStructs: @concrete
using Parameters: @unpack
using LinearAlgebra: dot
using ForwardDiff: gradient
using Random: default_rng, randn!
using StaticArrays: SVector, MVector
@concrete struct LFProblem{dim} ϕ; H; F; dt; nsteps end
"""Assume ϕ is a potential function."""
function LFProblem(dim, ϕ; dt = 1.0, nsteps = 40)
H(x, v, param) = dot(v, v)/2 + ϕ(x, param)
F(x, param) = -gradient(x -> ϕ(x, param), x)
LFProblem{dim}(ϕ, H, F, dt, nsteps)
end
"""Assume ϕ is a potential function and ∇ϕ its gradient."""
function LFProblem(dim, ϕ, ∇ϕ; dt = 1.0, nsteps = 40)
H(x, v, param) = dot(v, v)/2 + ϕ(x, param)
F(x, param) = -∇ϕ(x, param)
LFProblem{dim}(ϕ, H, F, dt, nsteps)
end
"""Numerically solve Hamilton's equation of motion with leapfrog method"""
function solve(lf::LFProblem, x, v, param)
@unpack F, dt, nsteps = lf
v = v + F(x, param)*dt/2
x = x + v*dt
for _ in 2:nsteps
v = v + F(x, param)*dt
x = x + v*dt
end
v = v + F(x, param)*dt/2
x, v
end
@inline function _update!(lf::LFProblem{dim}, x, vtmp, param, rng) where dim
@unpack H = lf
v = SVector{dim}(randn!(rng, vtmp))
xnew, vnew = solve(lf, x, v, param)
dH = H(xnew, vnew, param) - H(x, v, param)
rand(rng) ≤ exp(-dH) ? xnew : x
end
"""Hamiltonian Monte Carlo"""
function HMC(lf::LFProblem{dim}, param = nothing;
niters = 10^5, thin = 1, nwarmups = 0, rng = default_rng(),
init = SVector{dim}(randn(rng, dim))) where dim
vtmp = MVector{dim}(zeros(eltype(init), dim))
x = init
for _ in 1:nwarmups
x = _update!(lf, x, vtmp, param, rng)
end
sample = Vector{typeof(init)}(undef, niters)
for i in 1:niters
for _ in 1:thin
x = _update!(lf, x, vtmp, param, rng)
end
@inbounds sample[i] = x
end
sample
end
end
# %%
using Plots
using BenchmarkTools
using StaticArrays
using LinearAlgebra
using KernelDensity
using Statistics
using QuadGK
using Distributions
using Symbolics
# %% [markdown]
# ## 2-dimensional normal distribution
# %%
A = @SMatrix [
1 1/2
1/2 1
]
param = (; A = A)
ϕ(x, param) = dot(x, param.A, x)/2
lf = My.LFProblem(2, ϕ)
# %%
@time sample = My.HMC(lf, param)
@time sample = My.HMC(lf, param)
@time sample = My.HMC(lf, param);
# %%
@btime My.HMC($lf, $param);
# %%
X, Y = first.(sample), last.(sample)
d = InterpKDE(kde((X, Y)))
x, y = range(extrema(X)...; length=201), range(extrema(Y)...; length=201)
heatmap(x, y, (x, y) -> pdf(d, x, y); size=(450, 400), right_margin=3Plots.mm)
# %%
f(n) = mean(x -> x*x', @view sample[1:n])
n = 1:1000
S = f.(n)
S11 = (S -> S[1,1]).(S)
S22 = (S -> S[2,2]).(S)
S12 = (S -> S[1,2]).(S)
ymin = min(-1.5, minimum(S11), minimum(S22), minimum(S12))
ymax = max(2.5, maximum(S11), maximum(S22), maximum(S12))
plot(ylim = (ymin, ymax))
plot!(S11; label="s11", c=1)
hline!([inv(A)[1,1]]; label="", c=1, ls=:dash)
plot!(S22; label="s22", c=2)
hline!([inv(A)[2,2]]; label="", c=2, ls=:dash)
plot!(S12; label="s12", c=3)
hline!([inv(A)[1,2]]; label="", c=3, ls=:dash)
# %% [markdown]
# ## φ(x) = a(x² - 1)²
# %%
ϕ4(x, a) = a * (x[1]^2 - 1)^2
a = [3, 4, 5, 6, 7, 8]
XX = Vector{Float64}[]
ZZ = Float64[]
PP = []
for i in eachindex(a)
Z = quadgk(x -> exp(-ϕ4((x,), a[i])), -Inf, Inf)[1]
push!(ZZ, Z)
lf = My.LFProblem(1, ϕ4; dt = 0.05, nsteps = 100)
@time X = first.(My.HMC(lf, a[i]))
flush(stdout)
push!(XX, X)
P = plot()
histogram!(X; norm=true, alpha=0.3, label="HMC LF sample", bin=100, c=i)
plot!(x -> exp(-ϕ4(x, a[i]))/Z, -2, 2; label="exp(-ϕ2(x))/Z", lw=2, c=i)
plot!(; legend=false, xtick=-2:0.5:2)
title!("ϕ(x) = a(x² - 1)² for a = $(a[i])", titlefontsize=9)
push!(PP, P)
end
plot(PP...; size=(800, 450), layout=(3, 2))
# %%
QQ = []
for i in eachindex(a)
Q = plot(XX[i][1:10000]; ylim=(-1.5, 1.5), label="", c=i, lw=0.5)
title!("ϕ(x) = a(x² - 1)² for a = $(a[i])", titlefontsize=9)
push!(QQ, Q)
end
plot(QQ...; size=(800, 900), layout=(length(a), 1))
# %% [markdown]
# ## Baysian inference for a sample of the standard normal distribution
# %%
n = 10
sample_normal = randn(n)
f(y, m, s) = (y - m)^2/(2s^2) + log(s)
negloglik(w, sample) = sum(y -> f(y, w[1], exp(w[2])), sample)
lf = My.LFProblem(2, negloglik; dt = 0.1, nsteps = 30)
# %%
@time sample = My.HMC(lf, sample_normal; init = SVector(0.0, 0.0))
@time sample = My.HMC(lf, sample_normal; init = SVector(0.0, 0.0))
@time sample = My.HMC(lf, sample_normal; init = SVector(0.0, 0.0))
# %%
m, logs = first.(sample), last.(sample)
d = InterpKDE(kde((m, logs)))
x, y = range(extrema(m)...; length=201), range(extrema(logs)...; length=201)
heatmap(x, y, (x, y) -> pdf(d, x, y); size=(450, 400), xlabel="μ", ylabel="log(σ)")
# %% [markdown]
# ## Symbolics.jl example
# %%
dim = 2
@variables a[1:dim, 1:dim], x[1:dim]
aa, xx = collect.((a, x))
# %%
phi_sym = dot(xx, aa, xx)/2 |> expand |> simplify
# %%
dphi_sym = Symbolics.gradient(phi_sym, xx)
# %%
phi_rgf = build_function(phi_sym, xx, aa; expression = Val(false))
dphi_rgf = build_function(dphi_sym, xx, aa; expression = Val(false))[1]
lf = My.LFProblem(dim, phi_rgf, dphi_rgf);
# %%
param = A = @SMatrix [
1 1/2
1/2 1
]
# %%
@time sample = My.HMC(lf, param)
@time sample = My.HMC(lf, param)
@time sample = My.HMC(lf, param);
# %%
@btime My.HMC($lf, $param);
# %%
X, Y = first.(sample), last.(sample)
d = InterpKDE(kde((X, Y)))
x, y = range(extrema(X)...; length=201), range(extrema(Y)...; length=201)
heatmap(x, y, (x, y) -> pdf(d, x, y); size=(450, 400), right_margin=3Plots.mm)
# %%
f(n) = mean(x -> x*x', @view sample[1:n])
n = 1:1000
S = f.(n)
S11 = (S -> S[1,1]).(S)
S22 = (S -> S[2,2]).(S)
S12 = (S -> S[1,2]).(S)
ymin = min(-1.5, minimum(S11), minimum(S22), minimum(S12))
ymax = max(2.5, maximum(S11), maximum(S22), maximum(S12))
plot(ylim = (ymin, ymax))
plot!(S11; label="s11", c=1)
hline!([inv(A)[1,1]]; label="", c=1, ls=:dash)
plot!(S22; label="s22", c=2)
hline!([inv(A)[2,2]]; label="", c=2, ls=:dash)
plot!(S12; label="s12", c=3)
hline!([inv(A)[1,2]]; label="", c=3, ls=:dash)
# %%
|
(*
Author: Norbert Schirmer
Maintainer: Norbert Schirmer, norbert.schirmer at web de
License: LGPL
*)
(* Title: XVcgEx.thy
Author: Norbert Schirmer, TU Muenchen
Copyright (C) 2006-2008 Norbert Schirmer
Some rights reserved, TU Muenchen
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
*)
section "Examples for Parallel Assignments"
theory XVcgEx
imports "../XVcg"
begin
record "globals" =
"G_'"::"nat"
"H_'"::"nat"
record 'g vars = "'g state" +
A_' :: nat
B_' :: nat
C_' :: nat
I_' :: nat
M_' :: nat
N_' :: nat
R_' :: nat
S_' :: nat
Arr_' :: "nat list"
Abr_':: string
term "BASIC
\<acute>A :== x,
\<acute>B :== y
END"
term "BASIC
\<acute>G :== \<acute>H,
\<acute>H :== \<acute>G
END"
term "BASIC
LET (x,y) = (\<acute>A,b);
z = \<acute>B
IN \<acute>A :== x,
\<acute>G :== \<acute>A + y + z
END"
lemma "\<Gamma>\<turnstile> \<lbrace>\<acute>A = 0\<rbrace>
\<lbrace>\<acute>A < 0\<rbrace> \<longmapsto> BASIC
LET (a,b,c) = foo \<acute>A
IN
\<acute>A :== a,
\<acute>B :== b,
\<acute>C :== c
END
\<lbrace>\<acute>A = x \<and> \<acute>B = y \<and> \<acute>C = c\<rbrace>"
apply vcg
oops
lemma "\<Gamma>\<turnstile> \<lbrace>\<acute>A = 0\<rbrace>
\<lbrace>\<acute>A < 0\<rbrace> \<longmapsto> BASIC
LET (a,b,c) = foo \<acute>A
IN
\<acute>A :== a,
\<acute>G :== b + \<acute>B,
\<acute>H :== c
END
\<lbrace>\<acute>A = x \<and> \<acute>G = y \<and> \<acute>H = c\<rbrace>"
apply vcg
oops
definition foo:: "nat \<Rightarrow> (nat \<times> nat \<times> nat)"
where "foo n = (n,n+1,n+2)"
lemma "\<Gamma>\<turnstile> \<lbrace>\<acute>A = 0\<rbrace>
\<lbrace>\<acute>A < 0\<rbrace> \<longmapsto> BASIC
LET (a,b,c) = foo \<acute>A
IN
\<acute>A :== a,
\<acute>G :== b + \<acute>B,
\<acute>H :== c
END
\<lbrace>\<acute>A = x \<and> \<acute>G = y \<and> \<acute>H = c\<rbrace>"
apply (vcg add: foo_def snd_conv fst_conv)
oops
end
|
(* Title: HOL/Auth/Guard/GuardK.thy
Author: Frederic Blanqui, University of Cambridge Computer Laboratory
Copyright 2002 University of Cambridge
Very similar to Guard except:
- Guard is replaced by GuardK, guard by guardK, Nonce by Key
- some scripts are slightly modified (+ keyset_in, kparts_parts)
- the hypothesis Key n ~:G (keyset G) is added
*)
section\<open>protocol-independent confidentiality theorem on keys\<close>
theory GuardK
imports Analz Extensions
begin
(******************************************************************************
messages where all the occurrences of Key n are
in a sub-message of the form Crypt (invKey K) X with K:Ks
******************************************************************************)
inductive_set
guardK :: "nat => key set => msg set"
for n :: nat and Ks :: "key set"
where
No_Key [intro]: "Key n \<notin> parts {X} \<Longrightarrow> X \<in> guardK n Ks"
| Guard_Key [intro]: "invKey K \<in> Ks ==> Crypt K X \<in> guardK n Ks"
| Crypt [intro]: "X \<in> guardK n Ks \<Longrightarrow> Crypt K X \<in> guardK n Ks"
| Pair [intro]: "[| X \<in> guardK n Ks; Y \<in> guardK n Ks |] ==> \<lbrace>X,Y\<rbrace> \<in> guardK n Ks"
subsection\<open>basic facts about \<^term>\<open>guardK\<close>\<close>
lemma Nonce_is_guardK [iff]: "Nonce p \<in> guardK n Ks"
by auto
lemma Agent_is_guardK [iff]: "Agent A \<in> guardK n Ks"
by auto
lemma Number_is_guardK [iff]: "Number r \<in> guardK n Ks"
by auto
lemma Key_notin_guardK: "X \<in> guardK n Ks \<Longrightarrow> X \<noteq> Key n"
by (erule guardK.induct, auto)
lemma Key_notin_guardK_iff [iff]: "Key n \<notin> guardK n Ks"
by (auto dest: Key_notin_guardK)
lemma guardK_has_Crypt [rule_format]: "X \<in> guardK n Ks \<Longrightarrow> Key n \<in> parts {X}
\<longrightarrow> (\<exists>K Y. Crypt K Y \<in> kparts {X} \<and> Key n \<in> parts {Y})"
by (erule guardK.induct, auto)
lemma Key_notin_kparts_msg: "X \<in> guardK n Ks \<Longrightarrow> Key n \<notin> kparts {X}"
by (erule guardK.induct, auto dest: kparts_parts)
lemma Key_in_kparts_imp_no_guardK: "Key n \<in> kparts H
\<Longrightarrow> \<exists>X. X \<in> H \<and> X \<notin> guardK n Ks"
apply (drule in_kparts, clarify)
apply (rule_tac x=X in exI, clarify)
by (auto dest: Key_notin_kparts_msg)
lemma guardK_kparts [rule_format]: "X \<in> guardK n Ks \<Longrightarrow>
Y \<in> kparts {X} \<longrightarrow> Y \<in> guardK n Ks"
by (erule guardK.induct, auto dest: kparts_parts parts_sub)
lemma guardK_Crypt: "[| Crypt K Y \<in> guardK n Ks; K \<notin> invKey`Ks |] ==> Y \<in> guardK n Ks"
by (ind_cases "Crypt K Y \<in> guardK n Ks") (auto intro!: image_eqI)
lemma guardK_MPair [iff]: "(\<lbrace>X,Y\<rbrace> \<in> guardK n Ks)
= (X \<in> guardK n Ks \<and> Y \<in> guardK n Ks)"
by (auto, (ind_cases "\<lbrace>X,Y\<rbrace> \<in> guardK n Ks", auto)+)
lemma guardK_not_guardK [rule_format]: "X \<in>guardK n Ks \<Longrightarrow>
Crypt K Y \<in> kparts {X} \<longrightarrow> Key n \<in> kparts {Y} \<longrightarrow> Y \<notin> guardK n Ks"
by (erule guardK.induct, auto dest: guardK_kparts)
lemma guardK_extand: "[| X \<in> guardK n Ks; Ks \<subseteq> Ks';
[| K \<in> Ks'; K \<notin> Ks |] ==> Key K \<notin> parts {X} |] ==> X \<in> guardK n Ks'"
by (erule guardK.induct, auto)
subsection\<open>guarded sets\<close>
definition GuardK :: "nat \<Rightarrow> key set \<Rightarrow> msg set \<Rightarrow> bool" where
"GuardK n Ks H \<equiv> \<forall>X. X \<in> H \<longrightarrow> X \<in> guardK n Ks"
subsection\<open>basic facts about \<^term>\<open>GuardK\<close>\<close>
lemma GuardK_empty [iff]: "GuardK n Ks {}"
by (simp add: GuardK_def)
lemma Key_notin_kparts [simplified]: "GuardK n Ks H \<Longrightarrow> Key n \<notin> kparts H"
by (auto simp: GuardK_def dest: in_kparts Key_notin_kparts_msg)
lemma GuardK_must_decrypt: "[| GuardK n Ks H; Key n \<in> analz H |] ==>
\<exists>K Y. Crypt K Y \<in> kparts H \<and> Key (invKey K) \<in> kparts H"
apply (drule_tac P="\<lambda>G. Key n \<in> G" in analz_pparts_kparts_substD, simp)
by (drule must_decrypt, auto dest: Key_notin_kparts)
lemma GuardK_kparts [intro]: "GuardK n Ks H \<Longrightarrow> GuardK n Ks (kparts H)"
by (auto simp: GuardK_def dest: in_kparts guardK_kparts)
lemma GuardK_mono: "[| GuardK n Ks H; G \<subseteq> H |] ==> GuardK n Ks G"
by (auto simp: GuardK_def)
lemma GuardK_insert [iff]: "GuardK n Ks (insert X H)
= (GuardK n Ks H \<and> X \<in> guardK n Ks)"
by (auto simp: GuardK_def)
lemma GuardK_Un [iff]: "GuardK n Ks (G Un H) = (GuardK n Ks G & GuardK n Ks H)"
by (auto simp: GuardK_def)
lemma GuardK_synth [intro]: "GuardK n Ks G \<Longrightarrow> GuardK n Ks (synth G)"
by (auto simp: GuardK_def, erule synth.induct, auto)
lemma GuardK_analz [intro]: "[| GuardK n Ks G; \<forall>K. K \<in> Ks \<longrightarrow> Key K \<notin> analz G |]
==> GuardK n Ks (analz G)"
apply (auto simp: GuardK_def)
apply (erule analz.induct, auto)
by (ind_cases "Crypt K Xa \<in> guardK n Ks" for K Xa, auto)
lemma in_GuardK [dest]: "[| X \<in> G; GuardK n Ks G |] ==> X \<in> guardK n Ks"
by (auto simp: GuardK_def)
lemma in_synth_GuardK: "[| X \<in> synth G; GuardK n Ks G |] ==> X \<in> guardK n Ks"
by (drule GuardK_synth, auto)
lemma in_analz_GuardK: "[| X \<in> analz G; GuardK n Ks G;
\<forall>K. K \<in> Ks \<longrightarrow> Key K \<notin> analz G |] ==> X \<in> guardK n Ks"
by (drule GuardK_analz, auto)
lemma GuardK_keyset [simp]: "[| keyset G; Key n \<notin> G |] ==> GuardK n Ks G"
by (simp only: GuardK_def, clarify, drule keyset_in, auto)
lemma GuardK_Un_keyset: "[| GuardK n Ks G; keyset H; Key n \<notin> H |]
==> GuardK n Ks (G Un H)"
by auto
lemma in_GuardK_kparts: "[| X \<in> G; GuardK n Ks G; Y \<in> kparts {X} |] ==> Y \<in> guardK n Ks"
by blast
lemma in_GuardK_kparts_neq: "[| X \<in> G; GuardK n Ks G; Key n' \<in> kparts {X} |]
==> n \<noteq> n'"
by (blast dest: in_GuardK_kparts)
lemma in_GuardK_kparts_Crypt: "[| X \<in> G; GuardK n Ks G; is_MPair X;
Crypt K Y \<in> kparts {X}; Key n \<in> kparts {Y} |] ==> invKey K \<in> Ks"
apply (drule in_GuardK, simp)
apply (frule guardK_not_guardK, simp+)
apply (drule guardK_kparts, simp)
by (ind_cases "Crypt K Y \<in> guardK n Ks", auto)
lemma GuardK_extand: "[| GuardK n Ks G; Ks \<subseteq> Ks';
[| K \<in> Ks'; K \<notin> Ks |] ==> Key K \<notin> parts G |] ==> GuardK n Ks' G"
by (auto simp: GuardK_def dest: guardK_extand parts_sub)
subsection\<open>set obtained by decrypting a message\<close>
abbreviation (input)
decrypt :: "msg set \<Rightarrow> key \<Rightarrow> msg \<Rightarrow> msg set" where
"decrypt H K Y \<equiv> insert Y (H - {Crypt K Y})"
lemma analz_decrypt: "[| Crypt K Y \<in> H; Key (invKey K) \<in> H; Key n \<in> analz H |]
==> Key n \<in> analz (decrypt H K Y)"
apply (drule_tac P="\<lambda>H. Key n \<in> analz H" in ssubst [OF insert_Diff])
apply assumption
apply (simp only: analz_Crypt_if, simp)
done
lemma parts_decrypt: "[| Crypt K Y \<in> H; X \<in> parts (decrypt H K Y) |] ==> X \<in> parts H"
by (erule parts.induct, auto intro: parts.Fst parts.Snd parts.Body)
subsection\<open>number of Crypt's in a message\<close>
fun crypt_nb :: "msg => nat" where
"crypt_nb (Crypt K X) = Suc (crypt_nb X)" |
"crypt_nb \<lbrace>X,Y\<rbrace> = crypt_nb X + crypt_nb Y" |
"crypt_nb X = 0" (* otherwise *)
subsection\<open>basic facts about \<^term>\<open>crypt_nb\<close>\<close>
lemma non_empty_crypt_msg: "Crypt K Y \<in> parts {X} \<Longrightarrow> crypt_nb X \<noteq> 0"
by (induct X, simp_all, safe, simp_all)
subsection\<open>number of Crypt's in a message list\<close>
primrec cnb :: "msg list => nat" where
"cnb [] = 0" |
"cnb (X#l) = crypt_nb X + cnb l"
subsection\<open>basic facts about \<^term>\<open>cnb\<close>\<close>
lemma cnb_app [simp]: "cnb (l @ l') = cnb l + cnb l'"
by (induct l, auto)
lemma mem_cnb_minus: "x \<in> set l ==> cnb l = crypt_nb x + (cnb l - crypt_nb x)"
by (induct l, auto)
lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]
lemma cnb_minus [simp]: "x \<in> set l ==> cnb (remove l x) = cnb l - crypt_nb x"
apply (induct l, auto)
by (erule_tac l=l and x=x in mem_cnb_minus_substI, simp)
lemma parts_cnb: "Z \<in> parts (set l) \<Longrightarrow>
cnb l = (cnb l - crypt_nb Z) + crypt_nb Z"
by (erule parts.induct, auto simp: in_set_conv_decomp)
lemma non_empty_crypt: "Crypt K Y \<in> parts (set l) \<Longrightarrow> cnb l \<noteq> 0"
by (induct l, auto dest: non_empty_crypt_msg parts_insert_substD)
subsection\<open>list of kparts\<close>
lemma kparts_msg_set: "\<exists>l. kparts {X} = set l \<and> cnb l = crypt_nb X"
apply (induct X, simp_all)
apply (rename_tac agent, rule_tac x="[Agent agent]" in exI, simp)
apply (rename_tac nat, rule_tac x="[Number nat]" in exI, simp)
apply (rename_tac nat, rule_tac x="[Nonce nat]" in exI, simp)
apply (rename_tac nat, rule_tac x="[Key nat]" in exI, simp)
apply (rule_tac x="[Hash X]" in exI, simp)
apply (clarify, rule_tac x="l@la" in exI, simp)
by (clarify, rename_tac nat X y, rule_tac x="[Crypt nat X]" in exI, simp)
lemma kparts_set: "\<exists>l'. kparts (set l) = set l' & cnb l' = cnb l"
apply (induct l)
apply (rule_tac x="[]" in exI, simp, clarsimp)
apply (rename_tac a b l')
apply (subgoal_tac "\<exists>l''. kparts {a} = set l'' & cnb l'' = crypt_nb a", clarify)
apply (rule_tac x="l''@l'" in exI, simp)
apply (rule kparts_insert_substI, simp)
by (rule kparts_msg_set)
subsection\<open>list corresponding to "decrypt"\<close>
definition decrypt' :: "msg list => key => msg => msg list" where
"decrypt' l K Y == Y # remove l (Crypt K Y)"
declare decrypt'_def [simp]
subsection\<open>basic facts about \<^term>\<open>decrypt'\<close>\<close>
lemma decrypt_minus: "decrypt (set l) K Y <= set (decrypt' l K Y)"
by (induct l, auto)
text\<open>if the analysis of a finite guarded set gives n then it must also give
one of the keys of Ks\<close>
lemma GuardK_invKey_by_list [rule_format]: "\<forall>l. cnb l = p
\<longrightarrow> GuardK n Ks (set l) \<longrightarrow> Key n \<in> analz (set l)
\<longrightarrow> (\<exists>K. K \<in> Ks \<and> Key K \<in> analz (set l))"
apply (induct p)
(* case p=0 *)
apply (clarify, drule GuardK_must_decrypt, simp, clarify)
apply (drule kparts_parts, drule non_empty_crypt, simp)
(* case p>0 *)
apply (clarify, frule GuardK_must_decrypt, simp, clarify)
apply (drule_tac P="\<lambda>G. Key n \<in> G" in analz_pparts_kparts_substD, simp)
apply (frule analz_decrypt, simp_all)
apply (subgoal_tac "\<exists>l'. kparts (set l) = set l' \<and> cnb l' = cnb l", clarsimp)
apply (drule_tac G="insert Y (set l' - {Crypt K Y})"
and H="set (decrypt' l' K Y)" in analz_sub, rule decrypt_minus)
apply (rule_tac analz_pparts_kparts_substI, simp)
apply (case_tac "K \<in> invKey`Ks")
(* K:invKey`Ks *)
apply (clarsimp, blast)
(* K ~:invKey`Ks *)
apply (subgoal_tac "GuardK n Ks (set (decrypt' l' K Y))")
apply (drule_tac x="decrypt' l' K Y" in spec, simp)
apply (subgoal_tac "Crypt K Y \<in> parts (set l)")
apply (drule parts_cnb, rotate_tac -1, simp)
apply (clarify, drule_tac X="Key Ka" and H="insert Y (set l')" in analz_sub)
apply (rule insert_mono, rule set_remove)
apply (simp add: analz_insertD, blast)
(* Crypt K Y:parts (set l) *)
apply (blast dest: kparts_parts)
(* GuardK n Ks (set (decrypt' l' K Y)) *)
apply (rule_tac H="insert Y (set l')" in GuardK_mono)
apply (subgoal_tac "GuardK n Ks (set l')", simp)
apply (rule_tac K=K in guardK_Crypt, simp add: GuardK_def, simp)
apply (drule_tac t="set l'" in sym, simp)
apply (rule GuardK_kparts, simp, simp)
apply (rule_tac B="set l'" in subset_trans, rule set_remove, blast)
by (rule kparts_set)
lemma GuardK_invKey_finite: "[| Key n \<in> analz G; GuardK n Ks G; finite G |]
==> \<exists>K. K \<in> Ks \<and> Key K \<in> analz G"
apply (drule finite_list, clarify)
by (rule GuardK_invKey_by_list, auto)
lemma GuardK_invKey: "[| Key n \<in> analz G; GuardK n Ks G |]
==> \<exists>K. K \<in> Ks \<and> Key K \<in> analz G"
by (auto dest: analz_needs_only_finite GuardK_invKey_finite)
text\<open>if the analyse of a finite guarded set and a (possibly infinite) set of
keys gives n then it must also gives Ks\<close>
lemma GuardK_invKey_keyset: "[| Key n \<in> analz (G \<union> H); GuardK n Ks G; finite G;
keyset H; Key n \<notin> H |] ==> \<exists>K. K \<in> Ks \<and> Key K \<in> analz (G \<union> H)"
apply (frule_tac P="\<lambda>G. Key n \<in> G" and G=G in analz_keyset_substD, simp_all)
apply (drule_tac G="G Un (H Int keysfor G)" in GuardK_invKey_finite)
apply (auto simp: GuardK_def intro: analz_sub)
by (drule keyset_in, auto)
end
|
Barker 's sketches , drawings , and paintings of children were given to friends or to the parents of the subjects , donated to charitable institutions and church sponsored events , or exhibited through various art organizations . She illustrated magazine covers , dust jackets , and produced series of postcards for Raphael Tuck and other publishers such as Picturesque Children of the Allies ( 1915 ) , Seaside Holidays ( 1918 ) , and Shakespeare 's Boy and Girl Characters ( 1917 , 1920 ) . Her own Old Rhymes for All Times ( 1928 ) and The Lord of the Rushie River ( 1938 ) , a tale about a girl who lives among swans on a riverbank , were critically well received . Set about 1800 , Groundsel and Necklaces ( 1943 ) tells of a girl named Jenny who rescues her family from poverty through the agency of the fairies . The story features an old Scrooge @-@ like man called Mr. <unk> and tonally suggests a Dickensian social consciousness . Simon the Swan , intended as a sequel to Rushie River was outlined in 1943 with Groundsel , but only developed in 1953 . It was published posthumously in 1988 and is critically considered less successful than Groundsel .
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Unary.Raw where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude using (isProp)
open import Cubical.Data.Empty hiding (rec)
open import Cubical.Data.Unit.Base using (⊤)
open import Cubical.Data.Sigma
open import Cubical.Data.Sum.Base using (_⊎_; rec)
open import Cubical.Foundations.Function
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.Decidable using (IsYes)
open import Cubical.Relation.Unary using (RawPred)
private
variable
a b c ℓ ℓ₁ ℓ₂ : Level
A : Type a
B : Type b
C : Type c
------------------------------------------------------------------------
-- Special sets
-- The empty set.
∅ : RawPred A _
∅ = λ _ → ⊥
-- The singleton set.
{_} : A → RawPred A _
{ x } = _≡ x
-- The universal set.
U : RawPred A _
U = λ _ → ⊤
------------------------------------------------------------------------
-- Membership
infix 6 _∈_ _∉_
_∈_ : A → RawPred A ℓ → Type _
x ∈ P = P x
_∉_ : A → RawPred A ℓ → Type _
x ∉ P = ¬ x ∈ P
------------------------------------------------------------------------
-- Subset relations
infix 6 _⊆_ _⊇_ _⊈_ _⊉_ _⊂_ _⊃_ _⊄_ _⊅_
_⊆_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q
_⊇_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊇ Q = Q ⊆ P
_⊈_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊈ Q = ¬ (P ⊆ Q)
_⊉_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊉ Q = ¬ (P ⊇ Q)
_⊂_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊂ Q = P ⊆ Q × Q ⊈ P
_⊃_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊃ Q = Q ⊂ P
_⊄_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊄ Q = ¬ (P ⊂ Q)
_⊅_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⊅ Q = ¬ (P ⊃ Q)
------------------------------------------------------------------------
-- Properties of sets
infix 10 Satisfiable Universal IUniversal
-- Emptiness - no element satisfies P.
Empty : RawPred A ℓ → Type _
Empty P = ∀ x → x ∉ P
-- Satisfiable - at least one element satisfies P.
Satisfiable : RawPred A ℓ → Type _
Satisfiable {A = A} P = ∃[ x ∈ A ] x ∈ P
syntax Satisfiable P = ∃⟨ P ⟩
-- Universality - all elements satisfy P.
Universal : RawPred A ℓ → Type _
Universal P = ∀ x → x ∈ P
syntax Universal P = Π[ P ]
-- Implicit universality - all elements satisfy P.
IUniversal : RawPred A ℓ → Type _
IUniversal P = ∀ {x} → x ∈ P
syntax IUniversal P = ∀[ P ]
-- Decidability - it is possible to determine if an arbitrary element
-- satisfies P.
Decidable : RawPred A ℓ → Type _
Decidable P = ∀ x → Dec (P x)
-- Disjointness - Any element satisfying both P and Q is contradictory.
_⊃⊂_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
_⊃⊂_ P Q = ∀ {x} → x ∈ P → x ∈ Q → ⊥
-- Positive version of non-disjointness, dual to inclusion.
_≬_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
_≬_ {A = A} P Q = ∃[ x ∈ A ] x ∈ P × x ∈ Q
------------------------------------------------------------------------
-- Operations on sets
infix 10 ⋃ ⋂
infixr 9 _⊢_
infixr 8 _⇒_
infixr 7 _∩_
infixr 6 _∪_
infix 5 _≬_
-- Complement.
∁ : RawPred A ℓ → RawPred A ℓ
∁ P = λ x → x ∉ P
-- Implication.
_⇒_ : RawPred A ℓ₁ → RawPred A ℓ₂ → RawPred A _
P ⇒ Q = λ x → x ∈ P → x ∈ Q
-- Union.
_∪_ : RawPred A ℓ₁ → RawPred A ℓ₂ → RawPred A _
P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q
-- Intersection.
_∩_ : RawPred A ℓ₁ → RawPred A ℓ₂ → RawPred A _
P ∩ Q = λ x → x ∈ P × x ∈ Q
-- Infinitary union.
⋃ : ∀ {i} (I : Type i) → (I → RawPred A ℓ) → RawPred A _
⋃ I P = λ x → Σ[ i ∈ I ] P i x
syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P
-- Infinitary intersection.
⋂ : ∀ {i} (I : Type i) → (I → RawPred A ℓ) → RawPred A _
⋂ I P = λ x → (i : I) → P i x
syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P
-- Preimage.
_⊢_ : (A → B) → RawPred B ℓ → RawPred A ℓ
f ⊢ P = λ x → P (f x)
------------------------------------------------------------------------
-- Preservation under operations
_Preserves_⟶_ : (A → B) → RawPred A ℓ₁ → RawPred B ℓ₂ → Type _
f Preserves P ⟶ Q = P ⊆ f ⊢ Q
_Preserves_ : (A → A) → RawPred A ℓ → Type _
f Preserves P = f Preserves P ⟶ P
-- A binary variant of _Preserves_⟶_.
_Preserves₂_⟶_⟶_ : (A → B → C) → RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred C ℓ → Type _
_∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y} → x ∈ P → y ∈ Q → x ∙ y ∈ R
_Preserves₂_ : (A → A → A) → RawPred A ℓ → Type _
_∙_ Preserves₂ P = _∙_ Preserves₂ P ⟶ P ⟶ P
------------------------------------------------------------------------
-- Logical equivalence
_⇔_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _
P ⇔ Q = Π[ P ⇒ Q ∩ Q ⇒ P ]
------------------------------------------------------------------------
-- Predicate combinators
-- These differ from the set operations above, as the carrier set of the
-- resulting predicates are not the same as the carrier set of the
-- component predicates.
infixr 2 _⟨×⟩_
infixr 2 _⟨⊙⟩_
infixr 1 _⟨⊎⟩_
infixr 0 _⟨→⟩_
infixl 9 _⟨·⟩_
infix 10 _~
infixr 9 _⟨∘⟩_
infixr 2 _//_ _\\_
-- Product.
_⟨×⟩_ : RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred (A × B) _
(P ⟨×⟩ Q) (x , y) = x ∈ P × y ∈ Q
-- Sum over one element.
_⟨⊎⟩_ : RawPred A ℓ → RawPred B ℓ → RawPred (A ⊎ B) _
P ⟨⊎⟩ Q = rec P Q
-- Sum over two elements.
_⟨⊙⟩_ : RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred (A × B) _
(P ⟨⊙⟩ Q) (x , y) = x ∈ P ⊎ y ∈ Q
-- Implication.
_⟨→⟩_ : RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred (A → B) _
(P ⟨→⟩ Q) f = f Preserves P ⟶ Q
-- Product.
_⟨·⟩_ : (P : RawPred A ℓ₁) (Q : RawPred B ℓ₂) →
(P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_)
(P ⟨·⟩ Q) (p , f) = f p
-- Converse.
_~ : RawPred (A × B) ℓ → RawPred (B × A) ℓ
P ~ = P ∘ λ { (x , y) → y , x }
-- Composition.
_⟨∘⟩_ : RawPred (A × B) ℓ₁ → RawPred (B × C) ℓ₂ → RawPred (A × C) _
_⟨∘⟩_ {B = B} P Q (x , z) = ∃[ y ∈ B ] (x , y) ∈ P × (y , z) ∈ Q
-- Post-division.
_//_ : RawPred (A × C) ℓ₁ → RawPred (B × C) ℓ₂ → RawPred (A × B) _
(P // Q) (x , y) = Q ∘ (y ,_) ⊆ P ∘ (x ,_)
-- Pre-division.
_\\_ : RawPred (A × C) ℓ₁ → RawPred (A × B) ℓ₂ → RawPred (B × C) _
P \\ Q = (P ~ // Q ~) ~
|
from collections import namedtuple
import numpy as np
import talib
from jesse.helpers import slice_candles
from jesse.indicators.ma import ma
StochasticFast = namedtuple('StochasticFast', ['k', 'd'])
def stochf(candles: np.ndarray, fastk_period: int = 5, fastd_period: int = 3, fastd_matype: int = 0,
sequential: bool = False) -> StochasticFast:
"""
Stochastic Fast
:param candles: np.ndarray
:param fastk_period: int - default=5
:param fastd_period: int - default=3
:param fastd_matype: int - default=0
:param sequential: bool - default=False
:return: StochasticFast(k, d)
"""
candles = slice_candles(candles, sequential)
candles_close = candles[:, 2]
candles_high = candles[:, 3]
candles_low = candles[:, 4]
hh = talib.MAX(candles_high, fastk_period)
ll = talib.MIN(candles_low, fastk_period)
k = 100 * (candles_close - ll) / (hh - ll)
d = ma(k, period=fastd_period, matype=fastd_matype, sequential=True)
if sequential:
return StochasticFast(k, d)
else:
return StochasticFast(k[-1], d[-1])
|
__precompile__(true)
module CPEG
# greet() = print("Hello World!")
using LinearAlgebra
using StaticArrays
using ForwardDiff
using SparseArrays
using SuiteSparse
using Printf
include("qp_solver.jl")
include("atmosphere.jl")
include("scaling.jl")
include("gravity.jl")
include("aero_forces.jl")
include("vehicle.jl")
include("dynamics.jl")
include("post_process.jl")
end # module
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Kenny Lau
Dependent functions with finite support (see `data/finsupp.lean`).
-/
import data.finset data.set.finite algebra.big_operators algebra.module algebra.pi_instances
universes u u₁ u₂ v v₁ v₂ v₃ w x y l
variables (ι : Type u) (β : ι → Type v)
def decidable_zero_symm {γ : Type w} [has_zero γ] [decidable_pred (eq (0 : γ))] : decidable_pred (λ x, x = (0:γ)) :=
λ x, decidable_of_iff (0 = x) eq_comm
local attribute [instance] decidable_zero_symm
namespace dfinsupp
variable [Π i, has_zero (β i)]
structure pre : Type (max u v) :=
(to_fun : Π i, β i)
(pre_support : multiset ι)
(zero : ∀ i, i ∈ pre_support ∨ to_fun i = 0)
instance : setoid (pre ι β) :=
{ r := λ x y, ∀ i, x.to_fun i = y.to_fun i,
iseqv := ⟨λ f i, rfl, λ f g H i, (H i).symm,
λ f g h H1 H2 i, (H1 i).trans (H2 i)⟩ }
end dfinsupp
variable {ι}
@[reducible] def dfinsupp [Π i, has_zero (β i)] : Type* :=
quotient (dfinsupp.setoid ι β)
variable {β}
notation `Π₀` binders `, ` r:(scoped f, dfinsupp f) := r
infix ` →ₚ `:25 := dfinsupp
namespace dfinsupp
section basic
variables [Π i, has_zero (β i)]
variables {β₁ : ι → Type v₁} {β₂ : ι → Type v₂}
variables [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
instance : has_coe_to_fun (Π₀ i, β i) :=
⟨λ _, Π i, β i, λ f, quotient.lift_on f pre.to_fun $ λ _ _, funext⟩
instance : has_zero (Π₀ i, β i) := ⟨⟦⟨λ i, 0, ∅, λ i, or.inr rfl⟩⟧⟩
instance : inhabited (Π₀ i, β i) := ⟨0⟩
@[simp] lemma zero_apply {i : ι} : (0 : Π₀ i, β i) i = 0 := rfl
@[extensionality]
lemma ext {f g : Π₀ i, β i} (H : ∀ i, f i = g i) : f = g :=
quotient.induction_on₂ f g (λ _ _ H, quotient.sound H) H
/-- The composition of `f : β₁ → β₂` and `g : Π₀ i, β₁ i` is
`map_range f hf g : Π₀ i, β₂ i`, well defined when `f 0 = 0`. -/
def map_range (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) (g : Π₀ i, β₁ i) : Π₀ i, β₂ i :=
quotient.lift_on g (λ x, ⟦(⟨λ i, f i (x.1 i), x.2,
λ i, or.cases_on (x.3 i) or.inl $ λ H, or.inr $ by rw [H, hf]⟩ : pre ι β₂)⟧) $ λ x y H,
quotient.sound $ λ i, by simp only [H i]
@[simp] lemma map_range_apply
{f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} {i : ι} :
map_range f hf g i = f i (g i) :=
quotient.induction_on g $ λ x, rfl
def zip_with (f : Π i, β₁ i → β₂ i → β i) (hf : ∀ i, f i 0 0 = 0) (g₁ : Π₀ i, β₁ i) (g₂ : Π₀ i, β₂ i) : (Π₀ i, β i) :=
begin
refine quotient.lift_on₂ g₁ g₂ (λ x y, ⟦(⟨λ i, f i (x.1 i) (y.1 i), x.2 + y.2,
λ i, _⟩ : pre ι β)⟧) _,
{ cases x.3 i with h1 h1,
{ left, rw multiset.mem_add, left, exact h1 },
cases y.3 i with h2 h2,
{ left, rw multiset.mem_add, right, exact h2 },
right, rw [h1, h2, hf] },
exact λ x₁ x₂ y₁ y₂ H1 H2, quotient.sound $ λ i, by simp only [H1 i, H2 i]
end
@[simp] lemma zip_with_apply
{f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0} {g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} {i : ι} :
zip_with f hf g₁ g₂ i = f i (g₁ i) (g₂ i) :=
quotient.induction_on₂ g₁ g₂ $ λ _ _, rfl
end basic
section algebra
instance [Π i, add_monoid (β i)] : has_add (Π₀ i, β i) :=
⟨zip_with (λ _, (+)) (λ _, add_zero 0)⟩
@[simp] lemma add_apply [Π i, add_monoid (β i)] {g₁ g₂ : Π₀ i, β i} {i : ι} :
(g₁ + g₂) i = g₁ i + g₂ i :=
zip_with_apply
instance [Π i, add_monoid (β i)] : add_monoid (Π₀ i, β i) :=
{ add_monoid .
zero := 0,
add := (+),
add_assoc := λ f g h, ext $ λ i, by simp only [add_apply, add_assoc],
zero_add := λ f, ext $ λ i, by simp only [add_apply, zero_apply, zero_add],
add_zero := λ f, ext $ λ i, by simp only [add_apply, zero_apply, add_zero] }
instance [Π i, add_monoid (β i)] {i : ι} : is_add_monoid_hom (λ g : Π₀ i : ι, β i, g i) :=
by refine_struct {..}; simp
instance [Π i, add_group (β i)] : has_neg (Π₀ i, β i) :=
⟨λ f, f.map_range (λ _, has_neg.neg) (λ _, neg_zero)⟩
instance [Π i, add_comm_monoid (β i)] : add_comm_monoid (Π₀ i, β i) :=
{ add_comm := λ f g, ext $ λ i, by simp only [add_apply, add_comm],
.. dfinsupp.add_monoid }
@[simp] lemma neg_apply [Π i, add_group (β i)] {g : Π₀ i, β i} {i : ι} : (- g) i = - g i :=
map_range_apply
instance [Π i, add_group (β i)] : add_group (Π₀ i, β i) :=
{ add_left_neg := λ f, ext $ λ i, by simp only [add_apply, neg_apply, zero_apply, add_left_neg],
.. dfinsupp.add_monoid,
.. (infer_instance : has_neg (Π₀ i, β i)) }
@[simp] lemma sub_apply [Π i, add_group (β i)] {g₁ g₂ : Π₀ i, β i} {i : ι} : (g₁ - g₂) i = g₁ i - g₂ i :=
by rw [sub_eq_add_neg]; simp
instance [Π i, add_comm_group (β i)] : add_comm_group (Π₀ i, β i) :=
{ add_comm := λ f g, ext $ λ i, by simp only [add_apply, add_comm],
..dfinsupp.add_group }
def to_has_scalar {γ : Type w} [ring γ] [Π i, add_comm_group (β i)] [Π i, module γ (β i)] : has_scalar γ (Π₀ i, β i) :=
⟨λc v, v.map_range (λ _, (•) c) (λ _, smul_zero _)⟩
local attribute [instance] to_has_scalar
@[simp] lemma smul_apply {γ : Type w} [ring γ] [Π i, add_comm_group (β i)] [Π i, module γ (β i)] {i : ι} {b : γ} {v : Π₀ i, β i} :
(b • v) i = b • (v i) :=
map_range_apply
def to_module {γ : Type w} [ring γ] [Π i, add_comm_group (β i)] [Π i, module γ (β i)] : module γ (Π₀ i, β i) :=
module.of_core {
smul_add := λ c x y, ext $ λ i, by simp only [add_apply, smul_apply, smul_add],
add_smul := λ c x y, ext $ λ i, by simp only [add_apply, smul_apply, add_smul],
one_smul := λ x, ext $ λ i, by simp only [smul_apply, one_smul],
mul_smul := λ r s x, ext $ λ i, by simp only [smul_apply, smul_smul],
.. (infer_instance : has_scalar γ (Π₀ i, β i)) }
end algebra
section filter_and_subtype_domain
/-- `filter p f` is the function which is `f i` if `p i` is true and 0 otherwise. -/
def filter [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] (f : Π₀ i, β i) : Π₀ i, β i :=
quotient.lift_on f (λ x, ⟦(⟨λ i, if p i then x.1 i else 0, x.2,
λ i, or.cases_on (x.3 i) or.inl $ λ H, or.inr $ by rw [H, if_t_t]⟩ : pre ι β)⟧) $ λ x y H,
quotient.sound $ λ i, by simp only [H i]
@[simp] lemma filter_apply [Π i, has_zero (β i)]
{p : ι → Prop} [decidable_pred p] {i : ι} {f : Π₀ i, β i} :
f.filter p i = if p i then f i else 0 :=
quotient.induction_on f $ λ x, rfl
@[simp] lemma filter_apply_pos [Π i, has_zero (β i)]
{p : ι → Prop} [decidable_pred p] {f : Π₀ i, β i} {i : ι} (h : p i) :
f.filter p i = f i :=
by simp only [filter_apply, if_pos h]
@[simp] lemma filter_apply_neg [Π i, has_zero (β i)]
{p : ι → Prop} [decidable_pred p] {f : Π₀ i, β i} {i : ι} (h : ¬ p i) :
f.filter p i = 0 :=
by simp only [filter_apply, if_neg h]
lemma filter_pos_add_filter_neg [Π i, add_monoid (β i)] {f : Π₀ i, β i}
{p : ι → Prop} [decidable_pred p] :
f.filter p + f.filter (λi, ¬ p i) = f :=
ext $ λ i, by simp only [add_apply, filter_apply]; split_ifs; simp only [add_zero, zero_add]
/-- `subtype_domain p f` is the restriction of the finitely supported function
`f` to the subtype `p`. -/
def subtype_domain [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p]
(f : Π₀ i, β i) : Π₀ i : subtype p, β i.1 :=
begin
fapply quotient.lift_on f,
{ intro x, refine ⟦⟨λ i, x.1 i.1, (x.2.filter p).attach.map $ λ j, ⟨j.1, (multiset.mem_filter.1 j.2).2⟩, _⟩⟧,
refine λ i, or.cases_on (x.3 i.1) (λ H, _) or.inr,
left, rw multiset.mem_map, refine ⟨⟨i.1, multiset.mem_filter.2 ⟨H, i.2⟩⟩, _, subtype.eta _ _⟩,
apply multiset.mem_attach },
intros x y H,
exact quotient.sound (λ i, H i.1)
end
@[simp] lemma subtype_domain_zero [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p] :
subtype_domain p (0 : Π₀ i, β i) = 0 :=
rfl
@[simp] lemma subtype_domain_apply [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p]
{i : subtype p} {v : Π₀ i, β i} :
(subtype_domain p v) i = v (i.val) :=
quotient.induction_on v $ λ x, rfl
@[simp] lemma subtype_domain_add [Π i, add_monoid (β i)] {p : ι → Prop} [decidable_pred p] {v v' : Π₀ i, β i} :
(v + v').subtype_domain p = v.subtype_domain p + v'.subtype_domain p :=
ext $ λ i, by simp only [add_apply, subtype_domain_apply]
instance subtype_domain.is_add_monoid_hom [Π i, add_monoid (β i)] {p : ι → Prop} [decidable_pred p] :
is_add_monoid_hom (subtype_domain p : (Π₀ i : ι, β i) → Π₀ i : subtype p, β i) :=
by refine_struct {..}; simp
@[simp] lemma subtype_domain_neg [Π i, add_group (β i)] {p : ι → Prop} [decidable_pred p] {v : Π₀ i, β i} :
(- v).subtype_domain p = - v.subtype_domain p :=
ext $ λ i, by simp only [neg_apply, subtype_domain_apply]
@[simp] lemma subtype_domain_sub [Π i, add_group (β i)] {p : ι → Prop} [decidable_pred p] {v v' : Π₀ i, β i} :
(v - v').subtype_domain p = v.subtype_domain p - v'.subtype_domain p :=
ext $ λ i, by simp only [sub_apply, subtype_domain_apply]
end filter_and_subtype_domain
variable [decidable_eq ι]
section basic
variable [Π i, has_zero (β i)]
lemma finite_supp (f : Π₀ i, β i) : set.finite {i | f i ≠ 0} :=
quotient.induction_on f $ λ x, set.finite_subset
(finset.finite_to_set x.2.to_finset) $ λ i H,
multiset.mem_to_finset.2 $ (x.3 i).resolve_right H
def mk (s : finset ι) (x : Π i : (↑s : set ι), β i.1) : Π₀ i, β i :=
⟦⟨λ i, if H : i ∈ s then x ⟨i, H⟩ else 0, s.1,
λ i, if H : i ∈ s then or.inl H else or.inr $ dif_neg H⟩⟧
@[simp] lemma mk_apply {s : finset ι} {x : Π i : (↑s : set ι), β i.1} {i : ι} :
(mk s x : Π i, β i) i = if H : i ∈ s then x ⟨i, H⟩ else 0 :=
rfl
theorem mk_inj (s : finset ι) : function.injective (@mk ι β _ _ s) :=
begin
intros x y H,
ext i,
have h1 : (mk s x : Π i, β i) i = (mk s y : Π i, β i) i, {rw H},
cases i with i hi,
change i ∈ s at hi,
dsimp only [mk_apply, subtype.coe_mk] at h1,
simpa only [dif_pos hi] using h1
end
def single (i : ι) (b : β i) : Π₀ i, β i :=
mk (finset.singleton i) $ λ j, eq.rec_on (finset.mem_singleton.1 j.2).symm b
@[simp] lemma single_apply {i i' b} : (single i b : Π₀ i, β i) i' = (if h : i = i' then eq.rec_on h b else 0) :=
begin
dsimp only [single],
by_cases h : i = i',
{ have h1 : i' ∈ finset.singleton i, { simp only [h, finset.mem_singleton] },
simp only [mk_apply, dif_pos h, dif_pos h1] },
{ have h1 : i' ∉ finset.singleton i, { simp only [ne.symm h, finset.mem_singleton, not_false_iff] },
simp only [mk_apply, dif_neg h, dif_neg h1] }
end
@[simp] lemma single_zero {i} : (single i 0 : Π₀ i, β i) = 0 :=
quotient.sound $ λ j, if H : j ∈ finset.singleton i
then by dsimp only; rw [dif_pos H]; cases finset.mem_singleton.1 H; refl
else dif_neg H
@[simp] lemma single_eq_same {i b} : (single i b : Π₀ i, β i) i = b :=
by simp only [single_apply, dif_pos rfl]
@[simp] lemma single_eq_of_ne {i i' b} (h : i ≠ i') : (single i b : Π₀ i, β i) i' = 0 :=
by simp only [single_apply, dif_neg h]
def erase (i : ι) (f : Π₀ i, β i) : Π₀ i, β i :=
quotient.lift_on f (λ x, ⟦(⟨λ j, if j = i then 0 else x.1 j, x.2,
λ j, or.cases_on (x.3 j) or.inl $ λ H, or.inr $ by simp only [H, if_t_t]⟩ : pre ι β)⟧) $ λ x y H,
quotient.sound $ λ j, if h : j = i then by simp only [if_pos h]
else by simp only [if_neg h, H j]
@[simp] lemma erase_apply {i j : ι} {f : Π₀ i, β i} :
(f.erase i) j = if j = i then 0 else f j :=
quotient.induction_on f $ λ x, rfl
@[simp] lemma erase_same {i : ι} {f : Π₀ i, β i} : (f.erase i) i = 0 :=
by simp
@[simp] lemma erase_ne {i i' : ι} {f : Π₀ i, β i} (h : i' ≠ i) : (f.erase i) i' = f i' :=
by simp [h]
end basic
section add_monoid
variable [Π i, add_monoid (β i)]
@[simp] lemma single_add {i : ι} {b₁ b₂ : β i} : single i (b₁ + b₂) = single i b₁ + single i b₂ :=
ext $ assume i',
begin
by_cases h : i = i',
{ subst h, simp only [add_apply, single_eq_same] },
{ simp only [add_apply, single_eq_of_ne h, zero_add] }
end
lemma single_add_erase {i : ι} {f : Π₀ i, β i} : single i (f i) + f.erase i = f :=
ext $ λ i',
if h : i = i' then by subst h; simp only [add_apply, single_apply, erase_apply, dif_pos rfl, if_pos, add_zero]
else by simp only [add_apply, single_apply, erase_apply, dif_neg h, if_neg (ne.symm h), zero_add]
lemma erase_add_single {i : ι} {f : Π₀ i, β i} : f.erase i + single i (f i) = f :=
ext $ λ i',
if h : i = i' then by subst h; simp only [add_apply, single_apply, erase_apply, dif_pos rfl, if_pos, zero_add]
else by simp only [add_apply, single_apply, erase_apply, dif_neg h, if_neg (ne.symm h), add_zero]
protected theorem induction {p : (Π₀ i, β i) → Prop} (f : Π₀ i, β i)
(h0 : p 0) (ha : ∀i b (f : Π₀ i, β i), f i = 0 → b ≠ 0 → p f → p (single i b + f)) :
p f :=
begin
refine quotient.induction_on f (λ x, _),
cases x with f s H, revert f H,
apply multiset.induction_on s,
{ intros f H, convert h0, ext i, exact (H i).resolve_left id },
intros i s ih f H,
by_cases H1 : i ∈ s,
{ have H2 : ∀ j, j ∈ s ∨ f j = 0,
{ intro j, cases H j with H2 H2,
{ cases multiset.mem_cons.1 H2 with H3 H3,
{ left, rw H3, exact H1 },
{ left, exact H3 } },
right, exact H2 },
have H3 : (⟦{to_fun := f, pre_support := i :: s, zero := H}⟧ : Π₀ i, β i)
= ⟦{to_fun := f, pre_support := s, zero := H2}⟧,
{ exact quotient.sound (λ i, rfl) },
rw H3, apply ih },
have H2 : p (erase i ⟦{to_fun := f, pre_support := i :: s, zero := H}⟧),
{ dsimp only [erase, quotient.lift_on_beta],
have H2 : ∀ j, j ∈ s ∨ ite (j = i) 0 (f j) = 0,
{ intro j, cases H j with H2 H2,
{ cases multiset.mem_cons.1 H2 with H3 H3,
{ right, exact if_pos H3 },
{ left, exact H3 } },
right, split_ifs; [refl, exact H2] },
have H3 : (⟦{to_fun := λ (j : ι), ite (j = i) 0 (f j), pre_support := i :: s, zero := _}⟧ : Π₀ i, β i)
= ⟦{to_fun := λ (j : ι), ite (j = i) 0 (f j), pre_support := s, zero := H2}⟧ :=
quotient.sound (λ i, rfl),
rw H3, apply ih },
have H3 : single i _ + _ = (⟦{to_fun := f, pre_support := i :: s, zero := H}⟧ : Π₀ i, β i) := single_add_erase,
rw ← H3,
change p (single i (f i) + _),
cases classical.em (f i = 0) with h h,
{ rw [h, single_zero, zero_add], exact H2 },
refine ha _ _ _ _ h H2,
rw erase_same
end
lemma induction₂ {p : (Π₀ i, β i) → Prop} (f : Π₀ i, β i)
(h0 : p 0) (ha : ∀i b (f : Π₀ i, β i), f i = 0 → b ≠ 0 → p f → p (f + single i b)) :
p f :=
dfinsupp.induction f h0 $ λ i b f h1 h2 h3,
have h4 : f + single i b = single i b + f,
{ ext j, by_cases H : i = j,
{ subst H, simp [h1] },
{ simp [H] } },
eq.rec_on h4 $ ha i b f h1 h2 h3
end add_monoid
@[simp] lemma mk_add [Π i, add_monoid (β i)] {s : finset ι} {x y : Π i : (↑s : set ι), β i.1} :
mk s (x + y) = mk s x + mk s y :=
ext $ λ i, by simp only [add_apply, mk_apply]; split_ifs; [refl, rw zero_add]
@[simp] lemma mk_zero [Π i, has_zero (β i)] {s : finset ι} :
mk s (0 : Π i : (↑s : set ι), β i.1) = 0 :=
ext $ λ i, by simp only [mk_apply]; split_ifs; refl
@[simp] lemma mk_neg [Π i, add_group (β i)] {s : finset ι} {x : Π i : (↑s : set ι), β i.1} :
mk s (-x) = -mk s x :=
ext $ λ i, by simp only [neg_apply, mk_apply]; split_ifs; [refl, rw neg_zero]
@[simp] lemma mk_sub [Π i, add_group (β i)] {s : finset ι} {x y : Π i : (↑s : set ι), β i.1} :
mk s (x - y) = mk s x - mk s y :=
ext $ λ i, by simp only [sub_apply, mk_apply]; split_ifs; [refl, rw sub_zero]
instance [Π i, add_group (β i)] {s : finset ι} : is_add_group_hom (@mk ι β _ _ s) :=
⟨λ _ _, mk_add⟩
section
local attribute [instance] to_module
variables (γ : Type w) [ring γ] [Π i, add_comm_group (β i)] [Π i, module γ (β i)]
include γ
@[simp] lemma mk_smul {s : finset ι} {c : γ} (x : Π i : (↑s : set ι), β i.1) :
mk s (c • x) = c • mk s x :=
ext $ λ i, by simp only [smul_apply, mk_apply]; split_ifs; [refl, rw smul_zero]
@[simp] lemma single_smul {i : ι} {c : γ} {x : β i} :
single i (c • x) = c • single i x :=
ext $ λ i, by simp only [smul_apply, single_apply]; split_ifs; [cases h, rw smul_zero]; refl
variable β
def lmk (s : finset ι) : (Π i : (↑s : set ι), β i.1) →ₗ[γ] Π₀ i, β i :=
⟨mk s, λ _ _, mk_add, λ c x, by rw [mk_smul γ x]⟩
def lsingle (i) : β i →ₗ[γ] Π₀ i, β i :=
⟨single i, λ _ _, single_add, λ _ _, single_smul _⟩
variable {β}
@[simp] lemma lmk_apply {s : finset ι} {x} : lmk β γ s x = mk s x := rfl
@[simp] lemma lsingle_apply {i : ι} {x : β i} : lsingle β γ i x = single i x := rfl
end
section support_basic
variables [Π i, has_zero (β i)] [Π i, decidable_pred (eq (0 : β i))]
def support (f : Π₀ i, β i) : finset ι :=
quotient.lift_on f (λ x, x.2.to_finset.filter $ λ i, x.1 i ≠ 0) $
begin
intros x y Hxy,
ext i, split,
{ intro H,
rcases finset.mem_filter.1 H with ⟨h1, h2⟩,
rw Hxy i at h2,
exact finset.mem_filter.2 ⟨multiset.mem_to_finset.2 $ (y.3 i).resolve_right h2, h2⟩ },
{ intro H,
rcases finset.mem_filter.1 H with ⟨h1, h2⟩,
rw ← Hxy i at h2,
exact finset.mem_filter.2 ⟨multiset.mem_to_finset.2 $ (x.3 i).resolve_right h2, h2⟩ },
end
@[simp] theorem support_mk_subset {s : finset ι} {x : Π i : (↑s : set ι), β i.1} : (mk s x).support ⊆ s :=
λ i H, multiset.mem_to_finset.1 (finset.mem_filter.1 H).1
@[simp] theorem mem_support_to_fun (f : Π₀ i, β i) (i) : i ∈ f.support ↔ f i ≠ 0 :=
begin
refine quotient.induction_on f (λ x, _),
dsimp only [support, quotient.lift_on_beta],
rw [finset.mem_filter, multiset.mem_to_finset],
exact and_iff_right_of_imp (x.3 i).resolve_right
end
theorem eq_mk_support (f : Π₀ i, β i) : f = mk f.support (λ i, f i.1) :=
by ext i; by_cases h : f i = 0; try {simp at h}; simp [h]
@[simp] lemma support_zero : (0 : Π₀ i, β i).support = ∅ := rfl
@[simp] lemma mem_support_iff (f : Π₀ i, β i) : ∀i:ι, i ∈ f.support ↔ f i ≠ 0 :=
f.mem_support_to_fun
@[simp] lemma support_eq_empty {f : Π₀ i, β i} : f.support = ∅ ↔ f = 0 :=
⟨λ H, ext $ by simpa [finset.ext] using H, by simp {contextual:=tt}⟩
instance decidable_zero : decidable_pred (eq (0 : Π₀ i, β i)) :=
λ f, decidable_of_iff _ $ support_eq_empty.trans eq_comm
lemma support_subset_iff {s : set ι} {f : Π₀ i, β i} :
↑f.support ⊆ s ↔ (∀i∉s, f i = 0) :=
by simp [set.subset_def];
exact forall_congr (assume i, @not_imp_comm _ _ (classical.dec _) (classical.dec _))
lemma support_single_ne_zero {i : ι} {b : β i} (hb : b ≠ 0) : (single i b).support = {i} :=
begin
ext j, by_cases h : i = j,
{ subst h, simp [hb] },
simp [ne.symm h, h]
end
lemma support_single_subset {i : ι} {b : β i} : (single i b).support ⊆ {i} :=
support_mk_subset
section map_range_and_zip_with
variables {β₁ : ι → Type v₁} {β₂ : ι → Type v₂}
variables [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
variables [Π i, decidable_pred (eq (0 : β₁ i))] [Π i, decidable_pred (eq (0 : β₂ i))]
lemma map_range_def {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} :
map_range f hf g = mk g.support (λ i, f i.1 (g i.1)) :=
begin
ext i,
by_cases h : g i = 0,
{ simp [h, hf] },
{ simp at h, simp [h, hf] }
end
lemma support_map_range {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} :
(map_range f hf g).support ⊆ g.support :=
by simp [map_range_def]
@[simp] lemma map_range_single {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {i : ι} {b : β₁ i} :
map_range f hf (single i b) = single i (f i b) :=
dfinsupp.ext $ λ i', by by_cases i = i'; [{subst i', simp}, simp [h, hf]]
lemma zip_with_def {f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0} {g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} :
zip_with f hf g₁ g₂ = mk (g₁.support ∪ g₂.support) (λ i, f i.1 (g₁ i.1) (g₂ i.1)) :=
begin
ext i,
by_cases h1 : g₁ i = 0; by_cases h2 : g₂ i = 0;
try {simp at h1 h2}; simp [h1, h2, hf]
end
lemma support_zip_with {f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0} {g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} :
(zip_with f hf g₁ g₂).support ⊆ g₁.support ∪ g₂.support :=
by simp [zip_with_def]
end map_range_and_zip_with
lemma erase_def (i : ι) (f : Π₀ i, β i) :
f.erase i = mk (f.support.erase i) (λ j, f j.1) :=
begin
ext j,
by_cases h1 : j = i; by_cases h2 : f j = 0;
try {simp at h2}; simp [h1, h2]
end
@[simp] lemma support_erase (i : ι) (f : Π₀ i, β i) :
(f.erase i).support = f.support.erase i :=
begin
ext j,
by_cases h1 : j = i; by_cases h2 : f j = 0;
try {simp at h2}; simp [h1, h2]
end
section filter_and_subtype_domain
variables {p : ι → Prop} [decidable_pred p]
lemma filter_def (f : Π₀ i, β i) :
f.filter p = mk (f.support.filter p) (λ i, f i.1) :=
by ext i; by_cases h1 : p i; by_cases h2 : f i = 0;
try {simp at h2}; simp [h1, h2]
@[simp] lemma support_filter (f : Π₀ i, β i) :
(f.filter p).support = f.support.filter p :=
by ext i; by_cases h : p i; simp [h]
lemma subtype_domain_def (f : Π₀ i, β i) :
f.subtype_domain p = mk (f.support.subtype p) (λ i, f i.1) :=
by ext i; cases i with i hi;
by_cases h1 : p i; by_cases h2 : f i = 0;
try {simp at h2}; dsimp; simp [h1, h2]
@[simp] lemma support_subtype_domain {f : Π₀ i, β i} :
(subtype_domain p f).support = f.support.subtype p :=
by ext i; cases i with i hi;
by_cases h1 : p i; by_cases h2 : f i = 0;
try {simp at h2}; dsimp; simp [h1, h2]
end filter_and_subtype_domain
end support_basic
lemma support_add [Π i, add_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))] {g₁ g₂ : Π₀ i, β i} :
(g₁ + g₂).support ⊆ g₁.support ∪ g₂.support :=
support_zip_with
@[simp] lemma support_neg [Π i, add_group (β i)] [Π i, decidable_pred (eq (0 : β i))] {f : Π₀ i, β i} :
support (-f) = support f :=
by ext i; simp
instance [decidable_eq ι] [Π i, has_zero (β i)] [Π i, decidable_eq (β i)] : decidable_eq (Π₀ i, β i) :=
assume f g, decidable_of_iff (f.support = g.support ∧ (∀i∈f.support, f i = g i))
⟨assume ⟨h₁, h₂⟩, ext $ assume i,
if h : i ∈ f.support then h₂ i h else
have hf : f i = 0, by rwa [f.mem_support_iff, not_not] at h,
have hg : g i = 0, by rwa [h₁, g.mem_support_iff, not_not] at h,
by rw [hf, hg],
by intro h; subst h; simp⟩
section prod_and_sum
variables {γ : Type w}
-- [to_additive dfinsupp.sum] for dfinsupp.prod doesn't work, the equation lemmas are not generated
/-- `sum f g` is the sum of `g i (f i)` over the support of `f`. -/
def sum [Π i, has_zero (β i)] [Π i, decidable_pred (eq (0 : β i))] [add_comm_monoid γ]
(f : Π₀ i, β i) (g : Π i, β i → γ) : γ :=
f.support.sum (λi, g i (f i))
/-- `prod f g` is the product of `g i (f i)` over the support of `f`. -/
@[to_additive dfinsupp.sum]
def prod [Π i, has_zero (β i)] [Π i, decidable_pred (eq (0 : β i))] [comm_monoid γ]
(f : Π₀ i, β i) (g : Π i, β i → γ) : γ :=
f.support.prod (λi, g i (f i))
attribute [to_additive dfinsupp.sum.equations._eqn_1] dfinsupp.prod.equations._eqn_1
@[to_additive dfinsupp.sum_map_range_index]
lemma prod_map_range_index {β₁ : ι → Type v₁} {β₂ : ι → Type v₂}
[Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)]
[Π i, decidable_pred (eq (0 : β₁ i))] [Π i, decidable_pred (eq (0 : β₂ i))] [comm_monoid γ]
{f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} {h : Π i, β₂ i → γ} (h0 : ∀i, h i 0 = 1) :
(map_range f hf g).prod h = g.prod (λi b, h i (f i b)) :=
begin
rw [map_range_def],
refine (finset.prod_subset support_mk_subset _).trans _,
{ intros i h1 h2,
dsimp, simp [h1] at h2, dsimp at h2,
simp [h1, h2, h0] },
{ refine finset.prod_congr rfl _,
intros i h1,
simp [h1] }
end
@[to_additive dfinsupp.sum_zero_index]
lemma prod_zero_index [Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))] [comm_monoid γ]
{h : Π i, β i → γ} : (0 : Π₀ i, β i).prod h = 1 :=
rfl
@[to_additive dfinsupp.sum_single_index]
lemma prod_single_index [Π i, has_zero (β i)] [Π i, decidable_pred (eq (0 : β i))] [comm_monoid γ]
{i : ι} {b : β i} {h : Π i, β i → γ} (h_zero : h i 0 = 1) :
(single i b).prod h = h i b :=
begin
by_cases h : b = 0,
{ simp [h, prod_zero_index, h_zero], refl },
{ simp [dfinsupp.prod, support_single_ne_zero h] }
end
@[to_additive dfinsupp.sum_neg_index]
lemma prod_neg_index [Π i, add_group (β i)] [Π i, decidable_pred (eq (0 : β i))] [comm_monoid γ]
{g : Π₀ i, β i} {h : Π i, β i → γ} (h0 : ∀i, h i 0 = 1) :
(-g).prod h = g.prod (λi b, h i (- b)) :=
prod_map_range_index h0
@[simp] lemma sum_apply {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁}
[Π i₁, has_zero (β₁ i₁)] [Π i, decidable_pred (eq (0 : β₁ i))]
[Π i, add_comm_monoid (β i)]
{f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} {i₂ : ι} :
(f.sum g) i₂ = f.sum (λi₁ b, g i₁ b i₂) :=
(finset.sum_hom (λf : Π₀ i, β i, f i₂)).symm
lemma support_sum {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁}
[Π i₁, has_zero (β₁ i₁)] [Π i, decidable_pred (eq (0 : β₁ i))]
[Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
{f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} :
(f.sum g).support ⊆ f.support.bind (λi, (g i (f i)).support) :=
have ∀i₁ : ι, f.sum (λ (i : ι₁) (b : β₁ i), (g i b) i₁) ≠ 0 →
(∃ (i : ι₁), f i ≠ 0 ∧ ¬ (g i (f i)) i₁ = 0),
from assume i₁ h,
let ⟨i, hi, ne⟩ := finset.exists_ne_zero_of_sum_ne_zero h in
⟨i, (f.mem_support_iff i).mp hi, ne⟩,
by simpa [finset.subset_iff, mem_support_iff, finset.mem_bind, sum_apply] using this
@[simp] lemma sum_zero [Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
[add_comm_monoid γ] {f : Π₀ i, β i} :
f.sum (λi b, (0 : γ)) = 0 :=
finset.sum_const_zero
@[simp] lemma sum_add [Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
[add_comm_monoid γ] {f : Π₀ i, β i} {h₁ h₂ : Π i, β i → γ} :
f.sum (λi b, h₁ i b + h₂ i b) = f.sum h₁ + f.sum h₂ :=
finset.sum_add_distrib
@[simp] lemma sum_neg [Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
[add_comm_group γ] {f : Π₀ i, β i} {h : Π i, β i → γ} :
f.sum (λi b, - h i b) = - f.sum h :=
finset.sum_hom (@has_neg.neg γ _)
@[to_additive dfinsupp.sum_add_index]
lemma prod_add_index [Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
[comm_monoid γ] {f g : Π₀ i, β i}
{h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) :
(f + g).prod h = f.prod h * g.prod h :=
have f_eq : (f.support ∪ g.support).prod (λi, h i (f i)) = f.prod h,
from (finset.prod_subset (finset.subset_union_left _ _) $
by simp [mem_support_iff, h_zero] {contextual := tt}).symm,
have g_eq : (f.support ∪ g.support).prod (λi, h i (g i)) = g.prod h,
from (finset.prod_subset (finset.subset_union_right _ _) $
by simp [mem_support_iff, h_zero] {contextual := tt}).symm,
calc (f + g).support.prod (λi, h i ((f + g) i)) =
(f.support ∪ g.support).prod (λi, h i ((f + g) i)) :
finset.prod_subset support_add $
by simp [mem_support_iff, h_zero] {contextual := tt}
... = (f.support ∪ g.support).prod (λi, h i (f i)) *
(f.support ∪ g.support).prod (λi, h i (g i)) :
by simp [h_add, finset.prod_mul_distrib]
... = _ : by rw [f_eq, g_eq]
lemma sum_sub_index [Π i, add_comm_group (β i)] [Π i, decidable_pred (eq (0 : β i))]
[add_comm_group γ] {f g : Π₀ i, β i}
{h : Π i, β i → γ} (h_sub : ∀i b₁ b₂, h i (b₁ - b₂) = h i b₁ - h i b₂) :
(f - g).sum h = f.sum h - g.sum h :=
have h_zero : ∀i, h i 0 = 0,
from assume i,
have h i (0 - 0) = h i 0 - h i 0, from h_sub i 0 0,
by simpa using this,
have h_neg : ∀i b, h i (- b) = - h i b,
from assume i b,
have h i (0 - b) = h i 0 - h i b, from h_sub i 0 b,
by simpa [h_zero] using this,
have h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ + h i b₂,
from assume i b₁ b₂,
have h i (b₁ - (- b₂)) = h i b₁ - h i (- b₂), from h_sub i b₁ (-b₂),
by simpa [h_neg] using this,
by simp [@sum_add_index ι β _ γ _ _ _ f (-g) h h_zero h_add];
simp [@sum_neg_index ι β _ γ _ _ _ g h h_zero, h_neg];
simp [@sum_neg ι β _ γ _ _ _ g h]
@[to_additive dfinsupp.sum_finset_sum_index]
lemma prod_finset_sum_index {γ : Type w} {α : Type x}
[Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
[comm_monoid γ] [decidable_eq α]
{s : finset α} {g : α → Π₀ i, β i}
{h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂):
s.prod (λi, (g i).prod h) = (s.sum g).prod h :=
finset.induction_on s
(by simp [prod_zero_index])
(by simp [prod_add_index, h_zero, h_add] {contextual := tt})
@[to_additive dfinsupp.sum_sum_index]
lemma prod_sum_index {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁}
[Π i₁, has_zero (β₁ i₁)] [Π i, decidable_pred (eq (0 : β₁ i))]
[Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
[comm_monoid γ]
{f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i}
{h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂):
(f.sum g).prod h = f.prod (λi b, (g i b).prod h) :=
(prod_finset_sum_index h_zero h_add).symm
@[simp] lemma sum_single [Π i, add_comm_monoid (β i)]
[Π i, decidable_pred (eq (0 : β i))] {f : Π₀ i, β i} :
f.sum single = f :=
begin
apply dfinsupp.induction f, {rw [sum_zero_index]},
intros i b f H hb ih,
rw [sum_add_index, ih, sum_single_index],
all_goals { intros, simp }
end
@[to_additive dfinsupp.sum_subtype_domain_index]
lemma prod_subtype_domain_index [Π i, has_zero (β i)] [Π i, decidable_pred (eq (0 : β i))]
[comm_monoid γ] {v : Π₀ i, β i} {p : ι → Prop} [decidable_pred p]
{h : Π i, β i → γ} (hp : ∀x∈v.support, p x) :
(v.subtype_domain p).prod (λi b, h i.1 b) = v.prod h :=
finset.prod_bij (λp _, p.val)
(by simp)
(by simp)
(assume ⟨a₀, ha₀⟩ ⟨a₁, ha₁⟩, by simp)
(λ i hi, ⟨⟨i, hp i hi⟩, by simpa using hi, rfl⟩)
lemma subtype_domain_sum [Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
{s : finset γ} {h : γ → Π₀ i, β i} {p : ι → Prop} [decidable_pred p] :
(s.sum h).subtype_domain p = s.sum (λc, (h c).subtype_domain p) :=
eq.symm (finset.sum_hom _)
lemma subtype_domain_finsupp_sum {δ : γ → Type x} [decidable_eq γ]
[Π c, has_zero (δ c)] [Π c, decidable_pred (eq (0 : δ c))]
[Π i, add_comm_monoid (β i)] [Π i, decidable_pred (eq (0 : β i))]
{p : ι → Prop} [decidable_pred p]
{s : Π₀ c, δ c} {h : Π c, δ c → Π₀ i, β i} :
(s.sum h).subtype_domain p = s.sum (λc d, (h c d).subtype_domain p) :=
subtype_domain_sum
end prod_and_sum
end dfinsupp
|
Will you please share with me the Clerical post exam question papers of previous years of State Bank of India?
Directions—(Q. 1–12) Read the following passage carefully and answer the questions given below it. Certain words have been printed in bold to help you locate them while answering some of the questions.
Keshava, the washerman had a donkey. They worked together all day, and Keshava would pour out his heart to the doneky. One day, Keshava was walking home with the donkey when he felt tired. He tied the donkey to a tree and sat down to rest for a while, near a school. A window was open, and through it, a teacher could be heard scolding the students. ‘Here I am, trying to turn you donkeys into human beings, but you just won’t study !’ As soon as Keshava heard these words, his ears pricked up. A man who could actually turn donkeys into humans ! This was the answer to his prayers. Impatiently, he waited for school to be over that day. when everyone had gone home, and only the teacher remained behind to check some papers, Keshava entered the classroom.
‘How can I help you ?’ asked the teacher. Keshava scratched his head and said, ‘I heard what you said to the children. This donkey is my companion. If you made it human, we could have such good times together.’ The teacher decided to trick Keshava. He pretended to think for a while and then said, ‘Give me six months and it will cost you a thousand rupees.’ The washerman agreed and rushed home to get the money. He then left the donkey in the teacher’s care.
The headman understood someone had played a trick on Keshava. ‘I am not your donkey !’ he said. ‘Go find the sage in the forest.’ Keshava found the sage sitting under a tree with his eyes closed, deep in meditation. He crept up and grabbed the sage’s beard. ‘Come back home now !’ he shouted. The startled sage somehow calmed Keshava. When he heard what had happened, he had a good laugh. Then he told the washerman kindly, ‘The teacher made a fool of you. Your donkey must be still with him. Go and take it back from him. Try to make some real friends, who will talk with you and share your troubles. A donkey will never be able to do that !’ Keshava returned home later that day with his donkey, sadder and wiser.
1. Which of the following can be said about the teacher ?
2. Why did Keshava talk to his donkey while working ?
3. How did Keshava get his donkey back ?
5. Why was Keshava keen to meet the teacher one day ?
6. Why did Keshava interrupt the discussion among the village elders ?
7. What made Keshava pull the sage’s beard ?
8. Why did the teacher ask Keshava to leave the donkey with him for six months ?
(b) To reduce Keshava’s dependence on the donkey.
Directions—(Q. 9–10) Choose the word which is MOST SIMILAR in MEANING to the word printed in bold as used in the passage.
Directions—(Q. 11–12) Choose the word which is MOST OPPOSITE in MEANING to the word printed in bold as used in the passage.
Directions—(Q. 13–17) Which of the phrases (A), (B), (C) and (D) given below each sentence should replace the phrase printed in bold in the sentence to make it grammatically correct ? If the sentence is correct as it is given and ‘No Correction is Required’, mark (E) as the answer.
13. The company has set up a foundation which helps students who do not have the necessary funds to study ahead.
14. If this land is used to cultivate crops it will be additionally source of income for the villagers.
15. Belonged to this cadre, you are eligible for facilities such as free air travel and accommodation.
16. The bank has hired a consultant who will look into any issues which arise during the merger.
17. I had severe doubts about if I successfully run a company, but my father encouraged me.
Directions—(Q. 18–22) In each question below a sentence with four words printed in bold type is given. These are lettered as (A), (B), (C) and (D). One of these four words printed in bold may be either wrongly spelt or inappropriate in the context of the sentence. Find out the word which is wrongly spelt or inappropriate if any. The letter of that word is your answer. If all the words printed in bold are correctly spelt and also appropriate in the context of the sentence, mark (E) i.e. ‘All Correct’ as your answer.
Directions—(Q. 23–27) Rearrange the following six sentences (a), (b), (c), (d), (e) and (f) in the proper sequence to form a meaningful paragraph; then answer the questions given below them.
(f) What I saw however when I opened the bags of ‘donations’ they had sent shocked me.
23. Which of the following should be the SECOND sentence after rearrangement ?
24. Which of the following should be the THIRD sentence after rearrangement ?
25. Which of the following should be t h e FOURTH sentence after rearrangement ?
27. Which of the following should be the FIRST sentence after rearrangement ?
Directions—(Q. 28–32) Read each sentence to find out whether there is any grammatical error or idiomatic error in it. The error, if any, will be in one part of the sentence. The letter of that part is the answer. If there is no error, the answer is (E).
Directions—(Q. 33–40) In the following passage there are blanks, each of which has been numbered. These numbers are printed below the passage and against each, five words are suggested, one of which fits the blank appropriately. Find out the appropriate word in each case.
Today, twenty-two years after the bank …(33)…, it has over a thousand branches all over the country and the staff …(34)… about twentythree lakh borrowers. We decided to operate …(35)… from conventional banks who would ask their clients to come to their office. Many people in rural areas found this …(36)…. Our bank is therefore based on the …(37)… that people should not come to the bank but that the bank should go to the people. Our loans are also …(38)… we give them for activities from candle making to tyre repair. We also keep …(39)… checks on the borrower through weekly visits. We do this to make certain that the family of the borrower is …(40)… from the loan. |
### fimd8.R
### R code from Van Buuren, S. (2012).
### Flexible Imputation of Missing Data.
### CRC/Chapman & Hall, Boca Raton, FL.
### (c) 2012 Stef van Buuren, www.multiple-imputation.com
### Version 1, 22mar2012
### Version 2, 4nov2015 tested with mice 2.23
### Tested with Mac OS X 10.7.3, R2.14-2, mice 2.12
if (packageVersion("mice")<'2.12') stop("This code requires mice 2.12.")
library("mice")
library("lattice")
### Section 8.1 Correcting for selective drop-out
data <- pops
pred <- pops.pred
if (!is.data.frame(data)) stop("The code for section 8.1 requires access to the POPS data.")
### Section 8.1.4 A degenerate solution (TIME CONSUMING (30 MINUTES))
imp1 <- mice(data, pred=pred, maxit=20, seed=51121)
### Figure 8.2
tp82 <- plot(imp1, c("a10u","a10b","adhd"),col=mdc(5),lty=1:5)
print(tp82)
### Section 8.1.5 A better solution
## TIME CONSUMING (30 MINUTES)
pred2 <- pred
pred2[61:86,61:86] <- 0
imp2 <- mice(data, pred=pred2, maxit=20, seed=51121)
### Figure 8.3
tp83 <- bwplot(imp2, iq+e_tot+l19_sd+b19_sd+coping+seffz~.imp,
layout=c(2,3))
print(tp83)
### Section 8.1.6 Results
### Full responders
summary(lm(as.numeric(a10u)~1,data,na.action=na.omit))
summary(lm(as.numeric(a10b)~1,data,na.action=na.omit))
summary(lm(as.numeric(adhd)~1,data,na.action=na.omit))
### All children
summary(pool(with(imp2,lm(as.numeric(a10u)~1))))
summary(pool(with(imp2,lm(as.numeric(a10b)~1))))
summary(pool(with(imp2,lm(as.numeric(adhd)~1))))
### Section 8.2 Correcting for nonresponse
library("mice")
data <- fdgs
### Section 8.2.4 Augmenting the sample
nimp <- c(400, 600, 75, 300, 200, 400)
regcat <- c("North","City","North","East","North","City")
reg <- rep(regcat, nimp)
nimp2 <- floor(rep(nimp, each=2)/2)
nimp2[5:6] <- c(38,37)
sex <- rep(rep(c("boy","girl"),6), nimp2)
minage <- rep(c(0, 0, 10, 10, 14, 14), nimp)
maxage <- rep(c(10, 10, 14, 14, 21, 21), nimp)
set.seed(42444)
age <- runif(length(minage), minage, maxage)
id <- 600001:601975
pad <- data.frame(id, reg, age, sex, hgt=NA, wgt=NA, hgt.z=NA, wgt.z=NA)
data2 <- rbind(data, pad)
### Figure 8.4
## inspect the age by region pattern
means <- aggregate(data$hgt.z, by=list(reg=data$reg,
age=floor(data$age)), mean, na.rm=TRUE)
tp84 <- xyplot(x~age, means, group=reg, type=c("g","l"),
lty=1:5,col=mdc(4),
xlim=c(-1,22), ylim=c(-0.6, 0.8),
ylab="Height (SDS)", xlab="Age (years)",
key=list(
text=list(levels(means$reg)),
lines=list(lty=1:5, col=mdc(4)),
x=0.1, y=0.98, background="white",
columns=3, between.columns=0),
scales=list(x=list(tck=c(1,0)),
y=list(tck=c(1,0))))
print(tp84)
### Section 8.2.5 Imputation model
## add interaction terms
na.opt <- options(na.action=na.pass)
int <- model.matrix(~I(age-10)*hgt.z+I(age-10)*wgt.z+age*reg, data=data2)[,-(1:9)]
options(na.opt)
data3 <- cbind(data2, int)
### define the imputation model
ini <- mice(data3, maxit=0)
meth <- ini$meth
meth["hgt"] <- ""
meth["wgt"] <- ""
meth["hgt.z"] <- "norm"
meth["wgt.z"] <- "norm"
meth["I(age - 10):hgt.z"] <- "~I(I(age-10)*hgt.z)"
meth["I(age - 10):wgt.z"] <- "~I(I(age-10)*wgt.z)"
pred <- ini$pred
pred[,c("hgt","wgt")] <- 0
pred["hgt.z", c("id","I(age - 10):hgt.z")] <- 0
pred["wgt.z", c("id","I(age - 10):wgt.z")] <- 0
vis <- ini$vis[c(3,5,4,6)]
### run the imputation model
imp <- mice(data3, meth=meth, pred=pred, vis=vis, m=10, maxit=20, seed=28107)
### Figure 8.5
cda <- complete(imp, "long", include=TRUE)
means2 <- aggregate(cda$hgt.z, by=list(reg=cda$reg, age=floor(cda$age), imp=cda$.imp), mean, na.rm=TRUE)
tp85 <- xyplot(x~age|reg,means2, group=imp, subset=(reg=="North"|reg=="City"),
type=c("g","l"),lwd=c(4,rep(1,imp$m)),
lty=1:5,col=c(mdc(4),rep(mdc(6),imp$m)),
ylab="Height (SDS)", xlab="Age (years)",
ylim=c(-0.5,0.8), xlim=c(-2,23),
scales=list(x=list(alternating=FALSE, tck=c(1,0)),
y=list(tck=c(1,0))),
strip = strip.custom(bg="grey95"))
print(tp85)
|
/-
This file contains the definition of the "explode" operation, which
creates a "powerset" of literals from a list of variables. Associated
theorems dealing with the contents of explode are also included.
Authors: Cayden Codel, Jeremy Avigad, Marijn Heule
Carnegie Mellon University
-/
import cnf.literal
import cnf.clause
import cnf.cnf
import data.nat.basic
import data.nat.pow
-- Represents the parametric type of the variable stored in the literal
variables {V : Type*}
open literal clause
open list function
namespace explode
variables {v : V} {l : list V} {c : clause V}
/-! # Explode -/
-- Produces a list of all possible polarities on a list of variables, maintaining order
def explode : list V → list (clause V)
| [] := [[]]
| (v :: l) := (explode l).map (cons (Pos v)) ++ (explode l).map (cons (Neg v))
@[simp] theorem explode_nil : explode ([] : list V) = [[]] := rfl
@[simp] theorem explode_singleton (v : V) : explode [v] = [[Pos v], [Neg v]] := rfl
theorem length_explode (l : list V) : length (explode l) = 2^(length l) :=
begin
induction l with v vs ih,
{ refl },
{ simp only [explode, length_cons, length_append, length_map, pow_succ, two_mul, ih] }
end
theorem length_explode_pos (l : list V) : length (explode l) > 0 :=
by { rw length_explode, exact pow_pos zero_lt_two _ }
theorem exists_mem_explode (l : list V) : ∃ (c : clause V), c ∈ explode l :=
exists_mem_of_length_pos (length_explode_pos _)
theorem length_eq_of_mem_explode : c ∈ explode l → length c = length l :=
begin
induction l with v vs ih generalizing c,
{ rw [explode_nil, mem_singleton],
rintro rfl, refl },
{ simp only [explode, mem_append, mem_map],
rintros (⟨c, hc, rfl⟩ | ⟨c, hc, rfl⟩);
{ simp [ih hc, length_cons] } }
end
theorem cons_mem_explode_cons_of_mem_explode (lit : literal V) :
c ∈ explode l → (lit :: c) ∈ explode (lit.var :: l) :=
assume hc, by { cases lit; simp [explode, literal.var, hc] }
variable [decidable_eq V]
theorem mem_of_mem_explode_of_mem_vars : c ∈ explode l → v ∈ c.vars → v ∈ l :=
begin
induction l with v vs ih generalizing c,
{ rw [explode_nil, mem_singleton],
rintros rfl hv,
rw clause.vars_nil at hv,
exact absurd hv (finset.not_mem_empty _) },
{ simp only [explode, mem_append, mem_map],
rintros (⟨a, ha, rfl⟩ | ⟨a, ha, rfl⟩);
{ rw [clause.vars, finset.mem_union, mem_cons_iff],
rintros (hv | hv),
{ rw [var, finset.mem_singleton] at hv,
exact or.inl hv },
{ exact or.inr (ih ha hv) } } }
end
theorem mem_vars_of_mem_explode_of_mem : c ∈ explode l → v ∈ l → v ∈ c.vars :=
begin
induction l with v vs ih generalizing c,
{ intros _ hv, exact absurd hv (not_mem_nil v) } ,
{ simp only [explode, mem_append, mem_map],
rintros (⟨a, ha, rfl⟩ | ⟨a, ha, rfl⟩) hv;
{ unfold clause.vars var,
rcases eq_or_mem_of_mem_cons hv with rfl | hv,
{ exact finset.mem_union.mpr (or.inl (mem_singleton_self _)) },
{ exact finset.mem_union.mpr (or.inr (ih ha hv)) } } }
end
theorem not_mem_vars_of_mem_explode_of_not_mem : c ∈ explode l → v ∉ l → v ∉ c.vars :=
λ h hv, mt (mem_of_mem_explode_of_mem_vars h) hv
theorem not_mem_of_mem_explode_of_not_mem_vars : c ∈ explode l → v ∉ c.vars → v ∉ l :=
λ h hv, mt (mem_vars_of_mem_explode_of_mem h) hv
theorem pos_or_neg_of_mem_explode_of_mem : c ∈ explode l → v ∈ l → Pos v ∈ c ∨ Neg v ∈ c :=
λ h hv, mem_vars_iff_pos_or_neg_mem_clause.mp (mem_vars_of_mem_explode_of_mem h hv)
theorem pos_and_neg_not_mem_of_mem_explode_of_not_mem : c ∈ explode l → v ∉ l → Pos v ∉ c ∧ Neg v ∉ c :=
begin
intro h,
contrapose,
rw not_and_distrib,
simp only [not_not],
intro hv,
exact mem_of_mem_explode_of_mem_vars h
(mem_vars_iff_pos_or_neg_mem_clause.mpr hv)
end
-- If the variables in a clause match the input to explode, then it's in explode
theorem map_var_eq_iff_mem_explode : c.map var = l ↔ c ∈ explode l :=
begin
induction l with v vs ih generalizing c,
{ simp only [map_eq_nil, explode_nil, mem_singleton] },
{ split,
{ intro h,
rcases exists_cons_of_map_cons h with ⟨l, ls, rfl, hl, hls⟩,
cases l; simp only [explode, mem_append, mem_map],
{ rw var at hl, subst hl, left, use [ls, ih.mp hls] },
{ rw var at hl, subst hl, right, use [ls, ih.mp hls] } },
{ simp only [explode, mem_map, mem_append],
rintros (⟨a, ha, rfl⟩ | ⟨a, ha, rfl⟩);
{ simp only [ih.mpr ha, var, map, eq_self_iff_true, and_self] } } }
end
/-! # nodup properties of explode -/
theorem explode_nodup (l : list V) : nodup (explode l) :=
begin
induction l with v vs ih,
{ rw explode_nil, exact nodup_singleton nil },
{ simp only [explode, nodup_cons, nodup_append, (nodup_map_iff (cons_injective)).mpr ih, true_and],
intros x hxp hxn,
rcases mem_map.mp hxp with ⟨c, _, rfl⟩,
rcases mem_map.mp hxn with ⟨d, _, h⟩,
have := head_eq_of_cons_eq h,
contradiction }
end
theorem nodup_of_nodup_of_mem (h : nodup l) : c ∈ explode l → nodup c :=
begin
induction l with n ns ih generalizing c,
{ rw [explode_nil, mem_singleton], rintro rfl, exact nodup_nil },
{ simp only [explode, mem_append, mem_map],
rintro (⟨a, ha, rfl⟩ | ⟨a, ha, rfl⟩);
rw nodup_cons;
have := pos_and_neg_not_mem_of_mem_explode_of_not_mem ha ((nodup_cons.mp h).1),
{ exact ⟨this.1, ih (nodup_cons.mp h).2 ha⟩ },
{ exact ⟨this.2, ih (nodup_cons.mp h).2 ha⟩ } }
end
theorem xor_pos_neg_mem_clause_of_nodup_of_mem_explode_of_mem (h : nodup l) :
c ∈ explode l → v ∈ l → xor (Pos v ∈ c) (Neg v ∈ c) :=
begin
induction l with v vs ih generalizing c,
{ intros _ h, exact absurd h (not_mem_nil _) },
{ simp only [explode, mem_append, mem_map],
rintros (⟨a, ha, rfl⟩ | ⟨a, ha, rfl⟩) hc;
{ rcases eq_or_mem_of_mem_cons hc with (rfl | hv),
{ simp [pos_and_neg_not_mem_of_mem_explode_of_not_mem ha (nodup_cons.mp h).1] },
{ rcases ih (nodup_cons.mp h).2 ha hv with ⟨hp, hn⟩ | ⟨hp, hn⟩;
{ simp [hp, hn, ne_of_mem_of_not_mem hv (nodup_cons.mp h).1] } } } }
end
end explode |
# Homework 5
## Due Date: Tuesday, October 3rd at 11:59 PM
# Problem 1
We discussed documentation and testing in lecture and also briefly touched on code coverage. You must write tests for your code for your final project (and in life). There is a nice way to automate the testing process called continuous integration (CI).
This problem will walk you through the basics of CI and show you how to get up and running with some CI software.
### Continuous Integration
The idea behind continuous integration is to automate away the testing of your code.
We will be using it for our projects.
The basic workflow goes something like this:
1. You work on your part of the code in your own branch or fork
2. On every commit you make and push to GitHub, your code is automatically tested on a fresh machine on Travis CI. This ensures that there are no specific dependencies on the structure of your machine that your code needs to run and also ensures that your changes are sane
3. Now you submit a pull request to `master` in the main repo (the one you're hoping to contribute to). The repo manager creates a branch off `master`.
4. This branch is also set to run tests on Travis. If all tests pass, then the pull request is accepted and your code becomes part of master.
We use GitHub to integrate our roots library with Travis CI and Coveralls. Note that this is not the only workflow people use. Google git..github..workflow and feel free to choose another one for your group.
### Part 1: Create a repo
Create a public GitHub repo called `cs207test` and clone it to your local machine.
**Note:** No need to do this in Jupyter.
### Part 2: Create a roots library
Use the example from lecture 7 to create a file called `roots.py`, which contains the `quad_roots` and `linear_roots` functions (along with their documentation).
Also create a file called `test_roots.py`, which contains the tests from lecture.
All of these files should be in your newly created `cs207test` repo. **Don't push yet!!!**
### Part 3: Create an account on Travis CI and Start Building
#### Part A:
Create an account on Travis CI and set your `cs207test` repo up for continuous integration once this repo can be seen on Travis.
#### Part B:
Create an instruction to Travis to make sure that
1. python is installed
2. its python 3.5
3. pytest is installed
The file should be called `.travis.yml` and should have the contents:
```yml
language: python
python:
- "3.5"
before_install:
- pip install pytest pytest-cov
script:
- pytest
```
You should also create a configuration file called `setup.cfg`:
```cfg
[tool:pytest]
addopts = --doctest-modules --cov-report term-missing --cov roots
```
#### Part C:
Push the new changes to your `cs207test` repo.
At this point you should be able to see your build on Travis and if and how your tests pass.
### Part 4: Coveralls Integration
In class, we also discussed code coverage. Just like Travis CI runs tests automatically for you, Coveralls automatically checks your code coverage. One minor drawback of Coveralls is that it can only work with public GitHub accounts. However, this isn't too big of a problem since your projects will be public.
#### Part A:
Create an account on [`Coveralls`](https://coveralls.zendesk.com/hc/en-us), connect your GitHub, and turn Coveralls integration on.
#### Part B:
Update your the `.travis.yml` file as follows:
```yml
language: python
python:
- "3.5"
before_install:
- pip install pytest pytest-cov
- pip install coveralls
script:
- py.test
after_success:
- coveralls
```
Be sure to push the latest changes to your new repo.
### Part 5: Update README.md in repo
You can have your GitHub repo reflect the build status on Travis CI and the code coverage status from Coveralls. To do this, you should modify the `README.md` file in your repo to include some badges. Put the following at the top of your `README.md` file:
```
[](https://travis-ci.org/dsondak/cs207testing.svg?branch=master)
[](https://coveralls.io/github/dsondak/cs207testing?branch=master)
```
Of course, you need to make sure that the links are to your repo and not mine. You can find embed code on the Coveralls and Travis CI sites.
---
# Problem 2
Write a Python module for reaction rate coefficients. Your module should include functions for constant reaction rate coefficients, Arrhenius reaction rate coefficients, and modified Arrhenius reaction rate coefficients. Here are their mathematical forms:
\begin{align}
&k_{\textrm{const}} = k \tag{constant} \\
&k_{\textrm{arr}} = A \exp\left(-\frac{E}{RT}\right) \tag{Arrhenius} \\
&k_{\textrm{mod arr}} = A T^{b} \exp\left(-\frac{E}{RT}\right) \tag{Modified Arrhenius}
\end{align}
Test your functions with the following paramters: $A = 10^7$, $b=0.5$, $E=10^3$. Use $T=10^2$.
A few additional comments / suggestions:
* The Arrhenius prefactor $A$ is strictly positive
* The modified Arrhenius parameter $b$ must be real
* $R = 8.314$ is the ideal gas constant. It should never be changed (except to convert units)
* The temperature $T$ must be positive (assuming a Kelvin scale)
* You may assume that units are consistent
* Document each function!
* You might want to check for overflows and underflows
**Recall:** A Python module is a `.py` file which is not part of the main execution script. The module contains several functions which may be related to each other (like in this problem). Your module will be importable via the execution script. For example, suppose you have called your module `reaction_coeffs.py` and your execution script `kinetics.py`. Inside of `kinetics.py` you will write something like:
```python
import reaction_coeffs
# Some code to do some things
# :
# :
# :
# Time to use a reaction rate coefficient:
reaction_coeffs.const() # Need appropriate arguments, etc
# Continue on...
# :
# :
# :
```
Be sure to include your module in the same directory as your execution script.
```python
%%file reaction_coeffs.py
import numpy as np
R=8.314
def const(k):
return k
def arr(A, E, T):
#Check that A,T,E are numbers
if ((type(A) != int and type(A) != float) or
(type(T) != int and type(T) != float) or
(type(E) != int and type(E) != float)):
raise TypeError("All arguments must be numbers!")
elif (T<0 or A<0): # A & T must be positive
raise ValueError("Temperature and Arrhenius prefactor must be positive!")
else:
#Calculate karr
karr = A*(np.exp(-E/(R*T)))
return karr
def mod_arr(A,E,b,T):
#Check that A,T,E are numbers
if ((type(A) != int and type(A) != float) or
(type(b) != int and type(b) != float) or
(type(E) != int and type(E) != float) or
(type(T) != int and type(T) != float)):
raise TypeError("All arguments must be numbers!")
elif (T<0 or A<0): # A & T must be positive
raise ValueError("Temperature and Arrhenius prefactor must be positive!")
else:
#Calculate karr
karr = A*(T**b)*(np.exp(-E/(R*T)))
return karr
```
Overwriting reaction_coeffs.py
```python
%%file kinetics.py
import reaction_coeffs
# Time to use a reaction rate coefficient:
reaction_coeffs.const(107)
reaction_coeffs.arr(107,103,102)
reaction_coeffs.mod_arr(107,103,0.5,102)
```
Overwriting kinetics.py
```python
%%file kinetics_tests.py
import reaction_coeffs
#Test k_const
def test_const():
assert reaction_coeffs.const(107) == 107
#Test k_arr
def test_arr():
assert reaction_coeffs.arr(107,103,102) == 94.762198593430469
def test_arr_values1():
try:
reaction_coeffs.arr(-1,103,102)
except ValueError as err:
assert(type(err) == ValueError)
def test_arr_values2():
try:
reaction_coeffs.arr(107,103,-2)
except ValueError as err:
assert(type(err) == ValueError)
def test_arr_types1():
try:
reaction_coeffs.arr('107',103,102)
except TypeError as err:
assert(type(err) == TypeError)
def test_arr_types2():
try:
reaction_coeffs.arr(107,'103',102)
except TypeError as err:
assert(type(err) == TypeError)
def test_arr_types3():
try:
reaction_coeffs.arr(107,103,[102])
except TypeError as err:
assert(type(err) == TypeError)
#Test mod_arr
def test_mod_arr():
assert reaction_coeffs.mod_arr(107,103,0.5,102) == 957.05129266439894
def test_mod_arr_values1():
try:
reaction_coeffs.mod_arr(-1,103,0.5,102)
except ValueError as err:
assert(type(err) == ValueError)
def test_mod_arr_values2():
try:
reaction_coeffs.mod_arr(107,103,0.5,-2)
except ValueError as err:
assert(type(err) == ValueError)
def test_mod_arr_types1():
try:
reaction_coeffs.mod_arr('107',103,0.5,102)
except TypeError as err:
assert(type(err) == TypeError)
def test_mod_arr_types2():
try:
reaction_coeffs.mod_arr(107,'103',0.5,102)
except TypeError as err:
assert(type(err) == TypeError)
def test_mod_arr_types3():
try:
reaction_coeffs.mod_arr(107,103,[0.5],102)
except TypeError as err:
assert(type(err) == TypeError)
def test_mod_arr_types4():
try:
reaction_coeffs.mod_arr(107,103,0.5,False)
except TypeError as err:
assert(type(err) == TypeError)
test_const()
test_mod_arr()
test_arr()
test_arr_values1()
test_arr_values2()
test_arr_types1()
test_arr_types2()
test_arr_types3()
test_mod_arr_values1()
test_mod_arr_values2()
test_mod_arr_types1()
test_mod_arr_types2()
test_mod_arr_types3()
test_mod_arr_types4()
```
Overwriting kinetics_tests.py
---
# Problem 3
Write a function that returns the **progress rate** for a reaction of the following form:
\begin{align}
\nu_{A} A + \nu_{B} B \longrightarrow \nu_{C} C.
\end{align}
Order your concentration vector so that
\begin{align}
\mathbf{x} =
\begin{bmatrix}
\left[A\right] \\
\left[B\right] \\
\left[C\right]
\end{bmatrix}
\end{align}
Test your function with
\begin{align}
\nu_{i}^{\prime} =
\begin{bmatrix}
2.0 \\
1.0 \\
0.0
\end{bmatrix}
\qquad
\mathbf{x} =
\begin{bmatrix}
1.0 \\
2.0 \\
3.0
\end{bmatrix}
\qquad
k = 10.
\end{align}
You must document your function and write some tests in addition to the one suggested. You choose the additional tests, but you must have at least one doctest in addition to a suite of unit tests.
```python
def progress_rate(v1,x,k):
"""Returns the progress rate of a reaction of the form: v1A + v2B -> v3C.
INPUTS
=======
v1: list,
stoichiometric coefficient of reactants in a reaction(s)
x: float,
Concentration of A, B, C
k: float,
reaction rate coefficient
RETURNS
========
progress rate: a list of the progress rate of each reaction
EXAMPLES
=========
>>> progress_rate([2.0,1.0,0.0],[1.0,2.0,3.0],10)
[20.0]
"""
#Check that x and v1 are lists
if (type(v1) != list or type(x) != list):
raise TypeError("v' & x must be passed in as a list")
#Check that x,and k are numbers/list of numbers
if (any(type(i) != int and type(i) != float for i in x)):
raise TypeError("All elements in x must be numbers!")
elif (type(k) != int and type(k) != float and type(k) != list):
raise TypeError("k must be a numbers!")
else:
progress_rates = []
#check for multiple reactions
if(type(v1[0]) == list):
for v in v1:
for reactant in v:
if(type(reactant) != int and type(reactant) != float):
raise TypeError("All elements in v1 must be numbers!")
#Calculate the progress rate of each reaction
reactions = len(v1[0])
for j in range(reactions):
if (type(k)== list):
progress_rate = k[j]
else:
progress_rate = k
for i in range(len(v1)):
progress_rate = progress_rate*(x[i]**v1[i][j])
progress_rates.append(progress_rate)
else:
#Check types of V1
if (any(type(i) != int and type(i) != float for i in v1)):
raise TypeError("All elements in v1 must be numbers!")
#Calculate the progress rate of each reaction
progress_rate = k
for i in range(len(v1)):
progress_rate = progress_rate*(x[i]**v1[i])
progress_rates.append(progress_rate)
return progress_rates
```
```python
progress_rate([2.0,1.0,0.0],[1.0,2.0,3.0],10)
```
[20.0]
---
# Problem 4
Write a function that returns the **progress rate** for a system of reactions of the following form:
\begin{align}
\nu_{11}^{\prime} A + \nu_{21}^{\prime} B \longrightarrow \nu_{31}^{\prime\prime} C \\
\nu_{12}^{\prime} A + \nu_{32}^{\prime} C \longrightarrow \nu_{22}^{\prime\prime} B + \nu_{32}^{\prime\prime} C
\end{align}
Note that $\nu_{ij}^{\prime}$ represents the stoichiometric coefficient of reactant $i$ in reaction $j$ and $\nu_{ij}^{\prime\prime}$ represents the stoichiometric coefficient of product $i$ in reaction $j$. Therefore, in this convention, I have ordered my vector of concentrations as
\begin{align}
\mathbf{x} =
\begin{bmatrix}
\left[A\right] \\
\left[B\right] \\
\left[C\right]
\end{bmatrix}.
\end{align}
Test your function with
\begin{align}
\nu_{ij}^{\prime} =
\begin{bmatrix}
1.0 & 2.0 \\
2.0 & 0.0 \\
0.0 & 2.0
\end{bmatrix}
\qquad
\nu_{ij}^{\prime\prime} =
\begin{bmatrix}
0.0 & 0.0 \\
0.0 & 1.0 \\
2.0 & 1.0
\end{bmatrix}
\qquad
\mathbf{x} =
\begin{bmatrix}
1.0 \\
2.0 \\
1.0
\end{bmatrix}
\qquad
k_{j} = 10, \quad j=1,2.
\end{align}
You must document your function and write some tests in addition to the one suggested. You choose the additional tests, but you must have at least one doctest in addition to a suite of unit tests.
```python
progress_rate([[1.0,2.0],[2.0,0.0],[0.0,2.0]],[1.0,2.0,1.0],10)
```
[40.0, 10.0]
---
# Problem 5
Write a function that returns the **reaction rate** of a system of irreversible reactions of the form:
\begin{align}
\nu_{11}^{\prime} A + \nu_{21}^{\prime} B &\longrightarrow \nu_{31}^{\prime\prime} C \\
\nu_{32}^{\prime} C &\longrightarrow \nu_{12}^{\prime\prime} A + \nu_{22}^{\prime\prime} B
\end{align}
Once again $\nu_{ij}^{\prime}$ represents the stoichiometric coefficient of reactant $i$ in reaction $j$ and $\nu_{ij}^{\prime\prime}$ represents the stoichiometric coefficient of product $i$ in reaction $j$. In this convention, I have ordered my vector of concentrations as
\begin{align}
\mathbf{x} =
\begin{bmatrix}
\left[A\right] \\
\left[B\right] \\
\left[C\right]
\end{bmatrix}
\end{align}
Test your function with
\begin{align}
\nu_{ij}^{\prime} =
\begin{bmatrix}
1.0 & 0.0 \\
2.0 & 0.0 \\
0.0 & 2.0
\end{bmatrix}
\qquad
\nu_{ij}^{\prime\prime} =
\begin{bmatrix}
0.0 & 1.0 \\
0.0 & 2.0 \\
1.0 & 0.0
\end{bmatrix}
\qquad
\mathbf{x} =
\begin{bmatrix}
1.0 \\
2.0 \\
1.0
\end{bmatrix}
\qquad
k_{j} = 10, \quad j = 1,2.
\end{align}
You must document your function and write some tests in addition to the one suggested. You choose the additional tests, but you must have at least one doctest in addition to a suite of unit tests.
```python
def reaction_rate(v1,v2,x,k):
"""Returns the reaction rate of a reaction of the form: v1A + v2B -> v3C.
INPUTS
=======
v1: 2D list,
stoichiometric coefficient of reactants in a reaction(s)
v2: 2D list, optional, default value is 2
stoichiometric coefficient of products in a reaction(s)
x: float,
Concentration of A, B, C
k: float,
reaction rate coefficient
RETURNS
========
reaction rate: a list of the reaction rate of each reactant
EXAMPLES
=========
>>> reaction_rate([[1.0,0.0],[2.0,0.0],[0.0,2.0]],[[0.0,1.0],[0.0,2.0],[1.0,0.0]],[1.0,2.0,1.0],10)
[-30.0, -60.0, 20.0]
"""
w = progress_rate(v1,x,k)
#Check that x,v2 and v1 are lists
if (type(v2) != list or type(x) != list or type(v1)!= list):
raise TypeError("v' & x must be passed in as a list")
if (any(type(i) != int and type(i) != float for i in x)):
raise TypeError("All arguments must be numbers!")
elif (type(k) != int and type(k) != float and type(k) !=list):
raise TypeError("All arguments must be numbers!")
else:
reaction_rates = []
for i in (range(len(v2))):
reaction_rate = 0
for j in (range(len(v2[0]))):
reaction_rate = reaction_rate + (v2[i][j]-v1[i][j])*w[j]
reaction_rates.append(reaction_rate)
return reaction_rates
```
```python
reaction_rate([[1.0,0.0],[2.0,0.0],[0.0,2.0]],[[0.0,1.0],[0.0,2.0],[1.0,0.0]],[1.0,2.0,1.0],10)
```
[-30.0, -60.0, 20.0]
---
# Problem 6
Put parts 3, 4, and 5 in a module called `chemkin`.
Next, pretend you're a client who needs to compute the reaction rates at three different temperatures ($T = \left\{750, 1500, 2500\right\}$) of the following system of irreversible reactions:
\begin{align}
2H_{2} + O_{2} \longrightarrow 2OH + H_{2} \\
OH + HO_{2} \longrightarrow H_{2}O + O_{2} \\
H_{2}O + O_{2} \longrightarrow HO_{2} + OH
\end{align}
The client also happens to know that reaction 1 is a modified Arrhenius reaction with $A_{1} = 10^{8}$, $b_{1} = 0.5$, $E_{1} = 5\times 10^{4}$, reaction 2 has a constant reaction rate parameter $k = 10^{4}$, and reaction 3 is an Arrhenius reaction with $A_{3} = 10^{7}$ and $E_{3} = 10^{4}$.
You should write a script that imports your `chemkin` module and returns the reaction rates of the species at each temperature of interest given the following species concentrations:
\begin{align}
\mathbf{x} =
\begin{bmatrix}
H_{2} \\
O_{2} \\
OH \\
HO_{2} \\
H_{2}O
\end{bmatrix} =
\begin{bmatrix}
2.0 \\
1.0 \\
0.5 \\
1.0 \\
1.0
\end{bmatrix}
\end{align}
You may assume that these are elementary reactions.
```python
%%file chemkin.py
def progress_rate(v1,x,k):
"""Returns the progress rate of a reaction of the form: v1A + v2B -> v3C.
INPUTS
=======
v1: list,
stoichiometric coefficient of reactants in a reaction(s)
x: float,
Concentration of A, B, C
k: float,
reaction rate coefficient
RETURNS
========
progress rate: a list of the progress rate of each reaction
EXAMPLES
=========
>>> progress_rate([2.0,1.0,0.0],[1.0,2.0,3.0],10)
[20.0]
"""
#Check that x and v1 are lists
if (type(v1) != list or type(x) != list):
raise TypeError("v' & x must be passed in as a list")
#Check that x,and k are numbers/list of numbers
if (any(type(i) != int and type(i) != float for i in x)):
raise TypeError("All elements in x must be numbers!")
elif (type(k) != int and type(k) != float and type(k) != list):
raise TypeError("k must be a numbers or list!")
else:
progress_rates = []
#check for multiple reactions
if(type(v1[0]) == list):
for v in v1:
for reactant in v:
if(type(reactant) != int and type(reactant) != float):
raise TypeError("All elements in v1 must be numbers!")
#Calculate the progress rate of each reaction
reactions = len(v1[0])
for j in range(reactions):
if (type(k) == list):
progress_rate = k[j]
else:
progress_rate = k
for i in range(len(v1)):
progress_rate = progress_rate*(x[i]**v1[i][j])
progress_rates.append(progress_rate)
else:
#Check types of V1
if (any(type(i) != int and type(i) != float for i in v1)):
raise TypeError("All elements in v1 must be numbers!")
#Calculate the progress rate of each reaction
progress_rate = k
for i in range(len(v1)):
progress_rate = progress_rate*(x[i]**v1[i])
progress_rates.append(progress_rate)
return progress_rates
def reaction_rate(v1,v2,x,k):
"""Returns the reaction rate of a reaction of the form: v1A + v2B -> v3C.
INPUTS
=======
v1: 2D list,
stoichiometric coefficient of reactants in a reaction(s)
v2: 2D list, optional, default value is 2
stoichiometric coefficient of products in a reaction(s)
x: float,
Concentration of A, B, C
k: float,
reaction rate coefficient
RETURNS
========
reaction rate: a list of the reaction rate of each reactant
EXAMPLES
=========
>>> reaction_rate([[1.0,0.0],[2.0,0.0],[0.0,2.0]],[[0.0,1.0],[0.0,2.0],[1.0,0.0]],[1.0,2.0,1.0],10)
[-30.0, -60.0, 20.0]
"""
w = progress_rate(v1,x,k)
#Check that x,v2 and v1 are lists
if (type(v2) != list or type(x) != list or type(v1)!= list):
raise TypeError("v' & x must be passed in as a list")
if (any(type(i) != int and type(i) != float for i in x)):
raise TypeError("All arguments must be numbers!")
elif (type(k) != int and type(k) != float and type(k) !=list):
raise TypeError("All arguments must be numbers!")
else:
reaction_rates = []
for i in (range(len(v2))):
reaction_rate = 0
for j in (range(len(v2[0]))):
reaction_rate = reaction_rate + (v2[i][j]-v1[i][j])*w[j]
reaction_rates.append(reaction_rate)
return reaction_rates
```
Writing chemkin.py
```python
import chemkin
import reaction_coeffs
v1 = [[2.0,0.0,0.0],[1.0,0.0,1.0],[0.0,1.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]]
v2 = [[1.0,0.0,0.0],[0.0,1.0,0.0],[2.0,0.0,1.0],[0.0,0.0,1.0],[0.0,1.0,0.0]]
x = [2.0,1.0,0.5,1.0,1.0]
k1T1 = reaction_coeffs.mod_arr((10**7),(5*(10**4)),0.5,750)
k2T1 = reaction_coeffs.const(10**4)
k3T1 = reaction_coeffs.arr((10**8),(10**4),750)
k1 = [k1T1,k2T1,k3T1]
k2T2 = reaction_coeffs.const(10**4)
k3T2 = reaction_coeffs.arr((10**7),(10**4),1500)
k1T2 = reaction_coeffs.mod_arr((10**8),(5*(10**4)),0.5,1500)
k2 = [k1T2,k2T2,k3T2]
k2T3 = reaction_coeffs.const(10**4)
k3T3 = reaction_coeffs.arr((10**7),(10**4),2500)
k1T3 = reaction_coeffs.mod_arr((10**8),(5*(10**4)),0.5,2500)
k3 = [k1T3,k2T3,k3T3]
print([chemkin.reaction_rate(v1,v2,x,k1),chemkin.reaction_rate(v1,v2,x,k2), chemkin.reaction_rate(v1,v2,x,k3)])
```
[[-360707.78728040616, -20470380.895447683, 20831088.682728089, 20109673.108167276, -20109673.108167276], [-281117620.76487017, -285597559.23804539, 566715180.0029155, 4479938.4731752202, -4479938.4731752202], [-1804261425.9632478, -1810437356.938905, 3614698782.902153, 6175930.9756572321, -6175930.9756572321]]
```python
%%file test.py
import chemkin
def test_progress_rate():
assert chemkin.progress_rate([3.0,1.0,1.0],[1.0,2.0,3.0],10) == [60.0]
test_progress_rate()
def test_reaction_rate():
assert chemkin.reaction_rate([[3.0,1.0,1.0]],[[1.0,2.0,1.0]],[1.0,2.0,3.0],10) == [-10.0]
test_reaction_rate()
```
Overwriting test.py
```python
!pytest --doctest-modules --cov-report term-missing --cov
```
[1m============================= test session starts ==============================[0m
platform darwin -- Python 3.6.1, pytest-3.2.1, py-1.4.33, pluggy-0.4.0
rootdir: /Users/riddhishah/Documents/cs207/cs207_riddhi_shah/homeworks/HW5, inifile:
plugins: cov-2.3.1
collected 0 items [0m[1m[1m
---------- coverage: platform darwin, python 3.6.1-final-0 -----------
Name Stmts Miss Cover Missing
--------------------------------------------------
chemkin.py 43 9 79% 5, 8, 10, 18, 23, 32, 44, 46, 48
kinetics.py 4 0 100%
kinetics_tests.py 76 0 100%
reaction_coeffs.py 18 0 100%
test.py 7 0 100%
--------------------------------------------------
TOTAL 148 9 94%
[33m[1m========================= no tests ran in 2.02 seconds =========================[0m
---
# Problem 7
Get together with your project team, form a GitHub organization (with a descriptive team name), and give the teaching staff access. You can have has many repositories as you like within your organization. However, we will grade the repository called **`cs207-FinalProject`**.
Within the `cs207-FinalProject` repo, you must set up Travis CI and Coveralls. Make sure your `README.md` file includes badges indicating how many tests are passing and the coverage of your code.
```python
'''Done by Hongxiang in our group!'''
```
'Done by Hongxiang in our group!'
|
Events, activities and private hires in the Village Hall and Sports Pavilion are shown in the Bookings Diary below. If you are interested in hiring any of the rooms in the Village Hall or the Sports Pavilion it is worth checking availability, even if your preferred date and time appears to clash with one of these events. Please note that some of the events listed below may be private events or restricted to members of particular clubs/groups and may not necessarily be open to the public. Contact details for clubs can be found on the drop down menu on ‘Our Charity’ page and selecting Groups/Clubs or clicking on the diary entry.
Cost £7 per session or £35 for 6 weeks.
Adults £7.50 Under 14s £3 Bring your own snacks – Full Bar available at the event. |
function ellipse_t = fit_ellipse( x,y,axis_handle )
%
% fit_ellipse - finds the best fit to an ellipse for the given set of points.
%
% Format: ellipse_t = fit_ellipse( x,y,axis_handle )
%
% Input: x,y - a set of points in 2 column vectors. AT LEAST 5 points are needed !
% axis_handle - optional. a handle to an axis, at which the estimated ellipse
% will be drawn along with it's axes
%
% Output: ellipse_t - structure that defines the best fit to an ellipse
% a - sub axis (radius) of the X axis of the non-tilt ellipse
% b - sub axis (radius) of the Y axis of the non-tilt ellipse
% phi - orientation in radians of the ellipse (tilt)
% X0 - center at the X axis of the non-tilt ellipse
% Y0 - center at the Y axis of the non-tilt ellipse
% X0_in - center at the X axis of the tilted ellipse
% Y0_in - center at the Y axis of the tilted ellipse
% long_axis - size of the long axis of the ellipse
% short_axis - size of the short axis of the ellipse
% status - status of detection of an ellipse
%
% Note: if an ellipse was not detected (but a parabola or hyperbola), then
% an empty structure is returned
% =====================================================================================
% Ellipse Fit using Least Squares criterion
% =====================================================================================
% We will try to fit the best ellipse to the given measurements. the mathematical
% representation of use will be the CONIC Equation of the Ellipse which is:
%
% Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0
%
% The fit-estimation method of use is the Least Squares method (without any weights)
% The estimator is extracted from the following equations:
%
% g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f
%
% where:
% A - is the vector of parameters to be estimated (a,b,c,d,e)
% x,y - is a single measurement
%
% We will define the cost function to be:
%
% Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c)
% = (X*A+f_c)'*(X*A+f_c)
% = A'*X'*X*A + 2*f_c'*X*A + N*f^2
%
% where:
% g_c(x_c,y_c;A) - vector function of ALL the measurements
% each element of g_c() is g(x,y;A)
% X - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ]
% f_c - is actually defined as ones(length(f),1)*f
%
% Derivation of the Cost function with respect to the vector of parameters "A" yields:
%
% A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X)
%
% Which yields the estimator:
%
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% | A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X) |
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on)
%
% NOW, all that is left to do is to extract the parameters from the Conic Equation.
% We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1;
%
% Recall the conic representation of an ellipse:
%
% A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
%
% We will check if the ellipse has a tilt (=orientation). The orientation is present
% if the coefficient of the term "x*y" is not zero. If so, we first need to remove the
% tilt of the ellipse.
%
% If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse.
% we will remove the tilt of the ellipse so as to remain with a conic representation of an
% ellipse without a tilt, for which the math is more simple:
%
% Non tilt conic rep.: A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0
%
% We will remove the orientation using the following substitution:
%
% Replace x with cx+sy and y with -sx+cy such that the conic representation is:
%
% A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0
%
% where: c = cos(phi) , s = sin(phi)
%
% and simplify...
%
% x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ...
% y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0
%
% The orientation is easily found by the condition of (B_new=0) which results in:
%
% 2A*cs +(c^2-s^2)B -2Ccs = 0 ==> phi = 1/2 * atan( b/(c-a) )
%
% Now the constants c=cos(phi) and s=sin(phi) can be found, and from them
% all the other constants A`,C`,D`,E` can be found.
%
% A` = A*c^2 - B*c*s + C*s^2 D` = D*c-E*s
% B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0 E` = D*s+E*c
% C` = A*s^2 + B*c*s + C*c^2
%
% Next, we want the representation of the non-tilted ellipse to be as:
%
% Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1
%
% where: (X0,Y0) is the center of the ellipse
% a,b are the ellipse "radiuses" (or sub-axis)
%
% Using a square completion method we will define:
%
% F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`)
%
% Such that: a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 )
% c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 )
%
% which yields the transformations:
%
% X0 = -D`/(2*A`)
% Y0 = -E`/(2*C`)
% a = sqrt( abs( F``/A` ) )
% b = sqrt( abs( F``/C` ) )
%
% And finally we can define the remaining parameters:
%
% long_axis = 2 * max( a,b )
% short_axis = 2 * min( a,b )
% Orientation = phi
%
%
% initialize
orientation_tolerance = 1e-3;
% empty warning stack
warning( '' );
% prepare vectors, must be column vectors
x = x(:);
y = y(:);
% remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on).
mean_x = mean(x);
mean_y = mean(y);
x = x-mean_x;
y = y-mean_y;
% the estimation for the conic equation of the ellipse
X = [x.^2, x.*y, y.^2, x, y ];
a = sum(X)/(X'*X);
% check for warnings
if ~isempty( lastwarn )
disp( 'stopped because of a warning regarding matrix inversion' );
ellipse_t = [];
return
end
% extract parameters from the conic equation
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) );
% remove the orientation from the ellipse
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance )
orientation_rad = 1/2 * atan( b/(c-a) );
cos_phi = cos( orientation_rad );
sin_phi = sin( orientation_rad );
[a,b,c,d,e] = deal(...
a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
0,...
a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
d*cos_phi - e*sin_phi,...
d*sin_phi + e*cos_phi );
[mean_x,mean_y] = deal( ...
cos_phi*mean_x - sin_phi*mean_y,...
sin_phi*mean_x + cos_phi*mean_y );
else
orientation_rad = 0;
cos_phi = cos( orientation_rad );
sin_phi = sin( orientation_rad );
end
% check if conic equation represents an ellipse
test = a*c;
switch (1)
case (test>0), status = '';
case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
end
% if we found an ellipse return it's data
if (test>0)
% make sure coefficients are positive as required
if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end
% final ellipse parameters
X0 = mean_x - d/2/a;
Y0 = mean_y - e/2/c;
F = 1 + (d^2)/(4*a) + (e^2)/(4*c);
[a,b] = deal( sqrt( F/a ),sqrt( F/c ) );
long_axis = 2*max(a,b);
short_axis = 2*min(a,b);
% rotate the axes backwards to find the center point of the original TILTED ellipse
R = [ cos_phi sin_phi; -sin_phi cos_phi ];
P_in = R * [X0;Y0];
X0_in = P_in(1);
Y0_in = P_in(2);
% pack ellipse into a structure
ellipse_t = struct( ...
'a',a,...
'b',b,...
'phi',orientation_rad,...
'X0',X0,...
'Y0',Y0,...
'X0_in',X0_in,...
'Y0_in',Y0_in,...
'long_axis',long_axis,...
'short_axis',short_axis,...
'status','' );
else
% report an empty structure
ellipse_t = struct( ...
'a',[],...
'b',[],...
'phi',[],...
'X0',[],...
'Y0',[],...
'X0_in',[],...
'Y0_in',[],...
'long_axis',[],...
'short_axis',[],...
'status',status );
end
% check if we need to plot an ellipse with it's axes.
if (nargin>2) & ~isempty( axis_handle ) & (test>0)
% rotation matrix to rotate the axes with respect to an angle phi
R = [ cos_phi sin_phi; -sin_phi cos_phi ];
% the axes
ver_line = [ [X0 X0]; Y0+b*[-1 1] ];
horz_line = [ X0+a*[-1 1]; [Y0 Y0] ];
new_ver_line = R*ver_line;
new_horz_line = R*horz_line;
% the ellipse
theta_r = linspace(0,2*pi);
ellipse_x_r = X0 + a*cos( theta_r );
ellipse_y_r = Y0 + b*sin( theta_r );
rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
% draw
hold_state = get( axis_handle,'NextPlot' );
set( axis_handle,'NextPlot','add' );
plot( new_ver_line(1,:),new_ver_line(2,:),'r' );
plot( new_horz_line(1,:),new_horz_line(2,:),'r' );
plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' );
set( axis_handle,'NextPlot',hold_state );
end
|
"""
Copyright (c) Facebook, Inc. and its affiliates.
"""
import numpy as np
import pickle
from droidlet.lowlevel.minecraft.iglu_util import IGLU_BLOCK_MAP
from droidlet.lowlevel.minecraft.shape_util import (
SHAPE_NAMES,
SHAPE_FNS,
SHAPE_OPTION_FUNCTION_MAP,
)
SL = 17
GROUND_DEPTH = 5
H = 13
HOLE_NAMES = ["RECTANGULOID", "ELLIPSOID", "SPHERE"]
# FIXME! better control of distribution and put this in a different file
# also no control of cuberite coloring
def random_mob_color(mobname):
if mobname == "rabbit":
return np.random.choice(["brown", "white", "black", "mottled", "gray"])
if mobname == "pig":
return np.random.choice(["brown", "white", "black", "mottled", "pink"])
if mobname == "chicken":
return np.random.choice(["white", "yellow", "brown"])
if mobname == "sheep":
return np.random.choice(["brown", "white", "black", "mottled", "gray"])
if mobname == "cow":
return np.random.choice(["brown", "white", "black", "mottled", "gray"])
return "white"
def parse_and_execute_mob_config(args):
"""
mob_config can be a dict of the form
{"mobs": [{"mobtype": MOBTYPE, "pose": (x, y, z, pitch, yaw), "color": COLOR}, ...]}
or
{"mob_generator": CALLABLE}
or
{"num_mobs": INT, "mob_probs":{MOBNAME:FLOAT_LOGIT, ..., MOBNAME:FLOAT_LOGIT}}
if "mob_probs" is not specified, it is uniform over ["rabbit", "cow", "pig", "chicken", "sheep"]
or string of the form
num_mobs:x;mobname:float;mobname:float;...
the floats are the probability of sampling that mob
returns a list of [{"mobtype": MOBTYPE, "pose": (x, y, z, pitch, yaw), "color": COLOR}, ...]
"""
mob_config = args.mob_config
if type(mob_config) is str:
c = {}
o = mob_config.split(";")
if len(o) > 0:
try:
assert o[0].startswith("num_mobs")
num_mobs = int(o[0].split(":")[1])
c["num_mobs"] = num_mobs
c["mob_probs"] = {}
for p in o[1:]:
name, prob = p.split(":")
c["mob_probs"][name] = float(prob)
except:
c = {}
else:
c = mob_config
assert type(c) is dict
if not c:
return []
elif c.get("mobs"):
return c["mobs"]
elif c.get("mob_generator"):
return c["mob_generator"](args)
elif c.get("num_mobs"):
num_mobs = c.get("num_mobs")
if not c["mob_probs"]:
md = [("rabbit", "cow", "pig", "chicken", "sheep"), (1.0, 1.0, 1.0, 1.0, 1.0)]
else:
md = list(zip(*c["mob_probs"].items()))
probs = np.array(md[1])
assert probs.min() >= 0.0
probs = probs / probs.sum()
mobnames = np.random.choice(md[0], size=num_mobs, p=probs).tolist()
mobs = []
for m in mobnames:
# mob pose set in collect_scene for now if not specified
mobs.append({"mobtype": m, "pose": None, "color": random_mob_color(m)})
return mobs
else:
raise Exception("malformed mob opts {}".format(c))
def bid(nowhite=True):
if nowhite:
return (35, np.random.randint(15) + 1)
else:
return (35, np.random.randint(16))
def red():
return (35, 14)
def white():
return (35, 0)
def make_pose(args, loc=None, pitchyaw=None, height_map=None):
"""
make a random pose for player or mob.
if loc or pitchyaw is specified, use those
if height_map is specified, finds a point close to the loc
1 block higher than the height_map, but less than ENTITY_HEIGHT from
args.H
TODO option to input object locations and pick pitchyaw to look at one
"""
ENTITY_HEIGHT = 2
if loc is None:
x, y, z = np.random.randint((args.SL, args.H, args.SL))
else:
x, y, z = loc
if pitchyaw is None:
pitch = np.random.uniform(-90, 90)
yaw = np.random.uniform(-180, 180)
else:
pitch, yaw = pitchyaw
# put the entity above the current height map. this will break if
# there is a big flat slab covering the entire space high, FIXME
if height_map is not None:
okh = np.array(np.nonzero(height_map < args.H - ENTITY_HEIGHT))
if okh.shape[1] == 0:
raise Exception(
"no space for entities, height map goes up to args.H-ENTITY_HEIGHT everywhere"
)
d = np.linalg.norm((okh - np.array((x, z)).reshape(2, 1)), 2, 0)
minidx = np.argmin(d)
x = int(okh[0, minidx])
z = int(okh[1, minidx])
y = int(height_map[x, z] + 1)
return x, y, z, pitch, yaw
def build_base_world(sl, h, g, fence=False):
W = {}
for i in range(sl):
for j in range(g):
for k in range(sl):
if (i == 0 or i == sl - 1 or k == 0 or k == sl - 1) and j == g - 1 and fence:
idm = red()
else:
idm = white()
W[(i, j, k)] = idm
return W
def shift_list(blocks_list, s):
for i in range(len(blocks_list)):
b = blocks_list[i]
if len(b) == 2:
l, idm = b
blocks_list[i] = ((l[0] + s[0], l[1] + s[1], l[2] + s[2]), idm)
else:
assert len(b) == 3
blocks_list[i] = (b[0] + s[0], b[1] + s[1], b[2] + s[2])
return blocks_list
def shift_dict(block_dict, s):
out = {}
for l, idm in block_dict.items():
out[(l[0] + s[0], l[1] + s[1], l[2] + s[2])] = idm
return out
def in_box_builder(mx, my, mz, Mx, My, Mz):
def f(l):
lb = l[0] >= mx and l[1] >= my and l[2] >= mz
ub = l[0] < Mx and l[1] < My and l[2] < Mz
return lb and ub
return f
def record_shape(S, in_box, offsets, blocks, inst_seg, occupied_by_shapes):
for l, idm in S:
ln = np.add(l, offsets)
if in_box(ln):
ln = tuple(ln.tolist())
if not occupied_by_shapes.get(ln):
blocks[ln] = idm
inst_seg.append(ln)
occupied_by_shapes[ln] = True
def collect_scene(blocks, inst_segs, args, mobs=[]):
J = {}
J["inst_seg_tags"] = inst_segs
mapped_blocks = [
(int(l[0]), int(l[1]), int(l[2]), int(IGLU_BLOCK_MAP[idm])) for l, idm in blocks.items()
]
J["blocks"] = mapped_blocks
# FIXME not shifting positions of agents and mobs properly for cuberite
# FIXME not using the mob positions in cuberite...
height_map = np.zeros((args.SL, args.SL))
for l, idm in blocks.items():
if l[1] > height_map[l[0], l[2]] and idm[0] > 0:
height_map[l[0], l[2]] = l[1]
J["mobs"] = []
for mob in mobs:
if mob.get("pose"):
x, y, z, p, yaw = mob["pose"]
loc = (x, y, z)
pitchyaw = (p, yaw)
else:
loc = None
pitchyaw = None
mob["pose"] = make_pose(args, loc=loc, pitchyaw=pitchyaw, height_map=height_map)
J["mobs"].append(mob)
# FIXME not using the avatar and agent position in cuberite...
x, y, z, p, yaw = make_pose(args, height_map=height_map)
J["avatarInfo"] = {"pos": (x, y, z), "look": (p, yaw)}
x, y, z, p, yaw = make_pose(args, height_map=height_map)
J["agentInfo"] = {"pos": (x, y, z), "look": (p, yaw)}
o = (0, args.cuberite_y_offset, 0)
blocks = shift_dict(blocks, o)
J["schematic_for_cuberite"] = [
{"x": int(l[0]), "y": int(l[1]), "z": int(l[2]), "id": int(idm[0]), "meta": int(idm[1])}
for l, idm in blocks.items()
]
J["offset"] = (args.cuberite_x_offset, args.cuberite_y_offset, args.cuberite_z_offset)
return J
def build_shape_scene(args):
"""
Build a scene using basic shapes,
outputs a json dict with fields
"avatarInfo" = {"pos": (x,y,z), "look": (yaw, pitch)}
"agentInfo" = {"pos": (x,y,z), "look": (yaw, pitch)}
"blocks" = [(x,y,z,bid) ... (x,y,z,bid)]
"schematic_for_cuberite" = [{"x": x, "y":y, "z":z, "id":blockid, "meta": meta} ...]
where bid is the output of the BLOCK_MAP applied to a minecraft blockid, meta pair.
"""
fence = getattr(args, "fence", False)
blocks = build_base_world(args.SL, args.H, args.GROUND_DEPTH, fence=fence)
if args.iglu_scenes:
import pickle
with open(args.iglu_scenes, "rb") as f:
assets = pickle.load(f)
sid = np.random.choice(list(assets.keys()))
scene = assets[sid]
scene = scene.transpose(1, 0, 2)
for i in range(11):
for j in range(9):
for k in range(11):
h = j + args.GROUND_DEPTH
if h < args.H:
# TODO? fix colors
# TODO: assuming this world bigger in xz than iglu
c = scene[i, j, k] % 16
if c > 0:
blocks[(i + 1, h, k + 1)] = (35, c)
num_shapes = np.random.randint(0, args.MAX_NUM_SHAPES + 1)
occupied_by_shapes = {}
inst_segs = []
for t in range(num_shapes):
shape = np.random.choice(SHAPE_NAMES)
opts = SHAPE_OPTION_FUNCTION_MAP[shape]()
opts["bid"] = bid()
S = SHAPE_FNS[shape](**opts)
m = np.round(np.mean([l for l, idm in S], axis=0)).astype("int32")
offsets = np.random.randint((args.SL, args.H, args.SL)) - m
inst_seg = []
in_box = in_box_builder(0, 0, 0, args.SL, args.H, args.SL)
record_shape(S, in_box, offsets, blocks, inst_seg, occupied_by_shapes)
inst_segs.append({"tags": [shape], "locs": inst_seg})
if args.MAX_NUM_GROUND_HOLES == 0:
num_holes = 0
else:
num_holes = np.random.randint(0, args.MAX_NUM_GROUND_HOLES)
# TODO merge contiguous holes
ML = args.SL
mL = 0
if args.fence:
ML -= 1
mL = 1
for t in range(num_holes):
shape = np.random.choice(HOLE_NAMES)
opts = SHAPE_OPTION_FUNCTION_MAP[shape]()
S = SHAPE_FNS[shape](**opts)
S = [(l, (0, 0)) for l, idm in S]
m = np.round(np.mean([l for l, idm in S], axis=0)).astype("int32")
miny = min([l[1] for l, idm in S])
maxy = max([l[1] for l, idm in S])
offsets = np.random.randint((args.SL, args.H, args.SL))
offsets[0] -= m[0]
offsets[2] -= m[2]
# offset miny to GROUND_DEPTH - radius of shape
offsets[1] = args.GROUND_DEPTH - maxy // 2 - 1
inst_seg = []
in_box = in_box_builder(mL, 0, mL, ML, args.GROUND_DEPTH, ML)
record_shape(S, in_box, offsets, blocks, inst_seg, occupied_by_shapes)
inst_segs.append({"tags": ["hole"], "locs": inst_seg})
mobs = parse_and_execute_mob_config(args)
J = {}
# not shifting y for gridworld
o = (args.cuberite_x_offset, 0, args.cuberite_z_offset)
blocks = shift_dict(blocks, o)
for i in inst_segs:
i["locs"] = shift_list(i["locs"], o)
return collect_scene(blocks, inst_segs, args, mobs=mobs)
def build_extra_simple_shape_scene(args):
"""
Build a scene with a sphere and a cube, non-overlapping.
outputs a json dict with fields
"avatarInfo" = {"pos": (x,y,z), "look": (yaw, pitch)}
"agentInfo" = {"pos": (x,y,z), "look": (yaw, pitch)}
"blocks" = [(x,y,z,bid) ... (x,y,z,bid)]
"schematic_for_cuberite" = [{"x": x, "y":y, "z":z, "id":blockid, "meta": meta} ...]
where bid is the output of the BLOCK_MAP applied to a minecraft blockid, meta pair.
"""
CUBE_SIZE = 3
SPHERE_RADIUS = 2
fence = getattr(args, "fence", False)
blocks = build_base_world(args.SL, args.H, args.GROUND_DEPTH, fence=fence)
inst_segs = []
shape_opts = {"SPHERE": {"radius": SPHERE_RADIUS}, "CUBE": {"size": CUBE_SIZE}}
shapes = np.random.permutation(["SPHERE", "CUBE"])
occupied_by_shapes = {}
old_offset = [-100, -100, -100]
for shape in shapes:
opts = shape_opts[shape]
opts["bid"] = bid()
S = SHAPE_FNS[shape](**opts)
m = np.round(np.mean([l for l, idm in S], axis=0)).astype("int32")
offsets = np.random.randint(
(0, args.GROUND_DEPTH, 0),
(args.SL - CUBE_SIZE, args.H - CUBE_SIZE, args.SL - CUBE_SIZE),
)
count = 0
while (
abs(old_offset[0] - offsets[0]) + abs(old_offset[2] - offsets[2])
< CUBE_SIZE + SPHERE_RADIUS
):
offsets = np.random.randint(
(0, args.GROUND_DEPTH, 0),
(args.SL - CUBE_SIZE, args.H - CUBE_SIZE, args.SL - CUBE_SIZE),
)
count += 1
assert count < 100, "Is world too small? can't place shapes"
old_offset = offsets
inst_seg = []
in_box = in_box_builder(0, 0, 0, args.SL, args.H, args.SL)
record_shape(S, in_box, offsets, blocks, inst_seg, occupied_by_shapes)
inst_segs.append({"tags": [shape], "locs": inst_seg})
# not shifting y for gridworld
o = (args.cuberite_x_offset, 0, args.cuberite_z_offset)
blocks = [(l, idm) for l, idm in blocks.items()]
blocks = shift(blocks, o)
for i in inst_segs:
i["locs"] = shift(i["locs"], o)
return collect_scene(blocks, inst_segs, args)
if __name__ == "__main__":
import argparse
import json
parser = argparse.ArgumentParser()
parser.add_argument("--SL", type=int, default=SL)
parser.add_argument("--H", type=int, default=H)
parser.add_argument("--mob_config", type=str, default="")
parser.add_argument("--GROUND_DEPTH", type=int, default=GROUND_DEPTH)
parser.add_argument("--MAX_NUM_SHAPES", type=int, default=3)
parser.add_argument("--NUM_SCENES", type=int, default=3)
parser.add_argument("--MAX_NUM_GROUND_HOLES", type=int, default=0)
parser.add_argument("--fence", action="store_true", default=False)
parser.add_argument("--cuberite_x_offset", type=int, default=-SL // 2)
parser.add_argument("--cuberite_y_offset", type=int, default=63 - GROUND_DEPTH)
parser.add_argument("--cuberite_z_offset", type=int, default=-SL // 2)
parser.add_argument("--save_data_path", default="")
parser.add_argument("--iglu_scenes", default="")
parser.add_argument("--extra_simple", action="store_true", default=False)
args = parser.parse_args()
scenes = []
for i in range(args.NUM_SCENES):
if args.extra_simple:
scenes.append(build_extra_simple_shape_scene(args))
else:
scenes.append(build_shape_scene(args))
if args.save_data_path:
with open(args.save_data_path, "w") as f:
json.dump(scenes, f)
|
import numpy as np
import scipy.interpolate
from mcalf.profiles.gaussian import single_gaussian
__all__ = ['reinterpolate_spectrum', 'normalise_spectrum', 'generate_sigma']
def reinterpolate_spectrum(spectrum, original_wavelengths, constant_wavelengths):
"""Reinterpolate the spectrum.
Reinterpolates the spectrum such that intensities at `original_wavelengths` are transformed into
intensities at `constant_wavelengths`. Uses :class:`scipy.interpolate.InterpolatedUnivariateSpline` to
interpolate.
Parameters
----------
spectrum : numpy.ndarray, ndim=1
Spectrum to reinterpolate.
original_wavelengths : numpy.ndarray, ndim=1, length=length of `spectrum`
Wavelengths of `spectrum`.
constant_wavelengths : numpy.ndarray, ndim=1
Wavelengths to cast `spectrum` into.
Returns
-------
spectrum : numpy.ndarray, length=length of `constant_wavelengths`
Reinterpolated spectrum.
"""
s = scipy.interpolate.InterpolatedUnivariateSpline(original_wavelengths, spectrum) # Fit spline
return s(constant_wavelengths) # Evaluate spline at new wavelengths
def normalise_spectrum(spectrum, original_wavelengths=None, constant_wavelengths=None, prefilter_response=None,
model=None):
"""Normalise an individual spectrum to have intensities in range [0, 1].
.. warning::
Not recommended for normalising many spectra in a loop.
Parameters
----------
spectrum : numpy.ndarray, ndim=1
Spectrum to reinterpolate and normalise.
original_wavelengths : numpy.ndarray, ndim=1, length=length of `spectrum`, optional
Wavelengths of `spectrum`.
constant_wavelengths : numpy.ndarray, ndim=1, optional
Wavelengths to cast `spectrum` into.
prefilter_response : numpy.ndarray, ndim=1, length=length of `constant_wavelengths`, optional
Prefilter response to divide spectrum by.
model : child class of mcalf.models.ModelBase, optional
Model to extract the above parameters from.
Returns
-------
spectrum : numpy.ndarray, ndim-1, length=length of `constant_wavelengths`
The normalised spectrum.
"""
from mcalf.models import ModelBase
if issubclass(model.__class__, ModelBase):
if original_wavelengths is None:
original_wavelengths = model.original_wavelengths
if constant_wavelengths is None:
constant_wavelengths = model.constant_wavelengths
if prefilter_response is None:
prefilter_response = model.prefilter_response
if original_wavelengths is not None or constant_wavelengths is not None:
if original_wavelengths is None or constant_wavelengths is None:
raise ValueError("original_wavelengths and constant_wavelengths must be provided")
spectrum = reinterpolate_spectrum(spectrum, original_wavelengths, constant_wavelengths)
if prefilter_response is not None:
spectrum /= prefilter_response
spectrum -= min(spectrum)
spectrum /= max(spectrum)
return spectrum
def generate_sigma(sigma_type, wavelengths, line_core, a=-0.95, c=0.04, d=1, centre_rad=7, a_peak=0.4):
"""Generate the default sigma profiles.
Parameters
----------
sigma_type : int
Type of profile to generate. Should be either `1` or `2`.
wavelengths : array_like
Wavelengths to use for sigma profile.
line_core : float
Line core to use as centre of Gaussian sigma profile.
a : float, optional, default=-0.95
Amplitude of Gaussian sigma profile.
c : float, optional, default=0.04
Sigma of Gaussian sigma profile.
d : float, optional, default=1
Background of Gaussian sigma profile.
centre_rad : int, optional, default=7
Width of central flattened region.
a_peak : float, optional, default=0.4
Amplitude of central 7 pixel section, if `sigma_type` is 2.
Returns
-------
sigma : numpy.ndarray, length=n_wavelengths
The generated sigma profile.
"""
sigma = single_gaussian(wavelengths, a, line_core, c, d) # Define initial sigma profile
centre_i = np.argmin(sigma) # Get central index of sigma
sigma[:centre_i - centre_rad] = sigma[centre_rad:centre_i] # Shift left half left
sigma[centre_i + centre_rad:] = sigma[centre_i:-centre_rad] # Shift right half right
sigma[centre_i - centre_rad:centre_i + centre_rad] = sigma[centre_i] # Connect the two halves with a line
if sigma_type == 2:
sigma[centre_i - 3:centre_i + 3 + 1] = a_peak # Lessen importance of peak detail
return sigma
|
theory UteProof
imports UteDefs "../Majorities" "../Reduction"
begin
context ute_parameters
begin
subsection {* Preliminary Lemmas *}
text {* Processes can make a vote only at first round of each phase. *}
lemma vote_step:
assumes nxt: "nextState Ute_M r p (rho r p) \<mu> (rho (Suc r) p)"
and "vote (rho (Suc r) p) \<noteq> None"
shows "step r = 0"
proof (rule ccontr)
assume "step r \<noteq> 0"
with assms have "vote (rho (Suc r) p) = None"
by (auto simp:Ute_SHOMachine_def nextState_def Ute_nextState_def next1_def)
with assms show False by auto
qed
text {* Processes can make a new decision only at second round of each phase. *}
lemma decide_step:
assumes run: "SHORun Ute_M rho HOs SHOs"
and d1: "decide (rho r p) \<noteq> Some v"
and d2: "decide (rho (Suc r) p) = Some v"
shows "step r \<noteq> 0"
proof
assume sr:"step r = 0"
from run obtain \<mu> where "Ute_nextState r p (rho r p) \<mu> (rho (Suc r) p)"
unfolding Ute_SHOMachine_def nextState_def SHORun_eq SHOnextConfig_eq
by force
with sr have "next0 r p (rho r p) \<mu> (rho (Suc r) p)"
unfolding Ute_nextState_def by auto
hence "decide (rho r p) = decide (rho (Suc r) p)"
by (auto simp:next0_def)
with d1 d2 show False by auto
qed
lemma unique_majority_E:
assumes majv: "card {qq::Proc. F qq = Some m} > E"
and majw: "card {qq::Proc. F qq = Some m'} > E"
shows "m = m'"
proof -
from majv majw majE
have "card {qq::Proc. F qq = Some m} > N div 2"
and "card {qq::Proc. F qq = Some m'} > N div 2"
by auto
then obtain qq
where "qq \<in> {qq::Proc. F qq = Some m}"
and "qq \<in> {qq::Proc. F qq = Some m'}"
by (rule majoritiesE')
thus ?thesis by auto
qed
lemma unique_majority_E_\<alpha>:
assumes majv: "card {qq::Proc. F qq = m} > E - \<alpha>"
and majw: "card {qq::Proc. F qq = m'} > E - \<alpha>"
shows "m = m'"
proof -
from majE alpha_lt_N majv majw
have "card {qq::Proc. F qq = m} > N div 2"
and "card {qq::Proc. F qq = m'} > N div 2"
by auto
then obtain qq
where "qq \<in> {qq::Proc. F qq = m}"
and "qq \<in> {qq::Proc. F qq = m'}"
by (rule majoritiesE')
thus ?thesis by auto
qed
lemma unique_majority_T:
assumes majv: "card {qq::Proc. F qq = Some m} > T"
and majw: "card {qq::Proc. F qq = Some m'} > T"
shows "m = m'"
proof -
from majT majv majw
have "card {qq::Proc. F qq = Some m} > N div 2"
and "card {qq::Proc. F qq = Some m'} > N div 2"
by auto
then obtain qq
where "qq \<in> {qq::Proc. F qq = Some m}"
and "qq \<in> {qq::Proc. F qq = Some m'}"
by (rule majoritiesE')
thus ?thesis by auto
qed
text {* No two processes may vote for different values in the same round. *}
lemma common_vote:
assumes usafe: "SHOcommPerRd Ute_M HO SHO"
and nxtp: "nextState Ute_M r p (rho r p) \<mu>p (rho (Suc r) p)"
and mup: "\<mu>p \<in> SHOmsgVectors Ute_M r p (rho r) (HO p) (SHO p)"
and nxtq: "nextState Ute_M r q (rho r q) \<mu>q (rho (Suc r) q)"
and muq: "\<mu>q \<in> SHOmsgVectors Ute_M r q (rho r) (HO q) (SHO q)"
and vp: "vote (rho (Suc r) p) = Some vp"
and vq: "vote (rho (Suc r) q) = Some vq"
shows "vp = vq"
using assms proof -
have gtn: "card {qq. sendMsg Ute_M r qq p (rho r qq) = Val vp}
+ card {qq. sendMsg Ute_M r qq q (rho r qq) = Val vq} > N"
proof -
have "card {qq. sendMsg Ute_M r qq p (rho r qq) = Val vp} > T - \<alpha>
\<and> card {qq. sendMsg Ute_M r qq q (rho r qq) = Val vq} > T - \<alpha>"
(is "card ?vsentp > _ \<and> card ?vsentq > _")
proof -
from nxtp vp have stp:"step r = 0" by (auto simp: vote_step)
from mup
have "{qq. \<mu>p qq = Some (Val vp)} - (HO p - SHO p)
\<subseteq> {qq. sendMsg Ute_M r qq p (rho r qq) = Val vp}"
(is "?vrcvdp - ?ahop \<subseteq> ?vsentp")
by (auto simp: SHOmsgVectors_def)
hence "card (?vrcvdp - ?ahop) \<le> card ?vsentp"
and "card (?vrcvdp - ?ahop) \<ge> card ?vrcvdp - card ?ahop"
by (auto simp: card_mono diff_card_le_card_Diff)
hence "card ?vsentp \<ge> card ?vrcvdp - card ?ahop" by auto
moreover
from nxtp stp have "next0 r p (rho r p) \<mu>p (rho (Suc r) p)"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def)
with vp have "card ?vrcvdp > T"
unfolding next0_def by auto
moreover
from muq
have "{qq. \<mu>q qq = Some (Val vq)} - (HO q - SHO q)
\<subseteq> {qq. sendMsg Ute_M r qq q (rho r qq) = Val vq}"
(is "?vrcvdq - ?ahoq \<subseteq> ?vsentq")
by (auto simp: SHOmsgVectors_def)
hence "card (?vrcvdq - ?ahoq) \<le> card ?vsentq"
and "card (?vrcvdq - ?ahoq) \<ge> card ?vrcvdq - card ?ahoq"
by (auto simp: card_mono diff_card_le_card_Diff)
hence "card ?vsentq \<ge> card ?vrcvdq - card ?ahoq" by auto
moreover
from nxtq stp have "next0 r q (rho r q) \<mu>q (rho (Suc r) q)"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def)
with vq have "card {qq. \<mu>q qq = Some (Val vq)} > T"
by (unfold next0_def, auto)
moreover
from usafe have "card ?ahop \<le> \<alpha>" and "card ?ahoq \<le> \<alpha>"
by (auto simp: Ute_SHOMachine_def Ute_commPerRd_def)
ultimately
show ?thesis using alpha_lt_T by auto
qed
thus ?thesis using majT by auto
qed
show ?thesis
proof (rule ccontr)
assume vpq:"vp \<noteq> vq"
have "\<forall>qq. sendMsg Ute_M r qq p (rho r qq)
= sendMsg Ute_M r qq q (rho r qq)"
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def
step_def send0_def send1_def)
with vpq
have "{qq. sendMsg Ute_M r qq p (rho r qq) = Val vp}
\<inter> {qq. sendMsg Ute_M r qq q (rho r qq) = Val vq} = {}"
by auto
with gtn
have "card ({qq. sendMsg Ute_M r qq p (rho r qq) = Val vp}
\<union> {qq. sendMsg Ute_M r qq q (rho r qq) = Val vq}) > N"
by (auto simp: card_Un_Int)
moreover
have "card ({qq. sendMsg Ute_M r qq p (rho r qq) = Val vp}
\<union> {qq. sendMsg Ute_M r qq q (rho r qq) = Val vq}) \<le> N"
by (auto simp: card_mono)
ultimately
show "False" by auto
qed
qed
text {*
No decision may be taken by a process unless it received enough messages
holding the same value.
*}
(*
The proof mainly relies on lemma @{text decide_step}
and the @{text Ute_commPerRound} predicate.
*)
lemma decide_with_threshold_E:
assumes run: "SHORun Ute_M rho HOs SHOs"
and usafe: "SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and d1: "decide (rho r p) \<noteq> Some v"
and d2: "decide (rho (Suc r) p) = Some v"
shows "card {q. sendMsg Ute_M r q p (rho r q) = Vote (Some v)}
> E - \<alpha>"
proof -
from run obtain \<mu>p
where nxt:"nextState Ute_M r p (rho r p) \<mu>p (rho (Suc r) p)"
and "\<forall>qq. qq \<in> HOs r p \<longleftrightarrow> \<mu>p qq \<noteq> None"
and "\<forall>qq. qq \<in> SHOs r p \<inter> HOs r p
\<longrightarrow> \<mu>p qq = Some (sendMsg Ute_M r qq p (rho r qq))"
unfolding Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq SHOmsgVectors_def
by blast
hence "{qq. \<mu>p qq = Some (Vote (Some v))} - (HOs r p - SHOs r p)
\<subseteq> {qq. sendMsg Ute_M r qq p (rho r qq) = Vote (Some v)}"
(is "?vrcvdp - ?ahop \<subseteq> ?vsentp") by auto
hence "card (?vrcvdp - ?ahop) \<le> card ?vsentp"
and "card (?vrcvdp - ?ahop) \<ge> card ?vrcvdp - card ?ahop"
by (auto simp: card_mono diff_card_le_card_Diff)
hence "card ?vsentp \<ge> card ?vrcvdp - card ?ahop" by auto
moreover
from usafe have "card (HOs r p - SHOs r p) \<le> \<alpha>"
by (auto simp: Ute_SHOMachine_def Ute_commPerRd_def)
moreover
from run d1 d2 have "step r \<noteq> 0" by (rule decide_step)
with nxt have "next1 r p (rho r p) \<mu>p (rho (Suc r) p)"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def)
with run d1 d2 have "card {qq. \<mu>p qq = Some (Vote (Some v))} > E"
unfolding next1_def by auto
ultimately
show ?thesis using alpha_lt_E by auto
qed
subsection {* Proof of Agreement and Validity *}
text {*
If more than @{text "E - \<alpha>"} messages holding @{text v} are sent to
some process @{text p} at round @{text r}, then every process @{text pp}
correctly receives more than @{text "\<alpha>"} such messages.
*}
(*
The proof mainly relies on the @{text Ute_commPerRound} predicate.
*)
lemma common_x_argument_1:
assumes usafe:"SHOcommPerRd Ute_M (HOs (Suc r)) (SHOs (Suc r))"
and threshold: "card {q. sendMsg Ute_M (Suc r) q p (rho (Suc r) q)
= Vote (Some v)} > E - \<alpha>"
(is "card (?msgs p v) > _")
shows "card (?msgs pp v \<inter> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp)) > \<alpha>"
proof -
have "card (?msgs pp v) + card (SHOs (Suc r) pp \<inter> HOs (Suc r) pp) > N + \<alpha>"
proof -
have "\<forall>q. sendMsg Ute_M (Suc r) q p (rho (Suc r) q)
= sendMsg Ute_M (Suc r) q pp (rho (Suc r) q)"
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def
step_def send0_def send1_def)
moreover
from usafe
have "card (SHOs (Suc r) pp \<inter> HOs (Suc r) pp) > N + 2*\<alpha> - E - 1"
by (auto simp: Ute_SHOMachine_def step_def Ute_commPerRd_def)
ultimately
show ?thesis using threshold by auto
qed
moreover
have "card (?msgs pp v) + card (SHOs (Suc r) pp \<inter> HOs (Suc r) pp)
= card (?msgs pp v \<union> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp))
+ card (?msgs pp v \<inter> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp))"
by (auto intro: card_Un_Int)
moreover
have "card (?msgs pp v \<union> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp)) \<le> N"
by (auto simp: card_mono)
ultimately
show ?thesis by auto
qed
text {*
If more than @{text "E - \<alpha>"} messages holding @{text v} are sent to @{text p}
at some round @{text r}, then any process @{text pp} will set its @{text x} to
value @{text v} in @{text r}.
*}
(*
The proof relies on previous lemmas @{text common_x_argument_1}
and @{text common_vote} and the @{text Ute_commPerRound} predicate.
*)
lemma common_x_argument_2:
assumes run: "SHORun Ute_M rho HOs SHOs"
and usafe: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and nxtpp: "nextState Ute_M (Suc r) pp (rho (Suc r) pp)
\<mu>pp (rho (Suc (Suc r)) pp)"
and mupp: "\<mu>pp \<in> SHOmsgVectors Ute_M (Suc r) pp (rho (Suc r))
(HOs (Suc r) pp) (SHOs (Suc r) pp)"
and threshold: "card {q. sendMsg Ute_M (Suc r) q p (rho (Suc r) q)
= Vote (Some v)} > E - \<alpha>"
(is "card (?sent p v) > _")
shows "x (rho (Suc (Suc r)) pp) = v"
proof -
have stp:"step (Suc r) \<noteq> 0"
proof
assume sr: "step (Suc r) = 0"
hence "\<forall>q. sendMsg Ute_M (Suc r) q p (rho (Suc r) q)
= Val (x (rho (Suc r) q))"
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def send0_def)
moreover
from threshold obtain qq where
"sendMsg Ute_M (Suc r) qq p (rho (Suc r) qq) = Vote (Some v)"
by force
ultimately
show False by simp
qed
have va: "card {qq. \<mu>pp qq = Some (Vote (Some v))} > \<alpha>"
(is "card (?msgs v) > \<alpha>")
proof -
from mupp
have "SHOs (Suc r) pp \<inter> HOs (Suc r) pp
\<subseteq> {qq. \<mu>pp qq = Some (sendMsg Ute_M (Suc r) qq pp (rho (Suc r) qq))}"
unfolding SHOmsgVectors_def by auto
moreover
hence "(?msgs v) \<supseteq> (?sent pp v) \<inter> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp)"
by auto
hence "card (?msgs v)
\<ge> card ((?sent pp v) \<inter> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp))"
by (auto intro: card_mono)
moreover
from usafe threshold
have alph:"card ((?sent pp v) \<inter> (SHOs (Suc r) pp \<inter> HOs (Suc r) pp)) > \<alpha>"
by (blast dest: common_x_argument_1)
ultimately
show ?thesis by auto
qed
moreover
from nxtpp stp
have "next1 (Suc r) pp (rho (Suc r) pp) \<mu>pp (rho (Suc (Suc r)) pp)"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def)
ultimately
obtain w where wa:"card (?msgs w) > \<alpha>" and xw:"x (rho (Suc (Suc r)) pp) = w"
unfolding next1_def by auto
have "v = w"
proof -
note usafe
moreover
obtain qv where "qv \<in> SHOs (Suc r) pp" and "\<mu>pp qv = Some (Vote (Some v))"
proof -
have "\<not> (?msgs v \<subseteq> HOs (Suc r) pp - SHOs (Suc r) pp)"
proof
assume "?msgs v \<subseteq> HOs (Suc r) pp - SHOs (Suc r) pp"
hence "card (?msgs v) \<le> card ((HOs (Suc r) pp) - (SHOs (Suc r) pp))"
by (auto simp: card_mono)
moreover
from usafe
have "card (HOs (Suc r) pp - SHOs (Suc r) pp) \<le> \<alpha>"
by (auto simp: Ute_SHOMachine_def Ute_commPerRd_def)
moreover
note va
ultimately
show False by auto
qed
then obtain qv
where "qv \<notin> HOs (Suc r) pp - SHOs (Suc r) pp"
and qsv:"\<mu>pp qv = Some (Vote (Some v))"
by auto
with mupp have "qv \<in> SHOs (Suc r) pp"
unfolding SHOmsgVectors_def by auto
with qsv that show ?thesis by auto
qed
with stp mupp have "vote (rho (Suc r) qv) = Some v"
by (auto simp: Ute_SHOMachine_def SHOmsgVectors_def
Ute_sendMsg_def send1_def)
moreover
obtain qw where
"qw \<in> SHOs (Suc r) pp" and "\<mu>pp qw = Some (Vote (Some w))"
proof -
have "\<not> (?msgs w \<subseteq> HOs (Suc r) pp - SHOs (Suc r) pp)"
proof
assume "?msgs w \<subseteq> HOs (Suc r) pp - SHOs (Suc r) pp"
hence "card (?msgs w) \<le> card ((HOs (Suc r) pp) - (SHOs (Suc r) pp))"
by (auto simp: card_mono)
moreover
from usafe
have "card (HOs (Suc r) pp - SHOs (Suc r) pp) \<le> \<alpha>"
by (auto simp: Ute_SHOMachine_def Ute_commPerRd_def)
moreover
note wa
ultimately
show False by auto
qed
then obtain qw
where "qw \<notin> HOs (Suc r) pp - SHOs (Suc r) pp"
and qsw: "\<mu>pp qw = Some (Vote (Some w))"
by auto
with mupp have "qw \<in> SHOs (Suc r) pp"
unfolding SHOmsgVectors_def by auto
with qsw that show ?thesis by auto
qed
with stp mupp have "vote (rho (Suc r) qw) = Some w"
by (auto simp: Ute_SHOMachine_def SHOmsgVectors_def
Ute_sendMsg_def send1_def)
moreover
from run obtain \<mu>qv \<mu>qw
where "nextState Ute_M r qv ((rho r) qv) \<mu>qv (rho (Suc r) qv)"
and "\<mu>qv \<in> SHOmsgVectors Ute_M r qv (rho r) (HOs r qv) (SHOs r qv)"
and "nextState Ute_M r qw ((rho r) qw) \<mu>qw (rho (Suc r) qw)"
and "\<mu>qw \<in> SHOmsgVectors Ute_M r qw (rho r) (HOs r qw) (SHOs r qw)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq) blast
ultimately
show ?thesis using usafe by (auto dest: common_vote)
qed
with xw show "x (rho (Suc (Suc r)) pp) = v" by auto
qed
text {*
Inductive argument for the agreement and validity theorems.
*}
(*
The proof relies on previous lemmas @{text common_x_argument_2}
and @{text unique_majority_T} and the @{text Ute_commPerRound} predicate.
*)
lemma safety_inductive_argument:
assumes run: "SHORun Ute_M rho HOs SHOs"
and comm: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and ih: "E - \<alpha> < card {q. sendMsg Ute_M r' q p (rho r' q) = Vote (Some v)}"
and stp1: "step r' = Suc 0"
shows "E - \<alpha> <
card {q. sendMsg Ute_M (Suc (Suc r')) q p (rho (Suc (Suc r')) q)
= Vote (Some v)}"
proof -
from stp1 have "r' > 0" by (auto simp: step_def)
with stp1 obtain r where rr':"r' = Suc r" and stpr:"step (Suc r) = Suc 0"
by (auto dest: gr0_implies_Suc)
have "\<forall>pp. x (rho (Suc (Suc r)) pp) = v"
proof
fix pp
from run obtain \<mu>pp
where "\<mu>pp \<in> SHOmsgVectors Ute_M r' pp (rho r') (HOs r' pp) (SHOs r' pp)"
and "nextState Ute_M r' pp (rho r' pp) \<mu>pp (rho (Suc r') pp)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
with run comm ih rr' show "x (rho (Suc (Suc r)) pp) = v"
by (auto dest: common_x_argument_2)
qed
with run stpr
have "\<forall>pp p. sendMsg Ute_M (Suc (Suc r)) pp p (rho (Suc (Suc r)) pp) = Val v"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq
Ute_sendMsg_def send0_def mod_Suc step_def)
with rr'
have "\<And>p \<mu>p'. \<mu>p' \<in> SHOmsgVectors Ute_M (Suc r') p (rho (Suc r'))
(HOs (Suc r') p) (SHOs (Suc r') p)
\<Longrightarrow> SHOs (Suc r') p \<inter> HOs (Suc r') p
\<subseteq> {q. \<mu>p' q = Some (Val v)}"
by (auto simp: SHOmsgVectors_def)
hence "\<And>p \<mu>p'. \<mu>p' \<in> SHOmsgVectors Ute_M (Suc r') p (rho (Suc r'))
(HOs (Suc r') p) (SHOs (Suc r') p)
\<Longrightarrow> card (SHOs (Suc r') p \<inter> HOs (Suc r') p)
\<le> card {q. \<mu>p' q = Some (Val v)}"
by (auto simp: card_mono)
moreover
from comm have "\<And>p. T < card (SHOs (Suc r') p \<inter> HOs (Suc r') p)"
by (auto simp: Ute_SHOMachine_def Ute_commPerRd_def)
ultimately
have vT:"\<And>p \<mu>p'. \<mu>p' \<in> SHOmsgVectors Ute_M (Suc r') p (rho (Suc r'))
(HOs (Suc r') p) (SHOs (Suc r') p)
\<Longrightarrow> T < card {q. \<mu>p' q = Some (Val v)}"
by (auto dest: less_le_trans)
show ?thesis
proof -
have "\<forall>pp. vote ((rho (Suc (Suc r'))) pp) = Some v"
proof
fix pp
from run obtain \<mu>pp
where nxtpp: "nextState Ute_M (Suc r') pp (rho (Suc r') pp) \<mu>pp
(rho (Suc (Suc r')) pp)"
and mupp: "\<mu>pp \<in> SHOmsgVectors Ute_M (Suc r') pp (rho (Suc r'))
(HOs (Suc r') pp) (SHOs (Suc r') pp)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
with vT have vT':"card {q. \<mu>pp q = Some (Val v)} > T"
by auto
moreover
from stpr rr' have "step (Suc r') = 0"
by (auto simp: mod_Suc step_def)
with nxtpp
have "next0 (Suc r') pp (rho (Suc r') pp) \<mu>pp (rho (Suc (Suc r')) pp)"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def)
ultimately
obtain w
where wT:"card {q. \<mu>pp q = Some (Val w)} > T"
and votew:"vote (rho (Suc (Suc r')) pp) = Some w"
by (auto simp: next0_def)
from vT' wT have "v = w"
by (auto dest: unique_majority_T)
with votew show "vote (rho (Suc (Suc r')) pp) = Some v" by simp
qed
with run stpr rr'
have "\<forall>p. N = card {q. sendMsg Ute_M (Suc (Suc (Suc r))) q p
((rho (Suc (Suc (Suc r)))) q) = Vote (Some v)}"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq
Ute_sendMsg_def send1_def step_def mod_Suc)
with rr' majE EltN show ?thesis by auto
qed
qed
text {*
A process that holds some decision @{text v} has decided @{text v}
sometime in the past.
*}
lemma decisionNonNullThenDecided:
assumes run:"SHORun Ute_M rho HOs SHOs" and dec: "decide (rho n p) = Some v"
shows "\<exists>m<n. decide (rho (Suc m) p) \<noteq> decide (rho m p)
\<and> decide (rho (Suc m) p) = Some v"
proof -
let "?dec k" = "decide ((rho k) p)"
have "(\<forall>m<n. ?dec (Suc m) \<noteq> ?dec m \<longrightarrow> ?dec (Suc m) \<noteq> Some v)
\<longrightarrow> ?dec n \<noteq> Some v"
(is "?P n" is "?A n \<longrightarrow> _")
proof (induct n)
from run show "?P 0"
by (auto simp: Ute_SHOMachine_def SHORun_eq HOinitConfig_eq
initState_def Ute_initState_def)
next
fix n
assume ih: "?P n" thus "?P (Suc n)" by force
qed
with dec show ?thesis by auto
qed
text {*
If process @{text "p1"} has decided value @{text "v1"} and process
@{text "p2"} later decides, then @{text "p2"} must decide @{text "v1"}.
*}
(*
The proof relies on previous lemmas @{text decide_step},
@{text decide_with_threshold_E}, @{text unique_majority_E_\<alpha>},
@{text decisionNonNullThenDecided} and @{text safety_inductive_argument}.
*)
lemma laterProcessDecidesSameValue:
assumes run:"SHORun Ute_M rho HOs SHOs"
and comm:"\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and dv1:"decide (rho (Suc r) p1) = Some v1"
and dn2:"decide (rho (r + k) p2) \<noteq> Some v2"
and dv2:"decide (rho (Suc (r + k)) p2) = Some v2"
shows "v2 = v1"
proof -
from run dv1 obtain r1
where r1r:"r1 < Suc r"
and dn1:"decide (rho r1 p1) \<noteq> Some v1"
and dv1':"decide (rho (Suc r1) p1) = Some v1"
by (auto dest: decisionNonNullThenDecided)
from r1r obtain s where rr1:"Suc r = Suc (r1 + s)"
by (auto dest: less_imp_Suc_add)
then obtain k' where kk':"r + k = r1 + k'"
by auto
with dn2 dv2
have dn2': "decide (rho (r1 + k') p2) \<noteq> Some v2"
and dv2': "decide (rho (Suc (r1 + k')) p2) = Some v2"
by auto
from run dn1 dv1' dn2' dv2'
have rs0:"step r1 = Suc 0" and rks0:"step (r1 + k') = Suc 0"
by (auto simp: mod_Suc step_def dest: decide_step)
have "step (r1 + k') = step (step r1 + k')"
unfolding step_def by (rule mod_add_left_eq)
with rs0 rks0 have "step k' = 0" by (auto simp: step_def mod_Suc)
then obtain k'' where "k' = k''*nSteps" by (auto simp: step_def)
with dn2' dv2'
have dn2'':"decide (rho (r1 + k''*nSteps) p2) \<noteq> Some v2"
and dv2'':"decide (rho (Suc (r1 + k''*nSteps)) p2) = Some v2"
by auto
from rs0 have stp:"step (r1 + k''*nSteps) = Suc 0"
unfolding step_def by auto
have inv:"card {q. sendMsg Ute_M (r1 + k''*nSteps) q p1 (rho (r1 + k''*nSteps) q)
= Vote (Some v1)} > E - \<alpha>"
proof (induct k'')
from stp have "step (r1 + 0*nSteps) = Suc 0"
by (auto simp: step_def)
from run comm dn1 dv1'
show "card {q. sendMsg Ute_M (r1 + 0*nSteps) q p1 (rho (r1 + 0*nSteps) q)
= Vote (Some v1)} > E - \<alpha>"
by (intro decide_with_threshold_E) auto
next
fix k''
assume ih: "E - \<alpha> <
card {q. sendMsg Ute_M (r1 + k''*nSteps) q p1 (rho (r1 + k''*nSteps) q)
= Vote (Some v1)}"
from rs0 have stps: "step (r1 + k''*nSteps) = Suc 0"
by (auto simp: step_def)
with run comm ih
have "E - \<alpha> <
card {q. sendMsg Ute_M (Suc (Suc (r1 + k''*nSteps))) q p1
(rho (Suc (Suc (r1 + k''*nSteps))) q)
= Vote (Some v1)}"
by (rule safety_inductive_argument)
thus "E - \<alpha> <
card {q. sendMsg Ute_M (r1 + Suc k'' * nSteps) q p1
(rho (r1 + Suc k'' * nSteps) q)
= Vote (Some v1)}"
by auto
qed
moreover
from run
have "\<forall>q. sendMsg Ute_M (r1 + k''*nSteps) q p1 (rho (r1 + k''*nSteps) q)
= sendMsg Ute_M (r1 + k''*nSteps) q p2 (rho (r1 + k''*nSteps) q)"
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def
step_def send0_def send1_def)
moreover
from run comm dn2'' dv2''
have "E - \<alpha> <
card {q. sendMsg Ute_M (r1 + k''*nSteps) q p2 (rho (r1 + k''*nSteps) q)
= Vote (Some v2)}"
by (auto dest: decide_with_threshold_E)
ultimately
show "v2 = v1" by (auto dest: unique_majority_E_\<alpha>)
qed
text {*
The Agreement property is an immediate consequence of the two
preceding lemmas.
*}
theorem ute_agreement:
assumes run: "SHORun Ute_M rho HOs SHOs"
and comm: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and p: "decide (rho m p) = Some v"
and q: "decide (rho n q) = Some w"
shows "v = w"
proof -
from run p obtain k
where k1: "decide (rho (Suc k) p) \<noteq> decide (rho k p)"
and k2: "decide (rho (Suc k) p) = Some v"
by (auto dest: decisionNonNullThenDecided)
from run q obtain l
where l1: "decide (rho (Suc l) q) \<noteq> decide (rho l q)"
and l2: "decide (rho (Suc l) q) = Some w"
by (auto dest: decisionNonNullThenDecided)
show ?thesis
proof (cases "k \<le> l")
case True
then obtain m where m: "l = k+m" by (auto simp add: le_iff_add)
from run comm k2 l1 l2 m have "w = v"
by (auto elim!: laterProcessDecidesSameValue)
thus ?thesis by simp
next
case False
hence "l \<le> k" by simp
then obtain m where m: "k = l+m" by (auto simp add: le_iff_add)
from run comm l2 k1 k2 m show ?thesis
by (auto elim!: laterProcessDecidesSameValue)
qed
qed
text {*
Main lemma for the proof of the Validity property.
*}
(*
The proof relies on previous lemmas @{text safety_inductive_argument},
@{text unique_majority_T} and the @{text Ute_commPerRound} predicate.
*)
from majv majw have "v = w" by (auto dest: unique_majority_T)
with votew show "vote ((rho (Suc 0)) pp) = Some v" by simp
qed
with run
have "card {q. sendMsg Ute_M (Suc 0) q p (rho (Suc 0) q) = Vote (Some v)} = N"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq
Ute_nextState_def step_def Ute_sendMsg_def send1_def)
thus "E - \<alpha> <
card {q. sendMsg Ute_M (Suc 0 + 0 * nSteps) q p (rho (Suc 0 + 0 * nSteps) q)
= Vote (Some v)}"
using majE EltN by auto
next
fix k
assume ih:"E - \<alpha> <
card {q. sendMsg Ute_M (Suc 0 + k * nSteps) q p (rho (Suc 0 + k * nSteps) q)
= Vote (Some v)}"
have "step (Suc 0 + k * nSteps) = Suc 0"
by (auto simp: mod_Suc step_def)
from run comm ih this
have "E - \<alpha> <
card {q. sendMsg Ute_M (Suc (Suc (Suc 0 + k * nSteps))) q p
(rho (Suc (Suc (Suc 0 + k * nSteps))) q)
= Vote (Some v)}"
by (rule safety_inductive_argument)
thus "E - \<alpha> <
card {q. sendMsg Ute_M (Suc 0 + Suc k * nSteps) q p
(rho (Suc 0 + Suc k * nSteps) q)
= Vote (Some v)}" by simp
qed
ultimately
show ?thesis by simp
qed
text {*
The following theorem shows the Validity property of algorithm \ute{}.
*}
(*
The proof relies on previous lemmas @{text decisionNonNullThenDecided},
@{text decide_step}, @{text decide_with_threshold_E}, @{text unique_majority_E_\<alpha>},
and the @{text Validity_argument}.
*)
theorem ute_validity:
assumes run: "SHORun Ute_M rho HOs SHOs"
and comm: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and init: "\<forall>p. x (rho 0 p) = v"
and dw: "decide (rho r p) = Some w"
shows "v = w"
proof -
from run dw obtain r1
where dnr1:"decide ((rho r1) p) \<noteq> Some w"
and dwr1:"decide ((rho (Suc r1)) p) = Some w"
by (force dest: decisionNonNullThenDecided)
with run have "step r1 \<noteq> 0" by (rule decide_step)
hence "step r1 = Suc 0" by (simp add: step_def mod_Suc)
with assms
have "E - \<alpha> <
card {q. sendMsg Ute_M r1 q p (rho r1 q) = Vote (Some v)}"
by (rule validity_argument)
moreover
from run comm dnr1 dwr1
have "card {q. sendMsg Ute_M r1 q p (rho r1 q) = Vote (Some w)} > E - \<alpha>"
by (auto dest: decide_with_threshold_E)
ultimately
show "v = w" by (auto dest: unique_majority_E_\<alpha>)
qed
subsection {* Proof of Termination *}
text {*
At the second round of a phase that satisfies the conditions expressed in
the global communication predicate, processes update their @{text x} variable
with the value @{text v} they receive in more than @{text \<alpha>} messages.
*}
(* The proof relies on @{text common_vote}. *)
lemma set_x_from_vote:
assumes run: "SHORun Ute_M rho HOs SHOs"
and comm: "SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and stp: "step (Suc r) = Suc 0"
and \<pi>: "\<forall>p. HOs (Suc r) p = SHOs (Suc r) p"
and nxt: "nextState Ute_M (Suc r) p (rho (Suc r) p) \<mu> (rho (Suc (Suc r)) p)"
and mu: "\<mu> \<in> SHOmsgVectors Ute_M (Suc r) p (rho (Suc r))
(HOs (Suc r) p) (SHOs (Suc r) p)"
and vp: "\<alpha> < card {qq. \<mu> qq = Some (Vote (Some v))}"
shows "x ((rho (Suc (Suc r))) p) = v"
proof -
from nxt stp vp obtain wp
where xwp:"\<alpha> < card {qq. \<mu> qq = Some (Vote (Some wp))}"
and xp:"x (rho (Suc (Suc r)) p) = wp"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def next1_def)
have "wp = v"
proof -
from xwp obtain pp where smw:"\<mu> pp = Some (Vote (Some wp))"
by force
have "vote (rho (Suc r) pp) = Some wp"
proof -
from smw mu \<pi>
have "\<mu> pp = Some (sendMsg Ute_M (Suc r) pp p (rho (Suc r) pp))"
unfolding SHOmsgVectors_def by force
with stp have "\<mu> pp = Some (Vote (vote (rho (Suc r) pp)))"
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def send1_def)
with smw show ?thesis by auto
qed
moreover
from vp obtain qq where smv:"\<mu> qq = Some (Vote (Some v))"
by force
have "vote (rho (Suc r) qq) = Some v"
proof -
from smv mu \<pi>
have "\<mu> qq = Some (sendMsg Ute_M (Suc r) qq p (rho (Suc r) qq))"
unfolding SHOmsgVectors_def by force
with stp have "\<mu> qq = Some (Vote (vote (rho (Suc r) qq)))"
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def send1_def)
with smv show ?thesis by auto
qed
moreover
from run obtain \<mu>pp \<mu>qq
where "nextState Ute_M r pp (rho r pp) \<mu>pp (rho (Suc r) pp)"
and "\<mu>pp \<in> SHOmsgVectors Ute_M r pp (rho r) (HOs r pp) (SHOs r pp)"
and "nextState Ute_M r qq ((rho r) qq) \<mu>qq (rho (Suc r) qq)"
and "\<mu>qq \<in> SHOmsgVectors Ute_M r qq (rho r) (HOs r qq) (SHOs r qq)"
unfolding Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq by blast
ultimately
show ?thesis using comm by (auto dest: common_vote)
qed
with xp show ?thesis by simp
qed
text {*
Assume that HO and SHO sets are uniform at the second step of some
phase. Then at the subsequent round there exists some value @{text v}
such that any received message which is not corrupted holds @{text v}.
*}
(* The proof relies on lemma @{text set_x_from_vote}. *)
lemma termination_argument_1:
assumes run: "SHORun Ute_M rho HOs SHOs"
and comm: "SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and stp: "step (Suc r) = Suc 0"
and \<pi>: "\<forall>p. \<pi>0 = HOs (Suc r) p \<and> \<pi>0 = SHOs (Suc r) p"
obtains v where
"\<And>p \<mu>p' q.
\<lbrakk> q \<in> SHOs (Suc (Suc r)) p \<inter> HOs (Suc (Suc r)) p;
\<mu>p' \<in> SHOmsgVectors Ute_M (Suc (Suc r)) p (rho (Suc (Suc r)))
(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
\<rbrakk> \<Longrightarrow> \<mu>p' q = (Some (Val v))"
proof -
from \<pi> have hosho:"\<forall>p. SHOs (Suc r) p = SHOs (Suc r) p \<inter> HOs (Suc r) p"
by simp
have "\<And>p q. x (rho (Suc (Suc r)) p) = x (rho (Suc (Suc r)) q)"
proof -
fix p q
from run obtain \<mu>p
where nxt: "nextState Ute_M (Suc r) p (rho (Suc r) p)
\<mu>p (rho (Suc (Suc r)) p)"
and mu: "\<mu>p \<in> SHOmsgVectors Ute_M (Suc r) p (rho (Suc r))
(HOs (Suc r) p) (SHOs (Suc r) p)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
from run obtain \<mu>q
where nxtq: "nextState Ute_M (Suc r) q (rho (Suc r) q)
\<mu>q (rho (Suc (Suc r)) q)"
and muq: "\<mu>q \<in> SHOmsgVectors Ute_M (Suc r) q (rho (Suc r))
(HOs (Suc r) q) (SHOs (Suc r) q)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
have "\<forall>qq. \<mu>p qq = \<mu>q qq"
proof
fix qq
show "\<mu>p qq = \<mu>q qq"
proof (cases "\<mu>p qq = None")
case False
with mu \<pi> have 1:"qq \<in> SHOs (Suc r) p" and 2:"qq \<in> SHOs (Suc r) q"
unfolding SHOmsgVectors_def by auto
from mu \<pi> 1
have "\<mu>p qq = Some (sendMsg Ute_M (Suc r) qq p (rho (Suc r) qq))"
unfolding SHOmsgVectors_def by auto
moreover
from muq \<pi> 2
have "\<mu>q qq = Some (sendMsg Ute_M (Suc r) qq q (rho (Suc r) qq))"
unfolding SHOmsgVectors_def by auto
ultimately
show ?thesis
by (auto simp: Ute_SHOMachine_def Ute_sendMsg_def step_def
send0_def send1_def)
next
case True
with mu have "qq \<notin> HOs (Suc r) p" unfolding SHOmsgVectors_def by auto
with \<pi> muq have "\<mu>q qq = None" unfolding SHOmsgVectors_def by auto
with True show ?thesis by simp
qed
qed
hence vsets:"\<And>v. {qq. \<mu>p qq = Some (Vote (Some v))}
= {qq. \<mu>q qq = Some (Vote (Some v))}"
by auto
(* NB: due to the Global predicate (HO = SHO), we do not need \<alpha> + 1 msgs
holding a true vote, only 1. We might also prefer to invoke only the
@{text Ute_commPerRound} predicate to obtain qq :
since "card (HOs (Suc r) p - SHOs (Suc r) p) < \<alpha>", there should be one
"correct" message holding a vote and this vote should be common according
to previous (Suc r)esults. *)
show "x (rho (Suc (Suc r)) p) = x (rho (Suc (Suc r)) q)"
proof (cases "\<exists>v. \<alpha> < card {qq. \<mu>p qq = Some (Vote (Some v))}", clarify)
fix v
assume vp: "\<alpha> < card {qq. \<mu>p qq = Some (Vote (Some v))}"
with run comm stp \<pi> nxt mu have "x (rho (Suc (Suc r)) p) = v"
by (auto dest: set_x_from_vote)
moreover
from vsets vp
have "\<alpha> < card {qq. \<mu>q qq = Some (Vote (Some v))}" by auto
with run comm stp \<pi> nxtq muq have "x (rho (Suc (Suc r)) q) = v"
by (auto dest: set_x_from_vote)
ultimately
show "x (rho (Suc (Suc r)) p) = x (rho (Suc (Suc r)) q)"
by auto
next
assume nov: "\<not> (\<exists>v. \<alpha> < card {qq. \<mu>p qq = Some (Vote (Some v))})"
with nxt stp have "x (rho (Suc (Suc r)) p) = undefined"
by (auto simp: Ute_SHOMachine_def nextState_def
Ute_nextState_def next1_def)
moreover
from vsets nov
have "\<not> (\<exists>v. \<alpha> < card {qq. \<mu>q qq = Some (Vote (Some v))})" by auto
with nxtq stp have "x (rho (Suc (Suc r)) q) = undefined"
by (auto simp: Ute_SHOMachine_def nextState_def
Ute_nextState_def next1_def)
ultimately
show ?thesis by simp
qed
qed
then obtain v where "\<And>q. x (rho (Suc (Suc r)) q) = v" by blast
moreover
from stp have "step (Suc (Suc r)) = 0"
by (auto simp: step_def mod_Suc)
hence "\<And>p \<mu>p' q.
\<lbrakk> q \<in> SHOs (Suc (Suc r)) p \<inter> HOs (Suc (Suc r)) p;
\<mu>p' \<in> SHOmsgVectors Ute_M (Suc (Suc r)) p (rho (Suc (Suc r)))
(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
\<rbrakk> \<Longrightarrow> \<mu>p' q = Some (Val (x (rho (Suc (Suc r)) q)))"
by (auto simp: Ute_SHOMachine_def SHOmsgVectors_def Ute_sendMsg_def send0_def)
ultimately
have "\<And>p \<mu>p' q.
\<lbrakk> q \<in> SHOs (Suc (Suc r)) p \<inter> HOs (Suc (Suc r)) p;
\<mu>p' \<in> SHOmsgVectors Ute_M (Suc (Suc r)) p (rho (Suc (Suc r)))
(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
\<rbrakk> \<Longrightarrow> \<mu>p' q = (Some (Val v))"
by auto
with that show thesis by blast
qed
text {*
If a process @{text p} votes @{text v} at some round @{text r},
then all messages received by @{text p} in @{text r} that are not
corrupted hold @{text v}.
*}
(* immediate from lemma @{text vote_step} and the algorithm definition. *)
lemma termination_argument_2:
assumes mup: "\<mu>p \<in> SHOmsgVectors Ute_M (Suc r) p (rho (Suc r))
(HOs (Suc r) p) (SHOs (Suc r) p)"
and nxtq: "nextState Ute_M r q (rho r q) \<mu>q (rho (Suc r) q)"
and vq: "vote (rho (Suc r) q) = Some v"
and qsho: "q \<in> SHOs (Suc r) p \<inter> HOs (Suc r) p"
shows "\<mu>p q = Some (Vote (Some v))"
proof -
from nxtq vq have "step r = 0" by (auto simp: vote_step)
with mup qsho have "\<mu>p q = Some (Vote (vote (rho (Suc r) q)))"
by (auto simp: Ute_SHOMachine_def SHOmsgVectors_def Ute_sendMsg_def
step_def send1_def mod_Suc)
with vq show "\<mu>p q = Some (Vote (Some v))" by auto
qed
text{*
We now prove the Termination property.
*}
(*
The proof relies on previous lemmas @{text termination_argument_1},
@{text termination_argument_2}, @{text common_vote}, @{text unique_majority_E},
and the @{text Ute_commGlobal} predicate.
*)
theorem ute_termination:
assumes run: "SHORun Ute_M rho HOs SHOs"
and commR: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and commG: "SHOcommGlobal Ute_M HOs SHOs"
shows "\<exists>r v. decide (rho r p) = Some v"
proof -
from commG
obtain \<Phi> \<pi> r0
where rr: "r0 = Suc (nSteps * \<Phi>)"
and \<pi>: "\<forall>p. \<pi> = HOs r0 p \<and> \<pi> = SHOs r0 p"
and t: "\<forall>p. card (SHOs (Suc r0) p \<inter> HOs (Suc r0) p) > T"
and e: "\<forall>p. card (SHOs (Suc (Suc r0)) p \<inter> HOs (Suc (Suc r0)) p) > E"
by (auto simp: Ute_SHOMachine_def Ute_commGlobal_def Let_def)
from rr have stp:"step r0 = Suc 0" by (auto simp: step_def)
obtain w where votew:"\<forall>p. (vote (rho (Suc (Suc r0)) p)) = Some w"
proof -
have abc:"\<forall>p. \<exists>w. vote (rho (Suc (Suc r0)) p) = Some w"
proof
fix p
from run stp obtain \<mu>p
where nxt:"nextState Ute_M (Suc r0) p (rho (Suc r0) p) \<mu>p
(rho (Suc (Suc r0)) p)"
and mup:"\<mu>p \<in> SHOmsgVectors Ute_M (Suc r0) p (rho (Suc r0))
(HOs (Suc r0) p) (SHOs (Suc r0) p)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
have "\<exists>v. T < card {qq. \<mu>p qq = Some (Val v)}"
proof -
from t have "card (SHOs (Suc r0) p \<inter> HOs (Suc r0) p) > T" ..
moreover
from run commR stp \<pi> rr
obtain v where
"\<And>p \<mu>p' q.
\<lbrakk> q \<in> SHOs (Suc r0) p \<inter> HOs (Suc r0) p;
\<mu>p' \<in> SHOmsgVectors Ute_M (Suc r0) p (rho (Suc r0))
(HOs (Suc r0) p) (SHOs (Suc r0) p)
\<rbrakk> \<Longrightarrow> \<mu>p' q = Some (Val v)"
using termination_argument_1 by blast
with mup obtain v where
"\<And>qq. qq \<in> SHOs (Suc r0) p \<inter> HOs (Suc r0) p \<Longrightarrow> \<mu>p qq = Some (Val v)"
by auto
hence "SHOs (Suc r0) p \<inter> HOs (Suc r0) p \<subseteq> {qq. \<mu>p qq = Some (Val v)}"
by auto
hence "card (SHOs (Suc r0) p \<inter> HOs (Suc r0) p)
\<le> card {qq. \<mu>p qq = Some (Val v)}"
by (auto intro: card_mono)
ultimately
have "T < card {qq. \<mu>p qq = Some (Val v)}" by auto
thus ?thesis by auto
qed
with stp nxt show "\<exists>w. vote ((rho (Suc (Suc r0))) p) = Some w"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def
step_def mod_Suc next0_def)
qed
then obtain qq w where qqw:"vote (rho (Suc (Suc r0)) qq) = Some w"
by blast
have "\<forall>pp. vote (rho (Suc (Suc r0)) pp) = Some w"
proof
fix pp
from abc obtain wp where pwp:"vote ((rho (Suc (Suc r0))) pp) = Some wp"
by blast
from run obtain \<mu>pp \<mu>qq
where nxtp: "nextState Ute_M (Suc r0) pp (rho (Suc r0) pp)
\<mu>pp (rho (Suc (Suc r0)) pp)"
and mup: "\<mu>pp \<in> SHOmsgVectors Ute_M (Suc r0) pp (rho (Suc r0))
(HOs (Suc r0) pp) (SHOs (Suc r0) pp)"
and nxtq: "nextState Ute_M (Suc r0) qq (rho (Suc r0) qq)
\<mu>qq (rho (Suc (Suc r0)) qq)"
and muq: "\<mu>qq \<in> SHOmsgVectors Ute_M (Suc r0) qq (rho (Suc r0))
(HOs (Suc r0) qq) (SHOs (Suc r0) qq)"
unfolding Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq by blast
from commR this pwp qqw have "wp = w"
by (auto dest: common_vote)
with pwp show "vote ((rho (Suc (Suc r0))) pp) = Some w"
by auto
qed
with that show ?thesis by auto
qed
from run obtain \<mu>p'
where nxtp: "nextState Ute_M (Suc (Suc r0)) p (rho (Suc (Suc r0)) p)
\<mu>p' (rho (Suc (Suc (Suc r0))) p)"
and mup': "\<mu>p' \<in> SHOmsgVectors Ute_M (Suc (Suc r0)) p (rho (Suc (Suc r0)))
(HOs (Suc (Suc r0)) p) (SHOs (Suc (Suc r0)) p)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
have "\<And>qq. qq \<in> SHOs (Suc (Suc r0)) p \<inter> HOs (Suc (Suc r0)) p
\<Longrightarrow> \<mu>p' qq = Some (Vote (Some w))"
proof -
fix qq
assume qqsho:"qq \<in> SHOs (Suc (Suc r0)) p \<inter> HOs (Suc (Suc r0)) p"
from run obtain \<mu>qq where
nxtqq:"nextState Ute_M (Suc r0) qq (rho (Suc r0) qq)
\<mu>qq (rho (Suc (Suc r0)) qq)"
by (auto simp: Ute_SHOMachine_def SHORun_eq SHOnextConfig_eq)
from commR mup' nxtqq votew qqsho show "\<mu>p' qq = Some (Vote (Some w))"
by (auto dest: termination_argument_2)
qed
hence "SHOs (Suc (Suc r0)) p \<inter> HOs (Suc (Suc r0)) p
\<subseteq> {qq. \<mu>p' qq = Some (Vote (Some w))}"
by auto
hence wsho: "card (SHOs (Suc (Suc r0)) p \<inter> HOs (Suc (Suc r0)) p)
\<le> card {qq. \<mu>p' qq = Some (Vote (Some w))}"
by (auto simp: card_mono)
from stp have "step (Suc (Suc r0)) = Suc 0"
unfolding step_def by auto
with nxtp have "next1 (Suc (Suc r0)) p (rho (Suc (Suc r0)) p) \<mu>p'
(rho (Suc (Suc (Suc r0))) p)"
by (auto simp: Ute_SHOMachine_def nextState_def Ute_nextState_def)
moreover
from e have "E < card (SHOs (Suc (Suc r0)) p \<inter> HOs (Suc (Suc r0)) p)"
by auto
with wsho have majv:"card {qq. \<mu>p' qq = Some (Vote (Some w))} > E"
by auto
ultimately
show ?thesis by (auto simp: next1_def)
qed
subsection {* \ute{} Solves Weak Consensus *}
text {*
Summing up, all (coarse-grained) runs of \ute{} for
HO and SHO collections that satisfy the communication predicate
satisfy the Weak Consensus property.
*}
theorem ute_weak_consensus:
assumes run: "SHORun Ute_M rho HOs SHOs"
and commR: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and commG: "SHOcommGlobal Ute_M HOs SHOs"
shows "weak_consensus (x \<circ> (rho 0)) decide rho"
unfolding weak_consensus_def
using ute_validity[OF run commR]
ute_agreement[OF run commR]
ute_termination[OF run commR commG]
by auto
text {*
By the reduction theorem, the correctness of the algorithm carries over
to the fine-grained model of runs.
*}
theorem ute_weak_consensus_fg:
assumes run: "fg_run Ute_M rho HOs SHOs (\<lambda>r q. undefined)"
and commR: "\<forall>r. SHOcommPerRd Ute_M (HOs r) (SHOs r)"
and commG: "SHOcommGlobal Ute_M HOs SHOs"
shows "weak_consensus (\<lambda>p. x (state (rho 0) p)) decide (state \<circ> rho)"
(is "weak_consensus ?inits _ _")
proof (rule local_property_reduction[OF run weak_consensus_is_local])
fix crun
assume crun: "CSHORun Ute_M crun HOs SHOs (\<lambda>r q. undefined)"
and init: "crun 0 = state (rho 0)"
from crun have "SHORun Ute_M crun HOs SHOs" by (unfold SHORun_def)
from this commR commG
have "weak_consensus (x \<circ> (crun 0)) decide crun"
by (rule ute_weak_consensus)
with init show "weak_consensus ?inits decide crun"
by (simp add: o_def)
qed
end -- {* context @{text "ute_parameters"} *}
end (* theory UteProof *)
|
If we have missed anything please feel free to email us so that we can answer your question.
Will my personal information be safe if I share it with you?
As a family owned business we know our guests trust is of utmost importance. Therefore we want to assure you that any information you choose to share with us on our site will not be sold or shared with additional parties without your express permission.
How much is your local sales tax?
There is no sales tax in the state of Oregon so there will not be sales tax added to your order.
Ainslee’s Homemade Salt Water Taffy is carefully packaged to ensure a secure arrival but please note that it is not recommended to ship our fudge into warm climates as it may melt in the package.
Please be sure to check delivery addresses carefully. We cannot extend our guarantee to orders for which we are given incomplete or incorrect addresses. Postal and delivery services will not forward the packages on without the correct address.
Please allow 2-3 days to process and ship orders. We will make every effort to expedite orders. We ship orders via USPS priority unless otherwise specified in your order form. See more on our shipping and handling page.
How can I recommend you to my friends and family?
As a family owned business we rely on word of mouth advertising to increase our sales so that we are able to provide you with the freshest possible product for the most reasonable price we can offer. As you can imagine, the busier we are, the more reasonably priced candies we can offer to you so please spread the word and help us stay around for yet another generation of quality candy making. You can also fill out the "Recommend Us" form on our website.
What kind of ingredients do you use? How will I know if something is contained within the product?
Wherever we can we make sure to use all natural ingredients in our products. This means no artificial preservatives to lengthen the shelf life of your candy and therefore a more natural product for your body.
Although we employ careful sanitation procedures in our cooking process it is important that you know that there is a chance of allergens being introduced into your product so please be cautious if you have a severe allergy. For example we make the peanut butter filled taffy on the same machine as all the rest of the taffy and there is no way to ensure that we have safely eliminated 100% of the peanut contamination before starting the next batch. If you have a specific allergy concern please feel free to email us with questions.
What is the best way to store my taffy?
What is the best way to store my Caramel Corn?
The enemy to freshness here is air and heat. We ship it in a plastic bag to ensure the least amount of air gets to the product. If you would like to keep it longer than a week (after you receive it) you will want to get as much air out of the bag as possible and store it either in Tupperware, or a ziplock bag for maximum freshness.
What is the best way to store my Fudge?
Fudge will stay fresh for approximately ten days if properly wrapped in plastic wrap or Tupperware. Refrigerating your fudge will dry it out so try to keep it at room temperature. If you would like to keep your fudge for longer than ten days you will need to properly protect it by wrapping it in plastic wrap and then slipping it into a freezer safe bag to store in the freezer. It will keep well in the freezer for up to three months.
Do you partner for fundraising?
Actually we do. We have several different programs to help you raise money for your cause. Please email or contact our store for specific questions.
15% Discount of homemade salt water taffy to all active duty military personnel with valid military id. Although you would need to present the ID in store to receive the discount we also offer it on mail orders placed to APO addresses in order to encourage you to send goodies to the men and women that are protecting our country. In order to receive the discount on a web orders please send your order by email or snail mail so that we may apply your discount to the final purchase price.
We do offer discounts on large orders but please be aware that we will need adequate notice to fulfill larger than typical orders. The timeframe necessary is dependant upon the size of the order.
Can I get my candy customized? You used to have a certain flavor, can I still buy that flavor?
If you are willing to buy the entire batch we can customize the taffy color of virtually any of our flavors for you. We also have discontinued flavors that we can craft for you if you do not see them on our web site so please do not hesitate to ask. Additionally, sometimes we have recipes for things we do not carry (such as Amaretto fudge, licorice caramel corn or almond brittle) that we can make upon request but please keep in mind that there is a necessary minimum order, contact us to find out more.
Do you have a taffy of the month program?
Yes, actually we send the recipient a different flavor of taffy every single month. You can choose a three, six month or year long program and either go with the default flavor of the month, mixed or create your own combination for each month. Go to our "Taffy of the month" page on our website to learn more.
How do I apply for a job at your store?
What could be better than working for a candy store? If you would like to apply for a position with our company please stop by our store for an application. Although we are not always hiring we are always accepting applications. We tend to hire from applications we already have so if you would like to join us it’s very helpful to already have an application on file. Contact us, we would love to hear from you!
Copyright © Ainslee's Homemade Salt Water Taffy. All rights reserved. |
/-
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import for_mathlib.homological_complex_misc
import algebra.homology.homological_complex
import algebra.homology.additive
import for_mathlib.idempotents.functor_extension2
import category_theory.idempotents.homological_complex
noncomputable theory
open category_theory
open category_theory.category
open category_theory.preadditive
open category_theory.idempotents
variables {C : Type*} [category C] [preadditive C]
variables {ι : Type*} {c : complex_shape ι}
namespace category_theory
namespace idempotents
namespace karoubi
namespace homological_complex
variables {P Q : karoubi (homological_complex C c)} (f : P ⟶ Q) (n : ι)
@[simp, reassoc]
lemma f_p_comp : P.p.f n ≫ f.f.f n = f.f.f n :=
homological_complex.congr_hom (p_comp f) n
@[simp, reassoc]
lemma f_comp_p : f.f.f n ≫ Q.p.f n = f.f.f n :=
homological_complex.congr_hom (comp_p f) n
@[reassoc]
lemma f_p_comm : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
homological_complex.congr_hom (p_comm f) n
end homological_complex
end karoubi
namespace karoubi_homological_complex
namespace functor
@[simps]
def obj (P : karoubi (homological_complex C c)) : homological_complex (karoubi C) c :=
{ X := λ n, ⟨P.X.X n, P.p.f n, by simpa only [homological_complex.comp_f]
using homological_complex.congr_hom P.idem n⟩,
d := λ i j,
{ f := P.p.f i ≫ P.X.d i j,
comm := begin
have h := homological_complex.congr_hom P.idem j,
simp only [homological_complex.hom.comm_assoc, assoc, homological_complex.hom.comm,
homological_complex.comp_f] at h ⊢,
simp only [h]
end, },
shape' := λ i j hij, by simp only [karoubi.hom_eq_zero_iff,
P.X.shape i j hij, limits.comp_zero],
d_comp_d' := λ i j k hij hjk, begin
simp only [karoubi.hom_eq_zero_iff, karoubi.comp_f, P.p.comm j k],
slice_lhs 2 3 { rw P.X.d_comp_d' i j k hij hjk, },
simp only [limits.comp_zero, limits.zero_comp],
end, }
@[simps]
def map {P Q : karoubi (homological_complex C c)} (f : P ⟶ Q) : obj P ⟶ obj Q :=
{ f:= λ n,
{ f:= f.f.f n,
comm := by simpa only [homological_complex.comp_f]
using homological_complex.congr_hom f.comm n, },
comm' := λ i j hij, begin
ext,
simp only [karoubi.comp_f, obj_d_f, assoc, ← f.f.comm],
simp only [← assoc],
have eq := homological_complex.congr_hom (karoubi.p_comm f) i,
simp only [homological_complex.comp_f] at eq,
rw eq,
end }
end functor
@[simps]
def functor :
karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c :=
{ obj := functor.obj,
map := λ P Q f, functor.map f,
map_comp' := λ P Q R f f',
by { ext n, simpa only [karoubi.comp_f], }, }
namespace inverse
@[simps]
def obj (K : homological_complex (karoubi C) c) : karoubi (homological_complex C c) :=
{ X :=
{ X := λ n, (K.X n).X,
d := λ i j, (K.d i j).f,
shape' := λ i j hij, karoubi.hom_eq_zero_iff.mp (K.shape' i j hij),
d_comp_d' := λ i j k hij hjk, by simpa only [karoubi.comp_f]
using karoubi.hom_eq_zero_iff.mp (K.d_comp_d' i j k hij hjk), },
p :=
{ f := λ n, (K.X n).p,
comm' := λ i j hij, karoubi.p_comm (K.d i j), },
idem := by { ext n, simpa only [karoubi.comp_f] using (K.X n).idem, }, }
@[simps]
def map {K L : homological_complex (karoubi C) c} (f : K ⟶ L) : obj K ⟶ obj L :=
{ f:=
{ f := λ n, (f.f n).f,
comm' := λ i j hij, by simpa only [karoubi.comp_f]
using karoubi.hom_ext.mp (f.comm' i j hij), },
comm := by { ext n, exact (f.f n).comm, }, }
end inverse
@[simps]
def inverse :
homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c) :=
{ obj := inverse.obj,
map := λ K L f, inverse.map f,
map_comp' := λ K L M f g, by { ext n,
simp only [karoubi.comp_f, homological_complex.comp_f, inverse.map_f_f], }, }
def counit_eq : inverse ⋙ functor = 𝟭 (homological_complex (karoubi C) c) :=
begin
apply functor.ext,
{ intros K L f,
ext n,
dsimp [functor.map, inverse.map],
simp only [karoubi.eq_to_hom_f, functor.obj_X_p, homological_complex.eq_to_hom_f,
eq_to_hom_refl, comp_id, karoubi.comp_f, inverse.obj_p_f],
rw [← karoubi.hom.comm], },
{ intro P,
apply homological_complex.ext,
{ intros i j hij,
simp [homological_complex.eq_to_hom_f],
refl, },
{ ext n,
{ simpa only [id_comp, eq_to_hom_refl, comp_id], },
{ refl, }, }, },
end
@[simps]
def unit_iso : 𝟭 (karoubi (homological_complex C c)) ≅ functor ⋙ inverse :=
{ hom :=
{ app := λ P,
{ f :=
{ f := λ n, P.p.f n,
comm' := λ i j hij, begin
dsimp,
have h := homological_complex.congr_hom P.idem i,
simp only [homological_complex.comp_f] at h,
slice_lhs 1 2 { erw h, },
exact P.p.comm' i j hij,
end },
comm := begin
ext n,
have h := homological_complex.congr_hom P.idem n,
simp only [homological_complex.comp_f] at h,
dsimp,
rw [h, h],
end },
naturality' := λ X Y f, begin
ext n,
have h := homological_complex.congr_hom ((karoubi.p_comm f).symm) n,
simpa only [functor.map_f_f, homological_complex.comp_f,
inverse.map_f_f, karoubi.comp_f] using h,
end },
inv :=
{ app := λ P,
{ f :=
{ f := λ n, P.p.f n,
comm' := λ i j hij, begin
dsimp,
slice_rhs 2 3 { rw ← P.p.comm' i j hij, },
rw ← assoc,
have h := homological_complex.congr_hom P.idem i,
simp only [homological_complex.comp_f] at h,
rw h,
end },
comm := begin
ext n,
have h := homological_complex.congr_hom P.idem n,
simp only [homological_complex.comp_f] at h,
dsimp,
rw [h, h],
end },
naturality' := λ P Q f, begin
ext n,
have h := homological_complex.congr_hom (karoubi.p_comm f).symm n,
simpa only [functor_map, functor.map_f_f, functor.id_map, functor.comp_map,
homological_complex.comp_f, inverse.map_f_f, inverse_map, karoubi.comp_f]
using h,
end },
hom_inv_id' := begin
ext P n,
dsimp,
simpa only [homological_complex.comp_f, karoubi.id_eq, karoubi.comp_f]
using homological_complex.congr_hom P.idem n,
end,
inv_hom_id' := begin
ext P n,
dsimp [inverse.obj, functor.obj],
simpa only [homological_complex.comp_f, karoubi.id_eq, karoubi.comp_f]
using homological_complex.congr_hom P.idem n,
end, }
end karoubi_homological_complex
variables (C) (c)
/-@[simps]
def karoubi_homological_complex_equivalence :
karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c :=
{ functor := karoubi_homological_complex.functor,
inverse := karoubi_homological_complex.inverse,
unit_iso := karoubi_homological_complex.unit_iso,
counit_iso := eq_to_iso karoubi_homological_complex.counit_eq,
functor_unit_iso_comp' := λ P, begin
ext n,
dsimp,
have h := homological_complex.congr_hom P.idem n,
simpa only [karoubi_homological_complex.unit_iso_hom_app_f_f,
homological_complex.eq_to_hom_f,
eq_to_hom_app, karoubi_homological_complex.functor.obj_X_p,
karoubi_homological_complex.inverse.obj_p_f, eq_to_hom_refl,
karoubi.id_eq, karoubi_homological_complex.functor.map_f_f,
karoubi.comp_f] using h,
end }-/
lemma functor.map_homological_complex_id {D : Type*} [category D] [preadditive D] :
functor.map_homological_complex (𝟭 D) c = 𝟭 _ :=
begin
apply functor.ext,
{ intros X Y f,
ext n,
dsimp,
simp only [homological_complex.eq_to_hom_f, eq_to_hom_refl],
erw [id_comp, comp_id], },
{ intro X,
apply homological_complex.ext,
{ intros i j hij,
erw [comp_id, id_comp],
refl, },
{ refl, }, },
end
@[simps]
def nat_iso.map_homological_complex {D E : Type*} [category D] [category E] [preadditive D] [preadditive E]
{F G : D ⥤ E} [F.additive] [G.additive] (e : F ≅ G) :
functor.map_homological_complex F c ≅ functor.map_homological_complex G c :=
{ hom := nat_trans.map_homological_complex e.hom c,
inv := nat_trans.map_homological_complex e.inv c,
hom_inv_id' := by simpa only [← nat_trans.map_homological_complex_comp, e.hom_inv_id],
inv_hom_id' := by simpa only [← nat_trans.map_homological_complex_comp, e.inv_hom_id], }
def equivalence.map_homological_complex {D E : Type*} [category D] [category E] [preadditive D] [preadditive E]
(e : D ≌ E) [e.functor.additive] : homological_complex D c ≌ homological_complex E c :=
{ functor := functor.map_homological_complex e.functor c,
inverse := functor.map_homological_complex e.inverse c,
unit_iso := eq_to_iso (functor.map_homological_complex_id c).symm ≪≫
nat_iso.map_homological_complex c e.unit_iso,
counit_iso := nat_iso.map_homological_complex c e.counit_iso ≪≫
eq_to_iso (functor.map_homological_complex_id c),
functor_unit_iso_comp' := λ K, begin
ext n,
dsimp,
simp only [eq_to_hom_app, homological_complex.eq_to_hom_f, eq_to_hom_refl],
erw [id_comp, comp_id, e.functor_unit_iso_comp],
end, }
instance [is_idempotent_complete C] : is_idempotent_complete (homological_complex C c) :=
begin
haveI := (to_karoubi_is_equivalence C),
let e := (functor.as_equivalence (to_karoubi C)),
let h : (to_karoubi C).additive := by apply_instance,
haveI : e.functor.additive := h,
rw is_idempotent_complete_iff_of_equivalence (equivalence.map_homological_complex c e),
rw ← is_idempotent_complete_iff_of_equivalence (karoubi_homological_complex_equivalence C c),
apply_instance,
end
variables (α : Type*) [add_right_cancel_semigroup α] [has_one α]
/-@[simps]
def karoubi_chain_complex_equivalence :
karoubi (chain_complex C α) ≌
chain_complex (karoubi C) α :=
karoubi_homological_complex_equivalence C (complex_shape.down α)
@[simps]
def karoubi_cochain_complex_equivalence :
karoubi (cochain_complex C α) ≌
cochain_complex (karoubi C) α :=
karoubi_homological_complex_equivalence C (complex_shape.up α)-/
end idempotents
namespace functor
variables {D : Type*} [category D] [preadditive D]
@[simps]
def map_karoubi_homological_complex (F : C ⥤ D) [F.additive] (c : complex_shape ι) :
karoubi (homological_complex C c) ⥤ karoubi (homological_complex D c) :=
(functor_extension₂ _ _).obj (functor.map_homological_complex F c)
lemma map_homological_complex_karoubi_compatibility
(F : C ⥤ D) [F.additive] (c : complex_shape ι) :
to_karoubi _ ⋙ F.map_karoubi_homological_complex c =
F.map_homological_complex c ⋙ to_karoubi _ :=
begin
apply functor.ext,
{ intros X Y f,
ext n,
dsimp [to_karoubi],
simp only [karoubi.comp_f, karoubi.eq_to_hom_f, eq_to_hom_refl, comp_id,
homological_complex.comp_f, map_karoubi_homological_complex_obj_p_f,
homological_complex.id_f, map_id, map_homological_complex_map_f],
erw id_comp, },
{ intro X,
ext1,
{ erw [id_comp, comp_id],
ext n,
dsimp,
simpa only [F.map_id, homological_complex.id_f], },
{ refl, }, },
end
end functor
end category_theory
|
initialImage = im2single( imread('peppers.png') );
width = size(initialImage, 2);
height = size(initialImage, 1);
cropPositions = [ 1, 1, height, width; ... % full image
1, 1, height / 2, width / 3; ... % sub patch
-height / 2, -width / 2, height / 2, width / 3 ]; ... % sub patch not inside the image
crops = cropRectanglesMex( initialImage, cropPositions, [height, width] );
figure(1), imshow( initialImage );
figure(2), imshow( crops(:,:,:,1) );
figure(3), imshow( crops(:,:,:,2) );
figure(4), imshow( crops(:,:,:,3) );
|
lemma multiplicity_eq_nat: fixes x and y::nat assumes "x > 0" "y > 0" "\<And>p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y" shows "x = y" |
SUBROUTINE allreduce_sub( n, comm, a, num )
implicit none
include 'mpif.h'
integer,intent(IN) :: n, comm, num
real(8),intent(INOUT) :: a(n)
real(8),allocatable :: b(:)
integer :: ierr,i,j,m,nd
ierr=0
if ( num <= 1 .or. num > n ) then
allocate( b(n) ) ; b=0.0d0
call mpi_allreduce( a, b, n, MPI_REAL8, MPI_SUM, comm, ierr )
a=b
else
nd = (n+num)/num
allocate( b(nd) ) ; b=0.0d0
do i=1,n,nd
j=min(i+nd-1,n)
m=j-i+1
call mpi_allreduce( a(i), b, m, MPI_REAL8, MPI_SUM, comm, ierr )
a(i:j)=b
end do
end if
deallocate( b )
END SUBROUTINE allreduce_sub
|
```python
from sympy import *
import matplotlib.pyplot as plt
from sympy.plotting import plot
from sympy.matrices import *
init_printing()
%matplotlib inline
```
# Problem 1 #
We have the following system
\begin{align}
q_D &= b_D - 2p + r \\
q_S &= b_S + 2p - r \\
r &= 2b_r + 4p - 2q
\end{align}
Convert the system of equations into a linear function of the form $A\mathbf{x} = \mathbf{b}$
\begin{align}
q + 2p - r &= b_D \\
1q - 2p + r &= b_S \\
1q - 2p + \frac{1}{2}r &= b_r
\end{align}
and in matrix terms we have
\begin{align}
\begin{bmatrix}
1 & 2 & -1 \\
1 & -2 & 1 \\
1 & -2 & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
q \\
p \\
r
\end{bmatrix} &=
\begin{bmatrix}
b_D \\
b_S \\
b_r
\end{bmatrix}
\end{align}
### Test Solution Existence and Uniqueness with Determinant
We want to test the determinant $\det A = 0$. If it is, then we may either have no solution to the system, or an infinite number of solutions. If $\det A \neq 0$ then we know for every vector $\mathbf{b}$ there is a unique solution to the system.
```python
A = Matrix([
[1, 2, -1],
[1, -2, 1],
[1, -2, Rational(1,2)]
])
# We calculate the determinant using A.det() function
detA = A.det()
A, Eq(Symbol('\det A'),detA)
```
### Find A^{-1} and Solve the System
If $A$ is invertible then $\mathbf{x} = A^{-1}\mathbf{b}$. So calculate the inverse and post multiply $\mathbf{b}$ to find the solution. Assume that $\mathbf{b} = [10,5,1]$.
```python
#Instantiate b vector
b = Matrix([
[10],
[8],
[2]
])
#Calculate the inverse of the A matrix.
Ainv = A.inv()
Ainv, b
```
```python
#Use the inverse of A to find the solution x
x = Ainv*b
x
```
# Problem 2
Consider the system:
\begin{align}
q_D &= \frac{b_D}{p^2} \\
q_S &= A_S + \frac{1}{b_S}p^2
\end{align}
```python
bD = Symbol('b_D', real=True, positive=True)
bS = Symbol('b_S', real=True, positive=True)
AS = Symbol('A_S', real=True, positive=True)
AD = Symbol('A_D', real=True, positive=True)
p = Symbol('p', real=True, positive=True)
demand = bD*exp(-p)
supply = bS*exp(p)
demand, supply
```
```python
#Find the equilibrium price
p_eq = solve(demand-supply,p)[0]
p_eq
```
```python
grad = Matrix([p_eq.diff(bD), p_eq.diff(bS)])
grad
```
```python
sl = [(bD,5),(bS,1)]
gradval = grad.subs(sl)
gradval
```
```python
dx = Matrix([Rational(1,9), -Rational(1,7)])
dp = gradval.dot(dx)
dp
```
```python
p_eq.subs(sl) + dp
```
```python
plot(5*exp(-p),1*exp(p),(p,0,2))
```
```python
```
|
\documentclass[12pt]{article}
\usepackage{alltt,epsfig,html,latexsym,longtable,makeidx,moreverb}
\setlength\topmargin{-0.5in}
\setlength\textheight{8.5in}
\setlength\textwidth{7.0in}
\setlength\oddsidemargin{-0.3in}
\setlength\evensidemargin{-0.3in}
\hyphenation{}
\title{{\mlton} SML Style Guide}
\author{Stephen Weeks}
\date{\today}
\include{macros}
\makeindex
\begin{document}
\maketitle
\input{abstract}
% conventions chosen so that inertia is towards modularity and reuse
% not to type fewer characters
\sec{High-level structure}{high-level-structure}
Code is structured in {\mlton} so that signatures are closed. Thus, in
{\mlton}, one would never write the following.
\begin{verbatim}
signature SIG =
sig
val f: Foo.t -> int
end
\end{verbatim}
Instead, one would write the following.
\begin{verbatim}
signature SIG =
sig
structure Foo: FOO
val f: Foo.t -> int
end
\end{verbatim}
The benefit of this approach is that one can first understand the
specifications (i.e. signatures) of all of the modules in {\mlton} before having
to look at any implementations (i.e. structures or functors). That is, the
signatures are self-contained.
We deviate from this only in allowing references to top level types (like {\tt
int}), basis library modules, and {\mlton} library modules. So, the following
signature is fine, because structure {\tt Regexp} is part of the {\mlton}
library.
\begin{verbatim}
signature SIG =
sig
val f: Regexp.t -> int
end
\end{verbatim}
We also use signatures to express (some of) the dependencies between modules.
For every module {\tt Foo}, we write two signatures in a file named {\tt
foo.sig}. The signature {\tt FOO} specifies what is implemented by {\tt Foo}.
The signature {\tt FOO\_STRUCTS} specifies the modules that are needed in order
to specify {\tt Foo}, but that are not implemented by {\tt Foo}. As an example,
consider {\mlton}'s closure conversion pass (in {\tt mlton/closure-convert}),
which converts from {\tt Sxml}, {\mlton}'s higher-order simply-typed
intermediate language, to {\tt Cps}, {\mlton}'s first-order simply-typed
intermediate language. The file {\tt closure-convert.sig} contains the
following.
\begin{verbatim}
signature CLOSURE_CONVERT_STRUCTS =
sig
structure Sxml: SXML
structure Cps: CPS
sharing Sxml.Atoms = Cps.Atoms
end
signature CLOSURE_CONVERT =
sig
include CLOSURE_CONVERT_STRUCTS
val closureConvert: Sxml.Program.t -> Cps.Program.t
end
\end{verbatim}
These signatures say that the {\tt ClosureConvert} module implements a function
{\tt closureConvert} that transforms an {\tt Sxml} program into a {\tt Cps}
program. They also say that {\tt ClosureConvert} does not implement {\tt Sxml}
or {\tt Cps}. Rather, it expects some other modules to implement these and for
them to be provided to {\tt ClosureConvert}. The sharing constraint expresses
that the ILs must share some basic atoms, like constants, variables, and
primitives.
Given the two signatures that specify a module, the module definition always has
the same structure. A module {\tt Foo} is implemented in a file named {\tt
foo.fun}, which defines a functor named {\tt Foo} that takes as an argument a
structure matching {\tt FOO\_STRUCTS} and returns as a result a structure
matching {\tt FOO}. For example, {\tt closure-convert.fun} contains the
following.
\begin{verbatim}
functor ClosureConvert (S: CLOSURE_CONVERT_STRUCTS): CLOSURE_CONVERT =
struct
open S
fun closureConvert ...
end
\end{verbatim}
Although the signatures for {\tt ClosureConvert} express the dependence
on the {\tt Sxml} and {\tt Cps} ILs, they do not express the
dependence on other modules that are only used internally to closure
conversion. For example, closure conversion uses an auxiliary module {\tt
AbstractValue} as part of its higher-order control-flow analysis. Because {\tt
AbstractValue} is only used internally to closure conversion, it does not appear
in the signatures that specify closure conversion. So, helper functors (like
{\tt AbstractValue}) are analogous to helper functions in that they are not
visible to clients.
We do not put helper functors lexically in scope because SML only allows top
level functor definitions and, more importantly, because files would become
unmanageably large. Instead, helper functors get their own {\tt .sig} and {\tt
.fun} file, which follow exactly the convention above.
\section{General conventions}
\begin{itemize}
\item A line of code never exceeds 80 columns.
\item Use alphabetical order wherever possible.
\begin{itemize}
\item record field names
\item datatype constructors
\item value specs in signatures
\item file lists in CM files
\item export lists in CM files
\end{itemize}
\end{itemize}
%------------------------------------------------------
% Signature conventions
%------------------------------------------------------
\sec{Signatures}{signature-conventions}
We now enumerate the conventions we follow in writing signatures.
\begin{enumerate}
\item
Signature identifiers are in all capitals, using ``\_'' to
separate words.
\item
A signature typically contains a single type specification that defines a type
constructor {\tt t}, which is the type of interest in the specification. For
oexample, here are signature fragments for integers, lists, and maps.
\begin{verbatim}
signature INTEGER =
sig
type t
val + : t * t -> t
...
end
signature LIST =
sig
type 'a t
val map: 'a t * ('a -> 'b) -> 'b t
...
end
signature MAP
sig
type ('a, 'b) t
val extend: ('a, 'b) t * 'a * 'b -> ('a, 'b) t
...
end
\end{verbatim}
Although at first it might appear confusing to name every type {\tt t}, in fact
there is never ambiguity, because at any point in the program there is at most
one unqualified {\tt t} in scope, and all other types will be named with long
identifiers (like {\tt Int.t} or {\tt Int.t List.t}). For example, the code for
a function {\tt foo} within the {\tt Map} module might look like the following.
\begin{verbatim}
fun foo (l: 'a List.t, n: Int.t): ('a, Int.t) t = ...
\end{verbatim}
In practice, for pervasive types like {\tt int}, {\tt 'a list}, we often use the
standard pervasive name instead of the {\tt t} name.
\item Signatures should not contain free types or structures, other than
pervasives, basis library modules, or {\mlton} library modules. This was
explained in \secref{high-level-structure}.
\item
If additional abstract types (other than pervasive types) are needed to specify
operations, they are included as substructures of the signature, and have a
signature in their own right. For example, the following signature is good.
\begin{verbatim}
signature FOO =
sig
structure Var: VAR
type t
val fromVar: Var.t -> t
val toVar: t -> Var.t
end
\end{verbatim}
\item
Signatures do not use substructures or multiple structures to group different
operations on the same type. This makes you waste energy remembering where the
operations are. For exmample, the following signature is bad.
\begin{verbatim}
signature REAL =
sig
type t
val + : t * t -> t
structure Trig:
sig
val sin: t -> t
val cos: t -> t
end
end
\end{verbatim}
\item
Signatures usually should not contain datatypes. This exposes the
implementation of what should be an abstract type. For example, the following
signature is bad.
\begin{verbatim}
signature COMPLEX =
sig
datatype t = T of real * real
end
\end{verbatim}
A common exception to this rule is abstract syntax trees.
\item
Use structure sharing to express type sharing. For example, in {\tt
closure-convert.sig}, a single structure sharing equation expresses a number of
type sharing equations.
\end{enumerate}
%------------------------------------------------------
% Value specifications
%------------------------------------------------------
\subsec{Value specifications}{val-specs}
Here are the conventions that we use for individual value specifications in
signatures. Of course, many of these conventions directly impact the way in
which we write the core language expressions that implement the specifications.
\begin{enumerate}
\item
In a datatype specification, if there is a single constructor, then that
constructor is called {\tt T}.
\begin{verbatim}
datatype t = T of int
\end{verbatim}
\item
In a datatype specification, if a constructor carries multiple values of the
same type, use a record to name them to avoid confusion.
\begin{verbatim}
datatype t = T of {length: int, start: int}
\end{verbatim}
\item
Identifiers begin with and use small letters, using capital letters to separate
words.
\begin{verbatim}
val helloWorld: unit -> unit
\end{verbatim}
\item
There is no space before the colon, and a single space after it. In the case of
operators (like {\tt +}), there is a space before the colon to avoid lexing the
colon as part of the operator.
\item
Pass multiple arguments as tuple, not curried.
\begin{verbatim}
val eval: Exp.t * Env.t -> Val.t
\end{verbatim}
\item
Currying is only used when there staging of a computation, i.e., if
precomputation is done on one of the arguments.
\begin{verbatim}
val match: Regexp.t -> string -> bool
\end{verbatim}
\item
Functions which take a single element of the abstract type of a signature take
the element as the first argument, and auxiliary arguments after.
\begin{verbatim}
val push: t * int -> unit
val map: 'a t * ('a -> 'b) -> 'b t
\end{verbatim}
\item
$n$-ary operations take the $n$ elements first, and auxilary arguments after.
\begin{verbatim}
val merge: 'a t * 'a t * ('a * 'a -> 'b) -> 'b t
\end{verbatim}
\item
If two arguments to a function are of the same type, and the operation is not
commutative, pass them using a record. This names the arguments and ensures
they are not confused. Exceptions are the standard numerical and algebraic
operators.
\begin{verbatim}
val fromTo: {start: int, step: int, stop: int} -> int list
val substring: t * {length: int, start: int} -> t
val - : t * t -> t
\end{verbatim}
\item
Field names in record types are written in alphabetical order.
\item
Return multiple results as a tuple, or as a record if there is the potential for
confusion.
\begin{verbatim}
val parse: string -> t * string
val quotRem: t * t -> t * t
val partition: 'a t * ('a -> bool) -> {no: 'a t, yes: 'a t}
\end{verbatim}
\item
If a function returns multiple results, at least two of which are of the same
type, and the name of the function does not clearly indicate which result is
which, use a record to name the results.
\begin{verbatim}
val vars: t -> {frees : Vars.t, bound : Vars.t}
val partition: 'a t * ('a -> bool) -> {yes : 'a t, no : 'a t}
\end{verbatim}
\item
Use the same names and argument orders for similar functions in different
signatures. This is especially common in the {\mlton} library.
\begin{verbatim}
val < : t * t -> bool
val equals: t * t -> bool
val forall: 'a t * ('a -> bool) -> bool
\end{verbatim}
\item
Use {\tt is}, {\tt are}, {\tt can}, etc. to name predicates. One exception is
{\tt equals}.
\begin{verbatim}
val isEven: int -> bool
val canRead: t -> bool
\end{verbatim}
\end{enumerate}
%------------------------------------------------------
% Signature example
%------------------------------------------------------
\subsection{Example}
Here is the complete specification of a simple interpreter. This demonstrates
the {\tt t}-convention, the closed-signature convention, and the use of sharing
constraints.
\begin{verbatim}
signature VAR =
sig
type t
end
signature EXP =
sig
structure Var: VAR
datatype t =
Var of Var.t
| Lam of Var.t * t
| App of t * t
end
signature VAL =
sig
structure Var: VAR
type t
val var: Var.t -> t
val lam: Var.t * t -> t
val app: t * t -> t
end
signature INTERP =
sig
structure Exp: EXP
structure Val: VAL
sharing Exp.Var = Val.Var
val eval: Exp.t -> Val.t
end
signature ENV =
sig
structure Var: VAR
type 'a t
val lookup: 'a t * Var.t -> 'a
val extend: 'a t * Var.t * 'a -> 'a t
end
\end{verbatim}
%------------------------------------------------------
% Functors and structures
%------------------------------------------------------
\section{Functors and structures}
We now enumerate the conventions we follow in writing functors and structures.
There is some repetition with \secref{high-level-structure}.
\begin{enumerate}
\item
Functor identifiers begin with capital letters, use mixed case, and use capital
letters to separate words.
\item
Functor definitions look like the following.
\begin{verbatim}
functor Foo (S: FOO_STRUCTS): FOO =
struct
open S
...
end
\end{verbatim}
\item
The name of the functor is the same as the name of the signature describing the
structure it produces.
\item
The functor result is constrained by a signature.
\item
A functor takes as arguments any structures that occur in the signature of the
result that it does not implement.
\item
Structure identifiers begin with capital letters, and use capital letters to
separate words.
\item
The name of the structure is the same as the name of the functor that produces
it.
\item
A structure definition looks like one of the following.
\begin{verbatim}
structure Foo = Foo (S)
structure Foo =
struct
...
end
\end{verbatim}
\item
Avoid the use of {\tt open} except within tightly constrained scopes. The use
of {\tt open} makes it hard to look at code later and understand where things
come from.
\end{enumerate}
%------------------------------------------------------
% Core expressions
%------------------------------------------------------
\section{Core expressions}
We now enumerate the conventions we follow in writing core expressions. We do
not repeat the conventions of \secref{val-spec}, although many of them apply
here.
\begin{enumerate}
\item
Tuples are written with spaces after commas, like {\tt (a, b, c)}.
\item
Records are written with spaces on both sides of equals and with spaces after
commas, like {\tt \{bar = 1, foo = 2\}}.
\item
Record field names are written in alphabetical order, both in expressions and
types.
\item
Function application is written with a space between the function and the
argument. If there is one untupled argument, it looks like {\tt f x}. If there
is a tupleg argument, it looks like {\tt f (x, y, z)}.
\item
When you want to mix declarations with side-effecting statements, use a
declaration like {\tt val \_ = sideEffectingProcedure()}.
\item
In sequence expressions {\tt (e1; e2)} that span multiple lines, place the
semicolon at the beginning of lines.
\begin{verbatim}
(e1
; e2
; e3)
\end{verbatim}
\item
Never write nonexhaustive matches. Always handle the default case and raise an
error message. Your error message will be better than the compiler's. Also, if
you have lots of uncaught cases, then you are probably not using the type system
in a strong enough way - your types are not expressing as much as they could.
\item
Never use the syntax for declaring functions that repeats the function name.
Use {\tt case} or {\tt fn} instead. That is, do not write the following.
\begin{verbatim}
fun f 0 = 1
| f n = n + 1
\end{verbatim}
Instead, write the following.
\begin{verbatim}
val f =
fn 0 => 1
| n => n + 1
\end{verbatim}
Or, write the following.
\begin{verbatim}
fun f n =
case n of
0 => 1
| _ => n + 1
\end{verbatim}
\end{enumerate}
\bibliographystyle{alpha}
\bibliography{bib}
\end{document}
|
[STATEMENT]
lemma diff_diff_add_mset [simp]: "(M::'a multiset) - N - P = M - (N + P)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. M - N - P = M - (N + P)
[PROOF STEP]
by (rule diff_diff_add) |
section\<open>Kauffman Matrix and Kauffman Bracket- Definitions and Properties\<close>
theory Kauffman_Matrix
imports
Matrix_Tensor.Matrix_Tensor
Link_Algebra
"HOL-Computational_Algebra.Polynomial"
"HOL-Computational_Algebra.Fraction_Field"
begin
section\<open>Rational Functions\<close>
text\<open>intpoly is the type of integer polynomials\<close>
type_synonym intpoly = "int poly"
(*The following lemma tells us that (pCons 0 1) is an identity function
on a given type, if it is a commutative ring*)
lemma eval_pCons: "poly (pCons 0 1) x = x"
using poly_1 poly_pCons by auto
lemma pCons2:" (pCons 0 1) \<noteq> (1::int poly)"
using eval_pCons poly_1 zero_neq_one by metis
definition var_def: "x = (pCons 0 1)"
lemma non_zero:"x \<noteq> 0"
using var_def pCons_eq_0_iff zero_neq_one by (metis)
text\<open>rat$\_$poly is the fraction field of integer polynomials. In other
words, it is the type of rational functions\<close>
type_synonym rat_poly = "intpoly fract"
text\<open>A is defined to be x/1, while B is defined to be 1/x\<close>
definition var_def1:"A = Fract x 1"
definition var_def2: "B = Fract 1 x"
lemma assumes "b \<noteq> 0" and "d \<noteq> 0"
shows "Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
using eq_fract assms by auto
lemma A_non_zero:"A \<noteq> (0::rat_poly)"
unfolding var_def1
proof(rule ccontr)
assume 0:" \<not> (Fract x 1 \<noteq> (0::rat_poly)) "
then have "Fract x 1 = (0::rat_poly)"
by auto
moreover have "(0::rat_poly) = Fract (0::intpoly) (1::intpoly)"
by (metis Zero_fract_def)
ultimately have "Fract x (1::intpoly) = Fract (0::intpoly) (1::intpoly)"
by auto
moreover have "(1::intpoly) \<noteq> 0"
by auto
ultimately have "x*(1::intpoly) = (0::intpoly)*(1::intpoly)"
using eq_fract by metis
then have "x = (0::intpoly)"
by auto
then show False using non_zero by auto
qed
lemma mult_inv_non_zero:
assumes "(p::rat_poly) \<noteq> 0"
and "p*q = (1::rat_poly)"
shows "q \<noteq> 0"
using assms by auto
abbreviation rat_poly_times::"rat_poly \<Rightarrow> rat_poly \<Rightarrow> rat_poly"
where
"rat_poly_times p q \<equiv> p*q"
abbreviation rat_poly_plus::"rat_poly \<Rightarrow> rat_poly \<Rightarrow> rat_poly"
where
"rat_poly_plus p q \<equiv> p+q"
abbreviation rat_poly_inv::"rat_poly \<Rightarrow> rat_poly"
where
"rat_poly_inv p \<equiv> (- p)"
interpretation rat_poly:semiring_0 "rat_poly_plus" 0 "rat_poly_times"
by (unfold_locales)
interpretation rat_poly:semiring_1 1 "rat_poly_times" "rat_poly_plus" 0
by (unfold_locales)
lemma mat1_equiv:"mat1 (1::nat) = [[(1::rat_poly)]]"
by (simp add:mat1I_def vec1I_def)
text\<open>rat$\_$poly is an interpretation of the locale plus\_mult\<close>
interpretation rat_poly:plus_mult "1" "rat_poly_times" 0 "rat_poly_plus"
"rat_poly_inv"
apply(unfold_locales)
apply(auto)
proof-
fix p q r
show "rat_poly_times p (rat_poly_plus q r)
= rat_poly_plus (rat_poly_times p q) (rat_poly_times p r)"
by (simp add: distrib_left)
show "rat_poly_times (rat_poly_plus p q) r
= rat_poly_plus (rat_poly_times p r) (rat_poly_times q r)"
by (metis comm_semiring_class.distrib)
qed
(*using matrix_multiplication *)
lemma "rat_poly.matrix_mult [[A,1],[0,A]] [[A,0],[0,A]] = [[A*A,A],[0,A*A]] "
apply(simp add:mat_multI_def)
apply(simp add:matT_vec_multI_def)
apply(auto simp add:replicate_def rat_poly.row_length_def)
apply(auto simp add:scalar_prod)
done
abbreviation
rat_polymat_tensor::"rat_poly mat \<Rightarrow> rat_poly mat \<Rightarrow> rat_poly mat"
(infixl "\<otimes>" 65)
where
"rat_polymat_tensor p q \<equiv> rat_poly.Tensor p q"
lemma assumes "(j::nat) div a = i div a"
and "j mod a = i mod a"
shows "j = i"
proof-
have "a*(j div a) + (j mod a) = j"
using mult_div_mod_eq by simp
moreover have "a*(i div a) + (i mod a) = i"
using mult_div_mod_eq by auto
ultimately show ?thesis using assms by metis
qed
lemma "[[1]] \<otimes> M = M"
by (metis rat_poly.Tensor_left_id)
lemma " M \<otimes> [[1]] = M"
by (metis rat_poly.Tensor_right_id)
section\<open>Kauffman matrices\<close>
text\<open>We assign every brick to a matrix of rational polynmials\<close>
primrec brickmat::"brick \<Rightarrow> rat_poly mat"
where
"brickmat vert = [[1,0],[0,1]]"
|"brickmat cup = [[0],[A],[-B],[0]]"
|"brickmat cap = [[0,-A,B,0]]"
|"brickmat over = [[A,0,0,0],
[0,0,B,0],
[0,B,A-(B*B*B),0],
[0,0,0,A]]"
|"brickmat under = [[B,0,0,0],
[0,B-(A*A*A),A,0],
[0,A,0,0],
[0,0,0,B]]"
lemma inverse1:"rat_poly_times A B = 1"
using non_zero One_fract_def monoid_mult_class.mult.right_neutral
mult_fract mult_fract_cancel var_def1 var_def2
by (metis (hide_lams, no_types))
lemma inverse2:"rat_poly_times B A = 1"
using One_fract_def monoid_mult_class.mult.right_neutral mult_fract
mult_fract_cancel non_zero var_def1 var_def2
by (metis (hide_lams, no_types))
lemma B_non_zero:"B \<noteq> 0"
using A_non_zero mult_inv_non_zero inverse1
divide_fract div_0 fract_collapse(2)
monoid_mult_class.mult.left_neutral
mult_fract_cancel non_zero var_def2 zero_neq_one
by (metis (hide_lams, mono_tags))
lemma "rat_poly_times p (q + r)
= (rat_poly_times p q) + (rat_poly_times p r)"
by (metis rat_poly.plus_left_distributivity)
lemma minus_left_distributivity:
"rat_poly_times p (q - r)
= (rat_poly_times p q) - (rat_poly_times p r)"
using minus_mult_right right_diff_distrib by blast
lemma minus_right_distributivity:
"rat_poly_times (p - q) r = (rat_poly_times p r) - (rat_poly_times q r)"
using minus_left_distributivity rat_poly.comm by metis
lemma equation:
"rat_poly_plus
(rat_poly_times B (B - rat_poly_times (rat_poly_times A A) A))
(rat_poly_times (A - rat_poly_times (rat_poly_times B B) B) A)
= 0"
proof-
have " rat_poly_times (rat_poly_times A A) A
= ((A*A)*A)"
by auto
then have "rat_poly_times B (B - rat_poly_times (rat_poly_times A A) A)
= B*B - B*((A*A)*A)"
using minus_left_distributivity by auto
moreover have "... = B*B - (B*(A*(A*A)))"
by auto
moreover have "... = B*B - ((B*A)*(A*A))"
by auto
moreover have "... = B*B - A*A"
using inverse2 by auto
ultimately have 1:
"rat_poly_times B (B - rat_poly_times (rat_poly_times A A) A)
= B*B - A*A"
by auto
have "rat_poly_times (rat_poly_times B B) B = (B*B)*B"
by auto
then have
"(rat_poly_times (A - rat_poly_times (rat_poly_times B B) B) A)
= (A*A) - ((B*B)*B)*A"
using minus_right_distributivity by auto
moreover have "... = (A*A) - ((B*B)*(B*A))"
by auto
moreover have "... = (A*A) - (B*B)"
using inverse2 by auto
ultimately have 2:
"(rat_poly_times (A - rat_poly_times (rat_poly_times B B) B) A)
= (A*A) - (B*B)"
by auto
have "B*B - A*A + (A*A) - (B*B) = 0"
by auto
with 1 2 show ?thesis by auto
qed
lemma "rat_poly.matrix_mult (brickmat over) (brickmat under)
= [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] "
apply(simp add:mat_multI_def)
apply(simp add:matT_vec_multI_def)
apply(auto simp add:replicate_def rat_poly.row_length_def)
apply(auto simp add:scalar_prod)
apply(auto simp add:inverse1 inverse2)
apply(auto simp add:equation)
done
lemma "rat_poly_inv A = -A"
by auto
lemma vert_dim:"rat_poly.row_length (brickmat vert) = 2 \<and>length (brickmat vert) = 2"
using rat_poly.row_length_def by auto
lemma cup_dim:"rat_poly.row_length (brickmat cup) = 1" and "length (brickmat cup) = 4"
using rat_poly.row_length_def by auto
lemma cap_dim:"rat_poly.row_length (brickmat cap) = 4" and "length (brickmat cap) = 1"
using rat_poly.row_length_def by auto
lemma over_dim:"rat_poly.row_length (brickmat over) = 4" and "length (brickmat over) = 4"
using rat_poly.row_length_def by auto
lemma under_dim:"rat_poly.row_length (brickmat under) = 4" and "length (brickmat under) = 4"
using rat_poly.row_length_def by auto
lemma mat_vert:"mat 2 2 (brickmat vert)"
unfolding mat_def Ball_def vec_def by auto
lemma mat_cup:"mat 1 4 (brickmat cup)"
unfolding mat_def Ball_def vec_def by auto
lemma mat_cap:"mat 4 1 (brickmat cap)"
unfolding mat_def Ball_def vec_def by auto
lemma mat_over:"mat 4 4 (brickmat over)"
unfolding mat_def Ball_def vec_def by auto
lemma mat_under:"mat 4 4 (brickmat under)"
unfolding mat_def Ball_def vec_def by auto
primrec rowlength::"nat \<Rightarrow> nat"
where
"rowlength 0 = 1"
|"rowlength (Suc k) = 2*(Suc k)"
lemma "(rat_poly.row_length (brickmat d)) = (2^(nat (domain d))) "
using vert_dim cup_dim cap_dim over_dim under_dim domain.simps
by (cases d) (auto)
lemma "rat_poly.row_length (brickmat cup) = 1"
unfolding rat_poly.row_length_def by auto
lemma two:"(Suc (Suc 0)) = 2"
by eval
text\<open>we assign every block to a matrix of rational function as follows\<close>
primrec blockmat::"block \<Rightarrow> rat_poly mat"
where
"blockmat [] = [[1]]"
|"blockmat (l#ls) = (brickmat l) \<otimes> (blockmat ls)"
lemma "blockmat [a] = brickmat a"
unfolding blockmat.simps rat_poly.Tensor_right_id by auto
lemma nat_sum:
assumes "a \<ge> 0" and "b \<ge> 0"
shows "nat (a+b) = (nat a) + (nat b)"
using assms by auto
lemma "rat_poly.row_length (blockmat ls) = (2^ (nat ((domain_block ls))))"
proof(induct ls)
case Nil
show ?case unfolding blockmat.simps(1) rat_poly.row_length_def by auto
next
case (Cons l ls)
show ?case
proof(cases l)
case vert
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 2*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons vert by auto
moreover have "... = 2^(1 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps vert by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
using Suc_eq_plus1_left Suc_nat_eq_nat_zadd1
calculation(4) domain.simps(1) domain_block_non_negative
vert
by (metis)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
next
case over
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
also have "... = 4*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons over by auto
also have "... = 2^(2 + nat (domain_block ls))"
using domain_block.simps by auto
also have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps over by auto
also have "... = 2^(nat (domain l + domain_block ls))"
by (simp add: nat_add_distrib domain_block_nonnegative over)
also have "... = 2^(nat (domain_block (l#ls)))"
by simp
finally show ?thesis .
next
case under
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
also have "... = 4*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons under by auto
also have "... = 2^(2 + nat (domain_block ls))"
using domain_block.simps by auto
also have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps under by auto
also have "... = 2^(nat (domain l + domain_block ls))"
by (simp add: nat_add_distrib domain_block_nonnegative under)
also have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
finally show ?thesis .
next
case cup
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 1*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons cup by auto
moreover have "... = 2^(0 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps cup by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
using nat_sum cup domain.simps(2) nat_0 plus_int_code(2)
plus_nat.add_0
by (metis)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
next
case cap
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 4*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons cap by auto
moreover have "... = 2^(2 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps cap by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
by (simp add: cap domain_block_nonnegative nat_add_distrib)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
qed
qed
lemma row_length_domain_block:
"rat_poly.row_length (blockmat ls) = (2^ (nat ((domain_block ls))))"
proof(induct ls)
case Nil
show ?case unfolding blockmat.simps(1) rat_poly.row_length_def by auto
next
case (Cons l ls)
show ?case
proof(cases l)
case vert
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 2*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons vert by auto
moreover have "... = 2^(1 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps vert by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
using Suc_eq_plus1_left Suc_nat_eq_nat_zadd1 calculation(4) domain.simps(1)
domain_block_non_negative vert
by metis
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
next
case over
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 4*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons over by auto
moreover have "... = 2^(2 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps over by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
by (simp add: over domain_block_nonnegative nat_add_distrib)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
next
case under
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 4*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons under by auto
moreover have "... = 2^(2 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps under by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
by (simp add: under domain_block_nonnegative nat_add_distrib)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
next
case cup
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 1*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons cup by auto
moreover have "... = 2^(0 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps cup by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
using nat_sum cup domain.simps(2)
nat_0 plus_int_code(2) plus_nat.add_0 by (metis)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
next
case cap
have "rat_poly.row_length (blockmat ls) = 2 ^ nat (domain_block ls)"
using Cons by auto
then have "rat_poly.row_length (blockmat (l#ls))
= (rat_poly.row_length (brickmat l))
*(rat_poly.row_length (blockmat ls))"
using blockmat.simps rat_poly.row_length_mat by auto
moreover have "... = 4*(2 ^ nat (domain_block ls))"
using rat_poly.row_length_def Cons cap by auto
moreover have "... = 2^(2 + nat (domain_block ls))"
using domain_block.simps by auto
moreover have "... = 2^(nat (domain l) + nat (domain_block ls))"
using domain.simps cap by auto
moreover have "... = 2^(nat (domain l + domain_block ls))"
by (simp add: cap domain_block_nonnegative nat_add_distrib)
moreover have "... = 2^(nat (domain_block (l#ls)))"
using domain_block.simps by auto
ultimately show ?thesis by metis
qed
qed
lemma length_codomain_block:"length (blockmat ls)
= (2^ (nat ((codomain_block ls))))"
proof(induct ls)
case Nil
show ?case unfolding blockmat.simps(1) rat_poly.row_length_def by auto
next
case (Cons l ls)
show ?case
proof(cases l)
case vert
have "length (blockmat ls) = 2 ^ nat (codomain_block ls)"
using Cons by auto
then have "length (blockmat (l#ls))
= (length (brickmat l))*(length (blockmat ls))"
using blockmat.simps rat_poly.length_Tensor by auto
moreover have "... = 2*(2 ^ nat (codomain_block ls))"
using Cons vert by auto
moreover have "... = 2^(1 + nat (codomain_block ls))"
by auto
moreover have "... = 2^(nat (codomain l) + nat (codomain_block ls))"
using codomain.simps vert by auto
moreover have "... = 2^(nat (codomain l + codomain_block ls))"
using nat_sum Suc_eq_plus1_left Suc_nat_eq_nat_zadd1
codomain.simps(1) codomain_block_nonnegative nat_numeral
numeral_One vert by (metis)
moreover have "... = 2^(nat (codomain_block (l#ls)))"
by auto
ultimately show ?thesis by metis
next
case over
have "length (blockmat ls) = 2 ^ nat (codomain_block ls)"
using Cons by auto
then have "length (blockmat (l#ls))
= (length (brickmat l))*(length (blockmat ls))"
using blockmat.simps rat_poly.length_Tensor by auto
moreover have "... = 4*(2 ^ nat (codomain_block ls))"
using Cons over by auto
moreover have "... = 2^(2 + nat (codomain_block ls))"
by auto
moreover have "... = 2^(nat (codomain l) + nat (codomain_block ls))"
using codomain.simps over by auto
moreover have "... = 2^(nat (codomain l + codomain_block ls))"
using nat_sum over codomain.simps codomain_block_nonnegative
by auto
moreover have "... = 2^(nat (codomain_block (l#ls)))"
by auto
ultimately show ?thesis by metis
next
case under
have "length (blockmat ls) = 2 ^ nat (codomain_block ls)"
using Cons by auto
then have "length (blockmat (l#ls))
= (length (brickmat l))*(length (blockmat ls))"
using blockmat.simps rat_poly.length_Tensor by auto
moreover have "... = 4*(2 ^ nat (codomain_block ls))"
using Cons under by auto
moreover have "... = 2^(2 + nat (codomain_block ls))"
by auto
moreover have "... = 2^(nat (codomain l) + nat (codomain_block ls))"
using codomain.simps under by auto
moreover have "... = 2^(nat (codomain l + codomain_block ls))"
using nat_sum under codomain.simps codomain_block_nonnegative
by auto
moreover have "... = 2^(nat (codomain_block (l#ls)))"
by auto
ultimately show ?thesis by metis
next
case cup
have "length (blockmat ls) = 2 ^ nat (codomain_block ls)"
using Cons by auto
then have "length (blockmat (l#ls))
= (length (brickmat l))*(length (blockmat ls))"
using blockmat.simps rat_poly.length_Tensor by auto
moreover have "... = 4*(2 ^ nat (codomain_block ls))"
using Cons cup by auto
moreover have "... = 2^(2 + nat (codomain_block ls))"
by auto
moreover have "... = 2^(nat (codomain l) + nat (codomain_block ls))"
using codomain.simps cup by auto
moreover have "... = 2^(nat (codomain l + codomain_block ls))"
using nat_sum cup codomain.simps
codomain_block_nonnegative
by auto
moreover have "... = 2^(nat (codomain_block (l#ls)))"
by auto
ultimately show ?thesis by metis
next
case cap
have "length (blockmat ls) = 2 ^ nat (codomain_block ls)"
using Cons by auto
then have "length (blockmat (l#ls))
= (length (brickmat l))*(length (blockmat ls))"
using blockmat.simps rat_poly.length_Tensor by auto
moreover have "... = 1*(2 ^ nat (codomain_block ls))"
using Cons cap by auto
moreover have "... = 2^(0 + nat (codomain_block ls))"
by auto
moreover have "... = 2^(nat (codomain l) + nat (codomain_block ls))"
using codomain.simps cap by auto
moreover have "... = 2^(nat (codomain l + codomain_block ls))"
using nat_sum cap codomain.simps codomain_block_nonnegative
by auto
moreover have "... = 2^(nat (codomain_block (l#ls)))"
by auto
ultimately show ?thesis by metis
qed
qed
lemma matrix_blockmat:
"mat
(rat_poly.row_length (blockmat ls))
(length (blockmat ls))
(blockmat ls)"
proof(induct ls)
case Nil
show ?case
using Nil
unfolding blockmat.simps(1) rat_poly.row_length_def mat_def
vec_def Ball_def by auto
next
case (Cons a ls)
have Cons_1:"mat
(rat_poly.row_length (blockmat ls))
(length (blockmat ls))
(blockmat ls)"
using Cons by auto
have Cons_2:"(blockmat (a#ls)) = (brickmat a)\<otimes>(blockmat ls)"
using blockmat.simps by auto
moreover have "rat_poly.row_length (blockmat (a#ls))
= (rat_poly.row_length (brickmat a))
*(rat_poly.row_length (blockmat ls))"
using calculation rat_poly.row_length_mat by (metis)
moreover have "length (blockmat (a#ls))
= (length (brickmat a))
*(length (blockmat ls))"
using blockmat.simps(2) rat_poly.length_Tensor by (metis)
ultimately have Cons_3:"mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a)
\<Longrightarrow> ?case"
using rat_poly.well_defined_Tensor Cons by auto
then show ?case
proof(cases a)
case vert
have "mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a)"
using vert_dim mat_vert rat_poly.matrix_row_length vert
by metis
thus ?thesis using Cons_3 by auto
next
case over
have "mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a)"
using mat_over rat_poly.matrix_row_length over
by metis
thus ?thesis using Cons_3 by auto
next
case under
have "mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a)"
using mat_under rat_poly.matrix_row_length under by metis
thus ?thesis using Cons_3 by auto
next
case cap
have "mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a)"
using mat_cap rat_poly.matrix_row_length cap by metis
thus ?thesis using Cons_3 by auto
next
case cup
have "mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a)"
using mat_cup rat_poly.matrix_row_length cup by metis
thus ?thesis using Cons_3 by auto
qed
qed
text\<open>The function kauff$\_$mat below associates every wall to a matrix.
We call this the kauffman matrix. When the wall represents a well defined
tangle diagram, the Kauffman matrix is a 1 $\times$ 1 matrix whose entry is the
Kauffman bracket.\<close>
primrec kauff_mat::"wall \<Rightarrow> rat_poly mat"
where
"kauff_mat (basic w) = (blockmat w)"
|"kauff_mat (w*ws) = rat_poly.matrix_mult (blockmat w) (kauff_mat ws)"
text\<open>The following theorem tells us that if a wall
represents a tangle diagram, then its Kauffman matrix is a `valid' matrix.\<close>
theorem matrix_kauff_mat:
"((is_tangle_diagram ws)
\<Longrightarrow> (rat_poly.row_length (kauff_mat ws)) = 2^(nat (domain_wall ws))
\<and> (length (kauff_mat ws)) = 2^(nat (codomain_wall ws))
\<and> (mat
(rat_poly.row_length (kauff_mat ws))
(length (kauff_mat ws))
(kauff_mat ws)))"
proof(induct ws)
case (basic w)
show ?case
using kauff_mat.simps(1) domain_wall.simps(1)
row_length_domain_block matrix_blockmat
length_codomain_block basic by auto
next
case (prod w ws)
have "is_tangle_diagram (w*ws)"
using prod by auto
moreover have prod_1:"is_tangle_diagram ws"
using is_tangle_diagram.simps prod.prems by metis
ultimately have prod_2:"(codomain_block w) = domain_wall ws"
using is_tangle_diagram.simps by auto
from prod_1 have prod_3:
"mat
(rat_poly.row_length (kauff_mat ws))
(length (kauff_mat ws))
(kauff_mat ws)"
using prod.hyps by auto
moreover have "(rat_poly.row_length (kauff_mat ws))
= 2^(nat (domain_wall ws))"
using prod.hyps prod_1 by auto
moreover have prod_4:"length (kauff_mat ws)
= 2^(nat (codomain_wall ws))"
using prod.hyps prod_1 by auto
moreover have prod_5:
"mat
(rat_poly.row_length (blockmat w))
(length (blockmat w))
(blockmat w)"
using matrix_blockmat by auto
moreover have prod_6:
"rat_poly.row_length (blockmat w)
= 2^(nat (domain_block w))"
and "length (blockmat w) = 2^(nat (codomain_block w))"
using row_length_domain_block length_codomain_block
by auto
ultimately have ad1:"length (blockmat w)
= rat_poly.row_length (kauff_mat ws)"
using prod_2 by auto
then have "mat
(rat_poly.row_length (blockmat w))
(length (kauff_mat ws))
(rat_poly.matrix_mult (blockmat w) (kauff_mat ws))"
using prod_3 prod_5 mat_mult by auto
then have res1:"mat
(rat_poly.row_length (blockmat w))
(length (kauff_mat ws))
(kauff_mat (w*ws))"
using kauff_mat.simps(2) by auto
then have "rat_poly.row_length (kauff_mat (w*ws))
= (rat_poly.row_length (blockmat w))"
using ad1 length_0_conv rat_poly.mat_empty_column_length
rat_poly.matrix_row_length rat_poly.row_length_def
rat_poly.unique_row_col(1) by (metis)
moreover have "... = 2^(nat (domain_wall (w*ws)))"
using prod_6 domain_wall.simps by auto
ultimately have res2:
"rat_poly.row_length (kauff_mat (w*ws))
= 2^(nat (domain_wall (w*ws)))"
by auto
have "length (kauff_mat (w*ws)) = length (kauff_mat ws)"
using res1 rat_poly.mat_empty_column_length
rat_poly.matrix_row_length rat_poly.unique_row_col(2)
by metis
moreover have "... = 2^(nat (codomain_wall (w*ws)))"
using prod_4 codomain_wall.simps(2) by auto
ultimately have res3:"length (kauff_mat (w*ws))
= 2^(nat (codomain_wall (w*ws)))"
by auto
with res1 res2 show ?case
using \<open>length (kauff_mat ws) = 2 ^ nat (codomain_wall (w * ws))\<close>
\<open>rat_poly.row_length (blockmat w) = 2 ^ nat (domain_wall (w * ws))\<close>
by (metis)
qed
theorem effective_matrix_kauff_mat:
assumes "is_tangle_diagram ws"
shows "(rat_poly.row_length (kauff_mat ws)) = 2^(nat (domain_wall ws))"
and "length (kauff_mat ws) = 2^(nat (codomain_wall ws))"
and "mat (rat_poly.row_length (kauff_mat ws)) (length (kauff_mat ws))
(kauff_mat ws) "
apply (auto simp add:matrix_kauff_mat assms )
using assms matrix_kauff_mat by metis
lemma mat_mult_equiv:
"rat_poly.matrix_mult m1 m2 = mat_mult (rat_poly.row_length m1) m1 m2"
by auto
theorem associative_rat_poly_mat:
assumes "mat (rat_poly.row_length m1) (rat_poly.row_length m2) m1"
and "mat (rat_poly.row_length m2) (rat_poly.row_length m3) m2"
and "mat (rat_poly.row_length m3) nc m3"
shows "rat_poly.matrix_mult m1 (rat_poly.matrix_mult m2 m3)
= rat_poly.matrix_mult (rat_poly.matrix_mult m1 m2) m3"
proof-
have "(rat_poly.matrix_mult m2 m3)
= mat_mult (rat_poly.row_length m2) m2 m3"
using mat_mult_equiv by auto
then have "rat_poly.matrix_mult m1 (rat_poly.matrix_mult m2 m3)
= mat_mult (rat_poly.row_length m1) m1
(mat_mult (rat_poly.row_length m2) m2 m3)"
using mat_mult_equiv by auto
moreover have "... = mat_mult (rat_poly.row_length m1)
(mat_mult (rat_poly.row_length m1) m1 m2) m3"
using assms mat_mult_assoc by metis
moreover have "... = rat_poly.matrix_mult (rat_poly.matrix_mult m1 m2) m3"
proof-
have "mat
(rat_poly.row_length m1)
(rat_poly.row_length m3)
(rat_poly.matrix_mult m1 m2)"
using assms(1) assms(2) mat_mult by (metis)
then have "rat_poly.row_length (rat_poly.matrix_mult m1 m2) =
(rat_poly.row_length m1)"
using assms(1) assms(2) length_0_conv rat_poly.mat_empty_column_length
rat_poly.matrix_row_length rat_poly.row_length_Nil
rat_poly.unique_row_col(1) rat_poly.unique_row_col(2)
by (metis)
moreover have "rat_poly.matrix_mult (rat_poly.matrix_mult m1 m2) m3
= mat_mult (rat_poly.row_length
(rat_poly.matrix_mult m1 m2))
(rat_poly.matrix_mult m1 m2) m3"
using mat_mult_equiv by auto
then show ?thesis using mat_mult_equiv by (metis calculation)
qed
ultimately show ?thesis by auto
qed
text\<open>It follows from this result that the Kauffman Matrix of a wall representing a link
diagram, is a 1 $\times$ 1 matrix.
Thus it establishes a correspondence between links and
rational functions.\<close>
theorem link_diagram_matrix:
assumes "is_link_diagram ws"
shows "mat 1 1 (kauff_mat ws) "
using assms effective_matrix_kauff_mat unfolding is_link_diagram_def
by (metis Preliminaries.abs_zero abs_non_negative_sum(1) comm_monoid_add_class.add_0 nat_0 power_0)
theorem tangle_compose_matrix:
"((is_tangle_diagram ws1) \<and> (is_tangle_diagram ws2)
\<and>(domain_wall ws2 = codomain_wall ws1)) \<Longrightarrow>
kauff_mat (ws1 \<circ> ws2) = rat_poly.matrix_mult (kauff_mat ws1) (kauff_mat ws2)"
proof(induct ws1)
case (basic w1)
have "(basic w1) \<circ> (ws2) = (w1)*(ws2)"
using compose.simps by auto
moreover have "kauff_mat ((basic w1) \<circ> ws2) =rat_poly.matrix_mult (blockmat w1) (kauff_mat ws2)"
using kauff_mat.simps(2) by auto
then show ?case using kauff_mat.simps(1) by auto
next
case (prod w1 ws1)
have 1:"is_tangle_diagram (w1*ws1)"
using prod.prems by (rule conjE)
then have 2:"(is_tangle_diagram ws1)
\<and> (codomain_block w1 = domain_wall ws1)"
using is_tangle_diagram.simps(2) by metis
then have
"mat (2^(nat (domain_wall ws1))) (2^(nat (codomain_wall ws1))) (kauff_mat ws1)"
and "mat (2^(nat (domain_block w1))) (2^(nat (codomain_block w1))) (blockmat w1)"
using effective_matrix_kauff_mat matrix_blockmat length_codomain_block
row_length_domain_block
by (auto) (metis)
with 2 have 3:"mat
(rat_poly.row_length (blockmat w1))
(2^(nat (domain_wall ws1)))
(blockmat w1)"
and "mat
(2^(nat (domain_wall ws1)))
(2^(nat (domain_wall ws2)))
(kauff_mat ws1)"
and "(2^(nat (domain_wall ws1)))
= (rat_poly.row_length (kauff_mat ws1))"
using effective_matrix_kauff_mat prod.prems matrix_blockmat
row_length_domain_block by auto
then have "mat
(rat_poly.row_length (blockmat w1))
(rat_poly.row_length (kauff_mat ws1))
(blockmat w1)"
and "mat
(rat_poly.row_length (kauff_mat ws1))
(2^(nat (domain_wall ws2)))
(kauff_mat ws1)"
by auto
moreover have "mat
(2^(nat (domain_wall ws2)))
(2^(nat (codomain_wall ws2)))
(kauff_mat ws2)"
and "(2^(nat (domain_wall ws2)))
= rat_poly.row_length (kauff_mat ws2)"
using prod.prems effective_matrix_kauff_mat
effective_matrix_kauff_mat
by (auto) (metis prod.prems)
ultimately have "mat
(rat_poly.row_length (blockmat w1))
(rat_poly.row_length (kauff_mat ws1))
(blockmat w1)"
and "mat
(rat_poly.row_length (kauff_mat ws1))
(rat_poly.row_length (kauff_mat ws2))
(kauff_mat ws1)"
and "mat
(rat_poly.row_length (kauff_mat ws2))
(2^(nat (codomain_wall ws2)))
(kauff_mat ws2)"
by auto
with 3 have "rat_poly.matrix_mult
(blockmat w1)
(rat_poly.matrix_mult (kauff_mat ws1)
(kauff_mat ws2))
= rat_poly.matrix_mult
(rat_poly.matrix_mult
(blockmat w1)
(kauff_mat ws1))
(kauff_mat ws2)"
using associative_rat_poly_mat by auto
then show ?case
using "2" codomain_wall.simps(2) compose_Cons
prod.hyps prod.prems kauff_mat.simps(2) by (metis)
qed
theorem left_mat_compose:
assumes "is_tangle_diagram ws"
and "codomain_wall ws = 0"
shows "kauff_mat ws = (kauff_mat (ws \<circ> (basic [])))"
proof-
have "mat (rat_poly.row_length (kauff_mat ws)) 1 (kauff_mat ws)"
using effective_matrix_kauff_mat assms nat_0 power_0 by metis
moreover have "(kauff_mat (basic [])) = mat1 1"
using kauff_mat.simps(1) blockmat.simps(1) mat1_equiv by auto
moreover then have 1:"(kauff_mat (ws \<circ> (basic [])))
= rat_poly.matrix_mult
(kauff_mat ws)
(kauff_mat (basic []))"
using tangle_compose_matrix assms is_tangle_diagram.simps by auto
ultimately have "rat_poly.matrix_mult (kauff_mat ws) (kauff_mat (basic []))
= (kauff_mat ws)"
using mat_mult_equiv mat1_mult_right by auto
then show ?thesis using 1 by auto
qed
theorem right_mat_compose:
assumes "is_tangle_diagram ws" and "domain_wall ws = 0"
shows "kauff_mat ws = (kauff_mat ((basic []) \<circ>ws))"
proof-
have "mat 1 (length (kauff_mat ws)) (kauff_mat ws)"
using effective_matrix_kauff_mat assms nat_0 power_0 by metis
moreover have "(kauff_mat (basic [])) = mat1 1"
using kauff_mat.simps(1) blockmat.simps(1) mat1_equiv by auto
moreover then have 1:"(kauff_mat ((basic []) \<circ>ws))
= rat_poly.matrix_mult
(kauff_mat (basic []))
(kauff_mat ws) "
using tangle_compose_matrix assms is_tangle_diagram.simps by auto
ultimately have "rat_poly.matrix_mult (kauff_mat (basic [])) (kauff_mat ws)
= (kauff_mat ws)"
using effective_matrix_kauff_mat(3) is_tangle_diagram.simps(1)
mat1 mat1_mult_left one_neq_zero rat_poly.mat_empty_column_length
rat_poly.unique_row_col(1)
by metis
then show ?thesis using 1 by auto
qed
lemma left_id_blockmat:"blockmat [] \<otimes> blockmat b = blockmat b"
unfolding blockmat.simps(1) rat_poly.Tensor_left_id by auto
lemma tens_assoc:
"\<forall>a xs ys.(brickmat a \<otimes> (blockmat xs \<otimes> blockmat ys)
= (brickmat a \<otimes> blockmat xs) \<otimes> blockmat ys)"
proof-
have "\<forall>a.(mat
(rat_poly.row_length (brickmat a))
(length (brickmat a))
(brickmat a))"
using brickmat.simps
unfolding mat_def rat_poly.row_length_def Ball_def vec_def
apply(auto)
by (case_tac a) (auto)
moreover have "\<forall>xs. (mat
(rat_poly.row_length (blockmat xs))
(length (blockmat xs))
(blockmat xs))"
using matrix_blockmat by auto
moreover have "\<forall>ys. mat
(rat_poly.row_length (blockmat ys))
(length (blockmat ys))
(blockmat ys)"
using matrix_blockmat by auto
ultimately show ?thesis using rat_poly.associativity by auto
qed
lemma kauff_mat_tensor_distrib:
"\<forall>xs.\<forall>ys.(kauff_mat (basic xs \<otimes> basic ys)
= kauff_mat (basic xs) \<otimes> kauff_mat (basic ys))"
apply(rule allI)
apply (rule allI)
apply (induct_tac xs)
apply(auto)
apply (metis rat_poly.vec_mat_Tensor_vector_id)
apply (simp add:tens_assoc)
done
lemma blockmat_tensor_distrib:
"(blockmat (a \<otimes> b)) = (blockmat a) \<otimes> (blockmat b)"
proof-
have "blockmat (a \<otimes> b) = kauff_mat (basic (a \<otimes> b))"
using kauff_mat.simps(1) by auto
moreover have "... = kauff_mat (basic a) \<otimes> kauff_mat (basic b)"
using kauff_mat_tensor_distrib by auto
moreover have "... = (blockmat a) \<otimes> (blockmat b)"
using kauff_mat.simps(1) by auto
ultimately show ?thesis by auto
qed
lemma blockmat_non_empty:"\<forall>bs.(blockmat bs \<noteq> [])"
apply(rule allI)
apply(induct_tac bs)
apply(auto)
apply(case_tac a)
apply(auto)
apply (metis length_0_conv rat_poly.vec_mat_Tensor_length)
apply (metis length_0_conv rat_poly.vec_mat_Tensor_length)
apply (metis length_0_conv rat_poly.vec_mat_Tensor_length)
apply (metis length_0_conv rat_poly.vec_mat_Tensor_length)
apply (metis length_0_conv rat_poly.vec_mat_Tensor_length)
done
text\<open>The kauffman matrix of a wall representing a tangle diagram is
non empty\<close>
lemma kauff_mat_non_empty:
fixes ws
assumes "is_tangle_diagram ws"
shows "kauff_mat ws \<noteq> []"
proof-
have "(length (kauff_mat ws) = 2^(nat (codomain_wall ws)))"
using effective_matrix_kauff_mat assms by auto
then have "(length (kauff_mat ws)) \<ge> 1"
by auto
then show ?thesis by auto
qed
lemma is_tangle_diagram_length_rowlength:
assumes "is_tangle_diagram (w*ws)"
shows "length (blockmat w) = rat_poly.row_length (kauff_mat ws)"
proof-
have "(codomain_block w = domain_wall ws)"
using assms is_tangle_diagram.simps by metis
moreover have "rat_poly.row_length (kauff_mat ws)
= 2^(nat (domain_wall ws))"
using effective_matrix_kauff_mat by (metis assms is_tangle_diagram.simps(2))
moreover have "length (blockmat w)
= 2^(nat (codomain_block w))"
using matrix_blockmat length_codomain_block by auto
ultimately show ?thesis by auto
qed
lemma is_tangle_diagram_matrix_match:
assumes "is_tangle_diagram (w1*ws1)"
and "is_tangle_diagram (w2*ws2)"
shows "rat_poly.matrix_match (blockmat w1)
(kauff_mat ws1) (blockmat w2) (kauff_mat ws2)"
unfolding rat_poly.matrix_match_def
apply(auto)
proof-
show "mat (rat_poly.row_length (blockmat w1)) (length (blockmat w1)) (blockmat w1)"
using matrix_blockmat by auto
next
have "is_tangle_diagram ws1"
using assms(1) is_tangle_diagram.simps(2) by metis
then show "mat (rat_poly.row_length (kauff_mat ws1)) (length (kauff_mat ws1)) (kauff_mat ws1)"
using matrix_kauff_mat by metis
next
show "mat (rat_poly.row_length (blockmat w2)) (length (blockmat w2)) (blockmat w2)"
using matrix_blockmat by auto
next
have "is_tangle_diagram ws2"
using assms(2) is_tangle_diagram.simps(2) by metis
then show "mat (rat_poly.row_length (kauff_mat ws2)) (length (kauff_mat ws2)) (kauff_mat ws2)"
using matrix_kauff_mat by metis
next
show "length (blockmat w1) = rat_poly.row_length (kauff_mat ws1)"
using is_tangle_diagram_length_rowlength assms(1) by auto
next
show "length (blockmat w2) = rat_poly.row_length (kauff_mat ws2)"
using is_tangle_diagram_length_rowlength assms(2) by auto
next
assume 0:"blockmat w1 = [] "
show False using 0
by (metis blockmat_non_empty)
next
assume 1:"kauff_mat ws1 = [] "
have "is_tangle_diagram ws1"
using assms(1) is_tangle_diagram.simps(2) by metis
then show False using 1 kauff_mat_non_empty by auto
next
assume 0:"blockmat w2 = [] "
show False using 0
by (metis blockmat_non_empty)
next
assume 1:"kauff_mat ws2 = [] "
have "is_tangle_diagram ws2"
using assms(2) is_tangle_diagram.simps(2) by metis
then show False using 1 kauff_mat_non_empty by auto
qed
text\<open>The following function constructs a $2^n \times 2^n$ identity matrix
for a given $n$\<close>
primrec make_vert_equiv::"nat \<Rightarrow> rat_poly mat"
where
"make_vert_equiv 0 = [[1]]"
|"make_vert_equiv (Suc k) = ((mat1 2)\<otimes>(make_vert_equiv k))"
lemma mve1:"make_vert_equiv 1 = (mat1 2)"
using make_vert_equiv.simps brickmat.simps(1)
One_nat_def rat_poly.Tensor_right_id
by (metis)
lemma
assumes "i<2" and "j<2"
shows "(make_vert_equiv 1)!i!j = (if i = j then 1 else 0)"
apply(simp add:mve1)
apply(simp add:rat_poly.Tensor_right_id)
using make_vert_equiv.simps mat1_index assms by (metis)
lemma mat1_vert_equiv:"(mat1 2) = (brickmat vert)" (is "?l = ?r")
proof-
have "?r = [[1,0],[0,1]]"
using brickmat.simps by auto
then have "rat_poly.row_length ?r = 2" and "length ?r = 2"
using rat_poly.row_length_def by auto
moreover then have 1:"mat 2 2 ?r"
using mat_vert by metis
ultimately have 2:"(\<forall> i < 2. \<forall> j < 2.
((?r) ! i ! j = (if i = j then 1 else 0)))"
proof-
have 1:"(?r ! 0! 0) = 1"
by auto
moreover have 2:"(?r ! 0! 1) = 0"
by auto
moreover have 3:"(?r ! 1! 0) = 0"
by auto
moreover have 5:"(?r ! 1! 1) = 1"
by auto
ultimately show ?thesis
by (auto dest!: less_2_cases)
qed
have 3:"mat 2 2 (mat1 2)"
by (metis mat1)
have 4:"(\<forall> i < 2. \<forall> j < 2. ((?l) ! i ! j = (if i = j then 1 else 0)))"
by (metis mat1_index)
then have "(\<forall> i < 2. \<forall> j < 2. ((?l) ! i ! j = (?r !i !j)))"
using 2 by auto
with 1 3 have "?l = ?r"
by (metis mat_eqI)
then show ?thesis by auto
qed
lemma blockmat_make_vert:
"blockmat (make_vert_block n) = (make_vert_equiv n)"
apply(induction n)
apply(simp)
unfolding make_vert_block.simps blockmat.simps make_vert_equiv.simps
using mat1_vert_equiv by auto
lemma prop_make_vert_equiv:
shows "rat_poly.row_length (make_vert_equiv n) = 2^n"
and "length (make_vert_equiv n) = 2^n"
and "mat
(rat_poly.row_length (make_vert_equiv n))
(length (make_vert_equiv n))
(make_vert_equiv n)"
proof-
have 1:"make_vert_equiv n = (blockmat (make_vert_block n))"
using blockmat_make_vert by auto
moreover have 2:"domain_block (make_vert_block n) = int n"
using domain_make_vert by auto
moreover have 3:"codomain_block (make_vert_block n) = int n"
using codomain_make_vert by auto
ultimately show "rat_poly.row_length (make_vert_equiv n) = 2^n"
and "length (make_vert_equiv n) = 2^n"
and "mat
(rat_poly.row_length (make_vert_equiv n))
(length (make_vert_equiv n))
(make_vert_equiv n)"
apply (metis nat_int row_length_domain_block)
using 1 2 3 apply (metis length_codomain_block nat_int)
using 1 2 3 by (metis matrix_blockmat)
qed
abbreviation nat_mult::"nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "*n" 65)
where
"nat_mult a b \<equiv> ((a::nat)*b)"
lemma equal_div_mod:assumes "((j::nat) div a) = (i div a)"
and "(j mod a) = (i mod a)"
shows "j = i"
proof-
have "j = a*(j div a) + (j mod a)"
by auto
then have "j = a*(i div a) + (i mod a)"
using assms by auto
then show ?thesis by auto
qed
lemma equal_div_mod2:"(((j::nat) div a) = (i div a)
\<and> ((j mod a) = (i mod a))) = (j = i)"
using equal_div_mod by metis
lemma impl_rule:
assumes "(\<forall>i < m.\<forall>j < n. (P i) \<and> (Q j))"
and "\<forall> i j.(P i) \<and> (Q j) \<longrightarrow> R i j"
shows "(\<forall>i < m.\<forall>j < n. R i j)"
using assms by metis
lemma implic:
assumes "\<forall>i j.((P i j) \<longrightarrow> (Q i j))"
and "\<forall>i j.((Q i j) \<longrightarrow> (R i j))"
shows "\<forall>i j.((P i j) \<longrightarrow> (R i j))"
using assms by auto
lemma assumes "a < (b*c)"
shows "((a::nat) div b) < c"
using assms by (metis rat_poly.div_right_ineq)
lemma mult_if_then:"((v = (if P then 1 else 0))
\<and> (w = (if Q then 1 else 0)))
\<Longrightarrow> (rat_poly_times v w = (if (P\<and>Q) then 1 else 0))"
by auto
lemma rat_poly_unity:"rat_poly_times 1 1 = 1"
by auto
lemma "((P \<and> Q) \<longrightarrow> R) \<Longrightarrow> (P \<longrightarrow> Q \<longrightarrow> R)"
by auto
lemma "length (mat1 2) = 2"
apply(simp add:mat1I_def)
done
theorem make_vert_equiv_mat:
"make_vert_equiv n = (mat1 (2^n))"
proof(induction n)
case 0
show ?case using 0 mat1_equiv by auto
next
case (Suc k)
have 1:"make_vert_equiv k = mat1 (2 ^ k)"
using Suc by auto
moreover then have "make_vert_equiv (k+1) = (mat1 2)\<otimes>(mat1 (2^k))"
using make_vert_equiv.simps(2) by auto
then have "(mat1 2) \<otimes> (mat1 (2^k)) = mat1 (2^(k+1))"
proof-
have 1:"mat (2^(k+1)) (2^(k+1)) (mat1 (2^(k+1)))"
using mat1 by auto
have 2:"(\<forall> i < 2^(k+1). \<forall> j <2^(k+1).
(mat1 (2^(k+1)) ! i ! j = (if i = j then 1 else 0)))"
by (metis mat1_index)
have 3:"rat_poly.row_length (mat1 2) = 2"
by (metis mat1_vert_equiv vert_dim)
have 4:"length (mat1 2) = 2"
by (simp add:mat1I_def)
then have 5:"mat
(rat_poly.row_length (mat1 2))
(length (mat1 2))
(mat1 2)"
by (metis "4" mat1 mat1_vert_equiv vert_dim)
moreover have 6:"rat_poly.row_length (mat1 (2^k)) = 2^k"
and 7:"length ((mat1 (2^k))) = 2^k"
using Suc
by (metis prop_make_vert_equiv(1)) (simp add:mat1I_def)
then have 8:"mat
(rat_poly.row_length (mat1 (2^k)))
(length (mat1 (2^k)))
(mat1 (2^k))"
using Suc mat1 by (metis)
then have 9:
"(\<forall>i <(2^(k+1)). \<forall>j < (2^(k+1)).
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i)
= rat_poly_times
((mat1 2)!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
((mat1 (2^k))!(j mod length (mat1 (2^k)))
!(i mod (rat_poly.row_length (mat1 (2^k)))))))"
proof-
have "(\<forall>i <((rat_poly.row_length (mat1 2))
*n (rat_poly.row_length (mat1 (2^k)))).
\<forall>j < ((length (mat1 2))
*n (length (mat1 (2^k)))).
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i)
= rat_poly_times
((mat1 2)!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
((mat1 (2^k))!(j mod length (mat1 (2^k)))
!(i mod (rat_poly.row_length (mat1 (2^k)))))))"
using 5 8 rat_poly.effective_matrix_Tensor_elements2
by (metis "3" "4" "6" "7" rat_poly.comm)
moreover have "(rat_poly.row_length (mat1 2))
*n(rat_poly.row_length (mat1 (2^k)))
= 2^(k+1)"
using 3 6 by auto
moreover have "(length (mat1 2))
*n(length (mat1 (2^k)))
= 2^(k+1)"
using 4 7 by (metis "3" "6" calculation(2))
ultimately show ?thesis by metis
qed
have 10:"\<forall>i j.((i div (rat_poly.row_length (mat1 (2^k))) < 2)
\<and>(j div length (mat1 (2^k)) < 2)
\<longrightarrow> (((mat1 2)!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
= (if
((j div (length (mat1 (2^k))))
= (i div (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0)))"
using mat1_index by (metis "6" "7")
have 11:"\<forall>j.(j < (2^(k+1)) \<longrightarrow> j div (length (mat1 (2^k))) < 2)"
proof-
have "2^(k+1) = (2 *n (2^k))"
by auto
then show ?thesis
using 7 allI Suc.IH prop_make_vert_equiv(1)
rat_poly.div_left_ineq by (metis)
qed
moreover have 12:
"\<forall>i.(i < (2^(k+1))
\<longrightarrow> (i div (rat_poly.row_length (mat1 (2^k)))) < 2)"
proof-
have "2^(k+1) = (2 *n (2^k))"
by auto
then show ?thesis using 7 allI by (metis Suc.IH prop_make_vert_equiv(1) rat_poly.div_left_ineq)
qed
ultimately have 13:
"\<forall>i j.((i < (2^(k+1)))\<and> j < (2^(k+1)) \<longrightarrow>
((i div (rat_poly.row_length (mat1 (2^k)))) < 2)
\<and>((j div (length (mat1 (2^k)))) < 2))"
by auto
have 14:"\<forall>i j.(i < (2^(k+1)))\<and> (j < (2^(k+1))) \<longrightarrow>
(((mat1 2)
!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
= (if
((j div (length (mat1 (2^k))))
= (i div (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0))"
apply(rule allI)
apply(rule allI)
proof
fix i j
assume 0:"(i::nat) < 2 ^ (k + 1) \<and> (j::nat) < 2 ^ (k + 1)"
have "((i div (rat_poly.row_length (mat1 (2^k)))) < 2)
\<and>((j div (length (mat1 (2^k)))) < 2)"
using 0 13 by auto
then show "(((mat1 2)
!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
= (if
((j div (length (mat1 (2^k))))
= (i div (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0))"
using 10 by (metis "6")
qed
have 15:"\<forall>i j.((i mod (rat_poly.row_length (mat1 (2^k))) < 2^k)
\<and> (j mod length (mat1 (2^k)) < 2^k)
\<longrightarrow> (((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod (rat_poly.row_length (mat1 (2^k)))))
= (if
((j mod (length (mat1 (2^k))))
= (i mod (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0)))"
using mat1_index by (metis "6" "7")
have 16:"\<forall>j.(j < (2^(k+1)) \<longrightarrow> j mod (length (mat1 (2^k))) < 2^k)"
proof-
have "2^(k+1) = (2 *n (2^k))"
by auto
then show ?thesis
using 7 allI mod_less_divisor
nat_zero_less_power_iff zero_less_numeral by (metis)
qed
moreover have 17:"\<forall>i.(i < (2^(k+1))
\<longrightarrow> (i mod (rat_poly.row_length (mat1 (2^k)))) < 2^k)"
proof-
have "2^(k+1) = (2 *n (2^k))"
by auto
then show ?thesis using 7 allI by (metis "6" calculation)
qed
ultimately have 18:
"\<forall>i j.((i < (2^(k+1)))\<and> j < (2^(k+1)) \<longrightarrow>
((i mod (rat_poly.row_length (mat1 (2^k)))) < 2^k)
\<and>((j mod (length (mat1 (2^k)))) < 2^k))"
by (metis "7")
have 19:"\<forall>i j.(i < (2^(k+1)))\<and> (j < (2^(k+1))) \<longrightarrow>
(((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod (rat_poly.row_length (mat1 (2^k)))))
= (if
((j mod (length (mat1 (2^k))))
= (i mod (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0))"
apply(rule allI)
apply(rule allI)
proof
fix i j
assume 0:"(i::nat) < 2 ^ (k + 1) \<and> (j::nat) < 2 ^ (k + 1)"
have "((i mod (rat_poly.row_length (mat1 (2^k)))) < 2^k)
\<and>((j mod (length (mat1 (2^k)))) < 2^k)"
using 0 18 by auto
then show "(((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod(rat_poly.row_length (mat1 (2^k)))))
= (if
((j mod (length (mat1 (2^k))))
= (i mod (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0))"
using 15 by (metis "6")
qed
have "(\<forall>i. \<forall>j.
(i <(2^(k+1))) \<and> (j < (2^(k+1)))
\<longrightarrow> rat_poly_times
((mat1 2)
!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
((mat1 (2^k))
!(j mod length (mat1 (2^k)))
!(i mod (rat_poly.row_length (mat1 (2^k)))))
=
(if
(((j div (length (mat1 (2^k))))
= (i div (rat_poly.row_length (mat1 (2^k)))))
\<and>((j mod (length (mat1 (2^k))))
= (i mod (rat_poly.row_length (mat1 (2^k))))))
then 1
else 0))"
apply(rule allI)
apply(rule allI)
proof
fix i j
assume 0: "((i::nat) <(2^(k+1))) \<and> ((j::nat) < (2^(k+1)))"
have s1: "((mat1 2)
!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
= (if
((j div (length (mat1 (2^k))))
= (i div (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0)"
using 0 14 by metis
moreover have s2:"((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod (rat_poly.row_length (mat1 (2^k)))))
= (if
((j mod (length (mat1 (2^k))))
= (i mod (rat_poly.row_length (mat1 (2^k)))))
then 1
else 0)"
using 0 19 by metis
show "rat_poly_times
((mat1 2)
!(j div (length (mat1 (2^k))))
!(i div (rat_poly.row_length (mat1 (2^k)))))
((mat1 (2^k))
!(j mod length (mat1 (2^k)))
!(i mod (rat_poly.row_length (mat1 (2^k)))))
=
(if
(((j div (length (mat1 (2^k))))
= (i div (rat_poly.row_length (mat1 (2^k)))))
\<and>((j mod (length (mat1 (2^k))))
= (i mod (rat_poly.row_length (mat1 (2^k))))))
then 1
else 0)"
apply(simp)
apply(rule conjI)
proof-
show "j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k))
\<and> (j mod length (mat1 (2 ^ k)) = i mod rat_poly.row_length (mat1 (2 ^ k)))
\<longrightarrow> rat_poly_times
(mat1 2
!(j div length (mat1 (2 ^ k)))
!(i div rat_poly.row_length (mat1 (2 ^ k))))
(mat1 (2 ^ k)
!(j mod length (mat1 (2 ^ k)))
!(i mod rat_poly.row_length (mat1 (2 ^ k))))
= 1"
proof-
have
"j div length (mat1 (2 ^ k))
= i div rat_poly.row_length (mat1 (2 ^ k))
\<and> j mod length (mat1 (2 ^ k)) = i mod rat_poly.row_length (mat1 (2 ^ k))
\<Longrightarrow> rat_poly_times
(mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))))
(mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k)))
! (i mod rat_poly.row_length (mat1 (2 ^ k)))) = 1"
proof-
assume local_assms:
"j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k))
\<and> j mod length (mat1 (2 ^ k)) = i mod rat_poly.row_length (mat1 (2 ^ k)) "
have "(mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))))
= 1"
using s1 local_assms by metis
moreover have "(mat1 (2 ^ k)
! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k)))) = 1"
using s2 local_assms by metis
ultimately show ?thesis
by (metis "3" "6" "7" Suc.IH local_assms mve1 prop_make_vert_equiv(1)
prop_make_vert_equiv(2) rat_poly.right_id)
qed
then show ?thesis by auto
qed
show
"(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)) \<longrightarrow>
j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k))) \<longrightarrow>
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))) = 0 \<or>
mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k))) = 0"
proof-
have "(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k))
\<and> j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k))) \<Longrightarrow>
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))) = 0
\<or> mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k))) = 0"
proof-
assume local_assms:
"(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k))
\<and> j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k)))"
have "mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k))) = 0"
using s2 local_assms by metis
then show ?thesis by auto
qed
then have l:
"(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k))
\<and> j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k))) \<longrightarrow>
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))) = 0
\<or>mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k))) = 0"
by auto
show "(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)) \<longrightarrow>
j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k))) \<longrightarrow>
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))) = 0 \<or>
mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k))) = 0"
proof-
have
"(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)) \<longrightarrow>
j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k))) \<Longrightarrow>
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat_poly.row_length (mat1 (2 ^ k))) = 0 \<or>
mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat_poly.row_length (mat1 (2 ^ k))) = 0"
proof-
assume local_assm1:
"(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)) \<longrightarrow>
j mod length (mat1 (2 ^ k)) \<noteq> i mod rat_poly.row_length (mat1 (2 ^ k)))"
have "(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)))
\<Longrightarrow>
mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k)))
! (i mod rat_poly.row_length (mat1 (2 ^ k)))
= 0"
using s2 local_assm1 by (metis "7")
then have l1:" (j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)))
\<Longrightarrow> ?thesis"
by auto
moreover have "\<not>(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)))
\<Longrightarrow> mat1 2 ! (j div length (mat1 (2^k)))
! (i div rat_poly.row_length (mat1 (2^k)))
= 0"
using s1 by metis
then have "\<not>(j div length (mat1 (2 ^ k)) = i div rat_poly.row_length (mat1 (2 ^ k)))
\<Longrightarrow> ?thesis"
by auto
then show ?thesis using l1 by auto
qed
then show ?thesis by auto
qed
qed
qed
qed
then have "(\<forall>i. \<forall>j. (i <(2^(k+1))) \<and> (j < (2^(k+1))) \<longrightarrow>
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i) = (if
(((j div (length (mat1 (2^k)))) = (i div (rat_poly.row_length (mat1 (2^k)))))
\<and>((j mod (length (mat1 (2^k)))) = (i mod (rat_poly.row_length (mat1 (2^k))))))
then 1
else 0)))"
using 9 by metis
then have "(\<forall>i. \<forall>j. (i <(2^(k+1))) \<and> (j < (2^(k+1))) \<longrightarrow>
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i) = (if
(((j div (2^k))) = (i div (2^k))
\<and>((j mod (2^k)) = (i mod (2^k))))
then 1
else 0)))"
by (metis (hide_lams, no_types) "6" "7")
then have 20:"(\<forall>i. \<forall>j. (i <(2^(k+1))) \<and> (j < (2^(k+1))) \<longrightarrow>
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i) = (if (j = i)
then 1
else 0)))"
using equal_div_mod2 by auto
with 2 have "(\<forall>i. \<forall>j. (i <(2^(k+1))) \<and> (j < (2^(k+1))) \<longrightarrow>
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i) = (mat1 (2^(k+1)))!j!i))"
by metis
then have "(\<forall>i <(2^(k+1)).\<forall>j < (2^(k+1)).
((rat_poly.Tensor (mat1 2) (mat1 (2^k))!j!i) = (mat1 (2^(k+1)))!j!i))"
by auto
moreover have "mat (2^(k+1)) (2^(k+1)) (rat_poly.Tensor (mat1 2) (mat1 (2^k)))"
using \<open>make_vert_equiv (k + 1) = mat1 2 \<otimes> mat1 (2 ^ k)\<close>
by (metis prop_make_vert_equiv(1) prop_make_vert_equiv(2)
prop_make_vert_equiv(3))
ultimately have "(rat_poly.Tensor (mat1 2) (mat1 (2^k))) = (mat1 (2^(k+1)))"
using 1 mat_eqI by metis
then show ?thesis by auto
qed
then show ?case using make_vert_equiv.simps
using \<open>make_vert_equiv (k + 1) = mat1 2 \<otimes> mat1 (2 ^ k)\<close>
by (metis Suc_eq_plus1)
qed
theorem make_vert_block_map_blockmat:
"blockmat (make_vert_block n) = (mat1 (2^n))"
by (metis blockmat_make_vert make_vert_equiv_mat)
lemma mat1_rt_mult:assumes "mat nr nc m1"
shows "rat_poly.matrix_mult m1 (mat1 (nc)) = m1"
using assms mat1_mult_right rat_poly.mat_empty_row_length
rat_poly.matrix_row_length
rat_poly.row_length_def rat_poly.unique_row_col(1) by (metis)
lemma mat1_vert_block:
"rat_poly.matrix_mult
(blockmat b)
(blockmat (make_vert_block (nat (codomain_block b))))
= (blockmat b)"
proof-
have "mat
(rat_poly.row_length (blockmat b))
(2^(nat (codomain_block b)))
(blockmat b)"
using length_codomain_block matrix_blockmat
by auto
moreover have "(blockmat (make_vert_block (nat (codomain_block b))))
= mat1 (2^(nat (codomain_block b)))"
using make_vert_block_map_blockmat by auto
ultimately show ?thesis using mat1_rt_mult by auto
qed
text\<open>The following list of theorems deal with distributivity properties
of tensor product of matrices (with entries as rational functions)
and composition\<close>
definition weak_matrix_match::
"rat_poly mat \<Rightarrow> rat_poly mat \<Rightarrow> rat_poly mat \<Rightarrow> bool"
where
"weak_matrix_match A1 A2 B1 \<equiv> (mat (rat_poly.row_length A1) (length A1) A1)
\<and>(mat (rat_poly.row_length A2) (length A2) A2)
\<and>(mat (rat_poly.row_length B1) 1 B1)
\<and>(A1 \<noteq> [])\<and>(A2 \<noteq> [])\<and>(B1 \<noteq> [])
\<and> (length A1 = rat_poly.row_length A2)"
theorem weak_distributivity1:
"weak_matrix_match A1 A2 B1
\<Longrightarrow> ((rat_poly.matrix_mult A1 A2)\<otimes> B1)
= (rat_poly.matrix_mult (A1 \<otimes> B1) (A2))"
proof-
assume assms:"weak_matrix_match A1 A2 B1"
have 1:"length B1 = 1"
using assms weak_matrix_match_def
by (metis rat_poly.matrix_row_length rat_poly.unique_row_col(2))
have "[[1]] \<noteq> []"
by auto
moreover have "mat 1 1 [[1]]"
unfolding mat_def Ball_def vec_def by auto
moreover have "rat_poly.row_length [[1]] = length B1"
unfolding rat_poly.row_length_def 1 by auto
ultimately have "rat_poly.matrix_match A1 A2 B1 [[1]]"
unfolding rat_poly.matrix_match_def
using assms weak_matrix_match_def "1" blockmat.simps(1)
matrix_blockmat by (metis (hide_lams, no_types))
then have "((rat_poly.matrix_mult A1 A2)\<otimes>(rat_poly.matrix_mult B1 [[1]]))
= (rat_poly.matrix_mult (A1 \<otimes> B1) (A2 \<otimes> [[1]]))"
using rat_poly.distributivity by auto
moreover have "(rat_poly.matrix_mult B1 [[1]]) = B1"
using weak_matrix_match_def assms mat1_equiv mat1_mult_right
by (metis)
moreover have "(A2 \<otimes> [[1]]) = A2"
using rat_poly.Tensor_right_id by (metis)
ultimately show ?thesis by auto
qed
definition weak_matrix_match2::
"rat_poly mat \<Rightarrow> rat_poly mat \<Rightarrow> rat_poly mat \<Rightarrow> bool"
where
"weak_matrix_match2 A1 B1 B2 \<equiv> (mat (rat_poly.row_length A1) 1 A1)
\<and>(mat (rat_poly.row_length B1) (length B1) B1)
\<and>(mat (rat_poly.row_length B2) (length B2) B2)
\<and>(A1 \<noteq> [])\<and>(B1 \<noteq> [])\<and>(B2 \<noteq> [])
\<and> (length B1 = rat_poly.row_length B2)"
theorem weak_distributivity2:
"weak_matrix_match2 A1 B1 B2
\<Longrightarrow> (A1\<otimes> (rat_poly.matrix_mult B1 B2))
= (rat_poly.matrix_mult (A1 \<otimes> B1) (B2))"
proof-
assume assms:"weak_matrix_match2 A1 B1 B2"
have 1:"length A1 = 1"
using assms weak_matrix_match2_def
by (metis rat_poly.matrix_row_length rat_poly.unique_row_col(2))
have "[[1]] \<noteq> []"
by auto
moreover have "mat 1 1 [[1]]"
unfolding mat_def Ball_def vec_def by auto
moreover have "rat_poly.row_length [[1]] = length A1"
unfolding rat_poly.row_length_def 1 by auto
ultimately have "rat_poly.matrix_match A1 [[1]] B1 B2"
unfolding rat_poly.matrix_match_def
using assms weak_matrix_match2_def
"1" blockmat.simps(1) matrix_blockmat
by (metis (hide_lams, no_types))
then have "((rat_poly.matrix_mult A1 [[1]])\<otimes>(rat_poly.matrix_mult B1 B2))
= (rat_poly.matrix_mult (A1 \<otimes> B1) ([[1]] \<otimes> B2))"
using rat_poly.distributivity by auto
moreover have "(rat_poly.matrix_mult A1 [[1]]) = A1"
using weak_matrix_match2_def
assms mat1_equiv mat1_mult_right
by (metis)
moreover have "([[1]] \<otimes> B2) = B2"
by (metis rat_poly.Tensor_left_id)
ultimately show ?thesis by auto
qed
lemma is_tangle_diagram_weak_matrix_match:
assumes "is_tangle_diagram (w1*ws1)"
and "codomain_block w2 = 0"
shows "weak_matrix_match (blockmat w1) (kauff_mat ws1) (blockmat w2)"
unfolding weak_matrix_match_def
apply(auto)
proof-
show "mat
(rat_poly.row_length (blockmat w1))
(length (blockmat w1))
(blockmat w1)"
using matrix_blockmat by auto
next
have "is_tangle_diagram ws1"
using assms(1) is_tangle_diagram.simps(2) by metis
then show "mat
(rat_poly.row_length (kauff_mat ws1))
(length (kauff_mat ws1))
(kauff_mat ws1)"
using matrix_kauff_mat by metis
next
have "mat
(rat_poly.row_length (blockmat w2))
(length (blockmat w2))
(blockmat w2)"
using matrix_blockmat by auto
then have "mat
(rat_poly.row_length (blockmat w2)) 1 (blockmat w2)"
using assms(2) length_codomain_block by auto
then show "mat (rat_poly.row_length (blockmat w2)) (Suc 0) (blockmat w2)"
by auto
next
show "length (blockmat w1) = rat_poly.row_length (kauff_mat ws1)"
using is_tangle_diagram_length_rowlength assms(1) by auto
next
assume 0:"blockmat w1 = [] "
show False using 0
by (metis blockmat_non_empty)
next
assume 1:"kauff_mat ws1 = [] "
have "is_tangle_diagram ws1"
using assms(1) is_tangle_diagram.simps(2) by metis
then show False using 1 kauff_mat_non_empty by auto
next
assume 0:"blockmat w2 = [] "
show False using 0
by (metis blockmat_non_empty)
qed
lemma is_tangle_diagram_weak_matrix_match2:
assumes "is_tangle_diagram (w2*ws2)"
and "codomain_block w1 = 0"
shows "weak_matrix_match2 (blockmat w1) (blockmat w2) (kauff_mat ws2)"
unfolding weak_matrix_match2_def
apply(auto)
proof-
have "mat
(rat_poly.row_length (blockmat w1))
(length (blockmat w1))
(blockmat w1)"
using matrix_blockmat by auto
then have "mat
(rat_poly.row_length (blockmat w1)) 1 (blockmat w1)"
using assms(2) length_codomain_block by auto
then show "mat (rat_poly.row_length (blockmat w1)) (Suc 0) (blockmat w1)"
by auto
next
have "is_tangle_diagram ws2"
using assms(1) is_tangle_diagram.simps(2) by metis
then show "mat
(rat_poly.row_length (kauff_mat ws2))
(length (kauff_mat ws2))
(kauff_mat ws2)"
using matrix_kauff_mat by metis
next
show "mat
(rat_poly.row_length (blockmat w2))
(length (blockmat w2))
(blockmat w2)"
by (metis matrix_blockmat)
next
show "length (blockmat w2) = rat_poly.row_length (kauff_mat ws2)"
using is_tangle_diagram_length_rowlength assms(1) by auto
next
assume 0:"blockmat w1 = [] "
show False using 0
by (metis blockmat_non_empty)
next
assume 1:"kauff_mat ws2 = [] "
have "is_tangle_diagram ws2"
using assms(1) is_tangle_diagram.simps(2) by metis
then show False using 1 kauff_mat_non_empty by auto
next
assume 0:"blockmat w2 = [] "
show False using 0
by (metis blockmat_non_empty)
qed
lemma is_tangle_diagram_vert_block:
"is_tangle_diagram (b*(basic (make_vert_block (nat (codomain_block b)))))"
proof-
have "domain_wall (basic (make_vert_block (nat (codomain_block b))))
= (codomain_block b)"
using domain_wall.simps make_vert_block.simps
by (metis codomain_block_nonnegative domain_make_vert int_nat_eq)
then show ?thesis using is_tangle_diagram.simps by auto
qed
text\<open>The following theorem tells us that the the map kauff$\_$mat when
restricted to walls representing tangles preserves the tensor product\<close>
theorem Tensor_Invariance:
"(is_tangle_diagram ws1) \<and> (is_tangle_diagram ws2)
\<Longrightarrow> (kauff_mat (ws1 \<otimes> ws2) = (kauff_mat ws1) \<otimes> (kauff_mat ws2))"
proof(induction rule:tensor.induct)
case 1
show ?case using kauff_mat_tensor_distrib by auto
next
fix a b as bs
assume hyps:" is_tangle_diagram as \<and> is_tangle_diagram bs
\<Longrightarrow> (kauff_mat (as \<otimes> bs) = kauff_mat as \<otimes> kauff_mat bs)"
assume prems:" is_tangle_diagram (a*as) \<and> is_tangle_diagram (b*bs) "
let ?case = "kauff_mat (a * as \<otimes> b * bs)
= kauff_mat (a * as) \<otimes> kauff_mat (b * bs)"
have 0:"rat_poly.matrix_match
(blockmat a)
(kauff_mat as)
(blockmat b)
(kauff_mat bs)"
using prems is_tangle_diagram_matrix_match by auto
have 1:"is_tangle_diagram as \<and> is_tangle_diagram bs"
using prems is_tangle_diagram.simps by metis
have "kauff_mat ((a * as) \<otimes> (b * bs))
= kauff_mat ((a \<otimes> b) * (as \<otimes> bs))"
using tensor.simps by auto
moreover have "... = rat_poly.matrix_mult
(blockmat (a \<otimes> b))
(kauff_mat (as \<otimes> bs))"
using kauff_mat.simps(2) by auto
moreover have "... = rat_poly.matrix_mult
((blockmat a) \<otimes> (blockmat b))
((kauff_mat as) \<otimes> (kauff_mat bs))"
using hyps 1 kauff_mat_tensor_distrib by auto
moreover have "... =(rat_poly.matrix_mult (blockmat a) (kauff_mat as))
\<otimes> (rat_poly.matrix_mult (blockmat b) (kauff_mat bs))"
using 0 rat_poly.distributivity by auto
moreover have "... = kauff_mat (a*as) \<otimes> kauff_mat (b*bs)"
by auto
ultimately show ?case by metis
next
fix a b as bs
assume hyps:"codomain_block b \<noteq> 0
\<Longrightarrow> is_tangle_diagram as
\<and> is_tangle_diagram
(basic (make_vert_block (nat (codomain_block b))))
\<Longrightarrow> kauff_mat
(as \<otimes> basic (make_vert_block (nat (codomain_block b))))
= kauff_mat as
\<otimes> kauff_mat
(basic (make_vert_block (nat (codomain_block b))))"
assume prems:"is_tangle_diagram (a * as) \<and> is_tangle_diagram (basic b)"
let ?case = " kauff_mat (a * as \<otimes> basic b)
= kauff_mat (a * as) \<otimes> kauff_mat (basic b)"
show ?case
proof(cases "codomain_block b = 0")
case True
have "((a * as) \<otimes> (basic b)) = ((a \<otimes>b) * as)"
using tensor.simps True by auto
then have "kauff_mat ((a * as) \<otimes> (basic b))
= kauff_mat ((a \<otimes>b) * as)"
by auto
moreover have "... =
rat_poly.matrix_mult
(blockmat (a \<otimes> b))
(kauff_mat as)"
by auto
moreover have "... =
rat_poly.matrix_mult
((blockmat a) \<otimes> (blockmat b))
(kauff_mat as)"
using blockmat_tensor_distrib by (metis)
ultimately have T1:
"kauff_mat ((a * as) \<otimes> (basic b))
= rat_poly.matrix_mult
((blockmat a) \<otimes> (blockmat b))
(kauff_mat as)"
by auto
then have "weak_matrix_match
(blockmat a)
(kauff_mat as)
(blockmat b)"
using is_tangle_diagram_weak_matrix_match True prems by auto
then have "rat_poly.matrix_mult
((blockmat a) \<otimes> (blockmat b))
(kauff_mat as)
= ((rat_poly.matrix_mult
(blockmat a)
(kauff_mat as))
\<otimes> (blockmat b))"
using weak_distributivity1 by auto
moreover have "... = (kauff_mat (a*as)) \<otimes> (kauff_mat (basic b))"
by auto
ultimately show ?thesis using T1 by metis
next
case False
let ?bs = "(basic (make_vert_block (nat (codomain_block b))))"
have F0:"rat_poly.matrix_match
(blockmat a)
(kauff_mat as)
(blockmat b)
(kauff_mat ?bs)"
using prems is_tangle_diagram_vert_block
is_tangle_diagram_matrix_match by metis
have F1:"codomain_block b \<noteq> 0"
using False by auto
have F2:" is_tangle_diagram as
\<and> is_tangle_diagram ?bs"
using is_tangle_diagram.simps prems by metis
then have F3:"kauff_mat
(as\<otimes>basic (make_vert_block (nat (codomain_block b)))) =
kauff_mat as \<otimes> kauff_mat ?bs"
using F1 hyps by auto
moreover have "((a*as) \<otimes> (basic b)) = (a \<otimes> b) * (as \<otimes> ?bs)"
using False tensor.simps by auto
moreover then have "kauff_mat ((a*as) \<otimes> (basic b))
= kauff_mat((a \<otimes> b) * (as \<otimes> ?bs))"
by auto
moreover then have "... = rat_poly.matrix_mult
(blockmat (a \<otimes> b))
(kauff_mat (as \<otimes> ?bs))"
using kauff_mat.simps by auto
moreover then have "... = rat_poly.matrix_mult
((blockmat a)\<otimes>(blockmat b))
((kauff_mat as)\<otimes>(kauff_mat ?bs))"
using F3 blockmat_tensor_distrib by (metis)
moreover then have
"...
= (rat_poly.matrix_mult (blockmat a) (kauff_mat as))
\<otimes> (rat_poly.matrix_mult (blockmat b) (kauff_mat ?bs))"
using rat_poly.distributivity F0 by auto
moreover then have "...
= (rat_poly.matrix_mult
(blockmat a)
(kauff_mat as))
\<otimes> (blockmat b)"
using mat1_vert_block by auto
moreover then have "... = (kauff_mat (a*as))
\<otimes> (kauff_mat (basic b))"
using kauff_mat.simps by auto
ultimately show ?thesis by metis
qed
next
fix a b as bs
assume hyps:
"codomain_block b \<noteq> 0
\<Longrightarrow> is_tangle_diagram
(basic (make_vert_block (nat (codomain_block b))))
\<and>(is_tangle_diagram as)
\<Longrightarrow> kauff_mat (basic (make_vert_block (nat (codomain_block b)))\<otimes> as)
= kauff_mat (basic (make_vert_block (nat (codomain_block b))))
\<otimes> kauff_mat as "
assume prems:"is_tangle_diagram (basic b) \<and> is_tangle_diagram (a * as) "
let ?case = " kauff_mat ( (basic b) \<otimes> (a * as))
= kauff_mat (basic b) \<otimes> kauff_mat (a * as)"
show ?case
proof(cases "codomain_block b = 0")
case True
have "((basic b) \<otimes> (a * as)) = ((b \<otimes> a) * as)"
using tensor.simps True by auto
then have "kauff_mat ((basic b) \<otimes> (a * as))
= kauff_mat ((b \<otimes>a ) * as)"
by auto
moreover have "... = rat_poly.matrix_mult
(blockmat (b \<otimes> a))
(kauff_mat as)"
by auto
moreover have "... = rat_poly.matrix_mult
((blockmat b) \<otimes> (blockmat a))
(kauff_mat as)"
using blockmat_tensor_distrib by (metis)
ultimately have T1:"kauff_mat ((basic b) \<otimes> (a*as))
= rat_poly.matrix_mult
((blockmat b) \<otimes> (blockmat a))
(kauff_mat as)"
by auto
then have "weak_matrix_match2
(blockmat b)
(blockmat a)
(kauff_mat as)"
using is_tangle_diagram_weak_matrix_match2
True prems by auto
then have "rat_poly.matrix_mult
((blockmat b) \<otimes> (blockmat a))
(kauff_mat as)
= (blockmat b)
\<otimes> (rat_poly.matrix_mult (blockmat a)(kauff_mat as))"
using weak_distributivity2 by auto
moreover have "... = (kauff_mat (basic b)) \<otimes> (kauff_mat (a*as)) "
by auto
ultimately show ?thesis using T1 by metis
next
case False
let ?bs = "(basic (make_vert_block (nat (codomain_block b))))"
have F0:"rat_poly.matrix_match
(blockmat b)
(kauff_mat ?bs)
(blockmat a)
(kauff_mat as)"
using prems is_tangle_diagram_vert_block
is_tangle_diagram_matrix_match by metis
have F1:"codomain_block b \<noteq> 0"
using False by auto
have F2:" is_tangle_diagram as
\<and> is_tangle_diagram ?bs"
using is_tangle_diagram.simps prems by metis
then have F3:"kauff_mat (?bs \<otimes> as) = kauff_mat ?bs \<otimes> kauff_mat as"
using F1 hyps by auto
moreover have "((basic b) \<otimes> (a*as)) = (b \<otimes> a) * (?bs \<otimes> as)"
using False tensor.simps by auto
moreover then have
"kauff_mat ((basic b) \<otimes> (a*as))
= kauff_mat((b \<otimes> a) * (?bs \<otimes> as))"
by auto
moreover then have "...
= rat_poly.matrix_mult
(blockmat (b \<otimes> a))
(kauff_mat (?bs \<otimes> as))"
using kauff_mat.simps by auto
moreover then have "...
= rat_poly.matrix_mult
((blockmat b)\<otimes>(blockmat a))
((kauff_mat ?bs)\<otimes>(kauff_mat as))"
using F3 by (metis blockmat_tensor_distrib)
moreover then have "...
= (rat_poly.matrix_mult
(blockmat b)
(kauff_mat ?bs))
\<otimes> (rat_poly.matrix_mult
(blockmat a)
(kauff_mat as))"
using rat_poly.distributivity F0 by auto
moreover then have "... = (blockmat b)
\<otimes> (rat_poly.matrix_mult
(blockmat a)
(kauff_mat as))"
using mat1_vert_block by auto
moreover then have "... = (kauff_mat (basic b))
\<otimes> (kauff_mat (a*as))"
using kauff_mat.simps by auto
ultimately show ?thesis by metis
qed
qed
end
|
Upon creation , the 766th Unit was designed to vary in size , consisting of a number of smaller units capable of acting alone . Eventually , it was reinforced to the size of a full regiment , with 3 @,@ 000 men equally distributed across six battalions ( numbered 1st through 6th ) . It was made directly subordinate to the KPA Army headquarters and put under the command of Senior Colonel Oh Jin Woo , who would command the unit for its entire existence . All 500 men of the 3rd Battalion were lost just before the war started when their transport was sunk while attacking Pusan harbor by the Republic of Korea Navy . For the remainder of its existence the regiment was whittled down by losses until it numbered no more than 1 @,@ 500 men and could not muster more than three battalions .
|
SUBROUTINE HROAM ( ityp, x, y, iret )
C************************************************************************
C* HROAM - GN *
C* *
C* This subroutine roams the window at the specified position on *
C* current driver. *
C* *
C* HROAM ( ITYP, X, Y, IRET ) *
C* *
C* Input parameters: *
C* ITYP INTEGER The base point of roam *
C* 0 = upper left screen corner *
C* 1 = center of the screen *
C* 2 = delta_x, delta_y *
C* X REAL Upper left window x coordinates *
C* Y REAL Upper left window y coordinates *
C* *
C* Output parameters: *
C* IRET INTEGER Return code *
C** *
C* Log: *
C* C. Lin/EAI 6/97 *
C* S. Maxwell/GSC 6/97 Documentation changes *
C************************************************************************
INCLUDE 'ERROR.PRM'
C------------------------------------------------------------------------
iret = NORMAL
C
RETURN
END
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import data.set.lattice
/-!
# Formal concept analysis
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines concept lattices. A concept of a relation `r : α → β → Prop` is a pair of sets
`s : set α` and `t : set β` such that `s` is the set of all `a : α` that are related to all elements
of `t`, and `t` is the set of all `b : β` that are related to all elements of `s`.
Ordering the concepts of a relation `r` by inclusion on the first component gives rise to a
*concept lattice*. Every concept lattice is complete and in fact every complete lattice arises as
the concept lattice of its `≤`.
## Implementation notes
Concept lattices are usually defined from a *context*, that is the triple `(α, β, r)`, but the type
of `r` determines `α` and `β` already, so we do not define contexts as a separate object.
## TODO
Prove the fundamental theorem of concept lattices.
## References
* [Davey, Priestley *Introduction to Lattices and Order*][davey_priestley]
## Tags
concept, formal concept analysis, intent, extend, attribute
-/
open function order_dual set
variables {ι : Sort*} {α β γ : Type*} {κ : ι → Sort*} (r : α → β → Prop) {s s₁ s₂ : set α}
{t t₁ t₂ : set β}
/-! ### Intent and extent -/
/-- The intent closure of `s : set α` along a relation `r : α → β → Prop` is the set of all elements
which `r` relates to all elements of `s`. -/
def intent_closure (s : set α) : set β := {b | ∀ ⦃a⦄, a ∈ s → r a b}
/-- The extent closure of `t : set β` along a relation `r : α → β → Prop` is the set of all elements
which `r` relates to all elements of `t`. -/
def extent_closure (t : set β) : set α := {a | ∀ ⦃b⦄, b ∈ t → r a b}
variables {r}
lemma subset_intent_closure_iff_subset_extent_closure :
t ⊆ intent_closure r s ↔ s ⊆ extent_closure r t :=
⟨λ h a ha b hb, h hb ha, λ h b hb a ha, h ha hb⟩
variables (r)
lemma gc_intent_closure_extent_closure :
galois_connection (to_dual ∘ intent_closure r) (extent_closure r ∘ of_dual) :=
λ s t, subset_intent_closure_iff_subset_extent_closure
lemma intent_closure_swap (t : set β) : intent_closure (swap r) t = extent_closure r t := rfl
lemma extent_closure_swap (s : set α) : extent_closure (swap r) s = intent_closure r s := rfl
@[simp] lemma intent_closure_empty : intent_closure r ∅ = univ :=
eq_univ_of_forall $ λ _ _, false.elim
@[simp] lemma extent_closure_empty : extent_closure r ∅ = univ := intent_closure_empty _
@[simp] lemma intent_closure_union (s₁ s₂ : set α) :
intent_closure r (s₁ ∪ s₂) = intent_closure r s₁ ∩ intent_closure r s₂ :=
set.ext $ λ _, ball_or_left_distrib
@[simp] lemma extent_closure_union (t₁ t₂ : set β) :
extent_closure r (t₁ ∪ t₂) = extent_closure r t₁ ∩ extent_closure r t₂ :=
intent_closure_union _ _ _
@[simp] lemma intent_closure_Union (f : ι → set α) :
intent_closure r (⋃ i, f i) = ⋂ i, intent_closure r (f i) :=
(gc_intent_closure_extent_closure r).l_supr
@[simp] lemma extent_closure_Union (f : ι → set β) :
extent_closure r (⋃ i, f i) = ⋂ i, extent_closure r (f i) :=
intent_closure_Union _ _
@[simp] lemma intent_closure_Union₂ (f : Π i, κ i → set α) :
intent_closure r (⋃ i j, f i j) = ⋂ i j, intent_closure r (f i j) :=
(gc_intent_closure_extent_closure r).l_supr₂
@[simp] lemma extent_closure_Union₂ (f : Π i, κ i → set β) :
extent_closure r (⋃ i j, f i j) = ⋂ i j, extent_closure r (f i j) :=
intent_closure_Union₂ _ _
lemma subset_extent_closure_intent_closure (s : set α) :
s ⊆ extent_closure r (intent_closure r s) :=
(gc_intent_closure_extent_closure r).le_u_l _
lemma subset_intent_closure_extent_closure (t : set β) :
t ⊆ intent_closure r (extent_closure r t) :=
subset_extent_closure_intent_closure _ t
@[simp] lemma intent_closure_extent_closure_intent_closure (s : set α) :
intent_closure r (extent_closure r $ intent_closure r s) = intent_closure r s :=
(gc_intent_closure_extent_closure r).l_u_l_eq_l _
@[simp] lemma extent_closure_intent_closure_extent_closure (t : set β) :
extent_closure r (intent_closure r $ extent_closure r t) = extent_closure r t :=
intent_closure_extent_closure_intent_closure _ t
lemma intent_closure_anti : antitone (intent_closure r) :=
(gc_intent_closure_extent_closure r).monotone_l
lemma extent_closure_anti : antitone (extent_closure r) := intent_closure_anti _
/-! ### Concepts -/
variables (α β)
/-- The formal concepts of a relation. A concept of `r : α → β → Prop` is a pair of sets `s`, `t`
such that `s` is the set of all elements that are `r`-related to all of `t` and `t` is the set of
all elements that are `r`-related to all of `s`. -/
structure concept extends set α × set β :=
(closure_fst : intent_closure r fst = snd)
(closure_snd : extent_closure r snd = fst)
namespace concept
variables {r α β} {c d : concept α β r}
attribute [simp] closure_fst closure_snd
@[ext] lemma ext (h : c.fst = d.fst) : c = d :=
begin
obtain ⟨⟨s₁, t₁⟩, h₁, _⟩ := c,
obtain ⟨⟨s₂, t₂⟩, h₂, _⟩ := d,
dsimp at h₁ h₂ h,
subst h,
subst h₁,
subst h₂,
end
lemma ext' (h : c.snd = d.snd) : c = d :=
begin
obtain ⟨⟨s₁, t₁⟩, _, h₁⟩ := c,
obtain ⟨⟨s₂, t₂⟩, _, h₂⟩ := d,
dsimp at h₁ h₂ h,
subst h,
subst h₁,
subst h₂,
end
lemma fst_injective : injective (λ c : concept α β r, c.fst) := λ c d, ext
lemma snd_injective : injective (λ c : concept α β r, c.snd) := λ c d, ext'
instance : has_sup (concept α β r) :=
⟨λ c d, { fst := extent_closure r (c.snd ∩ d.snd),
snd := c.snd ∩ d.snd,
closure_fst := by rw [←c.closure_fst, ←d.closure_fst, ←intent_closure_union,
intent_closure_extent_closure_intent_closure],
closure_snd := rfl }⟩
instance : has_inf (concept α β r) :=
⟨λ c d, { fst := c.fst ∩ d.fst,
snd := intent_closure r (c.fst ∩ d.fst),
closure_fst := rfl,
closure_snd := by rw [←c.closure_snd, ←d.closure_snd, ←extent_closure_union,
extent_closure_intent_closure_extent_closure] }⟩
instance : semilattice_inf (concept α β r) := fst_injective.semilattice_inf _ $ λ _ _, rfl
@[simp] lemma fst_subset_fst_iff : c.fst ⊆ d.fst ↔ c ≤ d := iff.rfl
@[simp] lemma fst_ssubset_fst_iff : c.fst ⊂ d.fst ↔ c < d := iff.rfl
@[simp] lemma snd_subset_snd_iff : c.snd ⊆ d.snd ↔ d ≤ c :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ rw [←fst_subset_fst_iff, ←c.closure_snd, ←d.closure_snd],
exact extent_closure_anti _ h },
{ rw [←c.closure_fst, ←d.closure_fst],
exact intent_closure_anti _ h }
end
@[simp] lemma snd_ssubset_snd_iff : c.snd ⊂ d.snd ↔ d < c :=
by rw [ssubset_iff_subset_not_subset, lt_iff_le_not_le, snd_subset_snd_iff, snd_subset_snd_iff]
lemma strict_mono_fst : strict_mono (prod.fst ∘ to_prod : concept α β r → set α) :=
λ c d, fst_ssubset_fst_iff.2
lemma strict_anti_snd : strict_anti (prod.snd ∘ to_prod : concept α β r → set β) :=
λ c d, snd_ssubset_snd_iff.2
instance : lattice (concept α β r) :=
{ sup := (⊔),
le_sup_left := λ c d, snd_subset_snd_iff.1 $ inter_subset_left _ _,
le_sup_right := λ c d, snd_subset_snd_iff.1 $ inter_subset_right _ _,
sup_le := λ c d e, by { simp_rw ←snd_subset_snd_iff, exact subset_inter },
..concept.semilattice_inf }
instance : bounded_order (concept α β r) :=
{ top := ⟨⟨univ, intent_closure r univ⟩, rfl, eq_univ_of_forall $ λ a b hb, hb trivial⟩,
le_top := λ _, subset_univ _,
bot := ⟨⟨extent_closure r univ, univ⟩, eq_univ_of_forall $ λ b a ha, ha trivial, rfl⟩,
bot_le := λ _, snd_subset_snd_iff.1 $ subset_univ _ }
instance : has_Sup (concept α β r) :=
⟨λ S, { fst := extent_closure r (⋂ c ∈ S, (c : concept _ _ _).snd),
snd := ⋂ c ∈ S, (c : concept _ _ _).snd,
closure_fst := by simp_rw [←closure_fst, ←intent_closure_Union₂,
intent_closure_extent_closure_intent_closure],
closure_snd := rfl }⟩
instance : has_Inf (concept α β r) :=
⟨λ S, { fst := ⋂ c ∈ S, (c : concept _ _ _).fst,
snd := intent_closure r (⋂ c ∈ S, (c : concept _ _ _).fst),
closure_fst := rfl,
closure_snd := by simp_rw [←closure_snd, ←extent_closure_Union₂,
extent_closure_intent_closure_extent_closure] }⟩
instance : complete_lattice (concept α β r) :=
{ Sup := Sup,
le_Sup := λ S c hc, snd_subset_snd_iff.1 $ bInter_subset_of_mem hc,
Sup_le := λ S c hc, snd_subset_snd_iff.1 $ subset_Inter₂ $ λ d hd, snd_subset_snd_iff.2 $ hc d hd,
Inf := Inf,
Inf_le := λ S c, bInter_subset_of_mem,
le_Inf := λ S c, subset_Inter₂,
..concept.lattice, ..concept.bounded_order }
@[simp] lemma top_fst : (⊤ : concept α β r).fst = univ := rfl
@[simp] lemma top_snd : (⊤ : concept α β r).snd = intent_closure r univ := rfl
@[simp] lemma bot_fst : (⊥ : concept α β r).fst = extent_closure r univ := rfl
@[simp] lemma bot_snd : (⊥ : concept α β r).snd = univ := rfl
@[simp] lemma sup_fst (c d : concept α β r) : (c ⊔ d).fst = extent_closure r (c.snd ∩ d.snd) := rfl
@[simp] lemma sup_snd (c d : concept α β r) : (c ⊔ d).snd = c.snd ∩ d.snd := rfl
@[simp] lemma inf_fst (c d : concept α β r) : (c ⊓ d).fst = c.fst ∩ d.fst := rfl
@[simp] lemma inf_snd (c d : concept α β r) : (c ⊓ d).snd = intent_closure r (c.fst ∩ d.fst) := rfl
@[simp] lemma Sup_fst (S : set (concept α β r)) :
(Sup S).fst = extent_closure r ⋂ c ∈ S, (c : concept _ _ _).snd := rfl
@[simp] lemma Sup_snd (S : set (concept α β r)) : (Sup S).snd = ⋂ c ∈ S, (c : concept _ _ _).snd :=
rfl
@[simp] lemma Inf_fst (S : set (concept α β r)) : (Inf S).fst = ⋂ c ∈ S, (c : concept _ _ _).fst :=
rfl
@[simp] lemma Inf_snd (S : set (concept α β r)) :
(Inf S).snd = intent_closure r ⋂ c ∈ S, (c : concept _ _ _).fst := rfl
instance : inhabited (concept α β r) := ⟨⊥⟩
/-- Swap the sets of a concept to make it a concept of the dual context. -/
@[simps] def swap (c : concept α β r) : concept β α (swap r) :=
⟨c.to_prod.swap, c.closure_snd, c.closure_fst⟩
@[simp] lemma swap_swap (c : concept α β r) : c.swap.swap = c := ext rfl
@[simp] lemma swap_le_swap_iff : c.swap ≤ d.swap ↔ d ≤ c := snd_subset_snd_iff
@[simp] lemma swap_lt_swap_iff : c.swap < d.swap ↔ d < c := snd_ssubset_snd_iff
/-- The dual of a concept lattice is isomorphic to the concept lattice of the dual context. -/
@[simps] def swap_equiv : (concept α β r)ᵒᵈ ≃o concept β α (function.swap r) :=
{ to_fun := swap ∘ of_dual,
inv_fun := to_dual ∘ swap,
left_inv := swap_swap,
right_inv := swap_swap,
map_rel_iff' := λ c d, swap_le_swap_iff }
end concept
|
This music needs a party and I'm going!
that soo set is fire!
DJ Soo opens a world of eclectic magic from 7 Samurai's jazz sounds to the Soul Rebels Brass Band to the Empressarios' cumbia and more. Plus Al Green's hard grooving "Waiting For You", singalong soul from The Marvelettes and The Shirelles, and West Coast vibes from Snoop, Ozay Moore and Amin Payne.
DJs & GUESTS DJ Static, Professor Groove, DJ Soo / RECORDED April 13, 2018 / HOSTING daduke, PJ, Mike & Oliver. You can help too!
ozay moore feat. tony ozier & teeko - w.s.t.c.s.t.
tagi & steven beatberg feat. georgia anne muldrow - n.t. |
import categoryTheory.thin
universes v u u₂ v₂
open category_theory
namespace specialCats
set_option pp.structure_projections false
class FP_cat (C : Type u) extends category C :=
-- Terminal object
(unit : C)
(term : ∀ X : C, X ⟶ unit)
(unit_η : ∀ (X : C) (f : X ⟶ unit), f = term X)
-- Binary products
(prod : C → C → C)
(pr1 : ∀ {X Y : C}, (prod X Y) ⟶ X)
(pr2 : ∀ {X Y : C}, (prod X Y) ⟶ Y)
(pair : ∀ {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y), Z ⟶ (prod X Y))
(prod_β1 : ∀ {X Y Z : C} {f : Z ⟶ X} {g : Z ⟶ Y}, (pair f g) ≫ pr1 = f)
(prod_β2 : ∀ {X Y Z : C} {f : Z ⟶ X} {g : Z ⟶ Y}, (pair f g) ≫ pr2 = g)
(prod_η : ∀ {X Y : C}, pair pr1 pr2 = 𝟙 (prod X Y))
instance {C : Type u} [FP_cat C] : has_one C :=
{
one := FP_cat.unit
}
instance {C : Type u} [FP_cat C] : has_mul C :=
{
mul := λ X Y, FP_cat.prod X Y
}
def homprod {C : Type u} [FP_cat C] {W X Y Z : C}
(f : W ⟶ X) (g : Y ⟶ Z) : W * Y ⟶ X * Z :=
FP_cat.pair (FP_cat.pr1 ≫ f) (FP_cat.pr2 ≫ g)
notation (name:=homprod) f `***` g := homprod f g
-- #check category
class CC_cat (C : Type u) extends FP_cat C :=
(exp : C → C → C)
(eval : ∀ {Y Z : C}, (exp Y Z) * Y ⟶ Z)
(curry : ∀ {X Y Z : C}, (X * Y ⟶ Z) → (X ⟶ (exp Y Z)))
(curry_β : ∀ {X Y Z : C} (u : X * Y ⟶ Z), ((curry u) *** 𝟙 Y) ≫ eval = u)
(curry_η : ∀ {X Y Z : C} (v : X ⟶ (exp Y Z)), curry((v *** 𝟙 Y) ≫ eval) = v)
notation (name:=exp) X `⟹` Y := CC_cat.exp X Y
end specialCats
namespace downsetCCC
open specialCats
class downsets (P : Type) [partial_order P] : Type :=
(X : set P)
(down_closed : ∀ (x x' : P), x ≤ x' → x' ∈ X → x ∈ X)
instance {P : Type}[partial_order P] : has_subset (downsets P) :=
{
subset := λ A B, ∀ (x ∈ A.X), x ∈ B.X
}
theorem downset_ext {P : Type} [partial_order P] : ∀ {A B : downsets P}, A.X = B.X → A=B
| ⟨_,_⟩ ⟨_,_⟩ rfl := rfl
instance {P : Type}[partial_order P] : has_mem P (downsets P) :=
{
mem := λ x ⟨A,A_down⟩, x ∈ A
}
def down_closed_external {P : Type}[partial_order P] :
∀ (X : downsets P) (x x' : P), x ≤ x' → x' ∈ X → x ∈ X :=
begin
assume X x x' xlex' x'inX,
cases X with A A_down,
apply A_down,
exact xlex',
exact x'inX,
end
instance {P : Type}[partial_order P] : has_inter (downsets P) :=
{
inter := λ ⟨ A, A_down ⟩ ⟨ B, B_down ⟩, ⟨ A ∩ B ,
begin
assume x x' h x'inboth,
cases x'inboth with inA inB,
constructor,
apply A_down,
exact h,
exact inA,
apply B_down,
exact h,
exact inB,
end ⟩
}
#check downset_ext
def down {P : Type} (P_struct : partial_order P) : partial_order (downsets P) :=
{
le := (⊆),
le_refl := λ A x h, h,
le_antisymm := begin
assume A B h1 h2,
apply downset_ext,
apply set.ext,
assume x,
constructor,
apply h1,
apply h2,
end,
le_trans := λ ⟨A,_⟩ ⟨B,_⟩ ⟨C,_⟩ h1 h2 x h,
begin apply h2, apply h1, exact h end
}
def down_pre {P : Type} [P_struct : partial_order P] : preorder (downsets P) :=
(@partial_order.to_preorder (downsets P) (down P_struct))
instance {P : Type} [partial_order P] : thin_cat (downsets P) :=
thin_cat.from_preorder down_pre
def downset_embed {P : Type} [P_struct : partial_order P]: P → downsets P :=
λ p, ⟨ { x ∈ set.univ | x ≤ p } ,
begin
assume x x' xlex' h',
dsimp,
constructor, constructor,
dsimp at h', cases h' with _ h,
apply le_trans,
exact xlex',
exact h,
end
⟩
def down_exp{P : Type} [P_struct : partial_order P] (X Y : downsets P) : downsets P :=
⟨{ x ∈ set.univ | ∀ (z : P), z≤x ∧ z∈X → z∈Y },
begin
assume x x' xlex' h',
dsimp at h', cases h' with _ h',
dsimp, constructor, constructor,
assume z h,
cases h with zlex zinX,
apply h',
constructor,
apply le_trans, exact zlex, exact xlex',
exact zinX,
end
⟩
instance {P : Type} [P_struct : partial_order P] : CC_cat (downsets P) :=
{
unit := ⟨ set.univ , λ x x' _ _, true.intro ⟩ ,
term :=
begin
assume X,
induction X with A A_down,
apply hom_of_le,
assume x,
assume h,
constructor,
end,
unit_η := λ X f, by apply thin_cat.K,
prod := (∩),
pr1 :=
begin
assume X Y,
cases X with A A_down,
cases Y with B B_down,
apply hom_of_le,
assume x h,
cases h,
exact h_left,
end,
pr2 :=
begin
assume X Y,
cases X with A A_down,
cases Y with B B_down,
apply hom_of_le,
assume x h,
cases h,
exact h_right,
end,
pair :=
begin
assume X Y Z,
assume F G,
have k : @partial_order.le (downsets P) (down P_struct) Z X,
apply @le_of_hom (downsets P) (down_pre) Z X,
exact F,
have l : @partial_order.le (downsets P) (down P_struct) Z Y,
apply @le_of_hom (downsets P) (down_pre) Z Y,
exact G,
cases X with A A_down,
cases Y with B B_down,
cases Z with C C_down,
apply hom_of_le,
assume z h,
constructor,
apply k, assumption,
apply l, assumption,
end,
prod_β1 := λ X Y Z f g, by apply thin_cat.K,
prod_β2 := λ X Y Z f g, by apply thin_cat.K,
prod_η := λ X Y, by apply thin_cat.K,
exp := down_exp,
eval :=
begin
assume X Y,
cases X with A A_down,
cases Y with B B_down,
apply hom_of_le,
assume z h,
cases h with zin_exp zin_A,
dsimp at zin_exp,
cases zin_exp with _ property,
apply property,
constructor,
apply le_refl,
exact zin_A,
end,
curry :=
begin
assume X Y Z XYleZ,
suffices betterXYleZ : X ∩ Y ⊆ Z,
cases X with A A_down,
cases Y with B B_down,
cases Z with C C_down,
apply hom_of_le,
assume z zinA,
dsimp[down_exp], constructor, constructor,
assume z',
assume h, cases h with z'lez z'inB,
have z'inA : z'∈A,
apply A_down,
exact z'lez,
exact zinA,
suffices ABleC : A ∩ B ⊆ C,
apply ABleC,
constructor,
exact z'inA, exact z'inB,
apply betterXYleZ,
apply @le_of_hom (downsets P) (down_pre),
exact XYleZ,
end,
curry_β := λ X Y Z u, by apply thin_cat.K,
curry_η := λ X Y Z v, by apply thin_cat.K
}
end downsetCCC
|
Physiotherapy is an evolving science, as knowledge of the mechanics of the human body change. Bridge 38 maintains an up to date knowledge of the uses and treatments of physiotherapy in sport, pain and injury.
We do not believe in prolonged treatments. We do believe in accurate assessments and aim to give you a full and clear explanation of your treatment from the outset, allowing you to manage your own prescription and reduce the number of appointments required overall.
With applied physiotherapy, we can help people to stand without pain, to walk freely and to become a more robust athlete in their field. This is the aim of Bridge 38 – the specialist physiotherapy clinic opened by Fiona Campbell in Barton-under-Needwood.
Fiona is passionate about using physiotherapy in sport. She worked with Olympic and Paralympic athletes at the EIS (English Institute of Sport), for 10 years. By studying the movement, gait and approach athletes use in training, she uses therapy to address muscle imbalance issues, adjust training and technique errors, reduce recovery times and improve performance.
Now contracted through the EIS to the BEF (British Equestrian Federation), Fiona uses a similar approach with riders, demonstrating how better balance and equal use of weight off the horse can improve connection and performance on the horse.
Fiona has launched Bridge 38 to bring sports analysis and physiotherapy to the local area. She works with sports enthusiasts, whether professional or hobbyists, to treat injuries and help improve the flow of movement.
Fiona also uses physiotherapy to help clients with back pain, arthritis, long term pains and injuries that restrict your daily life. She helps people from all walks of life, professional and retired, young or old, to move freely and get more active.
As a triathlete herself, with a sports-loving family, Fiona is personally familiar with the pain from sporting injuries and the frustration of being unable to compete. With her calm and thorough approach, you’ll soon be back on track. |
From Equations Require Import Equations.
From Coq Require Import Arith Lia List Program.Equality.
From Undecidability.FOL Require Import FullSyntax Heyting.Heyting Completeness.HeytingMacNeille.
Import ListNotations.
Section Lindenbaum.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {eq_dec_Funcs : EqDec Σ_funcs}.
Context {eq_dec_Preds : EqDec Σ_preds}.
Section Completeness.
(*Context { b : peirce }.*)
Notation "A ⊢E phi" := (A ⊢I phi) (at level 30).
Instance lb_alg : HeytingAlgebra.
Proof.
unshelve eapply (@Build_HeytingAlgebra (@form _ _ _ falsity_on)).
- intros phi psi. exact ([phi] ⊢E psi).
- exact ⊥.
- intros phi psi. exact (phi ∧ psi).
- intros phi psi. exact (phi ∨ psi).
- intros phi psi. exact (phi → psi).
- intros phi. apply Ctx. now left.
- intros phi psi theta H1 H2. apply IE with (phi:=psi); trivial.
apply Weak with (A:=[]); auto. 2: firstorder. econstructor. apply H2.
- intros phi. cbn. apply Exp, Ctx. now left.
- intros phi psi theta. cbn. split.
+ intros [H1 H2]. now apply CI.
+ intros H. split; [apply (CE1 H) | apply (CE2 H)].
- intros phi psi theta. cbn. split.
+ intros [H1 H2]. eapply DE. apply Ctx; auto. 1: now left.
eapply Weak. exact H1. firstorder.
eapply Weak. exact H2. firstorder.
+ intros H; split.
* apply (IE (phi := phi ∨ psi)). 2: try apply DI1, Ctx. 2: now left.
apply II. eapply Weak; eauto. 1: firstorder.
* apply (IE (phi := phi ∨ psi)); try apply DI2, Ctx; try now left.
apply II. eapply Weak; eauto. firstorder.
- intros phi psi theta. cbn. split.
+ intros H. apply II. apply (IE (phi := theta ∧ phi)).
* apply II. eapply Weak. 1: apply H. firstorder.
* apply CI; apply Ctx; firstorder.
+ intros H. eapply IE. 2: eapply CE2, Ctx; now left.
eapply IE. 1: eapply II, Weak. 1: apply H. 2: eapply CE1, Ctx; now left. firstorder.
Defined.
Lemma lb_alg_iff phi :
Top <= phi <-> [] ⊢E phi.
Proof.
cbn. split; intros H.
- apply (IE (phi := ¬ ⊥)); apply II; eauto using Ctx. apply Ctx. now left.
- eapply Weak; eauto; firstorder.
Qed.
Instance lb_calg : CompleteHeytingAlgebra :=
@completion_calgebra lb_alg.
Definition lb_Pr P v : lb_calg :=
embed (atom P v).
Lemma lindenbaum_hsat phi :
down phi ≡ proj1_sig (hsat lb_Pr phi).
Proof.
induction phi as [| |[]|[]] using form_ind_subst; simp hsat in *.
- rewrite down_bot. reflexivity.
- cbn. reflexivity.
- rewrite (@down_meet lb_alg f1 f2), IHphi, IHphi0. now destruct hsat, hsat.
- rewrite (@down_join lb_alg f1 f2), IHphi, IHphi0. now destruct hsat, hsat.
- rewrite (@down_impl lb_alg f1 f2), IHphi, IHphi0. now destruct hsat, hsat.
- cbn. split; intros psi H'.
+ intros X [HX [t Ht]]. change (psi ∈ proj1_sig (exist normal X HX)).
eapply Ht. rewrite <- H. apply AllE, H'.
+ apply AllI. destruct (@nameless_equiv_all _ _ _ intu ([psi]) f2) as [t Ht]. apply Ht.
apply H, H'. exists (proj2_sig (hsat lb_Pr f2[t..])), t. now destruct hsat.
- cbn. split; intros psi H'.
+ intros X [XD HX]. apply XD. intros theta HT. apply (ExE H').
destruct (@nameless_equiv_ex _ _ _ intu ([psi]) f2 theta) as [t Ht]. apply Ht.
assert (exists i : term, equiv_HA (hsat lb_Pr f2[t..]) (hsat lb_Pr f2[i..])) by now eexists.
specialize (HX (hsat lb_Pr f2[t..]) H0).
apply Weak with (A:=[f2[t..]]); auto. 2: now apply ListAutomation.incl_shift.
apply HT, HX. rewrite <- H. apply Ctx. now left.
+ specialize (H' (down (∃ f2))). apply H'.
exists (@down_normal lb_alg (∃ f2)). intros X [t ?].
intros ? ?. eapply H0 in H1.
revert x H1. fold (hset_sub (proj1_sig (hsat lb_Pr f2[t..])) (down (∃ f2))).
rewrite <- H. apply down_mono. eapply ExI, Ctx; eauto. now left.
Qed.
Lemma lindenbaum_eqH phi :
eqH (embed phi) (hsat lb_Pr phi).
Proof.
unfold eqH. cbn. now rewrite <- lindenbaum_hsat.
Qed.
Lemma lb_calg_iff phi :
Top <= hsat lb_Pr phi <-> nil ⊢E phi.
Proof.
cbn. rewrite <- lindenbaum_hsat.
rewrite <- down_top, <- lb_alg_iff. split.
- apply down_inj.
- apply down_mono.
Qed.
End Completeness.
(* ** Intuitionistic ND *)
Definition hvalid phi :=
forall (HA : CompleteHeytingAlgebra) HP, Top <= hsat HP phi.
Theorem hcompleteness phi :
hvalid phi -> nil ⊢I phi.
Proof.
intros H.
specialize (H lb_calg lb_Pr).
now eapply lb_calg_iff.
Unshelve.
Qed.
(* ** Generalised Lindenbaum Algebras *)
Section Completeness.
Variable gprv : list form -> form -> Prop.
Notation "A ⊢ phi" := (gprv A phi) (at level 55).
Hypothesis gCtx : forall A phi, In phi A -> A ⊢ phi.
Hypothesis gIE : forall A phi psi, A ⊢ (phi → psi) -> A ⊢ phi -> A ⊢ psi.
Hypothesis gII : forall A phi psi, (phi::A) ⊢ psi -> A ⊢ (phi → psi).
Hypothesis gExp : forall A phi, A ⊢ ⊥ -> A ⊢ phi.
Hypothesis gCI : forall A phi psi, A ⊢ phi -> A ⊢ psi -> A ⊢ (phi ∧ psi).
Hypothesis gCE1 : forall A phi psi, A ⊢ (phi ∧ psi) -> A ⊢ phi.
Hypothesis gCE2 : forall A phi psi, A ⊢ (phi ∧ psi) -> A ⊢ psi.
Hypothesis gDI1 : forall A phi psi, A ⊢ phi -> A ⊢ (phi ∨ psi).
Hypothesis gDI2 : forall A phi psi, A ⊢ psi -> A ⊢ (phi ∨ psi).
Hypothesis gDE : forall A phi psi theta, A ⊢ (phi ∨ psi) -> (phi :: A) ⊢ theta -> (psi :: A) ⊢ theta -> A ⊢ theta.
Hypothesis gWeak : forall A B phi, A ⊢ phi -> incl A B -> B ⊢ phi.
Instance glb_alg : HeytingAlgebra.
Proof.
unshelve eapply (@Build_HeytingAlgebra (form)).
- intros phi psi. exact ([phi] ⊢ psi).
- exact ⊥.
- intros phi psi. exact (phi ∧ psi).
- intros phi psi. exact (phi ∨ psi).
- intros phi psi. exact (phi → psi).
- intros phi. apply gCtx. now left.
- intros phi psi theta H1 H2. apply gIE with (phi:=psi); trivial.
apply gWeak with (A:=[]); auto. firstorder.
- intros phi. cbn. apply gExp, gCtx. now left.
- intros phi psi theta. cbn. split.
+ intros [H1 H2]. now apply gCI.
+ intros H. split; [apply (gCE1 H) | apply (gCE2 H)].
- intros phi psi theta. cbn. split.
+ intros [H1 H2]. eapply gDE. apply gCtx; auto. 1: now left.
eapply gWeak. exact H1. firstorder.
eapply gWeak. exact H2. firstorder.
+ intros H; split.
* apply (gIE (phi := phi ∨ psi)); try apply gDI1, gCtx.
apply gII. eapply gWeak; eauto. 1: firstorder. now left.
* apply (gIE (phi := phi ∨ psi)); try apply gDI2, gCtx.
apply gII. eapply gWeak; eauto. 1: firstorder. now left.
- intros phi psi theta. cbn. split.
+ intros H. apply gII. apply (gIE (phi := theta ∧ phi)).
* apply gII. eapply gWeak; eauto. firstorder.
* apply gCI; apply gCtx; auto. 1: right; now left. now left.
+ intros H. apply (gIE (phi:=phi)). 2: eapply gCE2, gCtx; now left.
eapply gIE. 1: eapply gII, gWeak. 1: apply H. 2: eapply gCE1, gCtx; now left.
firstorder.
Defined.
Lemma glb_alg_iff phi :
Top <= phi <-> [] ⊢ phi.
Proof.
cbn. split; intros H.
- apply (gIE (phi := ¬ ⊥)); apply gII. 2: apply gCtx; now left. apply H.
- eapply gWeak; eauto. firstorder.
Qed.
Instance glb_calg : CompleteHeytingAlgebra :=
@completion_calgebra glb_alg.
Definition glb_Pr P v : glb_calg :=
embed (atom P v).
Hypothesis gAllI : forall A phi, map (subst_form ↑) A ⊢ phi -> A ⊢ (∀ phi).
Hypothesis gAllE : forall A t phi, A ⊢ (∀ phi) -> A ⊢ phi[t..].
Hypothesis gExI : forall A t phi, A ⊢ phi[t..] -> A ⊢ (∃ phi).
Hypothesis gExE : forall A phi psi, A ⊢ (∃ phi) -> (phi :: map (subst_form ↑) A) ⊢ psi[↑] -> A ⊢ psi.
Hypothesis gnameless_equiv_all' : forall A phi, exists t, A ⊢ phi[t..] <-> map (subst_form ↑) A ⊢ phi.
Hypothesis gnameless_equiv_ex' : forall A phi psi, exists t, (psi[t..] :: A) ⊢ phi <-> (psi :: map (subst_form ↑) A) ⊢ phi[↑].
Lemma glindenbaum_hsat phi :
down phi ≡ proj1_sig (hsat glb_Pr phi).
Proof.
induction phi as [| |[]phi ? psi ?|[] phi ?] using form_ind_subst; simp hsat in *.
- rewrite down_bot. reflexivity.
- cbn. reflexivity.
- rewrite (@down_meet glb_alg phi psi), IHphi, IHphi0. now destruct hsat, hsat.
- rewrite (@down_join glb_alg phi psi), IHphi, IHphi0. now destruct hsat, hsat.
- rewrite (@down_impl glb_alg phi psi), IHphi, IHphi0. now destruct hsat, hsat.
- cbn. split; intros psi H'.
+ intros X [HX [t Ht]]. change (psi ∈ proj1_sig (exist normal X HX)).
eapply Ht. rewrite <- H. apply gAllE, H'.
+ apply gAllI. destruct (@gnameless_equiv_all' ([psi]) phi) as [t <-].
apply H, H'. exists (proj2_sig (hsat glb_Pr phi[t..])), t. now destruct hsat.
- cbn. split; intros psi H'.
+ intros X [XD HX]. apply XD. intros theta HT. apply (gExE H').
destruct (@gnameless_equiv_ex' ([psi]) theta phi) as [t <-].
assert (exists i : term, equiv_HA (hsat glb_Pr phi[t..]) (hsat glb_Pr phi[i..])) by now eexists.
specialize (HX (hsat glb_Pr phi[t..]) H0).
apply gWeak with (A:=[phi[t..]]); auto.
apply HT, HX. rewrite <- H. apply gCtx. now left. apply ListAutomation.incl_shift. easy.
+ specialize (H' (down (∃ phi))). apply H'.
exists (@down_normal glb_alg (∃ phi)). intros X [t ?].
intros ? ?. eapply H0 in H1.
revert x H1. fold (hset_sub (proj1_sig (hsat glb_Pr phi[t..])) (down (∃ phi))).
rewrite <- H. apply down_mono. eapply gExI, gCtx; eauto. now left.
Qed.
Lemma glindenbaum_eqH phi :
eqH (embed phi) (hsat glb_Pr phi).
Proof.
unfold eqH. cbn. now rewrite <- glindenbaum_hsat.
Qed.
Lemma glb_calg_iff phi :
Top <= hsat glb_Pr phi <-> nil ⊢ phi.
Proof.
cbn. rewrite <- glindenbaum_hsat.
rewrite <- down_top, <- glb_alg_iff. split.
- apply down_inj.
- apply down_mono.
Qed.
End Completeness.
#[local] Hint Constructors prv : core.
Instance clb_alg : HeytingAlgebra.
Proof.
apply (@glb_alg (@prv _ _ _ class)); eauto 2.
apply Weak.
Defined.
Instance clb_calg : CompleteHeytingAlgebra.
Proof.
apply (@glb_calg (@prv _ _ _ class)); eauto 2. apply Weak.
Defined.
Definition clb_Pr P (v : Vector.t term (ar_preds P)) : clb_calg.
Proof.
apply glb_Pr with P. exact v.
Defined.
Lemma clb_alg_boolean :
boolean clb_alg.
Proof.
intros phi psi. cbn. eapply IE; try apply Pc. apply Ctx. now left.
Qed.
Lemma boolean_completion HA :
boolean HA -> boolean (@completion_calgebra HA).
Proof.
intros H. intros [X HX] [Y HY]; cbn. intros a Ha.
unfold hset_impl in Ha. apply HX.
intros b Hb. specialize (Ha (Impl b Bot)).
eapply Rtra; try apply H. apply Impl1, Hb, Ha.
intros c Hc. apply HY. intros d Hd. apply Rtra with Bot; try apply Bot1.
assert (H' : Meet (Impl b Bot) c <= Impl b Bot) by apply Meet2.
apply Impl1 in H'. eapply Rtra; try eassumption. repeat rewrite <- Meet1.
repeat split; auto. eapply Rtra; try apply Meet3. now apply Hb.
Qed.
Definition bvalid phi :=
forall (HA : CompleteHeytingAlgebra) HP, boolean HA -> Top <= hsat HP phi.
Theorem bcompleteness phi :
bvalid phi -> nil ⊢C phi.
Proof.
intros H.
specialize (H clb_calg clb_Pr (boolean_completion clb_alg_boolean)).
apply glb_calg_iff in H; eauto 2; clear H0.
- intros A psi. edestruct (nameless_equiv_all (p:=class) A psi) as (x & Hx).
exists x. now rewrite Hx.
- intros A psi chi. edestruct (nameless_equiv_ex (p:=class) A chi psi) as (x & Hx).
exists x. now rewrite Hx.
Qed.
End Lindenbaum.
|
print(paste0(Sys.time(), " --- Histogram of PTEs total spp described"))
# Tabulate statistics of years active
tax <- df_describers[spp_N_1st_auth_s>=1]
highlight_auth <- tax[ns_spp_N>750]$full.name.of.describer.n
tax_highlight <- tax[full.name.of.describer.n %in% highlight_auth][,c("ns_spp_N", "last.name")]
x_axis <- seq(0, max(tax$ns_spp_N), 1000)
x_axis_minor <- seq(0, max(tax$ns_spp_N), 100)
hist_tl_spp <- ggplot(tax, aes(x=ns_spp_N)) +
geom_histogram(mapping=aes(y=..count../sum(..count..) * 100), fill='grey30', binwidth=100) +
geom_vline(xintercept=median(tax$ns_spp_N), color='grey', size=.5) +
xlab("\nTotal number of valid species described, by PTE") +
ylab("Proportion of PTEs (%)\n") +
geom_label_repel(data=tax_highlight,
aes(x=ns_spp_N, y=.1, label=last.name),
size=2, nudge_x=10, nudge_y=30,
fontface='bold', color='black', segment.color='grey80', force=1,
box.padding = unit(0.001, 'lines')) +
scale_x_continuous(breaks=x_axis, minor_breaks=x_axis_minor) +
# scale_y_continuous(breaks= seq(0, 12, 1), limits=c(0, 12)) +
theme
ggsave(paste0(dir_plot, 'fig-4a.png'), hist_tl_spp, units="cm", width=7, height=6, dpi=300)
# @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# Section - Histogram of PTEs mean sp described per year
# @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
print(paste0(Sys.time(), " --- Histogram of PTEs mean sp described per year"))
# Tabulate statistics of years active
tax <- df_describers[spp_N_1st_auth_s>=1]
# Highlight auths from previous section
tax_highlight <- tax[full.name.of.describer.n %in% highlight_auth][,c("ns_species_per_year_active", "last.name")]
hist_mean_spp <- ggplot(tax, aes(x=ns_species_per_year_active)) +
geom_histogram(mapping=aes(y=..count../sum(..count..) * 100), fill='grey30', binwidth=1) +
geom_vline(xintercept=median(tax$ns_species_per_year_active), color='grey', size=.5) +
xlab("\nMean number of species described per year, by PTE") +
ylab("Proportion of PTEs (%)\n") +
scale_x_continuous(breaks= seq(0, max(tax$ns_species_per_year_active), 10)) +
geom_label_repel(data=tax_highlight,
aes(x=ns_species_per_year_active, y=.1, label=paste0(last.name, " (", round(ns_species_per_year_active, 0),")")),
size=2, nudge_x=20, nudge_y=30,
fontface='bold', color='black', segment.color='grey80', force=5,
box.padding = unit(0.001, 'lines')) +
theme
ggsave(paste0(dir_plot, 'fig-4b.png'), hist_mean_spp, units="cm", width=7, height=6, dpi=300)
|
(* Title: HOL/Auth/n_flash_lemma_on_inv__19.thy
Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
*)
header{*The n_flash Protocol Case Study*}
theory n_flash_lemma_on_inv__19 imports n_flash_base
begin
section{*All lemmas on causal relation between inv__19 and some rule r*}
lemma n_PI_Remote_PutXVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_PI_Remote_PutX dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_PI_Remote_PutX dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_PI_Remote_ReplaceVsinv__19:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_Replace src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_Replace src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_Get_Nak_HomeVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Nak_Home dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Get_Nak_Home dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_Get_PutVsinv__19:
assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_Get_Put_HomeVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') dst) ''CacheState'')) (Const CACHE_E))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_GetX_Nak_HomeVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_Nak_Home dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_GetX_Nak_Home dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_GetX_PutXVsinv__19:
assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_GetX_PutX_HomeVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_PutVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Put dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Put dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "((formEval (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true))) s))" by auto
moreover {
assume c1: "((formEval (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true)) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (neg (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately have "invHoldForRule s f r (invariants N)" by satx
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_PutXVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_PutX dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_PutX dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''HomeUniMsg'') ''Cmd'')) (Const UNI_Put))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_InvVsinv__19:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Inv dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Inv dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_PI_Local_Get_GetVsinv__19:
assumes a1: "(r=n_PI_Local_Get_Get )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_GetX_GetX__part__0Vsinv__19:
assumes a1: "(r=n_PI_Local_GetX_GetX__part__0 )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_GetX_GetX__part__1Vsinv__19:
assumes a1: "(r=n_PI_Local_GetX_GetX__part__1 )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Nak_HomeVsinv__19:
assumes a1: "(r=n_NI_Nak_Home )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Local_PutVsinv__19:
assumes a1: "(r=n_NI_Local_Put )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Local_PutXAcksDoneVsinv__19:
assumes a1: "(r=n_NI_Local_PutXAcksDone )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__19 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Local_Get_Get__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__1 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Remote_GetVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_PI_Remote_Get src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_9__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_GetX_PutX__part__0Vsinv__19:
assumes a1: "r=n_PI_Local_GetX_PutX__part__0 " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_WbVsinv__19:
assumes a1: "r=n_NI_Wb " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_StoreVsinv__19:
assumes a1: "\<exists> src data. src\<le>N\<and>data\<le>N\<and>r=n_Store src data" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_5Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_GetX__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__1 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_3Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_3 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_8_Home_NODE_GetVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_1 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_Store_HomeVsinv__19:
assumes a1: "\<exists> data. data\<le>N\<and>r=n_Store_Home data" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_3Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_ReplaceVsinv__19:
assumes a1: "r=n_PI_Local_Replace " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_Nak__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__1 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_Nak__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__1 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_Get__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__0 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_existsVsinv__19:
assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_InvAck_exists src pp" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_Nak__part__2Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__2 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_Put_HeadVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_PutXVsinv__19:
assumes a1: "r=n_PI_Local_PutX " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_Nak__part__2Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__2 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_GetX__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__0 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_6Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_Get_PutVsinv__19:
assumes a1: "r=n_PI_Local_Get_Put " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_ShWbVsinv__19:
assumes a1: "r=n_NI_ShWb N " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_GetX_PutX_HeadVld__part__0Vsinv__19:
assumes a1: "r=n_PI_Local_GetX_PutX_HeadVld__part__0 N " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_11Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_ReplaceVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Replace src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_8_HomeVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_7__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Remote_GetX_NakVsinv__19:
assumes a1: "\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_Nak src dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_NakVsinv__19:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Nak dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_9__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Remote_GetXVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_PI_Remote_GetX src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_GetX_PutX__part__1Vsinv__19:
assumes a1: "r=n_PI_Local_GetX_PutX__part__1 " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_10Vsinv__19:
assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_8Vsinv__19:
assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_PutVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_8_NODE_GetVsinv__19:
assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_2Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_Nak__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__0 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_exists_HomeVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_exists_Home src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Replace_HomeVsinv__19:
assumes a1: "r=n_NI_Replace_Home " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_7__part__1Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Remote_Get_NakVsinv__19:
assumes a1: "\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Nak src dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Nak_ClearVsinv__19:
assumes a1: "r=n_NI_Nak_Clear " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_Put_DirtyVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Dirty src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_Get_Nak__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__0 src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_10_HomeVsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_2Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_2 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_GetX_PutX_HeadVld__part__1Vsinv__19:
assumes a1: "r=n_PI_Local_GetX_PutX_HeadVld__part__1 N " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_FAckVsinv__19:
assumes a1: "r=n_NI_FAck " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_4Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__0Vsinv__19:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__19 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
end
|
For any two positive real numbers $d$ and $e$, the open balls of radius $d$ and $e$ are homeomorphic. The same is true for closed balls. |
.b = import('../../base')
#' Function to normalize expression objects
#'
#' @param rawData A raw data object, or a list thereof
#' @param method Method to use for normalization: rma, gcrma, frma
#' @return The normalized data
normalize = function(rawData, ...) {
UseMethod("normalize")
}
normalize.list = function(rawData, ...) {
re = lapply(rawData, function(x) normalize(x, ...) %catch% NA)
if (any(is.na(re)))
warning("dropping ", names(re)[is.na(re)])
if (all(is.na(re)))
stop("all normalizations failed")
re[!is.na(re)]
}
normalize.FeatureSet = function(rawData, method="rma") {
if (method == "rma")
oligo::rma(rawData)
else
stop("invalid method")
}
normalize.AffyBatch = function(rawData, method="rma") {
if (method == "rma")
affy::rma(rawData)
else if (method == "gcrma")
gcrma::gcrma(rawData)
else if (method == "frma")
frma::frma(rawData, target="core")
else
stop("invalid method")
}
normalize.EListRaw = function(rawData, method="quantile") {
rawData %>%
limma::backgroundCorrect(method="normexp") %>%
limma::normalizeBetweenArrays(method=method)
}
normalize.RGList = function(rawData, method="loess") {
rawData %>%
limma::backgroundCorrect(method="normexp") %>%
limma::normalizeWithinArrays(method=method)
}
normalize.NChannelSet = function(rawData, ...) {
ad = as.list(Biobase::assayData(rawData))
ad$genes = Biobase::fData(rawData)
if ("E" %in% names(ad)) { # one-color
norm = normalize.EListRaw(new("EListRaw", ad), ...)
ad = with(norm, Biobase::assayDataNew(E = E))
} else { # two-color
norm = normalize.RGList(new("RGList", ad), ...)
ad = with(norm, Biobase::assayDataNew(R = R, G = G))
}
features = new("AnnotatedDataFrame", norm$genes)
normeset = new("NChannelSet", assayData = ad)
featureData(normeset) = features
phenoData(normeset) = phenoData(rawData)
normeset
}
|
(* Title: HOL/Auth/n_germanSimp_lemma_on_inv__46.thy
Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
*)
header{*The n_germanSimp Protocol Case Study*}
theory n_germanSimp_lemma_on_inv__46 imports n_germanSimp_base
begin
section{*All lemmas on causal relation between inv__46 and some rule r*}
lemma n_RecvReqSVsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqS N i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan3'') p__Inv4) ''Cmd'')) (Const InvAck)) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan3'') p__Inv4) ''Cmd'')) (Const InvAck)) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_RecvReqE__part__0Vsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqE__part__0 N i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan3'') p__Inv4) ''Cmd'')) (Const InvAck)) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan3'') p__Inv4) ''Cmd'')) (Const InvAck)) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_RecvReqE__part__1Vsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqE__part__1 N i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (neg (eqn (IVar (Field (Para (Ident ''Cache'') p__Inv4) ''State'')) (Const I))) (eqn (IVar (Field (Para (Ident ''Chan3'') p__Inv4) ''Cmd'')) (Const InvAck))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan3'') p__Inv4) ''Cmd'')) (Const InvAck)) (eqn (IVar (Ident ''CurCmd'')) (Const Empty))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendInv__part__0Vsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__0 i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendInv__part__1Vsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__1 i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendInvAckVsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInvAck i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Para (Ident ''InvSet'') p__Inv4)) (Const true)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv4) ''Cmd'')) (Const Inv))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_RecvInvAckVsinv__46:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvInvAck i" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__46 p__Inv4" apply fastforce done
have "(i=p__Inv4)\<or>(i~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_StoreVsinv__46:
assumes a1: "\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_RecvGntSVsinv__46:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvGntS i" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_SendGntSVsinv__46:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendGntS i" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_RecvGntEVsinv__46:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvGntE i" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_SendGntEVsinv__46:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendGntE N i" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__46 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
end
|
module MRIQuant
include("Constants.jl")
include("Relaxation.jl")
include("ExtendedPhaseGraphs.jl")
end
|
c
c =================================================
function stream(x,y)
c =================================================
c
c # Stream function in physical space (x,y).
c # Clockwise rotation, rotates fully in time 1.
implicit double precision (a-h,o-z)
stream = 3.1415926535897931d0 *(x**2 + y**2)
c
return
end
|
(** * RIS.nominalsetoid : Nominal sets up-to equivalence. *)
Require Import tools atoms PeanoNat Nat bijection.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(** * Definitions *)
Section s.
(** We fix a decidable set of atoms. *)
Context {atom : Set}{A : Atom atom}.
(** We use the notation [π ⊙ x] for the group action of a nominal setoid, and [⌈x⌉] for its support. *)
Class ActionSetoid (X : Set) := actoid : perm -> X -> X.
Infix " ⊙ " := actoid (at level 50).
Class SupportSetoid {A : Atom atom} (X : Set) := suppoid : X -> list atom.
Notation " ⌈ x ⌉ " := (suppoid x).
(** A nominal setoid is a set [X] equipped with a relation [≃], an action [⊙] and a support function [⌈_⌉] satisfying the following axioms: *)
Class NominalSetoid (X : Set) (equiv : SemEquiv X) (act : ActionSetoid X)
(supp : SupportSetoid X) :=
{
(** [≃] is an equivalence relation; *)
eq_equivalence :> Equivalence sequiv;
(** equivalent elements have equivalent support : if [x≃y], then [a∈⌈x⌉ <-> a∈⌈y⌉]; *)
eq_support :> Proper (sequiv ==> (@equivalent atom)) suppoid;
(** the action in compatible with the equivalence relation ; *)
eq_act_proper π :> Proper (sequiv ==> sequiv) (actoid π);
(** the remaining axioms are the same as for nominal sets, except that equality of elements in [X] has been substituted with [≃]. *)
action_invariant_eq : forall (x : X) π, (π ∙ ⌈x⌉ = ⌈x⌉) -> (π ⊙ x) ≃ x;
support_action_eq : forall x π, ⌈π ⊙ x⌉ ≈ π∙⌈x⌉;
action_compose_eq : forall x π π', π ⊙ (π' ⊙ x) ≃ (π++π') ⊙ x
}.
(** The following observations are straightforward to check directly from the axioms we just listed. *)
Remark actoid_pinv_p {X : Set} `{NominalSetoid X}:
forall π x, π∗ ⊙ (π ⊙ x) ≃ x.
Proof.
intros;rewrite action_compose_eq;apply action_invariant_eq.
rewrite perm_pinv_p_eq_nil,act_nil;reflexivity.
Qed.
Remark actoid_p_pinv {X : Set} `{NominalSetoid X}:
forall π x, π ⊙ (π∗ ⊙ x) ≃ x.
Proof.
intros;rewrite action_compose_eq;apply action_invariant_eq.
rewrite perm_p_pinv_eq_nil,act_nil;reflexivity.
Qed.
(** Permutations that are equivalent as functions yield the same action (even if they are syntactically different): if for every atom [a] we have [π ∙ a = π' ∙ a] and if [x≃y], then [π⊙x≃π'⊙y]. *)
Global Instance eq_act {X : Set} `{NominalSetoid X} :
Proper (sequiv ==> sequiv ==> sequiv) actoid.
Proof.
intros π π' Eπ x y <- ;clear y.
transitivity (π'⊙(π'∗ ⊙ (π ⊙ x))).
- rewrite actoid_p_pinv;reflexivity.
- apply eq_act_proper.
rewrite action_compose_eq;apply action_invariant_eq.
rewrite <- action_compose.
rewrite Eπ,act_pinv_p;reflexivity.
Qed.
Lemma minimal_support_eq {X: Set} `{NominalSetoid X} l x :
(forall π, (forall a, a ∈ l -> π ∙ a = a) -> π ⊙ x ≃ x) -> ⌈x⌉ ⊆ l.
Proof.
intros s a Ia.
case_in a l;[tauto|exfalso].
destruct (exists_fresh (a::l++⌈x⌉)) as (b&hb).
simpl_In in hb.
assert (E: [(a,b)]⊙x≃x).
- apply s;intros c Ic.
apply elements_inv_act_atom;simpl.
intros [->|[->|F]];tauto.
- pose proof (support_action_eq x [(a,b)]) as E'.
rewrite E in E';revert Ia.
rewrite E',In_act_lists.
unfold act,act_atom;simpl;simpl_beq.
tauto.
Qed.
Remark ActionSetoid_ext_In {X:Set} `{NominalSetoid X}:
forall π π' x, (forall a, a ∈ ⌈x⌉ -> π ∙ a = π' ∙ a) -> π ⊙ x ≃ π' ⊙ x.
Proof.
intros p q x h.
cut (x ≃ q∗ ⊙ (p ⊙ x)).
- intros e ;rewrite e at 2;rewrite actoid_p_pinv;reflexivity.
- symmetry;rewrite action_compose_eq.
apply action_invariant_eq,map_eq_id.
intros a Ia;rewrite <- action_compose,h,act_pinv_p;reflexivity||assumption.
Qed.
End s.
(* begin hide *)
Infix " ⊙ " := actoid (at level 50).
Notation " ⌈ x ⌉ " := (suppoid x).
(* Arguments NominalSetoid : clear implicits. *)
Arguments NominalSetoid {atom} A X {equiv act supp}.
Arguments ActionSetoid _ A X : clear implicits.
Arguments SupportSetoid _ A X : clear implicits.
(* end hide *)
(** * Lifting the structure to lists *)
Section list.
(** Let us fix a nominal setoid [S] over a set of atoms [Atom]. *)
Context {atom : Set}{A: Atom atom}.
Context {S : Set} {eqS : SemEquiv S} {actS : ActionSetoid _ A S}
{suppS : SupportSetoid _ A S}.
Context {N: NominalSetoid A S}.
(** We define the action of [π] on a list by apply [π] pointwise. *)
Global Instance actoid_lists : ActionSetoid _ A (list S):=
fun π l => map (fun x => π⊙x) l.
(* begin hide *)
Remark actoid_lists_app π (l m : list S) : π⊙(l++m) = π⊙l++π⊙m.
Proof. apply map_app. Qed.
Remark actoid_lists_cons π (a :S) l : π⊙(a::l) = π⊙a::π⊙l.
Proof. reflexivity. Qed.
Remark actoid_lists_length π (l : list S) : ⎢π⊙l⎥ = ⎢l⎥.
Proof. apply map_length. Qed.
(* end hide *)
(** To compute the support of a list, we compute the support of each element, take the union of those, and remove duplicates. *)
Global Instance SupportSetoidList : SupportSetoid _ A (list S) :=
fun l => {{flat_map suppoid l}}.
(** Two lists are equivalent if they have the same length, and if their elements are pointwise equivalent. For instance if [l=l1...ln] and [m=m1...mn], then [l≃m] if and only if [forall 1<=i<=n, li≃mi]. *)
Fixpoint semeq_list (l1 l2 : list S) :=
match (l1,l2) with
| ([],[]) => True
| (a::l1,b::l2) => (a≃b) /\ semeq_list l1 l2
| (_::_,[]) | ([],_::_) => False
end.
Instance SemEquiv_listS : SemEquiv (list S) := semeq_list.
(* begin hide *)
Global Instance cons_sequiv : Proper (sequiv ==> sequiv ==> sequiv) cons.
Proof.
intros x y E l m E'.
unfold sequiv,SemEquiv_listS in *;simpl;tauto.
Qed.
Global Instance app_sequiv : Proper (sequiv ==> sequiv ==> sequiv) (@app S).
Proof.
intros x y E l m E'.
unfold sequiv,SemEquiv_listS in *.
revert y E;induction x as [|a x];intros [|b y];simpl;try tauto.
intros (h1&h2);split;[tauto|apply IHx,h2].
Qed.
Global Instance length_sequiv : Proper (sequiv ==> eq) (@length S).
Proof.
intros x y E.
unfold sequiv,SemEquiv_listS in *.
revert y E;induction x as [|a x];intros [|b y];simpl;try tauto.
intros (h1&h2);rewrite (IHx y);reflexivity||assumption.
Qed.
(* end hide *)
(** It is a simple matter to check that the operations we have defined indeed define a nominal setoid structure over [list S]. *)
Global Instance NominalSetoid_list : NominalSetoid A (list S).
Proof.
split.
- unfold sequiv,SemEquiv_listS;split.
+ intros l;induction l as [|a l];simpl.
* tauto.
* split;[reflexivity|assumption].
+ intros l1;induction l1 as [|a l1];intros [|b l2];simpl;try tauto.
intros (->&h);intuition.
+ intros l1;induction l1 as [|a l1];intros [|b l2] [|c l3];simpl;try tauto.
intros (->&h1) (->&h2);split;[reflexivity|].
apply (IHl1 l2 l3);assumption.
- unfold sequiv,SemEquiv_listS;intros l1;induction l1 as [|a l1];intros [|b l2];simpl;
try tauto||reflexivity.
intros (e&h);apply IHl1 in h;revert h.
unfold suppoid,SupportSetoidList;simpl.
repeat rewrite undup_equivalent;intros ->.
rewrite (eq_support e);reflexivity.
- intros π l1;unfold sequiv,SemEquiv_listS;induction l1 as [|a l1];intros [|b l2];simpl;
try tauto.
intros (->&e);split;[reflexivity|].
apply IHl1,e.
- unfold sequiv,SemEquiv_listS;unfold suppoid,SupportSetoidList in *;simpl.
intros x p h; unfold actoid,actoid_lists in *.
unfold act,act_lists in h;rewrite <- map_undup_id in h.
induction x as [|x l];auto.
+ reflexivity.
+ revert h;simpl;rewrite map_app;intro E;apply length_app in E as (E1&E2).
* split;[|apply IHl,E2].
apply action_invariant_eq,E1.
* apply map_length.
- unfold act,act_lists,actoid,actoid_lists,suppoid,SupportSetoidList,sequiv,SemEquiv_listS in *.
intros x p;symmetry;simpl in *.
rewrite map_undup_inj;eauto using perm_inj.
repeat rewrite flat_map_concat_map.
rewrite concat_map,map_map,map_map,undup_equivalent,undup_equivalent.
intros a;repeat rewrite <- flat_map_concat_map,in_flat_map.
setoid_rewrite support_action_eq;unfold act at 2,act_lists;tauto.
- intros;unfold actoid,actoid_lists.
rewrite map_map.
unfold sequiv,SemEquiv_listS;induction x as [|a x];simpl;[tauto|split;[|apply IHx]].
apply action_compose_eq.
Qed.
(* begin hide *)
Remark suppoid_cons b w : ⌈b::w⌉ ≈ ⌈b⌉ ++ ⌈w⌉.
Proof.
intro a;unfold suppoid,SupportSetoidList.
repeat rewrite undup_equivalent.
simpl;simpl_In;tauto.
Qed.
Remark suppoid_app w1 w2 : ⌈w1++w2⌉ ≈ ⌈w1⌉ ++ ⌈w2⌉.
Proof.
intro a;unfold suppoid,SupportSetoidList.
repeat rewrite undup_equivalent.
rewrite flat_map_concat_map,map_app,concat_app,<-flat_map_concat_map,<-flat_map_concat_map.
reflexivity.
Qed.
(* end hide *)
End list.
|
TQC Machu Scratching Tool to perform a Machu test (corrosion test) with. Each tool is provided with a 1mm width cutter to cut the coating down to the metal, complying with ISO 17872.
The TQC Machu Scratching Tool Basic is based on the CC2000 model. with a self positioning knife bracket to expose the substrate with a perpendicular cut through the coating.
The TQC Machu Scratching Tool Professional is based on the CC3000 model with adjustable cutting depth and two ball bearings to guide the cut. This guarantees reproducible results.
Mandatory test in Qualicoat and QIB accredited laboratories. |
[STATEMENT]
lemma parts_insert_subset_impl:
"\<lbrakk>x \<in> parts (insert a G); x \<in> parts G \<Longrightarrow> x \<in> synth (parts H); a \<in> synth (parts H)\<rbrakk>
\<Longrightarrow> x \<in> synth (parts H)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<lbrakk>x \<in> parts (insert a G); x \<in> parts G \<Longrightarrow> x \<in> synth (parts H); a \<in> synth (parts H)\<rbrakk> \<Longrightarrow> x \<in> synth (parts H)
[PROOF STEP]
using Fake_parts_sing in_parts_UnE insert_is_Un
parts_idem parts_synth subsetCE sup.absorb2 synth_idem synth_increasing
[PROOF STATE]
proof (prove)
using this:
?X \<in> synth (analz ?H) \<Longrightarrow> parts {?X} \<subseteq> synth (analz ?H) \<union> parts ?H
\<lbrakk>?c \<in> parts (?G \<union> ?H); ?c \<in> parts ?G \<Longrightarrow> ?P; ?c \<in> parts ?H \<Longrightarrow> ?P\<rbrakk> \<Longrightarrow> ?P
insert ?a ?A = {?a} \<union> ?A
parts (parts ?H) = parts ?H
parts (synth ?H) = parts ?H \<union> synth ?H
\<lbrakk>?A \<subseteq> ?B; ?c \<notin> ?A \<Longrightarrow> ?P; ?c \<in> ?B \<Longrightarrow> ?P\<rbrakk> \<Longrightarrow> ?P
?a \<le> ?b \<Longrightarrow> sup ?a ?b = ?b
synth (synth ?H) = synth ?H
?H \<subseteq> synth ?H
goal (1 subgoal):
1. \<lbrakk>x \<in> parts (insert a G); x \<in> parts G \<Longrightarrow> x \<in> synth (parts H); a \<in> synth (parts H)\<rbrakk> \<Longrightarrow> x \<in> synth (parts H)
[PROOF STEP]
by (metis (no_types, lifting) analz_parts) |
#redirect Filmmakers Ambitions (No longer active)
|
module BBHeap.Properties {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import BBHeap.Perfect _≤_
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.Empty
sym≃ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≃ h' → h' ≃ h
sym≃ ≃lf = ≃lf
sym≃ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') = ≃nd b'≤x' b≤x l'⋘r' l⋘r l'≃r' l≃r (sym≃ l≃l')
trans≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ≃ h'' → h ≃ h''
trans≃ ≃lf ≃lf = ≃lf
trans≃ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = ≃nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (trans≃ l≃l' l'≃l'')
lemma≃ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≃ h' → h ⋘ h'
lemma≃ ≃lf = lf⋘
lemma≃ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') = ll⋘ b≤x b'≤x' l⋘r l'⋘r' l'≃r' (trans≃ (sym≃ l≃r) l≃l')
lemma⋗≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h' ≃ h'' → h ⋗ h''
lemma⋗≃ (⋗lf b≤x) ≃lf = ⋗lf b≤x
lemma⋗≃ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l⋗l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = ⋗nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (lemma⋗≃ l⋗l' l'≃l'')
lemma⋗ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ⋗ h' → h ⋙ h'
lemma⋗ (⋗lf b≤x) = ⋙lf b≤x
lemma⋗ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') = ⋙rl b≤x b'≤x' l⋘r l≃r l'⋘r' (lemma⋗≃ l⋗l' l'≃r')
lemma⋗⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h'' ⋗ h' → h ≃ h''
lemma⋗⋗ (⋗lf b≤x) (⋗lf b''≤x'') = ≃nd b≤x b''≤x'' lf⋘ lf⋘ ≃lf ≃lf ≃lf
lemma⋗⋗ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l⋗l') (⋗nd b''≤x'' .b'≤x' l''⋘r'' .l'⋘r' l''≃r'' _ l''⋗l') = ≃nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (lemma⋗⋗ l⋗l' l''⋗l')
lemma⋗⋗' : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h ⋗ h'' → h' ≃ h''
lemma⋗⋗' (⋗lf b≤x) (⋗nd .b≤x _ .lf⋘ _ _ _ ())
lemma⋗⋗' (⋗nd .b≤x _ .lf⋘ _ _ _ ()) (⋗lf b≤x)
lemma⋗⋗' (⋗lf b≤x) (⋗lf .b≤x) = ≃lf
lemma⋗⋗' (⋗nd b≤x b'≤x' l⋘r l'⋘r' _ l'≃r' l⋗l') (⋗nd .b≤x b''≤x'' .l⋘r l''⋘r'' _ l''≃r'' l⋗l'') = ≃nd b'≤x' b''≤x'' l'⋘r' l''⋘r'' l'≃r' l''≃r'' (lemma⋗⋗' l⋗l' l⋗l'')
lemma≃⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ⋗ h'' → h ⋗ h''
lemma≃⋗ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (⋗nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'⋗l'') = ⋗nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (lemma≃⋗ l≃l' l'⋗l'')
lemma≃⋗ (≃nd b≤x b'≤x' lf⋘ lf⋘ ≃lf ≃lf ≃lf) (⋗lf .b'≤x') = ⋗lf b≤x
lemma-⋘-≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋘ h' → h' ≃ h'' → h ⋘ h''
lemma-⋘-≃ lf⋘ ≃lf = lf⋘
lemma-⋘-≃ (ll⋘ b≤x b'≤x' l⋘r l'⋘r' _ r≃l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = ll⋘ b≤x b''≤x'' l⋘r l''⋘r'' l''≃r'' (trans≃ r≃l' l'≃l'')
lemma-⋘-≃ (lr⋘ b≤x b'≤x' l⋙r l'⋘r' _ l⋗l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = lr⋘ b≤x b''≤x'' l⋙r l''⋘r'' l''≃r'' (lemma⋗≃ l⋗l' l'≃l'')
lemma-≃-⋙ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ⋙ h'' → h ⋙ h''
lemma-≃-⋙ (≃nd b≤x b'≤x' lf⋘ lf⋘ ≃lf ≃lf ≃lf) (⋙lf .b'≤x') = ⋙lf b≤x
lemma-≃-⋙ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (⋙rl .b'≤x' b''≤x'' .l'⋘r' _ l''⋘r'' l'⋗r'') = ⋙rl b≤x b''≤x'' l⋘r l≃r l''⋘r'' (lemma≃⋗ l≃l' l'⋗r'')
lemma-≃-⋙ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (⋙rr .b'≤x' b''≤x'' .l'⋘r' _ l''⋙r'' l'≃l'') = ⋙rr b≤x b''≤x'' l⋘r l≃r l''⋙r'' (trans≃ l≃l' l'≃l'')
lemma-⋘-⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋘ h' → h'' ⋗ h' → h'' ⋙ h
lemma-⋘-⋗ lf⋘ (⋗lf b≤x) = ⋙lf b≤x
lemma-⋘-⋗ (ll⋘ b≤x b'≤x' l⋘r l'⋘r' _ r≃l') (⋗nd b''≤x'' .b'≤x' l''⋘r'' .l'⋘r' l''≃r'' _ l''⋗l') = ⋙rl b''≤x'' b≤x l''⋘r'' l''≃r'' l⋘r (lemma⋗≃ l''⋗l' (sym≃ r≃l'))
lemma-⋘-⋗ (lr⋘ b≤x b'≤x' l⋙r l'⋘r' _ l⋗l') (⋗nd b''≤x'' .b'≤x' l''⋘r'' .l'⋘r' l''≃r'' _ l''⋗l') = ⋙rr b''≤x'' b≤x l''⋘r'' l''≃r'' l⋙r (lemma⋗⋗ l''⋗l' l⋗l')
lemma-≃-⊥ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≃ h' → h ⋗ h' → ⊥
lemma-≃-⊥ () (⋗lf _)
lemma-≃-⊥ (≃nd .b≤x .b'≤x' .l⋘r .l'⋘r' _ _ l≃l') (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l')
with lemma-≃-⊥ l≃l' l⋗l'
... | ()
lemma-⋘-⊥ : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}(b≤x : LeB b (val x))(b'≤x' : LeB b' (val x'))(l⋙r : l ⋙ r)(l'⋘r' : l' ⋘ r') → l ≃ l' → right b≤x l⋙r ⋘ left b'≤x' l'⋘r' → ⊥
lemma-⋘-⊥ b≤x b'≤x' l⋙r l'⋘r' l≃l' (lr⋘ .b≤x .b'≤x' .l⋙r .l'⋘r' _ l⋗l')
with lemma-≃-⊥ l≃l' l⋗l'
... | ()
lemma-perfect : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ⋘ h' → Perfect h'
lemma-perfect lf⋘ = plf
lemma-perfect (ll⋘ b≤x b'≤x' l⋘l l'⋘l' l'≃r' r≃l') = pnd b'≤x' l'⋘l' l'≃r'
lemma-perfect (lr⋘ b≤x b'≤x' l⋙r l'⋘l' l'≃r' l⋗l') = pnd b'≤x' l'⋘l' l'≃r'
|
State Before: G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x y : G
hs : x • s =ᶠ[ae μ] s
hy : y ∈ Subgroup.zpowers x
⊢ y • s =ᶠ[ae μ] s State After: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
⊢ x ^ k • s =ᶠ[ae μ] s Tactic: obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp hy State Before: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
⊢ x ^ k • s =ᶠ[ae μ] s State After: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
⊢ x ^ k • s =ᶠ[ae μ] s Tactic: let e : α ≃ α := MulAction.toPermHom G α x State Before: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
⊢ x ^ k • s =ᶠ[ae μ] s State After: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
⊢ x ^ k • s =ᶠ[ae μ] s Tactic: have he : QuasiMeasurePreserving e μ μ := (measurePreserving_smul x μ).quasiMeasurePreserving State Before: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
⊢ x ^ k • s =ᶠ[ae μ] s State After: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
he' : QuasiMeasurePreserving ↑e.symm
⊢ x ^ k • s =ᶠ[ae μ] s Tactic: have he' : QuasiMeasurePreserving e.symm μ μ :=
(measurePreserving_smul x⁻¹ μ).quasiMeasurePreserving State Before: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
he' : QuasiMeasurePreserving ↑e.symm
⊢ x ^ k • s =ᶠ[ae μ] s State After: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
he' : QuasiMeasurePreserving ↑e.symm
h : ↑(e ^ k) '' s =ᶠ[ae μ] s
⊢ x ^ k • s =ᶠ[ae μ] s Tactic: have h := he.image_zpow_ae_eq he' k hs State Before: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
he' : QuasiMeasurePreserving ↑e.symm
h : ↑(e ^ k) '' s =ᶠ[ae μ] s
⊢ x ^ k • s =ᶠ[ae μ] s State After: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
he' : QuasiMeasurePreserving ↑e.symm
h : (fun a => ↑(↑(MulAction.toPermHom G α) (x ^ k)) a) '' s =ᶠ[ae μ] s
⊢ x ^ k • s =ᶠ[ae μ] s Tactic: simp only [← MonoidHom.map_zpow] at h State Before: case intro
G : Type u_2
M : Type ?u.82889
α : Type u_1
s : Set α
m : MeasurableSpace α
inst✝⁴ : Group G
inst✝³ : MulAction G α
inst✝² : MeasurableSpace G
inst✝¹ : MeasurableSMul G α
c : G
μ : Measure α
inst✝ : SMulInvariantMeasure G α μ
x : G
hs : x • s =ᶠ[ae μ] s
k : ℤ
hy : x ^ k ∈ Subgroup.zpowers x
e : α ≃ α := ↑(MulAction.toPermHom G α) x
he : QuasiMeasurePreserving ↑e
he' : QuasiMeasurePreserving ↑e.symm
h : (fun a => ↑(↑(MulAction.toPermHom G α) (x ^ k)) a) '' s =ᶠ[ae μ] s
⊢ x ^ k • s =ᶠ[ae μ] s State After: no goals Tactic: simpa only [MulAction.toPermHom_apply, MulAction.toPerm_apply, image_smul] using h |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.