Datasets:
AI4M
/

text
stringlengths
0
3.34M
module DATA_MODULE use Constants type CHAR_DATA character(len=MAX_NLEN) :: value end type CHAR_DATA type(CHAR_DATA), parameter :: empty_data=CHAR_DATA('') end module DATA_MODULE module vararray use DATA_MODULE, LIST_DATA=>CHAR_DATA, & empty_list_data=>empty_data ! lists.f90 ! Implementation of dynamically growing arrays ! ! Basically this is Arjen Markus's vector.f90 module but I have ! renamed it from vector to lists, because most scientists don't ! care about fine distinctions between "linked lists" and C++-type ! "vectors" and this object behaves like a Python/Perl/etc. list. ! ! The module is straightforward: it defines a suitable ! data structure, data can be added to the list ! and you can retrieve data from it. ! ! Note: ! For the function list_at() we need a parameter ! that represents the "empty list data" value. ! ! $Id: vectors.f90,v 1.4 2008/06/12 15:12:39 relaxmike Exp $ ! ! Written by Arjen Markus type LIST private integer :: not_used type(LIST_DATA), dimension(:), pointer :: data => null() end type list private public :: LIST public :: LIST_DATA public :: list_create public :: list_append public :: list_at public :: list_size public :: list_put public :: list_delete_elements public :: list_destroy public :: list_insert_empty real, parameter :: growth_rate = 1.1 contains ! list_create ! Create a new list ! ! Arguments: ! lst Variable that should hold the list ! capacity Initial capacity (optional) ! ! Note: ! The fields of the list data structure are set ! subroutine list_create( lst, capacity ) type(LIST) :: lst integer, optional :: capacity integer :: cap ! ! Check that the list does not have any data left ! if ( associated(lst%data) ) then call list_destroy( lst ) endif if ( present(capacity) ) then cap = max( 1, capacity ) else cap = 10 endif allocate( lst%data(1:cap) ) lst%not_used = 0 end subroutine list_create ! list_destroy ! Destroy a list ! ! Arguments: ! lst list in question ! subroutine list_destroy( lst ) type(LIST) :: lst ! ! Check that the list does not have any data left ! if ( associated(lst%data) ) then deallocate( lst%data ) endif lst%not_used = 0 end subroutine list_destroy ! list_size ! Return the number of elements in use ! ! Arguments: ! lst Variable that holds the list ! integer function list_size( lst ) type(LIST) :: lst list_size = lst%not_used end function list_size ! list_at ! Get the value of the nth element of the list ! ! Arguments: ! lst list in question ! n Index of the element whose value ! should be retrieved ! type(LIST_DATA) function list_at( lst, n ) type(LIST) :: lst integer :: n if ( n .lt. 1 .or. n .gt. lst%not_used ) then list_at = empty_list_data else list_at = lst%data(n) endif end function list_at ! list_insert_empty ! Insert one or more empty elements ! ! Arguments: ! list list in question ! pos Position to insert the empty elements ! number Number of empty elements ! subroutine list_insert_empty( lst, pos, number ) type(LIST) :: lst integer, intent(in) :: pos integer, intent(in) :: number integer :: i if ( number .lt. 1 .or. pos .lt. 1 .or. pos .gt. lst%not_used ) then return endif if ( lst%not_used+number .ge. size(lst%data) ) then call list_increase_capacity( lst, lst%not_used+number ) endif do i = lst%not_used,pos,-1 lst%data(i+number) = lst%data(i) enddo do i = 1,number lst%data(pos+i-1) = empty_list_data enddo lst%not_used = lst%not_used + number end subroutine list_insert_empty ! list_delete_elements ! Delete one or more elements ! ! Arguments: ! list list in question ! pos Position to start deletion ! number Number of elements ! subroutine list_delete_elements( lst, pos, number ) type(LIST) :: lst integer, intent(in) :: pos integer, intent(in) :: number integer :: i if ( number .lt. 1 .or. pos .lt. 1 .or. pos .gt. lst%not_used ) then return endif do i = pos,lst%not_used-number lst%data(i) = lst%data(i+number) enddo lst%not_used = lst%not_used - number end subroutine list_delete_elements ! list_append ! Append a value to the list ! ! Arguments: ! lst list in question ! data Data to be appended ! subroutine list_append( lst, data ) type(LIST) :: lst type(LIST_DATA) :: data if ( lst%not_used .ge. size(lst%data) ) then call list_increase_capacity( lst, lst%not_used+1 ) endif lst%not_used = lst%not_used + 1 lst%data(lst%not_used) = data end subroutine list_append ! list_put ! Put a value at a specific element of the list ! (it needs not yet exist) ! ! Arguments: ! lst list in question ! n Index of the element ! data Data to be put in the list ! subroutine list_put( lst, n, data ) type(LIST) :: lst integer :: n type(LIST_DATA) :: data if ( n .lt. 1 ) then return endif if ( n .gt. size(lst%data) ) then call list_increase_capacity( lst, n ) endif lst%not_used = max( lst%not_used, n) lst%data(n) = data end subroutine list_put ! list_increase_capacity ! Expand the array holding the data ! ! Arguments: ! lst list in question ! capacity Minimum capacity ! subroutine list_increase_capacity( lst, capacity ) type(LIST) :: lst integer :: capacity integer :: new_cap type(LIST_DATA), dimension(:), pointer :: new_data new_cap = max( capacity, nint( growth_rate * size(lst%data) ) ) if ( new_cap .gt. size(lst%data) ) then allocate( new_data(1:new_cap) ) new_data(1:lst%not_used) = lst%data(1:lst%not_used) new_data(lst%not_used+1:new_cap) = empty_list_data deallocate( lst%data ) lst%data => new_data endif end subroutine list_increase_capacity end module vararray
\chapter{Introduction} \paragraph{Target Audience} This document is meant for C++ programmers. \paragraph{Motivation} Remember the realtime CG days in the previous millennium where a nose of a character consisted of just three triangles? Well, this were the days were rendering a scene was mostly about rastering the triangles, meshes are made up of. Nowadays, rastering mesh triangles is just a part of the complete rendering process. The final image you see on your screen is the result of many compositing steps - just like movies with tons of special effects produce the final image by compositing multiple image layers. The \emph{PLCompositing} component is the place were the compositing steps within the PixelLight framework are implemented. While the scene graph is a representation of the scene - the data, the task of the scene rendering and compositing system is to take the scene graph and all assigned data and bring them onto the computer monitor in the best way possible. For legacy hardware, this scene rendering may just mean to render the scene using simple textures - for decent hardware the scene may be rendered using dynamic lighting and shadowing as well as tons of used special effects like normal mapping, \ac{SSAO}, \ac{HDR} and so on. \section{External Dependences} PLCompositing depends on the \textbf{PLCore}, \textbf{PLMath}, \textbf{PLGraphics}, \textbf{PLRenderer}, \textbf{PLMesh} and \textbf{PLScene} libraries.
-- SPDX-FileCopyrightText: 2021 The toml-idr developers -- -- SPDX-License-Identifier: MPL-2.0 module Language.TOML.Tokens import Text.Token %default total public export strTrue : String strTrue = "true" public export strFalse : String strFalse = "false" public export data Bracket = Open | Close public export Eq Bracket where (==) Open Open = True (==) Close Close = True (==) _ _ = False public export data Punctuation = Comma | Dot | Equal | NewLine | Square Bracket | Curly Bracket public export Eq Punctuation where (==) Comma Comma = True (==) Dot Dot = True (==) Equal Equal = True (==) NewLine NewLine = True (==) (Square x) (Square y) = x == y (==) (Curly x) (Curly y) = x == y (==) _ _ = False public export data TOMLTokenKind = TTBoolean | TTInt | TTFloat | TTString | TTPunct Punctuation | TTBare | TTIgnored public export TOMLToken : Type TOMLToken = Token TOMLTokenKind public export Eq TOMLTokenKind where (==) TTBoolean TTBoolean = True (==) TTInt TTInt = True (==) TTFloat TTFloat = True (==) TTString TTString = True (==) (TTPunct x) (TTPunct y) = x == y (==) TTBare TTBare = True (==) TTIgnored TTIgnored = True (==) _ _ = False public export TokenKind TOMLTokenKind where TokType TTBoolean = Bool TokType TTInt = Integer TokType TTFloat = Double TokType TTString = String TokType (TTPunct _) = () TokType TTBare = String TokType TTIgnored = () tokValue TTBoolean s = s == strTrue tokValue TTInt s = cast s tokValue TTFloat s = cast s tokValue TTString s = s -- TODO "unescape" the string tokValue (TTPunct _) _ = () tokValue TTBare s = s tokValue TTIgnored _ = () export ignored : TOMLToken -> Bool ignored (Tok TTIgnored _) = True ignored _ = False
module Idris.ProcessIdr import Compiler.Inline import Core.Binary import Core.Context import Core.Context.Log import Core.Directory import Core.Env import Core.Hash import Core.Metadata import Core.Options import Core.Unify import Parser.Unlit import TTImp.Elab.Check import TTImp.ProcessDecls import TTImp.TTImp import Idris.Desugar import Idris.Parser import Idris.REPLCommon import Idris.REPLOpts import Idris.Syntax import Idris.Pretty import Data.List import Data.NameMap import System.File %default covering processDecl : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> {auto m : Ref MD Metadata} -> PDecl -> Core (Maybe Error) processDecl decl = catch (do impdecls <- desugarDecl [] decl traverse (Check.processDecl [] (MkNested []) []) impdecls pure Nothing) (\err => do giveUpConstraints -- or we'll keep trying... pure (Just err)) processDecls : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> {auto m : Ref MD Metadata} -> List PDecl -> Core (List Error) processDecls decls = do xs <- traverse processDecl decls Nothing <- checkDelayedHoles | Just err => pure (case mapMaybe id xs of [] => [err] errs => errs) errs <- getTotalityErrors pure (mapMaybe id xs ++ errs) export readModule : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> (full : Bool) -> -- load everything transitively (needed for REPL and compiling) FC -> (visible : Bool) -> -- Is import visible to top level module? (imp : ModuleIdent) -> -- Module name to import (as : Namespace) -> -- Namespace to import into Core () readModule full loc vis imp as = do defs <- get Ctxt let False = (imp, vis, as) `elem` map snd (allImported defs) | True => when vis (setVisible (miAsNamespace imp)) Right fname <- nsToPath loc imp | Left err => throw err Just (syn, hash, more) <- readFromTTC False {extra = SyntaxInfo} loc vis fname imp as | Nothing => when vis (setVisible (miAsNamespace imp)) -- already loaded, just set visibility extendSyn syn defs <- get Ctxt modNS <- getNS when vis $ setVisible (miAsNamespace imp) traverse_ (\ mimp => do let m = fst mimp let reexp = fst (snd mimp) let as = snd (snd mimp) when (reexp || full) $ readModule full loc reexp m as) more setNS modNS readImport : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> Bool -> Import -> Core () readImport full imp = do readModule full (loc imp) True (path imp) (nameAs imp) addImported (path imp, reexport imp, nameAs imp) ||| Adds new import to the namespace without changing the current top-level namespace export addImport : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> Import -> Core () addImport imp = do topNS <- getNS readImport True imp setNS topNS readHash : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> Import -> Core (Bool, (Namespace, Int)) readHash imp = do Right fname <- nsToPath (loc imp) (path imp) | Left err => throw err h <- readIFaceHash fname pure (reexport imp, (nameAs imp, h)) prelude : Import prelude = MkImport (MkFC "(implicit)" (0, 0) (0, 0)) False (nsAsModuleIdent preludeNS) preludeNS export readPrelude : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> Bool -> Core () readPrelude full = do readImport full prelude setNS mainNS -- Import a TTC for use as the main file (e.g. at the REPL) export readAsMain : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> (fname : String) -> Core () readAsMain fname = do Just (syn, _, more) <- readFromTTC {extra = SyntaxInfo} True toplevelFC True fname (nsAsModuleIdent emptyNS) emptyNS | Nothing => throw (InternalError "Already loaded") replNS <- getNS replNestedNS <- getNestedNS extendSyn syn -- Read the main file's top level imported modules, so we have access -- to their names (and any of their public imports) ustm <- get UST traverse_ (\ mimp => do let m = fst mimp let as = snd (snd mimp) readModule True emptyFC True m as addImported (m, True, as)) more -- also load the prelude, if required, so that we have access to it -- at the REPL. when (not (noprelude !getSession)) $ readModule True emptyFC True (nsAsModuleIdent preludeNS) preludeNS -- We're in the namespace from the first TTC, so use the next name -- from that for the fresh metavariable name generation -- TODO: Maybe we should record this per namespace, since this is -- a little bit of a hack? Or maybe that will have too much overhead. ust <- get UST put UST (record { nextName = nextName ustm } ust) setNS replNS setNestedNS replNestedNS addPrelude : List Import -> List Import addPrelude imps = if not (nsAsModuleIdent preludeNS `elem` map path imps) then prelude :: imps else imps -- Get a file's modified time. If it doesn't exist, return 0 (that is, it -- was last modified at the dawn of time so definitely out of date for -- rebuilding purposes...) modTime : String -> Core Integer modTime fname = do Right f <- coreLift $ openFile fname Read | Left err => pure 0 -- Beginning of Time :) Right t <- coreLift $ fileModifiedTime f | Left err => do coreLift $ closeFile f pure 0 coreLift $ closeFile f pure (cast t) export getParseErrorLoc : String -> ParseError Token -> FC getParseErrorLoc fname (ParseFail _ (Just pos) _) = MkFC fname pos pos getParseErrorLoc fname (LexFail (l, c, _)) = MkFC fname (l, c) (l, c) getParseErrorLoc fname (LitFail (MkLitErr l c _)) = MkFC fname (l, 0) (l, 0) getParseErrorLoc fname _ = replFC export readHeader : {auto c : Ref Ctxt Defs} -> (path : String) -> Core Module readHeader path = do Right res <- coreLift (readFile path) | Left err => throw (FileErr path err) case runParserTo (isLitFile path) isColon res (progHdr path) of Left err => throw (ParseFail (getParseErrorLoc path err) err) Right mod => pure mod where -- Stop at the first :, that's definitely not part of the header, to -- save lexing the whole file unnecessarily isColon : WithBounds Token -> Bool isColon t = case t.val of Symbol ":" => True _ => False %foreign "scheme:collect" prim__gc : Int -> PrimIO () gc : IO () gc = primIO $ prim__gc 4 export addPublicHash : {auto c : Ref Ctxt Defs} -> (Bool, (Namespace, Int)) -> Core () addPublicHash (True, (mod, h)) = do addHash mod; addHash h addPublicHash _ = pure () -- Process everything in the module; return the syntax information which -- needs to be written to the TTC (e.g. exported infix operators) -- Returns 'Nothing' if it didn't reload anything processMod : {auto c : Ref Ctxt Defs} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> {auto m : Ref MD Metadata} -> {auto o : Ref ROpts REPLOpts} -> (srcf : String) -> (ttcf : String) -> (msg : Doc IdrisAnn) -> (sourcecode : String) -> Core (Maybe (List Error)) processMod srcf ttcf msg sourcecode = catch (do setCurrentElabSource sourcecode -- Just read the header to start with (this is to get the imports and -- see if we can avoid rebuilding if none have changed) modh <- readHeader srcf -- Add an implicit prelude import let imps = if (noprelude !getSession || moduleNS modh == nsAsModuleIdent preludeNS) then imports modh else addPrelude (imports modh) hs <- traverse readHash imps defs <- get Ctxt log "" 5 $ "Current hash " ++ show (ifaceHash defs) log "" 5 $ show (moduleNS modh) ++ " hashes:\n" ++ show (sort (map snd hs)) imphs <- readImportHashes ttcf log "" 5 $ "Old hashes from " ++ ttcf ++ ":\n" ++ show (sort imphs) -- If the old hashes are the same as the hashes we've just -- read from the imports, and the source file is older than -- the ttc, we can skip the rest. srctime <- modTime srcf ttctime <- modTime ttcf let ns = moduleNS modh if (sort (map snd hs) == sort imphs && srctime <= ttctime) then -- Hashes the same, source up to date, just set the namespace -- for the REPL do setNS (miAsNamespace ns) pure Nothing else -- needs rebuilding do iputStrLn msg Right mod <- logTime ("++ Parsing " ++ srcf) $ pure (runParser (isLitFile srcf) sourcecode (do p <- prog srcf; eoi; pure p)) | Left err => pure (Just [ParseFail (getParseErrorLoc srcf err) err]) initHash traverse addPublicHash (sort hs) resetNextVar when (ns /= nsAsModuleIdent mainNS) $ do let MkFC fname _ _ = headerloc mod d <- getDirs ns' <- pathToNS (working_dir d) (source_dir d) fname when (ns /= ns') $ throw (GenericMsg (headerloc mod) ("Module name " ++ show ns ++ " does not match file name " ++ fname)) -- read import ttcs in full here -- Note: We should only import .ttc - assumption is that there's -- a phase before this which builds the dependency graph -- (also that we only build child dependencies if rebuilding -- changes the interface - will need to store a hash in .ttc!) logTime "++ Reading imports" $ traverse_ (readImport False) imps -- Before we process the source, make sure the "hide_everywhere" -- names are set to private (TODO, maybe if we want this?) -- defs <- get Ctxt -- traverse (\x => setVisibility emptyFC x Private) (hiddenNames defs) setNS (miAsNamespace ns) errs <- logTime "++ Processing decls" $ processDecls (decls mod) -- coreLift $ gc logTime "++ Compile defs" $ compileAndInlineAll -- Save the import hashes for the imports we just read. -- If they haven't changed next time, and the source -- file hasn't changed, no need to rebuild. defs <- get Ctxt put Ctxt (record { importHashes = map snd hs } defs) pure (Just errs)) (\err => pure (Just [err])) -- Process a file. Returns any errors, rather than throwing them, because there -- might be lots of errors collected across a whole file. export process : {auto c : Ref Ctxt Defs} -> {auto m : Ref MD Metadata} -> {auto u : Ref UST UState} -> {auto s : Ref Syn SyntaxInfo} -> {auto o : Ref ROpts REPLOpts} -> Doc IdrisAnn -> FileName -> Core (List Error) process buildmsg file = do Right res <- coreLift (readFile file) | Left err => pure [FileErr file err] catch (do ttcf <- getTTCFileName file "ttc" Just errs <- logTime ("+ Elaborating " ++ file) $ processMod file ttcf buildmsg res | Nothing => pure [] -- skipped it if isNil errs then do defs <- get Ctxt d <- getDirs ns <- pathToNS (working_dir d) (source_dir d) file makeBuildDirectory ns writeToTTC !(get Syn) ttcf ttmf <- getTTCFileName file "ttm" writeToTTM ttmf pure [] else do pure errs) (\err => pure [err])
import Observables import AbstractPlotting q1 = Biquaternion(Quaternion(rand(4)), ℝ³(rand(3))) scene = AbstractPlotting.Scene() radius = rand() segments = rand(5:10) color = AbstractPlotting.RGBAf0(rand(4)...) transparency = false sphere = Sphere(q1, scene, radius = radius, segments = segments, color = color, transparency = transparency) q2 = q1 * Biquaternion(Quaternion(rand(4)), ℝ³(rand(3))) value1 = getsurface(sphere.observable, segments) update(sphere, q2) value2 = getsurface(sphere.observable, segments) @test isapprox(sphere.q, q2) @test isapprox(value1, value2) == false
141. WALTER11 BRUNT (ELIZABETH10 DERRICK, JOHN9, WILLIAM8, JACOB7,WILLIAM6, WILLIAM5, EDMUND4, EDMUND3, EDMUND2, RICHARD1) was born 11 February 1849 in Blagdon, Som, Eng, and died 1925 in Blagdon, Som, Eng. He married (1) ELIZA WESTAWAY 1 July 1880 in Dartinton, Dev, Eng.. She was born Abt. 1843, and died Aft. 1884. He married (2) ALICE EVANS 25 August 1912 in Blagdon, Som, Eng.. She was born 1872 in Timsbury, Som, Eng., and died 1965 in Blagdon, Som, Eng. i. WALTER WESTAWAY12 BRUNT, b. 1883, London, Eng.; d. Unknown. ii. OLIVIA WESTAWAY BRUNT, b. 1883, London, Eng.; d. 1883, London, Eng. 174. iii. CHARLES THOMAS12 BRUNT, b. 1913, Blagdon, Som, Eng.; d. 1992, Backwell, Som, Eng.
REAL FUNCTION SBESY0 (X) c Copyright (c) 1996 California Institute of Technology, Pasadena, CA. c ALL RIGHTS RESERVED. c Based on Government Sponsored Research NAS7-03001. c>> 1996-03-30 SBESY0 Krogh Added external statement. C>> 1995-11-13 SBESY0 Krogh Changes to simplify conversion to C. C>> 1994-11-11 SBESY0 Krogh Declared all vars. C>> 1994-10-20 SBESY0 Krogh Changes to use M77CON C>> 1990-11-29 SBESY0 CLL C>> 1985-08-02 SBESY0 Lawson Initial code. C JULY 1977 EDITION. W. FULLERTON, C3, LOS ALAMOS SCIENTIFIC LAB. C C.L.LAWSON & S.CHAN, JPL, 1984 FEB ADAPTED TO JPL MATH77 LIBRARY. c ------------------------------------------------------------------ c--S replaces "?": ?BESY0, ?BESJ0, ?BMP0, ?INITS, ?CSEVL, ?ERM1 c ------------------------------------------------------------------ EXTERNAL R1MACH, SBESJ0, SCSEVL INTEGER NTY0 REAL X, BY0CS(19), AMPL, THETA, TWODPI, XSML, 1 Y, R1MACH, SCSEVL, SBESJ0 C C SERIES FOR BY0 ON THE INTERVAL 0. TO 1.60000E+01 C WITH WEIGHTED ERROR 8.14E-32 C LOG WEIGHTED ERROR 31.09 C SIGNIFICANT FIGURES REQUIRED 30.31 C DECIMAL PLACES REQUIRED 31.73 C SAVE NTY0, XSML C DATA BY0CS / -.1127783939286557321793980546028E-1, * -.1283452375604203460480884531838E+0, * -.1043788479979424936581762276618E+0, * +.2366274918396969540924159264613E-1, * -.2090391647700486239196223950342E-2, * +.1039754539390572520999246576381E-3, * -.3369747162423972096718775345037E-5, * +.7729384267670667158521367216371E-7, * -.1324976772664259591443476068964E-8, * +.1764823261540452792100389363158E-10, * -.1881055071580196200602823012069E-12, * +.1641865485366149502792237185749E-14, * -.1195659438604606085745991006720E-16, * +.7377296297440185842494112426666E-19, * -.3906843476710437330740906666666E-21, * +.1795503664436157949829120000000E-23, * -.7229627125448010478933333333333E-26, * +.2571727931635168597333333333333E-28, * -.8141268814163694933333333333333E-31 / C DATA TWODPI / 0.636619772367581343075535053490057E0 / DATA NTY0, XSML / 0, 0.E0 / C ------------------------------------------------------------------ IF (NTY0 .eq. 0) then call SINITS (BY0CS, 19, 0.1E0*R1MACH(3), NTY0) XSML = SQRT (4.0E0*R1MACH(3)) endif C IF (X .LE. 0.E0) THEN SBESY0 = 0.E0 CALL SERM1 ('SBESY0',1,0,'X IS ZERO OR NEGATIVE','X',X,'.') ELSE IF (X .LE. 4.E0) THEN IF (X .LE. XSML) THEN Y = 0.E0 ELSE Y = X * X END IF SBESY0 = TWODPI*LOG(0.5E0*X)*SBESJ0(X) + .375E0 + * SCSEVL (.125E0*Y-1.E0, BY0CS, NTY0) ELSE CALL SBMP0 (X, AMPL, THETA) SBESY0 = AMPL * SIN(THETA) END IF C RETURN C END
C$Procedure DSKI02 ( DSK, fetch integer type 2 data ) SUBROUTINE DSKI02 ( HANDLE, DLADSC, ITEM, START, ROOM, N, VALUES ) C$ Abstract C C Fetch integer data from a type 2 DSK segment. C C$ Disclaimer C C THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE C CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. C GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE C ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE C PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" C TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY C WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A C PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC C SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE C SOFTWARE AND RELATED MATERIALS, HOWEVER USED. C C IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA C BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT C LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, C INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, C REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE C REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. C C RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF C THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY C CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE C ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. C C$ Required_Reading C C DAS C DSK C C$ Keywords C C DAS C DSK C FILES C C$ Declarations IMPLICIT NONE INCLUDE 'dla.inc' INCLUDE 'dskdsc.inc' INCLUDE 'dsk02.inc' INTEGER HANDLE INTEGER DLADSC ( * ) INTEGER ITEM INTEGER START INTEGER ROOM INTEGER N INTEGER VALUES ( * ) C$ Brief_I/O C C Variable I/O Description C -------- --- -------------------------------------------------- C HANDLE I DSK file handle. C DLADSC I DLA descriptor. C ITEM I Keyword identifying item to fetch. C START I Start index. C ROOM I Amount of room in output array. C N O Number of values returned. C VALUES O Array containing requested item. C C$ Detailed_Input C C HANDLE is the handle of a DSK file containing a type 2 C segment from which data are to be fetched. C C DLADSC is the DLA descriptor associated with the segment C from which data are to be fetched. C C ITEM is an integer "keyword" parameter designating the C item to fetch. In the descriptions below, note C that "model" refers to the model represented by C the designated segment. This model may be a C subset of a larger model. C C Names and meanings of parameters supported by this C routine are: C C KWNV Number of vertices in model. C C KWNP Number of plates in model. C C KWNVXT Total number of voxels in fine grid. C C KWVGRX Voxel grid extent. This extent is C an array of three integers C indicating the number of voxels in C the X, Y, and Z directions in the C fine voxel grid. C C KWCGSC Coarse voxel grid scale. The extent C of the fine voxel grid is related to C the extent of the coarse voxel grid C by this scale factor. C C KWVXPS Size of the voxel-to-plate pointer C list. C C KWVXLS Voxel-plate correspondence list size. C C KWVTLS Vertex-plate correspondence list C size. C C KWPLAT Plate array. For each plate, this C array contains the indices of the C plate's three vertices. The ordering C of the array members is: C C Plate 1 vertex index 1 C Plate 1 vertex index 2 C Plate 1 vertex index 3 C Plate 2 vertex index 1 C ... C C KWVXPT Voxel-plate pointer list. This list C contains pointers that map fine C voxels to lists of plates that C intersect those voxels. Note that C only fine voxels belonging to C non-empty coarse voxels are in the C domain of this mapping. C C KWVXPL Voxel-plate correspondence list. C This list contains lists of plates C that intersect fine voxels. (This C list is the data structure into C which the voxel-to-plate pointers C point.) This list can contain C empty lists. C C KWVTPT Vertex-plate pointer list. This list C contains pointers that map vertices C to lists of plates to which those C vertices belong. C C Note that the size of this list is C always NV, the number of vertices. C Hence there's no need for a separate C keyword for the size of this list. C C KWVTPL Vertex-plate correspondence list. C This list contains, for each vertex, C the indices of the plates to which C that vertex belongs. C C KWCGPT Coarse voxel grid pointers. This is C an array of pointers mapping coarse C voxels to lists of pointers in the C voxel-plate pointer list. Each C non-empty coarse voxel maps to a C list of pointers; every fine voxel C contained in a non-empty coarse voxel C has its own pointers. Grid elements C corresponding to empty coarse voxels C have null (non-positive) pointers. C C See the INCLUDE file dsk.inc for values C associated with the keyword parameters. C C C START is the start index within the specified data item C from which data are to be fetched. The index of C the first element of each data item is 1. START C has units of integers; for example, the start C index of the second plate is 4, since each plate C occupies three integers. C C ROOM is the amount of room in the output array. It is C permissible to provide an output array that has C too little room to fetch an item in one call. ROOM C has units of integers: for example, the room C required to fetch one plate is 3. C C$ Detailed_Output C C N is the number of elements fetched to the output C array VALUES. N is normally in the range C 1:ROOM; if an error occurs on the call, N is C undefined. C C VALUES is a contiguous set of elements of the item C designated by ITEM. The correspondence of C VALUES at the elements of the data item is: C C VALUES(1) ITEM(START) C ... ... C VALUES(N) ITEM(START+N-1) C C If an error occurs on the call, VALUES is C undefined. C C$ Parameters C C See the INCLUDE files C C dla.inc C dsk02.inc C dskdsc.inc C C$ Exceptions C C 1) If the input handle is invalid, the error will be diagnosed by C routines in the call tree of this routine. C C 2) If a file read error occurs, the error will be diagnosed by C routines in the call tree of this routine. C C 3) If the input DLA descriptor is invalid, the effect of this C routine is undefined. The error *may* be diagnosed by routines C in the call tree of this routine, but there are no C guarantees. C C 4) If ROOM is non-positive, the error SPICE(VALUEOUTOFRANGE) C is signaled. C C 5) If the coarse voxel scale read from the designated segment C is less than 1, the error SPICE(VALUEOUTOFRANGE) is signaled. C C 6) If the input keyword parameter is not recognized, the error C SPICE(NOTSUPPORTED) is signaled. C C 7) If START is less than 1 or greater than the size of the C item to be fetched, the error SPICE(INDEXOUTOFRANGE) is C signaled. C C$ Files C C See input argument HANDLE. C C$ Particulars C C Most SPICE applications will not need to call this routine. The C routines DSKV02, DSKP02, and DSKZ02 provide a higher-level C interface for fetching DSK type 2 vertex and plate data. C C DSK files are built using the DLA low-level format and C the DAS architecture; DLA files are a specialized type of DAS C file in which data are organized as a doubly linked list of C segments. Each segment's data belong to contiguous components of C character, double precision, and integer type. C C Note that the DSK descriptor for the segment is not needed by C this routine; the DLA descriptor contains the base address and C size information for the integer, double precision, and character C components of the segment, and these suffice for the purpose of C fetching data. C C$ Examples C C The numerical results shown for this example may differ across C platforms. The results depend on the SPICE kernels used as C input, the compiler and supporting libraries, and the machine C specific arithmetic implementation. C C 1) Look up all the vertices associated with each plate C of the model contained in a specified type 2 segment. C For this example, we'll show the context of this look-up: C opening the DSK file for read access, traversing a trivial, C one-segment list to obtain the segment of interest. C C C Example code begins here. C C C PROGRAM EX1 C IMPLICIT NONE C C INCLUDE 'dla.inc' C INCLUDE 'dskdsc.inc' C INCLUDE 'dsk02.inc' C C C C C Local parameters C C C CHARACTER*(*) FMT C PARAMETER ( FMT = '(1X,A,3(1XE16.9))' ) C C INTEGER FILSIZ C PARAMETER ( FILSIZ = 255 ) C C C C C Local variables C C C CHARACTER*(FILSIZ) DSK C C DOUBLE PRECISION VRTCES ( 3, 3 ) C C INTEGER DLADSC ( DLADSZ ) C INTEGER HANDLE C INTEGER I C INTEGER J C INTEGER N C INTEGER NP C INTEGER START C INTEGER VRTIDS ( 3 ) C C LOGICAL FOUND C C C C C C Prompt for the name of the DSK to read. C C C CALL PROMPT ( 'Enter DSK name > ', DSK ) C C C C Open the DSK file for read access. C C We use the DAS-level interface for C C this function. C C C CALL DASOPR ( DSK, HANDLE ) C C C C C Begin a forward search through the C C kernel, treating the file as a DLA. C C In this example, it's a very short C C search. C C C CALL DLABFS ( HANDLE, DLADSC, FOUND ) C C IF ( .NOT. FOUND ) THEN C C C C We arrive here only if the kernel C C contains no segments. This is C C unexpected, but we're prepared for it. C C C CALL SETMSG ( 'No segments found ' C . // 'in DSK file #.' ) C CALL ERRCH ( '#', DSK ) C CALL SIGERR ( 'SPICE(NODATA)' ) C C END IF C C C C C If we made it this far, DLADSC is the C C DLA descriptor of the first segment. C C C C Find the number of plates in the model. C C C CALL DSKI02 ( HANDLE, DLADSC, KWNP, 1, 1, N, NP ) C C C C C For each plate, look up the desired data. C C C DO I = 1, NP C C C C For the Ith plate, find the associated C C vertex IDs. We must take into account C C the fact that each plate has three C C vertices when we compute the start C C index. C C C START = 3*(I-1)+1 C C CALL DSKI02 ( HANDLE, DLADSC, KWPLAT, START, C . 3, N, VRTIDS ) C C DO J = 1, 3 C C C C Fetch the vertex associated with C C the Jth vertex ID. Again, each C C vertex is a 3-vector. Note that C C the vertices are double-precision C C data, so we fetch them using C C DSKD02. C C C START = 3*( VRTIDS(J) - 1 ) + 1 C C CALL DSKD02 ( HANDLE, DLADSC, KWVERT, START, C . 3, N, VRTCES(1,J) ) C END DO C C C C C Display the vertices of the Ith plate: C C C WRITE (*,*) ' ' C WRITE (*,*) 'Plate number: ', I C WRITE (*,FMT) ' Vertex 1: ', (VRTCES(J,1), J=1,3) C WRITE (*,FMT) ' Vertex 2: ', (VRTCES(J,2), J=1,3) C WRITE (*,FMT) ' Vertex 3: ', (VRTCES(J,3), J=1,3) C C END DO C C C C C Close the kernel. This isn't necessary in a stand- C C alone program, but it's good practice in subroutines C C because it frees program and system resources. C C C CALL DASCLS ( HANDLE ) C C END C C C When this program was executed on a PC/Linux/gfortran/64bit C platform, using a DSK file representing a regular icosahedron, C the output was: C C C Enter DSK name > solid.bds C C Plate number: 1 C Vertex 1: 0.000000000E+00 0.000000000E+00 0.117557000E+01 C Vertex 2: 0.105146000E+01 0.000000000E+00 0.525731000E+00 C Vertex 3: 0.324920000E+00 0.100000000E+01 0.525731000E+00 C C Plate number: 2 C Vertex 1: 0.000000000E+00 0.000000000E+00 0.117557000E+01 C Vertex 2: 0.324920000E+00 0.100000000E+01 0.525731000E+00 C Vertex 3: -0.850651000E+00 0.618034000E+00 0.525731000E+00 C C ... C C Plate number: 20 C Vertex 1: 0.850651000E+00 -0.618034000E+00 -0.525731000E+00 C Vertex 2: 0.000000000E+00 0.000000000E+00 -0.117557000E+01 C Vertex 3: 0.850651000E+00 0.618034000E+00 -0.525731000E+00 C C C$ Restrictions C C 1) This routine uses discovery check-in to boost C execution speed. However, this routine is in C violation of NAIF standards for use of discovery C check-in: routines called from this routine may C signal errors. If errors are signaled in called C routines, this routine's name will be missing C from the traceback message. C C$ Literature_References C C None. C C$ Author_and_Institution C C N.J. Bachman (JPL) C C$ Version C C- SPICELIB Version 1.0.0, 22-NOV-2016 (NJB) C C Added FAILED check after segment attribute fetch calls. C Re-ordered code so that values are saved only after C all error checks have passed. Simplified base address C comparisons. C C 15-JAN-2016 (NJB) C C Updated header Examples and Particulars sections. C C DSKLIB Version 1.0.2, 11-JUL-2014 (NJB) C C Fixed a trivial header comment typo. C C DSKLIB Version 1.0.1, 13-MAY-2010 (NJB) C C Updated header. C C DSKLIB Version 1.0.0, 27-OCT-2006 (NJB) C C-& C$ Index_Entries C C fetch integer data from a type 2 dsk segment C C-& C C SPICELIB functions C LOGICAL FAILED C C Local parameters C C C IBFSIZ is the size of an integer buffer used to C read parameters from the segment. C INTEGER IBFSIZ PARAMETER ( IBFSIZ = 10 ) C C Local variables C INTEGER B INTEGER CGSCAL INTEGER E INTEGER IBASE INTEGER IBUFF ( IBFSIZ ) INTEGER NCGR INTEGER NP INTEGER NV INTEGER NVXTOT INTEGER PRVBAS INTEGER PRVHAN INTEGER SIZE INTEGER VOXNPL INTEGER VOXNPT INTEGER VTXNPL LOGICAL FIRST C C Saved variables C SAVE CGSCAL SAVE FIRST SAVE NP SAVE NV SAVE NVXTOT SAVE PRVBAS SAVE PRVHAN SAVE VOXNPL SAVE VOXNPT SAVE VTXNPL C C Initial values C DATA FIRST / .TRUE. / C C Use discovery check-in. This is done for efficiency; note C however that this routine does not meet SPICE standards for C discovery check-in eligibility. C IF ( FIRST ) THEN C C Make sure we treat the input handle as new on the first pass. C Set PRVHAN to an invalid handle value. C PRVHAN = 0 C C Set the previous segment base integer address to an invalid C value as well. C PRVBAS = -1 FIRST = .FALSE. END IF IF ( ROOM .LE. 0 ) THEN CALL CHKIN ( 'DSKI02' ) CALL SETMSG ( 'ROOM was #; must be positive.' ) CALL ERRINT ( '#', ROOM ) CALL SIGERR ( 'SPICE(VALUEOUTOFRANGE)' ) CALL CHKOUT ( 'DSKI02' ) RETURN END IF IBASE = DLADSC ( IBSIDX ) C C Either a new file or new segment in the same file will require C looking up the segment parameters. To determine whether the C segment is new, we don't need to compare the entire DLA C descriptor: just comparing the integer base address of the C descriptor against the saved integer base address is sufficient. C C DSK type 2 segments always have a non-empty integer component, so C each type 2 segment in a given file will have a distinct integer C base address. Segments of other types might not contain integers, C but they can't share an integer base address with a type 2 C segment. C IF ( ( HANDLE .NE. PRVHAN ) . .OR. ( IBASE .NE. PRVBAS ) ) THEN C C Treat the input file and segment as new. C C Read the integer parameters first. These are located at the C beginning of the integer component of the segment. C CALL DASRDI ( HANDLE, IBASE+1, IBASE+IBFSIZ, IBUFF ) IF ( FAILED() ) THEN RETURN END IF C C Check the coarse voxel scale. C IF ( IBUFF(IXCGSC) .LT. 1 ) THEN CALL CHKIN ( 'DSKI02' ) CALL SETMSG ( 'Coarse voxel grid scale is #; ' // . 'this scale should be an ' // . 'integer > 1' ) CALL ERRINT ( '#', CGSCAL ) CALL SIGERR ( 'SPICE(VALUEOUTOFRANGE)' ) CALL CHKOUT ( 'DSKI02' ) RETURN END IF C C All checks have passed. We can safely store the segment C parameters. C NV = IBUFF ( IXNV ) NP = IBUFF ( IXNP ) NVXTOT = IBUFF ( IXNVXT ) CGSCAL = IBUFF ( IXCGSC ) VTXNPL = IBUFF ( IXVTLS ) VOXNPT = IBUFF ( IXVXPS ) VOXNPL = IBUFF ( IXVXLS ) C C Update the saved handle value. C PRVHAN = HANDLE C C Update the saved base integer address. C PRVBAS = IBASE END IF C C Branch based on the item to be returned. C C Note that we haven't checked the validity of START; we'll do this C after the IF block. C IF ( ITEM .EQ. KWNV ) THEN C C Return the number of vertices. C N = 1 VALUES(1) = NV C C As long as START is valid, we can return. Otherwise, C let control pass to the error handling block near C the end of this routine. C IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWNP ) THEN C C Return the number of plates. C N = 1 VALUES(1) = NP IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWNVXT ) THEN C C Return the total number of voxels. C N = 1 VALUES(1) = NVXTOT IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWVGRX ) THEN C C Return the voxel grid extents. C SIZE = 3 B = IBASE + IXVGRX + START - 1 ELSE IF ( ITEM .EQ. KWCGSC ) THEN C C Return the coarse voxel grid scale. C N = 1 VALUES(1) = CGSCAL IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWVXPS ) THEN C C Return the voxel-plate pointer list size. C N = 1 VALUES(1) = VOXNPT IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWVXLS ) THEN C C Return the voxel-plate list size. C N = 1 VALUES(1) = VOXNPL IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWVTLS ) THEN C C Return the vertex-plate list size. C N = 1 VALUES(1) = VTXNPL IF ( START .EQ. 1 ) THEN RETURN END IF ELSE IF ( ITEM .EQ. KWPLAT ) THEN C C Return plate data. There are 3*NP values in all. First C locate the data. C SIZE = 3*NP B = ( IBASE + IXPLAT ) + START - 1 ELSE IF ( ITEM .EQ. KWVXPT ) THEN C C Return voxel pointer data. There are VOXNPT values in all. C First locate the data. C SIZE = VOXNPT B = ( IBASE + IXPLAT + 3*NP ) + START - 1 ELSE IF ( ITEM .EQ. KWVXPL ) THEN C C Return voxel-plate list data. There are VOXNPL values in all. C First locate the data. C SIZE = VOXNPL B = ( IBASE + IXPLAT + 3*NP + VOXNPT ) + START - 1 ELSE IF ( ITEM .EQ. KWVTPT ) THEN C C Return vertex-plate pointer data. There are NV values in all. C First locate the data. C SIZE = NV B = ( IBASE + IXPLAT + 3*NP + VOXNPT + VOXNPL ) . + START - 1 ELSE IF ( ITEM .EQ. KWVTPL ) THEN C C Return vertex-plate list data. There are VTXNPL values in C all. First locate the data. C SIZE = VTXNPL B = ( IBASE + IXPLAT + 3*NP + VOXNPT + VOXNPL + NV ) . + START - 1 ELSE IF ( ITEM .EQ. KWCGPT ) THEN C C Compute the coarse grid size. C NCGR = NVXTOT / (CGSCAL**3) C C Return the coarse voxel grid occupancy pointers. There are C C NCGR C C values in all. First locate the data. C SIZE = NCGR B = ( IBASE + IXPLAT + 3*NP + VOXNPT . + VOXNPL + NV + VTXNPL ) . + START - 1 ELSE CALL CHKIN ( 'DSKI02' ) CALL SETMSG ( 'Keyword parameter # was not recognized.' ) CALL ERRINT ( '#', ITEM ) CALL SIGERR ( 'SPICE(NOTSUPPORTED)' ) CALL CHKOUT ( 'DSKI02' ) RETURN END IF C C The valid range for START is 1:SIZE. C IF ( ( START .LT. 1 ) .OR. ( START .GT. SIZE ) ) THEN CALL CHKIN ( 'DSKI02' ) CALL SETMSG ( 'START must be in the range defined ' // . 'by the size of the data associated ' // . 'with the keyword parameter #, ' // . 'namely 1:#. Actual value of START ' // . 'was #.' ) CALL ERRINT ( '#', ITEM ) CALL ERRINT ( '#', SIZE ) CALL ERRINT ( '#', START ) CALL SIGERR ( 'SPICE(INDEXOUTOFRANGE)' ) CALL CHKOUT ( 'DSKI02' ) RETURN END IF C C Read the requested data. We already have the start address B. C N = MIN ( ROOM, SIZE - START + 1 ) E = B + N - 1 CALL DASRDI ( HANDLE, B, E, VALUES ) RETURN END
# -------------------------------------------------------------------------- # ACE.jl and SHIPs.jl: Julia implementation of the Atomic Cluster Expansion # Copyright (c) 2019 Christoph Ortner <[email protected]> # Licensed under ASL - see ASL.md for terms and conditions. # -------------------------------------------------------------------------- using ACE, JuLIP, BenchmarkTools #--- basis = ACE.Utils.rpi_basis(; species=:Si, N = 5, maxdeg = 14) @show length(basis) V = ACE.Random.randcombine(basis) #--- at = bulk(:Si, cubic=true) * 5 nlist = neighbourlist(at, cutoff(V)) tmp = JuLIP.alloc_temp(V, maxneigs(nlist)) tmp_d = JuLIP.alloc_temp_d(V, maxneigs(nlist)) F = zeros(JVecF, length(at)) @code_warntype JuLIP.energy!(tmp, V, at) @code_warntype JuLIP.forces!(F, tmp_d, V, at) @btime JuLIP.forces!($F, $tmp_d, $V, $at) @btime JuLIP.forces($V, $at)
# -*- coding: utf-8 -*- """ @date: 2021/7/28 δΈ‹εˆ5:51 @file: diver_branch_block.py @author: zj @description: refer to [DingXiaoH/DiverseBranchBlock](https://github.com/DingXiaoH/DiverseBranchBlock) """ import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from .. import init_helper def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros'): conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=(stride, stride), padding=padding, dilation=(dilation, dilation), groups=groups, bias=False, padding_mode=padding_mode) bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True) se = nn.Sequential() se.add_module('conv', conv_layer) se.add_module('bn', bn_layer) return se class IdentityBasedConv1x1(nn.Conv2d): def __init__(self, channels, groups=1): super(IdentityBasedConv1x1, self).__init__(in_channels=channels, out_channels=channels, kernel_size=(1, 1), stride=(1, 1), padding=0, groups=groups, bias=False) assert channels % groups == 0 input_dim = channels // groups id_value = np.zeros((channels, input_dim, 1, 1)) for i in range(channels): id_value[i, i % input_dim, 0, 0] = 1 self.id_tensor = torch.from_numpy(id_value).type_as(self.weight) nn.init.zeros_(self.weight) def forward(self, input): kernel = self.weight + self.id_tensor.to(self.weight.device) result = F.conv2d(input, kernel, None, stride=1, padding=0, dilation=self.dilation, groups=self.groups) return result def get_actual_kernel(self): return self.weight + self.id_tensor.to(self.weight.device) class BNAndPadLayer(nn.Module): def __init__(self, pad_pixels, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True): super(BNAndPadLayer, self).__init__() self.bn = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) self.pad_pixels = pad_pixels def forward(self, input): output = self.bn(input) if self.pad_pixels > 0: if self.bn.affine: pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt( self.bn.running_var + self.bn.eps) else: pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps) output = F.pad(output, [self.pad_pixels] * 4) pad_values = pad_values.view(1, -1, 1, 1) output[:, :, 0:self.pad_pixels, :] = pad_values output[:, :, -self.pad_pixels:, :] = pad_values output[:, :, :, 0:self.pad_pixels] = pad_values output[:, :, :, -self.pad_pixels:] = pad_values return output @property def weight(self): return self.bn.weight @property def bias(self): return self.bn.bias @property def running_mean(self): return self.bn.running_mean @property def running_var(self): return self.bn.running_var @property def eps(self): return self.bn.eps class DiverseBranchBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, internal_channels_1x1_3x3=None, single_init=False): super(DiverseBranchBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups assert padding == kernel_size // 2 self.dbb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups) self.dbb_avg = nn.Sequential() if groups < out_channels: self.dbb_avg.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, 1), stride=(1, 1), padding=0, groups=groups, bias=False)) self.dbb_avg.add_module('bn', BNAndPadLayer(pad_pixels=padding, num_features=out_channels)) self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0)) # For ordinary convolution, an additional 1x1conv+BN branch is added self.dbb_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, groups=groups) else: # For depthwise convolution, the pre 1x1conv+BN are cancelled self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding)) self.dbb_avg.add_module('avgbn', nn.BatchNorm2d(out_channels)) if internal_channels_1x1_3x3 is None: # For mobilenet, it is better to have 2X internal channels internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels self.dbb_1x1_kxk = nn.Sequential() if internal_channels_1x1_3x3 == in_channels: self.dbb_1x1_kxk.add_module('idconv1', IdentityBasedConv1x1(channels=in_channels, groups=groups)) else: self.dbb_1x1_kxk.add_module('conv1', nn.Conv2d(in_channels=in_channels, out_channels=internal_channels_1x1_3x3, kernel_size=(1, 1), stride=(1, 1), padding=0, groups=groups, bias=False)) self.dbb_1x1_kxk.add_module('bn1', BNAndPadLayer(pad_pixels=padding, num_features=internal_channels_1x1_3x3, affine=True)) self.dbb_1x1_kxk.add_module('conv2', nn.Conv2d(in_channels=internal_channels_1x1_3x3, out_channels=out_channels, kernel_size=kernel_size, stride=(stride, stride), padding=0, groups=groups, bias=False)) self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels)) self.init_weights() # The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases. if single_init: # Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting. self.single_init() def forward(self, inputs): out = self.dbb_origin(inputs) if hasattr(self, 'dbb_1x1'): out += self.dbb_1x1(inputs) out += self.dbb_avg(inputs) out += self.dbb_1x1_kxk(inputs) return out def init_weights(self): if hasattr(self, "dbb_origin"): init_helper.init_weights(self.dbb_origin) if hasattr(self, "dbb_1x1"): init_helper.init_weights(self.dbb_1x1) if hasattr(self, "dbb_avg"): init_helper.init_weights(self.dbb_avg) if hasattr(self, "dbb_1x1_kxk"): init_helper.init_weights(self.dbb_1x1_kxk) def init_gamma(self, gamma_value): if hasattr(self, "dbb_origin"): torch.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value) if hasattr(self, "dbb_1x1"): torch.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value) if hasattr(self, "dbb_avg"): torch.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value) if hasattr(self, "dbb_1x1_kxk"): torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value) def single_init(self): self.init_gamma(0.0) if hasattr(self, "dbb_origin"): torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)
function anonTextureS = defineAnonTexture() % % function anonTextureS = defineAnonCerroptions() % % Defines the anonymous "texture" data structure. The fields containing PHI have % been left out by default. In order to leave out additional fields, remove % them from the list below. % % The following three operations are allowed per field of the input data structure: % 1. Keep the value as is: listed as 'keep' in the list below. % 2. Allow only the specific values: permitted values listed within a cell array. % If no match is found, a default anonymous string will be inserted. % 3. Insert dummy date: listed as 'date' in the list below. Date will be % replaced by a dummy value of 11/11/1111. % % APA, 1/11/2018 anonTextureS = struct( ... 'category', 'keep', ... 'description', 'keep', ... 'patchSize', 'keep', ... 'patchUnit', 'keep', ... 'paramS', 'keep', ... 'assocScanUID', 'keep', ... 'assocStructUID', 'keep', ... 'textureUID', 'keep' ... );
// ---------------------------------------------------------------------------| // Test Harness includes // ---------------------------------------------------------------------------| #include "test/support/misc-util/ptree-utils.h" // ---------------------------------------------------------------------------| // Standard includes // ---------------------------------------------------------------------------| #include <sstream> #include <iostream> // ---------------------------------------------------------------------------| // Boost includes // ---------------------------------------------------------------------------| #include <boost/property_tree/xml_parser.hpp> #include <boost/foreach.hpp> // ---------------------------------------------------------------------------| // Filewide namespace usage // ---------------------------------------------------------------------------| using namespace std; using boost::property_tree::ptree; // ---------------------------------------------------------------------------| namespace YumaTest { // ---------------------------------------------------------------------------| namespace PTreeUtils { // ---------------------------------------------------------------------------| void Display( const ptree& pt) { BOOST_FOREACH( const ptree::value_type& v, pt ) { if ( v.first == "xpo" ) { cout << "Node is xpo\n"; } cout << v.first << " : " << v.second.get_value<string>() << "\n"; Display( v.second ); } } // ---------------------------------------------------------------------------| ptree ParseXMlString( const string& xmlString ) { using namespace boost::property_tree::xml_parser; // Create empty property tree object ptree pt; istringstream ss( xmlString ); read_xml( ss, pt, trim_whitespace ); return pt; } }} // namespace YumaTest::PTreeUtils
#' Identify intervals within a specified distance. #' #' @param x [ivl_df] #' @param y [ivl_df] #' @param ... params for bed_slop and bed_intersect #' @inheritParams bed_slop #' @inheritParams bed_intersect #' #' @template groups #' #' @family multiple set operations #' @examples #' x <- tibble::tribble( #' ~chrom, ~start, ~end, #' 'chr1', 25, 50, #' 'chr1', 100, 125 #' ) #' #' y <- tibble::tribble( #' ~chrom, ~start, ~end, #' 'chr1', 60, 75 #' ) #' #' genome <- tibble::tribble( #' ~chrom, ~size, #' 'chr1', 125 #' ) #' #' bed_glyph(bed_window(x, y, genome, both = 15)) #' #' x <- tibble::tribble( #' ~chrom, ~start, ~end, #' "chr1", 10, 100, #' "chr2", 200, 400, #' "chr2", 300, 500, #' "chr2", 800, 900 #' ) #' #' y <- tibble::tribble( #' ~chrom, ~start, ~end, #' "chr1", 150, 400, #' "chr2", 230, 430, #' "chr2", 350, 430 #' ) #' #' genome <- tibble::tribble( #' ~chrom, ~size, #' "chr1", 500, #' "chr2", 1000 #' ) #' #' bed_window(x, y, genome, both = 100) #' #' @seealso \url{https://bedtools.readthedocs.io/en/latest/content/tools/window.html} #' #' @export bed_window <- function(x, y, genome, ...) { x <- check_interval(x) y <- check_interval(y) genome <- check_genome(genome) x <- mutate(x, .start = start, .end = end) # capture command line args cmd_args <- list(...) # get arguments for bed_slop and bed_intersect slop_arg_names <- names(formals(bed_slop)) intersect_arg_names <- names(formals(bed_intersect)) # parse supplied args into those for bed_slop or bed_intersect slop_args <- cmd_args[names(cmd_args) %in% slop_arg_names] intersect_args <- cmd_args[names(cmd_args) %in% intersect_arg_names] # pass new list of args to bed_slop slop_x <- do.call( bed_slop, c(list("x" = x, "genome" = genome), slop_args) ) # pass new list of args to bed_intersect res <- do.call( bed_intersect, c(list("x" = slop_x, "y" = y), intersect_args) ) res <- mutate(res, start.x = .start.x, end.x = .end.x) res <- ungroup(res) res <- select(res, -.start.x, -.end.x) res }
= = = Academic reviews of books by Finkelstein = = =
[STATEMENT] lemma (in carrier) core_subset: "core a \<subseteq> a" [PROOF STATE] proof (prove) goal (1 subgoal): 1. core a \<subseteq> a [PROOF STEP] by (auto simp: cor_def)
# Copyright (c) 2018-2021, Carnegie Mellon University # See LICENSE for details ImportAll(paradigms.scratchpad); doNormalWHT := function(arg) local N, t, rt, srt, code, a; N := When(Length(arg) >=1, arg[1], 2); t := WHT(N); rt := RandomRuleTree(t, SpiralDefaults); srt := SumsRuleTree(rt, SpiralDefaults); code := CodeSums(srt, SpiralDefaults); a := CMatrix(code, SpiralDefaults); return a; end; doScratchWHT := function(arg) local N, ls, opts, t, rt, srt, code, b; N := When(Length(arg) >=1, arg[1], 2); ls := When(Length(arg) >=2, 2^arg[2],2); opts := ScratchX86CMContext.getOpts(ls,1,1,N); t := WHT(opts.size).withTags(opts.tags); rt := RandomRuleTree(t, opts); srt := SumsRuleTree(rt, opts); code := CodeSums(srt, opts); b := CMatrix(code, opts); return b; end; doWHT := function(arg) local N, N1, i, j, a, b; SpiralDefaults.includes := ["\"scratchc.h\""]; SpiralDefaults.profile.makeopts.CFLAGS := "-O2 -Wall -fomit-frame-pointer -msse4.1 -std=gnu99 -static"; N := When(Length(arg) >= 1, arg[1], 2); for i in [2..N] do a := doNormalWHT(i); N1 := i - 1; for j in [1..N1] do b := doScratchWHT(i,j); PrintLine("Size of WHT:", 2^i); PrintLine("Scratch buffer size:", 2^j); PrintLine(a=b); PrintLine("------------------------------------------"); od; od; end;
lemma nonzero_of_real_inverse: "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = inverse (of_real x :: 'a::real_div_algebra)"
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad -/ /-! # booleans This file proves various trivial lemmas about booleans and their relation to decidable propositions. ## Notations This file introduces the notation `!b` for `bnot b`, the boolean "not". ## Tags bool, boolean, De Morgan -/ prefix `!`:90 := bnot namespace bool -- TODO: duplicate of a lemma in core theorem coe_sort_tt : coe_sort.{1 1} tt = true := coe_sort_tt -- TODO: duplicate of a lemma in core theorem coe_sort_ff : coe_sort.{1 1} ff = false := coe_sort_ff -- TODO: duplicate of a lemma in core theorem to_bool_true {h} : @to_bool true h = tt := to_bool_true_eq_tt h -- TODO: duplicate of a lemma in core theorem to_bool_false {h} : @to_bool false h = ff := to_bool_false_eq_ff h @[simp] theorem to_bool_coe (b:bool) {h} : @to_bool b h = b := (show _ = to_bool b, by congr).trans (by cases b; refl) theorem coe_to_bool (p : Prop) [decidable p] : to_bool p ↔ p := to_bool_iff _ @[simp] lemma of_to_bool_iff {p : Prop} [decidable p] : to_bool p ↔ p := ⟨of_to_bool_true, _root_.to_bool_true⟩ @[simp] lemma tt_eq_to_bool_iff {p : Prop} [decidable p] : tt = to_bool p ↔ p := eq_comm.trans of_to_bool_iff @[simp] lemma ff_eq_to_bool_iff {p : Prop} [decidable p] : ff = to_bool p ↔ Β¬ p := eq_comm.trans (to_bool_ff_iff _) @[simp] theorem to_bool_not (p : Prop) [decidable p] : to_bool (Β¬ p) = bnot (to_bool p) := by by_cases p; simp * @[simp] theorem to_bool_and (p q : Prop) [decidable p] [decidable q] : to_bool (p ∧ q) = p && q := by by_cases p; by_cases q; simp * @[simp] theorem to_bool_or (p q : Prop) [decidable p] [decidable q] : to_bool (p ∨ q) = p || q := by by_cases p; by_cases q; simp * @[simp] theorem to_bool_eq {p q : Prop} [decidable p] [decidable q] : to_bool p = to_bool q ↔ (p ↔ q) := ⟨λ h, (coe_to_bool p).symm.trans $ by simp [h], to_bool_congr⟩ lemma not_ff : Β¬ ff := ff_ne_tt @[simp] theorem default_bool : default = ff := rfl theorem dichotomy (b : bool) : b = ff ∨ b = tt := by cases b; simp @[simp] theorem forall_bool {p : bool β†’ Prop} : (βˆ€ b, p b) ↔ p ff ∧ p tt := ⟨λ h, by simp [h], Ξ» ⟨h₁, hβ‚‚βŸ© b, by cases b; assumption⟩ @[simp] theorem exists_bool {p : bool β†’ Prop} : (βˆƒ b, p b) ↔ p ff ∨ p tt := ⟨λ ⟨b, h⟩, by cases b; [exact or.inl h, exact or.inr h], Ξ» h, by cases h; exact ⟨_, h⟩⟩ /-- If `p b` is decidable for all `b : bool`, then `βˆ€ b, p b` is decidable -/ instance decidable_forall_bool {p : bool β†’ Prop} [βˆ€ b, decidable (p b)] : decidable (βˆ€ b, p b) := decidable_of_decidable_of_iff and.decidable forall_bool.symm /-- If `p b` is decidable for all `b : bool`, then `βˆƒ b, p b` is decidable -/ instance decidable_exists_bool {p : bool β†’ Prop} [βˆ€ b, decidable (p b)] : decidable (βˆƒ b, p b) := decidable_of_decidable_of_iff or.decidable exists_bool.symm @[simp] theorem cond_ff {Ξ±} (t e : Ξ±) : cond ff t e = e := rfl @[simp] theorem cond_tt {Ξ±} (t e : Ξ±) : cond tt t e = t := rfl @[simp] theorem cond_to_bool {Ξ±} (p : Prop) [decidable p] (t e : Ξ±) : cond (to_bool p) t e = if p then t else e := by by_cases p; simp * @[simp] theorem cond_bnot {Ξ±} (b : bool) (t e : Ξ±) : cond (!b) t e = cond b e t := by cases b; refl theorem coe_bool_iff : βˆ€ {a b : bool}, (a ↔ b) ↔ a = b := dec_trivial theorem eq_tt_of_ne_ff : βˆ€ {a : bool}, a β‰  ff β†’ a = tt := dec_trivial theorem eq_ff_of_ne_tt : βˆ€ {a : bool}, a β‰  tt β†’ a = ff := dec_trivial theorem bor_comm : βˆ€ a b, a || b = b || a := dec_trivial @[simp] theorem bor_assoc : βˆ€ a b c, (a || b) || c = a || (b || c) := dec_trivial theorem bor_left_comm : βˆ€ a b c, a || (b || c) = b || (a || c) := dec_trivial theorem bor_inl {a b : bool} (H : a) : a || b := by simp [H] theorem bor_inr {a b : bool} (H : b) : a || b := by simp [H] theorem band_comm : βˆ€ a b, a && b = b && a := dec_trivial @[simp] theorem band_assoc : βˆ€ a b c, (a && b) && c = a && (b && c) := dec_trivial theorem band_left_comm : βˆ€ a b c, a && (b && c) = b && (a && c) := dec_trivial theorem band_elim_left : βˆ€ {a b : bool}, a && b β†’ a := dec_trivial theorem band_intro : βˆ€ {a b : bool}, a β†’ b β†’ a && b := dec_trivial theorem band_elim_right : βˆ€ {a b : bool}, a && b β†’ b := dec_trivial lemma band_bor_distrib_left (a b c : bool) : a && (b || c) = a && b || a && c := by cases a; simp lemma band_bor_distrib_right (a b c : bool) : (a || b) && c = a && c || b && c := by cases c; simp lemma bor_band_distrib_left (a b c : bool) : a || b && c = (a || b) && (a || c) := by cases a; simp lemma bor_band_distrib_right (a b c : bool) : a && b || c = (a || c) && (b || c) := by cases c; simp @[simp] theorem bnot_false : bnot ff = tt := rfl @[simp] theorem bnot_true : bnot tt = ff := rfl @[simp] lemma not_eq_bnot : βˆ€ {a b : bool}, Β¬a = !b ↔ a = b := dec_trivial @[simp] lemma bnot_not_eq : βˆ€ {a b : bool}, Β¬!a = b ↔ a = b := dec_trivial lemma ne_bnot {a b : bool} : a β‰  !b ↔ a = b := not_eq_bnot lemma bnot_ne {a b : bool} : !a β‰  b ↔ a = b := bnot_not_eq @[simp] theorem bnot_iff_not : βˆ€ {b : bool}, !b ↔ Β¬b := dec_trivial theorem eq_tt_of_bnot_eq_ff : βˆ€ {a : bool}, bnot a = ff β†’ a = tt := dec_trivial theorem eq_ff_of_bnot_eq_tt : βˆ€ {a : bool}, bnot a = tt β†’ a = ff := dec_trivial @[simp] lemma band_bnot_self : βˆ€ x, x && !x = ff := dec_trivial @[simp] lemma bnot_band_self : βˆ€ x, !x && x = ff := dec_trivial @[simp] lemma bor_bnot_self : βˆ€ x, x || !x = tt := dec_trivial @[simp] lemma bnot_bor_self : βˆ€ x, !x || x = tt := dec_trivial theorem bxor_comm : βˆ€ a b, bxor a b = bxor b a := dec_trivial @[simp] theorem bxor_assoc : βˆ€ a b c, bxor (bxor a b) c = bxor a (bxor b c) := dec_trivial theorem bxor_left_comm : βˆ€ a b c, bxor a (bxor b c) = bxor b (bxor a c) := dec_trivial @[simp] theorem bxor_bnot_left : βˆ€ a, bxor (!a) a = tt := dec_trivial @[simp] theorem bxor_bnot_right : βˆ€ a, bxor a (!a) = tt := dec_trivial @[simp] theorem bxor_bnot_bnot : βˆ€ a b, bxor (!a) (!b) = bxor a b := dec_trivial @[simp] theorem bxor_ff_left : βˆ€ a, bxor ff a = a := dec_trivial @[simp] theorem bxor_ff_right : βˆ€ a, bxor a ff = a := dec_trivial lemma band_bxor_distrib_left (a b c : bool) : a && (bxor b c) = bxor (a && b) (a && c) := by cases a; simp lemma band_bxor_distrib_right (a b c : bool) : (bxor a b) && c = bxor (a && c) (b && c) := by cases c; simp lemma bxor_iff_ne : βˆ€ {x y : bool}, bxor x y = tt ↔ x β‰  y := dec_trivial /-! ### De Morgan's laws for booleans-/ @[simp] lemma bnot_band : βˆ€ (a b : bool), !(a && b) = !a || !b := dec_trivial @[simp] lemma bnot_bor : βˆ€ (a b : bool), !(a || b) = !a && !b := dec_trivial lemma bnot_inj : βˆ€ {a b : bool}, !a = !b β†’ a = b := dec_trivial instance : linear_order bool := { le := Ξ» a b, a = ff ∨ b = tt, le_refl := dec_trivial, le_trans := dec_trivial, le_antisymm := dec_trivial, le_total := dec_trivial, decidable_le := infer_instance, decidable_eq := infer_instance, max := bor, max_def := by { funext x y, revert x y, exact dec_trivial }, min := band, min_def := by { funext x y, revert x y, exact dec_trivial } } @[simp] lemma ff_le {x : bool} : ff ≀ x := or.intro_left _ rfl @[simp] lemma le_tt {x : bool} : x ≀ tt := or.intro_right _ rfl lemma lt_iff : βˆ€ {x y : bool}, x < y ↔ x = ff ∧ y = tt := dec_trivial @[simp] lemma ff_lt_tt : ff < tt := lt_iff.2 ⟨rfl, rfl⟩ lemma le_iff_imp : βˆ€ {x y : bool}, x ≀ y ↔ (x β†’ y) := dec_trivial lemma band_le_left : βˆ€ x y : bool, x && y ≀ x := dec_trivial lemma band_le_right : βˆ€ x y : bool, x && y ≀ y := dec_trivial lemma le_band : βˆ€ {x y z : bool}, x ≀ y β†’ x ≀ z β†’ x ≀ y && z := dec_trivial lemma left_le_bor : βˆ€ x y : bool, x ≀ x || y := dec_trivial lemma right_le_bor : βˆ€ x y : bool, y ≀ x || y := dec_trivial lemma bor_le : βˆ€ {x y z}, x ≀ z β†’ y ≀ z β†’ x || y ≀ z := dec_trivial /-- convert a `bool` to a `β„•`, `false -> 0`, `true -> 1` -/ def to_nat (b : bool) : β„• := cond b 1 0 /-- convert a `β„•` to a `bool`, `0 -> false`, everything else -> `true` -/ def of_nat (n : β„•) : bool := to_bool (n β‰  0) lemma of_nat_le_of_nat {n m : β„•} (h : n ≀ m) : of_nat n ≀ of_nat m := begin simp [of_nat]; cases nat.decidable_eq n 0; cases nat.decidable_eq m 0; simp only [to_bool], { subst m, have h := le_antisymm h (nat.zero_le _), contradiction }, { left, refl } end lemma to_nat_le_to_nat {bβ‚€ b₁ : bool} (h : bβ‚€ ≀ b₁) : to_nat bβ‚€ ≀ to_nat b₁ := by cases h; subst h; [cases b₁, cases bβ‚€]; simp [to_nat,nat.zero_le] lemma of_nat_to_nat (b : bool) : of_nat (to_nat b) = b := by cases b; simp only [of_nat,to_nat]; exact dec_trivial @[simp] lemma injective_iff {Ξ± : Sort*} {f : bool β†’ Ξ±} : function.injective f ↔ f ff β‰  f tt := ⟨λ Hinj Heq, ff_ne_tt (Hinj Heq), Ξ» H x y hxy, by { cases x; cases y, exacts [rfl, (H hxy).elim, (H hxy.symm).elim, rfl] }⟩ /-- **Kaminski's Equation** -/ theorem apply_apply_apply (f : bool β†’ bool) (x : bool) : f (f (f x)) = f x := by cases x; cases h₁ : f tt; cases hβ‚‚ : f ff; simp only [h₁, hβ‚‚] end bool
## by peter m crosta: pmcrosta at gmail ### Functions for oaxac decompositions in R given sample means and regression coefficients as inputs. setwd('~/CSVs') # read in means file meansraw <- read.csv('means.csv', header=T, stringsAsFactors=F) # read in coeffs file coeffsraw <- read.csv('coeffs.csv', header=T, stringsAsFactors=F) meansraw <- meansraw[meansraw$X!="",] coeffsraw <- coeffsraw[coeffsraw$X!="",] coefnames <- coeffsraw$X sumnames <- meansraw$X coefcol <- colnames(coeffsraw) sumcol <- colnames(meansraw) oaxaca <- function(mods) UseMethod("oaxaca") oaxaca.default <- function(mods) { ## Input is a charactervector. Likely taken from a list mod1 <- mods[1] mod2 <- mods[2] ### get model coefficients m1 <- as.numeric(coeffsraw[, which(mod1==coefcol)]) m2 <- as.numeric(coeffsraw[, which(mod2==coefcol)]) names(m1)<-coefnames names(m2)<-coefnames m1 <- na.omit(m1) m2 <- na.omit(m2) ## get means s1 <- as.numeric(meansraw[, which(mod1==sumcol)]) s2 <- as.numeric(meansraw[, which(mod2==sumcol)]) names(s1)<-sumnames names(s2)<-sumnames s1 <- na.omit(s1) s2 <- na.omit(s2) if (substr(mod1,1,1)=="r") depvar <- "readdep" else if (substr(mod1,1,1)=="m") depvar <- "mathdep" k <- NROW(m1) k1 <- NROW(m2) if (k != k1) stop("models are not the same size") W <- list("W = 1 (Oaxaca, 1973)" = diag(1, k), "W = 0 (Blinder, 1973)" = diag(0, k), "W = 0.5 (Reimers 1983)" = diag(0.5, k)) mnames <- names(m1)[-which(names(m1)=="Constant")] X1 <- c(s1[mnames], 1) X2 <- c(s2[mnames], 1) Q <- sapply(W, function(w) crossprod(X1 - X2, w %*% m1 + (diag(1, k) - w) %*% m2)) U <- sapply(W, function(w) (crossprod(X1, diag(1, k) - w) + crossprod(X2, w)) %*% (m1 - m2)) attcoeff <- c("_Iattdec_2", "_Iattdec_3", "_Iattdec_4", "_Iattdec_5", "_Iattdec_6", "_Iattdec_7", "_Iattdec_8", "_Iattdec_9", "_Iattdec_10") #Qa <- sapply(W, function(w) crossprod(X1['lnattend'] - X2['lnattend'], w[1] %*% m1['lnattend'] + (diag(1, 1) - w[1]) %*% m2['lnattend'])) #Ua <- sapply(W, function(w) (crossprod(X1['lnattend'], diag(1, 1) - w[1]) + crossprod(X2['lnattend'], w[1])) %*% (m1['lnattend'] - m2['lnattend'])) Qa <- Ua <- 0 for (ii in attcoeff) { Qa <- Qa + sapply(W, function(w) crossprod(X1[ii] - X2[ii], w[1] %*% m1[ii] + (diag(1, 1) - w[1]) %*% m2[ii])) Ua <- Ua + sapply(W, function(w) (crossprod(X1[ii], diag(1, 1) - w[1]) + crossprod(X2[ii], w[1])) %*% (m1[ii] - m2[ii])) } KK<-length(X1) Qdetail <- sapply(W, function(w) sapply(1:KK, function(jj) crossprod(X1[jj] - X2[jj], w[1] %*% m1[jj] + (diag(1, 1) - w[1]) %*% m2[jj]))) Udetail <- sapply(W, function(w) sapply(1:KK, function(jj) (crossprod(X1[jj], diag(1, 1) - w[1]) + crossprod(X2[jj], w[1])) %*% (m1[jj] - m2[jj]))) rownames(Qdetail) <- rownames(Udetail) <- c(mnames, "Constant") # Var-covar matrices setwd('~/outregs') VB1 <- as.matrix(read.table(paste(mod1, 'mat.txt', sep=''))) VB2 <- as.matrix(read.table(paste(mod2, 'mat.txt', sep=''))) VX1 <- as.matrix(read.table(paste(mod1, 'cor.txt', sep=''))) VX2 <- as.matrix(read.table(paste(mod2, 'cor.txt', sep=''))) dep1 <- s1[depvar] dep2 <- s2[depvar] Ddep <- dep1-dep2 ans <- list(R = Ddep, VR = crossprod(X1, VB1) %*% X1 + crossprod(m1, VX1) %*% m1 + sum(diag(VX1 %*% VB1)) + crossprod(X2, VB2) %*% X2 + crossprod(m2, VX2) %*% m2 + sum(diag(VX2 %*% VB2))) VQ <- sapply(W, function(w) sum(diag((VX1 + VX2) %*% (w %*% tcrossprod(VB1, w) + (diag(1, k) - w) %*% tcrossprod(VB2, diag(1, k) - w)))) + crossprod(X1 - X2, w %*% tcrossprod(VB1, w) + (diag(1, k) - w) %*% tcrossprod(VB2, diag(1, k) - w)) %*% (X1 - X2) + crossprod(w %*% m1 + (diag(1, k) - w) %*% m2, VX1 + VX2) %*% (w %*% m1 + (diag(1, k) - w) %*% m2)) VU <- sapply(W, function(w) sum(diag((crossprod(diag(1, k) - w, VX1) %*% (diag(1, k) - w) + crossprod(w, VX2) %*% w) %*% (VB1 + VB2))) + crossprod(crossprod(diag(1, k) - w, X1) + crossprod(w, X2), VB1 + VB2) %*% (crossprod(diag(1, k) - w, X1) + crossprod(w, X2))+ crossprod(m1 - m2, crossprod(diag(1, k) - w, VX1) %*% (diag(1, k) - w) + crossprod(w, VX2) %*% w) %*% (m1 - m2)) ans$Q <- Q ans$U <- U ans$VQ <- VQ ans$VU <- VU ans$W <- W ans$Qa <- Qa ans$Ua <- Ua ans$call <- match.call() ans$mod1 <- mod1 ans$mod2 <- mod2 ans$Qdetail <- Qdetail ans$Udetail <- Udetail class(ans) <- "oaxaca" ans } print.oaxaca <- function(x) { se <- sqrt(x$VQ) zval <- x$Q / se decomp <- cbind(Explained = x$Q, StdErr = se, "z-value" = zval, "Pr(>|z|)" = 2*pnorm(-abs(zval))) cat("\nBlinder-Oaxaca decomposition\n\nCall:\n") print(x$call) cat(x$mod1, ' ', x$mod2, "\n") decomp <- matrix(nrow = 1, ncol = 4) decomp[1, c(1, 2)] <- c(x$R, sqrt(x$VR)) decomp[1, 3] <- c(decomp[, 1] / decomp[, 2]) decomp[1, 4] <- c(2 * pnorm(-abs(decomp[, 3]))) colnames(decomp) <- c("Difference", "StdErr", "z-value", "Pr(>|z|)") rownames(decomp) <- "Mean" cat("\n") print(zapsmall(decomp)) cat("\nLinear decomposition:\n") for (i in 1:3) { cat(paste("\nWeight: ", names(x$W[i]), "\n")) decomp <- cbind(Difference = c(x$Q[i], x$U[i]), StdErr = c(sqrt(x$VQ[i]), sqrt(x$VU[i]))) decomp <- cbind(decomp, "z-value" = decomp[, 1] / decomp[, 2]) decomp <- cbind(decomp, "Pr(>|z|)" = 2 * pnorm(-abs(decomp[, 3]))) decomp <- cbind(decomp, c(x$Qa[i], x$Ua[i])) colnames(decomp) <- c("Difference", "StdErr", "z-value", "Pr(>|z|)", "attendance") rownames(decomp) <- c("Explained", "Unexplained") print(zapsmall(decomp)) } cat("\n") } write.oaxaca <- function(x) { if (class(x) != "oaxaca") stop("Input needs to be of class oaxaca") #cat(x$mod1, ' ', x$mod2, "\n") decomp <- matrix(nrow = 3, ncol = 5) decomp[1, c(1, 2)] <- c(x$R, sqrt(x$VR)) decomp[1, 3] <- c(decomp[1, 1] / decomp[1, 2]) decomp[1, 4] <- c(2 * pnorm(-abs(decomp[1, 3]))) colnames(decomp) <- c("Difference", "StdErr", "z-value", "Pr(>|z|)", paste(x$mod1, x$mod2, sep='')) if (substr(x$mod1,1,1)=="r") depvar <- "Reading" else if (substr(x$mod1,1,1)=="m") depvar <- "Math" rownames(decomp) <- c(depvar, "Explained", "Unexplained") i<-3 decomp[2,1] <- x$Q[i] decomp[3,1] <- x$U[i] decomp[2,2] <- sqrt(x$VQ[i]) decomp[3,2] <- sqrt(x$VU[i]) decomp[2,3] <- decomp[2, 1] / decomp[2, 2] decomp[3,3] <- decomp[3, 1] / decomp[3, 2] decomp[2,4] <- 2 * pnorm(-abs(decomp[2, 3])) decomp[3,4] <- 2 * pnorm(-abs(decomp[3, 3])) decomp[2,5] <- x$Qa[i] decomp[3,5] <- x$Ua[i] zapsmall(decomp) } detail.oaxaca <- function(x, depth=6) { if (class(x) != "oaxaca") stop("Input needs to be of class oaxaca") ##only deal with Cotton/Reimers Qdet <- sort(x$Qdetail[,3]) Udet <- sort(x$Udetail[,3]) Qh <- head(Qdet, depth) Qt <- tail(Qdet, depth) Uh <- head(Udet, depth) Ut <- tail(Udet, depth) Qsum <- cbind(Qh, names(Qt), Qt) Usum <- cbind(Uh, names(Ut), Ut) ret.list <- list(Qsum, Usum) } ### Below is code specific to the analysis ### which decompositions do we want to do? ### coefcol[-1] lists the options: ### math, reading ### pooled, fixed effects ### racedum1-5, econdum1-4 ### remember: race: amerindian, asian, black, hispanic, white ### remember: econ: not poor, free lunch, reduced lunch, other dis ## For pooled and FE models: white-black, white-hispanic, hispanic-black ## notpoor-free, notpoor-reduced, notpoor-other ## This becomes: 5-3, 5-4, 4-3; 1-2, 1-3, 1-4 grouprace <- list( c('mpa4racedum5C', 'mpa4racedum3C'), c('rpa4racedum5C', 'rpa4racedum3C'), c('mfa4racedum5C', 'mfa4racedum3C'), c('rfa4racedum5C', 'rfa4racedum3C'), c('mpa4racedum5C', 'mpa4racedum4C'), c('rpa4racedum5C', 'rpa4racedum4C'), c('mfa4racedum5C', 'mfa4racedum4C'), c('rfa4racedum5C', 'rfa4racedum4C'), c('mpa4racedum4C', 'mpa4racedum3C'), c('rpa4racedum4C', 'rpa4racedum3C'), c('mfa4racedum4C', 'mfa4racedum3C'), c('rfa4racedum4C', 'rfa4racedum3C')) groupecon <- list( c('mpa4econdum1C', 'mpa4econdum2C'), c('rpa4econdum1C', 'rpa4econdum2C'), c('mfa4econdum1C', 'mfa4econdum2C'), c('rfa4econdum1C', 'rfa4econdum2C'), c('mpa4econdum1C', 'mpa4econdum3C'), c('rpa4econdum1C', 'rpa4econdum3C'), c('mfa4econdum1C', 'mfa4econdum3C'), c('rfa4econdum1C', 'rfa4econdum3C'), c('mpa4econdum1C', 'mpa4econdum4C'), c('rpa4econdum1C', 'rpa4econdum4C'), c('mfa4econdum1C', 'mfa4econdum4C'), c('rfa4econdum1C', 'rfa4econdum4C')) oax.race<-lapply(grouprace, oaxaca) oax.econ<-lapply(groupecon, oaxaca) ## oaxaca print out function lapply(oax.race, write.oaxaca) lapply(oax.econ, write.oaxaca) ## print out detailed decomposition race.det <- lapply(oax.race, detail.oaxaca) names(race.det) <- sapply(grouprace, function(x) paste(x, collapse='')) race.det econ.det <- lapply(oax.econ, detail.oaxaca) names(econ.det) <- sapply(groupecon, function(x) paste(x, collapse='')) econ.det
Formal statement is: lemma IVT': fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b::linorder_topology" assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b" and *: "continuous_on {a .. b} f" shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" Informal statement is: If $f$ is a continuous function on a closed interval $[a,b]$ and $y$ is a number between $f(a)$ and $f(b)$, then there is a number $x$ between $a$ and $b$ such that $f(x) = y$.
function [gk] = tapas_trans_mv2gk(mu, sigma2) %% Transforms to the scaling of the gamma distribution% % Input % mu -- Means % sigma2 -- Variance % % Output % gk -- K parameter of an inverse gamma distribution % [email protected] % copyright (C) 2015 % gk = mu.^2 ./ sigma2; end
// Copyright (c) 2005 - 2014 Marc de Kamps // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF // USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // If you use this software in work leading to a scientific publication, you should include a reference there to // the 'currently valid reference', which can be found at http://miind.sourceforge.net #ifndef _CODE_LIBS_GEOMLIB_GEOMALGORITHM_INCLUDE_GUARD #define _CODE_LIBS_GEOMLIB_GEOMALGORITHM_INCLUDE_GUARD #include <boost/circular_buffer.hpp> #include <MPILib/include/AlgorithmInterface.hpp> #include "GeomParameter.hpp" #include "NumericalMasterEquationCode.hpp" namespace GeomLib { //! Population density algorithm based on Geometric binning: http://arxiv.org/abs/1309.1654 //! Population density techniques are used to model neural populations. See //! http://link.springer.com/article/10.1023/A:1008964915724 for an introduction. //! This algorithm uses a geometric binning scheme as described in http://arxiv.org/abs/1309.1654 . //! The rest of this comment will describe the interaction with the MIIND framework and the //! objects that it requires. //! \section label_geom_intro Introduction //! GeomAlgorithm inherits from AlgorithmInterface. This implies that a node in an MPINetwork //! can be configured with this algorithm, and that network simulations can be run, where //! each node represents a neuronal population. The simulations are equivalent to spiking neuron //! simulations of point model neurons, such as performed by NEST, with some caveats. GeomAlgorithm //! deals with one dimensional point models, such as leaky-integrate-and-fire, quadratic-integrate-and-fire //! and exponential-integrate-and-fire. 2D models such adaptive-exponential-integrate-and-fire and conductance //! based models will be handled by another algorithm, which is in alpha stage. GeomAlgorithm //! is instantiated using a GeomParameter, which specifies, among other things, the neuronal model //! and its parameter values, in the form of an AbstractOdeSystem. From the user perspective, this is //! the most important, and the documentation of AbstractOdeSystem, and more the important the //! <a href="http://miind.sf.net/tutorial.pdf">MIIND tutorial</a> is the first port of call. In the remainder //! of this documentation section the interaction of GeomAlgorithm with other objects will be discussed. //! //! \section label_geom_initialization The Initialization Sequence //! //! The creation sequence is lengthy although the user only sees the first two stages, represented in blue. //! NeuronParameter defines quantities common to most neuronal models, such as membrane potential, //! membrane time constant, threshold, etc. OdeParameter accepts a NeuronParameter, and other parameters //! that set the dimension of the grid. LifNeuralDynamics defines the neuronal model itself in terms of //! a method LifNeuralDynamics::EvolvePotential(MPILib::Potential,MPILib::Time), which describes //! how a potential evolves over time under the dynamics of the neuronal model, in this case leaky-integrate-and //! fire dynamics. For most users the dynamics of a model will already have been defined. The introduction //! of novel dynamics requires an overload of the corresponding function of AbstractNeuralDynamics. //! LifOdeSystem is a representation of the grid itself. Note that for spiking neural dynamics another //! grid representation is needed: SpikingNeuralDynamics. This difference will be removed in the future. //! The constructor call requires the following initialization sequence. //! \msc["Main loop"] //! NeuronParameter, OdeParameter, LifNeuralDynamics, LifOdeSystem, GeomParameter; //! //! NeuronParameter=>OdeParameter [label="argument", linecolor="blue"]; //! OdeParameter=>LifNeuralDynamics[label="argument", linecolor="blue"]; //! LifNeuralDynamics=>LifOdeSystem[label="argument"]; //! LifOdeSystem=>GeomParameter[label="argument"]; //! \endmsc //! //! section label_geom_creation The Creation Sequence template <class WeightValue> class GeomAlgorithm : public AlgorithmInterface<WeightValue> { public: typedef GeomParameter Parameter; using AlgorithmInterface<WeightValue>::evolveNodeState; //! Standard way for user to create algorithm GeomAlgorithm ( const GeomParameter& ); //! Copy constructor GeomAlgorithm(const GeomAlgorithm&); //! virtual destructor virtual ~GeomAlgorithm(); /** * Cloning operation, to provide each DynamicNode with its own * Algorithm instance. Clients use the naked pointer at their own risk. */ virtual GeomAlgorithm* clone() const; /** * Configure the Algorithm * @param simParam The simulation parameter */ virtual void configure(const MPILib::SimulationRunParameter& simParam); //! Evolve the state of the node, by time t, given input firing rates and weight vector virtual void evolveNodeState ( const std::vector<Rate>&, //!< A vector of instantaneous firing rates const std::vector<WeightValue>&, //!< A vector of efficacies Time //!< time by which the state should be evolved ); virtual void prepareEvolve(const std::vector<Rate>&, const std::vector<WeightValue>&, const std::vector<MPILib::NodeType>&); /** * The current time point * @return The current time point */ virtual MPILib::Time getCurrentTime() const; /** * The calculated rate of the node * @return The rate of the node */ virtual MPILib::Rate getCurrentRate() const; /** * Stores the algorithm state in a Algorithm Grid * @return The state of the algorithm */ virtual MPILib::AlgorithmGrid getGrid(NodeId, bool b_state = true) const; private: bool IsReportDue() const; const GeomParameter _par_geom; AlgorithmGrid _grid; unique_ptr<AbstractOdeSystem> _p_system; unique_ptr<AbstractMasterEquation> _p_zl; bool _b_zl; Time _t_cur; Time _t_step; Time _t_report; mutable Number _n_report; }; } #endif // include guard
/- Copyright (c) 2017 Johannes HΓΆlzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes HΓΆlzl Quotient construction on modules -/ import linear_algebra.basic import linear_algebra.prod_module import linear_algebra.subtype_module universes u v w variables {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} variables [ring Ξ±] [module Ξ± Ξ²] [module Ξ± Ξ³] (s : set Ξ²) [is_submodule s] include Ξ± open function namespace is_submodule def quotient_rel : setoid Ξ² := ⟨λb₁ bβ‚‚, b₁ - bβ‚‚ ∈ s, assume b, by simp [zero], assume b₁ bβ‚‚ hb, have - (b₁ - bβ‚‚) ∈ s, from is_submodule.neg hb, by simpa using this, assume b₁ bβ‚‚ b₃ hb₁₂ hb₂₃, have (b₁ - bβ‚‚) + (bβ‚‚ - b₃) ∈ s, from add hb₁₂ hb₂₃, by simpa using this⟩ end is_submodule namespace quotient_module open is_submodule section variable (Ξ²) /-- Quotient module. `quotient Ξ² s` is the quotient of the module `Ξ²` by the submodule `s`. -/ def quotient (s : set Ξ²) [is_submodule s] : Type v := quotient (quotient_rel s) end local notation ` Q ` := quotient Ξ² s def mk {s : set Ξ²} [is_submodule s] : Ξ² β†’ quotient Ξ² s := quotient.mk' instance {Ξ±} {Ξ²} {r : ring Ξ±} [module Ξ± Ξ²] (s : set Ξ²) [is_submodule s] : has_coe Ξ² (quotient Ξ² s) := ⟨mk⟩ protected def eq {s : set Ξ²} [is_submodule s] {a b : Ξ²} : (a : quotient Ξ² s) = b ↔ a - b ∈ s := quotient.eq' instance quotient.has_zero : has_zero Q := ⟨mk 0⟩ instance quotient.has_add : has_add Q := ⟨λa b, quotient.lift_onβ‚‚' a b (Ξ»a b, ((a + b : Ξ² ) : Q)) $ assume a₁ aβ‚‚ b₁ bβ‚‚ (h₁ : a₁ - b₁ ∈ s) (hβ‚‚ : aβ‚‚ - bβ‚‚ ∈ s), quotient.sound' $ have (a₁ - b₁) + (aβ‚‚ - bβ‚‚) ∈ s, from add h₁ hβ‚‚, show (a₁ + aβ‚‚) - (b₁ + bβ‚‚) ∈ s, by simpa⟩ instance quotient.has_neg : has_neg Q := ⟨λa, quotient.lift_on' a (Ξ»a, mk (- a)) $ assume a b (h : a - b ∈ s), quotient.sound' $ have - (a - b) ∈ s, from neg h, show (-a) - (-b) ∈ s, by simpa⟩ instance quotient.add_comm_group : add_comm_group Q := { zero := 0, add := (+), neg := has_neg.neg, add_assoc := assume a b c, quotient.induction_on₃' a b c $ assume a b c, quotient_module.eq.2 $ by simp [is_submodule.zero], add_comm := assume a b, quotient.induction_onβ‚‚' a b $ assume a b, quotient_module.eq.2 $ by simp [is_submodule.zero], add_zero := assume a, quotient.induction_on' a $ assume a, quotient_module.eq.2 $ by simp [is_submodule.zero], zero_add := assume a, quotient.induction_on' a $ assume a, quotient_module.eq.2 $ by simp [is_submodule.zero], add_left_neg := assume a, quotient.induction_on' a $ assume a, quotient_module.eq.2 $ by simp [is_submodule.zero] } instance quotient.has_scalar : has_scalar Ξ± Q := ⟨λa b, quotient.lift_on' b (Ξ»b, ((a β€’ b : Ξ²) : Q)) $ assume b₁ bβ‚‚ (h : b₁ - bβ‚‚ ∈ s), quotient.sound' $ have a β€’ (b₁ - bβ‚‚) ∈ s, from is_submodule.smul a h, show a β€’ b₁ - a β€’ bβ‚‚ ∈ s, by simpa [smul_add]⟩ instance quotient.module : module Ξ± Q := { smul := (β€’), one_smul := assume a, quotient.induction_on' a $ assume a, quotient_module.eq.2 $ by simp [is_submodule.zero], mul_smul := assume a b c, quotient.induction_on' c $ assume c, quotient_module.eq.2 $ by simp [is_submodule.zero, mul_smul], smul_add := assume a b c, quotient.induction_onβ‚‚' b c $ assume b c, quotient_module.eq.2 $ by simp [is_submodule.zero, smul_add], add_smul := assume a b c, quotient.induction_on' c $ assume c, quotient_module.eq.2 $ by simp [is_submodule.zero, add_smul], } @[simp] lemma coe_zero : ((0 : Ξ²) : Q) = 0 := rfl @[simp] lemma coe_smul (a : Ξ±) (b : Ξ²) : ((a β€’ b : Ξ²) : Q) = a β€’ b := rfl @[simp] lemma coe_add (a b : Ξ²) : ((a + b : Ξ²) : Q) = a + b := rfl lemma coe_eq_zero (b : Ξ²) : (b : quotient Ξ² s) = 0 ↔ b ∈ s := by rw [← (coe_zero s), quotient_module.eq]; simp instance quotient.inhabited : inhabited Q := ⟨0⟩ lemma is_linear_map_quotient_mk : @is_linear_map _ _ Q _ _ _ (Ξ»b, mk b : Ξ² β†’ Q) := by refine {..}; intros; refl def quotient.lift {f : Ξ² β†’ Ξ³} (hf : is_linear_map f) (h : βˆ€x∈s, f x = 0) (b : Q) : Ξ³ := b.lift_on' f $ assume a b (hab : a - b ∈ s), have f a - f b = 0, by rw [←hf.sub]; exact h _ hab, show f a = f b, from eq_of_sub_eq_zero this @[simp] lemma quotient.lift_mk {f : Ξ² β†’ Ξ³} (hf : is_linear_map f) (h : βˆ€x∈s, f x = 0) (b : Ξ²) : quotient.lift s hf h (b : Q) = f b := rfl lemma is_linear_map_quotient_lift {f : Ξ² β†’ Ξ³} {h : βˆ€x y, x - y ∈ s β†’ f x = f y} (hf : is_linear_map f) : is_linear_map (Ξ»q:Q, quotient.lift_on' q f h) := ⟨assume b₁ bβ‚‚, quotient.induction_onβ‚‚' b₁ bβ‚‚ $ assume b₁ bβ‚‚, hf.add b₁ bβ‚‚, assume a b, quotient.induction_on' b $ assume b, hf.smul a b⟩ lemma quotient.injective_lift [is_submodule s] {f : Ξ² β†’ Ξ³} (hf : is_linear_map f) (hs : s = {x | f x = 0}) : injective (quotient.lift s hf $ le_of_eq hs) := assume a b, quotient.induction_onβ‚‚' a b $ assume a b (h : f a = f b), quotient.sound' $ have f (a - b) = 0, by rw [hf.sub]; simp [h], show a - b ∈ s, from hs.symm β–Έ this lemma quotient.exists_rep {s : set Ξ²} [is_submodule s] : βˆ€ q : quotient Ξ² s, βˆƒ b : Ξ², mk b = q := @_root_.quotient.exists_rep _ (quotient_rel s) section vector_space variables {Ξ±' : Type u} {Ξ²' : Type v} variables [field Ξ±'] [vector_space Ξ±' Ξ²'] (s' : set Ξ²') [is_submodule s'] omit Ξ± include Ξ±' instance quotient.vector_space : vector_space Ξ±' (quotient Ξ²' s') := {} theorem quotient_prod_linear_equiv : nonempty ((quotient_module.quotient Ξ²' s' Γ— s') ≃ₗ Ξ²') := let ⟨g, H1, H2⟩ := exists_right_inverse_linear_map_of_surjective (quotient_module.is_linear_map_quotient_mk s') (quotient_module.quotient.exists_rep) in have H3 : βˆ€ b, quotient_module.mk (g b) = b := Ξ» b, congr_fun H2 b, ⟨{ to_fun := Ξ» b, g b.1 + b.2.1, inv_fun := Ξ» b, (quotient_module.mk b, ⟨b - g (quotient_module.mk b), (quotient_module.coe_eq_zero _ _).1 $ ((quotient_module.is_linear_map_quotient_mk _).sub _ _).trans $ by rw [H3, sub_self]⟩), left_inv := Ξ» ⟨q, b, h⟩, have H4 : quotient_module.mk b = 0, from (quotient_module.coe_eq_zero s' b).2 h, have H5 : quotient_module.mk (g q + b) = q, from ((quotient_module.is_linear_map_quotient_mk _).add _ _).trans $ by simp only [H3, H4, add_zero], prod.ext H5 (subtype.eq $ by simp only [H5, add_sub_cancel']), right_inv := Ξ» b, add_sub_cancel'_right _ _, linear_fun := ⟨λ ⟨q1, b1, h1⟩ ⟨q2, b2, h2⟩, show g (q1 + q2) + (b1 + b2) = (g q1 + b1) + (g q2 + b2), by rw [H1.add]; simp only [add_left_comm, add_assoc], Ξ» c ⟨q, b, h⟩, show g (c β€’ q) + (c β€’ b) = c β€’ (g q + b), by rw [H1.smul, smul_add]⟩ }⟩ end vector_space end quotient_module
lemma pseudo_divmod_field: fixes g :: "'a::field poly" assumes g: "g \<noteq> 0" and *: "pseudo_divmod f g = (q,r)" defines "c \<equiv> coeff g (degree g) ^ (Suc (degree f) - degree g)" shows "f = g * smult (1/c) q + smult (1/c) r"
module local_routines !! !! Setup the Merewether problem. !! use global_mod, only: dp, ip, force_double, charlen, wall_elevation, pi use domain_mod, only: domain_type, STG, UH, VH, ELV use read_raster_mod, only: read_gdal_raster use which_mod, only: which use ragged_array_mod, only: ragged_array_2d_ip_type use file_io_mod, only: read_character_file, read_csv_into_array use points_in_poly_mod, only: points_in_poly use iso_c_binding, only: c_f_pointer, c_loc implicit none ! Add rain ! Discharge of 19.7 m^3/s occurs over a cirle with radius 15 real(dp), parameter :: rain_centre(2) = [382300.0_dp, 6354290.0_dp], rain_radius = 15.0_dp real(force_double) :: rain_rate = real(19.7_dp, force_double)/(pi * rain_radius**2) integer(ip) :: num_input_discharge_cells contains ! ! Main setup routine ! subroutine set_initial_conditions_merewether(domain, reflective_boundaries) class(domain_type), target, intent(inout):: domain logical, intent(in):: reflective_boundaries integer(ip):: i, j, k real(dp), allocatable:: x(:,:), y(:,:) character(len=charlen):: input_elevation_file, polygon_filename ! Add this elevation to all points in houses/ csv polygons real(dp), parameter:: house_height = 3.0_dp ! friction parameters real(dp), parameter:: friction_road = 0.02_dp, friction_other = 0.04_dp ! things to help read polygons character(len=charlen), allocatable:: house_filenames(:) integer(ip):: house_file_unit, inside_point_counter, house_cell_count real(dp), allocatable:: polygon_coords(:,:) logical, allocatable:: is_inside_poly(:) type(ragged_array_2d_ip_type), pointer :: rainfall_region_indices integer(ip), allocatable :: i_inside(:) allocate(x(domain%nx(1),domain%nx(2)), y(domain%nx(1),domain%nx(2))) ! ! Dry flow to start with. Later we clip stage to elevation. ! domain%U(:,:,[STG, UH, VH]) = 0.0_dp ! ! Set elevation with the raster ! input_elevation_file = "./topography/topography1.tif" do j = 1, domain%nx(2) do i = 1, domain%nx(1) x(i,j) = domain%lower_left(1) + (i-0.5_dp)*domain%dx(1) y(i,j) = domain%lower_left(2) + (j-0.5_dp)*domain%dx(2) end dO end do call read_gdal_raster(input_elevation_file, x, y, domain%U(:,:,ELV), & domain%nx(1)*domain%nx(2), verbose=1_ip, bilinear=0_ip) print*, 'Elevation range: ', minval(domain%U(:,:,ELV)), maxval(domain%U(:,:,ELV)) ! Get filenames for the houses open(newunit = house_file_unit, file='houses_filenames.txt') call read_character_file(house_file_unit, house_filenames, "(A)") close(house_file_unit) ! Read the houses and add house_height to the elevation for all points inside allocate(is_inside_poly(domain%nx(1))) house_cell_count = 0 do k = 1, size(house_filenames) inside_point_counter = 0 polygon_filename = './' // TRIM(house_filenames(k)) call read_csv_into_array(polygon_coords, polygon_filename) do j = 1, domain%nx(2) ! Find points in the polygon in column j call points_in_poly(polygon_coords(1,:), polygon_coords(2,:), x(:,j), y(:,j), is_inside_poly) inside_point_counter = inside_point_counter + count(is_inside_poly) do i = 1, domain%nx(1) if(is_inside_poly(i)) then domain%U(i,j,ELV) = domain%U(i,j,ELV) + house_height house_cell_count = house_cell_count + 1_ip end if end do end do print*, trim(house_filenames(k)), ': ', inside_point_counter end do print*, '# cells in houses: ', house_cell_count if(reflective_boundaries) then ! Walls all sides domain%U(1,:,ELV) = wall_elevation domain%U(domain%nx(1), :, ELV) = wall_elevation domain%U(:, 1 ,ELV) = wall_elevation domain%U(:, domain%nx(2), ELV) = wall_elevation else ! Transmissive outflow -- but we prevent mass leaking out of the back of the domain. ! Also block off other sides -- only need outflow on east edge of domain. domain%U(:, 1:2, ELV) = domain%U(:,1:2, ELV) + 10.0_dp domain%U(1:2, :, ELV) = domain%U(1:2, :, ELV) + 10.0_dp domain%U(:, (domain%nx(2)-1):domain%nx(2), ELV) = 10.0_dp + & domain%U(:, (domain%nx(2)-1):domain%nx(2), ELV) end if ! ! Set friction ! ! Initial value -- later updated based on roads domain%manning_squared = friction_other * friction_other ! Find points in road polygon and set friction there polygon_filename = 'Road/RoadPolygon.csv' call read_csv_into_array(polygon_coords, polygon_filename) inside_point_counter = 0 do j = 1, domain%nx(2) call points_in_poly(polygon_coords(1,:), polygon_coords(2,:), x(:,j), y(:,j), is_inside_poly) inside_point_counter = inside_point_counter + count(is_inside_poly) do i = 1, domain%nx(1) if(is_inside_poly(i)) domain%manning_squared(i,j) = friction_road * friction_road end do end do print*, '' print*, '# Points in road polygon :', inside_point_counter print*, '' ! Ensure stage >= elevation domain%U(:,:,STG) = max(domain%U(:,:,STG), domain%U(:,:,ELV) + 1.0e-08_dp) print*, 'Elevation range: ', minval(domain%U(:,:,ELV)), maxval(domain%U(:,:,ELV)) print*, 'Stage range: ', minval(domain%U(:,:,STG)), maxval(domain%U(:,:,STG)) ! Figure out indices that are inside the rainfall forcing region. allocate(rainfall_region_indices) allocate(rainfall_region_indices%i2(domain%nx(2))) num_input_discharge_cells = 0 do j = 1, domain%nx(2) ! Find cells in this row that are within the rain circle call which( (domain%x - rain_centre(1))**2 < rain_radius**2 - (domain%y(j) - rain_centre(2))**2, & rainfall_region_indices%i2(j)%i1) ! For this routine we cross-check conservation by counting the number of input discharge cells and ! doing a separate mass balance. This assumes 1 domain (only) num_input_discharge_cells = num_input_discharge_cells + size(rainfall_region_indices%i2(j)%i1) end do domain%forcing_context_cptr = c_loc(rainfall_region_indices) end subroutine ! ! This is the discharge source term, called every time-step. It's like rainfall ! in a "circle" ! subroutine apply_rainfall_forcing(domain, dt) type(domain_type), intent(inout) :: domain real(dp), intent(in) :: dt integer(ip) :: j type(ragged_array_2d_ip_type), pointer :: rainfall_region_indices ! Unpack the forcing context pointer. In this case it is a ragged array giving the indices ! where we should apply the rainfall in this domain call c_f_pointer(domain%forcing_context_cptr, rainfall_region_indices) !$OMP PARALLEL DEFAULT(PRIVATE) SHARED(domain, rain_rate, dt, rainfall_region_indices) !$OMP DO SCHEDULE(STATIC) do j = 1, domain%nx(2) if(size(rainfall_region_indices%i2(j)%i1) > 0) then ! Rainfall at cells within a circle of radius "rain_radius" about "rain_centre" domain%U( rainfall_region_indices%i2(j)%i1, j,STG) = rain_rate * dt + & domain%U(rainfall_region_indices%i2(j)%i1, j,STG) end if end do !$OMP END DO !$OMP END PARALLEL end subroutine end module !@!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! program merewether !! Urban flooding test case in Merewether from Australian Rainfall and Runoff. !! Smith, G. & Wasko, C. Revision Project 15: Two Dimensional Simulations In !! Urban Areas - Representation of Buildings in 2D Numerical Flood Models Australian !! Rainfall and Runoff, Engineers Australia, 2012 use global_mod, only: ip, dp, minimum_allowed_depth use domain_mod, only: domain_type use boundary_mod, only: transmissive_boundary use local_routines implicit none integer(ip):: j real(dp):: last_write_time type(domain_type):: domain ! Approx timestep between outputs real(dp), parameter :: approximate_writeout_frequency = 60.0_dp real(dp), parameter :: final_time = 900.0_dp ! Length/width real(dp), parameter, dimension(2):: global_lw = [320.0_dp, 415.0_dp] ! Lower-left corner coordinate real(dp), parameter, dimension(2):: global_ll = [382251.0_dp, 6354266.5_dp] ! grid size (number of x/y cells) integer(ip), parameter, dimension(2):: global_nx = [320_ip, 415_ip] ![160_ip, 208_ip] ![321_ip, 416_ip] ! Use reflective or transmissive boundaries logical, parameter:: reflective_boundaries = .FALSE. ! Track mass real(force_double) :: volume_added, volume_initial ! Use a small time step at the start real(dp) :: startup_timestep = 0.05_dp real(dp) :: startup_time = 10.0_dp domain%timestepping_method = 'rk2n' !'euler' !'rk2n' ! Use a very small maximum timestep initially, because the domain is dry, but water is quickly ! added, which can cause 'first-step' instability otherwise. Re-set it after an evolve call domain%allocate_quantities(global_lw, global_nx, global_ll) if((.not. reflective_boundaries) .and. (.not. all(domain%is_nesting_boundary))) then ! Allow waves to propagate outside all edges domain%boundary_subroutine => transmissive_boundary end if ! Add rainfall to the domain domain%forcing_subroutine => apply_rainfall_forcing ! Call local routine to set initial conditions call set_initial_conditions_merewether(domain, reflective_boundaries) call domain%update_boundary() volume_initial = domain%mass_balance_interior() ! Trick to get the code to write out just after the first timestep last_write_time = -approximate_writeout_frequency ! Evolve the code do while (.TRUE.) if(domain%time - last_write_time >= approximate_writeout_frequency) then last_write_time = last_write_time + approximate_writeout_frequency call domain%print() call domain%write_to_output_files() print*, 'mass_balance: ', domain%mass_balance_interior() print*, 'volume_added + initial: ', volume_added + volume_initial print*, '.... difference: ', domain%mass_balance_interior() - (volume_added + volume_initial) end if if (domain%time > final_time) then exit end if ! At the start, evolve with a specified (small) timestep. ! Later allow an adaptive step if(domain%time < startup_time) then call domain%evolve_one_step(startup_timestep) else call domain%evolve_one_step() end if ! Track volume added 'in theory' based on the known rainfall rate that is going into ! a known number of cells volume_added = domain%time * rain_rate * num_input_discharge_cells * product(domain%dx) !print*, 'negative_depth_fix_counter: ', domain%negative_depth_fix_counter end do call domain%write_max_quantities() ! Print timing info call domain%timer%print() ! Simple test (mass conservation only) print*, 'MASS CONSERVATION TEST' if(abs(domain%mass_balance_interior() - (volume_added + volume_initial) ) < 1.0e-06_dp) then print*, 'PASS' else print*, 'FAIL -- mass conservation not good enough. ', & 'This is expected with single precision, which will affect the computed direct rainfall volumes' end if call domain%finalise() END PROGRAM
-- {-# OPTIONS -v tc.term.exlam:100 -v extendedlambda:100 -v int2abs.reifyterm:100 #-} -- Andreas, 2013-02-26 module Issue778 (Param : Set) where data βŠ₯ : Set where interactive : βŠ₯ β†’ βŠ₯ interactive = Ξ» {x β†’ {!x!}} where aux : βŠ₯ β†’ βŠ₯ aux x = x -- splitting did not work for extended lambda in the presence of -- module parameters and where block data ⊀ : Set where tt : ⊀ test : ⊀ β†’ ⊀ test = Ξ» { x β†’ {!x!} } where aux : ⊀ β†’ ⊀ aux x = x
/* * This file is a part of the TChecker project. * * See files AUTHORS and LICENSE for copyright details. * */ #ifndef TCHECKER_TA_HH #define TCHECKER_TA_HH #include <cstdlib> #include <boost/dynamic_bitset.hpp> #include "tchecker/basictypes.hh" #include "tchecker/syncprod/syncprod.hh" #include "tchecker/syncprod/vedge.hh" #include "tchecker/syncprod/vloc.hh" #include "tchecker/ta/allocators.hh" #include "tchecker/ta/state.hh" #include "tchecker/ta/system.hh" #include "tchecker/ta/transition.hh" #include "tchecker/utils/shared_objects.hh" #include "tchecker/variables/clocks.hh" #include "tchecker/variables/intvars.hh" /*! \file ta.hh \brief Timed automata */ namespace tchecker { namespace ta { /*! \brief Type of iterator over initial states */ using initial_iterator_t = tchecker::syncprod::initial_iterator_t; /*! \brief Type of range of iterators over inital states */ using initial_range_t = tchecker::syncprod::initial_range_t; /*! \brief Accessor to initial edges \param system : a system \return initial edges */ inline tchecker::ta::initial_range_t initial_edges(tchecker::ta::system_t const & system) { return tchecker::syncprod::initial_edges(system.as_syncprod_system()); } /*! \brief Dereference type for iterator over initial states */ using initial_value_t = tchecker::syncprod::initial_value_t; /*! \brief Compute initial state \param system : a system \param vloc : tuple of locations \param intval : valuation of bounded integer variables \param vedge : tuple of edges \param invariant : clock constraint container for initial state invariant \param initial_range : range of initial state valuations \pre the size of vloc and vedge is equal to the size of initial_range. initial_range has been obtained from system. initial_range yields the initial locations of all the processes ordered by increasing process identifier \post vloc has been initialized to the tuple of initial locations in initial_range, intval has been initialized to the initial valuation of bounded integer variables, vedge has been initialized to an empty tuple of edges. clock constraints from initial_range invariant have been aded to invariant \return tchecker::STATE_OK if initialization succeeded STATE_SRC_INVARIANT_VIOLATED if the initial valuation of integer variables does not satisfy invariant \throw std::runtime_error : if evaluation of invariant throws an exception */ tchecker::state_status_t initial(tchecker::ta::system_t const & system, tchecker::intrusive_shared_ptr_t<tchecker::shared_vloc_t> const & vloc, tchecker::intrusive_shared_ptr_t<tchecker::shared_intval_t> const & intval, tchecker::intrusive_shared_ptr_t<tchecker::shared_vedge_t> const & vedge, tchecker::clock_constraint_container_t & invariant, tchecker::ta::initial_value_t const & initial_range); /*! \brief Compute initial state and transition \param system : a system \param s : state \param t : transition \param v : initial iterator value \post s has been initialized from v, and t is an empty transition \return tchecker::STATE_OK \throw std::invalid_argument : if s and v have incompatible sizes */ inline tchecker::state_status_t initial(tchecker::ta::system_t const & system, tchecker::ta::state_t & s, tchecker::ta::transition_t & t, tchecker::ta::initial_value_t const & v) { return tchecker::ta::initial(system, s.vloc_ptr(), s.intval_ptr(), t.vedge_ptr(), t.tgt_invariant_container(), v); } /*! \brief Type of iterator over outgoing edges */ using outgoing_edges_iterator_t = tchecker::syncprod::outgoing_edges_iterator_t; /*! \brief Type of range of outgoing edges */ using outgoing_edges_range_t = tchecker::syncprod::outgoing_edges_range_t; /*! \brief Accessor to outgoing edges \param system : a system \param vloc : tuple of locations \return range of outgoing synchronized and asynchronous edges from vloc in system */ inline tchecker::ta::outgoing_edges_range_t outgoing_edges(tchecker::ta::system_t const & system, tchecker::intrusive_shared_ptr_t<tchecker::shared_vloc_t const> const & vloc) { return tchecker::syncprod::outgoing_edges(system.as_syncprod_system(), vloc); } /*! \brief Type of outgoing vedge (range of synchronized/asynchronous edges) */ using outgoing_edges_value_t = tchecker::syncprod::outgoing_edges_value_t; /*! \brief Compute next state \param system : a system \param vloc : tuple of locations \param intval : valuation of bounded integer variables \param vedge : tuple of edges \param src_invariant : clock constraint container for invariant of vloc before it is updated \param guard : clock constraint container for guard of vedge \param reset : clock resets container for clock resets of vedge \param tgt_invariant : clock constaint container for invariant of vloc after it is updated \param edges : tuple of edge from vloc (range of synchronized/asynchronous edges) \pre the source location in edges match the locations in vloc. No process has more than one edge in edges. The pid of every process in edges is less than the size of vloc \post the locations in vloc have been updated to target locations of the processes involved in edges, and they have been left unchanged for the other processes. The values of variables in intval have been updated according to the statements in edges. Clock constraints from the invariants of vloc before it is updated have been pushed to src_invariant. Clock constraints from the guards in edges have been pushed into guard. Clock resets from the statements in edges have been pushed into reset. And clock constraints from the invariants in the updated vloc have been pushed into tgt_invariant \return STATE_OK if state computation succeeded, STATE_INCOMPATIBLE_EDGE if the source locations in edges do not match vloc, STATE_SRC_INVARIANT_VIOLATED if the valuation intval does not satisfy the invariant in vloc, STATE_GUARD_VIOLATED if the values in intval do not satisfy the guard of edges, STATE_STATEMENT_FAILED if statements in edges cannot be applied to intval STATE_TGT_INVARIANT_VIOLATED if the updated intval does not satisfy the invariant of updated vloc. \throw std::invalid_argument : if a pid in edges is greater or equal to the size of vloc \throw std::runtime_error : if the guard in edges generates clock resets, or if the statements in edges generate clock constraints, or if the invariant in updated vloc generates clock resets \throw std::runtime_error : if evaluation of invariants, guards or statements throws an exception */ tchecker::state_status_t next(tchecker::ta::system_t const & system, tchecker::intrusive_shared_ptr_t<tchecker::shared_vloc_t> const & vloc, tchecker::intrusive_shared_ptr_t<tchecker::shared_intval_t> const & intval, tchecker::intrusive_shared_ptr_t<tchecker::shared_vedge_t> const & vedge, tchecker::clock_constraint_container_t & src_invariant, tchecker::clock_constraint_container_t & guard, tchecker::clock_reset_container_t & reset, tchecker::clock_constraint_container_t & tgt_invariant, tchecker::ta::outgoing_edges_value_t const & edges); /*! \brief Compute next state and transition \param system : a system \param s : state \param t : transition \param v : outgoing edge value \post s have been updated from v, and t is the set of edges in v \return status of state s after update \throw std::invalid_argument : if s and v have incompatible size */ inline tchecker::state_status_t next(tchecker::ta::system_t const & system, tchecker::ta::state_t & s, tchecker::ta::transition_t & t, tchecker::ta::outgoing_edges_value_t const & v) { return tchecker::ta::next(system, s.vloc_ptr(), s.intval_ptr(), t.vedge_ptr(), t.src_invariant_container(), t.guard_container(), t.reset_container(), t.tgt_invariant_container(), v); } /*! \brief Checks if time can elapse in a tuple of locations \param system : a system of timed processes \param vloc : tuple of locations \return true if time delay is allowed in vloc, false otherwise */ bool delay_allowed(tchecker::ta::system_t const & system, tchecker::vloc_t const & vloc); /*! \brief Compute the set of reference clocks that can let time elapse in a tuple of locations \param system : a system of timed processes \param r : reference clocks \param vloc : tuple of locations \return a dynamic bitset of size r.refcount() that contains all reference clocks that can delay from vloc */ boost::dynamic_bitset<> delay_allowed(tchecker::ta::system_t const & system, tchecker::reference_clock_variables_t const & r, tchecker::vloc_t const & vloc); /*! \brief Compute the set of reference clocks that should synchronize on a tuple of edges \param system : a system of timed processes \param r : reference clocks \param vedge : tuple of edges \return a dynamic bitset of size r.refcount() that contains all reference clocks that should synchronize on vedge */ boost::dynamic_bitset<> sync_refclocks(tchecker::ta::system_t const & system, tchecker::reference_clock_variables_t const & r, tchecker::vedge_t const & vedge); /*! \brief Checks if a state satisfies a set of labels \param system : a system of timed processes \param s : a state \param labels : a set of labels \return true if labels is not empty and labels is included in the set of labels of state s, false otherwise */ bool satisfies(tchecker::ta::system_t const & system, tchecker::ta::state_t const & s, boost::dynamic_bitset<> const & labels); /*! \brief Accessor to state attributes as strings \param system : a system \param s : a state \param m : a map of string pairs (key, value) \post the tuple of locations and integer variables valuation in s have been added to map m */ void attributes(tchecker::ta::system_t const & system, tchecker::ta::state_t const & s, std::map<std::string, std::string> & m); /*! \brief Accessor to transition attributes as strings \param system : a system \param t : a transition \param m : a map of string pairs (key, value) \post the tuple of edges in t has been added to map m */ void attributes(tchecker::ta::system_t const & system, tchecker::ta::transition_t const & t, std::map<std::string, std::string> & m); /*! \class ta_t \brief Timed automaton over a system of synchronized timed processes */ class ta_t final : public tchecker::ts::full_ts_t<tchecker::ta::state_sptr_t, tchecker::ta::const_state_sptr_t, tchecker::ta::transition_sptr_t, tchecker::ta::const_transition_sptr_t, tchecker::ta::initial_range_t, tchecker::ta::outgoing_edges_range_t, tchecker::ta::initial_value_t, tchecker::ta::outgoing_edges_value_t> { public: /*! \brief Constructor \param system : a system of timed processes \param block_size : number of objects allocated in a block \note all states and transitions are pool allocated and deallocated automatically */ ta_t(std::shared_ptr<tchecker::ta::system_t const> const & system, std::size_t block_size); /*! \brief Copy constructor (deleted) */ ta_t(tchecker::ta::ta_t const &) = delete; /*! \brief Move constructor (deleted) */ ta_t(tchecker::ta::ta_t &&) = delete; /*! \brief Destructor */ virtual ~ta_t() = default; /*! \brief Assignment operator (deleted) */ tchecker::ta::ta_t & operator=(tchecker::ta::ta_t const &) = delete; /*! \brief Move-assignment operator (deleted) */ tchecker::ta::ta_t & operator=(tchecker::ta::ta_t &&) = delete; using tchecker::ts::full_ts_t<tchecker::ta::state_sptr_t, tchecker::ta::const_state_sptr_t, tchecker::ta::transition_sptr_t, tchecker::ta::const_transition_sptr_t, tchecker::ta::initial_range_t, tchecker::ta::outgoing_edges_range_t, tchecker::ta::initial_value_t, tchecker::ta::outgoing_edges_value_t>::status; using tchecker::ts::full_ts_t<tchecker::ta::state_sptr_t, tchecker::ta::const_state_sptr_t, tchecker::ta::transition_sptr_t, tchecker::ta::const_transition_sptr_t, tchecker::ta::initial_range_t, tchecker::ta::outgoing_edges_range_t, tchecker::ta::initial_value_t, tchecker::ta::outgoing_edges_value_t>::state; using tchecker::ts::full_ts_t<tchecker::ta::state_sptr_t, tchecker::ta::const_state_sptr_t, tchecker::ta::transition_sptr_t, tchecker::ta::const_transition_sptr_t, tchecker::ta::initial_range_t, tchecker::ta::outgoing_edges_range_t, tchecker::ta::initial_value_t, tchecker::ta::outgoing_edges_value_t>::transition; /*! \brief Accessor \return range of initial edges */ virtual tchecker::ta::initial_range_t initial_edges(); /*! \brief Initial state and transition \param init_edge : initial state valuation \param v : container \post triples (status, s, t) have been added to v, for each initial state s and initial transition t that are initialized from init_edge. */ virtual void initial(tchecker::ta::initial_value_t const & init_edge, std::vector<sst_t> & v); /*! \brief Accessor \param s : state \return outgoing edges from state s */ virtual tchecker::ta::outgoing_edges_range_t outgoing_edges(tchecker::ta::const_state_sptr_t const & s); /*! \brief Next state and transition \param s : state \param out_edge : outgoing edge value \param v : container \post triples (status, s', t') have been added to v, for each successor state s' and transition t from s to s' along outgoing edge out_edge */ virtual void next(tchecker::ta::const_state_sptr_t const & s, tchecker::ta::outgoing_edges_value_t const & out_edge, std::vector<sst_t> & v); using tchecker::ts::full_ts_t<tchecker::ta::state_sptr_t, tchecker::ta::const_state_sptr_t, tchecker::ta::transition_sptr_t, tchecker::ta::const_transition_sptr_t, tchecker::ta::initial_range_t, tchecker::ta::outgoing_edges_range_t, tchecker::ta::initial_value_t, tchecker::ta::outgoing_edges_value_t>::initial; using tchecker::ts::full_ts_t<tchecker::ta::state_sptr_t, tchecker::ta::const_state_sptr_t, tchecker::ta::transition_sptr_t, tchecker::ta::const_transition_sptr_t, tchecker::ta::initial_range_t, tchecker::ta::outgoing_edges_range_t, tchecker::ta::initial_value_t, tchecker::ta::outgoing_edges_value_t>::next; /*! \brief Checks if a state satisfies a set of labels \param s : a state \param labels : a set of labels \return true if labels is not empty and labels is included in the set of labels of state s, false otherwise */ virtual bool satisfies(tchecker::ta::const_state_sptr_t const & s, boost::dynamic_bitset<> const & labels) const; /*! \brief Accessor to state attributes as strings \param s : a state \param m : a map of string pairs (key, value) \post attributes of state s have been added to map m */ virtual void attributes(tchecker::ta::const_state_sptr_t const & s, std::map<std::string, std::string> & m) const; /*! \brief Accessor to transition attributes as strings \param t : a transition \param m : a map of string pairs (key, value) \post attributes of transition t have been added to map m */ virtual void attributes(tchecker::ta::const_transition_sptr_t const & t, std::map<std::string, std::string> & m) const; /*! \brief Accessor \return Underlying system of timed processes */ tchecker::ta::system_t const & system() const; private: std::shared_ptr<tchecker::ta::system_t const> _system; /*!< System of timed processes */ tchecker::ta::state_pool_allocator_t _state_allocator; /*!< Pool allocator of states */ tchecker::ta::transition_pool_allocator_t _transition_allocator; /*! Pool allocator of transitions */ }; } // end of namespace ta } // end of namespace tchecker #endif // TCHECKER_TA_HH
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author [email protected] // #ifndef LIBND4J_BLAS_HELPER_H #define LIBND4J_BLAS_HELPER_H #include <system/pointercast.h> #include <types/float16.h> #include <cblas.h> #include <helpers/logger.h> #ifdef _WIN32 #define CUBLASWINAPI __stdcall #define CUSOLVERAPI __stdcall #else #define CUBLASWINAPI #define CUSOLVERAPI #endif namespace sd { typedef enum{ CUBLAS_STATUS_SUCCESS =0, CUBLAS_STATUS_NOT_INITIALIZED =1, CUBLAS_STATUS_ALLOC_FAILED =3, CUBLAS_STATUS_INVALID_VALUE =7, CUBLAS_STATUS_ARCH_MISMATCH =8, CUBLAS_STATUS_MAPPING_ERROR =11, CUBLAS_STATUS_EXECUTION_FAILED=13, CUBLAS_STATUS_INTERNAL_ERROR =14, CUBLAS_STATUS_NOT_SUPPORTED =15, CUBLAS_STATUS_LICENSE_ERROR =16 } cublasStatus_t; typedef enum { CUBLAS_OP_N=0, CUBLAS_OP_T=1, CUBLAS_OP_C=2 } cublasOperation_t; struct cublasContext; typedef struct cublasContext *cublasHandle_t; typedef enum { CUDA_R_16F= 2, /* real as a half */ CUDA_C_16F= 6, /* complex as a pair of half numbers */ CUDA_R_32F= 0, /* real as a float */ CUDA_C_32F= 4, /* complex as a pair of float numbers */ CUDA_R_64F= 1, /* real as a double */ CUDA_C_64F= 5, /* complex as a pair of double numbers */ CUDA_R_8I = 3, /* real as a signed char */ CUDA_C_8I = 7, /* complex as a pair of signed char numbers */ CUDA_R_8U = 8, /* real as a unsigned char */ CUDA_C_8U = 9, /* complex as a pair of unsigned char numbers */ CUDA_R_32I= 10, /* real as a signed int */ CUDA_C_32I= 11, /* complex as a pair of signed int numbers */ CUDA_R_32U= 12, /* real as a unsigned int */ CUDA_C_32U= 13 /* complex as a pair of unsigned int numbers */ } cublasDataType_t; typedef void (*CblasSgemv)(CBLAS_ORDER Layout, CBLAS_TRANSPOSE TransA, int M, int N, float alpha, float *A, int lda, float *X, int incX, float beta, float *Y, int incY); typedef void (*CblasDgemv)(CBLAS_ORDER Layout, CBLAS_TRANSPOSE TransA, int M, int N, double alpha, double *A, int lda, double *X, int incX, double beta, double *Y, int incY); typedef void (*CblasSgemm)(CBLAS_ORDER Layout, CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB, int M, int N, int K, float alpha, float *A, int lda, float *B, int ldb, float beta, float *C, int ldc); typedef void (*CblasDgemm)(CBLAS_ORDER Layout, CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB, int M, int N, int K, double alpha, double *A, int lda, double *B, int ldb, double beta, double *C, int ldc); typedef void (*CblasSgemmBatch)(CBLAS_ORDER Layout, CBLAS_TRANSPOSE *TransA_Array, CBLAS_TRANSPOSE *TransB_Array, int *M_Array, int *N_Array, int *K_Array, float *alpha_Array, float **A_Array, int *lda_Array, float **B_Array, int *ldb_Array, float *beta_Array, float **C_Array, int *ldc_Array, int group_count, int *group_size); typedef void (*CblasDgemmBatch)(CBLAS_ORDER Layout, CBLAS_TRANSPOSE *TransA_Array, CBLAS_TRANSPOSE *TransB_Array, int *M_Array, int *N_Array, int *K_Array, double *alpha_Array, double **A_Array, int *lda_Array, double **B_Array, int* ldb_Array, double *beta_Array, double **C_Array, int *ldc_Array, int group_count, int *group_size); #ifdef LAPACK_ROW_MAJOR #undef LAPACK_ROW_MAJOR #endif #ifdef LAPACK_COL_MAJOR #undef LAPACK_COL_MAJOR #endif enum LAPACK_LAYOUT { LAPACK_ROW_MAJOR=101, LAPACK_COL_MAJOR=102 }; typedef int (*LapackeSgesvd)(LAPACK_LAYOUT matrix_layout, char jobu, char jobvt, int m, int n, float* a, int lda, float* s, float* u, int ldu, float* vt, int ldvt, float* superb); typedef int (*LapackeDgesvd)(LAPACK_LAYOUT matrix_layout, char jobu, char jobvt, int m, int n, double* a, int lda, double* s, double* u, int ldu, double* vt, int ldvt, double* superb); typedef int (*LapackeSgesdd)(LAPACK_LAYOUT matrix_layout, char jobz, int m, int n, float* a, int lda, float* s, float* u, int ldu, float* vt, int ldvt); typedef int (*LapackeDgesdd)(LAPACK_LAYOUT matrix_layout, char jobz, int m, int n, double* a, int lda, double* s, double* u, int ldu, double* vt, int ldvt); typedef cublasStatus_t (CUBLASWINAPI *CublasSgemv)(cublasHandle_t handle, cublasOperation_t trans, int m, int n, float *alpha, /* host or device pointer */ float *A, int lda, float *x, int incx, float *beta, /* host or device pointer */ float *y, int incy); typedef cublasStatus_t (CUBLASWINAPI *CublasDgemv)(cublasHandle_t handle, cublasOperation_t trans, int m, int n, double *alpha, /* host or device pointer */ double *A, int lda, double *x, int incx, double *beta, /* host or device pointer */ double *y, int incy); typedef cublasStatus_t (CUBLASWINAPI *CublasHgemm)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, __half *alpha, /* host or device pointer */ __half *A, int lda, __half *B, int ldb, __half *beta, /* host or device pointer */ __half *C, int ldc); typedef cublasStatus_t (CUBLASWINAPI *CublasSgemm)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, float *alpha, /* host or device pointer */ float *A, int lda, float *B, int ldb, float *beta, /* host or device pointer */ float *C, int ldc); typedef cublasStatus_t (CUBLASWINAPI *CublasDgemm)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, double *alpha, /* host or device pointer */ double *A, int lda, double *B, int ldb, double *beta, /* host or device pointer */ double *C, int ldc); typedef cublasStatus_t (CUBLASWINAPI *CublasSgemmEx)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, float *alpha, /* host or device pointer */ void *A, cublasDataType_t Atype, int lda, void *B, cublasDataType_t Btype, int ldb, float *beta, /* host or device pointer */ void *C, cublasDataType_t Ctype, int ldc); typedef cublasStatus_t (CUBLASWINAPI *CublasHgemmBatched)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, __half *alpha, /* host or device pointer */ __half *Aarray[], int lda, __half *Barray[], int ldb, __half *beta, /* host or device pointer */ __half *Carray[], int ldc, int batchCount); typedef cublasStatus_t (CUBLASWINAPI *CublasSgemmBatched)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, float *alpha, /* host or device pointer */ float *Aarray[], int lda, float *Barray[], int ldb, float *beta, /* host or device pointer */ float *Carray[], int ldc, int batchCount); typedef cublasStatus_t (CUBLASWINAPI *CublasDgemmBatched)(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int m, int n, int k, double *alpha, /* host or device pointer */ double *Aarray[], int lda, double *Barray[], int ldb, double *beta, /* host or device pointer */ double *Carray[], int ldc, int batchCount); typedef enum{ CUSOLVER_STATUS_SUCCESS=0, CUSOLVER_STATUS_NOT_INITIALIZED=1, CUSOLVER_STATUS_ALLOC_FAILED=2, CUSOLVER_STATUS_INVALID_VALUE=3, CUSOLVER_STATUS_ARCH_MISMATCH=4, CUSOLVER_STATUS_MAPPING_ERROR=5, CUSOLVER_STATUS_EXECUTION_FAILED=6, CUSOLVER_STATUS_INTERNAL_ERROR=7, CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED=8, CUSOLVER_STATUS_NOT_SUPPORTED = 9, CUSOLVER_STATUS_ZERO_PIVOT=10, CUSOLVER_STATUS_INVALID_LICENSE=11 } cusolverStatus_t; typedef enum { CUSOLVER_EIG_TYPE_1=1, CUSOLVER_EIG_TYPE_2=2, CUSOLVER_EIG_TYPE_3=3 } cusolverEigType_t ; typedef enum { CUSOLVER_EIG_MODE_NOVECTOR=0, CUSOLVER_EIG_MODE_VECTOR=1 } cusolverEigMode_t ; struct cusolverDnContext; typedef struct cusolverDnContext *cusolverDnHandle_t; typedef cusolverStatus_t (CUSOLVERAPI *CusolverDnSgesvdBufferSize)( cusolverDnHandle_t handle, int m, int n, int *lwork); typedef cusolverStatus_t (CUSOLVERAPI *CusolverDnDgesvdBufferSize)( cusolverDnHandle_t handle, int m, int n, int *lwork); typedef cusolverStatus_t (CUSOLVERAPI *CusolverDnSgesvd)( cusolverDnHandle_t handle, signed char jobu, signed char jobvt, int m, int n, float *A, int lda, float *S, float *U, int ldu, float *VT, int ldvt, float *work, int lwork, float *rwork, int *info); typedef cusolverStatus_t (CUSOLVERAPI *CusolverDnDgesvd)( cusolverDnHandle_t handle, signed char jobu, signed char jobvt, int m, int n, double *A, int lda, double *S, double *U, int ldu, double *VT, int ldvt, double *work, int lwork, double *rwork, int *info); enum BlasFunctions { GEMV = 0, GEMM = 1, }; class BlasHelper { private: bool _hasHgemv = false; bool _hasHgemm = false; bool _hasHgemmBatch = false; bool _hasSgemv = false; bool _hasSgemm = false; bool _hasSgemmBatch = false; bool _hasDgemv = false; bool _hasDgemm = false; bool _hasDgemmBatch = false; CblasSgemv cblasSgemv; CblasDgemv cblasDgemv; CblasSgemm cblasSgemm; CblasDgemm cblasDgemm; CblasSgemmBatch cblasSgemmBatch; CblasDgemmBatch cblasDgemmBatch; LapackeSgesvd lapackeSgesvd; LapackeDgesvd lapackeDgesvd; LapackeSgesdd lapackeSgesdd; LapackeDgesdd lapackeDgesdd; CublasSgemv cublasSgemv; CublasDgemv cublasDgemv; CublasHgemm cublasHgemm; CublasSgemm cublasSgemm; CublasDgemm cublasDgemm; CublasSgemmEx cublasSgemmEx; CublasHgemmBatched cublasHgemmBatched; CublasSgemmBatched cublasSgemmBatched; CublasDgemmBatched cublasDgemmBatched; CusolverDnSgesvdBufferSize cusolverDnSgesvdBufferSize; CusolverDnDgesvdBufferSize cusolverDnDgesvdBufferSize; CusolverDnSgesvd cusolverDnSgesvd; CusolverDnDgesvd cusolverDnDgesvd; public: static BlasHelper& getInstance(); void initializeFunctions(Nd4jPointer *functions); void initializeDeviceFunctions(Nd4jPointer *functions); template <typename T> bool hasGEMV(); template <typename T> bool hasGEMM(); bool hasGEMM(const sd::DataType dtype); bool hasGEMV(const sd::DataType dtype); template <typename T> bool hasBatchedGEMM(); CblasSgemv sgemv(); CblasDgemv dgemv(); CblasSgemm sgemm(); CblasDgemm dgemm(); CblasSgemmBatch sgemmBatched(); CblasDgemmBatch dgemmBatched(); LapackeSgesvd sgesvd(); LapackeDgesvd dgesvd(); LapackeSgesdd sgesdd(); LapackeDgesdd dgesdd(); // destructor ~BlasHelper() noexcept; }; } #endif
Square <- function(x) { return(x^2) } cat("R program running") print(Square(4)) while (TRUE) { Sys.sleep(3) }
%-------------------------------------------------------------------------------- % File Name : subnotes/intro.tex % Created By : rikutakei % Creation Date : [2017-04-03 10:27] % Last Modified : [2017-04-03 20:15] % Description : Intro for my notebook %-------------------------------------------------------------------------------- \chapter*{Preface} \label{cha:preface} This notebook is for noting down all of the concepts and background information I need to know for my current and future projects. I will try and maintain all of the references and keep this note as updated as possible. \\ \noindent This notebook is free of use for everyone, as long as it complies with the licence file associated with this Git repository. \vfill Riku Takei
module Control.Permutation.Proofs import Control.Permutation.Mod %access export %default total ||| Proof that (n + 1)! >= n! private factorialIncr : (n : Nat) -> LTE (factorial n) (factorial (S n)) factorialIncr Z = lteRefl factorialIncr n = lteAddRight (factorial n) ||| Proof that n! >= 1 export factorialLTE : (n : Nat) -> LTE 1 (factorial n) factorialLTE Z = lteRefl factorialLTE (S k) = lteTransitive (factorialLTE k) (factorialIncr k)
module Prelude.Cast import Builtin import Prelude.Basics import Prelude.Num import Prelude.Types %default total ----------- -- CASTS -- ----------- -- Casts between primitives only here. They might be lossy. ||| Interface for transforming an instance of a data type to another type. public export interface Cast from to where constructor MkCast ||| Perform a (potentially lossy!) cast operation. ||| @ orig The original type cast : (orig : from) -> to export Cast a a where cast = id -- To String export Cast Int String where cast = prim__cast_IntString export Cast Integer String where cast = prim__cast_IntegerString export Cast Char String where cast = prim__cast_CharString export Cast Double String where cast = prim__cast_DoubleString export Cast Nat String where cast = cast . natToInteger export Cast Int8 String where cast = prim__cast_Int8String export Cast Int16 String where cast = prim__cast_Int16String export Cast Int32 String where cast = prim__cast_Int32String export Cast Int64 String where cast = prim__cast_Int64String export Cast Bits8 String where cast = prim__cast_Bits8String export Cast Bits16 String where cast = prim__cast_Bits16String export Cast Bits32 String where cast = prim__cast_Bits32String export Cast Bits64 String where cast = prim__cast_Bits64String -- To Integer export Cast Int Integer where cast = prim__cast_IntInteger export Cast Char Integer where cast = prim__cast_CharInteger export Cast Double Integer where cast = prim__cast_DoubleInteger export Cast String Integer where cast = prim__cast_StringInteger export Cast Nat Integer where cast = natToInteger export Cast Bits8 Integer where cast = prim__cast_Bits8Integer export Cast Bits16 Integer where cast = prim__cast_Bits16Integer export Cast Bits32 Integer where cast = prim__cast_Bits32Integer export Cast Bits64 Integer where cast = prim__cast_Bits64Integer export Cast Int8 Integer where cast = prim__cast_Int8Integer export Cast Int16 Integer where cast = prim__cast_Int16Integer export Cast Int32 Integer where cast = prim__cast_Int32Integer export Cast Int64 Integer where cast = prim__cast_Int64Integer -- To Int export Cast Integer Int where cast = prim__cast_IntegerInt export Cast Char Int where cast = prim__cast_CharInt export Cast Double Int where cast = prim__cast_DoubleInt export Cast String Int where cast = prim__cast_StringInt export Cast Nat Int where cast = fromInteger . natToInteger export Cast Bits8 Int where cast = prim__cast_Bits8Int export Cast Bits16 Int where cast = prim__cast_Bits16Int export Cast Bits32 Int where cast = prim__cast_Bits32Int export Cast Bits64 Int where cast = prim__cast_Bits64Int export Cast Int8 Int where cast = prim__cast_Int8Int export Cast Int16 Int where cast = prim__cast_Int16Int export Cast Int32 Int where cast = prim__cast_Int32Int export Cast Int64 Int where cast = prim__cast_Int64Int -- To Char export Cast Int Char where cast = prim__cast_IntChar export Cast Integer Char where cast = prim__cast_IntegerChar export Cast Nat Char where cast = cast . natToInteger export Cast Bits8 Char where cast = prim__cast_Bits8Char export Cast Bits16 Char where cast = prim__cast_Bits16Char export Cast Bits32 Char where cast = prim__cast_Bits32Char export Cast Bits64 Char where cast = prim__cast_Bits64Char export Cast Int8 Char where cast = prim__cast_Int8Char export Cast Int16 Char where cast = prim__cast_Int16Char export Cast Int32 Char where cast = prim__cast_Int32Char export Cast Int64 Char where cast = prim__cast_Int64Char -- To Double export Cast Int Double where cast = prim__cast_IntDouble export Cast Integer Double where cast = prim__cast_IntegerDouble export Cast String Double where cast = prim__cast_StringDouble export Cast Nat Double where cast = prim__cast_IntegerDouble . natToInteger export Cast Bits8 Double where cast = prim__cast_Bits8Double export Cast Bits16 Double where cast = prim__cast_Bits16Double export Cast Bits32 Double where cast = prim__cast_Bits32Double export Cast Bits64 Double where cast = prim__cast_Bits64Double export Cast Int8 Double where cast = prim__cast_Int8Double export Cast Int16 Double where cast = prim__cast_Int16Double export Cast Int32 Double where cast = prim__cast_Int32Double export Cast Int64 Double where cast = prim__cast_Int64Double -- To Bits8 export Cast Int Bits8 where cast = prim__cast_IntBits8 export Cast Integer Bits8 where cast = prim__cast_IntegerBits8 export Cast Bits16 Bits8 where cast = prim__cast_Bits16Bits8 export Cast Bits32 Bits8 where cast = prim__cast_Bits32Bits8 export Cast Bits64 Bits8 where cast = prim__cast_Bits64Bits8 export Cast String Bits8 where cast = prim__cast_StringBits8 export Cast Double Bits8 where cast = prim__cast_DoubleBits8 export Cast Char Bits8 where cast = prim__cast_CharBits8 export Cast Nat Bits8 where cast = cast . natToInteger export Cast Int8 Bits8 where cast = prim__cast_Int8Bits8 export Cast Int16 Bits8 where cast = prim__cast_Int16Bits8 export Cast Int32 Bits8 where cast = prim__cast_Int32Bits8 export Cast Int64 Bits8 where cast = prim__cast_Int64Bits8 -- To Bits16 export Cast Int Bits16 where cast = prim__cast_IntBits16 export Cast Integer Bits16 where cast = prim__cast_IntegerBits16 export Cast Bits8 Bits16 where cast = prim__cast_Bits8Bits16 export Cast Bits32 Bits16 where cast = prim__cast_Bits32Bits16 export Cast Bits64 Bits16 where cast = prim__cast_Bits64Bits16 export Cast String Bits16 where cast = prim__cast_StringBits16 export Cast Double Bits16 where cast = prim__cast_DoubleBits16 export Cast Char Bits16 where cast = prim__cast_CharBits16 export Cast Nat Bits16 where cast = cast . natToInteger export Cast Int8 Bits16 where cast = prim__cast_Int8Bits16 export Cast Int16 Bits16 where cast = prim__cast_Int16Bits16 export Cast Int32 Bits16 where cast = prim__cast_Int32Bits16 export Cast Int64 Bits16 where cast = prim__cast_Int64Bits16 -- To Bits32 export Cast Int Bits32 where cast = prim__cast_IntBits32 export Cast Integer Bits32 where cast = prim__cast_IntegerBits32 export Cast Bits8 Bits32 where cast = prim__cast_Bits8Bits32 export Cast Bits16 Bits32 where cast = prim__cast_Bits16Bits32 export Cast Bits64 Bits32 where cast = prim__cast_Bits64Bits32 export Cast String Bits32 where cast = prim__cast_StringBits32 export Cast Double Bits32 where cast = prim__cast_DoubleBits32 export Cast Char Bits32 where cast = prim__cast_CharBits32 export Cast Nat Bits32 where cast = cast . natToInteger export Cast Int8 Bits32 where cast = prim__cast_Int8Bits32 export Cast Int16 Bits32 where cast = prim__cast_Int16Bits32 export Cast Int32 Bits32 where cast = prim__cast_Int32Bits32 export Cast Int64 Bits32 where cast = prim__cast_Int64Bits32 -- To Bits64 export Cast Int Bits64 where cast = prim__cast_IntBits64 export Cast Integer Bits64 where cast = prim__cast_IntegerBits64 export Cast Bits8 Bits64 where cast = prim__cast_Bits8Bits64 export Cast Bits16 Bits64 where cast = prim__cast_Bits16Bits64 export Cast Bits32 Bits64 where cast = prim__cast_Bits32Bits64 export Cast String Bits64 where cast = prim__cast_StringBits64 export Cast Double Bits64 where cast = prim__cast_DoubleBits64 export Cast Char Bits64 where cast = prim__cast_CharBits64 export Cast Nat Bits64 where cast = cast . natToInteger export Cast Int8 Bits64 where cast = prim__cast_Int8Bits64 export Cast Int16 Bits64 where cast = prim__cast_Int16Bits64 export Cast Int32 Bits64 where cast = prim__cast_Int32Bits64 export Cast Int64 Bits64 where cast = prim__cast_Int64Bits64 -- To Int8 export Cast String Int8 where cast = prim__cast_StringInt8 export Cast Double Int8 where cast = prim__cast_DoubleInt8 export Cast Char Int8 where cast = prim__cast_CharInt8 export Cast Int Int8 where cast = prim__cast_IntInt8 export Cast Integer Int8 where cast = prim__cast_IntegerInt8 export Cast Nat Int8 where cast = cast . natToInteger export Cast Bits8 Int8 where cast = prim__cast_Bits8Int8 export Cast Bits16 Int8 where cast = prim__cast_Bits16Int8 export Cast Bits32 Int8 where cast = prim__cast_Bits32Int8 export Cast Bits64 Int8 where cast = prim__cast_Bits64Int8 export Cast Int16 Int8 where cast = prim__cast_Int16Int8 export Cast Int32 Int8 where cast = prim__cast_Int32Int8 export Cast Int64 Int8 where cast = prim__cast_Int64Int8 -- To Int16 export Cast String Int16 where cast = prim__cast_StringInt16 export Cast Double Int16 where cast = prim__cast_DoubleInt16 export Cast Char Int16 where cast = prim__cast_CharInt16 export Cast Int Int16 where cast = prim__cast_IntInt16 export Cast Integer Int16 where cast = prim__cast_IntegerInt16 export Cast Nat Int16 where cast = cast . natToInteger export Cast Bits8 Int16 where cast = prim__cast_Bits8Int16 export Cast Bits16 Int16 where cast = prim__cast_Bits16Int16 export Cast Bits32 Int16 where cast = prim__cast_Bits32Int16 export Cast Bits64 Int16 where cast = prim__cast_Bits64Int16 export Cast Int8 Int16 where cast = prim__cast_Int8Int16 export Cast Int32 Int16 where cast = prim__cast_Int32Int16 export Cast Int64 Int16 where cast = prim__cast_Int64Int16 -- To Int32 export Cast String Int32 where cast = prim__cast_StringInt32 export Cast Double Int32 where cast = prim__cast_DoubleInt32 export Cast Char Int32 where cast = prim__cast_CharInt32 export Cast Int Int32 where cast = prim__cast_IntInt32 export Cast Integer Int32 where cast = prim__cast_IntegerInt32 export Cast Nat Int32 where cast = cast . natToInteger export Cast Bits8 Int32 where cast = prim__cast_Bits8Int32 export Cast Bits16 Int32 where cast = prim__cast_Bits16Int32 export Cast Bits32 Int32 where cast = prim__cast_Bits32Int32 export Cast Bits64 Int32 where cast = prim__cast_Bits64Int32 export Cast Int8 Int32 where cast = prim__cast_Int8Int32 export Cast Int16 Int32 where cast = prim__cast_Int16Int32 export Cast Int64 Int32 where cast = prim__cast_Int64Int32 -- To Int64 export Cast String Int64 where cast = prim__cast_StringInt64 export Cast Double Int64 where cast = prim__cast_DoubleInt64 export Cast Char Int64 where cast = prim__cast_CharInt64 export Cast Int Int64 where cast = prim__cast_IntInt64 export Cast Integer Int64 where cast = prim__cast_IntegerInt64 export Cast Nat Int64 where cast = cast . natToInteger export Cast Bits8 Int64 where cast = prim__cast_Bits8Int64 export Cast Bits16 Int64 where cast = prim__cast_Bits16Int64 export Cast Bits32 Int64 where cast = prim__cast_Bits32Int64 export Cast Bits64 Int64 where cast = prim__cast_Bits64Int64 export Cast Int8 Int64 where cast = prim__cast_Int8Int64 export Cast Int16 Int64 where cast = prim__cast_Int16Int64 export Cast Int32 Int64 where cast = prim__cast_Int32Int64 -- To Nat export Cast String Nat where cast = integerToNat . cast export Cast Double Nat where cast = integerToNat . cast export Cast Char Nat where cast = integerToNat . cast {to = Integer} export Cast Int Nat where cast = integerToNat . cast export Cast Integer Nat where cast = integerToNat export Cast Bits8 Nat where cast = integerToNat . cast {to = Integer} export Cast Bits16 Nat where cast = integerToNat . cast {to = Integer} export Cast Bits32 Nat where cast = integerToNat . cast {to = Integer} export Cast Bits64 Nat where cast = integerToNat . cast {to = Integer} export Cast Int8 Nat where cast = integerToNat . cast export Cast Int16 Nat where cast = integerToNat . cast export Cast Int32 Nat where cast = integerToNat . cast export Cast Int64 Nat where cast = integerToNat . cast
module Control.MonadRec import public Control.WellFounded import Control.Monad.Either import Control.Monad.Identity import Control.Monad.Maybe import Control.Monad.Reader import Control.Monad.RWS import Control.Monad.State import Control.Monad.Writer import Data.List import Data.SnocList import public Data.Fuel import public Data.Nat %default total -------------------------------------------------------------------------------- -- Sized Implementations -------------------------------------------------------------------------------- public export Sized Fuel where size Dry = 0 size (More f) = S $ size f public export Sized (SnocList a) where size = length -------------------------------------------------------------------------------- -- Step -------------------------------------------------------------------------------- ||| Single step in a recursive computation. ||| ||| A `Step` is either `Done`, in which case we return the ||| final result, or `Cont`, in which case we continue ||| iterating. In case of a `Cont`, we get a new seed for ||| the next iteration plus an updated state. In addition ||| we proof that the sequence of seeds is related via `rel`. ||| If `rel` is well-founded, the recursion will provably ||| come to an end in a finite number of steps. public export data Step : (rel : a -> a -> Type) -> (seed : a) -> (accum : Type) -> (res : Type) -> Type where ||| Keep iterating with a new `seed2`, which is ||| related to the current `seed` via `rel`. ||| `vst` is the accumulated state of the iteration. Cont : (seed2 : a) -> (0 prf : rel seed2 seed) -> (vst : st) -> Step rel seed st res ||| Stop iterating and return the given result. Done : (vres : res) -> Step rel v st res public export Bifunctor (Step rel seed) where bimap f _ (Cont s2 prf st) = Cont s2 prf (f st) bimap _ g (Done res) = Done (g res) mapFst f (Cont s2 prf st) = Cont s2 prf (f st) mapFst _ (Done res) = Done res mapSnd _ (Cont s2 prf st) = Cont s2 prf st mapSnd g (Done res) = Done (g res) -------------------------------------------------------------------------------- -- MonadRec -------------------------------------------------------------------------------- ||| Interface for tail-call optimized monadic recursion. public export interface Monad m => MonadRec m where ||| Implementers mus make sure they implement this function ||| in a tail recursive manner. ||| The general idea is to loop using the given `step` function ||| until it returns a `Done`. ||| ||| To convey to the totality checker that the sequence ||| of seeds generated during recursion must come to an ||| end after a finite number of steps, this function ||| requires an erased proof of accessibility. total tailRecM : {0 rel : a -> a -> Type} -> (seed : a) -> (ini : st) -> (0 prf : Accessible rel seed) -> (step : (seed2 : a) -> st -> m (Step rel seed2 st b)) -> m b public export %inline ||| Monadic tail recursion over a sized structure. trSized : MonadRec m => (0 _ : Sized a) => (seed : a) -> (ini : st) -> (step : (v : a) -> st -> m (Step Smaller v st b)) -> m b trSized x ini = tailRecM x ini (sizeAccessible x) -------------------------------------------------------------------------------- -- Base Implementations -------------------------------------------------------------------------------- public export MonadRec Identity where tailRecM seed st1 (Access rec) f = case f seed st1 of Id (Done b) => Id b Id (Cont y prf st2) => tailRecM y st2 (rec y prf) f public export MonadRec Maybe where tailRecM seed st1 (Access rec) f = case f seed st1 of Nothing => Nothing Just (Done b) => Just b Just (Cont y prf st2) => tailRecM y st2 (rec y prf) f public export MonadRec (Either e) where tailRecM seed st1 (Access rec) f = case f seed st1 of Left e => Left e Right (Done b) => Right b Right (Cont y prf st2) => tailRecM y st2 (rec y prf) f trIO : (x : a) -> (ini : st) -> (0 _ : Accessible rel x) -> (f : (v : a) -> st -> IO (Step rel v st b)) -> IO b trIO x ini acc f = fromPrim $ run x ini acc where run : (y : a) -> (st1 : st) -> (0 _ : Accessible rel y) -> (1 w : %World) -> IORes b run y st1 (Access rec) w = case toPrim (f y st1) w of MkIORes (Done b) w2 => MkIORes b w2 MkIORes (Cont y2 prf st2) w2 => run y2 st2 (rec y2 prf) w2 public export %inline MonadRec IO where tailRecM = trIO -------------------------------------------------------------------------------- -- Transformer Implementations -------------------------------------------------------------------------------- --------------------------- -- StateT %inline convST : Functor m => (f : (v : a) -> st -> StateT s m (Step rel v st b)) -> (v : a) -> (st,s) -> m (Step rel v (st,s) (s,b)) convST f v (st1,s1) = (\(s2,stp) => bimap (,s2) (s2,) stp) <$> runStateT s1 (f v st1) public export MonadRec m => MonadRec (StateT s m) where tailRecM x ini acc f = ST $ \s1 => tailRecM x (ini,s1) acc (convST f) --------------------------- -- EitherT convE : Functor m => (f : (v : a) -> st -> EitherT e m (Step rel v st b)) -> (v : a) -> (ini : st) -> m (Step rel v st (Either e b)) convE f v s1 = map conv $ runEitherT (f v s1) where conv : Either e (Step rel v st b) -> Step rel v st (Either e b) conv (Left err) = Done (Left err) conv (Right $ Done b) = Done (Right b) conv (Right $ Cont v2 prf st2) = Cont v2 prf st2 public export MonadRec m => MonadRec (EitherT e m) where tailRecM x ini acc f = MkEitherT $ tailRecM x ini acc (convE f) --------------------------- -- MaybeT convM : Functor m => (f : (v : a) -> st -> MaybeT m (Step rel v st b)) -> (v : a) -> (ini : st) -> m (Step rel v st (Maybe b)) convM f v s1 = map conv $ runMaybeT (f v s1) where conv : Maybe (Step rel v st b) -> Step rel v st (Maybe b) conv Nothing = Done Nothing conv (Just $ Done b) = Done (Just b) conv (Just $ Cont v2 prf st2) = Cont v2 prf st2 public export MonadRec m => MonadRec (MaybeT m) where tailRecM x ini acc f = MkMaybeT $ tailRecM x ini acc (convM f) --------------------------- -- ReaderT convR : (f : (v : a) -> st -> ReaderT e m (Step rel v st b)) -> (env : e) -> (v : a) -> (ini : st) -> m (Step rel v st b) convR f env v s1 = runReaderT env (f v s1) public export MonadRec m => MonadRec (ReaderT e m) where tailRecM x ini acc f = MkReaderT $ \env => tailRecM x ini acc (convR f env) --------------------------- -- WriterT convW : Functor m => (f : (v : a) -> st -> WriterT w m (Step rel v st b)) -> (v : a) -> (st,w) -> m (Step rel v (st,w) (b,w)) convW f v (s1,w1) = (\(stp,w2) => bimap (,w2) (,w2) stp) <$> unWriterT (f v s1) w1 public export MonadRec m => MonadRec (WriterT w m) where tailRecM x ini acc f = MkWriterT $ \w1 => tailRecM x (ini,w1) acc (convW f) --------------------------- -- RWST convRWS : Functor m => (f : (v : a) -> st -> RWST r w s m (Step rel v st b)) -> (env : r) -> (v : a) -> (st,s,w) -> m (Step rel v (st,s,w) (b,s,w)) convRWS f env v (st1,s1,w1) = (\(stp,s2,w2) => bimap (,s2,w2) (,s2,w2) stp) <$> unRWST (f v st1) env s1 w1 public export MonadRec m => MonadRec (RWST r w s m) where tailRecM x ini acc f = MkRWST $ \r1,s1,w1 => tailRecM x (ini,s1,w1) acc (convRWS f r1)
Formal statement is: lemma AE_ball_countable: assumes [intro]: "countable X" shows "(AE x in M. \<forall>y\<in>X. P x y) \<longleftrightarrow> (\<forall>y\<in>X. AE x in M. P x y)" Informal statement is: If $X$ is countable, then the almost everywhere statement $\forall y \in X. P(x, y)$ is equivalent to the statement $\forall y \in X. \text{almost everywhere } P(x, y)$.
#!/usr/bin/env python # coding: utf-8 # ## Observations and Insights # * The tumor volume for mice who were administered Capomulin had lower standard deviation and variance acorss more times being administered # * Capomulin and Ramicane both have similar sample data as do Infubinol and Ceftamin. More research can be done on the similarities of these 2 groups of drugs to see how they so similarly affected the Tumor Volume of the Mice. # * In looking at the scatter plot, there looks to be a positive correlation between mouse weight and the average tumor volume. Furthermore, the liner regression displayed can be a good representation to predict futre samples. # --- # In[1]: # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata_path = "data/Mouse_metadata.csv" study_results_path = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata_path) study_results = pd.read_csv(study_results_path) # Combine the data into a single dataset merge_df = pd.merge(study_results,mouse_metadata, on="Mouse ID") # Display the data table for preview merge_df.head() # In[2]: # Check the number of mice. len(merge_df["Mouse ID"].unique()) # In[3]: # Getting the duplicate mice by ID number that shows up for Mouse ID and Timepoint. duplicated_id = merge_df.loc[merge_df.duplicated(subset = ['Mouse ID', 'Timepoint']), 'Mouse ID'].unique() duplicated_id # In[4]: # Optional: Get all the data for the duplicate mouse ID. merge_df.loc[merge_df['Mouse ID'] == 'g989', :] # In[5]: # Create a clean DataFrame by dropping the duplicate mouse by its ID. cleaned_df = merge_df.loc[merge_df['Mouse ID'].isin(duplicated_id) == False] # In[6]: # Check the number of mice in the clean DataFrame. non_dupl = len(cleaned_df["Mouse ID"].unique()) non_dupl # ## Summary Statistics # In[7]: # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Use this straighforward method, create multiple series and put them all in a dataframe at the end. drug_group1 = cleaned_df.groupby(['Drug Regimen']) drug_df1 = pd.DataFrame({'Mean Tumor Volume' : drug_group1['Tumor Volume (mm3)'].mean(), 'Median Tumor Volume' : drug_group1['Tumor Volume (mm3)'].median(), 'Tumor Volume Variance' : drug_group1['Tumor Volume (mm3)'].var(), 'Tumor Volume Std. Dev.' : drug_group1['Tumor Volume (mm3)'].std(), 'Tumor Volume Std. Err.' : drug_group1['Tumor Volume (mm3)'].sem()}) drug_df1 # In[8]: # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Use method to produce everything with a single groupby function drug_group2 = cleaned_df.groupby(['Drug Regimen']).agg({'Tumor Volume (mm3)' : ['mean', 'median', 'var', 'std', 'sem']}) drug_group2 # ## Bar and Pie Charts # In[9]: # Generate a bar plot showing the total number of mice for each treatment throughout the course of the study using pandas. drug_count = cleaned_df['Drug Regimen'].value_counts() drug_chart = drug_count.plot(kind='bar') # drug_chart.set_xlabel("Drug Regimen") drug_chart.set_xlabel("Drug Regimen") drug_chart.set_ylabel("Number of Data Points") plt.show() # In[10]: drug_count # In[11]: # Generate a bar plot showing the total number of mice for each treatment throughout the course of the study using pyplot. import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_axes([0,0,1,1]) drugs = ['Capomulin', 'Ramicane', 'Ketapril', 'Naftisol', 'Zoniferol', 'Placebo', 'Stelasyn','Infubinol', 'Ceftamin', 'Propriva'] counts = [230, 228, 188, 186, 182, 181, 181, 178, 178, 148] plt.xlabel("Drug Regimen") plt.ylabel("Number of Data Points") plt.xticks(rotation=90) ax.bar(drugs,counts) plt.show() # In[14]: sex_count # In[15]: # Generate a pie plot showing the distribution of female versus male mice using pandas sex_count = cleaned_df['Sex'].value_counts() sex_chart = sex_count.plot(kind='pie',autopct="%1.1f%%") sex_chart.set_ylabel("Sex") plt.show() # In[16]: # Generate a pie plot showing the distribution of female versus male mice using pyplot sex = 'Male', 'Female' sex_count = cleaned_df['Sex'].value_counts() plt.pie(sex_count,labels=sex, autopct='%1.1f%%') plt.ylabel("Sex") plt.show() # ## Quartiles, Outliers and Boxplots # In[17]: # Calculate the final tumor volume of each mouse across each of the treatment regimens: mouse_group = cleaned_df.groupby('Mouse ID') # Start by getting the last (greatest) timepoint for each mouse last_timepoint = mouse_group['Timepoint'].max() mouse_df = last_timepoint.reset_index() # max_df # Merge this group df with the original dataframe to get the tumor volume at the last timepoint merge_df1 = pd.merge(mouse_df, cleaned_df, how = 'left', on = ['Mouse ID', 'Timepoint'] ) merge_df1 # In[52]: # Put 4 treatment names into a list for use with a for loop (and later for plot labels) treatment_list = ["Capomulin", "Ramicane", "Infubinol", "Ceftamin"] # Create a empty list to fill with tumor vol data (for plotting) (hint: each element of the list will be series) tumor_vol_list = [] # For each treatment in the list, calculate the IQR and quantitatively determine if there are any potential outliers. # Locate the rows which contain mice on each drug and get the tumor volumes for drug in treatment_list: tumor_data = merge_df1.loc[merge_df1['Drug Regimen'] == drug, 'Tumor Volume (mm3)'] tumor_vol_list.append(tumor_data) quartiles = tumor_data.quantile([.25, .5, .75]) lowerq = quartiles[.25] upperq = quartiles[.75] iqr = upperq - lowerq # add subset to tumor volume data list # Determine outliers using upper and lower bounds lower_bound = lowerq - (1.5 * iqr) upper_bound = upperq + (1.5 * iqr) outlier = tumor_data.loc[(tumor_data < lower_bound) | (tumor_data > upper_bound)] print(f"{drug} potential outliers: {outlier}") # In[107]: # Generate a box plot of the final tumor volume of each mouse across four regimens of interest fig1, ax1 = plt.subplots() #flier adjustment flierprops = dict(marker='o', markerfacecolor='r', markersize=12, linestyle='none', markeredgecolor='g') #plotting both lists used above ax1.boxplot(tumor_vol_list, treatment_list, flierprops=flierprops) #setting up labels ax1.set_xticklabels(['Capomulin ', 'Ramicane ', 'Infubinol ', 'Ceftamin ']) ax1.get_xaxis().tick_bottom() ax1.set_ylabel('Final Tumor Volume (mm3)') plt.show() # ## Line and Scatter Plots # In[120]: # Generate a line plot of time point versus tumor volume for a mouse treated with Capomulin #need to take the full combined datafram and filter for the mouse id capomulin_df = cleaned_df.loc[cleaned_df["Drug Regimen"] == "Capomulin"] # capomulin_df #locate Mouse ID 'm601' capomulin_mouse = capomulin_df[capomulin_df["Mouse ID"] == 'm601'] capomulin_mouse = capomulin_mouse.set_index('Timepoint') capomulin_tumor = pd.DataFrame(capomulin_mouse['Tumor Volume (mm3)']) capomulin_tumor.plot(color = 'blue') plt.title('Capomulin treatment of mous m601') plt.xlabel('Timepoint (days)') plt.ylabel('Tumor Volume (mm3)') plt.show() # In[121]: # capomulin_df # In[122]: # capomulin_weight # In[112]: #Create a new groub by to combine mouse IDs and to calculate the avg for 'Tumor Volume (mm3)' & 'Weight (g) capomulin_weight = capomulin_df.groupby('Mouse ID').mean()[['Tumor Volume (mm3)','Weight (g)']] # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen plt.scatter(capomulin_weight['Weight (g)'],capomulin_weight['Tumor Volume (mm3)']) plt.xlabel('Weight (g)') plt.ylabel('Average Tumor Volume (mm3)') plt.show() # ## Correlation and Regression # In[119]: # Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen x_values = capomulin_weight['Weight (g)'] y_values = capomulin_weight['Tumor Volume (mm3)'] correlation = st.pearsonr(x_values,y_values) print(f"The correlation between mouse weight and the average tumor volume is {round(correlation[0],2)}") #calculate regress values to plot linear regression line (slope, intercept, rvalue, pvalue, stderr) = st.linregress(x_values, y_values) regress_values = x_values * slope + intercept # Generate a scatter plot of mouse weight versus average tumor volume and a linear regression line for the Capomulin regimen plt.plot(x_values,regress_values,"r-") plt.scatter(capomulin_weight['Weight (g)'],capomulin_weight['Tumor Volume (mm3)']) plt.xlabel('Weight (g)') plt.ylabel('Average Tumor Volume (mm3)') plt.show()
{-# LANGUAGE FlexibleInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Elem.LAPACK.C -- Copyright : Copyright (c) , Patrick Perry <[email protected]> -- License : BSD3 -- Maintainer : Patrick Perry <[email protected]> -- Stability : experimental -- -- Low-level interface to LAPACK. -- module Data.Elem.LAPACK.C where import Control.Exception( assert ) import Control.Monad import Data.Complex( Complex ) import Data.Elem.BLAS.Level3 import Data.Matrix.Class( TransEnum(..), SideEnum(..) ) import Foreign import LAPACK.CTypes import Data.Elem.LAPACK.Double import Data.Elem.LAPACK.Zomplex -- | The LAPACK typeclass. class (BLAS3 e) => LAPACK e where geqrf :: Int -> Int -> Ptr e -> Int -> Ptr e -> IO () gelqf :: Int -> Int -> Ptr e -> Int -> Ptr e -> IO () unmqr :: SideEnum -> TransEnum -> Int -> Int -> Int -> Ptr e -> Int -> Ptr e -> Ptr e -> Int -> IO () unmlq :: SideEnum -> TransEnum -> Int -> Int -> Int -> Ptr e -> Int -> Ptr e -> Ptr e -> Int -> IO () larfg :: Int -> Ptr e -> Ptr e -> Int -> IO e callWithWork :: (Storable e) => (Ptr e -> Int -> IO a) -> IO a callWithWork call = alloca $ \pQuery -> do call pQuery (-1) ldWork <- peek (castPtr pQuery) :: IO Double let lWork = max 1 $ ceiling ldWork allocaArray lWork $ \pWork -> do call pWork lWork checkInfo :: Int -> IO () checkInfo info = assert (info == 0) $ return () instance LAPACK Double where geqrf m n pA ldA pTau = checkInfo =<< callWithWork (dgeqrf m n pA ldA pTau) gelqf m n pA ldA pTau = checkInfo =<< callWithWork (dgelqf m n pA ldA pTau) unmqr s t m n k pA ldA pTau pC ldC = checkInfo =<< callWithWork (dormqr (cblasSide s) (cblasTrans t) m n k pA ldA pTau pC ldC) unmlq s t m n k pA ldA pTau pC ldC = checkInfo =<< callWithWork (dormlq (cblasSide s) (cblasTrans t) m n k pA ldA pTau pC ldC) larfg n alpha x incx = with 0 $ \pTau -> dlarfg n alpha x incx pTau >> peek pTau instance LAPACK (Complex Double) where geqrf m n pA ldA pTau = checkInfo =<< callWithWork (zgeqrf m n pA ldA pTau) gelqf m n pA ldA pTau = checkInfo =<< callWithWork (zgelqf m n pA ldA pTau) unmqr s t m n k pA ldA pTau pC ldC = checkInfo =<< callWithWork (zunmqr (cblasSide s) (cblasTrans t) m n k pA ldA pTau pC ldC) unmlq s t m n k pA ldA pTau pC ldC = checkInfo =<< callWithWork (zunmlq (cblasSide s) (cblasTrans t) m n k pA ldA pTau pC ldC) larfg n alpha x incx = with 0 $ \pTau -> zlarfg n alpha x incx pTau >> peek pTau
theory MMU_Prg_Logic imports "HOL-Word.Word" PTABLE_TLBJ.PageTable_seL4 "./../Eisbach/Rule_By_Method" begin type_synonym val = "32 word" type_synonym asid = "8 word" type_synonym word_t = "32 word" type_synonym heap = "paddr \<rightharpoonup> word_t" type_synonym incon_set = "vaddr set" type_synonym global_set = "vaddr set" datatype mode_t = Kernel | User type_synonym vSm = "20 word" type_synonym pSm = "20 word" type_synonym vSe = "12 word" type_synonym pSe = "12 word" record tlb_flags = nG :: "1 word" (* nG = 0 means global *) perm_APX :: "1 word" (* Access permission bit 2 *) perm_AP :: "2 word" (* Access permission bits 1 and 0 *) perm_XN :: "1 word" (* Execute-never bit *) datatype pdc_entry = PDE_Section "asid option" "12 word" (bpa_pdc_entry :"32 word") tlb_flags | PDE_Table asid "12 word" (bpa_pdc_entry : "32 word") datatype tlb_entry = EntrySmall (asid_of : "asid option") vSm pSm tlb_flags | EntrySection (asid_of : "asid option") vSe pSe tlb_flags datatype pt_walk_typ = Fault | Partial_Walk pdc_entry | Full_Walk tlb_entry pdc_entry type_synonym ptable_snapshot = "asid \<Rightarrow> (vaddr set \<times> (vaddr \<Rightarrow> pt_walk_typ))" record p_state = heap :: heap asid :: asid root :: paddr incon_set :: incon_set global_set :: global_set ptable_snapshot :: ptable_snapshot mode :: mode_t definition load_list_word_hp :: "heap \<Rightarrow> nat \<Rightarrow> paddr \<rightharpoonup> val list" where "load_list_word_hp h n p = load_list h n p" definition from_word :: "32 word list => 'b :: len0 word" where "from_word \<equiv> word_rcat \<circ> rev" definition load_value_word_hp :: "heap \<Rightarrow> paddr \<rightharpoonup> val" where "load_value_word_hp h p = map_option from_word (load_list_word_hp h 1 p)" definition mem_read_word_heap :: "paddr \<Rightarrow> p_state \<rightharpoonup> word_t" where "mem_read_word_heap p s = load_value_word_hp (heap s) p " definition decode_heap_pde' :: "heap \<Rightarrow> paddr \<rightharpoonup> pde" where "decode_heap_pde' h p \<equiv> map_option decode_pde (h p)" definition get_pde' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> pde" where "get_pde' h rt vp \<equiv> let pd_idx_offset = ((vaddr_pd_index (addr_val vp)) << 2) in decode_heap_pde' h (rt r+ pd_idx_offset)" definition decode_heap_pte' :: "heap \<Rightarrow> paddr \<rightharpoonup> pte" where "decode_heap_pte' h p \<equiv> map_option decode_pte (h p)" definition get_pte' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> pte" where "get_pte' h pt_base vp \<equiv> let pt_idx_offset = ((vaddr_pt_index (addr_val vp)) << 2) in decode_heap_pte' h (pt_base r+ pt_idx_offset)" definition lookup_pte' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> (paddr \<times> page_type \<times> arm_perm_bits)" where "lookup_pte' h pt_base vp \<equiv> case_option None (\<lambda>pte. case pte of InvalidPTE \<Rightarrow> None | SmallPagePTE base perms \<Rightarrow> Some (base, ArmSmallPage, perms)) (get_pte' h pt_base vp)" definition lookup_pde' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> (paddr \<times> page_type \<times> arm_perm_bits)" where "lookup_pde' h rt vp \<equiv> case_option None (\<lambda>pde. case pde of InvalidPDE \<Rightarrow> None | ReservedPDE \<Rightarrow> None | SectionPDE base perms \<Rightarrow> Some (base, ArmSection, perms) | PageTablePDE pt_base \<Rightarrow> lookup_pte' h pt_base vp) (get_pde' h rt vp)" (* page table look-up *) definition ptable_lift' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> paddr" where "ptable_lift' h pt_root vp \<equiv> let vp_val = addr_val vp in map_option (\<lambda>(base, pg_size, perms). base r+ (vaddr_offset pg_size vp_val)) (lookup_pde' h pt_root vp)" definition mem_read_hp :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> val" where "mem_read_hp hp rt vp = (ptable_lift' hp rt \<rhd>o load_value_word_hp hp) vp" definition ptable_trace' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<Rightarrow> paddr set" where "ptable_trace' h rt vp \<equiv> let vp_val = addr_val vp ; pd_idx_offset = ((vaddr_pd_index vp_val) << 2) ; pt_idx_offset = ((vaddr_pt_index vp_val) << 2) ; pd_touched = {rt r+ pd_idx_offset}; pt_touched = (\<lambda>pt_base. {pt_base r+ pt_idx_offset}) in (case decode_pde (the (h (rt r+ pd_idx_offset))) of PageTablePDE pt_base \<Rightarrow> pd_touched \<union> pt_touched pt_base | _ \<Rightarrow> pd_touched)" definition pde_trace' :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr \<rightharpoonup> paddr" where "pde_trace' h rt vp \<equiv> let vp_val = addr_val vp ; pd_idx_offset = ((vaddr_pd_index vp_val) << 2) ; pd_touched = rt r+ pd_idx_offset in (case decode_heap_pde' h (rt r+ pd_idx_offset) of Some pde \<Rightarrow> Some pd_touched | None \<Rightarrow> None)" lemma ptlift_trace_some: "ptable_lift' h r vp = Some pa \<Longrightarrow> ptable_trace' h r vp \<noteq> {}" by (clarsimp simp: ptable_lift'_def lookup_pde'_def get_pde'_def ptable_trace'_def Let_def split:option.splits pde.splits) lemma ptable_lift_preserved': " \<lbrakk>p \<notin> ptable_trace' h r vp; ptable_lift' h r vp = Some pa\<rbrakk> \<Longrightarrow> ptable_lift' (h(p \<mapsto> v)) r vp = Some pa" apply (frule ptlift_trace_some , clarsimp simp: ptable_lift'_def lookup_pde'_def get_pde'_def ptable_trace'_def Let_def split: option.splits) apply (case_tac x2; clarsimp simp: decode_heap_pde'_def lookup_pte'_def split: option.splits) apply (case_tac x2a ; clarsimp) apply (rule conjI) apply (rule_tac x = "(SmallPagePTE a b)" in exI, clarsimp simp: get_pte'_def decode_heap_pte'_def , clarsimp) by (case_tac x2 ; clarsimp simp:get_pte'_def decode_heap_pte'_def) lemma ptable_trace_get_pde: "\<lbrakk>p \<notin> ptable_trace' h r x; get_pde' h r x = Some pde\<rbrakk> \<Longrightarrow> get_pde' (h(p \<mapsto> v)) r x = Some pde" apply (clarsimp simp: ptable_trace'_def Let_def get_pde'_def decode_heap_pde'_def ) by (case_tac " decode_pde z" ; clarsimp) lemma ptable_trace_preserved': "\<lbrakk>ptable_lift' h r vp = Some pb; p \<notin> ptable_trace' h r vp; pa \<notin> ptable_trace' h r vp \<rbrakk> \<Longrightarrow> pa \<notin> ptable_trace' (h(p \<mapsto> v)) r vp" apply (frule ptlift_trace_some) apply (subgoal_tac "ptable_trace' (h(p \<mapsto> v)) r vp \<noteq> {}") prefer 2 apply (clarsimp simp: ptable_lift'_def lookup_pde'_def get_pde'_def ptable_trace'_def Let_def split: option.splits) apply (case_tac x2 ; clarsimp simp: decode_heap_pde'_def) by (clarsimp simp: ptable_lift'_def lookup_pde'_def get_pde'_def decode_heap_pde'_def ptable_trace'_def Let_def split: option.splits pde.splits) lemma ptable_trace_get_pde': "\<lbrakk> get_pde' (h(p \<mapsto> v)) r x = Some pde; p \<notin> ptable_trace' h r x \<rbrakk> \<Longrightarrow> get_pde' h r x = Some pde " apply (clarsimp simp: ptable_trace'_def Let_def get_pde'_def decode_heap_pde'_def ) by (case_tac " decode_pde (the (h (r r+ (vaddr_pd_index (addr_val x) << 2))))" ; clarsimp) lemma [simp]: "get_pde' h r va = Some (SectionPDE p perms) \<Longrightarrow> decode_pde (the (h (r r+ (vaddr_pd_index (addr_val va) << 2)))) = SectionPDE p perms " by (clarsimp simp: get_pde'_def decode_heap_pde'_def) lemma pt_table_lift_trace_upd'': "p \<notin> ptable_trace' h r x \<Longrightarrow> ptable_lift' (h(p \<mapsto> v)) r x = ptable_lift' h r x" apply (clarsimp simp: ptable_trace'_def Let_def ptable_lift'_def lookup_pde'_def get_pde'_def) apply (subgoal_tac "decode_heap_pde' (h(p \<mapsto> v)) (r r+ (vaddr_pd_index (addr_val x) << 2)) = decode_heap_pde' h (r r+ (vaddr_pd_index (addr_val x) << 2))") apply clarsimp apply (clarsimp simp: decode_heap_pde'_def) apply (clarsimp split: option.splits) apply (clarsimp split: pde.splits) apply (clarsimp simp: lookup_pte'_def get_pte'_def) apply (subgoal_tac "decode_heap_pte' (h(p \<mapsto> v)) (x3 r+ (vaddr_pt_index (addr_val x) << 2)) = decode_heap_pte' h (x3 r+ (vaddr_pt_index (addr_val x) << 2))") apply (clarsimp) apply (clarsimp simp: decode_heap_pte'_def) by (clarsimp simp: decode_heap_pde'_def decode_pde_def Let_def split: pde.splits) (* page table look-up with mode and access permissions *) definition "user_perms perms = (arm_p_AP perms = 0x2 \<or> arm_p_AP perms = 0x3)" definition "filter_pde m = (\<lambda>x. case x of None \<Rightarrow> None | Some (base, pg_size, perms) \<Rightarrow> if (m = Kernel) \<or> (m = User \<and> user_perms perms) then Some (base, pg_size, perms) else None) " definition lookup_pde_perm :: "heap \<Rightarrow> paddr \<Rightarrow> mode_t \<Rightarrow> vaddr \<rightharpoonup> (paddr \<times> page_type \<times> arm_perm_bits)" where "lookup_pde_perm h r m vp = filter_pde m (lookup_pde' h r vp)" definition ptable_lift_m :: "heap \<Rightarrow> paddr \<Rightarrow> mode_t \<Rightarrow> vaddr \<rightharpoonup> paddr" where "ptable_lift_m h r m vp \<equiv> map_option (\<lambda>(base, pg_size, perms). base r+ (vaddr_offset pg_size (addr_val vp))) (lookup_pde_perm h r m vp) " lemma lookup_pde_kernel[simp]: "lookup_pde_perm h r Kernel vp = lookup_pde' h r vp" by(clarsimp simp: lookup_pde_perm_def filter_pde_def split:option.splits) lemma [simp]: "ptable_lift_m h r Kernel va = ptable_lift' h r va" by (clarsimp simp: ptable_lift_m_def ptable_lift'_def ) lemma ptable_lift_m_user [simp]: "ptable_lift_m h r User va = Some pa \<Longrightarrow> ptable_lift_m h r User va = ptable_lift' h r va" by (clarsimp simp: ptable_lift_m_def ptable_lift'_def lookup_pde_perm_def filter_pde_def split: option.splits if_split_asm) lemma ptlift_trace_some': "ptable_lift_m h r m vp = Some pa \<Longrightarrow> ptable_trace' h r vp \<noteq> {}" by (case_tac m , simp add: ptlift_trace_some , simp, frule ptable_lift_m_user, simp add: ptlift_trace_some) lemma ptable_trace_preserved_m: "\<lbrakk>ptable_lift_m h r m vp = Some pb; p \<notin> ptable_trace' h r vp; pa \<notin> ptable_trace' h r vp \<rbrakk> \<Longrightarrow> pa \<notin> ptable_trace' (h(p \<mapsto> v)) r vp" by (case_tac m ,simp add: ptable_trace_preserved', simp, frule ptable_lift_m_user, simp add: ptable_trace_preserved') lemma ptable_lift_user_implies_ptable_lift: "ptable_lift_m h r User va = Some pa \<Longrightarrow> ptable_lift' h r va = Some pa" by (clarsimp simp: ptable_lift_m_def lookup_pde_perm_def filter_pde_def ptable_lift'_def split:option.splits if_split_asm) lemma ptable_lift_preserved_m: "\<lbrakk>p \<notin> ptable_trace' h r vp; ptable_lift_m h r m vp = Some pa\<rbrakk> \<Longrightarrow> ptable_lift_m (h(p \<mapsto> v)) r m vp = Some pa" apply (case_tac m ; simp add: ptable_lift_preserved') apply (frule ptable_lift_m_user ; simp) apply (frule_tac pa = pa and v = v in ptable_lift_preserved' , simp) apply (clarsimp simp: ptable_trace'_def Let_def ptable_lift'_def lookup_pde'_def get_pde'_def split: option.splits) apply (case_tac x2 ; clarsimp) prefer 2 apply (clarsimp simp: decode_heap_pde'_def) apply (clarsimp simp: ptable_lift_m_def lookup_pde'_def get_pde'_def decode_heap_pde'_def lookup_pde_perm_def filter_pde_def) apply (clarsimp simp: ptable_lift_m_def lookup_pde'_def get_pde'_def lookup_pde_perm_def filter_pde_def lookup_pte'_def get_pte'_def decode_heap_pte'_def split:if_split_asm split: option.splits) by (case_tac "decode_pte x2" ; clarsimp simp: decode_heap_pde'_def lookup_pte'_def get_pte'_def decode_heap_pte'_def) lemma ptable_lift_m_implies_ptlift: "ptable_lift_m (heap s) (root s) (mode s) (Addr vp) = Some p \<Longrightarrow> ptable_lift' (heap s) (root s) (Addr vp) = Some p" by (clarsimp simp: ptable_lift_m_def ptable_lift'_def lookup_pde_perm_def filter_pde_def user_perms_def split: option.splits if_split_asm) lemma union_imp_all: "p \<notin> \<Union>(ptable_trace' h r ` UNIV) \<Longrightarrow> \<forall>x. p \<notin> ptable_trace' h r x" by (clarsimp) (* Mapped page table, used for later in the kernel execution *) definition ptable_mapped :: "heap \<Rightarrow> paddr \<Rightarrow> vaddr set" where "ptable_mapped h r \<equiv> {va. \<exists>p. ptable_lift' h r va = Some p \<and> p \<in> \<Union>(ptable_trace' h r ` UNIV) } " (* Memory Operations for Logic *) definition mem_read_hp' :: "vaddr set \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> mode_t \<Rightarrow> vaddr \<rightharpoonup> val" where "mem_read_hp' iset hp rt m vp \<equiv> if vp \<notin> iset then (ptable_lift_m hp rt m \<rhd>o load_value_word_hp hp) vp else None" definition "pagetable_lookup \<equiv> ptable_lift_m" definition if_filter :: "bool \<Rightarrow> 'a option \<rightharpoonup> 'a" (infixl "\<then>" 55) where "if_filter a b \<equiv> if a then b else None" definition "physical_address iset hp rt m va \<equiv> (va \<notin> iset) \<then> pagetable_lookup hp rt m va" definition mem_read_hp'' :: "vaddr set \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> mode_t \<Rightarrow> vaddr \<rightharpoonup> val" where "mem_read_hp'' iset hp rt m va \<equiv> (physical_address iset hp rt m \<rhd>o load_value_word_hp hp) va" definition "fun_update' f g v \<equiv> case f of Some y \<Rightarrow> Some (g (y \<mapsto> v)) | None \<Rightarrow> None " definition mem_write :: "vaddr set \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> mode_t \<Rightarrow> vaddr \<Rightarrow> val \<rightharpoonup> heap" where "mem_write iset hp rt m va v \<equiv> fun_update' (physical_address iset hp rt m va) hp v " (*Flush Operations for incon_set *) datatype flush_type = flushTLB | flushASID asid | flushvarange "vaddr set" | flushASIDvarange asid "vaddr set" (* ptable_comp function *) fun word_bits :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where "word_bits h l w = (w >> l) AND mask (Suc h - l)" fun word_extract :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word" where "word_extract h l w = ucast (word_bits h l w)" definition to_tlb_flags :: "arm_perm_bits \<Rightarrow> tlb_flags" where "to_tlb_flags perms \<equiv> \<lparr>nG = arm_p_nG perms, perm_APX = arm_p_APX perms, perm_AP = arm_p_AP perms, perm_XN = arm_p_XN perms \<rparr>" definition "tag_conv (a::asid) fl \<equiv> (if nG fl = 0 then None else Some a)" definition pdc_walk :: "asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr \<Rightarrow> pdc_entry option" where "pdc_walk a hp rt v \<equiv> case get_pde' hp rt v of Some (SectionPDE p perms) \<Rightarrow> Some (PDE_Section (tag_conv a (to_tlb_flags perms)) (ucast (addr_val v >> 20) :: 12 word) (addr_val p) (to_tlb_flags perms)) | Some (PageTablePDE p) \<Rightarrow> Some (PDE_Table a (ucast (addr_val v >> 20) :: 12 word) (addr_val p)) | _ \<Rightarrow> None" definition pte_tlb_entry :: "asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr \<Rightarrow> tlb_entry option" where "pte_tlb_entry a hp p v \<equiv> case get_pte' hp p v of Some (SmallPagePTE p' perms) \<Rightarrow> Some (EntrySmall (tag_conv a (to_tlb_flags perms)) (ucast (addr_val v >> 12) :: 20 word) ((word_extract 31 12 (addr_val p')):: 20 word) (to_tlb_flags perms)) | _ \<Rightarrow> None" fun pde_tlb_entry :: "pdc_entry \<Rightarrow> heap \<Rightarrow> vaddr \<Rightarrow> tlb_entry option" where "pde_tlb_entry (PDE_Section a vba pba flags) mem va = Some (EntrySection a (ucast (addr_val va >> 20) :: 12 word) ((ucast (pba >> 20)) :: 12 word) flags)" | "pde_tlb_entry (PDE_Table a vba pba) mem va = pte_tlb_entry a mem (Addr pba) va" definition map_opt :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a option \<Rightarrow> 'b option" where "map_opt f x \<equiv> case x of None \<Rightarrow> None | Some y \<Rightarrow> f y" definition pt_walk :: "asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr \<Rightarrow> tlb_entry option" where "pt_walk a m r v \<equiv> map_opt (\<lambda>pde. pde_tlb_entry pde m v) (pdc_walk a m r v)" definition pt_walk_pair :: "asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr \<Rightarrow> pt_walk_typ" where "pt_walk_pair a mem ttbr0 v \<equiv> case pdc_walk a mem ttbr0 v of None \<Rightarrow> Fault | Some pde \<Rightarrow> (case pde_tlb_entry pde mem v of None \<Rightarrow> Partial_Walk pde | Some tlbentry \<Rightarrow> Full_Walk tlbentry pde)" definition entry_leq :: "pt_walk_typ \<Rightarrow> pt_walk_typ \<Rightarrow> bool" ("(_/ \<preceq> _)" [51, 51] 50) where "a \<preceq> b \<equiv> a = Fault \<or> a = b \<or> (\<exists>y. a = Partial_Walk y \<and> (\<exists>x. b = Full_Walk x y))" definition entry_less :: "pt_walk_typ \<Rightarrow> pt_walk_typ \<Rightarrow> bool" ("(_/ \<prec> _)" [51, 51] 50) where "a \<prec> b = (a \<preceq> b \<and> a \<noteq> b)" interpretation entry: order entry_leq entry_less apply unfold_locales by (auto simp: entry_leq_def entry_less_def) (* faults *) definition "is_fault e \<equiv> (e = None)" definition ptable_comp :: "(vaddr \<Rightarrow> pt_walk_typ) \<Rightarrow> (vaddr \<Rightarrow> pt_walk_typ) \<Rightarrow> vaddr set" where "ptable_comp walk walk' \<equiv> {va. \<not>(walk va \<preceq> walk' va)}" definition incon_comp :: "asid \<Rightarrow> asid \<Rightarrow> heap \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> paddr \<Rightarrow> vaddr set" where "incon_comp a a' hp hp' rt rt' \<equiv> ptable_comp (pt_walk_pair a hp rt) (pt_walk_pair a' hp' rt')" lemma ptable_trace_pde_comp: "\<forall>x. p \<notin> ptable_trace' h r x \<Longrightarrow> incon_comp a a h (h(p \<mapsto> v)) r r= {}" apply (clarsimp simp: ptable_trace'_def incon_comp_def ptable_comp_def Let_def) apply (drule_tac x = x in spec) apply (clarsimp simp: entry_leq_def pt_walk_pair_def pdc_walk_def pte_tlb_entry_def get_pde'_def decode_heap_pde'_def decode_pde_def split: option.splits pde.splits pte.splits) using Let_def apply auto [1] apply (clarsimp simp: Let_def split: if_split_asm) apply (clarsimp simp: Let_def split: if_split_asm) using Let_def apply auto [1] apply (clarsimp simp: Let_def split: if_split_asm) apply (clarsimp simp: Let_def split: if_split_asm) using Let_def apply auto [1] apply (clarsimp simp: Let_def pte_tlb_entry_def get_pte'_def decode_heap_pte'_def split: if_split_asm option.splits pte.splits) apply (clarsimp simp: Let_def pte_tlb_entry_def get_pte'_def decode_heap_pte'_def split: if_split_asm option.splits pte.splits) using Let_def apply auto [1] apply (clarsimp simp: Let_def pte_tlb_entry_def get_pte'_def decode_heap_pte'_def split: if_split_asm option.splits pte.splits) + done lemma pde_comp_empty: "p \<notin> \<Union>(ptable_trace' h r ` UNIV) \<Longrightarrow> incon_comp a a h (h(p \<mapsto> v)) r r = {}" apply (drule union_imp_all) by (clarsimp simp: ptable_trace_pde_comp) lemma plift_equal_not_in_pde_comp [simp]: "\<lbrakk>pt_walk_pair a h r va = e ; pt_walk_pair a h' r va = e \<rbrakk> \<Longrightarrow> va \<notin> incon_comp a a h h' r r" by (clarsimp simp: incon_comp_def ptable_comp_def) lemma pt_walk_pair_pt_trace_upd: "p \<notin> ptable_trace' h r x \<Longrightarrow> pt_walk_pair a h r x = pt_walk_pair a (h(p \<mapsto> v)) r x" apply (clarsimp simp: ptable_trace'_def Let_def pt_walk_pair_def pdc_walk_def) apply (subgoal_tac "get_pde' h r x = get_pde' (h(p \<mapsto> v)) r x" , clarsimp) apply (cases "get_pde' (h(p \<mapsto> v)) r x" ;clarsimp) apply (case_tac aa ; clarsimp simp: pte_tlb_entry_def) apply (subgoal_tac "get_pte' h x3 x = get_pte' (h(p \<mapsto> v)) x3 x") apply clarsimp apply (clarsimp simp: get_pde'_def decode_heap_pde'_def get_pte'_def decode_heap_pte'_def) by (clarsimp simp: get_pde'_def decode_heap_pde'_def Let_def split: pde.splits) lemma pt_walk_pt_trace_upd: "p \<notin> ptable_trace' h r x \<Longrightarrow> pt_walk a h r x = pt_walk a (h(p \<mapsto> v)) r x" apply (clarsimp simp: ptable_trace'_def Let_def pt_walk_def pdc_walk_def map_opt_def) apply (subgoal_tac "get_pde' h r x = get_pde' (h(p \<mapsto> v)) r x" , clarsimp) apply (cases "get_pde' (h(p \<mapsto> v)) r x" ;clarsimp) apply (case_tac aa ; clarsimp simp: pte_tlb_entry_def) apply (subgoal_tac "get_pte' h x3 x = get_pte' (h(p \<mapsto> v)) x3 x") apply clarsimp apply (clarsimp simp: get_pde'_def decode_heap_pde'_def get_pte'_def decode_heap_pte'_def) by (clarsimp simp: get_pde'_def decode_heap_pde'_def Let_def split: pde.splits) lemma pt_trace_upd: "p \<notin> ptable_trace' h r x \<Longrightarrow> ptable_trace' (h (p \<mapsto> v)) r x = ptable_trace' h r x" by (clarsimp simp: ptable_trace'_def Let_def split: pde.splits) lemma pt_table_lift_trace_upd: "p \<notin> ptable_trace' h r x \<Longrightarrow> ptable_lift_m (h(p \<mapsto> v)) r m x = ptable_lift_m h r m x" apply (clarsimp simp: ptable_trace'_def Let_def ptable_lift_m_def lookup_pde_perm_def lookup_pde'_def get_pde'_def) apply (subgoal_tac "decode_heap_pde' (h(p \<mapsto> v)) (r r+ (vaddr_pd_index (addr_val x) << 2)) = decode_heap_pde' h (r r+ (vaddr_pd_index (addr_val x) << 2))") apply clarsimp apply (clarsimp simp: decode_heap_pde'_def) apply (clarsimp split: option.splits) apply (clarsimp split: pde.splits) apply (clarsimp simp: lookup_pte'_def get_pte'_def) apply (subgoal_tac "decode_heap_pte' (h(p \<mapsto> v)) (x3 r+ (vaddr_pt_index (addr_val x) << 2)) = decode_heap_pte' h (x3 r+ (vaddr_pt_index (addr_val x) << 2))") apply (clarsimp) apply (clarsimp simp: decode_heap_pte'_def) by (clarsimp simp: decode_heap_pde'_def decode_pde_def Let_def split: pde.splits) lemma pt_table_lift_trace_upd': "p \<notin> ptable_trace' h r x \<Longrightarrow> ptable_lift' h r x = ptable_lift' (h(p \<mapsto> v)) r x" apply (clarsimp simp: ptable_trace'_def Let_def ptable_lift'_def lookup_pde_perm_def lookup_pde'_def get_pde'_def) apply (subgoal_tac "decode_heap_pde' (h(p \<mapsto> v)) (r r+ (vaddr_pd_index (addr_val x) << 2)) = decode_heap_pde' h (r r+ (vaddr_pd_index (addr_val x) << 2))") apply clarsimp apply (clarsimp simp: decode_heap_pde'_def) apply (clarsimp split: option.splits) apply (clarsimp split: pde.splits) apply (clarsimp simp: lookup_pte'_def get_pte'_def) apply (subgoal_tac "decode_heap_pte' (h(p \<mapsto> v)) (x3 r+ (vaddr_pt_index (addr_val x) << 2)) = decode_heap_pte' h (x3 r+ (vaddr_pt_index (addr_val x) << 2))") apply (clarsimp) apply (clarsimp simp: decode_heap_pte'_def) by (clarsimp simp: decode_heap_pde'_def decode_pde_def Let_def split: pde.splits) lemma pt_walk_pt_trace_upd': "p \<notin> ptable_trace' h r x \<Longrightarrow> pt_walk a (h(p \<mapsto> v)) r x = pt_walk a h r x" using pt_walk_pt_trace_upd by auto lemma pt_walk_pair_pt_trace_upd': "p \<notin> ptable_trace' h r x \<Longrightarrow> pt_walk_pair a (h(p \<mapsto> v)) r x = pt_walk_pair a h r x" using pt_walk_pair_pt_trace_upd by auto lemma no_fault_pt_walk_no_fault_pdc_walk: "\<not>is_fault (pt_walk a m r va) \<Longrightarrow> \<not>is_fault (pdc_walk a m r va)" by (clarsimp simp: is_fault_def pt_walk_def map_opt_def split: option.splits) lemma pt_walk_pair_no_fault_pdc_walk: "\<lbrakk>pt_walk_pair a m rt v = Full_Walk entry entry'\<rbrakk> \<Longrightarrow> pdc_walk a m rt v = Some entry'" by (clarsimp simp: pt_walk_pair_def pdc_walk_def split: option.splits pde.splits pte.splits) lemma pt_walk_pair_pair_fault_pdc_walk: "\<lbrakk>pt_walk_pair a m r v = Partial_Walk y\<rbrakk> \<Longrightarrow> pdc_walk a m r v = Some y" by (clarsimp simp: pt_walk_pair_def is_fault_def pdc_walk_def split: option.splits pde.splits pte.splits) lemma pt_walk_pair_fault_pdc_walk_fault': "\<lbrakk>pt_walk_pair a m rt v = Fault\<rbrakk> \<Longrightarrow> pdc_walk a m rt v = None" by (clarsimp simp: pt_walk_pair_def pdc_walk_def split: option.splits pde.splits pte.splits) lemma pt_walk_pair_fault_pt_walk_fault': "\<lbrakk>pt_walk_pair a m rt v = Fault\<rbrakk> \<Longrightarrow> pt_walk a m rt v = None" by (clarsimp simp: pt_walk_pair_def pt_walk_def map_opt_def pdc_walk_def split: option.splits pde.splits pte.splits) lemma pt_walk_pair_equal_pdc_walk: "pt_walk_pair a m rt v = pt_walk_pair a' m' rt' v \<Longrightarrow> pdc_walk a m rt v = pdc_walk a' m' rt' v" by (cases "pt_walk_pair a m rt v"; cases "pt_walk_pair a' m' rt' v"; clarsimp simp: pt_walk_pair_fault_pdc_walk_fault' pt_walk_pair_pair_fault_pdc_walk pt_walk_pair_no_fault_pdc_walk) lemma pt_walk_pair_equal_pdc_walk': "\<lbrakk>pt_walk_pair a m rt v = pt_walk_pair a' m' rt' v\<rbrakk> \<Longrightarrow> the(pdc_walk a m rt v) = the(pdc_walk a' m' rt' v)" by (cases "pt_walk_pair a m rt v"; cases "pt_walk_pair a' m' rt' v"; clarsimp simp: pt_walk_pair_fault_pdc_walk_fault' pt_walk_pair_pair_fault_pdc_walk pt_walk_pair_no_fault_pdc_walk) lemma pt_walk_pair_pdc_no_fault: "\<lbrakk>pt_walk_pair a m rt v = pt_walk_pair a' m' rt' v; \<not>is_fault (pdc_walk a' m' rt' v) \<rbrakk> \<Longrightarrow> \<not>is_fault (pdc_walk a m rt v)" by (cases "pt_walk_pair a m rt v"; cases "pt_walk_pair a' m' rt' v"; clarsimp simp: pt_walk_pair_fault_pdc_walk_fault' pt_walk_pair_pair_fault_pdc_walk pt_walk_pair_no_fault_pdc_walk) lemma pt_walk_pair_fault_pt_walk_fault: "\<lbrakk>pt_walk_pair a m r v = Partial_Walk y\<rbrakk> \<Longrightarrow> is_fault (pt_walk a m r v)" by (clarsimp simp: pt_walk_pair_def is_fault_def pt_walk_def map_opt_def split: option.splits pde.splits) lemma pt_walk_pair_no_fault_pt_walk: "\<lbrakk>pt_walk_pair a m rt v = Full_Walk entry entry'\<rbrakk> \<Longrightarrow> pt_walk a m rt v = Some entry" by (clarsimp simp: pt_walk_pair_def pt_walk_def map_opt_def split: option.splits pde.splits pte.splits) lemma pt_walk_pair_no_fault_pt_walk': "pt_walk_pair a m r v = Full_Walk te pe \<Longrightarrow> \<not>is_fault (pt_walk a m r v)" by (simp add: is_fault_def pt_walk_pair_no_fault_pt_walk) lemma pt_walk_full_no_pdc_fault: "pt_walk_pair a m r v = Full_Walk te pe \<Longrightarrow> \<not>is_fault (pdc_walk a m r v)" using no_fault_pt_walk_no_fault_pdc_walk pt_walk_pair_no_fault_pt_walk' by auto lemma pt_walk_pair_pt_no_fault: "\<lbrakk>pt_walk_pair a m rt v = pt_walk_pair a' m' rt' v; \<not>is_fault (pt_walk a' m' rt' v) \<rbrakk> \<Longrightarrow> \<not>is_fault (pt_walk a m rt v)" by (cases "pt_walk_pair a m rt v"; cases "pt_walk_pair a' m' rt' v"; clarsimp simp: pt_walk_pair_fault_pt_walk_fault' pt_walk_pair_fault_pt_walk_fault pt_walk_pair_no_fault_pt_walk') lemma pdc_walk_pt_trace_upd: "p \<notin> ptable_trace' h r x \<Longrightarrow> pdc_walk a (h(p \<mapsto> v)) r x = pdc_walk a h r x" apply (clarsimp simp: ptable_trace'_def Let_def pdc_walk_def split: option.splits) apply (subgoal_tac "get_pde' h r x = get_pde' (h(p \<mapsto> v)) r x" , clarsimp) by (clarsimp simp: get_pde'_def decode_pde_def Let_def decode_heap_pde'_def split: pde.splits if_split_asm) lemma pt_walk_not_full_walk_fault: "pt_walk_pair a m r v \<noteq> Full_Walk (the (pt_walk a m r v)) (the (pdc_walk a m r v)) \<Longrightarrow> is_fault (pt_walk a m r v)" by (clarsimp simp: pt_walk_pair_def is_fault_def pt_walk_def map_opt_def split: option.splits) lemma pt_walk_not_full_walk_partial_pdc: "\<lbrakk>\<forall>te. pt_walk_pair a m r v \<noteq> Full_Walk te (the (pdc_walk a m r v)); \<not>is_fault (pdc_walk a m r v)\<rbrakk> \<Longrightarrow> pt_walk_pair a m r v = Partial_Walk (the (pdc_walk a m r v))" by (metis is_fault_def le_boolD option.sel order_refl pt_walk_not_full_walk_fault pt_walk_pair_fault_pdc_walk_fault' pt_walk_pair_no_fault_pt_walk' pt_walk_pair_pair_fault_pdc_walk pt_walk_typ.exhaust) lemma pt_walk_pair_disj: "pt_walk_pair a m r v = Fault \<or> pt_walk_pair a m r v = Partial_Walk (the (pdc_walk a m r v)) \<or> pt_walk_pair a m r v = Full_Walk (the (pt_walk a m r v)) (the (pdc_walk a m r v))" by (clarsimp simp: pt_walk_pair_def is_fault_def pt_walk_def map_opt_def split: option.splits) (* snapshot functions *) definition cur_pt_snp :: "vaddr set \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> asid \<Rightarrow> (vaddr set \<times> (vaddr \<Rightarrow> pt_walk_typ))" where "cur_pt_snp ist m r \<equiv> \<lambda>a. (ist, \<lambda>v. pt_walk_pair a m r v)" definition cur_pt_snp' :: "(asid \<Rightarrow> (vaddr set \<times> (vaddr \<Rightarrow> pt_walk_typ))) \<Rightarrow> vaddr set \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> asid \<Rightarrow> (asid \<Rightarrow> (vaddr set \<times> (vaddr \<Rightarrow> pt_walk_typ)))" where "cur_pt_snp' snp ist mem ttbr0 a \<equiv> snp (a := cur_pt_snp ist mem ttbr0 a)" definition "range_of (e :: tlb_entry) \<equiv> case e of EntrySmall a vba pba fl \<Rightarrow> Addr ` {(ucast vba) << 12 .. ((ucast vba) << 12) + (2^12 - 1)} | EntrySection a vba pba fl \<Rightarrow> Addr ` {(ucast vba) << 20 .. ((ucast vba) << 20) + (2^20 - 1)}" definition global_entries :: " tlb_entry set \<Rightarrow> tlb_entry set" where "global_entries t = {e\<in>t. asid_of e = None}" definition incon_load :: "ptable_snapshot \<Rightarrow> vaddr set \<Rightarrow> vaddr set \<Rightarrow> asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr set" where "incon_load snp iset gset a m r \<equiv> fst (snp a) \<union> (iset \<inter> gset) \<union> ptable_comp (snd(snp a)) (pt_walk_pair a m r)" fun flush_effect_iset ::"flush_type \<Rightarrow> vaddr set \<Rightarrow> vaddr set \<Rightarrow> asid \<Rightarrow> vaddr set" where "flush_effect_iset flushTLB iset gset a' = {}" | "flush_effect_iset (flushASID a) iset gset a' = (if a = a' then iset \<inter> gset else iset)" | "flush_effect_iset (flushvarange vset) iset gset a' = iset - vset" | "flush_effect_iset (flushASIDvarange a vset) iset gset a' = (if a = a' then iset - (vset - gset) else iset)" fun flush_effect_glb ::"flush_type \<Rightarrow> vaddr set \<Rightarrow> asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr set" where "flush_effect_glb flushTLB gset a' m rt = (\<Union>x\<in>global_entries (ran(pt_walk a' m rt)). range_of x)" | "flush_effect_glb (flushASID a) gset a' m rt = gset" | "flush_effect_glb (flushvarange vset) gset a' m rt = (gset - vset) \<union> (\<Union>x\<in>global_entries (ran(pt_walk a' m rt)). range_of x)" | "flush_effect_glb (flushASIDvarange a vset) gset a' m rt = gset" fun flush_effect_snp :: "flush_type \<Rightarrow> ptable_snapshot \<Rightarrow> asid \<Rightarrow> ptable_snapshot" where "flush_effect_snp flushTLB snp a' = (\<lambda>a. ({}, \<lambda>v. Fault))" | "flush_effect_snp (flushASID a) snp a'= (if a = a' then snp else snp(a := ({}, \<lambda>v. Fault)))" | "flush_effect_snp (flushvarange vset) snp a' = (\<lambda>a. (fst (snp a) - vset, \<lambda>v. if v \<in> vset then Fault else snd (snp a) v ))" | "flush_effect_snp (flushASIDvarange a vset) snp a'= (if a = a' then snp else (\<lambda>x. if x = a then (fst (snp x) - vset, \<lambda>v. if v \<in> vset then Fault else snd (snp x) v) else snp x))" (* for global set *) definition pt_walk' :: "asid \<Rightarrow> heap \<Rightarrow> paddr \<Rightarrow> vaddr \<Rightarrow> tlb_entry option" where "pt_walk' a hp rt v \<equiv> case get_pde' hp rt v of None \<Rightarrow> None | Some InvalidPDE \<Rightarrow> None | Some ReservedPDE \<Rightarrow> None | Some (SectionPDE bpa perms) \<Rightarrow> Some (EntrySection (tag_conv a (to_tlb_flags perms)) (ucast (addr_val v >> 20) :: 12 word) ((word_extract 31 20 (addr_val bpa)):: 12 word) (to_tlb_flags perms)) | Some (PageTablePDE p) \<Rightarrow> (case get_pte' hp p v of None \<Rightarrow> None | Some InvalidPTE \<Rightarrow> None | Some (SmallPagePTE bpa perms) \<Rightarrow> Some(EntrySmall (tag_conv a (to_tlb_flags perms)) (ucast (addr_val v >> 12) :: 20 word) ((word_extract 31 12 (addr_val bpa)):: 20 word) (to_tlb_flags perms)))" lemma pt_walk'_pt_walk: "pt_walk' a h rt v = pt_walk a h rt v" apply (clarsimp simp: pt_walk'_def pt_walk_def pdc_walk_def pte_tlb_entry_def map_opt_def mask_def split:option.splits pde.splits pte.splits ) by word_bitwise lemma va_20_left [simp]: fixes va :: "32 word" shows "ucast (ucast (va >> 20) :: 12 word) << 20 \<le> va" by word_bitwise lemma va_12_left [simp]: fixes va :: "32 word" shows "ucast (ucast (va >> 12) :: 20 word) << 12 \<le> va" by word_bitwise lemma va_20_right [simp]: fixes va :: "32 word" shows "va \<le> (ucast (ucast (va >> 20) :: 12 word) << 20) + 0x000FFFFF" by word_bitwise lemma va_12_right [simp]: fixes va :: "32 word" shows "va \<le> (ucast (ucast (va >> 12) :: 20 word) << 12) + 0x00000FFF" by word_bitwise lemma va_offset_add: " (va::32 word) : {ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 .. (ucast (ucast (x >> 12):: 20 word) << 12) + mask 12 } \<Longrightarrow> \<exists>a. (0 \<le> a \<and> a \<le> mask 12) \<and> va = (ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12) + a" apply (rule_tac x = "va - (ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12) " in exI) apply (clarsimp simp: mask_def) apply uint_arith done lemma shift_to_mask: "x AND NOT mask 12 = (ucast (ucast ((x::32 word) >> 12):: 20 word)::32 word) << 12" apply (rule word_eqI) apply (simp add : word_ops_nth_size word_size) apply (simp add : nth_shiftr nth_shiftl nth_ucast) apply auto done lemma nth_bits_false: "\<lbrakk>(n::nat) < 20; (a::32 word) \<le> 0xFFF\<rbrakk> \<Longrightarrow> \<not>(a !! (n + 12))" apply word_bitwise apply clarsimp apply (case_tac "n = 0") apply clarsimp apply (case_tac "n = 1") apply clarsimp apply (case_tac "n = 2") apply clarsimp apply (case_tac "n = 3") apply clarsimp apply (case_tac "n = 4") apply clarsimp apply (case_tac "n = 5") apply clarsimp apply (case_tac "n = 6") apply clarsimp apply (case_tac "n = 7") apply clarsimp apply (case_tac "n = 8") apply clarsimp apply (case_tac "n = 9") apply clarsimp apply (case_tac "n = 10") apply clarsimp apply (case_tac "n = 11") apply clarsimp apply (case_tac "n = 12") apply clarsimp apply (case_tac "n = 13") apply clarsimp apply (case_tac "n = 14") apply clarsimp apply (case_tac "n = 15") apply clarsimp apply (case_tac "n = 16") apply clarsimp apply (case_tac "n = 17") apply clarsimp apply (case_tac "n = 18") apply clarsimp apply (case_tac "n = 19") apply clarsimp apply (thin_tac "\<not> a !! P" for P)+ apply arith done lemma nth_bits_offset_equal: "\<lbrakk>n < 20 ; (a::32 word) \<le> 0x00000FFF \<rbrakk> \<Longrightarrow> (((x::32 word) && 0xFFFFF000) || a) !! (n + 12) = x !! (n + 12)" apply clarsimp apply (rule iffI) apply (erule disjE) apply clarsimp apply (clarsimp simp: nth_bits_false) apply clarsimp apply (simp only: test_bit_int_def [symmetric]) apply (case_tac "n = 0") apply clarsimp apply (case_tac "n = 1") apply clarsimp apply (case_tac "n = 2") apply clarsimp apply (case_tac "n = 3") apply clarsimp apply (case_tac "n = 4") apply clarsimp apply (case_tac "n = 5") apply clarsimp apply (case_tac "n = 6") apply clarsimp apply (case_tac "n = 7") apply clarsimp apply (case_tac "n = 8") apply clarsimp apply (case_tac "n = 9") apply clarsimp apply (case_tac "n = 10") apply clarsimp apply (case_tac "n = 11") apply clarsimp apply (case_tac "n = 12") apply clarsimp apply (case_tac "n = 13") apply clarsimp apply (case_tac "n = 14") apply clarsimp apply (case_tac "n = 15") apply clarsimp apply (case_tac "n = 16") apply clarsimp apply (case_tac "n = 17") apply clarsimp apply (case_tac "n = 18") apply clarsimp apply (case_tac "n = 19") apply clarsimp by presburger lemma add_to_or: "(a::32 word) \<le> 0xFFF \<Longrightarrow> ((x::32 word) && 0xFFFFF000) + a = (x && 0xFFFFF000) || a" apply word_bitwise apply clarsimp using xor3_simps carry_simps apply auto done lemma va_offset_higher_bits: " \<lbrakk>ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 \<le> va ; va \<le> (ucast (ucast (x >> 12):: 20 word) << 12) + 0x00000FFF \<rbrakk> \<Longrightarrow> (ucast (x >> 12)::20 word) = (ucast ((va:: 32 word) >> 12)::20 word)" apply (subgoal_tac "(va::32 word) : {ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 .. (ucast (ucast (x >> 12):: 20 word) << 12) + mask 12 }") prefer 2 apply (clarsimp simp: mask_def) apply (frule va_offset_add) apply simp apply (erule exE) apply (erule conjE) apply (simp add: mask_def) apply (subgoal_tac "(ucast ((((ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12)::32 word) + a) >> 12):: 20 word) = (ucast (((ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12)::32 word) >> 12):: 20 word) ") apply clarsimp apply (word_bitwise) [1] apply (subgoal_tac "ucast ((ucast (ucast ((x::32 word) >> 12):: 20 word)::32 word) << 12 >> 12) = (ucast (x >> 12) :: 20 word)") prefer 2 apply (word_bitwise) [1] apply simp apply (clarsimp simp: shift_to_mask [symmetric]) apply (rule word_eqI) apply (simp only: nth_ucast) apply clarsimp apply (subgoal_tac "n < 20") prefer 2 apply word_bitwise [1] apply clarsimp apply (clarsimp simp: nth_shiftr) apply (clarsimp simp: mask_def) apply (frule_tac a = a in nth_bits_offset_equal) apply clarsimp apply (drule_tac x= x in add_to_or) apply (simp only: ) done lemma n_bit_shift: "\<lbrakk> \<forall>n::nat. n \<in> {12 .. 31} \<longrightarrow>(a::32 word) !! n = (b::32 word) !! n \<rbrakk> \<Longrightarrow> a >> 12 = b >> 12" apply word_bitwise by auto lemma nth_bits_offset: "\<lbrakk> n \<in> {12..31} ; (a::32 word) \<le> 0x00000FFF \<rbrakk> \<Longrightarrow> (x::32 word) !! n = (x && 0xFFFFF000 || a) !! n" apply (rule iffI) apply (case_tac "n = 12") apply clarsimp apply (case_tac "n = 13") apply clarsimp apply (case_tac "n = 14") apply clarsimp apply (case_tac "n = 15") apply clarsimp apply (case_tac "n = 16") apply clarsimp apply (case_tac "n = 17") apply clarsimp apply (case_tac "n = 18") apply clarsimp apply (case_tac "n = 19") apply clarsimp apply (case_tac "n = 20") apply clarsimp apply (case_tac "n = 21") apply clarsimp apply (case_tac "n = 22") apply clarsimp apply (case_tac "n = 23") apply clarsimp apply (case_tac "n = 24") apply clarsimp apply (case_tac "n = 25") apply clarsimp apply (case_tac "n = 26") apply clarsimp apply (case_tac "n = 27") apply clarsimp apply (case_tac "n = 28") apply clarsimp apply (case_tac "n = 29") apply clarsimp apply (case_tac "n = 30") apply clarsimp apply (case_tac "n = 31") apply clarsimp prefer 2 apply (case_tac "n = 12") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 13") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 14") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 15") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 16") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 17") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 18") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 19") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 20") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 21") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 22") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 23") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 24") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 25") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 26") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 27") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 28") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 29") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 30") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 31") apply word_bitwise [1] apply clarsimp apply clarsimp apply arith apply clarsimp apply arith done lemma offset_mask_eq: "\<lbrakk>ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 \<le> va ; va \<le> (ucast (ucast (x >> 12):: 20 word) << 12) + 0x00000FFF\<rbrakk> \<Longrightarrow> (( x >> 12) && mask 8 << 2) = ((va >> 12) && mask 8 << 2)" apply (subgoal_tac "(va::32 word) : {ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 .. (ucast (ucast (x >> 12):: 20 word) << 12) + mask 12 }") prefer 2 apply (clarsimp simp: mask_def) apply (frule va_offset_add) apply simp apply (erule exE) apply (erule conjE) apply (simp add: mask_def) apply (rule_tac f = "(\<lambda>x. x && 0xFF << 2)" in arg_cong) apply (clarsimp simp: shift_to_mask [symmetric]) apply (simp add: mask_def) apply (rule n_bit_shift) apply (rule allI) apply (rule impI) apply (frule_tac x= x in add_to_or) apply (frule_tac x= x in nth_bits_offset) apply (simp only:)+ done lemma n_bit_shift_1: "\<lbrakk> \<forall>n::nat. n \<in> {12 .. 31} \<longrightarrow>(a::32 word) !! n = (b::32 word) !! n \<rbrakk> \<Longrightarrow> a >> 20 = b >> 20" apply word_bitwise by auto lemma offset_mask_eq_1: "\<lbrakk>ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 \<le> va ; va \<le> (ucast (ucast (x >> 12):: 20 word) << 12) + 0x00000FFF\<rbrakk> \<Longrightarrow>((x >> 20) && mask 12 << 2) = ((va >> 20) && mask 12 << 2)" apply (subgoal_tac "(va::32 word) : {ucast (ucast ((x:: 32 word) >> 12):: 20 word) << 12 .. (ucast (ucast (x >> 12):: 20 word) << 12) + mask 12 }") prefer 2 apply (clarsimp simp: mask_def) apply (frule va_offset_add) apply simp apply (erule exE) apply (erule conjE) apply (simp add: mask_def) apply (rule_tac f = "(\<lambda>x. x && 0xFFF << 2)" in arg_cong) apply (clarsimp simp: shift_to_mask [symmetric]) apply (simp add: mask_def) apply (rule n_bit_shift_1) apply (rule allI) apply (rule impI) apply (frule_tac x= x in add_to_or) apply (frule_tac x= x in nth_bits_offset) apply (simp only:)+ done lemma va_offset_add_1: " (va::32 word) : {ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20 .. (ucast (ucast (x >> 20):: 12 word) << 20) + mask 20 } \<Longrightarrow> \<exists>a. (0 \<le> a \<and> a \<le> mask 20) \<and> va = (ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20) + a" apply (rule_tac x = "va - (ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20) " in exI) apply (clarsimp simp: mask_def) apply uint_arith done lemma shift_to_mask_1: "x AND NOT mask 20 = (ucast (ucast ((x::32 word) >> 20):: 12 word)::32 word) << 20" apply (rule word_eqI) apply (simp add : word_ops_nth_size word_size) apply (simp add : nth_shiftr nth_shiftl nth_ucast) apply auto done lemma nth_bits_false_1: "\<lbrakk>(n::nat) < 12; (a::32 word) \<le> 0xFFFFF\<rbrakk> \<Longrightarrow> \<not>(a !! (n + 20))" apply word_bitwise apply clarsimp apply (case_tac "n = 0") apply clarsimp apply (case_tac "n = 1") apply clarsimp apply (case_tac "n = 2") apply clarsimp apply (case_tac "n = 3") apply clarsimp apply (case_tac "n = 4") apply clarsimp apply (case_tac "n = 5") apply clarsimp apply (case_tac "n = 6") apply clarsimp apply (case_tac "n = 7") apply clarsimp apply (case_tac "n = 8") apply clarsimp apply (case_tac "n = 9") apply clarsimp apply (case_tac "n = 10") apply clarsimp apply (case_tac "n = 11") apply clarsimp apply (thin_tac "\<not> a !! P" for P)+ apply arith done lemma nth_bits_offset_equal_1: "\<lbrakk>n < 12 ; (a::32 word) \<le> 0x000FFFFF \<rbrakk> \<Longrightarrow> (((x::32 word) && 0xFFF00000) || a) !! (n + 20) = x !! (n + 20)" apply clarsimp apply (rule iffI) apply (erule disjE) apply clarsimp apply (clarsimp simp: nth_bits_false_1) apply clarsimp apply (simp only: test_bit_int_def [symmetric]) apply (case_tac "n = 0") apply clarsimp apply (case_tac "n = 1") apply clarsimp apply (case_tac "n = 2") apply clarsimp apply (case_tac "n = 3") apply clarsimp apply (case_tac "n = 4") apply clarsimp apply (case_tac "n = 5") apply clarsimp apply (case_tac "n = 6") apply clarsimp apply (case_tac "n = 7") apply clarsimp apply (case_tac "n = 8") apply clarsimp apply (case_tac "n = 9") apply clarsimp apply (case_tac "n = 10") apply clarsimp apply (case_tac "n = 11") apply clarsimp by presburger lemma add_to_or_1: "(a::32 word) \<le> 0xFFFFF \<Longrightarrow> ((x::32 word) && 0xFFF00000) + a = (x && 0xFFF00000) || a" apply word_bitwise apply clarsimp using xor3_simps carry_simps apply auto done lemma va_offset_higher_bits_1: " \<lbrakk>ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20 \<le> va ; va \<le> (ucast (ucast (x >> 20):: 12 word) << 20) + 0x000FFFFF \<rbrakk> \<Longrightarrow> (ucast (x >> 20):: 12 word) = (ucast ((va:: 32 word) >> 20)::12 word)" apply (subgoal_tac "(va::32 word) : {ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20 .. (ucast (ucast (x >> 20):: 12 word) << 20) + mask 20 }") prefer 2 apply (clarsimp simp: mask_def) apply (frule va_offset_add_1) apply simp apply (erule exE) apply (erule conjE) apply (simp add: mask_def) apply (subgoal_tac "(ucast ((((ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20)::32 word) + a) >> 20):: 12 word) = (ucast (((ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20)::32 word) >> 20):: 12 word) ") apply clarsimp apply (word_bitwise) [1] apply (subgoal_tac "ucast ((ucast (ucast ((x::32 word) >> 20):: 12 word)::32 word) << 20 >> 20) = (ucast (x >> 20) :: 12 word)") prefer 2 apply (word_bitwise) [1] apply simp apply (clarsimp simp: shift_to_mask_1 [symmetric]) apply (rule word_eqI) apply (simp only: nth_ucast) apply clarsimp apply (subgoal_tac "n < 12") prefer 2 apply word_bitwise [1] apply clarsimp apply (clarsimp simp: nth_shiftr) apply (clarsimp simp: mask_def) apply (frule_tac a = a in nth_bits_offset_equal_1) apply clarsimp apply (drule_tac x= x in add_to_or_1) apply (simp only: ) done lemma n_bit_shift_2: "\<lbrakk> \<forall>n::nat. n \<in> {20 .. 31} \<longrightarrow>(a::32 word) !! n = (b::32 word) !! n \<rbrakk> \<Longrightarrow> a >> 20 = b >> 20" apply word_bitwise by auto lemma nth_bits_offset_1: "\<lbrakk> n \<in> {20..31} ; (a::32 word) \<le> 0x000FFFFF \<rbrakk> \<Longrightarrow> (x::32 word) !! n = (x && 0xFFF00000 || a) !! n" apply (rule iffI) apply (case_tac "n = 20") apply clarsimp apply (case_tac "n = 21") apply clarsimp apply (case_tac "n = 22") apply clarsimp apply (case_tac "n = 23") apply clarsimp apply (case_tac "n = 24") apply clarsimp apply (case_tac "n = 25") apply clarsimp apply (case_tac "n = 26") apply clarsimp apply (case_tac "n = 27") apply clarsimp apply (case_tac "n = 28") apply clarsimp apply (case_tac "n = 29") apply clarsimp apply (case_tac "n = 30") apply clarsimp apply (case_tac "n = 31") apply clarsimp prefer 2 apply (case_tac "n = 20") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 21") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 22") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 23") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 24") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 25") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 26") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 27") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 28") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 29") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 30") apply word_bitwise [1] apply clarsimp apply (case_tac "n = 31") apply word_bitwise [1] apply clarsimp apply clarsimp apply arith apply clarsimp apply arith done lemma shfit_mask_eq: "\<lbrakk>ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20 \<le> va ; va \<le> (ucast (ucast (x >> 20):: 12 word) << 20) + 0x000FFFFF \<rbrakk> \<Longrightarrow> ((x >> 20) && mask 12 << 2) = ((va >> 20) && mask 12 << 2)" apply (subgoal_tac "(va::32 word) : {ucast (ucast ((x:: 32 word) >> 20):: 12 word) << 20 .. (ucast (ucast (x >> 20):: 12 word) << 20) + mask 20 }") prefer 2 apply (clarsimp simp: mask_def) apply (frule va_offset_add_1) apply simp apply (erule exE) apply (erule conjE) apply (simp add: mask_def) apply (rule_tac f = "(\<lambda>x. x && 0xFFF << 2)" in arg_cong) apply (clarsimp simp: shift_to_mask_1 [symmetric]) apply (simp add: mask_def) apply (rule n_bit_shift_2) apply (rule allI) apply (rule impI) apply (frule_tac x= x in add_to_or_1) apply (frule_tac x= x and a = a in nth_bits_offset_1) apply (simp only:)+ done lemma asid_entry_range [simp, intro!]: "pt_walk' a m r v \<noteq> None \<Longrightarrow> v \<in> range_of (the (pt_walk' a m r v))" apply (clarsimp simp: range_of_def pt_walk'_def Let_def split: option.splits ) apply (case_tac x2; clarsimp split: option.splits) apply (case_tac x2a; clarsimp split: option.splits) apply (metis (no_types, hide_lams) Addr_addr_val atLeastAtMost_iff image_iff va_12_left va_12_right) by (metis (no_types, hide_lams) Addr_addr_val atLeastAtMost_iff image_iff va_20_left va_20_right) lemma asid_va_entry_range_pt_entry: "\<not>is_fault(pt_walk' a m r v) \<Longrightarrow> v \<in> range_of (the(pt_walk' a m r v))" by (clarsimp simp: is_fault_def) lemma va_entry_set_pt_palk_same': "\<lbrakk>\<not>is_fault (pt_walk a' m r x) ; va \<in> range_of (the (pt_walk a' m r x))\<rbrakk> \<Longrightarrow> pt_walk a' m r x = pt_walk a' m r va" apply (simp only: pt_walk'_pt_walk [symmetric]) apply (subgoal_tac "x \<in> range_of (the(pt_walk' a' m r x))") prefer 2 apply (clarsimp simp: asid_va_entry_range_pt_entry is_fault_def) apply (cases "the (pt_walk' a' m r x)") apply (simp only: ) apply (clarsimp simp: range_of_def is_fault_def) apply (cases "get_pde' m r x" ; clarsimp simp: pt_walk'_def) apply (case_tac a ; clarsimp) apply (case_tac "get_pte' m x3 x " ; clarsimp) apply (subgoal_tac "get_pde' m r (Addr xaa) = get_pde' m r (Addr xa)" ; clarsimp) apply (subgoal_tac "get_pte' m x3 (Addr xaa) = get_pte' m x3 (Addr xa)" ; clarsimp) apply (case_tac a ; clarsimp) using va_offset_higher_bits apply blast apply (case_tac a ; clarsimp) apply (clarsimp simp: get_pte'_def vaddr_pt_index_def) apply (subgoal_tac "(( xaa >> 12) && mask 8 << 2) = (( xa >> 12) && mask 8 << 2) ") prefer 2 using offset_mask_eq apply force apply force apply (case_tac a ; clarsimp) apply (clarsimp simp: get_pde'_def vaddr_pd_index_def) apply (subgoal_tac "((xaa >> 20) && mask 12 << 2) = ((xa >> 20) && mask 12 << 2) ") prefer 2 using offset_mask_eq_1 apply force apply force apply (simp only: ) apply (clarsimp simp: range_of_def is_fault_def) apply (cases "get_pde' m r x" ; clarsimp simp: pt_walk'_def) apply (case_tac a ; clarsimp) apply (case_tac "get_pte' m x3 x" ; clarsimp) apply (subgoal_tac "get_pde' m r (Addr xaa) = get_pde' m r (Addr xa)" ; clarsimp) apply (subgoal_tac "get_pte' m x3 (Addr xaa) = get_pte' m x3 (Addr xa)" ; clarsimp) apply (case_tac a ; clarsimp) apply (case_tac a ; clarsimp simp: get_pte'_def vaddr_pt_index_def) apply (case_tac a ; clarsimp simp: get_pde'_def vaddr_pd_index_def) apply (cases "get_pde' m r x" ; clarsimp) apply (subgoal_tac "get_pde' m r (Addr xaa) = get_pde' m r (Addr xa)" ; clarsimp) using va_offset_higher_bits_1 apply blast apply (clarsimp simp: get_pde'_def vaddr_pd_index_def) apply (subgoal_tac "((xaa >> 20) && mask 12 << 2) = ((xa >> 20) && mask 12 << 2)") apply force using shfit_mask_eq by force end
#include <badem/rpc/rpc_connection_secure.hpp> #include <badem/rpc/rpc_secure.hpp> #include <boost/polymorphic_pointer_cast.hpp> badem::rpc_connection_secure::rpc_connection_secure (badem::rpc_config const & rpc_config, boost::asio::io_context & io_ctx, badem::logger_mt & logger, badem::rpc_handler_interface & rpc_handler_interface, boost::asio::ssl::context & ssl_context) : badem::rpc_connection (rpc_config, io_ctx, logger, rpc_handler_interface), stream (socket, ssl_context) { } void badem::rpc_connection_secure::parse_connection () { // Perform the SSL handshake auto this_l = std::static_pointer_cast<badem::rpc_connection_secure> (shared_from_this ()); stream.async_handshake (boost::asio::ssl::stream_base::server, [this_l](auto & ec) { this_l->handle_handshake (ec); }); } void badem::rpc_connection_secure::on_shutdown (const boost::system::error_code & error) { // No-op. We initiate the shutdown (since the RPC server kills the connection after each request) // and we'll thus get an expected EOF error. If the client disconnects, a short-read error will be expected. } void badem::rpc_connection_secure::handle_handshake (const boost::system::error_code & error) { if (!error) { read (); } else { logger.always_log ("TLS: Handshake error: ", error.message ()); } } void badem::rpc_connection_secure::write_completion_handler (std::shared_ptr<badem::rpc_connection> rpc) { auto rpc_connection_secure = boost::polymorphic_pointer_downcast<badem::rpc_connection_secure> (rpc); rpc_connection_secure->stream.async_shutdown (boost::asio::bind_executor (rpc->strand, [rpc_connection_secure](auto const & ec_shutdown) { rpc_connection_secure->on_shutdown (ec_shutdown); })); }
proposition maximum_modulus_principle: assumes holf: "f holomorphic_on S" and S: "open S" and "connected S" and "open U" and "U \<subseteq> S" and "\<xi> \<in> U" and no: "\<And>z. z \<in> U \<Longrightarrow> norm(f z) \<le> norm(f \<xi>)" shows "f constant_on S"
# -*- coding: utf-8 -*- ''' Texas A&M University Sounding Rocketry Team SRT-6 | 2018-2019 SRT-9 | 2021-2022 %-------------------------------------------------------------% TAMU SRT _____ __ _____ __ __ / ___/______ __ _____ ___/ / / ___/__ ___ / /________ / / / (_ / __/ _ \/ // / _ \/ _ / / /__/ _ \/ _ \/ __/ __/ _ \/ / \___/_/ \___/\_,_/_//_/\_,_/ \___/\___/_//_/\__/_/ \___/_/ %-------------------------------------------------------------% Filepath: gc/srt_gc_launchGui/srt_gc_launchGui.py Developers: (C) Doddanavar, Roshan 20171216 (L) Doddanavar, Roshan 20180801 Diaz, Antonio Description: Launch Control GUI, interfaces w/ srt_gc_launchArduino/srt_gc_launchArduino.ino Input(s): <None> Output(s): ./log/*.log plain-text command log ./dat/*.dat plain-text data archive ''' # Installed modules --> Utilities import sys import os import serial, serial.tools.list_ports from serial.serialutil import SerialException import time from datetime import datetime import numpy as np # Installed modules --> PyQt related from PyQt5 import (QtGui, QtCore, QtSvg) from PyQt5.QtCore import (Qt, QThread, pyqtSignal, QDate, QTime, QDateTime, QSize) from PyQt5.QtWidgets import (QMainWindow, QWidget, QDesktopWidget, QPushButton, QApplication, QGroupBox, QGridLayout, QStatusBar, QFrame, QTabWidget,QComboBox) import pyqtgraph as pg # Program modules from srt_gc_launchState import State from srt_gc_launchThread import SerThread, UptimeThread from srt_gc_launchTools import Tools, Object from srt_gc_launchStyle import Style, Color from srt_gc_launchConstr import Constr # used to monitor wifi networks. import subprocess # used to get date and time in clock method. import datetime as dt # used to connect to ethernet socket in connect method. import socket # data for ethernet connection to SRT6 router # Create a TCP/IP socket for srt router sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) TCP_IP = '192.168.1.177' TCP_PORT = 23 server_address = (TCP_IP, TCP_PORT) class Gui(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): ''' Main Window Initialization ''' # General initialization self.session = '' # current date used in top of window self.dateGlobal = QDate.currentDate() # current time used in starting thread time in bottom of window self.startGlobal = QTime.currentTime() self.version = "v6.4.0" # Container initialization self.edit = Object() # Line edit container self.btn = Object() # Button container self.led = Object() # LED indicator container self.ledClr = Object() # LED pixmap container self.sensor = Object() # Sensor readout container self.data = Object() # Data array container self.plot = Object() # Plot container ledImg = ["green","yellow","red","off"] # LED indicator image files for name in ledImg: # get LED Images in figs folder, green.png, yellow.png, and so on # pixmap = QtGui.QPixmap("./figs/" + name + ".png").scaled(20, 20, pixmap = QtGui.QPixmap("./srt_gc_launchGui/figs/" + name + ".png").scaled(20, 20, transformMode=QtCore.Qt.SmoothTransformation) setattr(self.ledClr,name,pixmap) # Utility initialization self.style = Style() self.color = Color() self.state = State(self.led,self.ledClr) self.tools = Tools() self.constr = Constr(self,self.ledClr) # Utility states self.state.connected = False # Serial connection self.state.reading = False # COM port bypass self.state.log = False # Log/data file initialization self.state.data = False # Avionics data read # Master grid layout management self.gridMaster = QGridLayout() self.gridMaster.setSpacing(10) # Tab initialization # name, row, col, row Span, col Span tabSpec = [( "tabComm", 0, 2, 1, 8), ( "tabSys", 1, 0, 1, 2), ( "tabAv", 1, 2, 1, 2), ( "tabFill", 1, 4, 1, 2), ( "tabData", 2, 0, 1, 10)] for spec in tabSpec: tabName = spec[0] row = spec[1] col = spec[2] rSpan = spec[3] cSpan = spec[4] tab = QTabWidget() setattr(self,tabName,tab) self.gridMaster.addWidget(tab,row,col,rSpan,cSpan) # kind, grid, title, row, col, row Span, col Span groupSpec = [( "box", "groupTitle", "gridTitle", "", 0, 0, 1, 2), ( "tab", "groupComm", "gridComm", "Communication", "tabComm"), ( "tab", "groupSess", "gridSess", "Session Control", "tabComm"), ( "tab", "groupSys", "gridSys", "System State", "tabSys"), ( "tab", "groupPwr", "gridPwr", "Power Telemetry", "tabSys"), ( "tab", "groupDaq", "gridDaq", "Avionics DAQ", "tabAv"), ( "tab", "groupDiag", "gridDiag", "Diagnostics", "tabAv"), ( "tab", "groupFill", "gridFill", "Fill Control", "tabFill"), ( "tab", "groupAuto", "gridAuto", "Auto Fill", "tabFill"), ( "box", "groupIgn", "gridIgn", "Igniter Control", 1, 6, 1, 2), ( "box", "groupVal", "gridVal", "Valve Control", 1, 8, 1, 2), ( "tab", "groupPlot", "gridPlot", "Engine Diagnostics", "tabData"), ( "tab", "groupOut", "gridOut", "Serial Output", "tabData"),] for spec in groupSpec: kind = spec[0] groupName = spec[1] gridName = spec[2] title = spec[3] if (kind == "tab"): parent = spec[4] group = QWidget() grid = QGridLayout() # Widget initialization setattr(self,groupName,group) # GridLayout object initialization setattr(self,gridName,grid) group.setLayout(grid) group.setAutoFillBackground(True) # Tab assignment getattr(self,parent).addTab(group,title) elif (kind == "box"): row = spec[4] col = spec[5] rSpan = spec[6] cSpan = spec[7] # GroupBox object initialization group = QGroupBox(title) group.setStyleSheet(self.style.css.group) # GridLayout object initialization grid = QGridLayout() group.setLayout(grid) # Assign to parent objects setattr(self,gridName,grid) setattr(self,groupName,group) self.gridMaster.addWidget(group,row,col,rSpan,cSpan) # Call initialization routines self.titleInit() # Title bar self.barInit() # Bottom statusbar self.commInit() # Communication toolbar self.sessInit() # Session toolbar self.btnCtrlInit() # Buttons for control panel self.ledCtrlInit() # LED inidicators " " self.plotInit() # Engine diagnostics, plots self.dataInit() # Engine diagnostics, readouts self.outInit() # Raw serial output # Row & column stretching in master grid rowStr = [1, 4, 8] colStr = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] self.tools.resize(self.gridMaster,rowStr,colStr) # Finalize widget mainWidget = QWidget() mainWidget.setLayout(self.gridMaster) self.setCentralWidget(mainWidget) # Window management self.setWindowTitle("SRT Ground Control " + self.version + " " + self.dateGlobal.toString(Qt.TextDate)) self.setWindowIcon(QtGui.QIcon("./figs/desktop_icon.png")) self.showMaximized() # Window centering qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) # Window formatting #self.setStyleSheet(self.style.css.window) # Final initialization self.show() def titleInit(self): ''' Window Title Initialization ''' # QLabel --> SRT logo #titImg = "./figs/srt_black.svg" titImg = "./srt_gc_launchGui/figs/srt_black.svg" pixmap = QtGui.QPixmap(titImg).scaled(50,50,transformMode=QtCore.Qt.SmoothTransformation) self.logo = self.constr.image(self.gridTitle,pixmap,[0,0,2,1]) # QLabel --> Main window title text = "SRT Ground Control" + " " + self.version self.title = self.constr.label(self.gridTitle,"title",text,"Bottom",[0,1,1,1]) # QLabel --> Main window subtitle text = "Remote Launch System [tamusrt/gc]" self.subtitle = self.constr.label(self.gridTitle,"subtitle",text,"Top",[1,1,1,1]) # Row & column stretching in title grid rowStr = [5, 1] colStr = [1, 2] self.tools.resize(self.gridTitle,rowStr,colStr) def barInit(self): ''' Initialize strings and inputs in bottom status bar. ''' self.statusBar = QStatusBar() self.setStatusBar(self.statusBar) barFrame = QFrame() gridStatus = QGridLayout() barFrame.setLayout(gridStatus) self.statusBar.addPermanentWidget(barFrame,1) # Event log self.constr.label(gridStatus,"label","EVENT LOG","Center",[0,0,1,1]) self.statusBar.log = self.constr.readout(gridStatus,"statusBar",[0,1,1,1]) # Last sent self.constr.label(gridStatus,"label","LAST SENT","Center",[0,2,1,1]) self.statusBar.sent = self.constr.readout(gridStatus,"statusBar",[0,3,1,1]) # Last recieved self.constr.label(gridStatus,"label","LAST RCVD","Center",[0,4,1,1]) self.statusBar.recieved = self.constr.readout(gridStatus,"statusBar",[0,5,1,1]) # Session name self.constr.label(gridStatus,"label","SESSION","Center",[0,6,1,1]) self.statusBar.session = self.constr.readout(gridStatus,"statusBar",[0,7,1,1]) # Uptime counter self.constr.label(gridStatus,"label","UPTIME","Center",[0,8,1,1]) self.statusBar.uptime = self.constr.readout(gridStatus,"statusBar",[0,9,1,1]) # Uptime thread management self.uptimeThread = UptimeThread(self.startGlobal,self.statusBar.uptime) self.uptimeThread.start() # Row & column stretching in comm grid rowStr = [] colStr = [1, 4, 1, 2, 1, 2, 1, 2, 1, 2] self.tools.resize(gridStatus,rowStr,colStr) def commInit(self): ''' Communication Toolbar Initialization ''' # set communication and reading status as false initially. self.state.connected = False self.state.reading = False if (os.name == "posix"): prefix = "/dev/tty" elif (os.name == "nt"): prefix = "COM" else: prefix = "" # LED indicator for connection self.led.commConn = self.constr.led(self.gridComm,[0,0,1,1]) # CONNECT button method = "btnClkConn" color = self.color.comm self.btn.commConn = self.constr.button(self.gridComm,"CONNECT",method,color,[0,1,1,1]) # SEARCH button method = "btnClkSearch" color = self.color.comm self.btn.commSearch = self.constr.button(self.gridComm,"SEARCH",method,color,[0,2,1,1]) # COM Port label & input self.labPort = self.constr.label(self.gridComm,"label","Data Port:","Center",[0,3,1,1]) self.portMenu = self.constr.dropDown(self.gridComm,[0,4,1,1]) # Baud rate label & input self.labBaud = self.constr.label(self.gridComm,"label","Baud Rate","Center",[0,5,1,1]) self.baudMenu = self.constr.dropDown(self.gridComm,[0,6,1,1]) self.baudMenu.addItems(["9600","14400","19200","28800","38400","57600","115200"]) # LED indicator for bypass self.led.commByp = self.constr.led(self.gridComm,[0,7,1,1]) # BYPASS button. Function of bypass is to force GUI to send commands over xbee even if xbee port isn't showing. method = "btnClkByp" color = self.color.comm self.btn.commByp = self.constr.button(self.gridComm,"BYPASS",method,color,[0,8,1,1]) # RESET button. Function of reset is to stop thread sorting, turn off all LEDs and disconnect xbees. May want to add more functionality such as returning to a safe state of the engine. method = "btnClkRes" color = self.color.comm self.btn.commRes = self.constr.button(self.gridComm,"RESET",method,color,[0,9,1,1]) # Row & column stretching in comm grid rowStr = [] colStr = [1, 3, 3, 2, 5, 2, 2, 1, 3, 3] self.tools.resize(self.gridComm,rowStr,colStr) def sessInit(self): # Session name self.led.sess = self.constr.led(self.gridSess,[0,0,1,1]) self.btn.sessNew = self.constr.button(self.gridSess,"NEW","btnClkSessNew",self.color.comm,[0,1,1,1]) self.btn.sessRename = self.constr.button(self.gridSess,"RENAME","btnClkSessRename",self.color.comm,[0,2,1,1]) self.labSess = self.constr.label(self.gridSess,"label","Session","Center",[0,3,1,1]) self.edit.session = self.constr.edit(self.gridSess,"test",[0,4,1,1]) # Clock control self.led.clock = self.constr.led(self.gridSess,[0,5,1,1]) self.btn.sessClock = self.constr.button(self.gridSess,"SET CLOCK","btnClkClock",self.color.comm,[0,6,1,1]) self.labDateYr = self.constr.label(self.gridSess,"label","Date","Center",[0,7,1,1]) self.edit.dateYYYY = self.constr.edit(self.gridSess,"YYYY",[0,8,1,1]) self.edit.dateMM = self.constr.edit(self.gridSess,"MM",[0,9,1,1]) self.edit.dateDD = self.constr.edit(self.gridSess,"DD",[0,10,1,1]) self.labTime = self.constr.label(self.gridSess,"label","Time","Center",[0,11,1,1]) self.edit.timeHH = self.constr.edit(self.gridSess,"HH",[0,12,1,1]) self.edit.timeMM = self.constr.edit(self.gridSess,"MM",[0,13,1,1]) self.edit.timeSS = self.constr.edit(self.gridSess,"SS",[0,14,1,1]) # Row & column stretching in sess grid rowStr = [] colStr = [1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1] self.tools.resize(self.gridSess,rowStr,colStr) def btnClkSearch(self): # set the port menu to be cleared initially. self.portMenu.clear() # check the number of serial ports available. ports = serial.tools.list_ports.comports() # if ports exist, add it to drop down menu in GUI if (ports): for port in ports: entry = "Serial: " + port.device + " - " + port.description self.portMenu.addItem(entry) # uses subprocess package to check for connected wifi networks. devices = subprocess.check_output(['netsh','wlan','show','network']).decode('ascii').replace("\r","") numOfWifiDevices = len(devices.split("SSID")) # check to see the number of wifi networks we can connect to if numOfWifiDevices: for deviceNum in range(1, numOfWifiDevices): entry = "Wifi Network: " + devices.split("SSID")[deviceNum].split(" ")[3] self.portMenu.addItem(entry) else: self.portMenu.setCurrentText("NO DEVICE(S) FOUND") def btnClkClock(self): ''' "CLOCK" Button Event Handling ''' # probably better to replace these with QDate class to reduce number of packages you have to import. year = str(dt.datetime.now().year) month = str(dt.datetime.now().month) day = str(dt.datetime.now().day) hour = str(datetime.now().hour) minute = str(dt.datetime.now().minute) seconds = str(dt.datetime.now().second) # automatically update date and time log when button clicked self.edit.dateYYYY = self.constr.edit(self.gridSess,year,[0,8,1,1]) self.edit.dateMM = self.constr.edit(self.gridSess,month,[0,9,1,1]) self.edit.dateDD = self.constr.edit(self.gridSess,day,[0,10,1,1]) self.edit.timeHH = self.constr.edit(self.gridSess,hour,[0,12,1,1]) self.edit.timeMM = self.constr.edit(self.gridSess,minute,[0,13,1,1]) self.edit.timeSS = self.constr.edit(self.gridSess,seconds,[0,14,1,1]) # I think this was meant to pull up exact date and time on a separate window for user to type in manually. # This command below with os.system doesn't work. sudo command not recognized on windows. # dateStr = self.edit.dateYYYY.text() + '-' + self.edit.dateMM.text() + '-' + self.edit.dateDD.text() # timeStr = self.edit.timeHH.text() + ':' + self.edit.timeMM.text() + ':' + self.edit.timeSS.text() # cmdStr = "sudo date -s" # System command # sudo date -s 'YYYY-MM-DD HH:MM:SS' #os.system('cmdStr' + ' ' + '\'' + dateStr + ' ' + timeStr + '\'') self.led.clock.setPixmap(self.ledClr.yellow) def btnClkConn(self): ''' "CONNECT" Button Event Handling. Attempts to connect to SRT Router and Serial ''' if (self.state.connected): self.logEvent("ERROR","ALREADY CONNECTED") else: # User input --> Port name & baud rate text = str(self.portMenu.currentText()) text = text.split(' ') self.port = text[0] self.baud = int(str(self.baudMenu.currentText())) if (self.port == "/dev/tty"): self.logEvent("ERROR","INVALID PORT") else: if (self.port == "Wifi"): try: # Attempt to connect to router/ethernet over ubiquity sock.connect(server_address) self.ser = sock # Set connected Status true, change LED, log connected status if connected to Ethernet self.state.connected = True self.logEvent("CONNECTED",self.port) self.led.commConn.setPixmap(self.ledClr.yellow) # must send a command initially for it to stay connected and read data over ethernet. missionCMD = 'b' missionCMD = bytes(missionCMD, 'utf-8') sock.sendall(missionCMD) # Thread handling self.serThread = SerThread(self.ser) self.serThread.outSig.connect(self.outUpdate) self.serThread.stateSig.connect(self.stateUpdate) self.serThread.dataSig.connect(self.dataUpdate) self.serThread.resetSig.connect(self.readFail) # Test for bypass condition text = self.ser.recv(100) if (len(text) > 0): # Check for empty packet self.state.reading = True self.logEvent("READING",self.port) self.led.commByp.setPixmap(self.ledClr.yellow) self.serThread.start() except (TimeoutError, OSError): self.logEvent("ERROR","INVALID PORT") else: try: # Attempt to connect to serial self.ser = serial.Serial(self.port,self.baud,timeout=1) self.state.connected = True self.logEvent("CONNECTED",self.port) self.led.commConn.setPixmap(self.ledClr.yellow) # trying to send a command initially to see if that makes it easy to get connected. missionCMD = 'b' missionCMD = bytes(missionCMD, 'utf-8') self.ser.write(missionCMD) # Thread handling self.serThread = SerThread(self.ser) self.serThread.outSig.connect(self.outUpdate) self.serThread.stateSig.connect(self.stateUpdate) self.serThread.dataSig.connect(self.dataUpdate) self.serThread.resetSig.connect(self.readFail) # Test for bypass condition text = self.ser.readline() if (len(text) > 0): # Check for empty packet self.state.reading = True self.logEvent("READING",self.port) self.led.commByp.setPixmap(self.ledClr.yellow) self.serThread.start() except: self.logEvent("ERROR","INVALID PORT") def btnClkByp(self): # haven't updated bypass method for ubiquity, just Xbee ''' "BYPASS" Button Event Handling --> XBee (old) firmware quirk ''' if (self.state.reading): self.logEvent("ERROR","ALREADY READING") elif (not self.state.connected): self.logEvent("ERROR","NO CONNECTION") else: # enter, enter, (wait), 'b' --> bypass XBee dongle w/ ascii encoding self.ser.write(b'\r\n\r\n') time.sleep(2) self.ser.write(b'b\r\n') # Test for bypass condition text = self.ser.readline() if (len(text) > 0): # Check for empty packet self.state.reading = True self.logEvent("READING",self.port) self.led.commByp.setPixmap(self.ledClr.yellow) self.serThread.start() def btnClkRes(self): ''' "RESET" Button Event Handling ''' if (self.state.connected): # This is discouraged but thread.quit() and thread.exit() don't work [brute force method] self.serThread.terminate() self.state.reading = False self.led.commByp.setPixmap(self.ledClr.off) self.ser.close() self.state.connected = False self.logEvent("DISCONNECTED",self.port) self.led.commConn.setPixmap(self.ledClr.off) # Reset all control status LEDs ledName = list(self.led.__dict__) for name in ledName: if (name == "sess"): # Don't reset session LED continue else: getattr(self.led,name).setPixmap(self.ledClr.off) else: self.logEvent("ERROR","NO CONNECTION") def btnCtrlInit(self): ''' Control Button Initialization ''' rSp = 1 # Row span multiplier cSp = 2 # Column span mutilplier # Control button specification # grid, name, text, comm, color, row, col, row span, col span # System state btnSpec = [( "gridSys", "sysArm", "SYS ARM", "btnClkCtrl", "sys", 0, 0, 1, 1), ( "gridSys", "sysDisarm", "SYS DISARM", "btnClkCtrl", "sys", 0, 1, 1, 1), ( "gridSys", "ready1", "READY 1", "btnClkCtrl", "abt", 1, 0, 1, 1), ( "gridSys", "ready2", "READY 2", "btnClkCtrl", "abt", 2, 0, 1, 1), ( "gridSys", "abort", "ABORT", "btnClkCtrl", "abt", 1, 1, 2, 1), ( "gridSys", "buzzOn", "BUZZ ON", "btnClkCtrl", "sys", 3, 0, 1, 1), ( "gridSys", "buzzOff", "BUZZ OFF", "btnClkCtrl", "sys", 3, 1, 1, 1), # Data acquisition ( "gridDaq", "dataState", "DATA STATE", "btnClkCtrl", "daq", 0, 0, 1, 1), ( "gridDaq", "avPwrOff", "AV PWR OFF", "btnClkCtrl", "av", 0, 1, 1, 1), ( "gridDaq", "dataStart", "DATA START", "btnClkCtrl", "daq", 1, 0, 1, 1), ( "gridDaq", "dataStop", "DATA STOP", "btnClkCtrl", "daq", 1, 1, 1, 1), # Fill control ( "gridFill", "supplyOpen", "SUPPLY OPEN", "btnClkCtrl", "n2o", 0, 0, 1, 1), ( "gridFill", "supplyClose", "SUPPLY CLOSE", "btnClkCtrl", "n2o", 0, 1, 1, 1), ( "gridFill", "supplyVtOpen", "SUPPLY VT OPEN", "btnClkCtrl", "n2o", 1, 0, 1, 1), ( "gridFill", "supplyVtClose", "SUPPLY VT CLOSE", "btnClkCtrl", "n2o", 1, 1, 1, 1), ( "gridFill", "runVtOpen", "RUN VT OPEN", "btnClkCtrl", "n2o", 2, 0, 1, 1), ( "gridFill", "runVtClose", "RUN VT CLOSE", "btnClkCtrl", "n2o", 2, 1, 1, 1), ( "gridFill", "motorOn", "MOTOR ON", "btnClkCtrl", "qd", 3, 0, 1, 1), ( "gridFill", "motorOff", "MOTOR OFF", "btnClkCtrl", "qd", 3, 1, 1, 1), # Igniter control ( "gridIgn", "ignCont", "IGN CONT", "btnClkCtrl", "ign", 0, 0, 1, 2), ( "gridIgn", "ignArm", "IGN ARM", "btnClkCtrl", "ign", 1, 0, 1, 1), ( "gridIgn", "ignDisarm", "IGN DISARM", "btnClkCtrl", "ign", 1, 1, 1, 1), ( "gridIgn", "oxOpen", "OX OPEN", "btnClkCtrl", "o2", 2, 0, 1, 1), ( "gridIgn", "oxClose", "OX CLOSE", "btnClkCtrl", "o2", 2, 1, 1, 1), ( "gridIgn", "ignOn", "IGN ON", "btnClkCtrl", "ign", 3, 0, 1, 1), ( "gridIgn", "ignOff", "IGN OFF", "btnClkCtrl", "ign", 3, 1, 1, 1), # Valve control ( "gridVal", "bvPwrOn", "BV PWR ON", "btnClkCtrl", "bvas", 0, 0, 1, 1), ( "gridVal", "bvPwrOff", "BV PWR OFF", "btnClkCtrl", "bvas", 0, 1, 1, 1), ( "gridVal", "bvOpen", "BV OPEN", "btnClkCtrl", "bvas", 1, 0, 1, 1), ( "gridVal", "bvClose", "BV CLOSE", "btnClkCtrl", "bvas", 1, 1, 1, 1), ( "gridVal", "bvState", "BV STATE", "btnClkCtrl", "bvas", 2, 0, 1, 1), ( "gridVal", "mdot", "MDOT", "btnClkCtrl", "mdot", 2, 1, 1, 1)] for spec in btnSpec: grid = getattr(self,spec[0]) name = spec[1] text = spec[2] method = spec[3] color = getattr(self.color,spec[4]) row = spec[5]*rSp col = spec[6]*cSp rSpan = spec[7]*rSp cSpan = spec[8]*cSp # Construct button btn = self.constr.button(grid,text,method,color,[row,col,rSpan,cSpan]) btn.comm = self.state.btnMap(name) # Find & set character command btn.led = [] # Create empty list of associated LEDs # Assign to container setattr(self.btn,name,btn) def btnClkCtrl(self): ''' Control Button Event Handling ''' sender = self.sender() self.statusBar.sent.setText(sender.text()) # Update statusbar self.logEvent(sender.text(),sender.comm) # Trigger red LED state if (self.state.connected): for led in sender.led: led.setPixmap(self.ledClr.red) try: comm = sender.comm.encode("ascii") try: self.ser.sendall(comm) except: self.ser.write(comm) except: if (self.state.connected): self.logEvent("ERROR","WRITE FAIL") else: self.logEvent("ERROR","NO CONNECTION") def btnClkSessRename(self): if (self.state.log): self.session = self.edit.session.text() self.statusBar.session.setText(self.session) else: self.logEvent("ERROR","FILE IO") def btnClkSessNew(self): try: # Close log & data files if initialized self.closeLog() # Update session name self.session = self.edit.session.text() self.statusBar.session.setText(self.session) # Generate file date & time stamp(s) dateLocal = QDate.currentDate() dateStr = dateLocal.toString(Qt.ISODate) startLocal = QTime.currentTime() startStr = startLocal.toString("HH:mm:ss") # Control & data log initialization fileObj = ["logFile","dataFile"] fileDir = ["./log/","./data/"] fileExt = [".log",".dat"] for i in range(len(fileObj)): fileName = dateStr.replace('-','') + '_' + startStr.replace(':','') + fileExt[i] if (not os.path.exists(fileDir[i])): os.makedirs(fileDir[i]) setattr(self,fileObj[i],open(fileDir[i] + fileName,'w')) self.state.log = True self.led.sess.setPixmap(self.ledClr.yellow) except: self.logEvent("ERROR","FILE IO") def ledCtrlInit(self): ''' LED Inidicator Initialization ''' rSp = 1 # Row span multiplier cSp = 2 # Column span multiplier # LED indicator specification # grid, name, row, col, row Span, col Span, buttons ... # System state ledSpec = [( "gridSys", "sysArm", 0, 2, 1, 1, "sysArm", "sysDisarm"), ( "gridSys", "ready1", 1, 2, 1, 1, "ready1", "abort"), ( "gridSys", "ready2", 2, 2, 1, 1, "ready2", "abort"), ( "gridSys", "buzz", 3, 2, 1, 1, "buzzOn", "buzzOff"), # Data acquisition ( "gridDaq", "avPwr", 0, 2, 1, 1, "avPwrOff"), ( "gridDaq", "data", 1, 2, 1, 1, "dataStart", "dataStop", "dataState"), # Fill control ( "gridFill", "supply", 0, 2, 1, 1, "supplyOpen", "supplyClose"), ( "gridFill", "supplyVt", 1, 2, 1, 1, "supplyVtOpen", "supplyVtClose"), ( "gridFill", "runVt", 2, 2, 1, 1, "runVtOpen", "runVtClose"), ( "gridFill", "motor", 3, 2, 1, 1, "motorOn", "motorOff"), # Igniter control ( "gridIgn", "ignCont", 0, 2, 1, 1, "ignCont"), ( "gridIgn", "ignArm", 1, 2, 1, 1, "ignArm", "ignDisarm"), ( "gridIgn", "ox", 2, 2, 1, 1, "oxOpen", "oxClose"), ( "gridIgn", "ign", 3, 2, 1, 1, "ignOn", "ignOff"), # Valve control ( "gridVal", "bvPwr", 0, 2, 1, 1, "bvPwrOn", "bvPwrOff", "bvState", "mdot"), ( "gridVal", "bv", 1, 2, 1, 1, "bvOpen", "bvClose", "bvState", "mdot")] for spec in ledSpec: grid = getattr(self,spec[0]) name = spec[1] row = spec[2]*rSp col = spec[3]*cSp rSpan = spec[4]*rSp cSpan = spec[5]*cSp/2 btn = spec[6:] # Construct LED led = self.constr.led(grid,[row,col,rSpan,cSpan]) # Attach LEDs to associated buttons for btnName in btn: getattr(self.btn,btnName).led.append(led) # Assign to container setattr(self.led,name,led) def dataInit(self): ''' Data Array & Sensor Readout Initialization ''' # Data storage initialization # time stamp, run tank press, chamber press, run tank temp, chamber temp, aux temp self.dataTime = 1*60 # Data array length (sec) self.dataName = ["st","pt","pc","tt","tc","ta"] self.dataDict = {} for name in self.dataName: # looks like it sets dataDict[st], dataDict[pt], ... and so on to none in initialization setattr(self.data,name,np.array([])) self.dataDict[name] = None # Sensor readout specification # name, text, unit, code, row, col, row span, col span # Pressure column sensorSpec = [( "pRun", "Press\nRun", "[ psi ]", "pt", 0, 0, 2, 1, 1), ( "pRun30s", "Extrap\n30 sec", "[ psi ]", "pt", 30, 1, 2, 1, 1), ( "pRun1m", "Extrap\n1 min", "[ psi ]", "pt", 1*60, 2, 2, 1, 1), ( "pRun5m", "Extrap\n5 min", "[ psi ]", "pt", 5*60, 3, 2, 1, 1), ( "pChamb", "Press\nChamb", "[ psi ]", "pc", 0, 4, 2, 1, 1), # Temperature column ( "tRun", "Temp\nRun", "[ Β°F ]", "tt", 0, 0, 6, 1, 1), ( "tRun30s", "Extrap\n30 sec", "[ Β°F ]", "tt", 30, 1, 6, 1, 1), ( "tRun1m", "Extrap\n1 min", "[ Β°F ]", "tt", 1*60, 2, 6, 1, 1), ( "tRun5m", "Extrap\n5 min", "[ Β°F ]", "tt", 5*60, 3, 6, 1, 1), ( "pRunVap", "Press\nVapor", "[ psi ]", "tt", 0, 4, 6, 1, 1)] for spec in sensorSpec: name = spec[0] text = spec[1] unit = spec[2] code = spec[3] extrap = spec[4] row = spec[5] col = spec[6] rSpan = spec[7] cSpan = spec[8] # Construct sensor & assign to container sensor = self.constr.readout(self.gridPlot,"sensor",[row,col,rSpan,cSpan]) sensor.code = code # Data code sensor.extrap = extrap # Forward extrapolation time # Assign to container setattr(self.sensor,name,sensor) # Sensor text & unit labels self.constr.label(self.gridPlot,"label",text,"Center",[row,col-1,1,1]) self.constr.label(self.gridPlot,"label",unit,"Center",[row,col+1,1,1]) # Generate sensor list self.sensorName = list(self.sensor.__dict__) # Row & column stretching in plotGrid rowStr = [] colStr = [8, 1, 1, 1, 8, 1, 1, 1] self.tools.resize(self.gridPlot,rowStr,colStr) def plotInit(self): ''' Live Plot Initialization ''' self.plot = [None] * 2 # Pressure plot yRange = [0,950] xLabel = ["Time","sec"] yLabel = ["Run Tank Pressure","psi"] hour = [1,2,3,4,5,6,7,8,9,10] temperature = [400,432,434,432,433,431,429,432,435,445] self.plot[0] = self.constr.plot(self.gridPlot,yRange,xLabel,yLabel,[0,0,5,1]) self.plotPress = self.plot[0].plot() # Temperature plot yRange = [0,150] xLabel = ["Time","sec"] yLabel = ["Run Tank Temperature","Β°F"] hour = [1,2,3,4,5,6,7,8,9,10] temperature = [100,90,80,90,90,90,100,100,100,100] self.plot[1] = self.constr.plot(self.gridPlot,yRange,xLabel,yLabel,[0,4,5,1]) self.plotTemp = self.plot[1].plot() def outInit(self): # Create scroll box for raw serial output self.serialOut = self.constr.scrollBox(self.gridOut,[0,0,1,1]) def outUpdate(self,text): self.serialOut.moveCursor(QtGui.QTextCursor.End) self.serialOut.insertPlainText(text + "\n") sb = self.serialOut.verticalScrollBar() sb.setValue(sb.maximum()) def stateUpdate(self,text): ''' Control State Update ''' # Update statusbar self.statusBar.recieved.setText(text) try: # Logs state event, update state object, update PID graphic (eventually) self.logEvent("STATE",text) # QUICK FIX FOR ABORT STATE if (text == "xLBabo"): self.state.update("xLBrl10") self.state.update("xLBrl20") else: self.state.update(text) except: self.logEvent("ERROR","STATE FAIL") def dataUpdate(self,text): print("gets here, right?") ''' Plot & Sensor Update ''' try: # Write to data log if self.state.log: self.dataFile.write(text + '\n') print("writing") # Process data packet raw = text.split(',') nEnd = len(self.data.st) print(raw, nEnd) # Update dictionary --> maps code to reading for field in raw: self.dataDict[field[0:2]] = field[2:] # Convert time stamps to elapsed from AV start (first packet) if (self.state.data): stamp = self.dataDict["st"] nowData = datetime.strptime(stamp,"%H:%M:%S.%f") delta = nowData - self.startData elapsed = delta.total_seconds() self.dataDict["st"] = elapsed else: stamp = self.dataDict["st"] self.startData = datetime.strptime(stamp,"%H:%M:%S.%f") self.state.data = True self.dataDict["st"] = 0 # Establish extrapolation time step if (len(self.data.st) < 2): step = 1 # Arbitrary value; can't be zero else: step = self.data.st[-1] - self.data.st[-2] nData = np.floor(self.dataTime/step) # Populate data arrays: after filling array, delete first element & append to end if (nEnd < nData): # Case: array not full for name in self.dataName: value = float(self.dataDict[name]) setattr(self.data,name,np.append(getattr(self.data,name),value)) else: # Case: array full for name in self.dataName: value = float(self.dataDict[name]) getattr(self.data,name,np.roll(getattr(self.data,name),-1)) getattr(self.data,name)[-1] = value # Sensor readout update for name in self.sensorName: sensor = getattr(self.sensor,name) data = getattr(self.data,sensor.code) value = self.tools.extrap(self.data.st,data,sensor.extrap,step) if (name == "pRunVap"): # Vapor pressure from run tank temp value = self.tools.vapPress(value) sensor.setText(str(round(value,2))) # Live plot update #xTime = self.data.st - self.data.st[-1] # Center time scale at present reading xTime = [1,2,3,4,5,6,7,8,9,10] yPress = [400,432,434,432,433,431,429,432,435,445] print(xTime) print("YPress:") print(yPress) #yPress = self.data.pt # Tank pressure array yTemp = self.data.tt # Tank temperature array print("yTemp:") print(yTemp) self.plotPress.setData(xTime,yPress,pen=self.style.pen.press) self.plotTemp.setData(xTime,yTemp,pen=self.style.pen.temp) except: # Throws error if failure to read data packet self.logEvent("ERROR","DAQ FAIL") if (self.state.log): self.dataFile.write("ERROR: " + text + '\n') def readFail(self,text): ''' Log Read Fail & Reset Connection ''' self.btnClkRes() self.logEvent("ERROR",text) def logEvent(self,event,text): ''' Log Event Management ''' # Build, print stamp to statusbar & log now = QTime.currentTime() stamp = now.toString("HH:mm:ss.zzz") pad = ' ' * 5 # Print to statusbar, format if necessary self.statusBar.log.setText(stamp + pad + event + pad + "\"" + text + "\"") if (event == "ERROR"): self.statusBar.log.setStyleSheet(self.style.css.error) else: self.statusBar.log.setStyleSheet(self.style.css.statusBar) # Print to log file if (self.state.log): self.logFile.write(stamp + ", " + event + ", " + "\"" + text + "\"" + "\n") def closeLog(self): ''' File Close Management ''' if (self.state.log): self.state.log = False # Protects thread issues; writing to closed file fileObj = ["logFile","dataFile"] for logName in fileObj: # Close & rename file(s) filePath = getattr(self,logName).name.split('/') filePath[2] = self.session + '_' + filePath[2] filePath = '/'.join(filePath) getattr(self,logName).close() os.rename(getattr(self,logName).name,filePath) def closeEvent(self,event): ''' GUI Exit Management ''' # Close log & data files if initialized self.closeLog() # Exit GUI safely event.accept() if (__name__ == '__main__'): ''' Executive Control ''' app = QApplication(sys.argv) # Utility for window exit condition gui = Gui() # Creates instance of "Gui" class sys.exit(app.exec_()) # Window exit condition
The product of $0$ and $b$ is $0$.
%% quiverTriad % Below is a demonstration of the features of the |quiverTriad| function %% clear; close all; clc; %% Syntax % |[varargout]=quiverTriad(varargin);| %% Description % UNDOCUMENTED %% Examples % %% % % <<gibbVerySmall.gif>> % % _*GIBBON*_ % <www.gibboncode.org> % % _Kevin Mattheus Moerman_, <[email protected]> %% % _*GIBBON footer text*_ % % License: <https://github.com/gibbonCode/GIBBON/blob/master/LICENSE> % % GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for % image segmentation, image-based modeling, meshing, and finite element % analysis. % % Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>.
-- this is the first test I run -- Its been a while since i used my brain, @KMx404 module test1 where data π•Ÿ : Set where --zero : π•Ÿ --its not practical to do so, we can use more efficient math formulas suc : π•Ÿ β†’ π•Ÿ -- since We have the value of zero => n, any next item succ will consider it as n.num _+_ : π•Ÿ β†’ π•Ÿ β†’ π•Ÿ -- Defining addition? I guess (wtf is guess? haha) -- zero : zero --zero + zero = zero --zero + π•Ÿ = π•Ÿ -- Zero has no effect in addition
(* Title: HOL/Probability/Discrete_Topology.thy Author: Fabian Immler, TU MΓΌnchen *) theory Discrete_Topology imports "HOL-Analysis.Analysis" begin text \<open>Copy of discrete types with discrete topology. This space is polish.\<close> typedef 'a discrete = "UNIV::'a set" morphisms of_discrete discrete .. instantiation discrete :: (type) metric_space begin definition dist_discrete :: "'a discrete \<Rightarrow> 'a discrete \<Rightarrow> real" where "dist_discrete n m = (if n = m then 0 else 1)" definition uniformity_discrete :: "('a discrete \<times> 'a discrete) filter" where "(uniformity::('a discrete \<times> 'a discrete) filter) = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})" definition "open_discrete" :: "'a discrete set \<Rightarrow> bool" where "(open::'a discrete set \<Rightarrow> bool) U \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)" instance proof qed (auto simp: uniformity_discrete_def open_discrete_def dist_discrete_def intro: exI[where x=1]) end lemma open_discrete: "open (S :: 'a discrete set)" unfolding open_dist dist_discrete_def by (auto intro!: exI[of _ "1 / 2"]) instance discrete :: (type) complete_space proof fix X::"nat\<Rightarrow>'a discrete" assume "Cauchy X" then obtain n where "\<forall>m\<ge>n. X n = X m" by (force simp: dist_discrete_def Cauchy_def split: if_split_asm dest:spec[where x=1]) thus "convergent X" by (intro convergentI[where L="X n"] tendstoI eventually_sequentiallyI[of n]) (simp add: dist_discrete_def) qed instance discrete :: (countable) countable proof have "inj (\<lambda>c::'a discrete. to_nat (of_discrete c))" by (simp add: inj_on_def of_discrete_inject) thus "\<exists>f::'a discrete \<Rightarrow> nat. inj f" by blast qed instance discrete :: (countable) second_countable_topology proof let ?B = "range (\<lambda>n::'a discrete. {n})" have "\<And>S. generate_topology ?B (\<Union>x\<in>S. {x})" by (intro generate_topology_Union) (auto intro: generate_topology.intros) then have "open = generate_topology ?B" by (auto intro!: ext simp: open_discrete) moreover have "countable ?B" by simp ultimately show "\<exists>B::'a discrete set set. countable B \<and> open = generate_topology B" by blast qed instance discrete :: (countable) polish_space .. end
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.logic import Mathlib.Lean3Lib.init.data.nat.basic import Mathlib.Lean3Lib.init.data.bool.basic import Mathlib.Lean3Lib.init.propext universes u u_1 v w namespace Mathlib protected instance list.inhabited (Ξ± : Type u) : Inhabited (List Ξ±) := { default := [] } namespace list protected def has_dec_eq {Ξ± : Type u} [s : DecidableEq Ξ±] : DecidableEq (List Ξ±) := sorry protected instance decidable_eq {Ξ± : Type u} [DecidableEq Ξ±] : DecidableEq (List Ξ±) := list.has_dec_eq @[simp] protected def append {Ξ± : Type u} : List Ξ± β†’ List Ξ± β†’ List Ξ± := sorry protected instance has_append {Ξ± : Type u} : Append (List Ξ±) := { append := list.append } protected def mem {Ξ± : Type u} : Ξ± β†’ List Ξ± β†’ Prop := sorry protected instance has_mem {Ξ± : Type u} : has_mem Ξ± (List Ξ±) := has_mem.mk list.mem protected instance decidable_mem {Ξ± : Type u} [DecidableEq Ξ±] (a : Ξ±) (l : List Ξ±) : Decidable (a ∈ l) := sorry protected instance has_emptyc {Ξ± : Type u} : has_emptyc (List Ξ±) := has_emptyc.mk [] protected def erase {Ξ± : Type u_1} [DecidableEq Ξ±] : List Ξ± β†’ Ξ± β†’ List Ξ± := sorry protected def bag_inter {Ξ± : Type u_1} [DecidableEq Ξ±] : List Ξ± β†’ List Ξ± β†’ List Ξ± := sorry protected def diff {Ξ± : Type u_1} [DecidableEq Ξ±] : List Ξ± β†’ List Ξ± β†’ List Ξ± := sorry @[simp] def length {Ξ± : Type u} : List Ξ± β†’ β„• := sorry def empty {Ξ± : Type u} : List Ξ± β†’ Bool := sorry @[simp] def nth {Ξ± : Type u} : List Ξ± β†’ β„• β†’ Option Ξ± := sorry @[simp] def nth_le {Ξ± : Type u} (l : List Ξ±) (n : β„•) : n < length l β†’ Ξ± := sorry @[simp] def head {Ξ± : Type u} [Inhabited Ξ±] : List Ξ± β†’ Ξ± := sorry @[simp] def tail {Ξ± : Type u} : List Ξ± β†’ List Ξ± := sorry def reverse_core {Ξ± : Type u} : List Ξ± β†’ List Ξ± β†’ List Ξ± := sorry def reverse {Ξ± : Type u} : List Ξ± β†’ List Ξ± := fun (l : List Ξ±) => reverse_core l [] @[simp] def map {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Ξ²) : List Ξ± β†’ List Ξ² := sorry @[simp] def mapβ‚‚ {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} (f : Ξ± β†’ Ξ² β†’ Ξ³) : List Ξ± β†’ List Ξ² β†’ List Ξ³ := sorry def map_with_index_core {Ξ± : Type u} {Ξ² : Type v} (f : β„• β†’ Ξ± β†’ Ξ²) : β„• β†’ List Ξ± β†’ List Ξ² := sorry /-- Given a function `f : β„• β†’ Ξ± β†’ Ξ²` and `as : list Ξ±`, `as = [aβ‚€, a₁, ...]`, returns the list `[f 0 aβ‚€, f 1 a₁, ...]`. -/ def map_with_index {Ξ± : Type u} {Ξ² : Type v} (f : β„• β†’ Ξ± β†’ Ξ²) (as : List Ξ±) : List Ξ² := map_with_index_core f 0 as def join {Ξ± : Type u} : List (List Ξ±) β†’ List Ξ± := sorry def filter_map {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Option Ξ²) : List Ξ± β†’ List Ξ² := sorry def filter {Ξ± : Type u} (p : Ξ± β†’ Prop) [decidable_pred p] : List Ξ± β†’ List Ξ± := sorry def partition {Ξ± : Type u} (p : Ξ± β†’ Prop) [decidable_pred p] : List Ξ± β†’ List Ξ± Γ— List Ξ± := sorry def drop_while {Ξ± : Type u} (p : Ξ± β†’ Prop) [decidable_pred p] : List Ξ± β†’ List Ξ± := sorry /-- `after p xs` is the suffix of `xs` after the first element that satisfies `p`, not including that element. ```lean after (eq 1) [0, 1, 2, 3] = [2, 3] drop_while (not ∘ eq 1) [0, 1, 2, 3] = [1, 2, 3] ``` -/ def after {Ξ± : Type u} (p : Ξ± β†’ Prop) [decidable_pred p] : List Ξ± β†’ List Ξ± := sorry def span {Ξ± : Type u} (p : Ξ± β†’ Prop) [decidable_pred p] : List Ξ± β†’ List Ξ± Γ— List Ξ± := sorry def find_index {Ξ± : Type u} (p : Ξ± β†’ Prop) [decidable_pred p] : List Ξ± β†’ β„• := sorry def index_of {Ξ± : Type u} [DecidableEq Ξ±] (a : Ξ±) : List Ξ± β†’ β„• := find_index (Eq a) def remove_all {Ξ± : Type u} [DecidableEq Ξ±] (xs : List Ξ±) (ys : List Ξ±) : List Ξ± := filter (fun (_x : Ξ±) => Β¬_x ∈ ys) xs def update_nth {Ξ± : Type u} : List Ξ± β†’ β„• β†’ Ξ± β†’ List Ξ± := sorry def remove_nth {Ξ± : Type u} : List Ξ± β†’ β„• β†’ List Ξ± := sorry @[simp] def drop {Ξ± : Type u} : β„• β†’ List Ξ± β†’ List Ξ± := sorry @[simp] def take {Ξ± : Type u} : β„• β†’ List Ξ± β†’ List Ξ± := sorry @[simp] def foldl {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Ξ² β†’ Ξ±) : Ξ± β†’ List Ξ² β†’ Ξ± := sorry @[simp] def foldr {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Ξ² β†’ Ξ²) (b : Ξ²) : List Ξ± β†’ Ξ² := sorry def any {Ξ± : Type u} (l : List Ξ±) (p : Ξ± β†’ Bool) : Bool := foldr (fun (a : Ξ±) (r : Bool) => p a || r) false l def all {Ξ± : Type u} (l : List Ξ±) (p : Ξ± β†’ Bool) : Bool := foldr (fun (a : Ξ±) (r : Bool) => p a && r) tt l def bor (l : List Bool) : Bool := any l id def band (l : List Bool) : Bool := all l id def zip_with {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} (f : Ξ± β†’ Ξ² β†’ Ξ³) : List Ξ± β†’ List Ξ² β†’ List Ξ³ := sorry def zip {Ξ± : Type u} {Ξ² : Type v} : List Ξ± β†’ List Ξ² β†’ List (Ξ± Γ— Ξ²) := zip_with Prod.mk def unzip {Ξ± : Type u} {Ξ² : Type v} : List (Ξ± Γ— Ξ²) β†’ List Ξ± Γ— List Ξ² := sorry protected def insert {Ξ± : Type u} [DecidableEq Ξ±] (a : Ξ±) (l : List Ξ±) : List Ξ± := ite (a ∈ l) l (a :: l) protected instance has_insert {Ξ± : Type u} [DecidableEq Ξ±] : has_insert Ξ± (List Ξ±) := has_insert.mk list.insert protected instance has_singleton {Ξ± : Type u} : has_singleton Ξ± (List Ξ±) := has_singleton.mk fun (x : Ξ±) => [x] protected instance is_lawful_singleton {Ξ± : Type u} [DecidableEq Ξ±] : is_lawful_singleton Ξ± (List Ξ±) := is_lawful_singleton.mk fun (x : Ξ±) => (fun (this : ite (x ∈ []) [] [x] = [x]) => this) (if_neg not_false) protected def union {Ξ± : Type u} [DecidableEq Ξ±] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : List Ξ± := foldr insert lβ‚‚ l₁ protected instance has_union {Ξ± : Type u} [DecidableEq Ξ±] : has_union (List Ξ±) := has_union.mk list.union protected def inter {Ξ± : Type u} [DecidableEq Ξ±] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : List Ξ± := filter (fun (_x : Ξ±) => _x ∈ lβ‚‚) l₁ protected instance has_inter {Ξ± : Type u} [DecidableEq Ξ±] : has_inter (List Ξ±) := has_inter.mk list.inter @[simp] def repeat {Ξ± : Type u} (a : Ξ±) : β„• β†’ List Ξ± := sorry def range_core : β„• β†’ List β„• β†’ List β„• := sorry def range (n : β„•) : List β„• := range_core n [] def iota : β„• β†’ List β„• := sorry def enum_from {Ξ± : Type u} : β„• β†’ List Ξ± β†’ List (β„• Γ— Ξ±) := sorry def enum {Ξ± : Type u} : List Ξ± β†’ List (β„• Γ— Ξ±) := enum_from 0 @[simp] def last {Ξ± : Type u} (l : List Ξ±) : l β‰  [] β†’ Ξ± := sorry def ilast {Ξ± : Type u} [Inhabited Ξ±] : List Ξ± β†’ Ξ± := sorry def init {Ξ± : Type u} : List Ξ± β†’ List Ξ± := sorry def intersperse {Ξ± : Type u} (sep : Ξ±) : List Ξ± β†’ List Ξ± := sorry def intercalate {Ξ± : Type u} (sep : List Ξ±) (xs : List (List Ξ±)) : List Ξ± := join (intersperse sep xs) protected def bind {Ξ± : Type u} {Ξ² : Type v} (a : List Ξ±) (b : Ξ± β†’ List Ξ²) : List Ξ² := join (map b a) protected def ret {Ξ± : Type u} (a : Ξ±) : List Ξ± := [a] protected def lt {Ξ± : Type u} [HasLess Ξ±] : List Ξ± β†’ List Ξ± β†’ Prop := sorry protected instance has_lt {Ξ± : Type u} [HasLess Ξ±] : HasLess (List Ξ±) := { Less := list.lt } protected instance has_decidable_lt {Ξ± : Type u} [HasLess Ξ±] [h : DecidableRel Less] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : Decidable (l₁ < lβ‚‚) := sorry protected def le {Ξ± : Type u} [HasLess Ξ±] (a : List Ξ±) (b : List Ξ±) := Β¬b < a protected instance has_le {Ξ± : Type u} [HasLess Ξ±] : HasLessEq (List Ξ±) := { LessEq := list.le } protected instance has_decidable_le {Ξ± : Type u} [HasLess Ξ±] [h : DecidableRel Less] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : Decidable (l₁ ≀ lβ‚‚) := not.decidable theorem le_eq_not_gt {Ξ± : Type u} [HasLess Ξ±] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : l₁ ≀ lβ‚‚ = (Β¬lβ‚‚ < l₁) := rfl theorem lt_eq_not_ge {Ξ± : Type u} [HasLess Ξ±] [DecidableRel Less] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : l₁ < lβ‚‚ = (Β¬lβ‚‚ ≀ l₁) := (fun (this : l₁ < lβ‚‚ = (¬¬l₁ < lβ‚‚)) => this) (Eq.symm (propext (decidable.not_not_iff (l₁ < lβ‚‚))) β–Έ rfl) /-- `is_prefix_of l₁ lβ‚‚` returns `tt` iff `l₁` is a prefix of `lβ‚‚`. -/ def is_prefix_of {Ξ± : Type u} [DecidableEq Ξ±] : List Ξ± β†’ List Ξ± β†’ Bool := sorry /-- `is_suffix_of l₁ lβ‚‚` returns `tt` iff `l₁` is a suffix of `lβ‚‚`. -/ def is_suffix_of {Ξ± : Type u} [DecidableEq Ξ±] (l₁ : List Ξ±) (lβ‚‚ : List Ξ±) : Bool := is_prefix_of (reverse l₁) (reverse lβ‚‚) end list namespace bin_tree def to_list {Ξ± : Type u} (t : bin_tree Ξ±) : List Ξ± := to_list_aux t []
module Issue833 import Data.Fin %default total data Singleton : Nat -> Type where Sing : {n : Nat} -> Singleton n f : (n : Singleton Z) -> n === Sing f = \ Sing => Refl g : (k : Fin 1) -> k === FZ g = \ FZ => Refl sym : {t, u : a} -> t === u -> u === t sym = \Refl => Refl
from os import listdir from os.path import isfile, join import rosbag import numpy as np from scipy.signal import savgol_filter # OPTION ROBOTIQUE 2021-2022 PROJET INTEG -IDENTIFICATION- N.FRAPPEREAU & J.DELACOUX # In this file you'll find the script we used to pre-process data for our training algorithm # The data has already been "collected" and is inside .bag files in the /dataset folder. # We need to extract that data and put it in a format usable by our training algorithm - we chose np.arrays # This function lists the files in the /dataset folder, reads them, extracts the data from them and put it in a np.array # When this is done for a .bag file, we close it and go to the next one in the /dataset folder, until there aren't any .bag file left def pre_process(): # ~ Number of columns of the final data file: - 8 columns for the input of our neural network : (theta1, omega1, effort1, acceleration1, theta2, omega2, effort2, acceleration2) # ~ - 6 columns for the desired output of our neural network : (I1, I2, m1, m2, com1, com2) dim = 14 # ~ List all files in the dataset folder bag_list = [f for f in listdir('dataset/') if isfile(join('dataset/', f))] # ~ Definition of the overall data array which is the concatenation of the arrays of data extracted from each .bag file data = np.zeros((0,dim)) for bag_file in bag_list: # ~ Read a bag file from the list of files bag = rosbag.Bag('dataset/'+bag_file) # ~ Extracts the parameter values from the bag name and saves them in a np.array parameters = bag_file.split('-') parameters[-1] = parameters[-1][:-4] parameters = [float(parameter) for parameter in parameters] parameters = np.array(parameters) # ~ Declares the data array from this SPECIFIC bag file input_data = np.zeros((0,dim)) # ~ Extracting data from bag file, appending the parameter values at the end of each line for topic, msg, t in bag.read_messages(topics=['/joint_states']): new_line = np.array([msg.position[0],msg.velocity[0],msg.effort[0],0,msg.position[1],msg.velocity[1],msg.effort[1],0]) new_line = np.append(new_line, parameters, 0) input_data = np.vstack((input_data, new_line.reshape(1,dim))) # ~ Calculating accelerations of both links using a Savitzky-Golay filter of the 3rd order with a window size of 5 applied to the speed data input_data[:,3] = savgol_filter(input_data[:,1], 5, 3, deriv=1, delta=0.1) input_data[:,7] = savgol_filter(input_data[:,5], 5, 3, deriv=1, delta=0.1) # ~ Removing values around mechanical stops index = 0 while index < len(input_data): if abs(input_data[index][0])>3.0 or abs(input_data[index][4])>3.0: input_data = np.delete(input_data, index, 0) else : index += 1 # ~ Remove first and last 3 lines because the Savitzky-Golay derivative of the speed is not well defined there input_data = input_data[3:-3] # ~ Add the current bag's data to the global data array data = np.vstack((data, input_data)) # ~ Close .bag file bag.close() return data
-- Doble_del_producto_menor_que_suma_de_cuadrados.lean -- Si a, b ∈ ℝ, entonces 2ab ≀ aΒ² + bΒ² -- JosΓ© A. Alonso JimΓ©nez <https://jaalonso.github.io> -- Sevilla, 27-septiembre-2022 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Demostrar que si a, b ∈ ℝ, entonces 2ab ≀ aΒ² + bΒ². -- --------------------------------------------------------------------- import data.real.basic import tactic variables a b : ℝ -- 1Βͺ demostraciΓ³n example : 2*a*b ≀ a^2 + b^2 := begin have : 0 ≀ (a - b)^2 := sq_nonneg (a - b), have : 0 ≀ a^2 - 2*a*b + b^2, by linarith, show 2*a*b ≀ a^2 + b^2, by linarith, end -- 2Βͺ demostraciΓ³n example : 2*a*b ≀ a^2 + b^2 := begin have h : 0 ≀ a^2 - 2*a*b + b^2, { calc a^2 - 2*a*b + b^2 = (a - b)^2 : by ring ... β‰₯ 0 : by apply pow_two_nonneg }, calc 2*a*b = 2*a*b + 0 : by ring ... ≀ 2*a*b + (a^2 - 2*a*b + b^2) : add_le_add (le_refl _) h ... = a^2 + b^2 : by ring end -- 3Βͺ demostraciΓ³n example : 2*a*b ≀ a^2 + b^2 := begin have : 0 ≀ a^2 - 2*a*b + b^2, { calc a^2 - 2*a*b + b^2 = (a - b)^2 : by ring ... β‰₯ 0 : by apply pow_two_nonneg }, linarith, end -- 4Βͺ demostraciΓ³n example : 2*a*b ≀ a^2 + b^2 := -- by library_search two_mul_le_add_sq a b
function [mu, sigma, sigma_points] = prediction_step(mu, sigma, u) % Updates the belief concerning the robot pose according to the motion model. % mu: state vector containing robot pose and poses of landmarks obeserved so far % Current robot pose = mu(1:3) % Note that the landmark poses in mu are stacked in the order by which they were observed % sigma: the covariance matrix of the system. % u: odometry reading (r1, t, r2) % Use u.r1, u.t, and u.r2 to access the rotation and translation values % For computing lambda. global scale; % Compute sigma points sigma_points = compute_sigma_points(mu, sigma); % Dimensionality n = length(mu); % lambda lambda = scale - n; % TODO: Transform all sigma points according to the odometry command % Remember to vectorize your operations and normalize angles % Tip: the function normalize_angle also works on a vector (row) of angles for i=1:2*n+1 sigma_points(1:3,i) = sigma_points(1:3,i) + [u.t*cos(sigma_points(3,i) + u.r1); u.t*sin(sigma_points(3,i) + u.r1); u.r1 + u.r2]; sigma_points(3,i) = normalize_angle(sigma_points(3,i)); endfor % Computing the weights for recovering the mean wm = [lambda/scale, repmat(1/(2*scale),1,2*n)]; wc = wm; % -------- My initialization ----------- % xbar = 0; ybar = 0; mu = zeros(n,1); sigma = zeros(n); % TODO: recover mu. % Be careful when computing the robot's orientation (sum up the sines and % cosines and recover the 'average' angle via atan2) for i=1:2*n+1 mu = mu + wm(i)*sigma_points(:,i); xbar = xbar + wm(i)*cos(sigma_points(3,i)); ybar = ybar + wm(i)*sin(sigma_points(3,i)); endfor mu(3) = atan2(ybar,xbar); mu(3) = normalize_angle(mu(3)); % TODO: Recover sigma. Again, normalize the angular difference for i=1:2*n+1 tmp = sigma_points(:,i) - mu; tmp(3) = normalize_angle(tmp(3)); sigma = sigma + wc(i)*tmp*tmp'; endfor % Motion noise motionNoise = 0.1; R3 = [motionNoise, 0, 0; 0, motionNoise, 0; 0, 0, motionNoise/10]; R = zeros(size(sigma,1)); R(1:3,1:3) = R3; % TODO: Add motion noise to sigma sigma = sigma + R; end
# Scenario D - Peakshape Variation (results evaluation) This file is used to evaluate the inference (numerical) results. The model used in the inference of the parameters is formulated as follows: \begin{equation} \large y = f(x) = \sum\limits_{m=1}^M \big[A_m \cdot f_{pseudo-Voigt}(x)\big] + \epsilon \end{equation} where: \begin{equation} \large f_{pseudo-Voigt}(x) = \eta \cdot \frac{\sigma_m^2}{(x-\mu_m)^2 + \sigma_m^2} + (1 - \eta) \cdot e^{-\frac{(x-\mu_m)^2}{2\cdot\sigma_m^2}} \end{equation} ```python %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import pymc3 as pm import arviz as az import seaborn as sns #az.style.use('arviz-darkgrid') print('Running on PyMC3 v{}'.format(pm.__version__)) ``` WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions. Running on PyMC3 v3.8 ## Import local modules ```python import sys sys.path.append('../../modules') import results as res import figures as fig ``` ## Load results and extract convergence information ```python # list of result files to load filelst = ['./scenario_peakshape_mruns.csv'] ldf = res.load_results(filelst) ``` reading file: ./scenario_peakshape_mruns.csv ```python # extract the convergence results per model labellist = [0.0, 0.25, 0.5, 0.75, 1.0] dres = res.get_model_summary(ldf, labellist) ``` ```python # figure size and color mapping figs=(8,8) col = "Blues" col_r = col + "_r" ``` ## Heatmaps of n-peak model vs. n-peak number in dataset ### WAIC ```python fig.plot_heatmap(dres['waic'], labellist, title="", color=col, fsize=figs, fname="hmap_waic", precision=".0f") ``` ### Rhat ```python fig.plot_heatmap(dres['rhat'], labellist, title="", color=col, fsize=figs, fname="hmap_rhat", precision=".2f") ``` ### R2 ```python fig.plot_heatmap(dres['r2'], labellist, title="", color=col_r, fsize=figs, fname="hmap_r2", precision=".2f") ``` ### BFMI ```python fig.plot_heatmap(dres['bfmi'], labellist, title="", color=col_r, fsize=figs, fname="hmap_bfmi", precision=".2f") ``` ### MCSE ```python fig.plot_heatmap(dres['mcse'], labellist, title="", color=col, fsize=figs, fname="hmap_mcse", precision=".2f") ``` ### Noise ```python fig.plot_heatmap(dres['noise'], labellist, title="", color=col, fsize=figs, fname="hmap_noise", precision=".2f") ``` ### ESS ```python fig.plot_heatmap(dres['ess'], labellist, title="", color=col_r, fsize=figs, fname="hmap_ess", precision=".0f") ``` ```python ```
C C $Id: gwid2r.f,v 1.4 2008-07-27 00:21:07 haley Exp $ C C Copyright (C) 2000 C University Corporation for Atmospheric Research C All Rights Reserved C C The use of this Software is governed by a License Agreement. C SUBROUTINE GWID2R C C Copy "DEFAULT" attribute context to "REQUESTED" context. C include 'gwiarq.h' include 'gwiadf.h' C INTEGER I C SAVE C C Polyline attributes. C MRPLIX = MDPLIX MRLTYP = MDLTYP ARLWSC = ADLWSC MRPLCI = MDPLCI C C Polymarker attributes. C MRPMIX = MDPMIX MRMTYP = MDMTYP ARMSZS = ADMSZS MRPMCI = MDPMCI C C Text attributes. C MRTXIX = MDTXIX MRTXP = MDTXP MRTXAL(1) = MDTXAL(1) MRTXAL(2) = MDTXAL(2) MRCHH = MDCHH DO 10 I=1,4 MRCHOV(I) = MDCHOV(I) 10 CONTINUE MRTXFO = MDTXFO MRTXPR = MDTXPR ARCHXP = ADCHXP ARCHSP = ADCHSP MRTXCI = MDTXCI C C Fill area attributes. C MRFAIX = MDFAIX MRPASZ(1) = MDPASZ(1) MRPASZ(2) = MDPASZ(2) MRPASZ(3) = MDPASZ(3) MRPASZ(4) = MDPASZ(4) MRPARF(1) = MDPARF(1) MRPARF(2) = MDPARF(2) MRFAIS = MDFAIS MRFASI = MDFASI MRFACI = MDFACI C C Aspect source flags. C DO 20 I=1,13 MRASF(I) = MDASF(I) 20 CONTINUE C RETURN END
Formal statement is: corollary contractible_sphere: fixes a :: "'a::euclidean_space" shows "contractible(sphere a r) \<longleftrightarrow> r \<le> 0" Informal statement is: The sphere of radius $r$ is contractible if and only if $r \leq 0$.
%%%%%%%%%%%%%%%%%%%%%%% file template.tex %%%%%%%%%%%%%%%%%%%%%%%%% % % This is a general template file for the LaTeX package SVJour3 % for Springer journals. Springer Heidelberg 2010/09/16 % % Copy it to a new file with a new name and use it as the basis % for your article. Delete % signs as needed. % % This template includes a few options for different layouts and % content for various journals. Please consult a previous issue of % your journal as needed. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % First comes an example EPS file -- just ignore it and % proceed on the \documentclass line % your LaTeX will extract the file if required % \RequirePackage{fix-cm} % %\documentclass{svjour3} % onecolumn (standard format) %\documentclass[smallcondensed]{svjour3} % onecolumn (ditto) \documentclass[smallextended]{svjour3} % onecolumn (second format) %\documentclass[twocolumn]{svjour3} % twocolumn % \smartqed % flush right qed marks, e.g. at end of proof % \usepackage{amsmath} \usepackage{booktabs} \usepackage{subcaption} \usepackage{tabularx} \usepackage{nicefrac} \usepackage[usenames]{xcolor} \usepackage{lineno,hyperref} \usepackage{graphicx} % % \usepackage{mathptmx} % use Times fonts if available on your TeX system % % insert here the call for the packages your document requires %\usepackage{latexsym} % etc. % % please place your own definitions here and don't use \def but % \newcommand{}{} % % Insert the name of "your journal" with % \journalname{myjournal} % \begin{document} \title{Interaction effects on the Energy Release Rate of debonds in the fracture plane precursor in UD composites under transverse tension} %\subtitle{} %\titlerunning{Short form of title} % if too long for running head \author{Luca Di Stasio \and Janis Varna } %\authorrunning{Short form of author list} % if too long for running head \institute{Luca Di Stasio \at Continuum \& Computational Mechanics of Materials (C2M2) Group\\Division of Physical Sciences and Engineering\\King Abdullah University of Science and Technology (KAUST)\\Thuwal, 23955-6900\\Kingdom of Saudi Arabia\\ \email{[email protected]} % \\ % \emph{Present address:} of F. Author % if needed \and Janis Varna \at Lule\aa\ University of Technology, University Campus, SE-97187 Lule\aa, Sweden\\ \email{[email protected]} } \date{Received: date / Accepted: date} % The correct dates will be entered by the editor \maketitle \begin{abstract} In a UD composite under transverse tensile loading, an increasing number of fiber/matrix interface cracks (or debonds) appears localized in the regions where transverse failure (in the form of transverse cracks) will occur. Models of Representative Volume Elements (RVEs) of UD composites are developed to study the interaction between debonds in this stage of transverse crack onset, that precedes the appearance of a through-the-thickness crack through crack-kinking into the matrix. Several damage states are studied in the form of different geometrical configurations of partially debonded and fully bonded fibers. It is found that, when the vertically aligned partially debonded fibers are contiguous, the relative position of the debond (same or opposite sides of their respective fibers) influences the Energy Release Rate (ERR) of the debond. Higher values of Mode I ERR are reached for small debonds placed on the same side of their fibers, while higher values of Mode II ERR are obtained for large debonds on opposite sides. Instead, if just two bonded (undamaged) fibers are present between two debonds along the vertical direction, the ERR becomes insensitive to debonds' relative position. \keywords{Polymer-matrix Composites (PMCs) \and Transverse Failure \and Debonding \and Finite Element Analysis (FEA)} % \PACS{PACS code1 \and PACS code2 \and more} % \subclass{MSC code1 \and MSC code2 \and more} \end{abstract} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % INTRODUCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} The process of damage onset and development in multi-axial Fiber Reinforced Polymer Composite (FRPC) laminates involves several mechanisms, which concur to the final failure of the composite part. Upon loading, one of the first macroscopic mode of damage is the occurrence of transverse cracks in plies where a tensile stress state is generated predominantly in the direction transverse to the fibers. A single transverse crack does not significantly compromise the load-carrying capacity of the laminate, but in large numbers transverse cracks become detrimental to the elastic response of the loaded part. Furthermore, high concentrantions of transverse cracks lead to stress re-distribution and stress concentrations that can promote other more dangerous modes of fracture, quickly leading to the global failure of the laminate or part. Understanding the factors that influence transverse cracks onset and propagation is thus fundamental to improve current laminate design and to identify mechanisms of controlled propagation, delay and suppression of transverse cracks. This would increase the global fracture toughness of FRPC laminates and help to avoid early part replacement, and thus waste, a practice currently in use to prevent sudden catastrophic brittle failure.\\ Early microscopic observations in glass fiber-epoxy cross-ply laminates determined that onset of transverse cracking occurs at the microscopic level in the form of fiber-matrix interface cracks (or debonds)~\cite{Bailey1981}. Debonds grow along the arc direction of the fiber until reaching a critical size, then kink out of the interface and coalesce with other debonds across the ply thickness~\cite{Zhang1997}. Once a through-the-thickness crack tunnels through the width of the laminate, a transverse crack is formed. Formation and growth of debonds at the microscale thus play a key role in the overall process of initiation of transverse cracking. To improve our understanding of the latter, the former must be studied and modeled.\\ The first investigations on the mechanics of fiber/matrix debonding proposed analytical models of a single partially debonded fiber placed in an infinite matrix. These models focused on understanding the effect of the elastic properties mismatch between fiber and matrix. They were firstly solved by Perlman and Sih~\cite{Perlman1967}, who provided the solution in terms of stress and displacement fields, and Toya~\cite{Toya1974}, who evaluated the Energy Release Rate (ERR) at the debond tip. A closed-form analytical solution could only be found for the \textit{open crack} case, which assumes that no contact between debond faces occurs. This solution was shown to provide, for large debonds, a non-physical solution that implies interpenetration of crack faces~\cite{Toya1974,Comninou1977}. Numerical treatment of the problem soon followed, in particular with the Boundary Element Method (BEM) solution by Paris et al.~\cite{Paris1996}. The numerical analysis of the single fiber model allowed first to understand the importance of crack face contact in the mechanics of fiber/matrix debonding~\cite{Varna1997a}, confirming earlier results regarding the straight bi-material interface crack~\cite{Comninou1977}. The process of fiber/matrix debonding was investigated in models of a single partially debonded fiber embedded in an effectively infinite matrix under remote tension~\cite{Paris1996} and remote compression~\cite{Correa2007}. Residual thermal stresses were also analyzed~\cite{Correa2011}. The effect of a second nearby fiber was studied, under different uniaxial and biaxial tensile and compressive applied loads~\cite{Correa2013,Correa2014,Sandino2016,Sandino2018}. Debond growth in a hexagonal cluster of fibers embedded in an effectively homogenized UD composite was investigated by Zhuang et al.~\cite{Zhuang2018}. The interaction of two debonds facing each other on two nearby fibers was addressed in~\cite{Varna2017} for a cluster of fibers immersed in a homogenized UD.\\ Models of kinking were developed for a single fiber in an infinite matrix~\cite{Paris2007} and a partially debonded fiber in a cluster of fibers inside a homogenized UD~\cite{Zhuang2018a}. A study on linking of debonds was proposed in~\cite{Varna2017}.\\ An analysis of the configuration preceding kinking and linking thus seems to be lacking in the literature. We devote our attention in this paper to the analysis of Representative Volume Elements (RVEs) which model the presence of multiple debonds on fibers aligned across the thickness of UD composites. We focus on understanding the effect of the mutual interaction of consecutive debonds in the vertical direction and of their relative position, i.e. on the same or opposite sides of their respective fibers. We are interested in identifying which mechanisms might favor debond growth and which might, on the other hand, prevent it. For this reason, we select a regular arrangement of fibers and we adopt the approach of Linear Elastic Fracture Mechanics (LEFM) to characterize debond growth, by evaluating Mode I and Mode II Energy Release Rate (ERR). The Finite Element Method (FEM) is chosen to compute stress, strain and displacement fields, which are required to estimate ERR. The characteristics of the RVEs and the Finite Element (FE) solution are described in Sec.~\ref{sec:rveFem}; the main results are reported and discussed in Sec.~\ref{sec:results} and the main conclusions are presented in Sec.~\ref{sec:conclusions}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % RVE MODELS AND FE DISCRETIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{RVE models \& FE discretization}\label{sec:rveFem} \subsection{Introduction, properties and nomenclature}\label{subsec:names} We focus in this article on debond growth in unidirectional (UD) composites subjected to in-plane transverse tensile loading. In particular, the interaction between debonds is studied through the development of models of Representative Volume Elements (RVEs) of laminates with different configurations of debonds (see Fig.~\ref{fig:laminateModelsA} and Fig.~\ref{fig:laminateModelsB}). \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{coupling.pdf} \caption{Representative Volume Element $n\times k-symm$ of a UD composite with debonds appearing after $n-1$ and after $k-1$ undamaged fibers respectively in the horizontal and vertical direction. In the vertical direction, on fibers belonging to the same ``column'', debonds are located always on the same side.}\label{fig:laminateModelsA} \end{figure} In order to facilitate the description of the models, let us assume that the UD composite mid-plane lies in the $x-y$ plane, where $y$ coincides with the UD $0^{\circ}$ direction while the $x$-axis represents the UD in-plane transverse direction. Axis $z$ is the through-the-thickness direction of the composite. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{asymm.pdf} \caption{Representative Volume Element $n\times k-asymm$ of a UD composite with debonds appearing after $n-1$ and after $k-1$ undamaged fibers respectively in the horizontal and vertical direction. In the vertical direction, on fibers belonging to the same ``column'', debonds are located on the opposite sides of consecutive fibers.}\label{fig:laminateModelsB} \end{figure} The composite RVE is defined in the $x-z$ plane and is repeating both along $x$ and $z$. Mathematically, it corresponds to an infinite UD composite which models, practically, the behavior of debonds located far away from the UD composite's free surfaces, i.e. close to the laminate mid-plane, in a relatively thick UD composite (thickness $>100$ fiber diameters). The composite with debonds is modeled as a sequence of fiber rows with or without debonds stacked on each other in the vertical (through-the-thickness) direction. Notice that each row contains only one fiber in the vertical direction. A regular microstructure is adopted for all RVEs, with fibers organized in a square-packing configuration. This choice is motivated by our interest in investigating the mechanisms that favor or prevent debond growth, and not in simulating crack path evolution in an arbitrary, randomized distribution of fibers. The regularity of the square-packing arrangement allows the identification of the different mechanisms influencing debond growth. Given their square-packing arrangement of fibers, each RVE is built by using the unit cell in Figure~\ref{fig:modelschem} as the basic building block. The unit cell contains one fiber placed in its center and has a size of $2L\times2L$, where \begin{equation}\label{eq:LVf} L=\frac{R_{f}}{2}\sqrt{\frac{\pi}{V_{f}}}. \end{equation} In Equation~\ref{eq:LVf}, $V_{f}$ is the fiber volume fraction and $R_{f}$ the fiber radius. The fiber volume fraction is assumed equal to $60\%$ in each RVE and the fiber radius equal to $1\ \mu m$. The choice of the previous value is not dictated by physical considerations but by simplicity. It is thus useful to remark here that, in a linear elastic solution as the one considered in the present work, the ERR is proportional to the geometrical dimensions of the model and, consequently, recalculation of the ERR for fibers of any size requires a simple multiplication. Notice also that, given the relationship in Eq.~\ref{eq:LVf} and that the unit cell is identically repeated following a square-packing configuration, $V_{f}$ is homogeneous, i.e. no clustering of fibers is considered. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{RUC.pdf} \caption{Schematic of the model with its main parameters.}\label{fig:modelschem} \end{figure} A glass fiber-epoxy UD composite is treated in the present work, and it is assumed that the response of each phase lies always in the linear elastic domain. The material properties of glass fiber and epoxy are reported in Table~\ref{tab:phaseprop}. \begin{table}[!htbp] \centering \caption{Summary of the mechanical properties of fiber and matrix. $E$ stands for Young's modulus, $\mu$ for shear modulus and $\nu$ for Poisson's ratio.} \begin{tabular}{cccc} \textbf{Material} & \textbf{$E\left[GPa\right]$}\ & \textbf{$\mu\left[GPa\right]$} & \textbf{$\nu\left[-\right]$} \\ \midrule Glass fiber & 70.0 & 29.2 & 0.2 \\ Epoxy & 3.5 & 1.25 & 0.4 \end{tabular} \label{tab:phaseprop} \end{table} We consider that upon application of a load in the $x$-direction, the strain response in the $y$-direction is small due to the very small minor Poisson's ratio of the UD composite. We also assume the debond size to be significantly larger in the fiber longitudinal direction than in the arc direction. We therefore use 2D models under the assumption of plane strain defined in the $x-z$ section of the composite, which allows us to focus our interest on debond growth along the arc direction. Assumptions of generalized plane strain would be more suited to represent the physics, however this option would limit the scope of comparisons with previous studies in the literature. It is for this reason that simple plane strain conditions are preferred.\\ All RVEs are symmetric with respect to the horizontal direction, thus only half of the RVE is explicitly modeled and symmetry conditions are applied to the lower boundary of the RVE (Fig.~\ref{fig:laminateModelsA} and Fig.~\ref{fig:laminateModelsB}). The number $n$ of fibers in the horizontal directions and $k$ in the vertical direction belonging to the RVE determine the total size of the RVE, described by its total length $l$ and total height $h$: \begin{equation}\label{eq:lengthheight} l=n2L\qquad h=k2L; \end{equation} where $2L$ is the side length of the square unit cell previously introduced (Figure~\ref{fig:modelschem}) and $L$ is defined according to Eq.~\ref{eq:LVf}. The number of fibers in the horizontal and vertical directions determine as well the damage state of the modeled UD composite. In particular, a $n\times k$ RVE represents a UD composite in which a debond appear after $n-1$ fully bonded fibers inside a fiber row, and a fiber row contains debonds after $k-1$ fiber rows with no damage (see Fig.~\ref{fig:laminateModelsA} and Fig.~\ref{fig:laminateModelsB}). To model such configurations, conditions of coupling of the horizontal displacement $u_{x}$ are applied to the right and left boundary, which ensure that the computed solution represents a model in which the RVE is repeated infinite times in the horizontal direction. It is worth to highlight that the repetition of the RVE occurs in a mirror-like fashion: moving along the $x$-axis, if a debond appears on the right side of its fiber, the next one is placed on the left side.\\ This might lead to extreme conditions in the model. Consider for example the case of $1\times k$ RVEs: inside a fiber row containing damage, an infinite number of debonds is present and debonds are facing each other pairwise. Such configuration is physically unlikely, however the evaluation of the ERR in this case provides a bound for the case of maximum mutual interaction between debonds in the horizontal direction. Thus, the models proposed here might represent extreme configuration, but they provide theoretical bounds for debond behavior in an actual composite. In particular, observations regarding mechanisms favoring debond growth will represent an upper bound on ERR and thus a conservative estimation of the actual behavior, still of use for the structural designer. Greater care should instead be taken when considering mechanisms preventing debond growth: the ERR estimate provided by our models would be a lower bound, thus debond growth might be higher than predicted in the actual composite.\\ Repetition occurs also along the vertical direction. Here two cases can be distinguished: first, debonds aligned in the vertical direction are placed on the same side of their respective fibers as in Figure~\ref{fig:laminateModelsA}; second; debonds aligned in the vertical direction are placed on alternating opposite sides of their respective fibers as in Figure~\ref{fig:laminateModelsB}. The first is a case of symmetric repetition with respect to the upper boundary of the RVE; the second case is one of anti-symmetric repetition with respect to the upper boundary of the RVE. The two different families of RVEs (symmetric or anti-symmetric repetition) are thus respectively called $n\times k-symm$ and $n\times k-asymm$. The details of the boundary conditions adopted in the two different cases are described in Sec.~\ref{subsec:bc}. \subsection{Equivalent boundary conditions: description and validation}\label{subsec:bc} Two main families of Representative Volume Elements have been introduced in the previous section, distinguished by the pattern of debond repetition along the vertical direction: $n\times k-symm$ and $n\times k-asymm$.\\ To model the symmetric repetition of $n\times k-symm$ RVE (Fig.~\ref{fig:laminateModelsA}) we adopt, on the upper boundary, conditions of coupling of the vertical displacements $u_{z}$ of the type \begin{equation}\label{eq:symmcoupling} u_{z}\left(x,h\right) = \bar{u}_{z}, \end{equation} where $h$ is the total height of the RVE defined in Eq.~\ref{eq:lengthheight} and $\bar{u}_{z}$ is a constant value of the vertical displacement, equal for all the points on the upper boundary. The value of $\bar{u}_{z}$ is \emph{a priori} unknown and is evaluated as part of the elastic solution.\\ The anti-symmetric repetition of $n\times k-asymm$ RVE (Fig.~\ref{fig:laminateModelsB}) is modeled with the following set of conditions applied to the vertical displacement $u_{z}$ and horizontal displacement $u_{x}$ on the upper boundary: \begin{equation}\label{eq:asymmcoupling} \begin{aligned} u_{z}\left(x,h\right) - u_{z}\left(0,h\right) &= -\left(u_{z}\left(-x,h\right) - u_{z}\left(0,h\right)\right)\\ u_{x}\left(x,h\right) &= -u_{x}\left(-x,h\right), \end{aligned} \end{equation} where $h$ is again the total height of the RVE and $u_{z}\left(0,h\right)$ is the vertical displacement of the upper boundary mid-point, which is always located at coordinates $(0,h)$. Similarly to $\bar{u}_{z}$ in the symmetric case, $u_{z}\left(0,h\right)$ is \emph{a priori} unknown and is computed as part of the elastic solution. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{asymm-vs-explmodel-vf60-GI.pdf} \caption{Validation of asymmetric coupling conditions of Eq.~\ref{eq:asymmcoupling}: Mode I ERR, $V_{f}=60\%$, $\bar{\varepsilon}_{x}=1\%$.}\label{fig:validationGI} \end{figure} To the authors' knowledge, this is the first time the set of boundary conditions of Eq.~\ref{eq:asymmcoupling} is proposed and used to model an anti-symmetric coupling as the one represented in Figure~\ref{fig:laminateModelsB}. To validate them, Mode I (Fig.~\ref{fig:validationGI}) and Mode II ERR (Fig.~\ref{fig:validationGII}) are evaluated for $3\times 1-asymm$ RVE and compared with the results of the $3\times201-asymmetric\ debonds\ (explicitly\ modeled)$ RVE, in the case of an applied strain $\bar{\varepsilon}_{x}$ of $1\%$. The $3\times201-asymmetric\ debonds\ (explicitly\ modeled)$ RVE possesses, as all other RVEs studied here, conditions of coupling of the horizontal displacement applied to the left and right side. It is as well symmetric with respect to the $x$-axis, thus only half of the RVE is modeled and conditions of symmetry are applied to the lower horizontal boundary. The upper side of the RVE is, differently from the other models studied here, left free. Debonds are explicitly modeled and placed on alternating sides of vertically aligned fibers, i.e. if a fiber has a debond on the right side the next fiber above will have the debond on the left side. Debonds are all of the same size. The $3\times201-asymmetric\ debonds\ (explicitly\ modeled)$ RVE thus represents the same configuration as the $3\times 1-asymm$ RVE, but it is explicitly modeled. Comparison of the ERR of the two RVEs provides a validation of the accuracy of the conditions expressed in Eq.~\ref{eq:asymmcoupling} as a set of equivalent boundary conditions to represent the situation with alternating debonds (or anti-symmetric coupling) depicted in Fig.~\ref{fig:laminateModelsB}, which is a more effective strategy in terms of computational cost of the model (time and memory needed to compute the solution). \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{asymm-vs-explmodel-vf60-GII.pdf} \caption{Validation of asymmetric coupling conditions of Eq.~\ref{eq:asymmcoupling}: Mode II ERR, $V_{f}=60\%$, $\bar{\varepsilon}_{x}=1\%$.}\label{fig:validationGII} \end{figure} As shown in Figure~\ref{fig:validationGI} and Figure~\ref{fig:validationGII}, a very good agreement is obtained between the results of the two RVEs for both Mode I and Mode II ERR. The validity of the anti-symmetric coupling conditions proposed in Equation~\ref{eq:asymmcoupling} is thus confirmed. \subsection{Finite Element (FE) solution} The solution of the elastic problem is obtained with the Finite Element Method (FEM) within the Abaqus environment, a commercial FEM software~\cite{abq12}.\\ The debond is placed symmetrically with respect to the $x$ axis (see Fig.~\ref{fig:modelschem}) and it is characterized by the angular size $\Delta\theta$ (making the full debond size equal to $2\Delta\theta$). For large debond sizes (at least $\geq 60^{\circ}-80^{\circ}$), a region $\Delta\Phi$ of variable size appears at the crack tip where the crack faces are in contact but free to slide relatively to each other. In order to model crack faces motion in the contact zone, frictionless contact is considered between the two crack faces to allow free sliding and avoid interpenetration.\\ A constant displacement is applied to all RVEs, the magnitude of which is selected to have a constant applied horizontal strain $\bar{\varepsilon}_{x}$ equal to $1\%$. The choice of this specific value of the applied strain is actually arbitrary. In the context of Linear Elastic Fracture Mechanics, the Energy Release Rate at the debond tip is proportional to the square of the applied strain. Thus, ERR estimation at a different strain level requires a simple multiplication. Furthermore, our interest is to compare the effect of different mechanisms on debond growth, which we characterize with Mode I and Mode II ERR. As such, our focus is not on providing absolute values of ERR for specific damage configurations, but rather to assess and compare the relative changes in ERR due to modifications of the sorrounding environment. In this perspective, the selection of a rather large value of the applied strain helps our understanding by magnifying the differences in ERR. A further consideration regarding the magnitude of the load needs to be made, regarding the presence of contact between debond faces. The problem solved is a linear problem with non-holonomic constraints due to the non-interpenetration conditions (in the form of inequalities) enforced on the relative displacements of the crack faces. In particular, the problem falls under the definition of receding contact problem~\cite{Paris1996,Garrido1991}. This family of problems in LEFM has some peculiar characteristics~\cite{Garrido1991,Keer1972,Tsai1974}: the size and shape of the contact zone does not depend on the magnitude of the applied load, but only on its type. Thus, upon a change in magnitude of the applied strain $\bar{\varepsilon}_{x}$ the size and shape of the contact zone at the fiber/matrix interface will remain the same.\\ Meshing of the model is accomplished with second order, 2D, plane strain triangular (CPE6, see~\cite{abq12}) and quadrilateral (CPE8, see~\cite{abq12}) elements. An oscillating singularity exists at the debond tip in the stress and displacement fields~\cite{England1971,Toya1974,Comninou1977}. The presence of this singularity prevents the convergence of Mode I and Mode II ERR at the debond tip. Thus, a correct Mode decomposition of the ERR can not be computed in the theoretical limit of an infinitesimal crack increment. It is possible however to avoid the issue by approximating the Mode decomposition over a finite, instead of an infinitesimal, crack increment. This leads naturally to the use of the Virtual Crack Closure Technique (VCCT)~\cite{Krueger2004}, which estimates Mode I and Mode II ERR over a finite crack increment corresponding to the size of the element at the crack tip. To obtain accurate results in terms of Mode decomposition of the ERR, care must be taken in ensuring the quality of the mesh at the debond tip. In particular, a regular mesh of 8-node ($2^{nd}$ order rectangular) elements with almost unitary aspect ratio is constructed at the debond tip. The angular size $\delta$ of an element in the debond tip neighborhood is always equal to $0.05^{\circ}$. The crack faces are modeled as element-based surfaces and a small-sliding contact pair interaction with no friction is imposed between them. The Mode I, Mode II and total Energy Release Rates (ERRs) (respectively referred to as $G_{I}$, $G_{II}$ and $G_{TOT}$) are the main result of FEM simulations; they are evaluated using the VCCT~\cite{Krueger2004} implemented in a in-house Python routine. Validation is performed with respect to the results reported in~\cite{Paris2007,Sandino2016}, which were obtained with the Boundary Element Method (BEM) for a model of a partially debonded single fiber placed in an infinite matrix. As discussed in more detail in~\cite{DiStasio2019}, the agreement between FEM (present work) and BEM~\cite{Paris2007,Sandino2016} solutions is good and the difference between the two does not exceed $5\%$. This provides us with a level of uncertainty with which we can analyze the significance of observed trends: any relative difference in ERR between different RVEs smaller than $5\%$ cannot be reliably distinguished from numerical uncertainty and its discussion should thus be avoided. \section{Results \& Discussion}\label{sec:results} \subsection{Effect of debonds mutual position and presence of fiber columns with no damage on the growth of multiple adjacent debonds along the vertical direction}\label{subsec:adjacentdebonds} We first focus our attention on comparing $n\times 1-symm$ and $n\times 1-asymm$ RVEs, with $n=3,11,101,201$. Both RVEs model a UD composite in which debonds appear on consecutive fibers aligned in the vertical direction, i.e. a ``column'' of fibers or, in the following, simply a fiber column. In $n\times 1-symm$ and $n\times 1-asymm$ a fiber column containing only partially debonded fibers is present after $n-1$ fiber columns with no damage. Two main effects on debond ERR are analyzed through the comparison of these two families of RVEs: for a given type of RVE ($n\times 1-symm$ vs $n\times 1-asymm$), the effect of an increasing number ($n-1$) of fiber columns with no damage between fiber columns containing damage; for a given number ($n-1$) of fiber columns with no damage present between fiber columns containing only partially debonded fibers, the effect of the mutual position of consecutive debonds, i.e. on the same side ($n\times 1-symm$) or on opposite sides ($n\times 1-asymm$) of their respective fiber. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{nx1-coupling-vf60-GI.pdf} \caption{Effect of debonds mutual position on Mode I ERR: models $n\times 1-symm$ and $n\times 1-asymm$. $V_{f}=60\%$, $\varepsilon_{x}=1\%$.}\label{fig:nx1GI} \end{figure} By looking at Figure~\ref{fig:nx1GI} and Figure~\ref{fig:nx1GII}, it is possible to conclude that, for both $n\times 1-symm$ and $n\times 1-asymm$ RVEs, increasing the number of fiber columns with no damage between fiber columns containing damage causes an increase in both Mode I and Mode II ERR. A few, more specific, observations can be made. For Mode I ERR in Figure~\ref{fig:nx1GI}, increasing the number of fiber columns with no damage causes also a roughly $10^{\circ}$ delay in the onset of the contact zone: from $70^\circ$ to $80^\circ$ for $n\times 1-asymm$ and from $90^\circ$ to $100^\circ$ for $n\times 1-symm$. The occurrence of the maximum value of $G_{I}$ is also delayed: from $10^\circ$ to $20^\circ$ for $n\times 1-asymm$ and from $10^\circ$ to $40^\circ$ for $n\times 1-symm$. For Mode II ERR as well (Figure~\ref{fig:nx1GI}), the occurrence of the maximum value of $G_{II}$ is delayed: from $80^\circ$ to $100^\circ$ for $n\times 1-asymm$ and from $60^\circ$ to $90^\circ$ for $n\times 1-symm$. Comparing on the other hand the ERR of $n\times 1-symm$ and $n\times 1-asymm$ RVEs for a given value of $n$, it is possible to observe that: for Mode I in Figure~\ref{fig:nx1GI}, the ERR is always higher for $n\times 1-symm$, i.e. when debonds occur on the same side of the damaged vertically-aligned fibers; for Mode II in Figure~\ref{fig:nx1GII}, the values of ERR of the two RVEs remain identical or very close to each other when $\Delta\theta<80^{\circ}$,while for larger debonds $n\times 1-asymm$ presents the higher values of ERR. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{nx1-coupling-vf60-GII.pdf} \caption{Effect of debonds mutual position on Mode II ERR: models $n\times 1-symm$ and $n\times 1-asymm$. $V_{f}=60\%$, $\varepsilon_{x}=1\%$.}\label{fig:nx1GII} \end{figure} The increase in Energy Release Rate due to an increasing number of fiber columns with no damage between fiber columns containing debonds is a consequence of the strain magnification effect. The addition of undamaged elements (fiber columns with no damage) in the RVE causes an increase of the global average $x$-strain in the material and thus an increase of strain and displacement at the debond tip, to which the ERR is proportional. A look at this phenomenon from the opposite point of view is as well helpful to the understanding. From the opposite perspective, Figure~\ref{fig:nx1GI} and Figure~\ref{fig:nx1GII} show that the ERR decreases with an increasing number of fiber columns containing debonds. The presence of cracks, in the form of debonds, in the composite causes discontinuities (or jumps) in the strain and displacement field, which leads to a decrease in the average global strain in the material. As the average global strain decreases, the local values of strain and displacement at the debond tip decrease and thus the Energy Release Rate decreases. The two perspectives are complementary to each other for the understanding of the results in Fig.~\ref{fig:nx1GI} and Fig.~\ref{fig:nx1GII}.\\ In the context of Linear Elastic Fracture Mechanics, a critical Energy Release Rate is assumed to exist and to be a material property, independent of load and geometry. According to Griffith criterion, if the crack ERR is higher than the critical ERR, growth will occur. As a consequence, higher values of ERR could usually be taken as a proxy for the likelihood of crack growth: the configuration with the higher ERR would be the most likely to propagate. Thus, a simple comparison of relative magnitudes of ERR would tell which mechanism favors and which one prevents crack growth. However, the problem is more complex in the case of debonding at the fiber/matrix interface. Although the existence of a critical Energy Release Rate can be postulated, it has been found that its value actually depends on the Mode ratio at the debond tip~\cite{Hutchinson1991}. The functional form of this dependence is still an open issue, although suggestions have been made~\cite{Hutchinson1991,Mantic2009}. A common point of the different criteria proposed for the critical ERR is that it is lower in pure Mode I and Mode I-dominated regimes and increases quickly with the increase of Mode II contribution to the total ERR, reaching the highest value for pure Mode II behavior. It can be concluded that, in general, debonding will more likely occur in pure Mode I or Mode I-dominated rather than pure Mode II or Mode II-dominated loading. Getting back to the results of our analysis, observation of Figure~\ref{fig:nx1GI} implies that a symmetric placement of debonds along the vertical direction, i.e. debonds on the same side of their fibers, would favor the Mode I-dominated growth of small debonds ($\Delta\theta<80^{\circ}-90^{\circ}$) more than an asymmetric placement, i.e. debonds on opposite sides. From observation of Figure~\ref{fig:nx1GII} we can instead conclude that: for large debonds ($\Delta\theta>80^{\circ}-90^{\circ}$) it is likelier that, for a given value of $n$, the ERR-based condition of propagation is satisfied in the case of an asymmetric placement of debonds along the vertical direction, given the higher value of Mode II ERR with the respect to $n\times 1-symm$; provided that for a given value of $n$ the ERR-based condition of propagation is satisfied, larger debond sizes would be obtained in the case of an asymmetric placement of debonds, given that the maximum Mode II ERR occurs at higher values of $\Delta\theta$ for $n\times 1-asymm$ with respect to $n\times 1-symm$.\\ It is further interesting to observe that models $n\times1-symm$ and $n\times1-asymm$ represent, for $n=101,201$, a very localized state of damage and correspond to a configuration rather close to the final stage of transverse crack formation, with debonds still unconnected. On the other hand, for $n=3,11$, $n\times1-symm$ and $n\times1-asymm$ RVEs represent a rather ``diffuse'' damage state. Figure~\ref{fig:nx1GI} shows that, in the case of a ``diffuse'' damage state ($n=3,11$), the difference between \textit{symmetric} and \textit{anti-symmetric} models is rather small. The difference is instead rather drastic in the case of localized damage, with the \textit{symmetric} case having the largest values. Similarly, Figure~\ref{fig:nx1GII} shows that $G_{II}$ is rather insensitive to debond position ($symm$ vs $asymm$) for $n=3,11$, while a significant difference in magnitude between \textit{symmetric} and \textit{anti-symmetric} models is registered for $n=101,201$, with the \textit{anti-symmetric} case providing the highest values. Based on these observations, we can state that in the case of a \emph{strong interface} (i.e. interface strength higher than matrix strength), with kinking occurring when debonds are small, the \textit{symmetric} configuration is the most favorable to debond growth in terms of ERR. On the other hand for a \emph{weak interface} (interface strength lower than matrix strength), with kinking occurring when debonds are large, the \textit{anti-symmetric} configuration is most favorable to debond growth. \subsection{Effect of the presence of undamaged fibers on debond-debond interaction along the vertical direction}\label{subsec:fibersinbetween} It is at this point interesting to investigate the effect of the presence of undamaged (fully bonded) fibers between debonds along the vertical direction on debond-debond interaction. To this end, we study the $n\times 3-symm$ and $n\times 3-asymm$ RVEs, with $n=3,7,21,101$. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{nxk-coupling-vf60-GI.pdf} \caption{Effect of the presence of undamaged fibers along the vertical direction on Mode I ERR: models $n\times 3-symm$ and $n\times 3-asymm$. $V_{f}=60\%$, $\varepsilon_{x}=1\%$.}\label{fig:nxkGI} \end{figure} Results reported in Figure~\ref{fig:nxkGI} and Figure~\ref{fig:nxkGII} respectively for Mode I and Mode II show that the presence of only two undamaged fibers placed between debonds along the vertical direction makes the results of $n\times 3-symm$ and $n\times 3-asymm$ undistinguishable. It appears that the relative placement of debonds does not have any relevant effect on debond ERR, and thus on debond growth, when undamaged fibers are present in between. \begin{figure}[!h] \centering \includegraphics[width=\textwidth]{nxk-coupling-vf60-GII.pdf} \caption{Effect of the presence of undamaged fibers along the vertical direction on Mode II ERR: models $n\times 3-symm$ and $n\times 3-asymm$. $V_{f}=60\%$, $\varepsilon_{x}=1\%$.}\label{fig:nxkGII} \end{figure} Furthermore, comparison of Figure~\ref{fig:nx1GI} with Figure~\ref{fig:nxkGI} for Mode I and of Figure~\ref{fig:nx1GII} with Figure~\ref{fig:nxkGII} for Mode II shows that, especially for Mode II ERR, the presence of fully bonded fibers between debonds along the vertical direction reduces the strain magnification effect due to the presence of additional fiber columns with only fully bonded fibers along the horizontal direction. Mode I reaches a maximum of $5.5\ \nicefrac{J}{m^{2}}$ for $101\times 1-symm$ and $4\ \nicefrac{J}{m^{2}}$ for $101\times 1-asymm$ (Figure~\ref{fig:nx1GI}), and of $3.5\ \nicefrac{J}{m^{2}}$ for both $101\times 3-symm$ and $101\times 3-asymm$ (Figure~\ref{fig:nxkGI}). The maximum value of Mode II is $30\ \nicefrac{J}{m^{2}}$ for $101\times 1-symm$ and $42.5\ \nicefrac{J}{m^{2}}$ for $101\times 1-asymm$ (Figure~\ref{fig:nx1GII}), and of $4.75\ \nicefrac{J}{m^{2}}$ for both $101\times 3-symm$ and $101\times 3-asymm$ (Figure~\ref{fig:nxkGII}).%\\ %It is worth observing that $n\times 3-symm$ and $n\times 3-asymm$ RVEs represent a more ``diffuse'' state of damage than $n\times 1-symm$ and $n\times 1-asymm$. Comparison of Figure~\ref{fig:nx1GI} and Figure~\ref{fig:nx1GII} with respectively Figure~\ref{fig:nxkGI} and Figure~\ref{fig:nxkGII} reveals that a huge difference in Mode II ERR exists between the localized ($n\times 1$) and diffuse ($n\times 3$) damage states, with lower values of $G_{II}$ occurring for the ``diffuse'' less dense $n\times 3$ configuration. \subsection{Effect of the presence of a finite number of debonds in the vertical direction}\label{subsec:finitenumdebonds} \begin{figure}[!h] \centering \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{asymm-explicitmodel-increasing-vf60-GI.pdf} \caption{Mode I.}\label{subfig:finitedebsalternatingGI} \end{subfigure} ~ \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{asymm-explicitmodel-increasing-vf60-GII.pdf} \caption{Mode II.}\label{subfig:finitedebsalternatingGII} \end{subfigure} \caption{Effect on Mode I and Mode II ERR of a finite increasing number of alternating debonds along the vertical direction for a $21\times41-free$ RVE, $V_{f}=60\%$, $\varepsilon_{x}$ of $1\%$.}\label{fig:finitedebsalternating} \end{figure} \begin{figure}[!h] \centering \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{symm-explicitmodel-increasing-vf60-GI.pdf} \caption{Mode I.}\label{subfig:finitedebsalternatingGI} \end{subfigure} ~ \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{symm-explicitmodel-increasing-vf60-GII.pdf} \caption{Mode II.}\label{subfig:finitedebsalignedGII} \end{subfigure} \caption{Effect on Mode I and Mode II ERR of a finite increasing number of aligned debonds along the vertical direction for a $21\times41-free$ RVE, $V_{f}=60\%$, $\varepsilon_{x}$ of $1\%$.}\label{fig:finitedebsaligned} \end{figure} \begin{figure}[!h] \centering \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-3debs-vf60-GI.pdf} \caption{3 debonds.}\label{subfig:finitedebscomparisonModeI3debs} \end{subfigure} ~ \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-5debs-vf60-GI.pdf} \caption{5 debonds.}\label{subfig:finitedebscomparisonModeI5debs} \end{subfigure} \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-11debs-vf60-GI.pdf} \caption{11 debonds.}\label{subfig:finitedebscomparisonModeI11debs} \end{subfigure} ~ \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-21debs-vf60-GI.pdf} \caption{21 debonds.}\label{subfig:finitedebscomparisonModeI21debs} \end{subfigure} \caption{Effect on Mode I ERR of a finite increasing number of debonds along the vertical direction for a $21\times41-free$ RVE: comparison between alternating and aligned debonds. $V_{f}=60\%$, $\varepsilon_{x}$ of $1\%$.}\label{fig:finitedebscomparisonModeI} \end{figure} \begin{figure}[!h] \centering \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-3debs-vf60-GII.pdf} \caption{3 debonds.}\label{subfig:finitedebscomparisonModeII3debs} \end{subfigure} ~ \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-5debs-vf60-GII.pdf} \caption{5 debonds.}\label{subfig:finitedebscomparisonModeII5debs} \end{subfigure} \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-11debs-vf60-GII.pdf} \caption{11 debonds.}\label{subfig:finitedebscomparisonModeII11debs} \end{subfigure} ~ \begin{subfigure}[b]{0.475\textwidth} \includegraphics[width=\textwidth]{comparison-explicitmodel-21debs-vf60-GII.pdf} \caption{21 debonds.}\label{subfig:finitedebscomparisonModeII21debs} \end{subfigure} \caption{Effect on Mode II ERR of a finite increasing number of debonds along the vertical direction for a $21\times41-free$ RVE: comparison between alternating and aligned debonds. $V_{f}=60\%$, $\varepsilon_{x}$ of $1\%$.}\label{fig:finitedebscomparisonModeII} \end{figure} \begin{enumerate} \item Alternating debonds, Mode I, Figure~\ref{subfig:finitedebsalternatingGI}: no change with increasing number of debonds and no difference with models $101\times1-alternating$ and $201\times1-alternating$, which correspond to an infinite number of debonds along the vertical direction. Apparently, having just the side of the above fiber fully bonded makes the debond unaffected by the presence of another debond: 1) on the opposite side of the fiber just above, 2) on the same side of the subsequent fiber above. \item Alternating debonds, Mode II, Figure~\ref{subfig:finitedebsalternatingGII}: it increases with an increasing number of debonds and it is different from models $101\times1-alternating$ and $201\times1-alternating$, which correspond to an infinite number of debonds along the vertical direction. One main difference: two peaks appear, i.e. one local and one global maximum, respectively at $\Delta\theta=80^{\circ}$ and $\Delta\theta=100^{\circ}$. Given that Mode II for $21\times41-11\ alternating\ debonds$ and $21\times41-21\ alternating\ debonds$ are practically identical, we can conclude that there exists a maximum number of debonds after which the marginal effect on ERR of adding an additional one is negligible, or otherwise that there is a ``critical interaction length''. \item Aligned debonds, Mode I, Figure~\ref{subfig:finitedebsalignedGI}: it increases with increasing number of debonds. One difference with $101\times1-aligned$ and $201\times1-aligned$ which correspond to an infinite number of debonds along the vertical direction: a second local maximum at $\Delta\theta=70^{\circ}$ appears, more markedly with increasing number of debonds. Also, onset of contact zone is shifted from $\Delta\theta=80^{\circ}$ for $3$ aligned debonds to $\Delta\theta=90^{\circ}$ for at least $5$ aligned debonds. \item Aligned debonds, Mode II, Figure~\ref{subfig:finitedebsalignedGII}: it increases with increasing number of debonds. One difference with $101\times1-aligned$ and $201\times1-aligned$ which correspond to an infinite number of debonds along the vertical direction: two local maximum points appear at $\Delta\theta=50^{\circ}$ and at $\Delta\theta=100^{\circ}$. The first, at $\Delta\theta=50^{\circ}$, becomes less marked with increasing number of debonds, the second at $\Delta\theta=100^{\circ}$ becomes more marked with increasing number of debonds. The global maximum is at $70^{\circ}$ for $3$ aligned debonds and $80^{\circ}$ for at least $5$ aligned debonds. \item Aligned debonds, Mode I and Mode II, Figure~\ref{fig:finitedebsaligned}: given that ERR for $21\times41-11\ aligned\ debonds$ and $21\times41-21\ aligned\ debonds$ are almost identical, we can conclude that there exists also for the aligned case a maximum number of debonds after which the marginal effect on ERR of adding an additional one is negligible, or otherwise that there is a ``critical interaction length''. \item Comparison alternating-aligned: given the same number of debonds, Mode I ERR (Figure~\ref{fig:finitedebscomparisonModeI}) is higher in the case of aligned debonds, Mode II (Figure~\ref{fig:finitedebscomparisonModeII}) is higher in the case of alternating debonds, which is the same result obtained for the models with equivalent boundary conditions. \end{enumerate} \section{Conclusions}\label{sec:conclusions} The effect of debond-debond interaction along the vertical direction and the influence of debond relative position of their respective fibers have been studied with the use of Representative Volume Elements of thick UD composites. Debond growth has been characterized using tools of Linear Elastic Fracture Mechanics, specifically Mode I and Mode II Energy Release Rate at the debond tip. Two specific configurations have been chosen to investigate the effect of debond relative position: debonds placed on the same side of fibers aligned in the vertical direction, or symmetric repetition, and debonds placed on opposite sides of fibers aligned in the vertical direction, or asymmetric repetition. To model the former, classic conditions of coupling of the vertical displacements on the upper boundary have been employed. To model the asymmetric repetition configuration, a set of boundary conditions, to which we have refered to as anti-symmetric coupling, has been proposed. To the authors' knowledge, this is the first time the anti-symmetric coupling conditions have been proposed in the context of RVE modeling of heterogeneous materials behavior. For this reason, the boundary conditions proposed have been validated with respect to a RVE with debonds explicitly modeled and placed on alternating sides of fibers aligned in the vertical direction. The agreeement between the model with explicitly modeled debonds and the one with equivalent boundary conditions has been found excellent.\\ Comparison of Mode I and Mode II Energy Release Rate between the two configurations (symmetric and asymmetric repetition of debonds) reveals that: \begin{itemize} \item higher values of Mode I ERR are found for a debond placed in a fiber column with no undamaged fiber inside and debonds placed on the same side of partially debonded fibers; \item higher values of Mode II ERR are obtained for a debond placed in a fiber column with no undamaged fiber inside and debonds placed on opposite sides of partially debonded fibers; \item no effect of debonds relative position on ERR is registered in the presence of just two undamaged (fully bonded) fibers between two debonds along the vertical direction; \item the presence of just two undamaged (fully bonded) fibers between two debonds along the vertical direction reduces, especially for Mode II, the effect of strain magnification. \end{itemize} \begin{acknowledgements} Luca Di Stasio gratefully acknowledges the support of the European School of Materials (EUSMAT) through the DocMASE Doctoral Programme and the European Commission through the Erasmus Mundus Programme. \end{acknowledgements} % Authors must disclose all relationships or interests that % could have direct or potential influence or impart bias on % the work: % % \section*{Conflict of interest} % % The authors declare that they have no conflict of interest. % BibTeX users please use one of %\bibliographystyle{spbasic} % basic style, author-year citations \bibliographystyle{spmpsci} % mathematics and physical sciences %\bibliographystyle{spphys} % APS-like style for physics \bibliography{refs} % name your BibTeX data base %% Non-BibTeX users please use %\begin{thebibliography}{} %% %% and use \bibitem to create references. Consult the Instructions %% for authors for reference list style. %% %\bibitem{RefJ} %% Format for Journal Reference %Author, Article title, Journal, Volume, page numbers (year) %% Format for books %\bibitem{RefB} %Author, Book title, page numbers. Publisher, place (year) %% etc %\end{thebibliography} \end{document} % end of file template.tex
# BogumiΕ‚ KamiΕ„ski, 2019-03-25 using DataFrames, CSV df = CSV.read("iris.csv") describe(df) df2 = stack(df) CSV.write("iris2.csv", df2)
[GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have h4f : ContinuousAt (fun x => f x (g x)) xβ‚€ := ContinuousAt.comp_of_eq hf.continuousAt (continuousAt_id.prod hg.continuousAt) rfl [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f : ContinuousAt (fun x => f x (g x)) xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have h4f := h4f.preimage_mem_nhds (extChartAt_source_mem_nhds I' (f xβ‚€ (g xβ‚€))) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have h3f := contMDiffAt_iff_contMDiffAt_nhds.mp (hf.of_le <| (self_le_add_left 1 m).trans hmn) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have h2f : βˆ€αΆ  xβ‚‚ in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) := by refine' ((continuousAt_id.prod hg.continuousAt).tendsto.eventually h3f).mono fun x hx => _ exact hx.comp (g x) (contMDiffAt_const.prod_mk contMDiffAt_id) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' ⊒ βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) [PROOFSTEP] refine' ((continuousAt_id.prod hg.continuousAt).tendsto.eventually h3f).mono fun x hx => _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' x : N hx : ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) (id x, g x) ⊒ ContMDiffAt I I' 1 (f x) (g x) [PROOFSTEP] exact hx.comp (g x) (contMDiffAt_const.prod_mk contMDiffAt_id) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have h2g := hg.continuousAt.preimage_mem_nhds (extChartAt_source_mem_nhds I (g xβ‚€)) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (extChartAt I' (f xβ‚€ (g xβ‚€)) ∘ f ((extChartAt J xβ‚€).symm x) ∘ (extChartAt I (g xβ‚€)).symm) (range I) (extChartAt I (g xβ‚€) (g ((extChartAt J xβ‚€).symm x)))) (range J) (extChartAt J xβ‚€ xβ‚€) := by rw [contMDiffAt_iff] at hf hg simp_rw [Function.comp, uncurry, extChartAt_prod, LocalEquiv.prod_coe_symm, ModelWithCorners.range_prod] at hf ⊒ refine' ContDiffWithinAt.fderivWithin _ hg.2 I.unique_diff hmn (mem_range_self _) _ Β· simp_rw [extChartAt_to_inv]; exact hf.2 Β· rw [← image_subset_iff] rintro _ ⟨x, -, rfl⟩ exact mem_range_self _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ ⊒ ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) [PROOFSTEP] rw [contMDiffAt_iff] at hf hg [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContinuousAt (uncurry f) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (↑(extChartAt I' (uncurry f (xβ‚€, g xβ‚€))) ∘ uncurry f ∘ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.prod J I) (xβ‚€, g xβ‚€)))) (range ↑(ModelWithCorners.prod J I)) (↑(extChartAt (ModelWithCorners.prod J I) (xβ‚€, g xβ‚€)) (xβ‚€, g xβ‚€)) hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ ⊒ ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) [PROOFSTEP] simp_rw [Function.comp, uncurry, extChartAt_prod, LocalEquiv.prod_coe_symm, ModelWithCorners.range_prod] at hf ⊒ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ hf : ContinuousAt (fun a => f a.fst a.snd) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (fun x => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x.fst) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x.snd))) (range ↑J Γ—Λ’ range ↑I) (↑(LocalEquiv.prod (extChartAt J xβ‚€) (extChartAt I (g xβ‚€))) (xβ‚€, g xβ‚€)) ⊒ ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (fun x_1 => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x_1))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) [PROOFSTEP] refine' ContDiffWithinAt.fderivWithin _ hg.2 I.unique_diff hmn (mem_range_self _) _ [GOAL] case refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ hf : ContinuousAt (fun a => f a.fst a.snd) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (fun x => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x.fst) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x.snd))) (range ↑J Γ—Λ’ range ↑I) (↑(LocalEquiv.prod (extChartAt J xβ‚€) (extChartAt I (g xβ‚€))) (xβ‚€, g xβ‚€)) ⊒ ContDiffWithinAt π•œ n (uncurry fun x x_1 => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x_1))) (range ↑J Γ—Λ’ range ↑I) (↑(extChartAt J xβ‚€) xβ‚€, ↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) (↑(extChartAt J xβ‚€) xβ‚€)))) [PROOFSTEP] simp_rw [extChartAt_to_inv] [GOAL] case refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ hf : ContinuousAt (fun a => f a.fst a.snd) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (fun x => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x.fst) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x.snd))) (range ↑J Γ—Λ’ range ↑I) (↑(LocalEquiv.prod (extChartAt J xβ‚€) (extChartAt I (g xβ‚€))) (xβ‚€, g xβ‚€)) ⊒ ContDiffWithinAt π•œ n (uncurry fun x x_1 => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x_1))) (range ↑J Γ—Λ’ range ↑I) (↑(extChartAt J xβ‚€) xβ‚€, ↑(extChartAt I (g xβ‚€)) (g xβ‚€)) [PROOFSTEP] exact hf.2 [GOAL] case refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ hf : ContinuousAt (fun a => f a.fst a.snd) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (fun x => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x.fst) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x.snd))) (range ↑J Γ—Λ’ range ↑I) (↑(LocalEquiv.prod (extChartAt J xβ‚€) (extChartAt I (g xβ‚€))) (xβ‚€, g xβ‚€)) ⊒ range ↑J βŠ† (fun x => ↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x))) ⁻¹' range ↑I [PROOFSTEP] rw [← image_subset_iff] [GOAL] case refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ hf : ContinuousAt (fun a => f a.fst a.snd) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (fun x => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x.fst) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x.snd))) (range ↑J Γ—Λ’ range ↑I) (↑(LocalEquiv.prod (extChartAt J xβ‚€) (extChartAt I (g xβ‚€))) (xβ‚€, g xβ‚€)) ⊒ (fun x => ↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x))) '' range ↑J βŠ† range ↑I [PROOFSTEP] rintro _ ⟨x, -, rfl⟩ [GOAL] case refine'_2.intro.intro π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hg : ContinuousAt g xβ‚€ ∧ ContDiffWithinAt π•œ m (↑(extChartAt I (g xβ‚€)) ∘ g ∘ ↑(LocalEquiv.symm (extChartAt J xβ‚€))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ hf : ContinuousAt (fun a => f a.fst a.snd) (xβ‚€, g xβ‚€) ∧ ContDiffWithinAt π•œ n (fun x => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x.fst) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x.snd))) (range ↑J Γ—Λ’ range ↑I) (↑(LocalEquiv.prod (extChartAt J xβ‚€) (extChartAt I (g xβ‚€))) (xβ‚€, g xβ‚€)) x : F ⊒ (fun x => ↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x))) x ∈ range ↑I [PROOFSTEP] exact mem_range_self _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (extChartAt I' (f xβ‚€ (g xβ‚€)) ∘ f x ∘ (extChartAt I (g xβ‚€)).symm) (range I) (extChartAt I (g xβ‚€) (g x))) xβ‚€ := by simp_rw [contMDiffAt_iff_source_of_mem_source (mem_chart_source G xβ‚€), contMDiffWithinAt_iff_contDiffWithinAt, Function.comp] exact this [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ [PROOFSTEP] simp_rw [contMDiffAt_iff_source_of_mem_source (mem_chart_source G xβ‚€), contMDiffWithinAt_iff_contDiffWithinAt, Function.comp] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) ⊒ ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (fun x_1 => ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x_1))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) [PROOFSTEP] exact this [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (extChartAt I' (f xβ‚€ (g xβ‚€)) ∘ (extChartAt I' (f x (g x))).symm ∘ writtenInExtChartAt I I' (g x) (f x) ∘ extChartAt I (g x) ∘ (extChartAt I (g xβ‚€)).symm) (range I) (extChartAt I (g xβ‚€) (g x))) xβ‚€ := by refine' this.congr_of_eventuallyEq _ filter_upwards [h2g, h2f] intro xβ‚‚ hxβ‚‚ h2xβ‚‚ have : βˆ€ x ∈ (extChartAt I (g xβ‚€)).symm ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ (extChartAt I (g xβ‚€)).symm ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source), (extChartAt I' (f xβ‚€ (g xβ‚€)) ∘ (extChartAt I' (f xβ‚‚ (g xβ‚‚))).symm ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ extChartAt I (g xβ‚‚) ∘ (extChartAt I (g xβ‚€)).symm) x = extChartAt I' (f xβ‚€ (g xβ‚€)) (f xβ‚‚ ((extChartAt I (g xβ‚€)).symm x)) := by rintro x ⟨hx, h2x⟩ simp_rw [writtenInExtChartAt, Function.comp_apply] rw [(extChartAt I (g xβ‚‚)).left_inv hx, (extChartAt I' (f xβ‚‚ (g xβ‚‚))).left_inv h2x] refine' Filter.EventuallyEq.fderivWithin_eq_nhds _ refine' eventually_of_mem (inter_mem _ _) this Β· exact extChartAt_preimage_mem_nhds' _ _ hxβ‚‚ (extChartAt_source_mem_nhds I (g xβ‚‚)) refine' extChartAt_preimage_mem_nhds' _ _ hxβ‚‚ _ exact h2xβ‚‚.continuousAt.preimage_mem_nhds (extChartAt_source_mem_nhds _ _) /- The conclusion is equal to the following, when unfolding coord_change of `tangentBundleCore` -/ -- Porting note: added [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ [PROOFSTEP] refine' this.congr_of_eventuallyEq _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ ⊒ (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) =αΆ [𝓝 xβ‚€] fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x)) [PROOFSTEP] filter_upwards [h2g, h2f] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ ⊒ βˆ€ (a : N), a ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source β†’ ContMDiffAt I I' 1 (f a) (g a) β†’ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f a (g a)))) ∘ writtenInExtChartAt I I' (g a) (f a) ∘ ↑(extChartAt I (g a)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g a)) = fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f a ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g a)) [PROOFSTEP] intro xβ‚‚ hxβ‚‚ h2xβ‚‚ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f xβ‚‚ ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) [PROOFSTEP] have : βˆ€ x ∈ (extChartAt I (g xβ‚€)).symm ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ (extChartAt I (g xβ‚€)).symm ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source), (extChartAt I' (f xβ‚€ (g xβ‚€)) ∘ (extChartAt I' (f xβ‚‚ (g xβ‚‚))).symm ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ extChartAt I (g xβ‚‚) ∘ (extChartAt I (g xβ‚€)).symm) x = extChartAt I' (f xβ‚€ (g xβ‚€)) (f xβ‚‚ ((extChartAt I (g xβ‚€)).symm x)) := by rintro x ⟨hx, h2x⟩ simp_rw [writtenInExtChartAt, Function.comp_apply] rw [(extChartAt I (g xβ‚‚)).left_inv hx, (extChartAt I' (f xβ‚‚ (g xβ‚‚))).left_inv h2x] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) ⊒ βˆ€ (x : E), x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) β†’ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) [PROOFSTEP] rintro x ⟨hx, h2x⟩ [GOAL] case intro π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) x : E hx : x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source h2x : x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) ⊒ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) [PROOFSTEP] simp_rw [writtenInExtChartAt, Function.comp_apply] [GOAL] case intro π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) x : E hx : x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source h2x : x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) ⊒ ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚‚))) (↑(extChartAt I (g xβ‚‚)) (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)))))) = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) [PROOFSTEP] rw [(extChartAt I (g xβ‚‚)).left_inv hx, (extChartAt I' (f xβ‚‚ (g xβ‚‚))).left_inv h2x] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) this : βˆ€ (x : E), x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) β†’ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f xβ‚‚ ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) [PROOFSTEP] refine' Filter.EventuallyEq.fderivWithin_eq_nhds _ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) this : βˆ€ (x : E), x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) β†’ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) ⊒ ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) =αΆ [𝓝 (↑(extChartAt I (g xβ‚€)) (g xβ‚‚))] ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f xβ‚‚ ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) [PROOFSTEP] refine' eventually_of_mem (inter_mem _ _) this [GOAL] case h.refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) this : βˆ€ (x : E), x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) β†’ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) ⊒ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∈ 𝓝 (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) [PROOFSTEP] exact extChartAt_preimage_mem_nhds' _ _ hxβ‚‚ (extChartAt_source_mem_nhds I (g xβ‚‚)) [GOAL] case h.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) this : βˆ€ (x : E), x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) β†’ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) ⊒ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) ∈ 𝓝 (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) [PROOFSTEP] refine' extChartAt_preimage_mem_nhds' _ _ hxβ‚‚ _ [GOAL] case h.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) this : βˆ€ (x : E), x ∈ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (extChartAt I (g xβ‚‚)).source ∩ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) ⁻¹' (f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source) β†’ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) x = ↑(extChartAt I' (f xβ‚€ (g xβ‚€))) (f xβ‚‚ (↑(LocalEquiv.symm (extChartAt I (g xβ‚€))) x)) ⊒ f xβ‚‚ ⁻¹' (extChartAt I' (f xβ‚‚ (g xβ‚‚))).source ∈ 𝓝 (g xβ‚‚) [PROOFSTEP] exact h2xβ‚‚.continuousAt.preimage_mem_nhds (extChartAt_source_mem_nhds _ _) /- The conclusion is equal to the following, when unfolding coord_change of `tangentBundleCore` -/ -- Porting note: added [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] letI _inst : βˆ€ x, NormedAddCommGroup (TangentSpace I (g x)) := fun _ => inferInstanceAs (NormedAddCommGroup E) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] letI _inst : βˆ€ x, NormedSpace π•œ (TangentSpace I (g x)) := fun _ => inferInstanceAs (NormedSpace π•œ E) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] have : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => (fderivWithin π•œ (extChartAt I' (f xβ‚€ (g xβ‚€)) ∘ (extChartAt I' (f x (g x))).symm) (range I') (extChartAt I' (f x (g x)) (f x (g x)))).comp ((mfderiv I I' (f x) (g x)).comp (fderivWithin π•œ (extChartAt I (g x) ∘ (extChartAt I (g xβ‚€)).symm) (range I) (extChartAt I (g xβ‚€) (g x))))) xβ‚€ := by refine' this.congr_of_eventuallyEq _ filter_upwards [h2g, h2f, h4f] intro xβ‚‚ hxβ‚‚ h2xβ‚‚ h3xβ‚‚ symm rw [(h2xβ‚‚.mdifferentiableAt le_rfl).mfderiv] have hI := (contDiffWithinAt_ext_coord_change I (g xβ‚‚) (g xβ‚€) <| LocalEquiv.mem_symm_trans_source _ hxβ‚‚ <| mem_extChartAt_source I (g xβ‚‚)).differentiableWithinAt le_top have hI' := (contDiffWithinAt_ext_coord_change I' (f xβ‚€ (g xβ‚€)) (f xβ‚‚ (g xβ‚‚)) <| LocalEquiv.mem_symm_trans_source _ (mem_extChartAt_source I' (f xβ‚‚ (g xβ‚‚))) h3xβ‚‚).differentiableWithinAt le_top have h3f := (h2xβ‚‚.mdifferentiableAt le_rfl).2 refine' fderivWithin.comp₃ _ hI' h3f hI _ _ _ _ (I.unique_diff _ <| mem_range_self _) Β· exact fun x _ => mem_range_self _ Β· exact fun x _ => mem_range_self _ Β· simp_rw [writtenInExtChartAt, Function.comp_apply, (extChartAt I (g xβ‚‚)).left_inv (mem_extChartAt_source I (g xβ‚‚))] Β· simp_rw [Function.comp_apply, (extChartAt I (g xβ‚€)).left_inv hxβ‚‚] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ [PROOFSTEP] refine' this.congr_of_eventuallyEq _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) ⊒ (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) =αΆ [𝓝 xβ‚€] fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x)) [PROOFSTEP] filter_upwards [h2g, h2f, h4f] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) ⊒ βˆ€ (a : N), a ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source β†’ ContMDiffAt I I' 1 (f a) (g a) β†’ a ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source β†’ ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f a (g a))))) (range ↑I') (↑(extChartAt I' (f a (g a))) (f a (g a)))) (ContinuousLinearMap.comp (mfderiv I I' (f a) (g a)) (fderivWithin π•œ (↑(extChartAt I (g a)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g a)))) = fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f a (g a)))) ∘ writtenInExtChartAt I I' (g a) (f a) ∘ ↑(extChartAt I (g a)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g a)) [PROOFSTEP] intro xβ‚‚ hxβ‚‚ h2xβ‚‚ h3xβ‚‚ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)))) (ContinuousLinearMap.comp (mfderiv I I' (f xβ‚‚) (g xβ‚‚)) (fderivWithin π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)))) = fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) [PROOFSTEP] symm [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)))) (ContinuousLinearMap.comp (mfderiv I I' (f xβ‚‚) (g xβ‚‚)) (fderivWithin π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)))) [PROOFSTEP] rw [(h2xβ‚‚.mdifferentiableAt le_rfl).mfderiv] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)))) (ContinuousLinearMap.comp (fderivWithin π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚))) (fderivWithin π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)))) [PROOFSTEP] have hI := (contDiffWithinAt_ext_coord_change I (g xβ‚‚) (g xβ‚€) <| LocalEquiv.mem_symm_trans_source _ hxβ‚‚ <| mem_extChartAt_source I (g xβ‚‚)).differentiableWithinAt le_top [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)))) (ContinuousLinearMap.comp (fderivWithin π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚))) (fderivWithin π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)))) [PROOFSTEP] have hI' := (contDiffWithinAt_ext_coord_change I' (f xβ‚€ (g xβ‚€)) (f xβ‚‚ (g xβ‚‚)) <| LocalEquiv.mem_symm_trans_source _ (mem_extChartAt_source I' (f xβ‚‚ (g xβ‚‚))) h3xβ‚‚).differentiableWithinAt le_top [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) hI' : DifferentiableWithinAt π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚))) ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)))) (ContinuousLinearMap.comp (fderivWithin π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚))) (fderivWithin π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)))) [PROOFSTEP] have h3f := (h2xβ‚‚.mdifferentiableAt le_rfl).2 [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f✝ : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) hI' : DifferentiableWithinAt π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚))) h3f : DifferentiableWithinAt π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚)) ⊒ fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚)))) ∘ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) ∘ ↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)))) (ContinuousLinearMap.comp (fderivWithin π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚))) (fderivWithin π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)))) [PROOFSTEP] refine' fderivWithin.comp₃ _ hI' h3f hI _ _ _ _ (I.unique_diff _ <| mem_range_self _) [GOAL] case h.refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f✝ : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) hI' : DifferentiableWithinAt π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚))) h3f : DifferentiableWithinAt π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚)) ⊒ MapsTo (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (range ↑I') [PROOFSTEP] exact fun x _ => mem_range_self _ [GOAL] case h.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f✝ : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) hI' : DifferentiableWithinAt π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚))) h3f : DifferentiableWithinAt π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚)) ⊒ MapsTo (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (range ↑I) [PROOFSTEP] exact fun x _ => mem_range_self _ [GOAL] case h.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f✝ : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) hI' : DifferentiableWithinAt π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚))) h3f : DifferentiableWithinAt π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚)) ⊒ writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚)) = ↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚)) [PROOFSTEP] simp_rw [writtenInExtChartAt, Function.comp_apply, (extChartAt I (g xβ‚‚)).left_inv (mem_extChartAt_source I (g xβ‚‚))] [GOAL] case h.refine'_4 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f✝ : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝¹ : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) xβ‚‚ : N hxβ‚‚ : xβ‚‚ ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2xβ‚‚ : ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h3xβ‚‚ : xβ‚‚ ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source hI : DifferentiableWithinAt π•œ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) hI' : DifferentiableWithinAt π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f xβ‚‚ (g xβ‚‚))))) (range ↑I') (↑(extChartAt I' (f xβ‚‚ (g xβ‚‚))) (f xβ‚‚ (g xβ‚‚))) h3f : DifferentiableWithinAt π•œ (writtenInExtChartAt I I' (g xβ‚‚) (f xβ‚‚)) (range ↑I) (↑(extChartAt I (g xβ‚‚)) (g xβ‚‚)) ⊒ (↑(extChartAt I (g xβ‚‚)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (↑(extChartAt I (g xβ‚€)) (g xβ‚‚)) = ↑(extChartAt I (g xβ‚‚)) (g xβ‚‚) [PROOFSTEP] simp_rw [Function.comp_apply, (extChartAt I (g xβ‚€)).left_inv hxβ‚‚] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝² : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝¹ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ ⊒ ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€) xβ‚€ [PROOFSTEP] refine' this.congr_of_eventuallyEq _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝² : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝¹ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ ⊒ inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€ =αΆ [𝓝 xβ‚€] fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x)))) [PROOFSTEP] filter_upwards [h2g, h4f] with x hx h2x [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝² : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝¹ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ x : N hx : x ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2x : x ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ inTangentCoordinates I I' g (fun x => f x (g x)) (fun x => mfderiv I I' (f x) (g x)) xβ‚€ x = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x)))) [PROOFSTEP] rw [inTangentCoordinates_eq] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝² : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝¹ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ x : N hx : x ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2x : x ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ ContinuousLinearMap.comp (VectorBundleCore.coordChange (tangentBundleCore I' M') (achart H' (f x (g x))) (achart H' (f xβ‚€ (g xβ‚€))) (f x (g x))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (VectorBundleCore.coordChange (tangentBundleCore I M) (achart H (g xβ‚€)) (achart H (g x)) (g x))) = ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x)))) [PROOFSTEP] rfl [GOAL] case h.hx π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝² : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝¹ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ x : N hx : x ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2x : x ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ g x ∈ (chartAt H (g xβ‚€)).toLocalEquiv.source [PROOFSTEP] rwa [extChartAt_source] at hx [GOAL] case h.hy π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž xβ‚€ : N f : N β†’ M β†’ M' g : N β†’ M hf : ContMDiffAt (ModelWithCorners.prod J I) I' n (uncurry f) (xβ‚€, g xβ‚€) hg : ContMDiffAt J I m g xβ‚€ hmn : m + 1 ≀ n h4f✝ : ContinuousAt (fun x => f x (g x)) xβ‚€ h4f : (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ∈ 𝓝 xβ‚€ h3f : βˆ€αΆ  (x' : N Γ— M) in 𝓝 (xβ‚€, g xβ‚€), ContMDiffAt (ModelWithCorners.prod J I) I' (↑One.one) (uncurry f) x' h2f : βˆ€αΆ  (xβ‚‚ : N) in 𝓝 xβ‚€, ContMDiffAt I I' 1 (f xβ‚‚) (g xβ‚‚) h2g : g ⁻¹' (extChartAt I (g xβ‚€)).source ∈ 𝓝 xβ‚€ this✝² : ContDiffWithinAt π•œ m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g (↑(LocalEquiv.symm (extChartAt J xβ‚€)) x)))) (range ↑J) (↑(extChartAt J xβ‚€) xβ‚€) this✝¹ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ f x ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ this✝ : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x)))) ∘ writtenInExtChartAt I I' (g x) (f x) ∘ ↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))) xβ‚€ _inst✝ : (x : N) β†’ NormedAddCommGroup (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedAddCommGroup E) _inst : (x : N) β†’ NormedSpace π•œ (TangentSpace I (g x)) := fun x => inferInstanceAs (NormedSpace π•œ E) this : ContMDiffAt J π“˜(π•œ, E β†’L[π•œ] E') m (fun x => ContinuousLinearMap.comp (fderivWithin π•œ (↑(extChartAt I' (f xβ‚€ (g xβ‚€))) ∘ ↑(LocalEquiv.symm (extChartAt I' (f x (g x))))) (range ↑I') (↑(extChartAt I' (f x (g x))) (f x (g x)))) (ContinuousLinearMap.comp (mfderiv I I' (f x) (g x)) (fderivWithin π•œ (↑(extChartAt I (g x)) ∘ ↑(LocalEquiv.symm (extChartAt I (g xβ‚€)))) (range ↑I) (↑(extChartAt I (g xβ‚€)) (g x))))) xβ‚€ x : N hx : x ∈ g ⁻¹' (extChartAt I (g xβ‚€)).source h2x : x ∈ (fun x => f x (g x)) ⁻¹' (extChartAt I' (f xβ‚€ (g xβ‚€))).source ⊒ f x (g x) ∈ (chartAt H' (f xβ‚€ (g xβ‚€))).toLocalEquiv.source [PROOFSTEP] rwa [extChartAt_source] at h2x [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] suffices h : ContinuousOn (fun p : H Γ— E => (f p.fst, (fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (I.symm ⁻¹' s ∩ range I) ((extChartAt I p.fst) p.fst) : E β†’L[π•œ] E') p.snd)) (Prod.fst ⁻¹' s) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have A := (tangentBundleModelSpaceHomeomorph H I).continuous [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : Continuous ↑(tangentBundleModelSpaceHomeomorph H I) ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] rw [continuous_iff_continuousOn_univ] at A [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have B := ((tangentBundleModelSpaceHomeomorph H' I').symm.continuous.comp_continuousOn h).comp' A [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s)) ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have : univ ∩ tangentBundleModelSpaceHomeomorph H I ⁻¹' (Prod.fst ⁻¹' s) = Ο€ E(TangentSpace I) ⁻¹' s := by ext ⟨x, v⟩; simp only [mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s)) ⊒ univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s [PROOFSTEP] ext ⟨x, v⟩ [GOAL] case h.mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s)) x : H v : TangentSpace I x ⊒ { proj := x, snd := v } ∈ univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) ↔ { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s [PROOFSTEP] simp only [mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s)) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] rw [this] at B [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] apply B.congr [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s ⊒ EqOn (tangentMapWithin I I' f s) ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] rintro ⟨x, v⟩ hx [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ tangentMapWithin I I' f s { proj := x, snd := v } = ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) { proj := x, snd := v } [PROOFSTEP] dsimp [tangentMapWithin] [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ { proj := f x, snd := ↑(mfderivWithin I I' f s x) v } = ↑(TotalSpace.toProd H' E').symm (f x, ↑(fderivWithin π•œ ((↑I' ∘ ↑(chartAt H' (f x))) ∘ f ∘ ↑(LocalHomeomorph.symm (chartAt H x)) ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I (↑(chartAt H x) x))) v) [PROOFSTEP] ext [GOAL] case mk.proj π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ { proj := f x, snd := ↑(mfderivWithin I I' f s x) v }.proj = (↑(TotalSpace.toProd H' E').symm (f x, ↑(fderivWithin π•œ ((↑I' ∘ ↑(chartAt H' (f x))) ∘ f ∘ ↑(LocalHomeomorph.symm (chartAt H x)) ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I (↑(chartAt H x) x))) v)).proj [PROOFSTEP] rfl [GOAL] case mk.snd π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ HEq { proj := f x, snd := ↑(mfderivWithin I I' f s x) v }.snd (↑(TotalSpace.toProd H' E').symm (f x, ↑(fderivWithin π•œ ((↑I' ∘ ↑(chartAt H' (f x))) ∘ f ∘ ↑(LocalHomeomorph.symm (chartAt H x)) ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I (↑(chartAt H x) x))) v)).snd [PROOFSTEP] simp only [mfld_simps] [GOAL] case mk.snd π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ ↑(mfderivWithin I I' f s x) v = ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I x)) v [PROOFSTEP] apply congr_fun [GOAL] case mk.snd.h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ ↑(mfderivWithin I I' f s x) = fun v => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I x)) v [PROOFSTEP] apply congr_arg [GOAL] case mk.snd.h.h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ mfderivWithin I I' f s x = fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I x) [PROOFSTEP] rw [MDifferentiableWithinAt.mfderivWithin (hf.mdifferentiableOn hn x hx)] [GOAL] case mk.snd.h.h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) A : ContinuousOn (↑(tangentBundleModelSpaceHomeomorph H I)) univ B : ContinuousOn ((↑(Homeomorph.symm (tangentBundleModelSpaceHomeomorph H' I')) ∘ fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) ∘ ↑(tangentBundleModelSpaceHomeomorph H I)) (TotalSpace.proj ⁻¹' s) this : univ ∩ ↑(tangentBundleModelSpaceHomeomorph H I) ⁻¹' (Prod.fst ⁻¹' s) = TotalSpace.proj ⁻¹' s x : H v : TangentSpace I x hx : { proj := x, snd := v } ∈ TotalSpace.proj ⁻¹' s ⊒ fderivWithin π•œ (writtenInExtChartAt I I' x f) (↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' s ∩ range ↑I) (↑(extChartAt I x) x) = fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I x) [PROOFSTEP] rfl [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) [PROOFSTEP] suffices h : ContinuousOn (fun p : H Γ— E => (fderivWithin π•œ (I' ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I) (I p.fst) : E β†’L[π•œ] E') p.snd) (Prod.fst ⁻¹' s) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) ⊒ ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ (writtenInExtChartAt I I' p.fst f) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑(extChartAt I p.fst) p.fst)) p.snd)) (Prod.fst ⁻¹' s) [PROOFSTEP] dsimp [writtenInExtChartAt, extChartAt] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) ⊒ ContinuousOn (fun p => (f p.fst, ↑(fderivWithin π•œ ((↑I' ∘ ↑(chartAt H' (f p.fst))) ∘ f ∘ ↑(LocalHomeomorph.symm (chartAt H p.fst)) ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I (↑(chartAt H p.fst) p.fst))) p.snd)) (Prod.fst ⁻¹' s) [PROOFSTEP] exact (ContinuousOn.comp hf.continuousOn continuous_fst.continuousOn Subset.rfl).prod h [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) [PROOFSTEP] suffices h : ContinuousOn (fderivWithin π•œ (I' ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I)) (I '' s) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) ⊒ ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) [PROOFSTEP] have C := ContinuousOn.comp h I.continuous_toFun.continuousOn Subset.rfl [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) C : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ∘ ↑I.toLocalEquiv) fun x => (↑I '' s) (↑I.toLocalEquiv x) ⊒ ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) [PROOFSTEP] have A : Continuous fun q : (E β†’L[π•œ] E') Γ— E => q.1 q.2 := isBoundedBilinearMapApply.continuous [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) C : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ∘ ↑I.toLocalEquiv) fun x => (↑I '' s) (↑I.toLocalEquiv x) A : Continuous fun q => ↑q.fst q.snd ⊒ ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) [PROOFSTEP] have B : ContinuousOn (fun p : H Γ— E => (fderivWithin π•œ (I' ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I) (I p.1), p.2)) (Prod.fst ⁻¹' s) := by apply ContinuousOn.prod _ continuous_snd.continuousOn refine C.comp continuousOn_fst ?_ exact preimage_mono (subset_preimage_image _ _) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) C : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ∘ ↑I.toLocalEquiv) fun x => (↑I '' s) (↑I.toLocalEquiv x) A : Continuous fun q => ↑q.fst q.snd ⊒ ContinuousOn (fun p => (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst), p.snd)) (Prod.fst ⁻¹' s) [PROOFSTEP] apply ContinuousOn.prod _ continuous_snd.continuousOn [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) C : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ∘ ↑I.toLocalEquiv) fun x => (↑I '' s) (↑I.toLocalEquiv x) A : Continuous fun q => ↑q.fst q.snd ⊒ ContinuousOn (fun x => fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I x.fst)) (Prod.fst ⁻¹' s) [PROOFSTEP] refine C.comp continuousOn_fst ?_ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) C : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ∘ ↑I.toLocalEquiv) fun x => (↑I '' s) (↑I.toLocalEquiv x) A : Continuous fun q => ↑q.fst q.snd ⊒ MapsTo (fun x => x.fst) (Prod.fst ⁻¹' s) fun x => (↑I '' s) (↑I.toLocalEquiv x) [PROOFSTEP] exact preimage_mono (subset_preimage_image _ _) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s h : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) C : ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ∘ ↑I.toLocalEquiv) fun x => (↑I '' s) (↑I.toLocalEquiv x) A : Continuous fun q => ↑q.fst q.snd B : ContinuousOn (fun p => (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst), p.snd)) (Prod.fst ⁻¹' s) ⊒ ContinuousOn (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) (↑I p.fst)) p.snd) (Prod.fst ⁻¹' s) [PROOFSTEP] exact A.comp_continuousOn B [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hn : 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) [PROOFSTEP] rw [contMDiffOn_iff] at hf [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) [PROOFSTEP] let x : H := I.symm (0 : E) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s x : H := ↑(ModelWithCorners.symm I) 0 ⊒ ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) [PROOFSTEP] let y : H' := I'.symm (0 : E') [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s x : H := ↑(ModelWithCorners.symm I) 0 y : H' := ↑(ModelWithCorners.symm I') 0 ⊒ ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) [PROOFSTEP] have A := hf.2 x y [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s x : H := ↑(ModelWithCorners.symm I) 0 y : H' := ↑(ModelWithCorners.symm I') 0 A : ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) ⊒ ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑I '' s) [PROOFSTEP] simp only [I.image_eq, inter_comm, mfld_simps] at A ⊒ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s x : H := ↑(ModelWithCorners.symm I) 0 y : H' := ↑(ModelWithCorners.symm I') 0 A : ContDiffOn π•œ n (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ⊒ ContinuousOn (fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) [PROOFSTEP] apply A.continuousOn_fderivWithin _ hn [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s x : H := ↑(ModelWithCorners.symm I) 0 y : H' := ↑(ModelWithCorners.symm I') 0 A : ContDiffOn π•œ n (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ⊒ UniqueDiffOn π•œ (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) [PROOFSTEP] convert hs.uniqueDiffOn_target_inter x using 1 [GOAL] case h.e'_7 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hn : 1 ≀ n hs : UniqueMDiffOn I s x : H := ↑(ModelWithCorners.symm I) 0 y : H' := ↑(ModelWithCorners.symm I') 0 A : ContDiffOn π•œ n (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) ⊒ ↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I = (extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' s [PROOFSTEP] simp only [inter_comm, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have m_le_n : m ≀ n := (le_add_right le_rfl).trans hmn [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have one_le_n : 1 ≀ n := (le_add_left le_rfl).trans hmn [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have U' : UniqueDiffOn π•œ (range I ∩ I.symm ⁻¹' s) := fun y hy ↦ by simpa only [UniqueMDiffOn, UniqueMDiffWithinAt, hy.1, inter_comm, mfld_simps] using hs (I.symm y) hy.2 [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n y : E hy : y ∈ range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s ⊒ UniqueDiffWithinAt π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) y [PROOFSTEP] simpa only [UniqueMDiffOn, UniqueMDiffWithinAt, hy.1, inter_comm, mfld_simps] using hs (I.symm y) hy.2 [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] rw [contMDiffOn_iff] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) ⊒ ContinuousOn (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) ∧ βˆ€ (x : TangentBundle I H) (y : TangentBundle I' H'), ContDiffOn π•œ m (↑(extChartAt (ModelWithCorners.tangent I') y) ∘ tangentMapWithin I I' f s ∘ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) x))) ((extChartAt (ModelWithCorners.tangent I) x).target ∩ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) x)) ⁻¹' (TotalSpace.proj ⁻¹' s ∩ tangentMapWithin I I' f s ⁻¹' (extChartAt (ModelWithCorners.tangent I') y).source)) [PROOFSTEP] refine' ⟨hf.continuousOn_tangentMapWithin_aux one_le_n hs, fun p q => _⟩ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' ⊒ ContDiffOn π•œ m (↑(extChartAt (ModelWithCorners.tangent I') q) ∘ tangentMapWithin I I' f s ∘ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p))) ((extChartAt (ModelWithCorners.tangent I) p).target ∩ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p)) ⁻¹' (TotalSpace.proj ⁻¹' s ∩ tangentMapWithin I I' f s ⁻¹' (extChartAt (ModelWithCorners.tangent I') q).source)) [PROOFSTEP] suffices h : ContDiffOn π•œ m (((fun p : H' Γ— E' => (I' p.fst, p.snd)) ∘ TotalSpace.toProd H' E') ∘ tangentMapWithin I I' f s ∘ (TotalSpace.toProd H E).symm ∘ fun p : E Γ— E => (I.symm p.fst, p.snd)) ((range I ∩ I.symm ⁻¹' s) Γ—Λ’ univ) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ m (↑(extChartAt (ModelWithCorners.tangent I') q) ∘ tangentMapWithin I I' f s ∘ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p))) ((extChartAt (ModelWithCorners.tangent I) p).target ∩ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p)) ⁻¹' (TotalSpace.proj ⁻¹' s ∩ tangentMapWithin I I' f s ⁻¹' (extChartAt (ModelWithCorners.tangent I') q).source)) [PROOFSTEP] convert h using 1 [GOAL] case h.e'_10 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ↑(extChartAt (ModelWithCorners.tangent I') q) ∘ tangentMapWithin I I' f s ∘ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p)) = ((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd) [PROOFSTEP] ext1 ⟨x, y⟩ [GOAL] case h.e'_10.h.mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) x y : E ⊒ (↑(extChartAt (ModelWithCorners.tangent I') q) ∘ tangentMapWithin I I' f s ∘ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p))) (x, y) = (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) (x, y) [PROOFSTEP] simp only [mfld_simps] [GOAL] case h.e'_10.h.mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x✝ : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) x y : E ⊒ (↑I' (↑(TotalSpace.toProd H' E') (tangentMapWithin I I' f s (↑(TotalSpace.toProd H E).symm (↑(LocalEquiv.symm (LocalEquiv.prod I.toLocalEquiv (LocalEquiv.refl E))) (x, y))))).fst, (↑(TotalSpace.toProd H' E') (tangentMapWithin I I' f s (↑(TotalSpace.toProd H E).symm (↑(LocalEquiv.symm (LocalEquiv.prod I.toLocalEquiv (LocalEquiv.refl E))) (x, y))))).snd) = (↑I' (f (↑(ModelWithCorners.symm I) x)), (tangentMapWithin I I' f s (↑(TotalSpace.toProd H E).symm (↑(ModelWithCorners.symm I) x, y))).snd) [PROOFSTEP] rfl [GOAL] case h.e'_11 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ (extChartAt (ModelWithCorners.tangent I) p).target ∩ ↑(LocalEquiv.symm (extChartAt (ModelWithCorners.tangent I) p)) ⁻¹' (TotalSpace.proj ⁻¹' s ∩ tangentMapWithin I I' f s ⁻¹' (extChartAt (ModelWithCorners.tangent I') q).source) = (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ [PROOFSTEP] simp only [mfld_simps] [GOAL] case h.e'_11 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ range ↑I Γ—Λ’ univ ∩ ↑(TotalSpace.toProd H E).symm ∘ ↑(LocalEquiv.symm (LocalEquiv.prod I.toLocalEquiv (LocalEquiv.refl E))) ⁻¹' (TotalSpace.proj ⁻¹' s) = (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ [PROOFSTEP] rw [inter_prod, prod_univ, prod_univ] [GOAL] case h.e'_11 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' h : ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ Prod.fst ⁻¹' range ↑I ∩ ↑(TotalSpace.toProd H E).symm ∘ ↑(LocalEquiv.symm (LocalEquiv.prod I.toLocalEquiv (LocalEquiv.refl E))) ⁻¹' (TotalSpace.proj ⁻¹' s) = Prod.fst ⁻¹' range ↑I ∩ Prod.fst ⁻¹' (↑(ModelWithCorners.symm I) ⁻¹' s) [PROOFSTEP] rfl [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' ⊒ ContDiffOn π•œ m (((fun p => (↑I' p.fst, p.snd)) ∘ ↑(TotalSpace.toProd H' E')) ∘ tangentMapWithin I I' f s ∘ ↑(TotalSpace.toProd H E).symm ∘ fun p => (↑(ModelWithCorners.symm I) p.fst, p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] change ContDiffOn π•œ m (fun p : E Γ— E => ((I' (f (I.symm p.fst)), (mfderivWithin I I' f s (I.symm p.fst) : E β†’ E') p.snd) : E' Γ— E')) ((range I ∩ I.symm ⁻¹' s) Γ—Λ’ univ) -- check that all bits in this formula are `C^n` [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' ⊒ ContDiffOn π•œ m (fun p => (↑I' (f (↑(ModelWithCorners.symm I) p.fst)), ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] have hf' := contMDiffOn_iff.1 hf [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) ⊒ ContDiffOn π•œ m (fun p => (↑I' (f (↑(ModelWithCorners.symm I) p.fst)), ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] have A : ContDiffOn π•œ m (I' ∘ f ∘ I.symm) (range I ∩ I.symm ⁻¹' s) := by simpa only [mfld_simps] using (hf'.2 (I.symm 0) (I'.symm 0)).of_le m_le_n [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) ⊒ ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) [PROOFSTEP] simpa only [mfld_simps] using (hf'.2 (I.symm 0) (I'.symm 0)).of_le m_le_n [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) ⊒ ContDiffOn π•œ m (fun p => (↑I' (f (↑(ModelWithCorners.symm I) p.fst)), ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] have B : ContDiffOn π•œ m ((I' ∘ f ∘ I.symm) ∘ Prod.fst) ((range I ∩ I.symm ⁻¹' s) Γ—Λ’ (univ : Set E)) := A.comp contDiff_fst.contDiffOn (prod_subset_preimage_fst _ _) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ m (fun p => (↑I' (f (↑(ModelWithCorners.symm I) p.fst)), ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] suffices C : ContDiffOn π•œ m (fun p : E Γ— E => (fderivWithin π•œ (I' ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I) p.1 : _) p.2) ((range I ∩ I.symm ⁻¹' s) Γ—Λ’ (univ : Set E)) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) C : ContDiffOn π•œ m (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ m (fun p => (↑I' (f (↑(ModelWithCorners.symm I) p.fst)), ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd)) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] refine ContDiffOn.prod B ?_ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) C : ContDiffOn π•œ m (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ m (fun p => ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] refine C.congr fun p hp => ?_ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p✝ : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) C : ContDiffOn π•œ m (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) p : E Γ— E hp : p ∈ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ ⊒ ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd = ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd [PROOFSTEP] simp only [mfld_simps] at hp [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p✝ : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) C : ContDiffOn π•œ m (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) p : E Γ— E hp : p.fst ∈ range ↑I ∧ ↑(ModelWithCorners.symm I) p.fst ∈ s ⊒ ↑(mfderivWithin I I' f s (↑(ModelWithCorners.symm I) p.fst)) p.snd = ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd [PROOFSTEP] simp only [mfderivWithin, hf.mdifferentiableOn one_le_n _ hp.2, hp.1, if_pos, mfld_simps] [GOAL] case C π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ m (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] have D : ContDiffOn π•œ m (fun x => fderivWithin π•œ (I' ∘ f ∘ I.symm) (I.symm ⁻¹' s ∩ range I) x) (range I ∩ I.symm ⁻¹' s) := by have : ContDiffOn π•œ n (I' ∘ f ∘ I.symm) (range I ∩ I.symm ⁻¹' s) := by simpa only [mfld_simps] using hf'.2 (I.symm 0) (I'.symm 0) simpa only [inter_comm] using this.fderivWithin U' hmn [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ m (fun x => fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) x) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) [PROOFSTEP] have : ContDiffOn π•œ n (I' ∘ f ∘ I.symm) (range I ∩ I.symm ⁻¹' s) := by simpa only [mfld_simps] using hf'.2 (I.symm 0) (I'.symm 0) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) ⊒ ContDiffOn π•œ n (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) [PROOFSTEP] simpa only [mfld_simps] using hf'.2 (I.symm 0) (I'.symm 0) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) this : ContDiffOn π•œ n (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) ⊒ ContDiffOn π•œ m (fun x => fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) x) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) [PROOFSTEP] simpa only [inter_comm] using this.fderivWithin U' hmn [GOAL] case C π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) D : ContDiffOn π•œ m (fun x => fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) x) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) ⊒ ContDiffOn π•œ m (fun p => ↑(fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) p.snd) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] refine ContDiffOn.clm_apply ?_ contDiffOn_snd [GOAL] case C π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f✝ f₁ : M β†’ M' s✝ s₁ t : Set M x : M m n : β„•βˆž f : H β†’ H' s : Set H hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s m_le_n : m ≀ n one_le_n : 1 ≀ n U' : UniqueDiffOn π•œ (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) p : TangentBundle I H q : TangentBundle I' H' hf' : ContinuousOn f s ∧ βˆ€ (x : H) (y : H'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) A : ContDiffOn π•œ m (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) B : ContDiffOn π•œ m ((↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) ∘ Prod.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) D : ContDiffOn π•œ m (fun x => fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) x) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) ⊒ ContDiffOn π•œ m (fun p => fderivWithin π•œ (↑I' ∘ f ∘ ↑(ModelWithCorners.symm I)) (↑(ModelWithCorners.symm I) ⁻¹' s ∩ range ↑I) p.fst) ((range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' s) Γ—Λ’ univ) [PROOFSTEP] exact D.comp contDiff_fst.contDiffOn (prod_subset_preimage_fst _ _) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] have one_le_n : 1 ≀ n := (le_add_left le_rfl).trans hmn [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s) [PROOFSTEP] refine' contMDiffOn_of_locally_contMDiffOn fun p hp => _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hp : p ∈ TotalSpace.proj ⁻¹' s ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] have hf' := contMDiffOn_iff.1 hf [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hp : p ∈ TotalSpace.proj ⁻¹' s hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] simp only [mfld_simps] at hp [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let l := chartAt H p.proj [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] set Dl := chartAt (ModelProd H E) p with hDl [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let r := chartAt H' (f p.proj) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let Dr := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let il := chartAt (ModelProd H E) (tangentMap I I l p) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let ir := chartAt (ModelProd H' E') (tangentMap I I' (r ∘ f) p) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let s' := f ⁻¹' r.source ∩ s ∩ l.source [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let s'_lift := Ο€ E(TangentSpace I) ⁻¹' s' [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let s'l := l.target ∩ l.symm ⁻¹' s' [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] let s'l_lift := Ο€ E(TangentSpace I) ⁻¹' s'l [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] rcases continuousOn_iff'.1 hf'.1 r.source r.open_source with ⟨o, o_open, ho⟩ [GOAL] case intro.intro π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] suffices h : ContMDiffOn I.tangent I'.tangent m (tangentMapWithin I I' f s) s'_lift [GOAL] case intro.intro π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ βˆƒ u, IsOpen u ∧ p ∈ u ∧ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ u) [PROOFSTEP] refine' βŸ¨Ο€ E(TangentSpace I) ⁻¹' (o ∩ l.source), _, _, _⟩ [GOAL] case intro.intro.refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ IsOpen (TotalSpace.proj ⁻¹' (o ∩ l.source)) case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ p ∈ TotalSpace.proj ⁻¹' (o ∩ l.source) case intro.intro.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source)) [PROOFSTEP] show IsOpen (Ο€ E(TangentSpace I) ⁻¹' (o ∩ l.source)) [GOAL] case intro.intro.refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ IsOpen (TotalSpace.proj ⁻¹' (o ∩ l.source)) case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ p ∈ TotalSpace.proj ⁻¹' (o ∩ l.source) case intro.intro.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source)) [PROOFSTEP] exact (IsOpen.inter o_open l.open_source).preimage (FiberBundle.continuous_proj E _) [GOAL] case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ p ∈ TotalSpace.proj ⁻¹' (o ∩ l.source) case intro.intro.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source)) [PROOFSTEP] show p ∈ Ο€ E(TangentSpace I) ⁻¹' (o ∩ l.source) [GOAL] case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ p ∈ TotalSpace.proj ⁻¹' (o ∩ l.source) [PROOFSTEP] simp [GOAL] case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ p.proj ∈ o [PROOFSTEP] have : p.proj ∈ f ⁻¹' r.source ∩ s := by simp [hp] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ p.proj ∈ f ⁻¹' r.source ∩ s [PROOFSTEP] simp [hp] [GOAL] case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift this : p.proj ∈ f ⁻¹' r.source ∩ s ⊒ p.proj ∈ o [PROOFSTEP] rw [ho] at this [GOAL] case intro.intro.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift this : p.proj ∈ o ∩ s ⊒ p.proj ∈ o [PROOFSTEP] exact this.1 [GOAL] case intro.intro.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source)) [PROOFSTEP] have : Ο€ E(TangentSpace I) ⁻¹' s ∩ Ο€ E(TangentSpace I) ⁻¹' (o ∩ l.source) = s'_lift := by dsimp only; rw [ho]; mfld_set_tac [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source) = s'_lift [PROOFSTEP] dsimp only [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ (chartAt H p.proj).toLocalEquiv.source) = TotalSpace.proj ⁻¹' (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) [PROOFSTEP] rw [ho] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift ⊒ TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ (chartAt H p.proj).toLocalEquiv.source) = TotalSpace.proj ⁻¹' (o ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) [PROOFSTEP] mfld_set_tac [GOAL] case intro.intro.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift this : TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source) = s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) (TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source)) [PROOFSTEP] rw [this] [GOAL] case intro.intro.refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s h : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift this : TotalSpace.proj ⁻¹' s ∩ TotalSpace.proj ⁻¹' (o ∩ l.source) = s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] exact h [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have U' : UniqueMDiffOn I s' := by apply UniqueMDiffOn.inter _ l.open_source rw [ho, inter_comm] exact hs.inter o_open [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s ⊒ UniqueMDiffOn I s' [PROOFSTEP] apply UniqueMDiffOn.inter _ l.open_source [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s ⊒ UniqueMDiffOn I (f ⁻¹' r.source ∩ s) [PROOFSTEP] rw [ho, inter_comm] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s ⊒ UniqueMDiffOn I (s ∩ o) [PROOFSTEP] exact hs.inter o_open [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have U'l : UniqueMDiffOn I s'l := U'.uniqueMDiffOn_preimage (mdifferentiable_chart _ _) [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_f : ContMDiffOn I I' n f s' := hf.mono (by mfld_set_tac) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l ⊒ s' βŠ† s [PROOFSTEP] mfld_set_tac [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_r : ContMDiffOn I' I' n r r.source := contMDiffOn_chart [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_rf : ContMDiffOn I I' n (r ∘ f) s' := by refine ContMDiffOn.comp diff_r diff_f fun x hx => ?_ simp only [mfld_simps] at hx ; simp only [hx, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source ⊒ ContMDiffOn I I' n (↑r ∘ f) s' [PROOFSTEP] refine ContMDiffOn.comp diff_r diff_f fun x hx => ?_ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source x : M hx : x ∈ s' ⊒ x ∈ f ⁻¹' r.source [PROOFSTEP] simp only [mfld_simps] at hx [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source x : M hx : (f x ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ x ∈ s) ∧ x ∈ (chartAt H p.proj).toLocalEquiv.source ⊒ x ∈ f ⁻¹' r.source [PROOFSTEP] simp only [hx, mfld_simps] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_l : ContMDiffOn I I n l.symm s'l := haveI A : ContMDiffOn I I n l.symm l.target := contMDiffOn_chart_symm A.mono (by mfld_set_tac) [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' A : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) l.target ⊒ s'l βŠ† l.target [PROOFSTEP] mfld_set_tac [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_rfl : ContMDiffOn I I' n (r ∘ f ∘ l.symm) s'l := by apply ContMDiffOn.comp diff_rf diff_l mfld_set_tac [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l ⊒ ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l [PROOFSTEP] apply ContMDiffOn.comp diff_rf diff_l [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l ⊒ s'l βŠ† ↑(LocalHomeomorph.symm l) ⁻¹' s' [PROOFSTEP] mfld_set_tac [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_rfl_lift : ContMDiffOn I.tangent I'.tangent m (tangentMapWithin I I' (r ∘ f ∘ l.symm) s'l) s'l_lift := diff_rfl.contMDiffOn_tangentMapWithin_aux hmn U'l [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_irrfl_lift : ContMDiffOn I.tangent I'.tangent m (ir ∘ tangentMapWithin I I' (r ∘ f ∘ l.symm) s'l) s'l_lift := haveI A : ContMDiffOn I'.tangent I'.tangent m ir ir.source := contMDiffOn_chart ContMDiffOn.comp A diff_rfl_lift fun p _ => by simp only [mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I') (ModelWithCorners.tangent I') m (↑ir) ir.source p : TangentBundle I H x✝ : p ∈ s'l_lift ⊒ p ∈ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ⁻¹' ir.source [PROOFSTEP] simp only [mfld_simps] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_Drirrfl_lift : ContMDiffOn I.tangent I'.tangent m (Dr.symm ∘ ir ∘ tangentMapWithin I I' (r ∘ f ∘ l.symm) s'l) s'l_lift := by have A : ContMDiffOn I'.tangent I'.tangent m Dr.symm Dr.target := contMDiffOn_chart_symm refine ContMDiffOn.comp A diff_irrfl_lift fun p hp => ?_ simp only [mfld_simps] at hp rw [mem_preimage, TangentBundle.mem_chart_target_iff] simp only [hp, mfld_simps] -- conclusion of this step: the composition of all the maps above is smooth [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift [PROOFSTEP] have A : ContMDiffOn I'.tangent I'.tangent m Dr.symm Dr.target := contMDiffOn_chart_symm [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I') (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr)) Dr.target ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift [PROOFSTEP] refine ContMDiffOn.comp A diff_irrfl_lift fun p hp => ?_ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I') (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr)) Dr.target p : TangentBundle I H hp : p ∈ s'l_lift ⊒ p ∈ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ⁻¹' Dr.target [PROOFSTEP] simp only [mfld_simps] at hp [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I') (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr)) Dr.target p : TangentBundle I H hp : p.proj ∈ (chartAt H p✝.proj).toLocalEquiv.target ∧ (f (↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p.proj) ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ ↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p.proj ∈ s) ∧ ↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p.proj ∈ (chartAt H p✝.proj).toLocalEquiv.source ⊒ p ∈ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ⁻¹' Dr.target [PROOFSTEP] rw [mem_preimage, TangentBundle.mem_chart_target_iff] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I') (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr)) Dr.target p : TangentBundle I H hp : p.proj ∈ (chartAt H p✝.proj).toLocalEquiv.target ∧ (f (↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p.proj) ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ ↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p.proj ∈ s) ∧ ↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p.proj ∈ (chartAt H p✝.proj).toLocalEquiv.source ⊒ ((↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) p).fst ∈ (chartAt H' (tangentMapWithin I I' f s p✝).proj).toLocalEquiv.target [PROOFSTEP] simp only [hp, mfld_simps] -- conclusion of this step: the composition of all the maps above is smooth [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have diff_DrirrflilDl : ContMDiffOn I.tangent I'.tangent m (Dr.symm ∘ (ir ∘ tangentMapWithin I I' (r ∘ f ∘ l.symm) s'l) ∘ il.symm ∘ Dl) s'_lift := by have A : ContMDiffOn I.tangent I.tangent m Dl Dl.source := contMDiffOn_chart have A' : ContMDiffOn I.tangent I.tangent m Dl s'_lift := by refine A.mono fun p hp => ?_ simp only [mfld_simps] at hp simp only [hp, mfld_simps] have B : ContMDiffOn I.tangent I.tangent m il.symm il.target := contMDiffOn_chart_symm have C : ContMDiffOn I.tangent I.tangent m (il.symm ∘ Dl) s'_lift := ContMDiffOn.comp B A' fun p _ => by simp only [mfld_simps] refine diff_Drirrfl_lift.comp C fun p hp => ?_ simp only [mfld_simps] at hp simp only [hp, TotalSpace.proj, mfld_simps] /- Third step: check that the composition of all the maps indeed coincides with the derivative we are looking for -/ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift [PROOFSTEP] have A : ContMDiffOn I.tangent I.tangent m Dl Dl.source := contMDiffOn_chart [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift [PROOFSTEP] have A' : ContMDiffOn I.tangent I.tangent m Dl s'_lift := by refine A.mono fun p hp => ?_ simp only [mfld_simps] at hp simp only [hp, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift [PROOFSTEP] refine A.mono fun p hp => ?_ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source p : TangentBundle I M hp : p ∈ s'_lift ⊒ p ∈ Dl.source [PROOFSTEP] simp only [mfld_simps] at hp [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source p : TangentBundle I M hp : (f p.proj ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ p.proj ∈ s) ∧ p.proj ∈ (chartAt H p✝.proj).toLocalEquiv.source ⊒ p ∈ Dl.source [PROOFSTEP] simp only [hp, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source A' : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift [PROOFSTEP] have B : ContMDiffOn I.tangent I.tangent m il.symm il.target := contMDiffOn_chart_symm [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source A' : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift B : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il)) il.target ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift [PROOFSTEP] have C : ContMDiffOn I.tangent I.tangent m (il.symm ∘ Dl) s'_lift := ContMDiffOn.comp B A' fun p _ => by simp only [mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source A' : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift B : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il)) il.target p : TangentBundle I M x✝ : p ∈ s'_lift ⊒ p ∈ ↑Dl ⁻¹' il.target [PROOFSTEP] simp only [mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source A' : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift B : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il)) il.target C : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift [PROOFSTEP] refine diff_Drirrfl_lift.comp C fun p hp => ?_ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source A' : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift B : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il)) il.target C : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift p : TangentBundle I M hp : p ∈ s'_lift ⊒ p ∈ (fun x => (↑(LocalHomeomorph.symm il) ∘ ↑Dl) x) ⁻¹' s'l_lift [PROOFSTEP] simp only [mfld_simps] at hp [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift A : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) Dl.source A' : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑Dl) s'_lift B : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il)) il.target C : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I) m (↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift p : TangentBundle I M hp : (f p.proj ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ p.proj ∈ s) ∧ p.proj ∈ (chartAt H p✝.proj).toLocalEquiv.source ⊒ p ∈ (fun x => (↑(LocalHomeomorph.symm il) ∘ ↑Dl) x) ⁻¹' s'l_lift [PROOFSTEP] simp only [hp, TotalSpace.proj, mfld_simps] /- Third step: check that the composition of all the maps indeed coincides with the derivative we are looking for -/ [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] have eq_comp : βˆ€ q ∈ s'_lift, tangentMapWithin I I' f s q = (Dr.symm ∘ ir ∘ tangentMapWithin I I' (r ∘ f ∘ l.symm) s'l ∘ il.symm ∘ Dl) q := by intro q hq simp only [mfld_simps] at hq have U'q : UniqueMDiffWithinAt I s' q.1 := by apply U'; simp only [hq, mfld_simps] have U'lq : UniqueMDiffWithinAt I s'l (Dl q).1 := by apply U'l; simp only [hq, mfld_simps] have A : tangentMapWithin I I' ((r ∘ f) ∘ l.symm) s'l (il.symm (Dl q)) = tangentMapWithin I I' (r ∘ f) s' (tangentMapWithin I I l.symm s'l (il.symm (Dl q))) := by refine' tangentMapWithin_comp_at (il.symm (Dl q)) _ _ (fun p hp => _) U'lq Β· apply diff_rf.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· apply diff_l.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· simp only [mfld_simps] at hp ; simp only [hp, mfld_simps] have B : tangentMapWithin I I l.symm s'l (il.symm (Dl q)) = q := by have : tangentMapWithin I I l.symm s'l (il.symm (Dl q)) = tangentMap I I l.symm (il.symm (Dl q)) Β· refine' tangentMapWithin_eq_tangentMap U'lq _ -- Porting note: the arguments below were underscores. refine' mdifferentiableAt_atlas_symm I (chart_mem_atlas H (TotalSpace.proj p)) _ simp only [hq, mfld_simps] rw [this, tangentMap_chart_symm, hDl] Β· simp only [hq, mfld_simps] have : q ∈ (chartAt (ModelProd H E) p).source := by simp only [hq, mfld_simps] exact (chartAt (ModelProd H E) p).left_inv this Β· simp only [hq, mfld_simps] have C : tangentMapWithin I I' (r ∘ f) s' q = tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q) := by refine' tangentMapWithin_comp_at q _ _ (fun r hr => _) U'q Β· apply diff_r.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· apply diff_f.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· simp only [mfld_simps] at hr simp only [hr, mfld_simps] have D : Dr.symm (ir (tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q := by have A : tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' r (tangentMapWithin I I' f s' q) := by apply tangentMapWithin_eq_tangentMap Β· apply IsOpen.uniqueMDiffWithinAt _ r.open_source; simp [hq] Β· exact mdifferentiableAt_atlas I' (chart_mem_atlas H' (f p.proj)) hq.1.1 have : f p.proj = (tangentMapWithin I I' f s p).1 := rfl rw [A] dsimp rw [this, tangentMap_chart] Β· simp only [hq, mfld_simps] have : tangentMapWithin I I' f s' q ∈ (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).source := by simp only [hq, mfld_simps] exact (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).left_inv this Β· simp only [hq, mfld_simps] have E : tangentMapWithin I I' f s' q = tangentMapWithin I I' f s q := by refine' tangentMapWithin_subset (by mfld_set_tac) U'q _ apply hf.mdifferentiableOn one_le_n simp only [hq, mfld_simps] dsimp only [(Β· ∘ Β·)] at A B C D E ⊒ simp only [A, B, C, D, ← E] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift ⊒ βˆ€ (q : TotalSpace E (TangentSpace I)), q ∈ s'_lift β†’ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] intro q hq [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : q ∈ s'_lift ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] simp only [mfld_simps] at hq [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have U'q : UniqueMDiffWithinAt I s' q.1 := by apply U'; simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source ⊒ UniqueMDiffWithinAt I s' q.proj [PROOFSTEP] apply U' [GOAL] case a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source ⊒ q.proj ∈ s' [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have U'lq : UniqueMDiffWithinAt I s'l (Dl q).1 := by apply U'l; simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj ⊒ UniqueMDiffWithinAt I s'l (↑Dl q).fst [PROOFSTEP] apply U'l [GOAL] case a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj ⊒ (↑Dl q).fst ∈ s'l [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have A : tangentMapWithin I I' ((r ∘ f) ∘ l.symm) s'l (il.symm (Dl q)) = tangentMapWithin I I' (r ∘ f) s' (tangentMapWithin I I l.symm s'l (il.symm (Dl q))) := by refine' tangentMapWithin_comp_at (il.symm (Dl q)) _ _ (fun p hp => _) U'lq Β· apply diff_rf.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· apply diff_l.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· simp only [mfld_simps] at hp ; simp only [hp, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst ⊒ tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) [PROOFSTEP] refine' tangentMapWithin_comp_at (il.symm (Dl q)) _ _ (fun p hp => _) U'lq [GOAL] case refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst ⊒ MDifferentiableWithinAt I I' (↑r ∘ f) s' (↑(LocalHomeomorph.symm l) (↑(LocalHomeomorph.symm il) (↑Dl q)).proj) [PROOFSTEP] apply diff_rf.mdifferentiableOn one_le_n [GOAL] case refine'_1.a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst ⊒ ↑(LocalHomeomorph.symm l) (↑(LocalHomeomorph.symm il) (↑Dl q)).proj ∈ s' [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] case refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst ⊒ MDifferentiableWithinAt I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)).proj [PROOFSTEP] apply diff_l.mdifferentiableOn one_le_n [GOAL] case refine'_2.a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst ⊒ (↑(LocalHomeomorph.symm il) (↑Dl q)).proj ∈ s'l [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] case refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p✝.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst p : H hp : p ∈ s'l ⊒ p ∈ ↑(LocalHomeomorph.symm l) ⁻¹' s' [PROOFSTEP] simp only [mfld_simps] at hp [GOAL] case refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p✝ : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp✝ : p✝.proj ∈ s l : LocalHomeomorph M H := chartAt H p✝.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p✝ hDl : Dl = chartAt (ModelProd H E) p✝ r : LocalHomeomorph M' H' := chartAt H' (f p✝.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p✝) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p✝) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p✝) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p✝.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst p : H hp : p ∈ (chartAt H p✝.proj).toLocalEquiv.target ∧ (f (↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p) ∈ (chartAt H' (f p✝.proj)).toLocalEquiv.source ∧ ↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p ∈ s) ∧ ↑(LocalHomeomorph.symm (chartAt H p✝.proj)) p ∈ (chartAt H p✝.proj).toLocalEquiv.source ⊒ p ∈ ↑(LocalHomeomorph.symm l) ⁻¹' s' [PROOFSTEP] simp only [hp, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have B : tangentMapWithin I I l.symm s'l (il.symm (Dl q)) = q := by have : tangentMapWithin I I l.symm s'l (il.symm (Dl q)) = tangentMap I I l.symm (il.symm (Dl q)) Β· refine' tangentMapWithin_eq_tangentMap U'lq _ -- Porting note: the arguments below were underscores. refine' mdifferentiableAt_atlas_symm I (chart_mem_atlas H (TotalSpace.proj p)) _ simp only [hq, mfld_simps] rw [this, tangentMap_chart_symm, hDl] Β· simp only [hq, mfld_simps] have : q ∈ (chartAt (ModelProd H E) p).source := by simp only [hq, mfld_simps] exact (chartAt (ModelProd H E) p).left_inv this Β· simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) ⊒ tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q [PROOFSTEP] have : tangentMapWithin I I l.symm s'l (il.symm (Dl q)) = tangentMap I I l.symm (il.symm (Dl q)) [GOAL] case this π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) ⊒ tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) [PROOFSTEP] refine' tangentMapWithin_eq_tangentMap U'lq _ -- Porting note: the arguments below were underscores. [GOAL] case this π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) ⊒ MDifferentiableAt I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)).proj [PROOFSTEP] refine' mdifferentiableAt_atlas_symm I (chart_mem_atlas H (TotalSpace.proj p)) _ [GOAL] case this π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) ⊒ (↑(LocalHomeomorph.symm il) (↑Dl q)).proj ∈ (chartAt H p.proj).toLocalEquiv.target [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) this : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) ⊒ tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q [PROOFSTEP] rw [this, tangentMap_chart_symm, hDl] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) this : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H E) p)) (↑(TotalSpace.toProd H E) (↑(LocalHomeomorph.symm il) (↑(chartAt (ModelProd H E) p) q))) = q [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) this : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H E) p)) (↑(chartAt H p.proj) q.proj, (↑(chartAt (ModelProd H E) p) q).snd) = q [PROOFSTEP] have : q ∈ (chartAt (ModelProd H E) p).source := by simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) this : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) ⊒ q ∈ (chartAt (ModelProd H E) p).toLocalEquiv.source [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) this✝ : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) this : q ∈ (chartAt (ModelProd H E) p).toLocalEquiv.source ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H E) p)) (↑(chartAt H p.proj) q.proj, (↑(chartAt (ModelProd H E) p) q).snd) = q [PROOFSTEP] exact (chartAt (ModelProd H E) p).left_inv this [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) this : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMap I I (↑(LocalHomeomorph.symm l)) (↑(LocalHomeomorph.symm il) (↑Dl q)) ⊒ (↑(LocalHomeomorph.symm il) (↑Dl q)).proj ∈ (chartAt H p.proj).toLocalEquiv.target [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have C : tangentMapWithin I I' (r ∘ f) s' q = tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q) := by refine' tangentMapWithin_comp_at q _ _ (fun r hr => _) U'q Β· apply diff_r.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· apply diff_f.mdifferentiableOn one_le_n simp only [hq, mfld_simps] Β· simp only [mfld_simps] at hr simp only [hr, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q ⊒ tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) [PROOFSTEP] refine' tangentMapWithin_comp_at q _ _ (fun r hr => _) U'q [GOAL] case refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q ⊒ MDifferentiableWithinAt I' I' (↑r) r.source (f q.proj) [PROOFSTEP] apply diff_r.mdifferentiableOn one_le_n [GOAL] case refine'_1.a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q ⊒ f q.proj ∈ r.source [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] case refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q ⊒ MDifferentiableWithinAt I I' f s' q.proj [PROOFSTEP] apply diff_f.mdifferentiableOn one_le_n [GOAL] case refine'_2.a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q ⊒ q.proj ∈ s' [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] case refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r✝ : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r✝ ∘ f) p) s' : Set M := f ⁻¹' r✝.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r✝.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r✝) r✝.source diff_rf : ContMDiffOn I I' n (↑r✝ ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r✝ ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r✝ ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q r : M hr : r ∈ s' ⊒ r ∈ f ⁻¹' r✝.source [PROOFSTEP] simp only [mfld_simps] at hr [GOAL] case refine'_3 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r✝ : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r✝ ∘ f) p) s' : Set M := f ⁻¹' r✝.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r✝.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r✝) r✝.source diff_rf : ContMDiffOn I I' n (↑r✝ ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r✝ ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r✝ ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r✝ ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q r : M hr : (f r ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ r ∈ s) ∧ r ∈ (chartAt H p.proj).toLocalEquiv.source ⊒ r ∈ f ⁻¹' r✝.source [PROOFSTEP] simp only [hr, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have D : Dr.symm (ir (tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q := by have A : tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' r (tangentMapWithin I I' f s' q) := by apply tangentMapWithin_eq_tangentMap Β· apply IsOpen.uniqueMDiffWithinAt _ r.open_source; simp [hq] Β· exact mdifferentiableAt_atlas I' (chart_mem_atlas H' (f p.proj)) hq.1.1 have : f p.proj = (tangentMapWithin I I' f s p).1 := rfl rw [A] dsimp rw [this, tangentMap_chart] Β· simp only [hq, mfld_simps] have : tangentMapWithin I I' f s' q ∈ (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).source := by simp only [hq, mfld_simps] exact (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).left_inv this Β· simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) ⊒ ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q [PROOFSTEP] have A : tangentMapWithin I' I' r r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' r (tangentMapWithin I I' f s' q) := by apply tangentMapWithin_eq_tangentMap Β· apply IsOpen.uniqueMDiffWithinAt _ r.open_source; simp [hq] Β· exact mdifferentiableAt_atlas I' (chart_mem_atlas H' (f p.proj)) hq.1.1 [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) ⊒ tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) [PROOFSTEP] apply tangentMapWithin_eq_tangentMap [GOAL] case hs π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) ⊒ UniqueMDiffWithinAt I' r.source (tangentMapWithin I I' f s' q).proj [PROOFSTEP] apply IsOpen.uniqueMDiffWithinAt _ r.open_source [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) ⊒ (tangentMapWithin I I' f s' q).proj ∈ r.source [PROOFSTEP] simp [hq] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) ⊒ MDifferentiableAt I' I' (↑r) (tangentMapWithin I I' f s' q).proj [PROOFSTEP] exact mdifferentiableAt_atlas I' (chart_mem_atlas H' (f p.proj)) hq.1.1 [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) ⊒ ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q [PROOFSTEP] have : f p.proj = (tangentMapWithin I I' f s p).1 := rfl [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q [PROOFSTEP] rw [A] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q [PROOFSTEP] dsimp [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p))) (↑(chartAt (ModelProd H' E') (tangentMap I I' (↑(chartAt H' (f p.proj)) ∘ f) p)) (tangentMap I' I' (↑(chartAt H' (f p.proj))) (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q))) = tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q [PROOFSTEP] rw [this, tangentMap_chart] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p))) (↑(chartAt (ModelProd H' E') (tangentMap I I' (↑(chartAt H' (tangentMapWithin I I' f s p).proj) ∘ f) p)) (↑(TotalSpace.toProd H' E').symm (↑(chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)) (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (tangentMapWithin I I' f s p).proj).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q)))) = tangentMapWithin I I' f (f ⁻¹' (chartAt H' (tangentMapWithin I I' f s p).proj).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p))) (↑(chartAt H' (f p.proj)) (f q.proj), (↑(chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)) (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q)).snd) = tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q [PROOFSTEP] have : tangentMapWithin I I' f s' q ∈ (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).source := by simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ tangentMapWithin I I' f s' q ∈ (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).toLocalEquiv.source [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this✝ : f p.proj = (tangentMapWithin I I' f s p).proj this : tangentMapWithin I I' f s' q ∈ (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).toLocalEquiv.source ⊒ ↑(LocalHomeomorph.symm (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p))) (↑(chartAt H' (f p.proj)) (f q.proj), (↑(chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)) (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q)).snd) = tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q [PROOFSTEP] exact (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p)).left_inv this [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A✝ : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) A : tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) = tangentMap I' I' (↑r) (tangentMapWithin I I' f s' q) this : f p.proj = (tangentMapWithin I I' f s p).proj ⊒ (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (tangentMapWithin I I' f s p).proj).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q).proj ∈ (chartAt H' (tangentMapWithin I I' f s p).proj).toLocalEquiv.source [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) D : ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] have E : tangentMapWithin I I' f s' q = tangentMapWithin I I' f s q := by refine' tangentMapWithin_subset (by mfld_set_tac) U'q _ apply hf.mdifferentiableOn one_le_n simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) D : ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q ⊒ tangentMapWithin I I' f s' q = tangentMapWithin I I' f s q [PROOFSTEP] refine' tangentMapWithin_subset (by mfld_set_tac) U'q _ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) D : ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q ⊒ s' βŠ† s [PROOFSTEP] mfld_set_tac [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) D : ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q ⊒ MDifferentiableWithinAt I I' f s q.proj [PROOFSTEP] apply hf.mdifferentiableOn one_le_n [GOAL] case a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) D : ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q ⊒ q.proj ∈ s [PROOFSTEP] simp only [hq, mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E✝ : Type u_2 inst✝²³ : NormedAddCommGroup E✝ inst✝²² : NormedSpace π•œ E✝ H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E✝ H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E✝) := chartAt (ModelProd H E✝) p hDl : Dl = chartAt (ModelProd H E✝) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E✝) := chartAt (ModelProd H E✝) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E✝ (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E✝ (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E✝ (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' ((↑r ∘ f) ∘ ↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = tangentMapWithin I I' (↑r ∘ f) s' (tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm l)) s'l (↑(LocalHomeomorph.symm il) (↑Dl q)) = q C : tangentMapWithin I I' (↑r ∘ f) s' q = tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q) D : ↑(LocalHomeomorph.symm Dr) (↑ir (tangentMapWithin I' I' (↑r) r.source (tangentMapWithin I I' f s' q))) = tangentMapWithin I I' f s' q E : tangentMapWithin I I' f s' q = tangentMapWithin I I' f s q ⊒ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q [PROOFSTEP] dsimp only [(Β· ∘ Β·)] at A B C D E ⊒ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E✝ : Type u_2 inst✝²³ : NormedAddCommGroup E✝ inst✝²² : NormedSpace π•œ E✝ H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E✝ H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E✝) := chartAt (ModelProd H E✝) p hDl : Dl = chartAt (ModelProd H E✝) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E✝) := chartAt (ModelProd H E✝) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E✝ (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E✝ (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift q : TotalSpace E✝ (TangentSpace I) hq : (f q.proj ∈ (chartAt H' (f p.proj)).toLocalEquiv.source ∧ q.proj ∈ s) ∧ q.proj ∈ (chartAt H p.proj).toLocalEquiv.source U'q : UniqueMDiffWithinAt I s' q.proj U'lq : UniqueMDiffWithinAt I s'l (↑Dl q).fst A : tangentMapWithin I I' (fun x => ↑(chartAt H' (f p.proj)) (f (↑(LocalHomeomorph.symm (chartAt H p.proj)) x))) ((chartAt H p.proj).toLocalEquiv.target ∩ ↑(LocalHomeomorph.symm (chartAt H p.proj)) ⁻¹' (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source)) (↑(LocalHomeomorph.symm (chartAt (ModelProd H E✝) (tangentMap I I (↑(chartAt H p.proj)) p))) (↑(chartAt (ModelProd H E✝) p) q)) = tangentMapWithin I I' (fun x => ↑(chartAt H' (f p.proj)) (f x)) (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) (tangentMapWithin I I (↑(LocalHomeomorph.symm (chartAt H p.proj))) ((chartAt H p.proj).toLocalEquiv.target ∩ ↑(LocalHomeomorph.symm (chartAt H p.proj)) ⁻¹' (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source)) (↑(LocalHomeomorph.symm (chartAt (ModelProd H E✝) (tangentMap I I (↑(chartAt H p.proj)) p))) (↑(chartAt (ModelProd H E✝) p) q))) B : tangentMapWithin I I (↑(LocalHomeomorph.symm (chartAt H p.proj))) ((chartAt H p.proj).toLocalEquiv.target ∩ ↑(LocalHomeomorph.symm (chartAt H p.proj)) ⁻¹' (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source)) (↑(LocalHomeomorph.symm (chartAt (ModelProd H E✝) (tangentMap I I (↑(chartAt H p.proj)) p))) (↑(chartAt (ModelProd H E✝) p) q)) = q C : tangentMapWithin I I' (fun x => ↑(chartAt H' (f p.proj)) (f x)) (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q = tangentMapWithin I' I' (↑(chartAt H' (f p.proj))) (chartAt H' (f p.proj)).toLocalEquiv.source (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q) D : ↑(LocalHomeomorph.symm (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p))) (↑(chartAt (ModelProd H' E') (tangentMap I I' (fun x => ↑(chartAt H' (f p.proj)) (f x)) p)) (tangentMapWithin I' I' (↑(chartAt H' (f p.proj))) (chartAt H' (f p.proj)).toLocalEquiv.source (tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q))) = tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q E : tangentMapWithin I I' f (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source) q = tangentMapWithin I I' f s q ⊒ tangentMapWithin I I' f s q = ↑(LocalHomeomorph.symm (chartAt (ModelProd H' E') (tangentMapWithin I I' f s p))) (↑(chartAt (ModelProd H' E') (tangentMap I I' (fun x => ↑(chartAt H' (f p.proj)) (f x)) p)) (tangentMapWithin I I' (fun x => ↑(chartAt H' (f p.proj)) (f (↑(LocalHomeomorph.symm (chartAt H p.proj)) x))) ((chartAt H p.proj).toLocalEquiv.target ∩ ↑(LocalHomeomorph.symm (chartAt H p.proj)) ⁻¹' (f ⁻¹' (chartAt H' (f p.proj)).toLocalEquiv.source ∩ s ∩ (chartAt H p.proj).toLocalEquiv.source)) (↑(LocalHomeomorph.symm (chartAt (ModelProd H E✝) (tangentMap I I (↑(chartAt H p.proj)) p))) (↑(chartAt (ModelProd H E✝) p) q)))) [PROOFSTEP] simp only [A, B, C, D, ← E] [GOAL] case h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f s hmn : m + 1 ≀ n hs : UniqueMDiffOn I s one_le_n : 1 ≀ n p : TangentBundle I M hf' : ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(LocalEquiv.symm (extChartAt I x))) ((extChartAt I x).target ∩ ↑(LocalEquiv.symm (extChartAt I x)) ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) hp : p.proj ∈ s l : LocalHomeomorph M H := chartAt H p.proj Dl : LocalHomeomorph (TangentBundle I M) (ModelProd H E) := chartAt (ModelProd H E) p hDl : Dl = chartAt (ModelProd H E) p r : LocalHomeomorph M' H' := chartAt H' (f p.proj) Dr : LocalHomeomorph (TangentBundle I' M') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMapWithin I I' f s p) il : LocalHomeomorph (TangentBundle I H) (ModelProd H E) := chartAt (ModelProd H E) (tangentMap I I (↑l) p) ir : LocalHomeomorph (TangentBundle I' H') (ModelProd H' E') := chartAt (ModelProd H' E') (tangentMap I I' (↑r ∘ f) p) s' : Set M := f ⁻¹' r.source ∩ s ∩ l.source s'_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s' s'l : Set H := l.target ∩ ↑(LocalHomeomorph.symm l) ⁻¹' s' s'l_lift : Set (TotalSpace E (TangentSpace I)) := TotalSpace.proj ⁻¹' s'l o : Set M o_open : IsOpen o ho : f ⁻¹' r.source ∩ s = o ∩ s U' : UniqueMDiffOn I s' U'l : UniqueMDiffOn I s'l diff_f : ContMDiffOn I I' n f s' diff_r : ContMDiffOn I' I' n (↑r) r.source diff_rf : ContMDiffOn I I' n (↑r ∘ f) s' diff_l : ContMDiffOn I I n (↑(LocalHomeomorph.symm l)) s'l diff_rfl : ContMDiffOn I I' n (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l diff_rfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_irrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_Drirrfl_lift : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) s'l_lift diff_DrirrflilDl : ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (↑(LocalHomeomorph.symm Dr) ∘ (↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l) ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) s'_lift eq_comp : βˆ€ (q : TotalSpace E (TangentSpace I)), q ∈ s'_lift β†’ tangentMapWithin I I' f s q = (↑(LocalHomeomorph.symm Dr) ∘ ↑ir ∘ tangentMapWithin I I' (↑r ∘ f ∘ ↑(LocalHomeomorph.symm l)) s'l ∘ ↑(LocalHomeomorph.symm il) ∘ ↑Dl) q ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMapWithin I I' f s) s'_lift [PROOFSTEP] exact diff_DrirrflilDl.congr eq_comp [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiff I I' n f hmn : m + 1 ≀ n ⊒ ContMDiff (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMap I I' f) [PROOFSTEP] rw [← contMDiffOn_univ] at hf ⊒ [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f univ hmn : m + 1 ≀ n ⊒ ContMDiffOn (ModelWithCorners.tangent I) (ModelWithCorners.tangent I') m (tangentMap I I' f) univ [PROOFSTEP] convert hf.contMDiffOn_tangentMapWithin hmn uniqueMDiffOn_univ [GOAL] case h.e'_22 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f univ hmn : m + 1 ≀ n ⊒ tangentMap I I' f = tangentMapWithin I I' f univ [PROOFSTEP] rw [tangentMapWithin_univ] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiff I I' n f hmn : 1 ≀ n ⊒ Continuous (tangentMap I I' f) [PROOFSTEP] rw [← contMDiffOn_univ] at hf [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f univ hmn : 1 ≀ n ⊒ Continuous (tangentMap I I' f) [PROOFSTEP] rw [continuous_iff_continuousOn_univ] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f univ hmn : 1 ≀ n ⊒ ContinuousOn (tangentMap I I' f) univ [PROOFSTEP] convert hf.continuousOn_tangentMapWithin hmn uniqueMDiffOn_univ [GOAL] case h.e'_5 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž hf : ContMDiffOn I I' n f univ hmn : 1 ≀ n ⊒ tangentMap I I' f = tangentMapWithin I I' f univ [PROOFSTEP] rw [tangentMapWithin_univ] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x : M m n : β„•βˆž p : TangentBundle I M ⊒ tangentMap I (ModelWithCorners.tangent I) (zeroSection E (TangentSpace I)) p = { proj := { proj := p.proj, snd := 0 }, snd := (p.snd, 0) } [PROOFSTEP] rcases p with ⟨x, v⟩ [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x ⊒ tangentMap I (ModelWithCorners.tangent I) (zeroSection E (TangentSpace I)) { proj := x, snd := v } = { proj := { proj := { proj := x, snd := v }.proj, snd := 0 }, snd := ({ proj := x, snd := v }.snd, 0) } [PROOFSTEP] have N : I.symm ⁻¹' (chartAt H x).target ∈ 𝓝 (I ((chartAt H x) x)) := by apply IsOpen.mem_nhds apply (LocalHomeomorph.open_target _).preimage I.continuous_invFun simp only [mfld_simps] [GOAL] π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x ⊒ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) [PROOFSTEP] apply IsOpen.mem_nhds [GOAL] case hs π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x ⊒ IsOpen (↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) case ha π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x ⊒ ↑I (↑(chartAt H x) x) ∈ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target [PROOFSTEP] apply (LocalHomeomorph.open_target _).preimage I.continuous_invFun [GOAL] case ha π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N : Type u_10 inst✝¹⁰ : TopologicalSpace N inst✝⁹ : ChartedSpace G N Js : SmoothManifoldWithCorners J N F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x ⊒ ↑I (↑(chartAt H x) x) ∈ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target [PROOFSTEP] simp only [mfld_simps] [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) ⊒ tangentMap I (ModelWithCorners.tangent I) (zeroSection E (TangentSpace I)) { proj := x, snd := v } = { proj := { proj := { proj := x, snd := v }.proj, snd := 0 }, snd := ({ proj := x, snd := v }.snd, 0) } [PROOFSTEP] have A : MDifferentiableAt I I.tangent (fun x => @TotalSpace.mk M E (TangentSpace I) x 0) x := haveI : Smooth I (I.prod π“˜(π•œ, E)) (zeroSection E (TangentSpace I : M β†’ Type _)) := Bundle.smooth_zeroSection π•œ (TangentSpace I : M β†’ Type _) this.mdifferentiableAt [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ tangentMap I (ModelWithCorners.tangent I) (zeroSection E (TangentSpace I)) { proj := x, snd := v } = { proj := { proj := { proj := x, snd := v }.proj, snd := 0 }, snd := ({ proj := x, snd := v }.snd, 0) } [PROOFSTEP] have B : fderivWithin π•œ (fun x' : E => (x', (0 : E))) (Set.range I) (I ((chartAt H x) x)) v = (v, 0) [GOAL] case B π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I) (↑I (↑(chartAt H x) x))) v = (v, 0) [PROOFSTEP] rw [fderivWithin_eq_fderiv, DifferentiableAt.fderiv_prod] [GOAL] case B π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ ↑(ContinuousLinearMap.prod (fderiv π•œ (fun x' => x') (↑I (↑(chartAt H x) x))) (fderiv π•œ (fun x' => 0) (↑I (↑(chartAt H x) x)))) v = (v, 0) [PROOFSTEP] simp [GOAL] case B.hf₁ π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ DifferentiableAt π•œ (fun x' => x') (↑I (↑(chartAt H x) x)) [PROOFSTEP] exact differentiableAt_id' [GOAL] case B.hfβ‚‚ π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ DifferentiableAt π•œ (fun x' => 0) (↑I (↑(chartAt H x) x)) [PROOFSTEP] exact differentiableAt_const _ [GOAL] case B.hs π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ UniqueDiffWithinAt π•œ (range ↑I) (↑I (↑(chartAt H x) x)) [PROOFSTEP] exact ModelWithCorners.unique_diff_at_image I [GOAL] case B.h π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x ⊒ DifferentiableAt π•œ (fun x' => (x', 0)) (↑I (↑(chartAt H x) x)) [PROOFSTEP] exact differentiableAt_id'.prod (differentiableAt_const _) [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I) (↑I (↑(chartAt H x) x))) v = (v, 0) ⊒ tangentMap I (ModelWithCorners.tangent I) (zeroSection E (TangentSpace I)) { proj := x, snd := v } = { proj := { proj := { proj := x, snd := v }.proj, snd := 0 }, snd := ({ proj := x, snd := v }.snd, 0) } [PROOFSTEP] simp only [Bundle.zeroSection, tangentMap, mfderiv, A, if_pos, chartAt, FiberBundle.chartedSpace_chartAt, TangentBundle.trivializationAt_apply, tangentBundleCore, Function.comp, ContinuousLinearMap.map_zero, mfld_simps] [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I) (↑I (↑(chartAt H x) x))) v = (v, 0) ⊒ ↑(fderivWithin π•œ (fun x_1 => (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) x_1))), 0)) (range ↑I) (↑I (↑(ChartedSpace.chartAt x) x))) v = (v, 0) [PROOFSTEP] rw [← fderivWithin_inter N] at B [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = (v, 0) ⊒ ↑(fderivWithin π•œ (fun x_1 => (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) x_1))), 0)) (range ↑I) (↑I (↑(ChartedSpace.chartAt x) x))) v = (v, 0) [PROOFSTEP] rw [← fderivWithin_inter N, ← B] [GOAL] case mk π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = (v, 0) ⊒ ↑(fderivWithin π•œ (fun x_1 => (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) x_1))), 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v [PROOFSTEP] congr 1 [GOAL] case mk.e_a π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = (v, 0) ⊒ fderivWithin π•œ (fun x_1 => (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) x_1))), 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x)) = fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x)) [PROOFSTEP] refine' fderivWithin_congr (fun y hy => _) _ [GOAL] case mk.e_a.refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = (v, 0) y : E hy : y ∈ range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ⊒ (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) y))), 0) = (y, 0) [PROOFSTEP] simp only [mfld_simps] at hy [GOAL] case mk.e_a.refine'_1 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = (v, 0) y : E hy : y ∈ range ↑I ∧ ↑(ModelWithCorners.symm I) y ∈ (chartAt H x).toLocalEquiv.target ⊒ (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) y))), 0) = (y, 0) [PROOFSTEP] simp only [hy, Prod.mk.inj_iff, mfld_simps] [GOAL] case mk.e_a.refine'_2 π•œ : Type u_1 inst✝²⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝²³ : NormedAddCommGroup E inst✝²² : NormedSpace π•œ E H : Type u_3 inst✝²¹ : TopologicalSpace H I : ModelWithCorners π•œ E H M : Type u_4 inst✝²⁰ : TopologicalSpace M inst✝¹⁹ : ChartedSpace H M Is : SmoothManifoldWithCorners I M E' : Type u_5 inst✝¹⁸ : NormedAddCommGroup E' inst✝¹⁷ : NormedSpace π•œ E' H' : Type u_6 inst✝¹⁢ : TopologicalSpace H' I' : ModelWithCorners π•œ E' H' M' : Type u_7 inst✝¹⁡ : TopologicalSpace M' inst✝¹⁴ : ChartedSpace H' M' I's : SmoothManifoldWithCorners I' M' F : Type u_8 inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedSpace π•œ F G : Type u_9 inst✝¹¹ : TopologicalSpace G J : ModelWithCorners π•œ F G N✝ : Type u_10 inst✝¹⁰ : TopologicalSpace N✝ inst✝⁹ : ChartedSpace G N✝ Js : SmoothManifoldWithCorners J N✝ F' : Type u_11 inst✝⁸ : NormedAddCommGroup F' inst✝⁷ : NormedSpace π•œ F' G' : Type u_12 inst✝⁢ : TopologicalSpace G' J' : ModelWithCorners π•œ F' G' N' : Type u_13 inst✝⁡ : TopologicalSpace N' inst✝⁴ : ChartedSpace G' N' J's : SmoothManifoldWithCorners J' N' F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace π•œ F₁ Fβ‚‚ : Type u_15 inst✝¹ : NormedAddCommGroup Fβ‚‚ inst✝ : NormedSpace π•œ Fβ‚‚ f f₁ : M β†’ M' s s₁ t : Set M x✝ : M m n : β„•βˆž x : M v : TangentSpace I x N : ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target ∈ 𝓝 (↑I (↑(chartAt H x) x)) A : MDifferentiableAt I (ModelWithCorners.tangent I) (fun x => { proj := x, snd := 0 }) x B : ↑(fderivWithin π•œ (fun x' => (x', 0)) (range ↑I ∩ ↑(ModelWithCorners.symm I) ⁻¹' (chartAt H x).toLocalEquiv.target) (↑I (↑(chartAt H x) x))) v = (v, 0) ⊒ (↑I (↑(ChartedSpace.chartAt x) (↑(LocalHomeomorph.symm (ChartedSpace.chartAt x)) (↑(ModelWithCorners.symm I) (↑I (↑(chartAt H x) x))))), 0) = (↑I (↑(chartAt H x) x), 0) [PROOFSTEP] simp only [Prod.mk.inj_iff, mfld_simps]
# Introduction to Partial Differential Equations ## (PDEs) ----- Questions: - Which physical systems can be described using a PDE? - What is the Laplacian operator? - When to I need boundary conditions and initial conditions? ------ ------ Objectives: - Recognise common classes of PDE: the diffusion equation, Poisson's equation and the wave equation - Express the Laplacian as a differential operator - Identify boundary value problems and initial value problems ----- - In the previous section of the course we studied <bold>ordinary differential equations</bold>. ODEs have a single input (also known as independent variable) - for example, time. - Partial differential equations (PDEs) have multiple inputs (independent variables). For example, think about a sheet of metal that has been heated unevenly across the surface. Over time, heat will diffuse through the 2-dimensional sheet. The temperature depends on both time *and* position - there are two inputs. - Because PDEs have multiple inputs they are generally much more difficult to solve analytically than ODEs. However, there are a range of numerical methods that can be used to find approximate solutions. ### PDEs have application across a wide variety of topics The same type of PDE often appears in different contexts. For example, the <mark>diffusion equation</mark> takes the form: \begin{equation} \nabla^2T = \alpha \frac{\partial T}{\partial t} \end{equation} When used to describe heat diffusion, this PDE is known as the heat equation. This same PDE however can be used to model other seemingly unrelated processes such as brownian motion, or used in financial modelling via the Black-Sholes equation. Another type of PDE is known as <mark>Poisson's equation</mark>: \begin{equation} \nabla^2\phi = f(x,y,z) \end{equation} Poisson's equation can be used to describe electrostatic forces, where $\phi$ is the electric potential. It can also be applied to mechanics (where $\phi$ is the gravitational potential) or thermodynamics (where $\phi$ is the temperature). When $f(x,y,z)=0$ this equation is known as Laplace's equation. The third common type of PDE is the <mark>wave equation</mark>: \begin{equation} \nabla^2r = \alpha \frac{\partial^2 r}{\partial t^2} \end{equation} This describes mechanical processes such as the vibration of a string or the motion of a pendulum. It can also be used in electrodynamics to describe the exchange of energy between the electric and magnetic fields. In this course we will look at techniques for solving the diffusion equation and Poisson's equation, but many of the topics we will discuss - such as boundary conditions, and finite difference methods - can be transferred to PDEs more generally. ### The Laplacian operator corresponds to an average rate of change *But what is the operator $\nabla^2$?*. This is the <mark>Laplacian operator</mark>. When applied to $\phi$ and written in full for a three dimensional cartesian coordinate system with dependent variables $x$, $y$ and $z$ it takes the following form: \begin{equation} \nabla^2\phi = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2}. \end{equation} We can think of the laplacian as encoding an average rate of change - the difference between a value at a point and the average of the values around that point. ```python # https://gist.github.com/dm-wyncode/55823165c104717ca49863fc526d1354 """Embed a YouTube video via its embed url into a notebook.""" from functools import partial from IPython.display import display, IFrame width, height = (560, 315, ) def _iframe_attrs(embed_url): """Get IFrame args.""" return ( ('src', 'width', 'height'), (embed_url, width, height, ), ) def _get_args(embed_url): """Get args for type to create a class.""" iframe = dict(zip(*_iframe_attrs(embed_url))) attrs = { 'display': partial(display, IFrame(**iframe)), } return ('YouTubeVideo', (object, ), attrs, ) def youtube_video(embed_url): """Embed YouTube video into a notebook. Place this module into the same directory as the notebook. >>> from embed import youtube_video >>> youtube_video(url).display() """ YouTubeVideo = type(*_get_args(embed_url)) # make a class return YouTubeVideo() # return an object ``` ```python youtube_video("https://youtu.be/EW08rD-GFh0").display() ``` ### Boundary value problems <mark>Boundary value problems</mark> describe the behaviour of a variable in a space and we are given some constraints on the variable around the boundary of that space. For example, consider the 2-dimensional problem of a thin rectangular sheet with one side at voltage $V$ and all others at voltage zero. The specification that one side is at voltage $V$ and all others are at voltage zero are the <mark>boundary conditions</mark>. We could then calculate the electrostatic potential $\phi$ at all points within the sheet using the two-dimensional Laplace's equation: \begin{equation} \nabla^2\phi = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} = 0 \end{equation} #### Initial value problems <mark>Initial value problems</mark> are where the field - or other variable of interest - is varying in both space and time. We now require boundary conditions *and* initial values. This is a more difficult type of PDE to solve. For example, consider heat diffusion in a two-dimensional sheet. Here we could specify that there is no heat flow in or out of the sheet - this is the boundary condition. We could also specify that at time $t=0$ the centre of the sheet is at temperature $T_1$, whilst surrounding areas are at temperature $T_0$. This is the initial condition. It differs from a boundary condition in that we are told what the temperature is at the start of our time grid (at $t=0$) but not at the end of our time grid (when the simulation finishes). We could then calculate the temperature at time $t$ at all points $[x,y]$ within the sheet using the two-dimensional Diffusion equation: \begin{equation} \nabla^2T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}=\alpha \frac{\partial T}{\partial t} \end{equation} # Laplace's equation for electrostatics ----- Questions: - How do I use a finite difference method to calculate derivatives? - How do I use the relaxation method to solve Laplace's equation? ------ ### The method of finite differences Consider the two-dimensional Laplace equation for the electric potential $\phi$ subject to appropriate boundary conditions: \begin{equation} \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} = 0 \end{equation} The method of finite differences involves dividing the space into a grid of discrete points $[x,y]$ and calculating numerical derivatives or at each of these points. But how do we calculate these numerical derivatives? Real physical problems are in three dimensions, but we can more easily visualise the method of finite differences - and the extension to three dimensions is straight forward. ### Calculating numerical derivatives The standard definition of a derivative is \begin{equation} \frac{\mathrm{d} f}{\mathrm{d} x} = \lim_{h\to0}\frac{f(x+h)-f(x)}{h}. \end{equation} To calculate the derivative numerically we make $h$ very small and calculate \begin{equation} \frac{\mathrm{d} f}{\mathrm{d} x} \simeq \frac{f(x+h)-f(x)}{h}. \end{equation} This is the <mark>forward difference</mark> because it is measured in the forward direction from $x$. The <mark>backward difference</mark> is measured in the backward direction from $x$: \begin{equation} \frac{\mathrm{d} f}{\mathrm{d} x} \simeq \frac{f(x)-f(x-h)}{h}, \end{equation} and the <mark>central difference</mark> uses both the forwards and backwards directions around $x$: \begin{equation} \frac{\mathrm{d} f}{\mathrm{d} x} \simeq \frac{f(x+\frac{h}{h2})-f(x-\frac{h}{2})}{h}, \end{equation} ### Numerical second-order derivatives The second derivative is a derivative of a derivative, and so we can calculate it be applying the first derivative formulas twice. The resulting expression (after application of central differences) is: \begin{equation} \frac{\mathrm{d} ^2f}{\mathrm{d} x^2} \simeq \frac{f(x+h)-2f(x)+f(x-h)}{h^2}. \end{equation} ### Numerical partial derivatives The extension to partial derivatives is straight-forward: \begin{equation} \frac{\mathrm{d} f}{\mathrm{d} x} \simeq \frac{f(x+\frac{h}{h2})-f(x-\frac{h}{2})}{h}, \end{equation} \begin{equation} \frac{\partial f}{\partial x} \simeq \frac{f(x+\frac{h}{2},y)-f(x-\frac{h}{2},y)}{h}, \end{equation} \begin{equation} \frac{\partial f}{\partial y} \simeq \frac{f(x,y+\frac{h}{2})-f(x,y-\frac{h}{2})}{h}, \end{equation} \begin{equation} \frac{\mathrm{d} ^2f}{\mathrm{d} x^2} \simeq \frac{f(x+h)-2f(x)+f(x-h)}{h^2}. \end{equation} \begin{equation} \frac{\partial ^2f}{\partial x^2} \simeq \frac{f(x+h,y)-2f(x,y)+f(x-h,y)}{h^2}, \end{equation} \begin{equation} \frac{\partial ^2f}{\partial y^2} \simeq \frac{f(x,y+h)-2f(x,y)+f(x,y-h)}{h^2}. \end{equation} By adding the two equations above, <mark>the Laplacian</mark> in two dimensions is: \begin{equation} \frac{\partial ^2f}{\partial x^2} + \frac{\partial ^2f}{\partial y^2} \simeq \frac{f(x+h,y)+f(x-h,y)+f(x,y+h)+f(x,y-h)-4f(x,y)}{h^2}, \end{equation} ### PDEs --> linear simulatenous equations Returning to our Laplace equation for for the electric potential $\phi$: \begin{equation} \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} = 0 \end{equation} The numerical Laplacian can be substituted into the equation above, giving us a set of $n$ simulatenous equations for the $n$ grid points. \begin{equation} \frac{\phi(x+h,y)+\phi(x-h,y)+\phi(x,y+h)+\phi(x,y-h)-4\phi(x,y)}{a^2} = 0, \end{equation} where $a$ is the distance between each grid point. ### To solve we use the relaxation method \begin{equation} \frac{\phi(x+h,y)+\phi(x-h,y)+\phi(x,y+h)+\phi(x,y-h)-4\phi(x,y)}{a^2} = 0, \end{equation} \begin{equation} \phi(x,y)=\frac{1}{4}\left(\phi(x+h,y)+\phi(x-h,y)+\phi(x,y+h)+\phi(x,y-h)\right). \end{equation} This tells us that $\phi(x,y)$ is the average of the surrounding grid points, which can be represented visually as: ### To solve we use the relaxation method #### Step one Fix $\phi(x,y)$ at the boundaries using the boundary conditions. #### Step two Guess the initial values of the interior $\phi(x,y)$ points - our guesses do not need to be good, and can be zero. #### Step three Calculate new values of $\phi'(x,y)$ at all points in space using an iterative method: \begin{equation} \phi'(x,y)=\frac{1}{4}\left(\phi(x+h,y)+\phi(x-h,y)+\phi(x,y+h)+\phi(x,y-h)\right). \end{equation} #### Step four Repeat until the $\phi(x,y)$ values converge*, and that is our solution. *Convergence can be tested by specifying what the maximum difference should be between iterations. For example, that $\phi'(x,y)-\phi(x,y)< 1e-5$ for all grid points. # Heat Diffusion ---- Questions: - How do I use the Forward-Time Centred-Space method (FTCS) to solve the diffusion equation? --- ### The diffusion equation is an initial value problem An initial value problem is more complex than a boundary value problem as we are told the starting conditions and then have to predict future behaviour as a function of time. #### Example A 10cm rod of stainless steel initially at a uniform temperature of 20$^\mathrm{o}$ Celsius. The rod is dipped in a hot water bath at 90$^\mathrm{o}$ Celsius at one end, and held in someone's hand at the other. Assume that the hand is at constant body temperature throughout (27$^\mathrm{o}$ Celsius). Assume: - that the rod is perfectly insulated so that heat only moves horizontally --> a 1D problem - neither the hot water bath or the hand change temperature Thermal conduction is described by the diffusion equation: \begin{equation} \frac{\partial \phi}{\partial t} = D\frac{\partial^2 \phi}{\partial x^2}, \end{equation} where $D$ is the material dependent thermal diffusivity. For steel $D=4.25\times10^{-6}\mathrm{m}^2\mathrm{s}^{-1}$. ### Why can't we use the relaxation method? We solved Laplace's equation and that had three variables ($x$,$y$,$z$) - why not do the same thing here? The problem is that we only have an *initial* condition in the time dimension - we know the value of $\phi(x,t)$ at $t=0$ but we do not typically know the value of $t$ at a later point. In the spatial dimensions we know the boundary conditions at either end of the grid. Instead, we will use the <mark>Forward-Time Centred-Space method (FTCS)</mark>. ### There are two steps to the Forward-Time Centred-Space method #### Step one Use the finite difference method to express the 1D Laplacian as a set of simulatenous equations: \begin{equation} \frac{\partial^2\phi}{\partial x^2} = \frac{\phi(x+a,t)+\phi(x-a,t) - 2\phi(x,t)}{a^2} \end{equation} where $a$ is the grid spacing. Substitute this back into the diffusion equation: \begin{equation} \frac{d \phi}{d t} = \frac{D}{a^2}(\phi(x+a,t)+\phi(x-a,t)-2\phi(x,t)) \end{equation} <mark>We now have a set of simultaneous ODEs for $\phi(x,t)$. </mark> #### Step two So we can use Euler's method to evolve the system forward in time. Euler's method for solving an ODE of the form $\frac{d\phi}{dt} = f(\phi,t)$ has the general form: \begin{equation} \phi(t+h) \simeq \phi(t) + hf(\phi, t). \end{equation} Applying this to Equation 3 gives: \begin{equation} \phi(x,t+h) = \phi(x,t) + h\frac{D}{a^2}(\phi(x+a,t)+\phi(x-a,t)-2\phi(x,t)) \end{equation} # Evaluating numerical errors and accuracy ----- Questions: - Which numerical errors are unavoidable in a Python programme? - How do I choose the optimum step size $h$ when using the finite difference method? - What do the terms first-order accurate and second-order accurate mean? - How can I measure the speed of my code? ----- ### Finite difference methods have two sources of error - There are two sources of errors for finite difference methods: - the approximation that the step size $h$ is small but not zero. - the numerical rounding errors for floating point numbers - If we decrease the step size $h$: - the finite-difference approximation will improve - the runtime of the programme will increase - counter-intuitively, the rounding error might *increase*. - So it is possible that by decreasing $h$ we make our programme *less* accurate *and* it takes longer to run! To demonstrate this, consider the Taylor expansion of $f(x)$ about $x$: \begin{equation} f(x+h) = f(x) + hf'(x) +\frac{1}{2}h^2f''(x) + \ldots \end{equation} Re-arrange the expression to get the expression for the forward difference method: \begin{equation} f'(x) = \frac{f(x+h)}{h} - \frac{1}{2}hf''(x)+\ldots \end{equation} A computer can typically store a number $f(x)$ to an accuracy of 16 significant figures, or $Cf(x)$ where $C=10^{-16}$. In the worst case, this makes the error $\epsilon$ on our derivative: \begin{equation} \epsilon = \frac{2C|f(x)|}{h} + \frac{1}{2}h|f''(x)|. \end{equation} We want to find the value of $h$ which minimises this error so we differentiate with respect to $h$ and set the result equal to zero. \begin{equation} -\frac{2C|f(x)|}{h^2} + h|f''(x)| = 0 \end{equation} \begin{equation} h = \sqrt{4C\lvert\frac{f(x)}{f''(x)}\rvert} \end{equation} If $f(x)$ and $f''(x)$ are order 1, then $h$ should be order $\sqrt{C}$, or $10^{-8}$. Similar reasoning applied to the central difference formula suggests that the optimum step size for this method is $10^{-5}$.
function X = tendiag(v,sz) %TENDIAG Creates a tensor with v on the diagonal. % % TENDIAG(V) creates a tensor with N dimensions, each of size N, where N % is the number of elements of V. The elements of V are placed on the % superdiagonal. % % TENDIAG(V,SZ) is the same as above but creates a tensor of size SZ. If % SZ is not big enough, the tensor will be enlarged to accommodate the % elements of V on the superdiagonal. % % Examples % X = tendiag([0.1 0.22 0.333]) %<-- creates a 3x3x3 tensor % % See also TENSOR, SPTENDIAG. % %MATLAB Tensor Toolbox. %Copyright 2012, Sandia Corporation. % This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others. % http://www.sandia.gov/~tgkolda/TensorToolbox. % Copyright (2012) Sandia Corporation. Under the terms of Contract % DE-AC04-94AL85000, there is a non-exclusive license for use of this % work by or on behalf of the U.S. Government. Export of this data may % require a license from the United States Government. % The full license terms can be found in the file LICENSE.txt % Make sure v is a column vector v = reshape(v,[numel(v) 1]); N = numel(v); if ~exist('sz','var') sz = repmat(N,1,N); end X = tenzeros(sz); subs = repmat((1:N)', 1, length(sz)); X(subs) = v;
The Thame Curved Electric Bathroom Heated Towel Rail Radiator is the ideal bathroom heating solution for those who need full control over the warmth in their homes. Made of high-quality stainless steel, this towel rail radiator features highly conductive materials, is corrosion resistant and will last for years. Cost effective and environment friendly, this CE approved radiator is the ultimate electric powered bathroom heating solution, plus it will blend in anywhere offering a touch of class. Its long life is guaranteed with a 2 years manufacturer's guarantee.
Für $q \neq 1$ kann die n-te Partialsumme der geometrischen Reihe wie folgt berechnet werden: $$ \sum_{k=0}^{n}{q^{k}} = \frac{1-q^{n+1}}{1-q} $$ Zeigen Sie dies empirisch, indem Sie mithilfe von `sympy` die linke und rechte Seite in einer for-Schleife für $n = 1, \ldots, 5$ berechnen und deren faktorisierte Formen mit einem logischen Operator vergleichen. Geben Sie dies für jedes $n$ aus. Anschließend berechnen Sie die 5-te Partialsumme an der Stelle $q = 3$ (indem Sie mittels einer `sympy` Routine für $q$ den konkreten Wert übergeben) und geben diese aus. ```python from sympy.abc import k, n, q from sympy import Sum for ni in range(1, 6): geom_series = Sum(q**k, (k, 0, ni)) geom_formula = (1 - q**(ni + 1))/(1 - q) print(f'n = {ni}, Same factorized form: {geom_series.doit().factor() == geom_formula.factor()}') ``` n = 1, Same factorized form: True n = 2, Same factorized form: True n = 3, Same factorized form: True n = 4, Same factorized form: True n = 5, Same factorized form: True ```python geom_series = Sum(q**k, (k, 0, n)) geom_formula = (1 - q**(n + 1))/(1 - q) subs_dict = {k: v for k, v in zip('nq', [5, 3])} for function, label in zip( [geom_series, geom_formula], ['Series', 'Formula'] ): print(f'{label}: {function.evalf(subs = subs_dict)}, n = 5, q = 3') ``` Series: 364.000000000000, n = 5, q = 3 Formula: 364.000000000000, n = 5, q = 3
If $f$ is holomorphic on an open set $s$ and $f(z) = g(z)(z - z_0)$ for all $z \in s$, then $z_0$ is a simple zero of $f$.
Require Import Kami.AllNotations. Require Import StdLibKami.Fifo.Ifc. Require Import StdLibKami.GenericFifo.Ifc. Section Spec. Context {ifcParams : Fifo.Ifc.Params}. Class Params := {fifo : @Fifo.Ifc.Ifc ifcParams; genericFifo : @GenericFifo.Ifc.Ifc (GenericFifo.Ifc.Build_Params (@Fifo.Ifc.name ifcParams) (@Fifo.Ifc.k ifcParams) (@Fifo.Ifc.size ifcParams))}. (* Class Params := {genericParams : @GenericFifo.Ifc.Ifc (GenericFifo.Ifc.Build_Params *) (* (@Fifo.Ifc.name ifcParams) *) (* (@Fifo.Ifc.k ifcParams) *) (* (@Fifo.Ifc.size ifcParams))}. *) Context {params : Params}. Local Notation genericParams := (GenericFifo.Ifc.Build_Params (@Fifo.Ifc.name ifcParams) (@Fifo.Ifc.k ifcParams) (@Fifo.Ifc.size ifcParams)). Local Open Scope kami_expr. Local Open Scope kami_action. Local Definition propagate ty: ActionT ty Void := Retv. Local Definition isEmpty ty: ActionT ty Bool := (@Fifo.Ifc.isEmpty ifcParams fifo ty). Local Definition isFull ty: ActionT ty Bool := (@Fifo.Ifc.isFull ifcParams fifo ty). Local Definition numFree ty: ActionT ty (Bit ((@lgSize genericParams) + 1)) := (@Fifo.Ifc.numFree ifcParams fifo ty). Local Definition first ty: ActionT ty (Maybe (@k genericParams)) := (@Fifo.Ifc.first ifcParams fifo ty). Local Definition deq ty: ActionT ty (Maybe (@k genericParams)) := (@Fifo.Ifc.deq ifcParams fifo ty). Local Definition enq ty (new: ty (@k genericParams)): ActionT ty Bool := (@Fifo.Ifc.enq ifcParams fifo ty new). Local Definition flush ty: ActionT ty Void := (@Fifo.Ifc.flush ifcParams fifo ty). Local Definition regs : list RegInitT := (@Fifo.Ifc.regs ifcParams fifo). Definition Extension: Ifc := {| Ifc.propagate := propagate; Ifc.regs := regs; Ifc.regFiles := nil; Ifc.isEmpty := isEmpty; Ifc.isFull := isFull; Ifc.numFree := numFree; Ifc.first := first; Ifc.deq := deq; Ifc.enq := enq; Ifc.flush := flush |}. End Spec.
-- Andreas, 2017-12-01, issue #2859 introduced by parameter-refinement -- In Agda 2.5.2 any definition by pattern matching in a module -- with a parameter that shadows a constructor will complain -- about pattern variables with the same name as a constructor. -- These are pattern variables added by the parameter-refinement -- machinery, not user written ones. Thus, no reason to complain here. -- {-# OPTIONS -v scope.pat:60 #-} -- {-# OPTIONS -v tc.lhs.shadow:30 #-} data D : Set where c : D module M (c : D) where data DD : Set where cc : DD should-work : DD β†’ Set should-work cc = DD should-fail : D β†’ D should-fail c = c -- Expected error: -- The pattern variable c has the same name as the constructor c -- when checking the clause test c = c
[STATEMENT] lemma icomp_fcomp: "\<theta> \<circ>\<^sub>s i = fsub_to_isub (isub_to_fsub \<theta> \<cdot> isub_to_fsub i)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta> \<circ>\<^sub>s i = (\<lambda>x. fterm_to_iterm (((\<lambda>x. iterm_to_fterm (\<theta> x)) \<cdot> (\<lambda>x. iterm_to_fterm (i x))) x)) [PROOF STEP] unfolding composition_def subst_compose_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<lambda>x. \<theta> x \<cdot> i) = (\<lambda>x. fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x)))) [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<theta> x \<cdot> i = fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x))) [PROOF STEP] fix x [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<theta> x \<cdot> i = fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x))) [PROOF STEP] show "\<theta> x \<cdot> i = fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x)))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<theta> x \<cdot> i = fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x))) [PROOF STEP] using iterm_to_fterm_subt [PROOF STATE] proof (prove) using this: iterm_to_fterm ?t1.0 \<cdot>\<^sub>t ?\<sigma> = iterm_to_fterm (?t1.0 \<cdot> (\<lambda>x. fterm_to_iterm (?\<sigma> x))) goal (1 subgoal): 1. \<theta> x \<cdot> i = fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x))) [PROOF STEP] by auto [PROOF STATE] proof (state) this: \<theta> x \<cdot> i = fterm_to_iterm (iterm_to_fterm (\<theta> x) \<cdot>\<^sub>t (\<lambda>x. iterm_to_fterm (i x))) goal: No subgoals! [PROOF STEP] qed
% last change: 2012-04-21 \input tex2page \input plainsection \let\TZPtexlayout 0 \let\n\noindent \let\f\numberedfootnote \ifx\shipout\toHTML \let\oldsection\section \def\section{\eject\oldsection} \fi \let\re\subsection \advance\hoffset .75 true in \advance\hsize -1.5 true in \title{scmxlate} %\ignorenextinputtimestamp \centerline{\urlh{scmxlate.tar.bz2}{\ifx\shipout\totheWeb Download \fi Version 20120421}} % last modified \centerline{\urlh{../index.html}{Dorai Sitaram}} \medskip Scmxlate is a configuration tool for software packages written in Scheme. Scmxlate provides the package author with a strategy for programmatically specifying the changes required to translate the package for a variety of Scheme dialects and Common Lisp, and a variety of operating systems. The end-user simply loads {\em one} file into their Scheme or Common Lisp, which triggers the entire configuration process with little or no further intervention. Thus, there are two types of user for Scmxlate: \item{\bull} The end-user of an Scmxlate-configured package, who relies on the Scmxlate program to perform the configuration for their system; and \item{\bull} the package author, who uses the Scmxlate methodology to specify an executable form of the configuration details for the package. The package author is still required to know a lot more about the configuration process than the end-user, even with Scmxlate helping the former. %(The Common Lisp half %of Scmxlate uses \urlh{scm2cl.html}{Scm2cl}, %which is included in the Scmxlate distribution.) The advantage to using Scmxlate is that the several end-users can each configure the product to their different systems by following the same simple step. Section~\ref{useconfig} describes the use of Scmxlate to execute an already written configuration, and is all the information you will need if you are an end-user of packages that have Scmxlate configurations. Sections~\ref{writeconfig} and \ref{glossary} are for package authors, and describe the method and the language used to write an Scmxlate configuration. \bigbreak \noindent{\bf Contents} \tableofcontents \ifx\shipout\totheWeb\else \vfill\eject \fi \section{Using an Scmxlate configuration} \label{useconfig} Scenario: You are an end-user who has just downloaded a Scheme package, say, \urlh{../tex2page/tex2page-doc.html}{TeX2page}. The package author claims to have included the Scmxlate configuration details in the package. What do you do? First, you need to have Scmxlate installed on {\em your} system. Get the \urlh{scmxlate.tar.gz}{Scmxlate tarball} and unpack it, creating a directory called \p{scmxlate}. Place this directory in its entirety in a place that is convenient to you. Among the files in this directory is the file \p{scmxlate.scm}. Note down its {\em full} pathname so you can refer to it from anywhere on your filesystem. Just to make it concrete, let's assume you put the \p{scmxlate} directory in \p{/usr/local/lib}. Then the full pathname to remember is \p{ /usr/local/lib/scmxlate/scmxlate.scm } Now to configure the TeX2page package. Unpack it and \p{cd} to its directory. For each Scheme file {\em filename} that is to be translated, there may (but not necessarily) be a user-configuration file \p{scmxlate-}{\em filename} in the top directory. If the instructions that came with the package suggest you edit them, do so. In our example package, there is only one user-configuration file, it is called \p{scmxlate-tex2page}, and it doesn't seem to require any edits from the casual user. Start your Scheme or Common Lisp in the top directory (being in that directory is important!). In your Scheme (or Common Lisp), type \q{ (load "/usr/local/lib/scmxlate/scmxlate.scm") } \n where the \q{load} argument is of course the correct pathname of the file \p{scmxlate.scm} for your setup. Scmxlate may ask you a few questions. A choice of answers will be provided, so you don't need to be too creative. When Scmxlate finishes, you will be left with a version of the package tailormade for you. \section{Writing an Scmxlate configuration} \label{writeconfig} %{\color{red}\relax Nothing in this section is %stable. The implementation and user interface is %extremely likely to change in order to make the %documentation easier to write.} % %In the following, we will assume that Scmxlate was %unpacked in \p{/usr/local/lib}, so the full pathname of the %\p{scmxlate.scm} file is %\p{/usr/local/lib/scmxlate/scmxlate.scm}. \subsection{A minimal configuration} Let us say you have a number of Scheme files in a directory that you intend to package as a distribution. For specificity let's say the name of the directory is \p{pkgdir} and you have three Scheme files in it, viz, \p{apple}, \p{orange.scm}, and \p{banana.ss}. There is no restriction on the names of these Scheme files: They may have any or no extension. An end-user of your distribution will unpack it to produce a \p{pkgdir} of their own with the three Scheme files in it. Let us now say that you wrote the Scheme files in the MzScheme dialect of Scheme, but that the end-user uses the Guile dialect of Scheme. In order for them to be able to create Guile versions of your files, you need to provide in \p{pkgdir} some configuration information. This can be done as follows: Create a subdirectory called \p{dialects} in \p{pkgdir}. In the \p{dialects} subdirectory, create a file called \p{files-to-be-ported.scm} containing the names of the Scheme files to be translated, viz: \q{ "apple" "orange.scm" "banana.ss" } \n and a file called \p{dialects-supported.scm} containing the line \q{ guile } \n The symbol \q{guile} of course stands for the Scheme dialect Guile. The Guile-using user can now start Guile in \p{pkgdir}, and load \p{scmxlate.scm} (using the appropriate pathname for \p{scmxlate.scm} on their system, as described in Section~\ref{useconfig}). Scmxlate will learn from \path{dialects/files-to-be-ported.scm} that the files \p{apple}, \p{orange.scm}, and \p{banana.ss} need to be translated. It will ask the user what the dialect is, offering as choices the dialects listed in \path{dialects/dialects-supported.scm}, plus a catch-all dialect called Other:\f{The astute reader may wonder why Scmxlate needs to explicitly ask the user what the target dialect is, when it is already running on it! Unfortunately, since the Scxmlate code is necessarily written in a style that must load in all Schemes, it cannot portably determine the identity of the particular Scheme dialect it is currently running on.} \p{ What is your Scheme dialect? (guile other) } The user types \p{guile} in response. Scmxlate now understands that it is to create Guile translations of the three files, and proceeds to do so. By default, the translation-result files are created in the \p{pkgdir} directory and have the same names as the original but with the prefix \p{my-} attached. Thus, in this case, their names are \p{my-apple}, \p{my-orange.scm}, and \p{my-banana.ss}. In the following, we will for convenience use the following terms: \item{\bull} {\em input file}: a file to be translated; \item{\bull} {\em output file}: a file that is the result of a translation; \item{\bull} {\em target dialect}: the dialect translated to. \n In our example above, \p{apple} is an input file, \p{my-apple} is its corresponding output file, and Guile is the target dialect. \subsection{Dialect-configuration files} The output file \p{my-apple} above uses Scmxlate's default rules for an MzScheme-to-Guile translation. These rules are general and cannot be expected to cover any peculiar translational information that may be relevant to the code in \p{apple}. You can supply such additional information to Scmxlate via a {\em dialect-configuration file} called \p{guile-apple} in the \p{dialects} subdirectory. Ie, the name of the dialect-configuration file for a given input file and a given dialect is formed from the Scmxlate symbol for the dialect, followed by a hyphen, followed by the name of the input file. Scmxlate typically takes code from a dialect-configuration file and sticks it ahead of the translated code in the output file. This code can be any Scheme code in the target dialect, and in particular, it can include definitions. The order of the code in the dialect-configuration file is preserved in the output file. For instance, if the MzScheme code in \p{apple} made use of a nonstandard (MzScheme-only) primitive such as \q{file-or-directory-modify-seconds}, we could supply the following Guile definition in the dialect-configuration file, \path{dialects/guile-apple}: \q{ (define file-or-directory-modify-seconds (lambda (f) (vector-ref (stat f) 9))) } If the dialect-configuration file supplies a definition for a name that is also defined in the input file, then the output file will contain the definition from the dialect-configuration file, not the input file. For example, if \p{apple} contained the definition \q{ (define file-newer? (lambda (f1 f2) ;checks if f1 is newer than f2 (> (file-or-directory-modify-seconds f1) (file-or-directory-modify-seconds f2)))) } \n we could put a competing Guile-specific definition in \p{dialects/guile-apple}: \q{ (define file-newer? (lambda (f1 f2) (> (vector-ref (stat f1) 9) (vector-ref (stat f2) 9)))) } \n When Scmxlate translates \p{apple}, it will directly incorporate this Guile definition into the output file \p{my-apple} and won't even attempt to translate the MzScheme definition of the same name in the input file. \subsection{Target dialects} In the above, we used the symbol \q{guile} in the \p{dialects/dialects-supported.scm} file to signal to Scmxlate that Guile is one of the dialects into which the package can be translated. The list of dialect symbols recognized by Scmxlate is: \q{bigloo}, \q{chez}, \q{cl}, \q{gambit}, \q{gauche}, \q{guile}, \q{kawa}, \q{mitscheme}, \q{mzscheme}, \q{other}, \q{petite}, \q{pscheme}, \q{scheme48}, \q{scm}, \q{sxm}, \q{scsh}, \q{stk}, \q{stklos}, \q{umbscheme}. The symbols \q{mzscheme} and \q{plt} may both be used for PLT Scheme: two symbols are provided in case two distinct types of translations are called for --- with \q{mzscheme} perhaps being used to create a self-sufficient MzScheme script file, and \q{plt} to construct a PLT module library. The symbol \q{cl} stands for Common Lisp.\f{Note that Scmxlate can readily determine if it's running on Common Lisp (as opposed to Scheme), so it will not query the user for further ``dialect'' information.} The symbol \q{other} can be used by the package author to provide a default configuration for an unforeseen dialect. Since the dialect is unknown, there isn't much information to exploit, but it may be possible to provide some bare-minimum functionality (or at least display some advice). The package author can make use of other symbols to denote other Scheme dialects. However, as Scmxlate cannot do any special translation for such dialects, it is the responsibility of the package author to provide additional configuration information for them by writing dialect-configuration files. \subsection{User-configuration files} Some packages need some configuration information that the package author cannot predict and that therefore can come only come from the user. The information typically contains user preferences for global variables in the program. It should not be dialect-specific. Such user information can be placed in {\em user-configuration files} in the package directory. Each input file can have its own user-configuration file, and the latter's name consists of the prefix \p{scmxlate-} followed by the name of the input file. Thus the user configuration file for \p{orange.scm} is \p{scmxlate-orange.scm}. While the package author may not be able to predict the values of the globals preferred by their various users, they can include in the package sample user-configuration files that mention the globals requiring the user's intervention, with comments instructing how the user is to customize them. Note that user-configuration code comes ahead of the dialect-configuration code in the output file. Definitions in the user-configuration code override definitions in the dialect-configuration code, just as the latter themselves override definitions in the input file. \section{The Scmxlate directives} \label{glossary} In addition to Scheme code intended to either augment or override code in the input file, the dialect- and user-configuration files can use a small set of Scmxlate directives to finely control the text that goes into the output file, and even specify actions that go beyond the mere creation of the output file. These directives are now described. \re{{\tt scmxlate-insert}} As we saw, Scheme code in the dialect- and user-configuration files is transferred verbatim to the output file. Sometimes, we need to put into the output file arbitrary text that is not Scheme code. For instance, we may want the output file to start with a ``shell magic'' line, so that it can be used as a shell script. Such text can be written using the \p{scmxlate-insert} directive, which evaluates its subforms in Scheme and displays them on the output file. Eg, if you put the following at the very head of the \p{guile-apple} file: \q{ (scmxlate-insert "#!/bin/sh exec guile -s $0 \"$@\" !# ") } \n the output Guile file \p{my-apple} will start with the line \p{ #!/bin/sh exec guile -s $0 "$@" !# } Note that the order of the code and \q{scmxlate-insert} text in the configuration file is preserved in the output file. \re{{\tt scmxlate-postamble}} Typically, the Scheme code and \p{scmxlate-insert}s specified in the dialect-configuration file occur in the output file before the translated counterpart of input file's contents, and thus may be considered as {\em preamble} text. Sometimes we need to add {\em postamble} text, ie, things that go {\em after} the code from the input file. In order to do this, place the directive \q{ (scmxlate-postamble) } \n after any preamble text in the dialect-configuration file. Everything following that, whether Scheme code or \q{scmxlate-insert}s, will show up in the output file after the translated contents of the input file. \re{{\tt scmxlate-postprocess}} One can also specify actions that need to performed after the output file has been written. Eg, let's say we want the Guile output file for \p{apple} to be named \p{pear} rather than \p{my-apple}. We can enclose Scheme code for achieving this inside the Scmxlate directive \q{scmxlate-postprocess}: \q{ (scmxlate-postprocess (rename-file "my-apple" "pear")) } \re{{\tt scmxlate-ignore-define}} Sometimes the input file has a definition that the target dialect does not need, either because the target dialect already has it as a primitive, or because we wish to completely re-write input code that uses that definition. Eg, if the target dialect is MzScheme, which already contains \q{reverse!}, any definition of \q{reverse!} in the input file can be ignored. \q{ (scmxlate-ignore-define reverse!) } \q{scmxlate-ignore-define} can have any number of arguments. The definitions of all of them will be ignored. \re{{\tt scmxlate-rename}} Sometimes we want to rename certain identifiers from the input file. One possible motivation is that these identifiers name nonstandard primitives that are provided under a different name in the target dialect. For instance, the Bigloo versions of the MzScheme primitives \q{current-directory} and \q{file-or-directory-modify-seconds} are \q{chdir} and \q{file-modification-time} respectively. So if your MzScheme input file uses \q{current-directory} and \q{file-or-directory-modify-seconds}, your Bigloo dialect-configuration file should contain \q{ (scmxlate-rename (current-directory chdir) (file-or-directory-modify-seconds file-modification-time)) } Note the syntax: \q{scmxlate-rename} has any number of twosomes as arguments. The left item is the name in the input file, and the right item is its proposed replacement. \re{{\tt scmxlate-rename-define}} Sometimes the input file includes a definition for an operator that the target dialect already has as a primitive, but with a different name. Eg, consider an input file that contains a definition for \q{nreverse}. MzScheme has the same operator but with name \q{reverse!}. You could add the following to the MzScheme dialect-configuration file: \q{ (scmxlate-rename-define (nreverse reverse!)) } Note that this is shorthand for \q{ (scmxlate-ignore-define nreverse) (scmxlate-rename (nreverse reverse!)) } \re{{\tt scmxlate-prefix}} Another motivation for renaming is to avoid polluting namespace. We may wish to have short names in the input file, but when we configure it, we want longer, ``qualified'' names. It is possible to use \q{scmxlate-rename} for this, but the \q{scmxlate-prefix} is convenient when the newer names are all uniformly formed by adding a prefix. \q{ (scmxlate-prefix "regexp::" match substitute substitute-all) } \n renames the identifiers \q{match}, \q{substitute}, and \q{substitute-all} to \q{regexp::match}, \q{regexp::substitute}, and \q{regexp::substitute-all} respectively. The first argument of \q{scmxlate-prefix} is the string form of the prefix; the remaining arguments are the identifiers that should be renamed. \re{{\tt scmxlate-cond}} Sometimes we want parts of the dialect-configuration file to processed only when a condition holds. For instance, we can use the following \q{cond}-like conditional in a dialect-configuration file for MzScheme to write out a shell-magic line appropriate to the operating system: \q{ (scmxlate-cond ((eqv? (system-type) 'unix) (scmxlate-insert *unix-shell-magic-line*)) ((eqv? (system-type) 'windows) (scmxlate-insert *windows-shell-magic-line*))) } \n where \q{*unix-shell-magic-line*} and \q{*windows-shell-magic-line*} are replaced by appropriate strings. Note that while \q{scmxlate-cond} allows the \q{else} keyword for its final clause, it does not support the Scheme \q{cond}'s \q{=>} keyword. \re{{\tt scmxlate-eval}} The test argument of \q{scmxlate-cond} and all the arguments of \q{scmxlate-insert} are evaluated in the Scheme global environment when Scmxlate is running. You can enhance this environment with \q{scmxlate-eval}. Thus, if we had \q{ (scmxlate-eval (define *unix-shell-magic-line* <...>) (define *windows-shell-magic-line* <...>)) } \n where the \q{<...>} stand for code that constructs the appropriate string, then we could use these variables as the arguments to \q{scmxlate-insert} in the example under \q{scmxlate-cond}. \q{scmxlate-eval} can have any number of subforms. It evaluates each of them in the given order. \re{{\tt scmxlate-compile}} \q{scmxlate-compile} can be used to tell if the output file is to be compiled. Typical usage is \q{ (scmxlate-compile #t) ;or (scmxlate-compile #f) } \n The first forces compilation but only if the dialect supports it, and the second disables compilation even if the dialect supports it. The argument of \q{scmxlate-compile} can be any expression, which is evaluated only for its boolean significance. Without a \q{scmxlate-compile} setting, Scmxlate will ask the user explicitly for advice, but only if the dialect supports compilation. \re{{\tt scmxlate-include}} It is often convenient to keep in a separate file some of the portions of the text that should go into a dialect-configuration file. Some definitions may naturally be already written down somewhere else, or we may want the text to be shared across several dialect-configuration files (for different dialects). The call \q{ (scmxlate-include "filename") } \n inserts the contents of \q{"filename"} into that location in the dialect-configuration file. \re{{\tt scmxlate-uncall}} It is sometimes necessary to skip a top-level call when translating an input file. For instance, the input file may be used as a script file whose scriptural action consists in calling a procedure called \q{main}. The target dialect may not allow the output file to be a script, so the user may prefer to load the output file into Scheme as a library and make other arrangements to invoke its functionality. To disable the call to \q{main} in the output file, add \q{ (scmxlate-uncall main) } \n to the configuration file. \q{scmxlate-uncall} can take any number of symbol arguments. All the corresponding top-level calls will be disabled in the output. \bye Some rejected crap follows. Only two of these symbols need special explanation: A user can pick the \p{other} dialect if his Scheme isn't listed in the choices that Scmxlate offers. The dialect \p{cl} isn't a Scheme dialect but Common Lisp. Scheme dialects do identified by human intervention, as there is (yet) no portable Scheme code to id the dialect. More than one file can be configured using Scmxlate. Just add the filenames to \p{dialects/files-to-be-ported.scm}. Customizing info tailored to each file can be added to the \p{dialects} directory as we have already described for the file \p{progfile}. Ie, an Scsh customization file for \p{anotherfile.ss} would be \p{dialects/scsh-anotherfile.ss}. \iffalse This kind of definition replacement is particularly useful when the target language is Common Lisp. For instance, let's say \p{progfile} contains the definition \q{ (define lassoc (lambda (k al equ?) (let loop ((al al)) (if (null? al) #f (let ((c (car al))) (if (equ? (car c) k) c (loop (cdr al)))))))) } Scmxlate will provide a complicated if working Common Lisp translation of the above code, but it will not be as simple as \q{ (defun lassoc (k al equ?) (assoc k al :test equ?)) } You can put this latter definition in \p{dialects/cl-progfile} -- where the symbol \q{cl} stands for Common Lisp -- and it will be used in preference to the default translation. \fi You may wish for some extra CL code to precede or follow the translated \p{progfile} code. For instance, you may wish to add some additional definitions before the translation to cover some MzScheme-specific procedures you may have used in \p{progfile}. Eg, \q{ (defun getenv (ev) (system::getenv ev)) } \n This can be placed in the file \p{dialects/cl-preamble-progfile}. CL code you want following the \p{progfile} code can be placed in \p{dialects/cl-postamble-progfile}. \subsection{Specifying Scheme dialects} The filename prefix \p{cl-} used in the previous example is used to identify configuration info for Common Lisp. If the target language is another Scheme dialect, rather than Common Lisp, you can follow a similar procedure, except that we need some way for the target Scheme to identify itself to Scmxlate. Scmxlate can tell if it is running in CL, but needs help in determining which particular Scheme dialect it is running. For example, let's say the target Scheme dialect is Guile. We create in \p{dialects} a file called \p{dialects-supported.scm} containing the line \p{ guile } Now if the user starts Guile in the \p{pkgdir} directory and loads \p{scmxlate.scm}, the following question will be asked: \p{ What is your Scheme dialect? (guile other) } Typing \p{guile} in response will cause Scmxlate to create a \p{my-progfile} that is the Guile translation of \p{progfile}. You can add additional Guile configuration info in the form of the files \p{guile-preamble-progfile}, \p{guile-procs-progfile}, and \p{guile-postamble-progfile}, exactly as for CL above. The user can use the symbol \p{other} if his Scheme dialect is not listed in \p{dialects-supported.scm} but he wants to configure the package anyway. The results may be variable. The configurer can also put in additional config info in the \p{dialects} directory using the \p{other-} prefix. You can certainly add a symbol of your own in \p{dialects-supported.scm}. Scmxlate will not know of it by default, but you can add additional configuration files using the appropriate prefix in \p{dialects}. \subsection{Configuring more than one file} You can of course configure more than one \p{progfile}. Simply add their names to the \p{dialects/files-to-be-ported.scm} directory. By default, the translated files will have the same names as the originals, but with the prefix \p{my-} in front of them. \subsection{To be described} Scmxlate-specific commands used in the configuration files: user-override-file operating-system dependencies Let us say you wrote a Scheme file named \p{progfile}\f{The Scheme file's name may have no or any extension. Thus, \p{newton-raphson}, \p{newton-raphson~}, \p{newton-raphson.bak}, \p{newton-raphson.scm}, \p{newton-raphson.ss}, \p{newton-raphson.java} are all acceptable filenames --- but the file's contents must be Scheme code.} in a directory \p{pkgdir}, and you package it off into a distribution which an end-user will unpack to produce a directory \p{pkgdir} of his own.
lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson -/ import data.list.join import data.set.lattice /-! # Languages This file contains the definition and operations on formal languages over an alphabet. Note strings are implemented as lists over the alphabet. The operations in this file define a [Kleene algebra](https://en.wikipedia.org/wiki/Kleene_algebra) over the languages. -/ open list set universes v variables {Ξ± Ξ² Ξ³ : Type*} /-- A language is a set of strings over an alphabet. -/ @[derive [has_mem (list Ξ±), has_singleton (list Ξ±), has_insert (list Ξ±), complete_boolean_algebra]] def language (Ξ±) := set (list Ξ±) namespace language variables {l m : language Ξ±} {a b x : list Ξ±} local attribute [reducible] language /-- Zero language has no elements. -/ instance : has_zero (language Ξ±) := ⟨(βˆ… : set _)⟩ /-- `1 : language Ξ±` contains only one element `[]`. -/ instance : has_one (language Ξ±) := ⟨{[]}⟩ instance : inhabited (language Ξ±) := ⟨0⟩ /-- The sum of two languages is their union. -/ instance : has_add (language Ξ±) := ⟨(βˆͺ)⟩ /-- The product of two languages `l` and `m` is the language made of the strings `x ++ y` where `x ∈ l` and `y ∈ m`. -/ instance : has_mul (language Ξ±) := ⟨image2 (++)⟩ lemma zero_def : (0 : language Ξ±) = (βˆ… : set _) := rfl lemma one_def : (1 : language Ξ±) = {[]} := rfl lemma add_def (l m : language Ξ±) : l + m = l βˆͺ m := rfl lemma mul_def (l m : language Ξ±) : l * m = image2 (++) l m := rfl /-- The star of a language `L` is the set of all strings which can be written by concatenating strings from `L`. -/ def star (l : language Ξ±) : language Ξ± := { x | βˆƒ S : list (list Ξ±), x = S.join ∧ βˆ€ y ∈ S, y ∈ l} lemma star_def (l : language Ξ±) : l.star = { x | βˆƒ S : list (list Ξ±), x = S.join ∧ βˆ€ y ∈ S, y ∈ l} := rfl @[simp] lemma not_mem_zero (x : list Ξ±) : x βˆ‰ (0 : language Ξ±) := id @[simp] lemma mem_one (x : list Ξ±) : x ∈ (1 : language Ξ±) ↔ x = [] := by refl lemma nil_mem_one : [] ∈ (1 : language Ξ±) := set.mem_singleton _ @[simp] lemma mem_add (l m : language Ξ±) (x : list Ξ±) : x ∈ l + m ↔ x ∈ l ∨ x ∈ m := iff.rfl lemma mem_mul : x ∈ l * m ↔ βˆƒ a b, a ∈ l ∧ b ∈ m ∧ a ++ b = x := mem_image2 lemma append_mem_mul : a ∈ l β†’ b ∈ m β†’ a ++ b ∈ l * m := mem_image2_of_mem lemma mem_star : x ∈ l.star ↔ βˆƒ S : list (list Ξ±), x = S.join ∧ βˆ€ y ∈ S, y ∈ l := iff.rfl lemma join_mem_star {S : list (list Ξ±)} (h : βˆ€ y ∈ S, y ∈ l) : S.join ∈ l.star := ⟨S, rfl, h⟩ lemma nil_mem_star (l : language Ξ±) : [] ∈ l.star := ⟨[], rfl, Ξ» _, false.elim⟩ instance : semiring (language Ξ±) := { add := (+), add_assoc := union_assoc, zero := 0, zero_add := empty_union, add_zero := union_empty, add_comm := union_comm, mul := (*), mul_assoc := Ξ» _ _ _, image2_assoc append_assoc, zero_mul := Ξ» _, image2_empty_left, mul_zero := Ξ» _, image2_empty_right, one := 1, one_mul := Ξ» l, by simp [mul_def, one_def], mul_one := Ξ» l, by simp [mul_def, one_def], nat_cast := Ξ» n, if n = 0 then 0 else 1, nat_cast_zero := rfl, nat_cast_succ := Ξ» n, by cases n; simp [nat.cast, add_def, zero_def], left_distrib := Ξ» _ _ _, image2_union_right, right_distrib := Ξ» _ _ _, image2_union_left } @[simp] lemma add_self (l : language Ξ±) : l + l = l := sup_idem /-- Maps the alphabet of a language. -/ def map (f : Ξ± β†’ Ξ²) : language Ξ± β†’+* language Ξ² := { to_fun := image (list.map f), map_zero' := image_empty _, map_one' := image_singleton, map_add' := image_union _, map_mul' := Ξ» _ _, image_image2_distrib $ map_append _ } @[simp] lemma map_id (l : language Ξ±) : map id l = l := by simp [map] @[simp] lemma map_map (g : Ξ² β†’ Ξ³) (f : Ξ± β†’ Ξ²) (l : language Ξ±) : map g (map f l) = map (g ∘ f) l := by simp [map, image_image] lemma star_def_nonempty (l : language Ξ±) : l.star = {x | βˆƒ S : list (list Ξ±), x = S.join ∧ βˆ€ y ∈ S, y ∈ l ∧ y β‰  []} := begin ext x, split, { rintro ⟨S, rfl, h⟩, refine ⟨S.filter (Ξ» l, Β¬list.empty l), by simp, Ξ» y hy, _⟩, rw [mem_filter, empty_iff_eq_nil] at hy, exact ⟨h y hy.1, hy.2⟩ }, { rintro ⟨S, hx, h⟩, exact ⟨S, hx, Ξ» y hy, (h y hy).1⟩ } end lemma le_mul_congr {l₁ lβ‚‚ m₁ mβ‚‚ : language Ξ±} : l₁ ≀ m₁ β†’ lβ‚‚ ≀ mβ‚‚ β†’ l₁ * lβ‚‚ ≀ m₁ * mβ‚‚ := begin intros h₁ hβ‚‚ x hx, simp only [mul_def, exists_and_distrib_left, mem_image2, image_prod] at hx ⊒, tauto end lemma le_add_congr {l₁ lβ‚‚ m₁ mβ‚‚ : language Ξ±} : l₁ ≀ m₁ β†’ lβ‚‚ ≀ mβ‚‚ β†’ l₁ + lβ‚‚ ≀ m₁ + mβ‚‚ := sup_le_sup lemma mem_supr {ΞΉ : Sort v} {l : ΞΉ β†’ language Ξ±} {x : list Ξ±} : x ∈ (⨆ i, l i) ↔ βˆƒ i, x ∈ l i := mem_Union lemma supr_mul {ΞΉ : Sort v} (l : ΞΉ β†’ language Ξ±) (m : language Ξ±) : (⨆ i, l i) * m = ⨆ i, l i * m := image2_Union_left _ _ _ lemma mul_supr {ΞΉ : Sort v} (l : ΞΉ β†’ language Ξ±) (m : language Ξ±) : m * (⨆ i, l i) = ⨆ i, m * l i := image2_Union_right _ _ _ lemma supr_add {ΞΉ : Sort v} [nonempty ΞΉ] (l : ΞΉ β†’ language Ξ±) (m : language Ξ±) : (⨆ i, l i) + m = ⨆ i, l i + m := supr_sup lemma add_supr {ΞΉ : Sort v} [nonempty ΞΉ] (l : ΞΉ β†’ language Ξ±) (m : language Ξ±) : m + (⨆ i, l i) = ⨆ i, m + l i := sup_supr lemma mem_pow {l : language Ξ±} {x : list Ξ±} {n : β„•} : x ∈ l ^ n ↔ βˆƒ S : list (list Ξ±), x = S.join ∧ S.length = n ∧ βˆ€ y ∈ S, y ∈ l := begin induction n with n ihn generalizing x, { simp only [mem_one, pow_zero, length_eq_zero], split, { rintro rfl, exact ⟨[], rfl, rfl, Ξ» y h, h.elim⟩ }, { rintro ⟨_, rfl, rfl, _⟩, refl } }, { simp only [pow_succ, mem_mul, ihn], split, { rintro ⟨a, b, ha, ⟨S, rfl, rfl, hS⟩, rfl⟩, exact ⟨a :: S, rfl, rfl, forall_mem_cons.2 ⟨ha, hS⟩⟩ }, { rintro ⟨_|⟨a, S⟩, rfl, hn, hS⟩; cases hn, rw forall_mem_cons at hS, exact ⟨a, _, hS.1, ⟨S, rfl, rfl, hS.2⟩, rfl⟩ } } end lemma star_eq_supr_pow (l : language Ξ±) : l.star = ⨆ i : β„•, l ^ i := begin ext x, simp only [mem_star, mem_supr, mem_pow], split, { rintro ⟨S, rfl, hS⟩, exact ⟨_, S, rfl, rfl, hS⟩ }, { rintro ⟨_, S, rfl, rfl, hS⟩, exact ⟨S, rfl, hS⟩ } end @[simp] lemma map_star (f : Ξ± β†’ Ξ²) (l : language Ξ±) : map f (star l) = star (map f l) := begin rw [star_eq_supr_pow, star_eq_supr_pow], simp_rw ←map_pow, exact image_Union, end lemma mul_self_star_comm (l : language Ξ±) : l.star * l = l * l.star := by simp only [star_eq_supr_pow, mul_supr, supr_mul, ← pow_succ, ← pow_succ'] @[simp] lemma one_add_self_mul_star_eq_star (l : language Ξ±) : 1 + l * l.star = l.star := begin simp only [star_eq_supr_pow, mul_supr, ← pow_succ, ← pow_zero l], exact sup_supr_nat_succ _ end @[simp] lemma one_add_star_mul_self_eq_star (l : language Ξ±) : 1 + l.star * l = l.star := by rw [mul_self_star_comm, one_add_self_mul_star_eq_star] lemma star_mul_le_right_of_mul_le_right (l m : language Ξ±) : l * m ≀ m β†’ l.star * m ≀ m := begin intro h, rw [star_eq_supr_pow, supr_mul], refine supr_le _, intro n, induction n with n ih, { simp }, rw [pow_succ', mul_assoc (l^n) l m], exact le_trans (le_mul_congr le_rfl h) ih, end lemma star_mul_le_left_of_mul_le_left (l m : language Ξ±) : m * l ≀ m β†’ m * l.star ≀ m := begin intro h, rw [star_eq_supr_pow, mul_supr], refine supr_le _, intro n, induction n with n ih, { simp }, rw [pow_succ, ←mul_assoc m l (l^n)], exact le_trans (le_mul_congr h le_rfl) ih end end language
module Issue117 where Setβ€² = Set record ⊀ : Setβ€² where data βŠ₯ : Setβ€² where
If $X$ is an increasing sequence of real numbers and $X_i \leq B$ for all $i$, then $X$ is bounded.
{-# OPTIONS --without-K #-} module sets.empty where open import level using () data βŠ₯ : Set where βŠ₯-elim : βˆ€ {i}{A : Set i} β†’ βŠ₯ β†’ A βŠ₯-elim () Β¬_ : βˆ€ {i} β†’ Set i β†’ Set i Β¬ X = X β†’ βŠ₯ infix 3 Β¬_
State Before: R : Type u S : Type v a b c d : R n✝ m : β„• inst✝ : Semiring R p✝ q r p : R[X] n : β„• hp : p β‰  0 ⊒ degree p = ↑n ↔ natDegree p = n State After: R : Type u S : Type v a b c d : R n✝ m : β„• inst✝ : Semiring R p✝ q r p : R[X] n : β„• hp : p β‰  0 ⊒ ↑(natDegree p) = ↑n ↔ natDegree p = n Tactic: rw [degree_eq_natDegree hp] State Before: R : Type u S : Type v a b c d : R n✝ m : β„• inst✝ : Semiring R p✝ q r p : R[X] n : β„• hp : p β‰  0 ⊒ ↑(natDegree p) = ↑n ↔ natDegree p = n State After: no goals Tactic: exact WithBot.coe_eq_coe
function nav=adjnav(nav,opt) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %adjust the wavelength of priority frequencies for BDS2 and BDS3 %eph and geph struct to eph and geph matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% global glc %adjust eph if nav.n>0 eph0=zeros(nav.n,40); for i=1:nav.n eph=nav.eph(i); eph0(i,:)=[eph.sat, eph.iode, eph.iodc, eph.sva, eph.svh, eph.week, eph.code, eph.flag, eph.toc.time, eph.toc.sec,... eph.toe.time, eph.toe.sec, eph.ttr.time, eph.ttr.sec, eph.A, eph.e, eph.i0, eph.OMG0, eph.omg, eph.M0,... eph.deln, eph.OMGd, eph.idot, eph.crc, eph.crs, eph.cuc, eph.cus, eph.cic, eph.cis, eph.toes,... eph.fit, eph.f0, eph.f1, eph.f2, eph.tgd, eph.Adot, eph.ndot]; end nav=rmfield(nav,'eph'); nav.eph=eph0; end %adjust geph if nav.ng>0 geph0=zeros(nav.ng,22); for i=1:nav.ng geph=nav.geph(i); geph0(i,:)=[geph.sat, geph.iode, geph.frq, geph.svh, geph.sva, geph.age, geph.toe.time, geph.toe.sec, geph.tof.time, geph.tof.sec,... geph.pos', geph.vel', geph.acc', geph.taun,... geph.gamn, geph.dtaun]; end nav=rmfield(nav,'geph'); nav.geph=geph0; end % adjust wavelength bds_frq_flag=1; lam=nav.lam; nav=rmfield(nav,'lam'); nav.lam=zeros(glc.MAXSAT,glc.NFREQ); if glc.NFREQ>3&&(size(opt.bd2frq,2)<=3||size(opt.bd3frq,2)<=3)&&~isempty(strfind(opt.navsys,'C')) bds_frq_flag=0; fprintf('Warning:Specified frequency of BDS less than used number of frequency!\n'); end for i=1:glc.MAXSAT [sys,prn]=satsys(i); if sys==glc.SYS_BDS if prn<19 %BD2 if ~bds_frq_flag,continue;end frq=opt.bd2frq; for j=1:glc.NFREQ nav.lam(i,j)=lam(i,frq(j)); end else %BD3 if ~bds_frq_flag,continue;end frq=opt.bd3frq; for j=1:glc.NFREQ nav.lam(i,j)=lam(i,frq(j)); end end else %GPS GLO GAL QZS nav.lam(i,:)=lam(i,1:3); end end return
#define int_p_NULL NULL #include <iostream> #include <boost/any.hpp> #include <boost/atomic.hpp> #include <boost/bimap.hpp> #include <boost/chrono.hpp> #include <boost/circular_buffer.hpp> #include <boost/container/deque.hpp> #include <boost/container/flat_map.hpp> #include <boost/container/flat_set.hpp> #include <boost/container/list.hpp> #include <boost/container/map.hpp> #include <boost/container/set.hpp> #include <boost/container/slist.hpp> #include <boost/container/stable_vector.hpp> #include <boost/container/string.hpp> #include <boost/container/vector.hpp> #include <boost/date_time.hpp> #include <boost/dynamic_bitset.hpp> #include <boost/filesystem.hpp> #include <boost/foreach.hpp> #include <boost/gil/rgb.hpp> #include <boost/gil/extension/io/png.hpp> #include <boost/interprocess/offset_ptr.hpp> #include <boost/intrusive/list.hpp> #include <boost/intrusive/set.hpp> #include <boost/intrusive/slist.hpp> #include <boost/logic/tribool.hpp> #include <boost/make_shared.hpp> #include <boost/multi_array.hpp> #include <boost/multi_index_container.hpp> #include <boost/multi_index/composite_key.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/number.hpp> #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/vector.hpp> #include <boost/numeric/ublas/vector_sparse.hpp> #include <boost/optional.hpp> #include <boost/property_tree/ptree.hpp> #include <boost/property_tree/json_parser.hpp> #include <boost/property_tree/xml_parser.hpp> #include <boost/ptr_container/ptr_array.hpp> #include <boost/ptr_container/ptr_deque.hpp> #include <boost/ptr_container/ptr_list.hpp> #include <boost/ptr_container/ptr_map.hpp> #include <boost/ptr_container/ptr_set.hpp> #include <boost/ptr_container/ptr_vector.hpp> #include <boost/rational.hpp> #include <boost/regex.hpp> #include <boost/scoped_array.hpp> #include <boost/scoped_ptr.hpp> #include <boost/shared_array.hpp> #include <boost/shared_ptr.hpp> #include <boost/unordered_map.hpp> #include <boost/unordered_set.hpp> #include <boost/uuid/uuid.hpp> #include <boost/uuid/uuid_generators.hpp> #include <boost/utility/string_view.hpp> #include <boost/utility/string_ref.hpp> #include <boost/utility/value_init.hpp> #include <boost/variant.hpp> #include <boost/weak_ptr.hpp> #include <gsl/gsl> void TestAtomic() { boost::atomic_flag f; f.test_and_set(); boost::atomic<int> a(5); } class Data { public: Data() : s(3), f(7.77f) {} int s; float f; void Test() {} }; void mallocDeleter(Data*& ptr) { if (ptr) { delete ptr; ptr=NULL; } } void TestPointerContainerLibrary() { boost::ptr_array<boost::nullable<Data>, 10> b; b.replace(0, new Data()); for(auto it = b.begin(); it!=b.end();it++) (*it); boost::ptr_vector<boost::nullable<Data>> d; d.push_back(new Data()); d.push_back(0); for(auto it = d.begin(); it!=d.end();it++) (*it); boost::ptr_map<int, Data> e; int ival = 33; e.insert(ival, new Data()); for(auto it = e.begin(); it!=e.end();it++) (*it); boost::ptr_list<Data> g; g.push_back(new Data()); for(auto it = g.begin(); it!=g.end();it++) (*it); boost::ptr_deque<Data> h; h.push_back(new Data()); for(auto it = h.begin(); it!=h.end();it++) (*it); boost::ptr_set<int> i; i.insert(new int(5)); for(auto it = i.begin(); it!=i.end();it++) (*it); boost::ptr_multimap<int, Data> k; k.insert(ival, new Data()); for(auto it = k.begin(); it!=k.end();it++) (*it); boost::ptr_multiset<int> l; l.insert(new int(5)); for(auto it = l.begin(); it!=l.end();it++) (*it); } void TestGil() { try { using namespace boost::gil; rgb8_image_t img; read_and_convert_image("test_image.png", img, png_tag()); using my_images_t = boost::mp11::mp_list<gray8_image_t, rgb8_image_t, gray16_image_t, rgb16_image_t>; any_image<my_images_t> dyn_img; read_image("test_image.png", dyn_img, png_tag()); auto view = flipped_up_down_view(const_view(dyn_img)); } catch (std::ios_base::failure) { } } void TestGregorian() { using namespace boost::gregorian; date weekstart(2002,Feb,1); date_duration duration = weeks(1); date weekend = weekstart + weeks(1); date d1 = day_clock::local_day(); date d2 = d1 + days(5); if (d2 >= d1) {} //date comparison operators date_period thisWeek(d1,d2); if (thisWeek.contains(d1)) {}//do something //iterate and print the week day_iterator itr(weekstart); while (itr <= weekend) { ++itr; } //US labor day is first Monday in Sept typedef nth_day_of_the_week_in_month nth_dow; nth_dow labor_day(nth_dow::first, Monday, Sep); labor_day.to_string(); //calculate a specific date for 2004 from functor date d3 = labor_day.get_date(2004); auto ds = to_simple_string(weekstart); auto ds3 = to_simple_string(d3); } void TestPosixTime() { using namespace boost::posix_time; boost::gregorian::date d(2002, boost::date_time::Feb, 1); //an arbitrary date ptime t1(d, hours(5) + millisec(100)); //date + time of day offset ptime t2 = t1 - minutes(4) + seconds(2); ptime now = second_clock::local_time(); //use the clock boost::gregorian::date today = now.date(); //Get the date part out of the time boost::gregorian::date tomorrow = today + boost::gregorian::date_duration(1); ptime tomorrow_start(tomorrow); //midnight auto ts = boost::posix_time::to_simple_string(tomorrow_start); //starting at current time iterator adds by one hour time_iterator titr(now, hours(1)); for (; titr < tomorrow_start; ++titr) { } } void TestLocalTime() { using namespace boost::local_time; using namespace boost::date_time; //setup some timezones for creating and adjusting times //first time zone uses the time zone file for regional timezone definitions tz_database tz_db; //tz_db.load_from_file("date_time_zonespec.csv"); time_zone_ptr nyc_tz = tz_db.time_zone_from_region("America/New_York"); //This timezone uses a posix time zone string definition to create a time zone posix_time_zone timezone("MST-07:00:00"); time_zone_ptr phx_tz(new posix_time_zone("MST-07:00:00")); //local departure time in phoenix is 11 pm on April 2 2005 // Note that New York changes to daylight savings on Apr 3 at 2 am) local_date_time phx_departure(boost::gregorian::date(2005, Apr, 2), boost::posix_time::hours(23), phx_tz, local_date_time::NOT_DATE_TIME_ON_ERROR); boost::posix_time::time_duration flight_length = boost::posix_time::hours(4) + boost::posix_time::minutes(30); local_date_time phx_arrival = phx_departure + flight_length; //convert the phx time to a nyz time local_date_time nyc_arrival = phx_arrival.local_time_in(nyc_tz); auto tzs = timezone.to_posix_string(); auto tds = boost::posix_time::to_simple_string(flight_length); } void TestContainers() { boost::dynamic_bitset<> x(70); x[0] = 1; x[1] = 1; x[4] = 1; boost::array<Data, 10> a; a[0] = Data(); auto r = boost::addressof(a); boost::circular_buffer<int> cb(3); // Insert some elements into the buffer. cb.push_back(1); cb.push_back(2); cb.push_back(3); cb.push_back(4); for(boost::circular_buffer<int>::const_iterator it = cb.begin(); it!=cb.end();it++) (*it); using namespace boost::container; vector<int> v; v.push_back(100); for (vector<int>::const_iterator it = v.cbegin(); it != v.cend(); it++) (*it); stable_vector<int> sv; sv.push_back(100); for (stable_vector<int>::const_iterator it = sv.cbegin(); it != sv.cend(); it++) (*it); deque<int> d; d.push_back(100); for (deque<int>::const_iterator it = d.begin(); it != d.end();it++) (*it); flat_map<int, int> fm; fm.insert(std::make_pair(100, 1000)); for(flat_map<int, int>::const_iterator it = fm.begin(); it!=fm.end();it++) (*it); flat_set<int> fs; fs.insert(100); for(flat_set<int>::const_iterator it = fs.begin(); it!=fs.end();it++) (*it); // use intrusive data list<int> l; l.push_back(100); for (auto it = l.cbegin(); it != l.cend(); it++) *it; slist<int> sl; sl.push_front(100); for(slist<int>::const_iterator it = sl.begin(); it!=sl.end();it++) (*it); map<int, int> m; m[100] = 1000; for (map<int, int>::const_iterator it = m.begin(); it != m.end(); it++) (*it); set<int> s; s.insert(100); for(set<int>::const_iterator it = s.begin(); it!=s.end();it++) (*it); basic_string<char> str("dsfsdf"); basic_string<char> str2("lk;lgdfkg;lka;glk''l;'sfgllllllllllllllllllllllllllllllllllll;f"); basic_string<wchar_t> wstr(L"dsfsdf"); basic_string<wchar_t> wstr2(L"lk;lgdfkg;lka;glk''l;'sfgllllllllllllllllllllllllllllllllllll;f"); } void TestInterprocess() { using namespace boost::interprocess; struct structure { int integer1; //The compiler places this at offset 0 in the structure offset_ptr<int> ptr; //The compiler places this at offset 4 in the structure int integer2; //The compiler places this at offset 8 in the structure }; structure s; s.integer1 = 33; s.integer2 = 77; //Assign the address of "integer1" to "ptr". //"ptr" will store internally "-4": // (char*)&s.integer1 - (char*)&s.ptr; s.ptr = &s.integer1; //Assign the address of "integer2" to "ptr". //"ptr" will store internally "4": // (char*)&s.integer2 - (char*)&s.ptr; s.ptr = &s.integer2; } class MyClass : public boost::intrusive::list_base_hook<> //This is a derivation hook { int int_; public: //This is a member hook boost::intrusive::list_member_hook<> member_hook_; MyClass(int i) : int_(i) {} }; //This is a base hook class MyClassS : public boost::intrusive::slist_base_hook<> { int int_; public: //This is a member hook boost::intrusive::slist_member_hook<> member_hook_; MyClassS(int i) : int_(i) {} }; void TestIntrusiveList() { //Define a list that will store MyClass using the public base hook typedef boost::intrusive::list<MyClass> BaseList; //Define a list that will store MyClass using the public member hook typedef boost::intrusive::list< MyClass , boost::intrusive::member_hook< MyClass, boost::intrusive::list_member_hook<>, &MyClass::member_hook_> > MemberList; using namespace boost::intrusive; BaseList baselist; MyClass val1(100); //Now insert them in the reverse order in the base hook list baselist.push_front(val1); for (auto it = baselist.begin(); it != baselist.end(); it++) { *it; } MemberList memberlist; MyClass val2(100); //Now insert them in the same order as in vector in the member hook list memberlist.push_back(val2); for (auto it = memberlist.begin(); it != memberlist.end(); it++) { *it; } //Define an slist that will store MyClass using the public base hook typedef slist<MyClassS> BaseListS; //Define an slist that will store MyClass using the public member hook typedef member_hook<MyClassS, slist_member_hook<>, &MyClassS::member_hook_> MemberOptionS; typedef slist<MyClassS, MemberOptionS> MemberListS; BaseListS baselists; MyClassS vals1(200); //Now insert them in the reverse order in the base hook list baselists.push_front(vals1); for (auto it = baselists.begin(); it != baselists.end(); it++) { *it; } MemberListS memberlists; MyClassS vals2(300); //Now insert them in the same order as in vector in the member hook list memberlists.push_front(vals2); for (auto it = memberlists.begin(); it != memberlists.end(); it++) { *it; } // Clearing the containers means we avoid the boost debug assertion for // a safe_link hook that checks whether the contained object is still // linked to a container when the object is deleted. baselists.clear(); memberlists.clear(); baselist.clear(); memberlist.clear(); } struct Belem : public boost::intrusive::set_base_hook<> { int mval; Belem(int val) : mval(val) {} bool operator<(const Belem& other) const { return mval < other.mval; } bool operator>(const Belem& other) const { return mval > other.mval; } bool operator==(const Belem& other) const { return mval == other.mval; } }; void TestIntrusiveSet_BaseHook() { typedef boost::intrusive::set<Belem> Container; Container container; Belem belem1(1); Belem belem2(2); container.insert(belem1); container.insert(belem2); Container::iterator itr = container.begin(); Container::const_iterator citr = container.begin(); Container::iterator enditr = container.end(); container.clear(); } struct Melem { int mval; boost::intrusive::set_member_hook<> mhook; Melem(int val) : mval(val) {} bool operator<(const Melem& other) const { return mval < other.mval; } bool operator>(const Melem& other) const { return mval > other.mval; } bool operator==(const Melem& other) const { return mval == other.mval; } }; void TestIntrusiveSet_MemberHook() { typedef boost::intrusive::member_hook<Melem, boost::intrusive::set_member_hook<>, &Melem::mhook> MemberHookOptions; typedef boost::intrusive::set<Melem, MemberHookOptions> MContainer; MContainer container; Melem melem1(1); Melem melem2(2); container.insert(melem1); container.insert(melem2); MContainer::iterator itr = container.begin(); MContainer::const_iterator citr = container.begin(); container.clear(); } struct Belem_NoSz : public boost::intrusive::set_base_hook<> { int mval; Belem_NoSz(int val) : mval(val) {} bool operator<(const Belem_NoSz& other) const { return mval < other.mval; } bool operator>(const Belem_NoSz& other) const { return mval > other.mval; } bool operator==(const Belem_NoSz& other) const { return mval == other.mval; } }; void TestIntrusiveSet_BaseHook_NoSizeMember() { typedef boost::intrusive::set<Belem_NoSz, boost::intrusive::constant_time_size<false> > Container_NoSz; Container_NoSz container; Belem_NoSz belem1(1); Belem_NoSz belem2(2); container.insert(belem1); container.insert(belem2); Container_NoSz::iterator itr = container.begin(); Container_NoSz::const_iterator citr = container.begin(); container.clear(); } struct Melem_NoSz { int mval; boost::intrusive::set_member_hook<> mhook; Melem_NoSz(int val) : mval(val) {} bool operator<(const Melem_NoSz& other) const { return mval < other.mval; } bool operator>(const Melem_NoSz& other) const { return mval > other.mval; } bool operator==(const Melem_NoSz& other) const { return mval == other.mval; } }; void TestIntrusiveSet_MemberHook_NoSizeMember() { typedef boost::intrusive::member_hook<Melem_NoSz, boost::intrusive::set_member_hook<>, &Melem_NoSz::mhook> MemberHookOptions_NoSz; typedef boost::intrusive::set<Melem_NoSz, MemberHookOptions_NoSz, boost::intrusive::constant_time_size<false> > MContainer_NoSz; MContainer_NoSz container; Melem_NoSz melem1(1); Melem_NoSz melem2(2); container.insert(melem1); container.insert(melem2); MContainer_NoSz::iterator itr = container.begin(); MContainer_NoSz::const_iterator citr = container.begin(); container.clear(); } void TestIntrusiveSet() { TestIntrusiveSet_BaseHook(); TestIntrusiveSet_MemberHook(); TestIntrusiveSet_BaseHook_NoSizeMember(); TestIntrusiveSet_MemberHook_NoSizeMember(); } void TestMultiArray() { // Create a 3D array that is 3 x 4 x 2 typedef boost::multi_array<double, 3> array_type; typedef array_type::index index; array_type A(boost::extents[3][4][2]); // Assign values to the elements for (index i = 0; i != 3; ++i) for (index j = 0; j != 4; ++j) for (index k = 0; k != 2; ++k) A[i][j][k] = i * 100 + j * 10 + k; typedef boost::multi_array<double, 2> array_type_2D; array_type_2D myarray(boost::extents[3][4]); typedef boost::multi_array_types::index_range range; array_type_2D::array_view<2>::type myview = myarray[boost::indices[range(1, 3)][range(0, 4, 2)]]; for (array_type_2D::index i = 0; i != 2; ++i) for (array_type_2D::index j = 0; j != 2; ++j) myview[i][j]; } void TestMultiIndex() { using boost::multi_index_container; using namespace boost::multi_index; /* an employee record holds its ID, name and age */ struct employee { int id; std::string name; int age; employee(int id_, std::string name_, int age_) :id(id_), name(name_), age(age_) {} }; /* tags for accessing the corresponding indices of employee_set */ struct id {}; struct name {}; struct age {}; struct member {}; /* see Compiler specifics: Use of member_offset for info on * BOOST_MULTI_INDEX_MEMBER */ /* Define a multi_index_container of employees with following indices: * - a unique index sorted by employee::int, * - a non-unique index sorted by employee::name, * - a non-unique index sorted by employee::age. */ typedef multi_index_container< employee, indexed_by< ordered_unique< tag<id>, BOOST_MULTI_INDEX_MEMBER(employee, int, id)>, ordered_non_unique< tag<name>, BOOST_MULTI_INDEX_MEMBER(employee, std::string, name)>, ordered_non_unique< tag<age>, BOOST_MULTI_INDEX_MEMBER(employee, int, age)> > > employee_set; employee_set es; es.insert(employee(0, "Joe", 31)); es.insert(employee(1, "Robert", 27)); es.insert(employee(2, "John", 40)); es.insert(employee(2, "Aristotle", 2387)); es.insert(employee(3, "Albert", 20)); es.insert(employee(4, "John", 57)); } void TestMultiprecision() { boost::multiprecision::cpp_int n("1522605"); boost::multiprecision::cpp_int n2("15226050279"); boost::multiprecision::cpp_int n3("152260502792253336053561837813263742971806"); boost::multiprecision::cpp_dec_float_50 nf("152260502792253336.053561837813263742971806"); boost::multiprecision::cpp_dec_float_100 nf100("1522605027922533.36053561837813263742971806"); } void display(int depth, boost::property_tree::ptree& tree) { using boost::property_tree::ptree; if (tree.empty()) return; for (ptree::iterator pos = tree.begin(); pos != tree.end(); ++pos) { //std::cout << pos->first << "\n"; display(depth + 1, pos->second); } } void TestPropertyTree() { using boost::property_tree::ptree; ptree pt; std::ifstream input("test.xml"); read_xml(input, pt); display(0, pt); std::stringstream ss; const char * json_string = R"( { "particles": [ { "electron": { "pos": [ 0, 0, 0 ], "vel": [ 0, 0, 0 ] }, "proton": { "pos": [ -1, 0, 0 ], "vel": [ 0, -0.1, -0.1 ] } } ] } )"; ss << json_string; ptree pt_json; read_json(ss, pt_json); display(0, pt_json); } void TestRational() { boost::rational<int> r(15, 3); boost::rational<int> r2(5, 10); } void TestRegex() { boost::regex e("a(b+|((c)*))+d"); std::string text("abd"); boost::smatch what; boost::regex_match(text, what, e, boost::match_extra); } void TestSmartPointers() { boost::scoped_ptr<Data> ptr(new Data()); ptr->Test(); boost::scoped_array<Data> ptrAr(new Data[10]()); ptrAr[0].Test(); boost::shared_ptr<Data> shPtr(new Data()); shPtr->Test(); boost::weak_ptr<Data> weakPtr(shPtr); shPtr.reset(); boost::shared_ptr<Data> shPtrEx(new Data(), mallocDeleter); shPtrEx->Test(); boost::shared_array<Data> shPtrAr(new Data[10]()); shPtrAr[0].Test(); } void TestUblas() { using namespace boost::numeric::ublas; vector<double> v(3); mapped_vector<double> mv(3, 3); mv[2] = 2.0; mv[1] = 4.0; compressed_vector<double> cv(3, 3); cv[2] = 102.0; cv[1] = 101.0; cv[0] = 100.0; coordinate_vector<double> rv(3, 3); rv[2] = 102.0; rv[1] = 101.0; rv[0] = 100.0; matrix<double> m(3, 4); for (int i = 0; i < 3; i++) for (int j = 0; j < 4; j++) m(i, j) = i * 100 + j; identity_matrix<double> im(3); zero_matrix<double> zm(3, 3); scalar_matrix<double> sm(3, 3); } void TestUnordered() { boost::unordered_map<std::string, int> um; um["hfh"] = 73576; um["jgfsjsf"] = 65; boost::unordered_map<std::string, boost::unordered_set<int> > um2; um2["dsfgal;sg"].insert(43534); um2["dsfgal;sg"].insert(563); um2["'/lreg"].insert(646); um2["lfdhk"].insert(752); boost::unordered_multimap<std::string, int> umm; umm.insert(std::make_pair(std::string("sdhsh"), 73576)); umm.insert(std::make_pair(std::string("sdhsh"), 34578)); umm.insert(std::make_pair(std::string("jfsg"), 2)); auto p = *um.begin(); boost::unordered_set<int> us; us.insert(5); us.insert(6543765); us.insert(468); boost::unordered_multiset<int> uss; uss.insert(63); uss.insert(63); uss.insert(8568); } void TestValueInitialized() { boost::value_initialized<int> vi_int; boost::value_initialized<double> vi_double; // vi_int == 0 and vi_double == 0.0 // change values get(vi_int) = 42; get(vi_double) = 12.34; } class visitor : public boost::static_visitor < > { public: template <typename T> void operator()(T & i) const { i; } }; void TestVariantAnyOptional() { boost::variant<int, std::string, Data> var("gdsg"); var = 4; boost::variant<int, std::string, Data, bool> var2(false); var2 = 4; typedef boost::make_recursive_variant < int, std::string, std::vector < boost::recursive_variant_ > > ::type int_tree_t; std::vector< int_tree_t > subresult; subresult.push_back("sadsad"); subresult.push_back(5); int_tree_t vartt; vartt = subresult; std::vector < int_tree_t >& v = boost::get<std::vector < int_tree_t >>(vartt); v[0] = 10; std::vector< int_tree_t > result; result.push_back(1); result.push_back(subresult); result.push_back("ahgsh"); // TODO: result[1] doesn't work ATM, cannot detect when boost::variant use boost::recursive_wrapper boost::apply_visitor(visitor(), result[1]); result.push_back(7); // boost::mpl::vector not supported for boost >= 1.66 typedef boost::mpl::vector4<int, std::string, Data, bool> vec4_t; boost::make_variant_over<vec4_t>::type variant_from_mpl_v4; // now contains int variant_from_mpl_v4 = std::string("Hello word!"); typedef boost::mpl::vector<Data, std::string, int, bool, double> vec_t; boost::make_variant_over<vec_t>::type variant_from_mpl_v; // now contains Data variant_from_mpl_v = true; variant_from_mpl_v = variant_from_mpl_v4; // Testing variant representation on BIG MPL vectors typedef boost::mpl::vector20 < boost::array<char, 1>, boost::array<char, 2>, boost::array<char, 3>, boost::array<char, 4>, boost::array<char, 5>, boost::array<char, 6>, boost::array<char, 7>, boost::array<char, 8>, boost::array<char, 9>, boost::array<char, 10>, boost::array<char, 11>, boost::array<char, 12>, boost::array<char, 13>, boost::array<char, 14>, boost::array<char, 15>, boost::array<char, 16>, boost::array<char, 17>, boost::array<char, 18>, boost::array<char, 19>, boost::array < char, 20 > > vec20_t; boost::make_variant_over<vec20_t>::type variant20; variant20 = boost::array<char, 19>(); boost::any valany = 4; valany = std::string("fdsfsd"); valany = true; int val = 5; boost::optional<int> opt = 4; boost::optional<int&> optRef; optRef = val; const char* str = "very long string"; const wchar_t* wstr = L"very long string"; boost::string_view sv(str+5, 4); boost::wstring_view wsv(wstr + 5, 4); boost::string_ref rsv(str + 5, 4); boost::wstring_ref rwsv(wstr + 5, 4); } void TestGsl() { std::array<int, 5> a{ 0, 1, 2, 3, 4}; gsl::span<int> a_sp(&a[2], &a[4]); gsl::span<int, 2> a_ssp(&a[2], &a[4]); std::string s("abcdefghi"); gsl::string_span<> str_sp(&s[3], 3); gsl::string_span<3> str_sps(&s[3], 3); } int main(int argc, const char* argv[]) { struct s {}; boost::filesystem::path p (argv[0]); // p reads clearer than argv[1] in the following code boost::filesystem::file_status status; if (boost::filesystem::exists(p)) // does p actually exist? { boost::filesystem::directory_iterator dit; dit = boost::filesystem::directory_iterator(p.parent_path()); dit; } boost::tribool b(true); b = false; b = boost::indeterminate; boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now(); for ( long i = 0; i < 10000000; ++i ) std::sqrt( 123.456L ); // burn some time boost::chrono::duration<double, boost::ratio<2,1>> sec = boost::chrono::system_clock::now() - start; auto tupl = boost::make_tuple(1, "terterwt", true); std::pair<int const, bool> p1; std::pair<int const, s> p2; std::pair<int const, const s> p3; std::pair<int const, s*> p4; std::pair<int const, boost::tribool> p5; std::pair<int const, boost::filesystem::path> p6; std::pair<int const, boost::unordered_set<int>> p7; std::pair<int const, std::unique_ptr<s>> p8; boost::uuids::string_generator gen; boost::uuids::uuid u1 = gen("{92EC2A54-C1FA-42CB-B9F9-2602D507AD17}"); TestAtomic(); TestContainers(); TestGil(); TestGregorian(); TestInterprocess(); TestIntrusiveList(); TestIntrusiveSet(); TestLocalTime(); TestMultiArray(); TestMultiIndex(); TestMultiprecision(); TestPointerContainerLibrary(); TestPosixTime(); TestPropertyTree(); TestRational(); TestRegex(); TestSmartPointers(); TestUblas(); TestUnordered(); TestValueInitialized(); TestVariantAnyOptional(); TestGsl(); return EXIT_SUCCESS; }
If $f$ and $g$ tend to $a$ and $b$, respectively, then $f^g$ tends to $a^b$.
//This does CELL (~soma) stage of minimal GRU (gated recurrent unit) model. //This requires each neuron to have 2 input time series, X and Xf, //where X is the usual input and Xf the input for the forget-gate. //Both X and Xf are the output of a linear IN stage (weights and baises). //For dim=0: F[:,t] = sig(Xf[:,t] + Uf*Y[:,t-1]) // H[:,t] = F[:,t].*Y[:,t-1] // Y[:,t] = H[:,t] + (1-F[:,t]).*tanh(X[:,t] + U*H[:,t]) // //For dim=1: F[t,:] = sig(Xf[t,:] + Y[t-1,:]*Uf) // H[t,:] = F[t,:].*Y[t-1,:] // Y[t,:] = H[t,:] + (1-F[t,:]).*tanh(X[t,:] + H[t,:]*U) // //where sig is the logistic (sigmoid) nonlinearity = 1/(1+exp(-x)), //F is the forget gate signal, H is an intermediate vector, //U and Uf are NxN update matrices, and Y is the output. //Note that, the neurons of a layer are independent only if U and Uf are diagonal matrices. //This is only really a CELL (~soma) stage in that case. #include <stdio.h> #include <stdlib.h> #include <math.h> #include <cblas.h> #ifdef __cplusplus namespace codee { extern "C" { #endif int gru_min2_s (float *Y, const float *X, const float *Xf, const float *U, const float *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim); int gru_min2_d (double *Y, const double *X, const double *Xf, const double *U, const double *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim); int gru_min2_inplace_s (float *X, const float *Xf, const float *U, const float *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim); int gru_min2_inplace_d (double *X, const double *Xf, const double *U, const double *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim); int gru_min2_s (float *Y, const float *X, const float *Xf, const float *U, const float *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim) { const float o = 1.0f; size_t nT, tN; float *F, *H; if (!(F=(float *)malloc(N*sizeof(float)))) { fprintf(stderr,"error in gru_min2_s: problem with malloc. "); perror("malloc"); return 1; } if (!(H=(float *)malloc(N*sizeof(float)))) { fprintf(stderr,"error in gru_min2_s: problem with malloc. "); perror("malloc"); return 1; } if (N==1u) { F[0] = 1.0f / (1.0f+expf(-Xf[0])); Y[0] = (1.0f-F[0]) * tanhf(X[0]); for (size_t t=1; t<T; ++t) { F[0] = 1.0f / (1.0f+expf(-Xf[t]-Uf[0]*Y[t-1])); H[0] = F[0] * Y[t-1]; Y[t] = H[0] + (1.0f-F[0])*tanhf(X[t]+U[0]*H[0]); } } else if (dim==0u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-Xf[n])); Y[n] = (1.0f-F[n]) * tanhf(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_scopy((int)N,&Xf[tN],1,F,1); cblas_sgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&Y[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * Y[tN-N+n]; } cblas_scopy((int)N,&X[tN],1,&Y[tN],1); cblas_sgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[tN],1); for (size_t n=0u; n<N; ++n) { Y[tN+n] = H[n] + (1.0f-F[n])*tanhf(Y[tN+n]); } } } else { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0f / (1.0f+expf(-Xf[nT])); Y[nT] = (1.0f-F[n]) * tanhf(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_scopy((int)N,&Xf[t],(int)T,F,1); cblas_sgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&Y[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * Y[t-1+n*T]; } cblas_scopy((int)N,&X[t],(int)T,&Y[t],(int)T); cblas_sgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; Y[t+nT] = H[n] + (1.0f-F[n])*tanhf(Y[t+nT]); } } } } else if (dim==1u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0f / (1.0f+expf(-Xf[nT])); Y[nT] = (1.0f-F[n]) * tanhf(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_scopy((int)N,&Xf[t],(int)T,F,1); cblas_sgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&Y[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * Y[t-1+n*T]; } cblas_scopy((int)N,&X[t],(int)T,&Y[t],(int)T); cblas_sgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; Y[t+nT] = H[n] + (1.0f-F[n])*tanhf(Y[t+nT]); } } } else { for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-Xf[n])); Y[n] = (1.0f-F[n]) * tanhf(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_scopy((int)N,&Xf[tN],1,F,1); cblas_sgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&Y[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * Y[tN-N+n]; } cblas_scopy((int)N,&X[tN],1,&Y[tN],1); cblas_sgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[tN],1); for (size_t n=0u; n<N; ++n) { Y[tN+n] = H[n] + (1.0f-F[n])*tanhf(Y[tN+n]); } } } } else { fprintf(stderr,"error in gru_min2_s: dim must be 0 or 1.\n"); return 1; } return 0; } int gru_min2_d (double *Y, const double *X, const double *Xf, const double *U, const double *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim) { const double o = 1.0; size_t nT, tN; double *F, *H; if (!(F=(double *)malloc(N*sizeof(double)))) { fprintf(stderr,"error in gru_min2_d: problem with malloc. "); perror("malloc"); return 1; } if (!(H=(double *)malloc(N*sizeof(double)))) { fprintf(stderr,"error in gru_min2_d: problem with malloc. "); perror("malloc"); return 1; } if (N==1u) { F[0] = 1.0 / (1.0+exp(-X[0])); Y[0] = (1.0-F[0]) * tanh(X[0]); for (size_t t=1; t<T; ++t) { F[0] = 1.0 / (1.0+exp(-X[t]-Uf[0]*Y[t-1])); H[0] = F[0] * Y[t-1]; Y[t] = H[0] + (1.0-F[0])*tanh(X[t]+U[0]*H[0]); } } else if (dim==0u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-Xf[n])); Y[n] = (1.0-F[n]) * tanh(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_dcopy((int)N,&Xf[tN],1,F,1); cblas_dgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&Y[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * Y[tN-N+n]; } cblas_dcopy((int)N,&X[tN],1,&Y[tN],1); cblas_dgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[tN],1); for (size_t n=0u; n<N; ++n) { Y[tN+n] = H[n] + (1.0-F[n])*tanh(Y[tN+n]); } } } else { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0 / (1.0+exp(-Xf[nT])); Y[nT] = (1.0-F[n]) * tanh(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_dcopy((int)N,&Xf[t],(int)T,F,1); cblas_dgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&Y[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * Y[t-1+n*T]; } cblas_dcopy((int)N,&X[t],(int)T,&Y[t],(int)T); cblas_dgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; Y[t+nT] = H[n] + (1.0-F[n])*tanh(Y[t+nT]); } } } } else if (dim==1u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0 / (1.0+exp(-Xf[nT])); Y[nT] = (1.0-F[n]) * tanh(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_dcopy((int)N,&Xf[t],(int)T,F,1); cblas_dgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&Y[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * Y[t-1+n*T]; } cblas_dcopy((int)N,&X[t],(int)T,&Y[t],(int)T); cblas_dgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; Y[t+nT] = H[n] + (1.0-F[n])*tanh(Y[t+nT]); } } } else { for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-Xf[n])); Y[n] = (1.0-F[n]) * tanh(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_dcopy((int)N,&Xf[tN],1,F,1); cblas_dgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&Y[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * Y[tN-N+n]; } cblas_dcopy((int)N,&X[tN],1,&Y[tN],1); cblas_dgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&Y[tN],1); for (size_t n=0u; n<N; ++n) { Y[tN+n] = H[n] + (1.0-F[n])*tanh(Y[tN+n]); } } } } else { fprintf(stderr,"error in gru_min2_d: dim must be 0 or 1.\n"); return 1; } return 0; } int gru_min2_inplace_s (float *X, const float *Xf, const float *U, const float *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim) { const float o = 1.0f; size_t nT, tN; float *F, *H; if (!(F=(float *)malloc(N*sizeof(float)))) { fprintf(stderr,"error in gru_min2_inplace_s: problem with malloc. "); perror("malloc"); return 1; } if (!(H=(float *)malloc(N*sizeof(float)))) { fprintf(stderr,"error in gru_min2_inplace_s: problem with malloc. "); perror("malloc"); return 1; } if (N==1u) { F[0] = 1.0f / (1.0f+expf(-X[0])); X[0] = (1.0f-F[0]) * tanhf(X[0]); for (size_t t=1; t<T; ++t) { F[0] = 1.0f / (1.0f+expf(-X[t]-Uf[0]*X[t-1])); H[0] = F[0]*X[t-1]; X[t] = H[0] + (1.0f-F[0])*tanhf(X[t]+U[0]*H[0]); } } else if (dim==0u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-Xf[n])); X[n] = (1.0f-F[n]) * tanhf(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_scopy((int)N,&Xf[tN],1,F,1); cblas_sgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&X[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * X[tN-N+n]; } cblas_sgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[tN],1); for (size_t n=0u; n<N; ++n) { X[tN+n] = H[n] + (1.0f-F[n])*tanhf(X[tN+n]); } } } else { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0f / (1.0f+expf(-Xf[nT])); X[nT] = (1.0f-F[n]) * tanhf(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_scopy((int)N,&Xf[t],(int)T,F,1); cblas_sgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&X[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * X[t-1+n*T]; } cblas_sgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; X[t+nT] = H[n] + (1.0f-F[n])*tanhf(X[t+nT]); } } } } else if (dim==1u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0f / (1.0f+expf(-Xf[nT])); X[nT] = (1.0f-F[n]) * tanhf(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_scopy((int)N,&Xf[t],(int)T,F,1); cblas_sgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&X[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * X[t-1+n*T]; } cblas_sgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; X[t+nT] = H[n] + (1.0f-F[n])*tanhf(X[t+nT]); } } } else { for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-Xf[n])); X[n] = (1.0f-F[n]) * tanhf(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_scopy((int)N,&Xf[tN],1,F,1); cblas_sgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&X[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0f / (1.0f+expf(-F[n])); H[n] = F[n] * X[tN-N+n]; } cblas_sgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[tN],1); for (size_t n=0u; n<N; ++n) { X[tN+n] = H[n] + (1.0f-F[n])*tanhf(X[tN+n]); } } } } else { fprintf(stderr,"error in gru_min2_inplace_s: dim must be 0 or 1.\n"); return 1; } return 0; } int gru_min2_inplace_d (double *X, const double *Xf, const double *U, const double *Uf, const size_t N, const size_t T, const char iscolmajor, const size_t dim) { const double o = 1.0; size_t nT, tN; double *F, *H; if (!(F=(double *)malloc(N*sizeof(double)))) { fprintf(stderr,"error in gru_min2_inplace_d: problem with malloc. "); perror("malloc"); return 1; } if (!(H=(double *)malloc(N*sizeof(double)))) { fprintf(stderr,"error in gru_min2_inplace_d: problem with malloc. "); perror("malloc"); return 1; } if (N==1u) { F[0] = 1.0 / (1.0+exp(-X[0])); X[0] = (1.0-F[0]) * tanh(X[0]); for (size_t t=1; t<T; ++t) { F[0] = 1.0 / (1.0+exp(-X[t]-Uf[0]*X[t-1])); H[0] = F[0]*X[t-1]; X[t] = H[0] + (1.0-F[0])*tanh(X[t]+U[0]*H[0]); } } else if (dim==0u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-Xf[n])); X[n] = (1.0-F[n]) * tanh(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_dcopy((int)N,&Xf[tN],1,F,1); cblas_dgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&X[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * X[tN-N+n]; } cblas_dgemv(CblasColMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[tN],1); for (size_t n=0u; n<N; ++n) { X[tN+n] = H[n] + (1.0-F[n])*tanh(X[tN+n]); } } } else { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0 / (1.0+exp(-Xf[nT])); X[nT] = (1.0-F[n]) * tanh(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_dcopy((int)N,&Xf[t],(int)T,F,1); cblas_dgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,Uf,(int)N,&X[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * X[t-1+n*T]; } cblas_dgemv(CblasRowMajor,CblasNoTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; X[t+nT] = H[n] + (1.0-F[n])*tanh(X[t+nT]); } } } } else if (dim==1u) { if (iscolmajor) { for (size_t n=0u; n<N; ++n) { nT = n*T; F[n] = 1.0 / (1.0+exp(-Xf[nT])); X[nT] = (1.0-F[n]) * tanh(X[nT]); } for (size_t t=1; t<T; ++t) { cblas_dcopy((int)N,&Xf[t],(int)T,F,1); cblas_dgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&X[t-1],(int)T,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * X[t-1+n*T]; } cblas_dgemv(CblasColMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[t],(int)T); for (size_t n=0u; n<N; ++n) { nT = n*T; X[t+nT] = H[n] + (1.0-F[n])*tanh(X[t+nT]); } } } else { for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-Xf[n])); X[n] = (1.0-F[n]) * tanh(X[n]); } for (size_t t=1; t<T; ++t) { tN = t*N; cblas_dcopy((int)N,&Xf[tN],1,F,1); cblas_dgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,Uf,(int)N,&X[tN-N],1,o,F,1); for (size_t n=0u; n<N; ++n) { F[n] = 1.0 / (1.0+exp(-F[n])); H[n] = F[n] * X[tN-N+n]; } cblas_dgemv(CblasRowMajor,CblasTrans,(int)N,(int)N,o,U,(int)N,H,1,o,&X[tN],1); for (size_t n=0u; n<N; ++n) { X[tN+n] = H[n] + (1.0-F[n])*tanh(X[tN+n]); } } } } else { fprintf(stderr,"error in gru_min2_inplace_d: dim must be 0 or 1.\n"); return 1; } return 0; } #ifdef __cplusplus } } #endif
function smallpot = marginalize_pot(bigpot, keep, maximize, useC) % MARGINALIZE_POT Marginalize a cpot onto a smaller domain. % smallpot = marginalize_pot(bigpot, keep, maximize, useC) % % The maximize argument is ignored - maxing out a Gaussian is the same as summing it out, % since the mode and mean are equal. % The useC argument is ignored. node_sizes = sparse(1, max(bigpot.domain)); node_sizes(bigpot.domain) = bigpot.sizes; sum_over = mysetdiff(bigpot.domain, keep); if sum(node_sizes(sum_over))==0 % isempty(sum_over) %smallpot = bigpot; smallpot = cpot(keep, node_sizes(keep), bigpot.g, bigpot.h, bigpot.K); else [h1, h2, K11, K12, K21, K22] = partition_matrix_vec(bigpot.h, bigpot.K, sum_over, keep, node_sizes); n = length(h1); K11inv = inv(K11); g = bigpot.g + 0.5*(n*log(2*pi) - log(det(K11)) + h1'*K11inv*h1); if length(h2) > 0 % ~isempty(keep) % we are are actually keeping something A = K21*K11inv; h = h2 - A*h1; K = K22 - A*K12; else h = []; K = []; end smallpot = cpot(keep, node_sizes(keep), g, h, K); end
Address(Stanford Place) is a residential Culdesacs culdesac in Central Davis. Intersecting Streets Sycamore Lane and across the intersection Stanford Drive
% book : Signals and Systems Laboratory with MATLAB % authors : Alex Palamides & Anastasia Veloni % % % % Transformations of the time variable - discrete time signals %upsampling-downsampling x=[1,2,3,4,5,6] a=2; xds=downsample(x,a) xds=x(1:a:end) a=1/2; xups=upsample(x,1/a) xups=zeros(1,1/a*length(x)) xups(1:1/a:end)=x %all transformations n=-20:20; p=( (n>=-10)&(n<=10)); x=(0.9.^n).*p; stem(n,x); legend('x[n]') ; figure stem(n+10,x) legend('x[n-10]') figure stem(n-10,x) legend('x[n+10]') figure a=2; xd=downsample(x,a) nd=-10:10; stem(nd,xd); legend('x[2n]') figure a=1/3 xup=upsample(x,1/a) nup=-61:61 stem(nup,xup) legend('x[(1/3) n]') figure stem(-n,x) legend('x[-n]') figure n=-2:4; n1=-fliplr(n) x=0.9.^n x1=fliplr(x) subplot(121); stem(n,x); title('x[n]=0.9^n'); subplot(122); stem(n1,x1); title('x[-n]');
Two continuous maps $f, g: X \to Y$ are homotopic if and only if $g, f: X \to Y$ are homotopic.
function funhan = piecewise(varargin) %PIECEWISE Piecewise-defined functions. % % F = PIECEWISE(COND1,DEFN1,...CONDn,DEFNn,DEFAULT) returns a callable % function F that applies different definitions according to supplied % conditions. For a given X, F(X) will test COND1 and apply DEFN1 if true, % etc. If all conditions fail, then DEFAULT is applied. For any particular % input, the first condition to match is the only one applied. % % Each condition should be either a: % * function handle evaluating to logical values, or % * vector [a b] representing membership in the half-open interval [a,b). % Each definition should be either a: % * function handle, or % * scalar value. % The DEFAULT definition is optional; if omitted, it will be set to NaN. % % All function definitions can accept multiple input variables, but they % all must accept the same number as in the call to F. They also should % all be vectorized, returning results the same size and shape as their % inputs. Complex inputs will work if the definitions are set up % accordingly; in that case, intervals will be tested using only Re parts. % % The special syntax F() displays all the conditions and definitions for F. % % Examples: % f = piecewise([-1 1],@(x) 1+cos(pi*x),0); % a "cosine bell" % ezplot(f,[-2 2]) % g = piecewise(@(x) sin(x)<0.5,@sin,@(x) 1-sin(x)); % ezplot(g,[-2*pi 2*pi]) % h = piecewise(@(x,y) (x<0)|(y<0),@(x,y) sin(x-y)); % defined on L % ezsurf(h,[-1 1]) % chi = piecewise(@(x,y,z) x.^2+y.^2+z.^2<1,1,0); % characteristic func % [ triplequad(chi,-1,1,-1,1,-1,1), 4/3*pi ] % ans = % 4.1888 4.1888 % % See also FUNCTION_HANDLE. % Copyright (c) 2007 by Toby Driscoll. % Version 1, 6 Aug 2007. % If an even number of inputs was given, no default value exists. if rem(nargin,2)==0 default = NaN; else default = varargin{end}; end % Number of condition/definition pairs. numdefs = floor(nargin/2); condn = varargin(1:2:2*numdefs); defn = varargin(2:2:2*numdefs); funhan = @piecewisefun; % this is the return value % This is the defintion of the returned function. function f = piecewisefun(varargin) % Special syntax to display the function. if nargin==0 fprintf('\nPiecewise function with conditions/definitions:\n') for k = 1:numdefs fprintf(' If %s : %s\n',funcornum2str(condn{k}),funcornum2str(defn{k})) end fprintf(' Otherwise : %s\n\n',funcornum2str(default)) return end % Normal call f = zeros(size(varargin{1})); mask = false(size(f)); for k = 1:numdefs % Determine the values satistfying condition k. if isa(condn{k},'function_handle') newpts = logical( condn{k}(varargin{:}) ); else newpts = (varargin{1}>=condn{k}(1)) & (varargin{1}<condn{k}(2)); end newpts = newpts & (~mask); % Evaluate definition k if isa(defn{k},'function_handle') % Tricky part: Extract subset of points from each variable. sref.type = '()'; sref.subs = {newpts}; extract = @(x) subsref(x,sref); x = cellfun(extract,varargin,'uniformoutput',false); f(newpts) = defn{k}(x{:}); else f(newpts) = defn{k}; % scalar expansion end mask = mask | newpts; end % Default case if isa(default,'function_handle') sref.subs = {~mask}; extract = @(x) subsref(x,sref); x = cellfun(extract,varargin,'uniformoutput',false); f(~mask) = default(x{:}); else f(~mask) = default; % scalar expansion end end % This subfunction converts a function or scalar to its native char form, % and a 2-vector into an interval notation. function s = funcornum2str(f) if isa(f,'function_handle') s = char(f); elseif numel(f)==1 s = num2str(f); else s = [ 'in [' num2str(f(1)) ',' num2str(f(2)) ')' ]; end end end
{-# OPTIONS --cubical #-} module leibniz where open import Cubical.Data.Equality open import Cubical.Foundations.Function using (_∘_) module Martin-LΓΆf {β„“} {A : Set β„“} where reflexive≑ : {a : A} β†’ a ≑p a reflexive≑ = reflp symmetric≑ : {a b : A} β†’ a ≑p b β†’ b ≑p a symmetric≑ reflp = reflp transitive≑ : {a b c : A} β†’ a ≑p b β†’ b ≑p c β†’ a ≑p c transitive≑ reflp reflp = reflp open Martin-LΓΆf public ext : βˆ€ {β„“ β„“β€²} {A : Set β„“} {B : A β†’ Set β„“β€²} {f g : (a : A) β†’ B a} β†’ (βˆ€ (a : A) β†’ f a ≑p g a) β†’ f ≑p g ext p = ctop (funExt (ptoc ∘ p)) module Leibniz {A : Set} where _≐_ : (a b : A) β†’ Set₁ a ≐ b = (P : A β†’ Set) β†’ P a β†’ P b reflexive≐ : {a : A} β†’ a ≐ a reflexive≐ P Pa = Pa transitive≐ : {a b c : A} β†’ a ≐ b β†’ b ≐ c β†’ a ≐ c transitive≐ a≐b b≐c P Pa = b≐c P (a≐b P Pa) symmetric≐ : {a b : A} β†’ a ≐ b β†’ b ≐ a symmetric≐ {a} {b} a≐b P = Qb where Q : A β†’ Set Q c = P c β†’ P a Qa : Q a Qa = reflexive≐ P Qb : Q b Qb = a≐b Q Qa open Leibniz T : Set β†’ Set₁ T A = βˆ€ (X : Set) β†’ (A β†’ X) β†’ X module WarmUp (A : Set) where postulate paramT : (t : T A) β†’ (X Xβ€² : Set) (R : X β†’ Xβ€² β†’ Set) β†’ (k : A β†’ X) (kβ€² : A β†’ Xβ€²) (kR : (a : A) β†’ R (k a) (kβ€² a)) β†’ R (t X k) (t Xβ€² kβ€²) i : A β†’ T A i a X k = k a id : A β†’ A id a = a j : T A β†’ A j t = t A id ji : (a : A) β†’ (j (i a) ≑p a) ji a = reflp ijβ‚‘β‚“β‚œ : (t : T A) (X : Set) (k : A β†’ X) β†’ (i (j t) X k ≑p t X k) ijβ‚‘β‚“β‚œ t X k = paramT t A X R id k (Ξ» a β†’ reflp) where R : A β†’ X β†’ Set R a x = k a ≑p x ij : (t : T A) β†’ (i (j t) ≑p t) ij t = ext (Ξ» X β†’ ext (Ξ» k β†’ ijβ‚‘β‚“β‚œ t X k)) module MainResult (A : Set) where postulate param≐ : {a b : A} (a≐b : a ≐ b) β†’ (P Pβ€² : A β†’ Set) β†’ (R : (c : A) β†’ P c β†’ Pβ€² c β†’ Set) β†’ (Pa : P a) (Pβ€²a : Pβ€² a) β†’ R a Pa Pβ€²a β†’ R b (a≐b P Pa) (a≐b Pβ€² Pβ€²a) i : {a b : A} (a≑b : a ≑p b) β†’ a ≐ b i reflp P Pa = Pa j : {a b : A} β†’ a ≐ b β†’ a ≑p b j {a} {b} a≐b = Qb where Q : A β†’ Set Q c = a ≑p c Qa : Q a Qa = reflexive≑ Qb : Q b Qb = a≐b Q Qa ji : {a b : A} (a≑b : a ≑p b) β†’ j (i a≑b) ≑p a≑b ji reflp = reflp ijβ‚‘β‚“β‚œ : {a b : A} (a≐b : a ≐ b) β†’ (P : A β†’ Set) (Pa : P a) β†’ i (j a≐b) P Pa ≑p a≐b P Pa ijβ‚‘β‚“β‚œ {a} a≐b P Pa = param≐ a≐b Q P R reflp Pa reflp where Q : A β†’ Set Q c = a ≑p c R : (c : A) (Qc : Q c) (Pc : P c) β†’ Set R c Qc Pc = i Qc P Pa ≑p Pc ij : {a b : A} (a≐b : a ≐ b) β†’ i (j a≐b) ≑p a≐b ij a≐b = ext (Ξ» P β†’ ext (ijβ‚‘β‚“β‚œ a≐b P))
Formal statement is: lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F" Informal statement is: If $f$ is a Z-function and $g$ is a Z-function such that $|f(x)| \leq |g(x)|$ for all $x$, then $f$ is a Z-function.
!> !! @file m_cbc.f90 !! @brief Contains module m_cbc !> @brief The module features a large database of characteristic boundary !! conditions (CBC) for the Euler system of equations. This system !! is augmented by the appropriate advection equations utilized to !! capture the material interfaces. The closure is achieved by the !! stiffened equation of state and mixture relations. At this time, !! the following CBC are available: !! 1) Slip Wall !! 2) Nonreflecting Subsonic Buffer !! 3) Nonreflecting Subsonic Inflow !! 4) Nonreflecting Subsonic Outflow !! 5) Force-Free Subsonic Outflow !! 6) Constant Pressure Subsonic Outflow !! 7) Supersonic Inflow !! 8) Supersonic Outflow !! Please refer to Thompson (1987, 1990) for detailed descriptions. MODULE m_cbc ! Dependencies ============================================================= USE m_derived_types !< Definitions of the derived types USE m_global_parameters !< Definitions of the global parameters USE m_variables_conversion !< State variables type conversion procedures ! ========================================================================== IMPLICIT NONE PRIVATE; PUBLIC :: s_initialize_cbc_module, s_cbc, s_finalize_cbc_module ABSTRACT INTERFACE ! ======================================================= !> Abstract interface to the procedures that are utilized to calculate !! the L variables. For additional information refer to the following: !! 1) s_compute_slip_wall_L !! 2) s_compute_nonreflecting_subsonic_buffer_L !! 3) s_compute_nonreflecting_subsonic_inflow_L !! 4) s_compute_nonreflecting_subsonic_outflow_L !! 5) s_compute_force_free_subsonic_outflow_L !! 6) s_compute_constant_pressure_subsonic_outflow_L !! 7) s_compute_supersonic_inflow_L !! 8) s_compute_supersonic_outflow_L !! @param dflt_int Default null integer SUBROUTINE s_compute_abstract_L(dflt_int) INTEGER, INTENT(IN) :: dflt_int END SUBROUTINE s_compute_abstract_L END INTERFACE ! ============================================================ TYPE(scalar_field), ALLOCATABLE, DIMENSION(:) :: q_prim_rs_vf !< !! The cell-average primitive variables. They are obtained by reshaping (RS) !! q_prim_vf in the coordinate direction normal to the domain boundary along !! which the CBC is applied. TYPE(scalar_field), ALLOCATABLE, DIMENSION(:) :: F_rs_vf, F_src_rs_vf !< !! Cell-average fluxes (src - source). These are directly determined from the !! cell-average primitive variables, q_prims_rs_vf, and not a Riemann solver. TYPE(scalar_field), ALLOCATABLE, DIMENSION(:) :: flux_rs_vf, flux_src_rs_vf !< !! The cell-boundary-average of the fluxes. They are initially determined by !! reshaping flux_vf and flux_src_vf in a coordinate direction normal to the !! domain boundary along which CBC is applied. flux_rs_vf and flux_src_rs_vf !! are subsequently modified based on the selected CBC. REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: alpha_rho !< Cell averaged partial densiy REAL(KIND(0d0)) :: rho !< Cell averaged density REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: vel !< Cell averaged velocity REAL(KIND(0d0)) :: pres !< Cell averaged pressure REAL(KIND(0d0)) :: E !< Cell averaged energy REAL(KIND(0d0)) :: H !< Cell averaged enthalpy REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: adv !< Cell averaged advected variables REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: mf !< Cell averaged mass fraction REAL(KIND(0d0)) :: gamma !< Cell averaged specific heat ratio REAL(KIND(0d0)) :: pi_inf !< Cell averaged liquid stiffness REAL(KIND(0d0)) :: c !< Cell averaged speed of sound REAL(KIND(0d0)), DIMENSION(2) :: Re !< Cell averaged Reynolds numbers REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:,:) :: We !< Cell averaged Weber numbers REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: dalpha_rho_ds !< Spatial derivatives in s-dir of partial density REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: dvel_ds !< Spatial derivatives in s-dir of velocity REAL(KIND(0d0)) :: dpres_ds !< Spatial derivatives in s-dir of pressure REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: dadv_ds !< Spatial derivatives in s-dir of advection variables !! Note that these are only obtained in those cells on the domain boundary along which the !! CBC is applied by employing finite differences (FD) on the cell-average primitive variables, q_prim_rs_vf. REAL(KIND(0d0)), DIMENSION(3) :: lambda !< Eigenvalues (see Thompson 1987,1990) REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: L !< L matrix (see Thompson 1987,1990) REAL(KIND(0d0)), ALLOCATABLE, DIMENSION(:) :: ds !< Cell-width distribution in the s-direction ! CBC Coefficients ========================================================= REAL(KIND(0d0)), TARGET, ALLOCATABLE, DIMENSION(:,:) :: fd_coef_x !< Finite diff. coefficients x-dir REAL(KIND(0d0)), TARGET, ALLOCATABLE, DIMENSION(:,:) :: fd_coef_y !< Finite diff. coefficients y-dir REAL(KIND(0d0)), TARGET, ALLOCATABLE, DIMENSION(:,:) :: fd_coef_z !< Finite diff. coefficients z-dir !! The first dimension identifies the location of a coefficient in the FD !! formula, while the last dimension denotes the location of the CBC. REAL(KIND(0d0)), POINTER, DIMENSION(:,:) :: fd_coef => NULL() REAL(KIND(0d0)), TARGET, ALLOCATABLE, DIMENSION(:,:,:) :: pi_coef_x !< Polynominal interpolant coefficients in x-dir REAL(KIND(0d0)), TARGET, ALLOCATABLE, DIMENSION(:,:,:) :: pi_coef_y !< Polynominal interpolant coefficients in y-dir REAL(KIND(0d0)), TARGET, ALLOCATABLE, DIMENSION(:,:,:) :: pi_coef_z !< Polynominal interpolant coefficients in z-dir !! The first dimension of the array identifies the polynomial, the !! second dimension identifies the position of its coefficients and the last !! dimension denotes the location of the CBC. REAL(KIND(0d0)), POINTER, DIMENSION(:,:,:) :: pi_coef => NULL() ! ========================================================================== PROCEDURE(s_compute_abstract_L), POINTER :: s_compute_L => NULL() !< !! Pointer to procedure used to calculate L variables, based on choice of CBC TYPE(bounds_info) :: is1,is2,is3 !< Indical bounds in the s1-, s2- and s3-directions CONTAINS !> The computation of parameters, the allocation of memory, !! the association of pointers and/or the execution of any !! other procedures that are necessary to setup the module. SUBROUTINE s_initialize_cbc_module() ! --------------------------------- IF( ALL((/bc_x%beg,bc_x%end/) > -5) & .AND. & (n > 0 .AND. ALL((/bc_y%beg,bc_y%end/) > -5)) & .AND. & (p > 0 .AND. ALL((/bc_z%beg,bc_z%end/) > -5)) ) RETURN ! Allocating the cell-average primitive variables ALLOCATE(q_prim_rs_vf(1:sys_size)) ! Allocating the cell-average and cell-boundary-average fluxes ALLOCATE( F_rs_vf(1:sys_size), F_src_rs_vf(1:sys_size)) ALLOCATE(flux_rs_vf(1:sys_size), flux_src_rs_vf(1:sys_size)) ! Allocating the cell-average partial densities, the velocity, the ! advected variables, the mass fractions, as well as Weber numbers ALLOCATE(alpha_rho(1: cont_idx%end )) ALLOCATE( vel(1: num_dims )) ALLOCATE( adv(1:adv_idx%end-E_idx)) ALLOCATE( mf(1: cont_idx%end )) ALLOCATE(We(1:num_fluids,1:num_fluids)) ! Allocating the first-order spatial derivatives in the s-direction ! of the partial densities, the velocity and the advected variables ALLOCATE(dalpha_rho_ds(1: cont_idx%end )) ALLOCATE( dvel_ds(1: num_dims )) ALLOCATE( dadv_ds(1:adv_idx%end-E_idx)) ! Allocating L, see Thompson (1987, 1990) ALLOCATE(L(1:adv_idx%end)) ! Allocating the cell-width distribution in the s-direction ALLOCATE(ds(0:buff_size)) ! Allocating/Computing CBC Coefficients in x-direction ============= IF(ALL((/bc_x%beg,bc_x%end/) <= -5)) THEN ALLOCATE(fd_coef_x(0:buff_size,-1: 1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_x(0:weno_polyn-1,0:weno_order-3,-1: 1)) END IF CALL s_compute_cbc_coefficients(1,-1) CALL s_compute_cbc_coefficients(1, 1) ELSEIF(bc_x%beg <= -5) THEN ALLOCATE(fd_coef_x(0:buff_size,-1:-1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_x(0:weno_polyn-1,0:weno_order-3,-1:-1)) END IF CALL s_compute_cbc_coefficients(1,-1) ELSEIF(bc_x%end <= -5) THEN ALLOCATE(fd_coef_x(0:buff_size, 1: 1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_x(0:weno_polyn-1,0:weno_order-3, 1: 1)) END IF CALL s_compute_cbc_coefficients(1, 1) END IF ! ================================================================== ! Allocating/Computing CBC Coefficients in y-direction ============= IF(n > 0) THEN IF(ALL((/bc_y%beg,bc_y%end/) <= -5)) THEN ALLOCATE(fd_coef_y(0:buff_size,-1: 1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_y(0:weno_polyn-1,0:weno_order-3,-1: 1)) END IF CALL s_compute_cbc_coefficients(2,-1) CALL s_compute_cbc_coefficients(2, 1) ELSEIF(bc_y%beg <= -5) THEN ALLOCATE(fd_coef_y(0:buff_size,-1:-1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_y(0:weno_polyn-1,0:weno_order-3,-1:-1)) END IF CALL s_compute_cbc_coefficients(2,-1) ELSEIF(bc_y%end <= -5) THEN ALLOCATE(fd_coef_y(0:buff_size, 1: 1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_y(0:weno_polyn-1,0:weno_order-3, 1: 1)) END IF CALL s_compute_cbc_coefficients(2, 1) END IF END IF ! ================================================================== ! Allocating/Computing CBC Coefficients in z-direction ============= IF(p > 0) THEN IF(ALL((/bc_z%beg,bc_z%end/) <= -5)) THEN ALLOCATE(fd_coef_z(0:buff_size,-1: 1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_z(0:weno_polyn-1,0:weno_order-3,-1: 1)) END IF CALL s_compute_cbc_coefficients(3,-1) CALL s_compute_cbc_coefficients(3, 1) ELSEIF(bc_z%beg <= -5) THEN ALLOCATE(fd_coef_z(0:buff_size,-1:-1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_z(0:weno_polyn-1,0:weno_order-3,-1:-1)) END IF CALL s_compute_cbc_coefficients(3,-1) ELSEIF(bc_z%end <= -5) THEN ALLOCATE(fd_coef_z(0:buff_size, 1: 1)) IF(weno_order > 1) THEN ALLOCATE(pi_coef_z(0:weno_polyn-1,0:weno_order-3, 1: 1)) END IF CALL s_compute_cbc_coefficients(3, 1) END IF END IF ! ================================================================== ! Associating the procedural pointer to the appropriate subroutine ! that will be utilized in the conversion to the mixture variables IF (model_eqns == 1) THEN ! Gamma/pi_inf model s_convert_to_mixture_variables => & s_convert_mixture_to_mixture_variables ELSEIF (bubbles) THEN ! Volume fraction model s_convert_to_mixture_variables => & s_convert_species_to_mixture_variables_bubbles ELSE ! Volume fraction model s_convert_to_mixture_variables => & s_convert_species_to_mixture_variables END IF END SUBROUTINE s_initialize_cbc_module ! ------------------------------- SUBROUTINE s_compute_cbc_coefficients(cbc_dir, cbc_loc) ! -------------- ! Description: The purpose of this subroutine is to compute the grid ! dependent FD and PI coefficients, or CBC coefficients, ! provided the CBC coordinate direction and location. ! CBC coordinate direction and location INTEGER, INTENT(IN) :: cbc_dir, cbc_loc ! Cell-boundary locations in the s-direction REAL(KIND(0d0)), DIMENSION(0:buff_size+1) :: s_cb ! Generic loop iterator INTEGER :: i ! Associating CBC coefficients pointers CALL s_associate_cbc_coefficients_pointers(cbc_dir, cbc_loc) ! Determining the cell-boundary locations in the s-direction s_cb(0) = 0d0 DO i = 0, buff_size s_cb(i+1) = s_cb(i) + ds(i) END DO ! Computing CBC1 Coefficients ====================================== IF(weno_order == 1) THEN fd_coef(:,cbc_loc) = 0d0 fd_coef(0,cbc_loc) = -2d0/(ds(0)+ds(1)) fd_coef(1,cbc_loc) = -fd_coef(0,cbc_loc) ! ================================================================== ! Computing CBC2 Coefficients ====================================== ELSEIF(weno_order == 3) THEN fd_coef(:,cbc_loc) = 0d0 fd_coef(0,cbc_loc) = -6d0/(3d0*ds(0)+2d0*ds(1)-ds(2)) fd_coef(1,cbc_loc) = -4d0*fd_coef(0,cbc_loc)/3d0 fd_coef(2,cbc_loc) = fd_coef(0,cbc_loc)/3d0 pi_coef(0,0,cbc_loc) = (s_cb(0)-s_cb(1))/(s_cb(0)-s_cb(2)) ! ================================================================== ! Computing CBC4 Coefficients ====================================== ELSE fd_coef(:,cbc_loc) = 0d0 fd_coef(0,cbc_loc) = -50d0/(25d0*ds(0)+2d0*ds(1) & - 1d1*ds(2)+1d1*ds(3) & - 3d0*ds(4) ) fd_coef(1,cbc_loc) = -48d0*fd_coef(0,cbc_loc)/25d0 fd_coef(2,cbc_loc) = 36d0*fd_coef(0,cbc_loc)/25d0 fd_coef(3,cbc_loc) = -16d0*fd_coef(0,cbc_loc)/25d0 fd_coef(4,cbc_loc) = 3d0*fd_coef(0,cbc_loc)/25d0 pi_coef(0,0,cbc_loc) = & ((s_cb(0)-s_cb(1))*(s_cb(1)-s_cb(2)) * & (s_cb(1)-s_cb(3)))/((s_cb(1)-s_cb(4)) * & (s_cb(4)-s_cb(0))*(s_cb(4)-s_cb(2))) pi_coef(0,1,cbc_loc) = & ((s_cb(1)-s_cb(0))*(s_cb(1)-s_cb(2)) * & ((s_cb(1)-s_cb(3))*(s_cb(1)-s_cb(3)) - & (s_cb(0)-s_cb(4))*((s_cb(3)-s_cb(1)) + & (s_cb(4)-s_cb(1))))) / & ((s_cb(0)-s_cb(3))*(s_cb(1)-s_cb(3)) * & (s_cb(0)-s_cb(4))*(s_cb(1)-s_cb(4))) pi_coef(0,2,cbc_loc) = & (s_cb(1)-s_cb(0))*((s_cb(1)-s_cb(2)) * & (s_cb(1)-s_cb(3))+((s_cb(0)-s_cb(2)) + & (s_cb(1)-s_cb(3)))*(s_cb(0)-s_cb(4))) / & ((s_cb(2)-s_cb(0))*(s_cb(0)-s_cb(3)) * & (s_cb(0)-s_cb(4))) pi_coef(1,0,cbc_loc) = & ((s_cb(0)-s_cb(2))*(s_cb(2)-s_cb(1)) * & (s_cb(2)-s_cb(3)))/((s_cb(2)-s_cb(4)) * & (s_cb(4)-s_cb(0))*(s_cb(4)-s_cb(1))) pi_coef(1,1,cbc_loc) = & ((s_cb(0)-s_cb(2))*(s_cb(1)-s_cb(2)) * & ((s_cb(1)-s_cb(3))*(s_cb(2)-s_cb(3)) + & (s_cb(0)-s_cb(4))*((s_cb(1)-s_cb(3)) + & (s_cb(2)-s_cb(4))))) / & ((s_cb(0)-s_cb(3))*(s_cb(1)-s_cb(3)) * & (s_cb(0)-s_cb(4))*(s_cb(1)-s_cb(4))) pi_coef(1,2,cbc_loc) = & ((s_cb(1)-s_cb(2))*(s_cb(2)-s_cb(3)) * & (s_cb(2)-s_cb(4)))/((s_cb(0)-s_cb(2)) * & (s_cb(0)-s_cb(3))*(s_cb(0)-s_cb(4))) END IF ! END: Computing CBC4 Coefficients ================================= ! Nullifying CBC coefficients NULLIFY(fd_coef, pi_coef) END SUBROUTINE s_compute_cbc_coefficients ! ---------------------------- !! The goal of the procedure is to associate the FD and PI !! coefficients, or CBC coefficients, with the appropriate !! targets, based on the coordinate direction and location !! of the CBC. !! @param cbc_dir CBC coordinate direction !! @param cbc_loc CBC coordinate location SUBROUTINE s_associate_cbc_coefficients_pointers(cbc_dir, cbc_loc) ! --- INTEGER, INTENT(IN) :: cbc_dir, cbc_loc INTEGER :: i !< Generic loop iterator ! Associating CBC Coefficients in x-direction ====================== IF(cbc_dir == 1) THEN fd_coef => fd_coef_x; IF(weno_order > 1) pi_coef => pi_coef_x IF(cbc_loc == -1) THEN DO i = 0, buff_size ds(i) = dx( i ) END DO ELSE DO i = 0, buff_size ds(i) = dx(m-i) END DO END IF ! ================================================================== ! Associating CBC Coefficients in y-direction ====================== ELSEIF(cbc_dir == 2) THEN fd_coef => fd_coef_y; IF(weno_order > 1) pi_coef => pi_coef_y IF(cbc_loc == -1) THEN DO i = 0, buff_size ds(i) = dy( i ) END DO ELSE DO i = 0, buff_size ds(i) = dy(n-i) END DO END IF ! ================================================================== ! Associating CBC Coefficients in z-direction ====================== ELSE fd_coef => fd_coef_z; IF(weno_order > 1) pi_coef => pi_coef_z IF(cbc_loc == -1) THEN DO i = 0, buff_size ds(i) = dz( i ) END DO ELSE DO i = 0, buff_size ds(i) = dz(p-i) END DO END IF END IF ! ================================================================== END SUBROUTINE s_associate_cbc_coefficients_pointers ! ----------------- !> The following is the implementation of the CBC based on !! the work of Thompson (1987, 1990) on hyperbolic systems. !! The CBC is indirectly applied in the computation of the !! right-hand-side (RHS) near the relevant domain boundary !! through the modification of the fluxes. !! @param q_prim_vf Cell-average primitive variables !! @param flux_vf Cell-boundary-average fluxes !! @param flux_src_vf Cell-boundary-average flux sources !! @param cbc_dir CBC coordinate direction !! @param cbc_loc CBC coordinate location !! @param ix Index bound in the first coordinate direction !! @param iy Index bound in the second coordinate direction !! @param iz Index bound in the third coordinate direction SUBROUTINE s_cbc( q_prim_vf, flux_vf, flux_src_vf, & ! ----------------- cbc_dir, cbc_loc, & ix,iy,iz ) TYPE(scalar_field), & DIMENSION(sys_size), & INTENT(IN) :: q_prim_vf TYPE(scalar_field), & DIMENSION(sys_size), & INTENT(INOUT) :: flux_vf, flux_src_vf INTEGER, INTENT(IN) :: cbc_dir, cbc_loc TYPE(bounds_info), INTENT(IN) :: ix,iy,iz ! First-order time derivatives of the partial densities, density, ! velocity, pressure, advection variables, and the specific heat ! ratio and liquid stiffness functions REAL(KIND(0d0)), DIMENSION(cont_idx%end) :: dalpha_rho_dt REAL(KIND(0d0)) :: drho_dt REAL(KIND(0d0)), DIMENSION(num_dims) :: dvel_dt REAL(KIND(0d0)) :: dpres_dt REAL(KIND(0d0)), DIMENSION(adv_idx%end-E_idx) :: dadv_dt REAL(KIND(0d0)) :: dgamma_dt REAL(KIND(0d0)) :: dpi_inf_dt INTEGER :: i,j,k,r !< Generic loop iterators REAL(KIND(0d0)) :: blkmod1, blkmod2 !< Fluid bulk modulus for Wood mixture sound speed ! Reshaping of inputted data and association of the FD and PI ! coefficients, or CBC coefficients, respectively, hinging on ! selected CBC coordinate direction CALL s_initialize_cbc( q_prim_vf, flux_vf, flux_src_vf, & cbc_dir, cbc_loc, & ix,iy,iz ) CALL s_associate_cbc_coefficients_pointers(cbc_dir, cbc_loc) ! PI2 of flux_rs_vf and flux_src_rs_vf at j = 1/2 ================== IF(weno_order == 3) THEN CALL s_convert_primitive_to_flux_variables( q_prim_rs_vf, & F_rs_vf, & F_src_rs_vf, & is1,is2,is3 ) DO i = 1, adv_idx%end flux_rs_vf(i)%sf(0,:,:) = F_rs_vf(i)%sf(0,:,:) & + pi_coef(0,0,cbc_loc) * & ( F_rs_vf(i)%sf(1,:,:) - & F_rs_vf(i)%sf(0,:,:) ) END DO DO i = adv_idx%beg, adv_idx%end flux_src_rs_vf(i)%sf(0,:,:) = F_src_rs_vf(i)%sf(0,:,:) + & ( F_src_rs_vf(i)%sf(1,:,:) - & F_src_rs_vf(i)%sf(0,:,:) ) & * pi_coef(0,0,cbc_loc) END DO ! ================================================================== ! PI4 of flux_rs_vf and flux_src_rs_vf at j = 1/2, 3/2 ============= ELSEIF(weno_order == 5) THEN CALL s_convert_primitive_to_flux_variables( q_prim_rs_vf, & F_rs_vf, & F_src_rs_vf, & is1,is2,is3 ) DO i = 1, adv_idx%end DO j = 0,1 flux_rs_vf(i)%sf(j,:,:) = F_rs_vf(i)%sf(j,:,:) & + pi_coef(j,0,cbc_loc) * & ( F_rs_vf(i)%sf(3,:,:) - & F_rs_vf(i)%sf(2,:,:) ) & + pi_coef(j,1,cbc_loc) * & ( F_rs_vf(i)%sf(2,:,:) - & F_rs_vf(i)%sf(1,:,:) ) & + pi_coef(j,2,cbc_loc) * & ( F_rs_vf(i)%sf(1,:,:) - & F_rs_vf(i)%sf(0,:,:) ) END DO END DO DO i = adv_idx%beg, adv_idx%end DO j = 0,1 flux_src_rs_vf(i)%sf(j,:,:) = F_src_rs_vf(i)%sf(j,:,:) + & ( F_src_rs_vf(i)%sf(3,:,:) - & F_src_rs_vf(i)%sf(2,:,:) ) & * pi_coef(j,0,cbc_loc) + & ( F_src_rs_vf(i)%sf(2,:,:) - & F_src_rs_vf(i)%sf(1,:,:) ) & * pi_coef(j,1,cbc_loc) + & ( F_src_rs_vf(i)%sf(1,:,:) - & F_src_rs_vf(i)%sf(0,:,:) ) & * pi_coef(j,2,cbc_loc) END DO END DO END IF ! ================================================================== ! FD2 or FD4 of RHS at j = 0 ======================================= DO r = is3%beg, is3%end DO k = is2%beg, is2%end ! Transferring the Primitive Variables ======================= DO i = 1, cont_idx%end alpha_rho(i) = q_prim_rs_vf(i)%sf(0,k,r) END DO DO i = 1, num_dims vel(i) = q_prim_rs_vf(cont_idx%end+i)%sf(0,k,r) END DO pres = q_prim_rs_vf(E_idx)%sf(0,k,r) CALL s_convert_to_mixture_variables( q_prim_rs_vf, & rho, gamma, & pi_inf, Re, & We, 0,k,r ) E = gamma*pres + pi_inf + 5d-1*rho*SUM(vel**2d0) H = (E + pres)/rho DO i = 1, adv_idx%end-E_idx adv(i) = q_prim_rs_vf(E_idx+i)%sf(0,k,r) END DO mf = alpha_rho/rho ! Compute mixture sound speed IF (alt_soundspeed .OR. regularization) THEN blkmod1 = ((fluid_pp(1)%gamma +1d0)*pres + & fluid_pp(1)%pi_inf)/fluid_pp(1)%gamma blkmod2 = ((fluid_pp(2)%gamma +1d0)*pres + & fluid_pp(2)%pi_inf)/fluid_pp(2)%gamma c = (1d0/(rho*(adv(1)/blkmod1 + adv(2)/blkmod2))) ELSEIF(model_eqns == 3) THEN c = 0d0 DO i = 1, num_fluids c = c + q_prim_rs_vf(i+adv_idx%beg-1)%sf(0,k,r) * (1d0/fluid_pp(i)%gamma+1d0) * & (pres + fluid_pp(i)%pi_inf/(fluid_pp(i)%gamma+1d0)) END DO c = c/rho ELSE c = ((H - 5d-1*SUM(vel**2d0))/gamma) END IF c = SQRT(c) ! IF (mixture_err .AND. c < 0d0) THEN ! c = sgm_eps ! ELSE ! c = SQRT(c) ! END IF ! ============================================================ ! First-Order Spatial Derivatives of Primitive Variables ===== dalpha_rho_ds = 0d0 dvel_ds = 0d0 dpres_ds = 0d0 dadv_ds = 0d0 DO j = 0, buff_size DO i = 1, cont_idx%end dalpha_rho_ds(i) = q_prim_rs_vf(i)%sf(j,k,r) * & fd_coef(j,cbc_loc) + & dalpha_rho_ds(i) END DO DO i = 1, num_dims dvel_ds(i) = q_prim_rs_vf(cont_idx%end+i)%sf(j,k,r) * & fd_coef(j,cbc_loc) + & dvel_ds(i) END DO dpres_ds = q_prim_rs_vf(E_idx)%sf(j,k,r) * & fd_coef(j,cbc_loc) + & dpres_ds DO i = 1, adv_idx%end-E_idx dadv_ds(i) = q_prim_rs_vf(E_idx+i)%sf(j,k,r) * & fd_coef(j,cbc_loc) + & dadv_ds(i) END DO END DO ! ============================================================ ! First-Order Temporal Derivatives of Primitive Variables ==== lambda(1) = vel(dir_idx(1)) - c lambda(2) = vel(dir_idx(1)) lambda(3) = vel(dir_idx(1)) + c CALL s_compute_L(dflt_int) ! Be careful about the cylindrical coordinate! IF(cyl_coord .AND. cbc_dir == 2 .AND. cbc_loc == 1 ) THEN dpres_dt = -5d-1*(L(adv_idx%end) + L(1)) + rho*c*c*vel(dir_idx(1)) & / y_cc(n) ELSE dpres_dt = -5d-1*(L(adv_idx%end) + L(1)) END IF DO i = 1, cont_idx%end dalpha_rho_dt(i) = & -(L(i+1) - mf(i)*dpres_dt)/(c*c) END DO DO i = 1, num_dims dvel_dt(dir_idx(i)) = dir_flg(dir_idx(i)) * & (L(1) - L(adv_idx%end))/(2d0*rho*c) + & (dir_flg(dir_idx(i)) - 1d0) * & L(mom_idx%beg+i) END DO ! The treatment of void fraction source is unclear IF(cyl_coord .AND. cbc_dir == 2 .AND. cbc_loc == 1 ) THEN DO i = 1, adv_idx%end-E_idx dadv_dt(i) = -L(mom_idx%end+i) !+ adv(i) * vel(dir_idx(1))/y_cc(n) END DO ELSE DO i = 1, adv_idx%end-E_idx dadv_dt(i) = -L(mom_idx%end+i) END DO END IF drho_dt = 0d0; dgamma_dt = 0d0; dpi_inf_dt = 0d0 IF(model_eqns == 1) THEN drho_dt = dalpha_rho_dt(1) dgamma_dt = dadv_dt(1) dpi_inf_dt = dadv_dt(2) ELSE DO i = 1, num_fluids drho_dt = drho_dt + dalpha_rho_dt(i) dgamma_dt = dgamma_dt + dadv_dt(i)*fluid_pp(i)%gamma dpi_inf_dt = dpi_inf_dt + dadv_dt(i)*fluid_pp(i)%pi_inf END DO END IF ! ============================================================ ! flux_rs_vf and flux_src_rs_vf at j = -1/2 ================== DO i = 1, cont_idx%end flux_rs_vf(i)%sf(-1,k,r) = flux_rs_vf(i)%sf(0,k,r) & + ds(0)*dalpha_rho_dt(i) END DO DO i = mom_idx%beg, mom_idx%end flux_rs_vf(i)%sf(-1,k,r) = flux_rs_vf(i)%sf(0,k,r) & + ds(0)*( vel(i-cont_idx%end)*drho_dt & + rho*dvel_dt(i-cont_idx%end) ) END DO flux_rs_vf(E_idx)%sf(-1,k,r) = flux_rs_vf(E_idx)%sf(0,k,r) & + ds(0)*( pres*dgamma_dt & + gamma*dpres_dt & + dpi_inf_dt & + rho*SUM(vel*dvel_dt) & + 5d-1*drho_dt*SUM(vel**2d0) ) IF(riemann_solver == 1) THEN DO i = adv_idx%beg, adv_idx%end flux_rs_vf(i)%sf(-1,k,r) = 0d0 END DO DO i = adv_idx%beg, adv_idx%end flux_src_rs_vf(i)%sf(-1,k,r) = & 1d0/MAX(ABS(vel(dir_idx(1))),sgm_eps) & * SIGN(1d0,vel(dir_idx(1))) & * ( flux_rs_vf(i)%sf(0,k,r) & + vel(dir_idx(1)) & * flux_src_rs_vf(i)%sf(0,k,r) & + ds(0)*dadv_dt(i-E_idx) ) END DO ELSE DO i = adv_idx%beg, adv_idx%end flux_rs_vf(i)%sf(-1,k,r) = flux_rs_vf(i)%sf(0,k,r) - & adv(i-E_idx)*flux_src_rs_vf(i)%sf(0,k,r) + & ds(0)*dadv_dt(i-E_idx) END DO DO i = adv_idx%beg, adv_idx%end flux_src_rs_vf(i)%sf(-1,k,r) = 0d0 END DO END IF ! END: flux_rs_vf and flux_src_rs_vf at j = -1/2 ============= END DO END DO ! END: FD2 or FD4 of RHS at j = 0 ================================== ! The reshaping of outputted data and disssociation of the FD and PI ! coefficients, or CBC coefficients, respectively, based on selected ! CBC coordinate direction. CALL s_finalize_cbc( flux_vf, flux_src_vf, & cbc_dir, cbc_loc, & ix,iy,iz ) NULLIFY(fd_coef, pi_coef) END SUBROUTINE s_cbc ! ------------------------------------------------- !> The L variables for the slip wall CBC, see pg. 451 of !! Thompson (1990). At the slip wall (frictionless wall), !! the normal component of velocity is zero at all times, !! while the transverse velocities may be nonzero. !! @param dflt_int Default null integer SUBROUTINE s_compute_slip_wall_L(dflt_int) ! ----------------------------------- INTEGER, INTENT(IN) :: dflt_int L(1) = lambda(1)*(dpres_ds - rho*c*dvel_ds(dir_idx(1))) L(2:adv_idx%end-1) = 0d0 L(adv_idx%end) = L(1) END SUBROUTINE s_compute_slip_wall_L ! --------------------------------- !> The L variables for the nonreflecting subsonic buffer CBC !! see pg. 13 of Thompson (1987). The nonreflecting subsonic !! buffer reduces the amplitude of any reflections caused by !! outgoing waves. !! @param dflt_int Default null integer SUBROUTINE s_compute_nonreflecting_subsonic_buffer_L(dflt_int) ! --------------- INTEGER, INTENT(IN) :: dflt_int INTEGER :: i !< Generic loop iterator L(1) = (5d-1 - 5d-1*SIGN(1d0,lambda(1)))*lambda(1) & * (dpres_ds - rho*c*dvel_ds(dir_idx(1))) DO i = 2, mom_idx%beg L(i) = (5d-1 - 5d-1*SIGN(1d0,lambda(2)))*lambda(2) & * (c*c*dalpha_rho_ds(i-1) - mf(i-1)*dpres_ds) END DO DO i = mom_idx%beg+1, mom_idx%end L(i) = (5d-1 - 5d-1*SIGN(1d0,lambda(2)))*lambda(2) & * (dvel_ds(dir_idx(i-cont_idx%end))) END DO DO i = E_idx, adv_idx%end-1 L(i) = (5d-1 - 5d-1*SIGN(1d0,lambda(2)))*lambda(2) & * (dadv_ds(i-mom_idx%end)) END DO L(adv_idx%end) = (5d-1 - 5d-1*SIGN(1d0,lambda(3)))*lambda(3) & * (dpres_ds + rho*c*dvel_ds(dir_idx(1))) END SUBROUTINE s_compute_nonreflecting_subsonic_buffer_L ! ------------- !> The L variables for the nonreflecting subsonic inflow CBC !! see pg. 455, Thompson (1990). This nonreflecting subsonic !! CBC assumes an incoming flow and reduces the amplitude of !! any reflections caused by outgoing waves. !! @param dflt_int Default null integer SUBROUTINE s_compute_nonreflecting_subsonic_inflow_L(dflt_int) ! --------------- INTEGER, INTENT(IN) :: dflt_int L(1) = lambda(1)*(dpres_ds - rho*c*dvel_ds(dir_idx(1))) L(2:adv_idx%end) = 0d0 END SUBROUTINE s_compute_nonreflecting_subsonic_inflow_L ! ------------- !> The L variables for the nonreflecting subsonic outflow !! CBC see pg. 454 of Thompson (1990). This nonreflecting !! subsonic CBC presumes an outgoing flow and reduces the !! amplitude of any reflections caused by outgoing waves. !! @param dflt_int Default null integer SUBROUTINE s_compute_nonreflecting_subsonic_outflow_L(dflt_int) ! -------------- INTEGER, INTENT(IN) :: dflt_int INTEGER :: i !> Generic loop iterator L(1) = lambda(1)*(dpres_ds - rho*c*dvel_ds(dir_idx(1))) DO i = 2, mom_idx%beg L(i) = lambda(2)*(c*c*dalpha_rho_ds(i-1) - mf(i-1)*dpres_ds) END DO DO i = mom_idx%beg+1, mom_idx%end L(i) = lambda(2)*(dvel_ds(dir_idx(i-cont_idx%end))) END DO DO i = E_idx, adv_idx%end-1 L(i) = lambda(2)*(dadv_ds(i-mom_idx%end)) END DO ! bubble index L(adv_idx%end) = 0d0 END SUBROUTINE s_compute_nonreflecting_subsonic_outflow_L ! ------------ !> The L variables for the force-free subsonic outflow CBC, !! see pg. 454 of Thompson (1990). The force-free subsonic !! outflow sets to zero the sum of all of the forces which !! are acting on a fluid element for the normal coordinate !! direction to the boundary. As a result, a fluid element !! at the boundary is simply advected outward at the fluid !! velocity. !! @param dflt_int Default null integer SUBROUTINE s_compute_force_free_subsonic_outflow_L(dflt_int) ! ----------------- INTEGER, INTENT(IN) :: dflt_int INTEGER :: i !> Generic loop iterator L(1) = lambda(1)*(dpres_ds - rho*c*dvel_ds(dir_idx(1))) DO i = 2, mom_idx%beg L(i) = lambda(2)*(c*c*dalpha_rho_ds(i-1) - mf(i-1)*dpres_ds) END DO DO i = mom_idx%beg+1, mom_idx%end L(i) = lambda(2)*(dvel_ds(dir_idx(i-cont_idx%end))) END DO DO i = E_idx, adv_idx%end-1 L(i) = lambda(2)*(dadv_ds(i-mom_idx%end)) END DO L(adv_idx%end) = L(1) + 2d0*rho*c*lambda(2)*dvel_ds(dir_idx(1)) END SUBROUTINE s_compute_force_free_subsonic_outflow_L ! --------------- !> L variables for the constant pressure subsonic outflow !! CBC see pg. 455 Thompson (1990). The constant pressure !! subsonic outflow maintains a fixed pressure at the CBC !! boundary in absence of any transverse effects. !! @param dflt_int Default null integer SUBROUTINE s_compute_constant_pressure_subsonic_outflow_L(dflt_int) ! ---------- INTEGER, INTENT(IN) :: dflt_int INTEGER :: i !> Generic loop iterator L(1) = lambda(1)*(dpres_ds - rho*c*dvel_ds(dir_idx(1))) DO i = 2, mom_idx%beg L(i) = lambda(2)*(c*c*dalpha_rho_ds(i-1) - mf(i-1)*dpres_ds) END DO DO i = mom_idx%beg+1, mom_idx%end L(i) = lambda(2)*(dvel_ds(dir_idx(i-cont_idx%end))) END DO DO i = E_idx, adv_idx%end-1 L(i) = lambda(2)*(dadv_ds(i-mom_idx%end)) END DO L(adv_idx%end) = -L(1) END SUBROUTINE s_compute_constant_pressure_subsonic_outflow_L ! -------- !> L variables for the supersonic inflow CBC, see pg. 453 !! Thompson (1990). The supersonic inflow CBC is a steady !! state, or nearly a steady state, CBC in which only the !! transverse terms may generate a time dependence at the !! inflow boundary. !! @param dflt_int Default null integer SUBROUTINE s_compute_supersonic_inflow_L(dflt_int) ! --------------------------- INTEGER, INTENT(IN) :: dflt_int L = 0d0 END SUBROUTINE s_compute_supersonic_inflow_L ! ------------------------- !> L variables for the supersonic outflow CBC, see pg. 453 !! of Thompson (1990). For the supersonic outflow CBC, the !! flow evolution at the boundary is determined completely !! by the interior data. !! @param dflt_int Default null integer SUBROUTINE s_compute_supersonic_outflow_L(dflt_int) ! -------------------------- INTEGER, INTENT(IN) :: dflt_int INTEGER :: i !< Generic loop iterator L(1) = lambda(1)*(dpres_ds - rho*c*dvel_ds(dir_idx(1))) DO i = 2, mom_idx%beg L(i) = lambda(2)*(c*c*dalpha_rho_ds(i-1) - mf(i-1)*dpres_ds) END DO DO i = mom_idx%beg+1, mom_idx%end L(i) = lambda(2)*(dvel_ds(dir_idx(i-cont_idx%end))) END DO DO i = E_idx, adv_idx%end-1 L(i) = lambda(2)*(dadv_ds(i-mom_idx%end)) END DO L(adv_idx%end) = lambda(3)*(dpres_ds + rho*c*dvel_ds(dir_idx(1))) END SUBROUTINE s_compute_supersonic_outflow_L ! ------------------------ !> The computation of parameters, the allocation of memory, !! the association of pointers and/or the execution of any !! other procedures that are required for the setup of the !! selected CBC. !! @param q_prim_vf Cell-average primitive variables !! @param flux_vf Cell-boundary-average fluxes !! @param flux_src_vf Cell-boundary-average flux sources !! @param cbc_dir CBC coordinate direction !! @param cbc_loc CBC coordinate location !! @param ix Index bound in the first coordinate direction !! @param iy Index bound in the second coordinate direction !! @param iz Index bound in the third coordinate direction SUBROUTINE s_initialize_cbc( q_prim_vf, flux_vf, flux_src_vf, & ! ------ cbc_dir, cbc_loc, & ix,iy,iz ) TYPE(scalar_field), & DIMENSION(sys_size), & INTENT(IN) :: q_prim_vf TYPE(scalar_field), & DIMENSION(sys_size), & INTENT(IN) :: flux_vf, flux_src_vf INTEGER, INTENT(IN) :: cbc_dir, cbc_loc TYPE(bounds_info), INTENT(IN) :: ix,iy,iz INTEGER :: dj !< Indical shift based on CBC location INTEGER :: i,j,k,r !< Generic loop iterators ! Configuring the coordinate direction indexes and flags IF(cbc_dir == 1) THEN is1%beg = 0; is1%end = buff_size; is2 = iy; is3 = iz dir_idx = (/1,2,3/); dir_flg = (/1d0,0d0,0d0/) ELSEIF(cbc_dir == 2) THEN is1%beg = 0; is1%end = buff_size; is2 = ix; is3 = iz dir_idx = (/2,1,3/); dir_flg = (/0d0,1d0,0d0/) ELSE is1%beg = 0; is1%end = buff_size; is2 = iy; is3 = ix dir_idx = (/3,1,2/); dir_flg = (/0d0,0d0,1d0/) END IF ! Determining the indicial shift based on CBC location dj = MAX(0,cbc_loc) ! Allocation/Association of Primitive and Flux Variables =========== DO i = 1, sys_size ALLOCATE(q_prim_rs_vf(i)%sf( 0 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) END DO IF(weno_order > 1) THEN DO i = 1, adv_idx%end ALLOCATE(F_rs_vf(i)%sf( 0 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) END DO ALLOCATE(F_src_rs_vf(adv_idx%beg)%sf( 0 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end ALLOCATE(F_src_rs_vf(i)%sf( 0 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) END DO ELSE DO i = adv_idx%beg+1, adv_idx%end F_src_rs_vf(i)%sf => F_src_rs_vf(adv_idx%beg)%sf END DO END IF END IF DO i = 1, adv_idx%end ALLOCATE(flux_rs_vf(i)%sf( -1 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) END DO ALLOCATE(flux_src_rs_vf(adv_idx%beg)%sf( -1 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end ALLOCATE(flux_src_rs_vf(i)%sf( -1 : buff_size, & is2%beg : is2%end , & is3%beg : is3%end )) END DO ELSE DO i = adv_idx%beg+1, adv_idx%end flux_src_rs_vf(i)%sf => flux_src_rs_vf(adv_idx%beg)%sf END DO END IF ! END: Allocation/Association of Primitive and Flux Variables ====== ! Reshaping Inputted Data in x-direction =========================== IF(cbc_dir == 1) THEN DO i = 1, sys_size DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = 0, buff_size q_prim_rs_vf(i)%sf(j,k,r) = & q_prim_vf(i)%sf(dj*(m-2*j)+j,k,r) END DO END DO END DO END DO DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = 0, buff_size q_prim_rs_vf(mom_idx%beg)%sf(j,k,r) = & q_prim_vf(mom_idx%beg)%sf(dj*(m-2*j)+j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO DO i = 1, adv_idx%end DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_rs_vf(i)%sf(j,k,r) = & flux_vf(i)%sf(dj*((m-1)-2*j)+j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END DO DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_rs_vf(mom_idx%beg)%sf(j,k,r) = & flux_vf(mom_idx%beg)%sf(dj*((m-1)-2*j)+j,k,r) END DO END DO END DO DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) = & flux_src_vf(adv_idx%beg)%sf(dj*((m-1)-2*j)+j,k,r) END DO END DO END DO IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_rs_vf(i)%sf(j,k,r) = & flux_src_vf(i)%sf(dj*((m-1)-2*j)+j,k,r) END DO END DO END DO END DO ELSE DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) = & flux_src_vf(adv_idx%beg)%sf(dj*((m-1)-2*j)+j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END IF ! END: Reshaping Inputted Data in x-direction ====================== ! Reshaping Inputted Data in y-direction =========================== ELSEIF(cbc_dir == 2) THEN DO i = 1, sys_size DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = 0, buff_size q_prim_rs_vf(i)%sf(j,k,r) = & q_prim_vf(i)%sf(k,dj*(n-2*j)+j,r) END DO END DO END DO END DO DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = 0, buff_size q_prim_rs_vf(mom_idx%beg+1)%sf(j,k,r) = & q_prim_vf(mom_idx%beg+1)%sf(k,dj*(n-2*j)+j,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO DO i = 1, adv_idx%end DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_rs_vf(i)%sf(j,k,r) = & flux_vf(i)%sf(k,dj*((n-1)-2*j)+j,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END DO DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_rs_vf(mom_idx%beg+1)%sf(j,k,r) = & flux_vf(mom_idx%beg+1)%sf(k,dj*((n-1)-2*j)+j,r) END DO END DO END DO DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) = & flux_src_vf(adv_idx%beg)%sf(k,dj*((n-1)-2*j)+j,r) END DO END DO END DO IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_src_rs_vf(i)%sf(j,k,r) = & flux_src_vf(i)%sf(k,dj*((n-1)-2*j)+j,r) END DO END DO END DO END DO ELSE DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) = & flux_src_vf(adv_idx%beg)%sf(k,dj*((n-1)-2*j)+j,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END IF ! END: Reshaping Inputted Data in y-direction ====================== ! Reshaping Inputted Data in z-direction =========================== ELSE DO i = 1, sys_size DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = 0, buff_size q_prim_rs_vf(i)%sf(j,k,r) = & q_prim_vf(i)%sf(r,k,dj*(p-2*j)+j) END DO END DO END DO END DO DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = 0, buff_size q_prim_rs_vf(mom_idx%end)%sf(j,k,r) = & q_prim_vf(mom_idx%end)%sf(r,k,dj*(p-2*j)+j) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO DO i = 1, adv_idx%end DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_rs_vf(i)%sf(j,k,r) = & flux_vf(i)%sf(r,k,dj*((p-1)-2*j)+j) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END DO DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_rs_vf(mom_idx%end)%sf(j,k,r) = & flux_vf(mom_idx%end)%sf(r,k,dj*((p-1)-2*j)+j) END DO END DO END DO DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) = & flux_src_vf(adv_idx%beg)%sf(r,k,dj*((p-1)-2*j)+j) END DO END DO END DO IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_rs_vf(i)%sf(j,k,r) = & flux_src_vf(i)%sf(r,k,dj*((p-1)-2*j)+j) END DO END DO END DO END DO ELSE DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) = & flux_src_vf(adv_idx%beg)%sf(r,k,dj*((p-1)-2*j)+j) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END IF END IF ! END: Reshaping Inputted Data in z-direction ====================== ! Association of the procedural pointer to the appropriate procedure ! that will be utilized in the evaluation of L variables for the CBC ! ================================================================== IF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg == -5) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end == -5) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg == -5) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end == -5) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg == -5) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end == -5) ) & THEN s_compute_L => s_compute_slip_wall_L ELSEIF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg == -6) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end == -6) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg == -6) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end == -6) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg == -6) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end == -6) ) & THEN s_compute_L => s_compute_nonreflecting_subsonic_buffer_L ELSEIF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg == -7) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end == -7) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg == -7) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end == -7) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg == -7) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end == -7) ) & THEN s_compute_L => s_compute_nonreflecting_subsonic_inflow_L ELSEIF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg == -8) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end == -8) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg == -8) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end == -8) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg == -8) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end == -8) ) & THEN s_compute_L => s_compute_nonreflecting_subsonic_outflow_L ELSEIF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg == -9) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end == -9) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg == -9) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end == -9) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg == -9) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end == -9) ) & THEN s_compute_L => s_compute_force_free_subsonic_outflow_L ELSEIF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg ==-10) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end ==-10) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg ==-10) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end ==-10) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg ==-10) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end ==-10) ) & THEN s_compute_L => s_compute_constant_pressure_subsonic_outflow_L ELSEIF( (cbc_dir == 1 .AND. cbc_loc == -1 .AND. bc_x%beg ==-11) & .OR. (cbc_dir == 1 .AND. cbc_loc == 1 .AND. bc_x%end ==-11) & .OR. (cbc_dir == 2 .AND. cbc_loc == -1 .AND. bc_y%beg ==-11) & .OR. (cbc_dir == 2 .AND. cbc_loc == 1 .AND. bc_y%end ==-11) & .OR. (cbc_dir == 3 .AND. cbc_loc == -1 .AND. bc_z%beg ==-11) & .OR. (cbc_dir == 3 .AND. cbc_loc == 1 .AND. bc_z%end ==-11) ) & THEN s_compute_L => s_compute_supersonic_inflow_L ELSE s_compute_L => s_compute_supersonic_outflow_L END IF ! ================================================================== END SUBROUTINE s_initialize_cbc ! -------------------------------------- !> Deallocation and/or the disassociation procedures that !! are necessary in order to finalize the CBC application !! @param flux_vf Cell-boundary-average fluxes !! @param flux_src_vf Cell-boundary-average flux sources !! @param cbc_dir CBC coordinate direction !! @param cbc_loc CBC coordinate location !! @param ix Index bound in the first coordinate direction !! @param iy Index bound in the second coordinate direction !! @param iz Index bound in the third coordinate direction SUBROUTINE s_finalize_cbc( flux_vf, flux_src_vf, & ! ------------------- cbc_dir, cbc_loc, & ix,iy,iz ) TYPE(scalar_field), & DIMENSION(sys_size), & INTENT(INOUT) :: flux_vf, flux_src_vf INTEGER, INTENT(IN) :: cbc_dir, cbc_loc TYPE(bounds_info), INTENT(IN) :: ix,iy,iz INTEGER :: dj !< Indical shift based on CBC location INTEGER :: i,j,k,r !< Generic loop iterators ! Determining the indicial shift based on CBC location dj = MAX(0,cbc_loc) ! Reshaping Outputted Data in x-direction ========================== IF(cbc_dir == 1) THEN DO i = 1, adv_idx%end DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_vf(i)%sf(dj*((m-1)-2*j)+j,k,r) = & flux_rs_vf(i)%sf(j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END DO DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_vf(mom_idx%beg)%sf(dj*((m-1)-2*j)+j,k,r) = & flux_rs_vf(mom_idx%beg)%sf(j,k,r) END DO END DO END DO DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_vf(adv_idx%beg)%sf(dj*((m-1)-2*j)+j,k,r) = & flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) END DO END DO END DO IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_vf(i)%sf(dj*((m-1)-2*j)+j,k,r) = & flux_src_rs_vf(i)%sf(j,k,r) END DO END DO END DO END DO ELSE DO r = iz%beg, iz%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_vf(adv_idx%beg)%sf(dj*((m-1)-2*j)+j,k,r) = & flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END IF ! END: Reshaping Outputted Data in x-direction ===================== ! Reshaping Outputted Data in y-direction ========================== ELSEIF(cbc_dir == 2) THEN DO i = 1, adv_idx%end DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_vf(i)%sf(k,dj*((n-1)-2*j)+j,r) = & flux_rs_vf(i)%sf(j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END DO DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_vf(mom_idx%beg+1)%sf(k,dj*((n-1)-2*j)+j,r) = & flux_rs_vf(mom_idx%beg+1)%sf(j,k,r) END DO END DO END DO DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_src_vf(adv_idx%beg)%sf(k,dj*((n-1)-2*j)+j,r) = & flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) END DO END DO END DO IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_src_vf(i)%sf(k,dj*((n-1)-2*j)+j,r) = & flux_src_rs_vf(i)%sf(j,k,r) END DO END DO END DO END DO ELSE DO r = iz%beg, iz%end DO k = ix%beg, ix%end DO j = -1, buff_size flux_src_vf(adv_idx%beg)%sf(k,dj*((n-1)-2*j)+j,r) = & flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END IF ! END: Reshaping Outputted Data in y-direction ===================== ! Reshaping Outputted Data in z-direction ========================== ELSE DO i = 1, adv_idx%end DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_vf(i)%sf(r,k,dj*((p-1)-2*j)+j) = & flux_rs_vf(i)%sf(j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END DO DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_vf(mom_idx%end)%sf(r,k,dj*((p-1)-2*j)+j) = & flux_rs_vf(mom_idx%end)%sf(j,k,r) END DO END DO END DO DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_vf(adv_idx%beg)%sf(r,k,dj*((p-1)-2*j)+j) = & flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) END DO END DO END DO IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_vf(i)%sf(r,k,dj*((p-1)-2*j)+j) = & flux_src_rs_vf(i)%sf(j,k,r) END DO END DO END DO END DO ELSE DO r = ix%beg, ix%end DO k = iy%beg, iy%end DO j = -1, buff_size flux_src_vf(adv_idx%beg)%sf(r,k,dj*((p-1)-2*j)+j) = & flux_src_rs_vf(adv_idx%beg)%sf(j,k,r) * & SIGN(1d0,-REAL(cbc_loc,KIND(0d0))) END DO END DO END DO END IF END IF ! END: Reshaping Outputted Data in z-direction ===================== ! Deallocation/Disassociation of Primitive and Flux Variables ====== DO i = 1, sys_size DEALLOCATE(q_prim_rs_vf(i)%sf) END DO IF(weno_order > 1) THEN DO i = 1, adv_idx%end DEALLOCATE(F_rs_vf(i)%sf) END DO DEALLOCATE(F_src_rs_vf(adv_idx%beg)%sf) IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DEALLOCATE(F_src_rs_vf(i)%sf) END DO ELSE DO i = adv_idx%beg+1, adv_idx%end NULLIFY(F_src_rs_vf(i)%sf) END DO END IF END IF DO i = 1, adv_idx%end DEALLOCATE(flux_rs_vf(i)%sf) END DO DEALLOCATE(flux_src_rs_vf(adv_idx%beg)%sf) IF(riemann_solver == 1) THEN DO i = adv_idx%beg+1, adv_idx%end DEALLOCATE(flux_src_rs_vf(i)%sf) END DO ELSE DO i = adv_idx%beg+1, adv_idx%end NULLIFY(flux_src_rs_vf(i)%sf) END DO END IF ! ================================================================== ! Nullifying procedural pointer used in evaluation of L for the CBC s_compute_L => NULL() END SUBROUTINE s_finalize_cbc ! ---------------------------------------- !> Module deallocation and/or disassociation procedures SUBROUTINE s_finalize_cbc_module() ! ----------------------------------- IF( ALL((/bc_x%beg,bc_x%end/) > -5) & .AND. & (n > 0 .AND. ALL((/bc_y%beg,bc_y%end/) > -5)) & .AND. & (p > 0 .AND. ALL((/bc_z%beg,bc_z%end/) > -5)) ) RETURN ! Deallocating the cell-average primitive variables DEALLOCATE(q_prim_rs_vf) ! Deallocating the cell-average and cell-boundary-average fluxes DEALLOCATE( F_rs_vf, F_src_rs_vf) DEALLOCATE(flux_rs_vf, flux_src_rs_vf) ! Deallocating the cell-average partial densities, the velocity, the ! advection variables, the mass fractions and also the Weber numbers DEALLOCATE(alpha_rho, vel, adv, mf, We) ! Deallocating the first-order spatial derivatives, in s-direction, ! of the partial densities, the velocity and the advected variables DEALLOCATE(dalpha_rho_ds, dvel_ds, dadv_ds) ! Deallocating L, see Thompson (1987, 1990) DEALLOCATE(L) ! Deallocating the cell-width distribution in the s-direction DEALLOCATE(ds) ! Deallocating CBC Coefficients in x-direction ===================== IF(ANY((/bc_x%beg,bc_x%end/) <= -5)) THEN DEALLOCATE(fd_coef_x); IF(weno_order > 1) DEALLOCATE(pi_coef_x) END IF ! ================================================================== ! Deallocating CBC Coefficients in y-direction ===================== IF(n > 0 .AND. ANY((/bc_y%beg,bc_y%end/) <= -5)) THEN DEALLOCATE(fd_coef_y); IF(weno_order > 1) DEALLOCATE(pi_coef_y) END IF ! ================================================================== ! Deallocating CBC Coefficients in z-direction ===================== IF(p > 0 .AND. ANY((/bc_z%beg,bc_z%end/) <= -5)) THEN DEALLOCATE(fd_coef_z); IF(weno_order > 1) DEALLOCATE(pi_coef_z) END IF ! ================================================================== ! Disassociating the pointer to the procedure that was utilized to ! to convert mixture or species variables to the mixture variables s_convert_to_mixture_variables => NULL() END SUBROUTINE s_finalize_cbc_module ! --------------------------------- END MODULE m_cbc
printstyled(stdout," show\n", color=:light_green) # SeisChannel show S = SeisData() C = randSeisChannel() C.fs = 100.0 nx = (1, 2, 3, 4, 5, 10, 100, 10000) C.t = Array{Int64,2}(undef, 0, 2) C.x = Float32[] push!(S, C) redirect_stdout(out) do for i in nx C.t = [1 0; i 0] C.x = randn(Float32, i) show(C) push!(S, C) end show(S) end redirect_stdout(out) do # show show(breaking_seis()) show(randSeisData(1)) show(SeisChannel()) show(SeisData()) show(randSeisChannel()) show(randSeisData(10, c=1.0)) # summary summary(randSeisChannel()) summary(randSeisData()) # invoke help-only functions seed_support() mseed_support() dataless_support() resp_wont_read() @test web_chanspec() == nothing end
module ReverseVec import Data.Nat import Data.Vect %default total myReverse : Vect n elem -> Vect n elem myReverse [] = [] myReverse { n = S k } (x :: xs) = let rev = myReverse xs ++ [x] in rewrite plusCommutative 1 k in rev ourReverse : Vect n elem -> Vect n elem ourReverse [] = [] ourReverse (x :: xs) = reverseProof (ourReverse xs ++ [x]) where reverseProof : Vect (len + 1) elem -> Vect (S len) elem reverseProof { len } xs = rewrite plusCommutative 1 len in xs
Basic Moving is a nationwide moving company, providing quality and efficient solutions for your domestic and office moving needs at competitive rates. Bay Area Movers, Inc. is a full service moving company with local service areas which include Houston, Clear Lake, Pearland, Friendswood, Alvin, Galveston and all surrounding areas. They also move anywhere in Texas as well as nationwide. Supported by a vast fleet of modern trucks, Best Brothers Moving specializes in moving services in California, Utah, Wisconsin and New York areas since the foundation in 2006. Best Deal Moving Co. is ready to help you whether you're moving only a few items or a large residence, a small or a big office, your move is just around the corner or across the state. Best Move is a family owned business dedicated to assisting you and working one on one with each customer in order to provide you with the quality moving services. Headquartered in Brighton, Massachusetts, Best Movers, Inc. offers a full line of moving and packing services to meet their customers’ moving needs. Established almost 65 years ago, Best Value Move is family owned business which operating in Flower Mound,Texas and also has offices in Dallas and San Antonio. Since 2004, Big Mountain Movers strives to provide professional full service moves, serving the entire state of Utah and all across the United States.
theory RelyGuarantee imports Language begin datatype ('a, 'b) stmt = Atom 'a | Choice "('a, 'b) stmt" "('a, 'b) stmt" | Seq "('a, 'b) stmt" "('a, 'b) stmt" (infixr ";" 60) | Par "('a, 'b) stmt" "('a, 'b) stmt" | Star "('a, 'b) stmt" | Fail | Skip datatype 'a act = Act "'a \<Rightarrow> 'a set" primrec runAct :: "'a act \<Rightarrow> 'a \<Rightarrow> 'a set" where "runAct (Act f) = f" lemma st_ext [intro]: "(\<And>x. runAct f x = runAct g x) \<Longrightarrow> f = g" apply (rule act.exhaust[of f]) apply (rule act.exhaust[of g]) by auto instantiation act :: (type) monoid_add begin definition zero_act :: "'a act" where "zero_act = Act (\<lambda>x. {x})" definition plus_act :: "'a act \<Rightarrow> 'a act \<Rightarrow> 'a act" where "plus_act f g \<equiv> Act (\<lambda>\<sigma>. \<Union>{runAct g \<sigma>'|\<sigma>'. \<sigma>' \<in> runAct f \<sigma>})" instance apply default apply (simp_all add: zero_act_def plus_act_def) apply (rule ext) apply auto apply (rule st_ext) by auto end primrec semantics :: "('a \<Rightarrow> 'b act) \<Rightarrow> ('a, 'b) stmt \<Rightarrow> 'b act lan" where "semantics f (Atom a) = {f a # []}" | "semantics f (Choice x y) = semantics f x \<union> semantics f y" | "semantics f (Seq x y) = semantics f x \<cdot> semantics f y" | "semantics f (Par x y) = semantics f x \<parallel> semantics f y" | "semantics f (Star x) = (semantics f x)\<^sup>*" | "semantics f Fail = {}" | "semantics f Skip = {[]}" definition eval_word :: "'a act list \<Rightarrow> 'a set \<Rightarrow> 'a set" where "eval_word xs H = \<Union>{runAct (listsum xs) h|h. h \<in> H}" lemma eval_empty_word [simp]: "eval_word [] h = h" by (auto simp add: eval_word_def zero_act_def) lemma eval_cons_word [simp]: "eval_word (x # xs) h = eval_word xs (\<Union>runAct x ` h)" by (auto simp add: eval_word_def plus_act_def) lemma eval_append_word: "eval_word (xs @ ys) h = eval_word ys (eval_word xs h)" by (induct xs arbitrary: h) simp_all definition module :: "'a act lan \<Rightarrow> 'a set \<Rightarrow> 'a set" (infix "\<Colon>" 60) where "x \<Colon> h \<equiv> \<Union>{eval_word w h|w. w \<in> x}" lemma eval_word_continuous: "eval_word w (\<Union>X) = \<Union>eval_word w ` X" by (induct w arbitrary: X) (auto simp add: image_def) lemma mod_mult: "x\<cdot>y \<Colon> h = y \<Colon> (x \<Colon> h)" proof - have "x\<cdot>y \<Colon> h = \<Union>{eval_word w h|w. w \<in> x\<cdot>y}" by (simp add: module_def) also have "... = \<Union>{eval_word (xw @ yw) h|xw yw. xw \<in> x \<and> yw \<in> y}" by (auto simp add: l_prod_def complex_product_def) also have "... = \<Union>{eval_word yw (eval_word xw h)|xw yw. xw \<in> x \<and> yw \<in> y}" by (simp add: eval_append_word) also have "... = \<Union>{\<Union>{eval_word yw (eval_word xw h)|xw. xw \<in> x}|yw. yw \<in> y}" by blast also have "... = \<Union>{eval_word yw (\<Union>{eval_word xw h|xw. xw \<in> x})|yw. yw \<in> y}" by (subst eval_word_continuous) (auto simp add: image_def) also have "... = \<Union>{eval_word yw (x \<Colon> h)|yw. yw \<in> y}" by (simp add: module_def) also have "... = y \<Colon> (x \<Colon> h)" by (simp add: module_def) finally show ?thesis . qed lemma mod_one [simp]: "{[]} \<Colon> h = h" by (simp add: module_def) lemma mod_zero [simp]: "{} \<Colon> h = {}" by (simp add: module_def) lemma mod_empty [simp]: "x \<Colon> {} = {}" by (simp add: module_def eval_word_def) lemma mod_distl: "(x \<union> y) \<Colon> h = (x \<Colon> h) \<union> (y \<Colon> h)" proof - have "(x \<union> y) \<Colon> h = \<Union>{eval_word w h|w. w \<in> x \<union> y}" by (simp add: module_def) also have "... = \<Union>{eval_word w h|w. w \<in> x \<or> w \<in> y}" by blast also have "... = \<Union>{eval_word w h|w. w \<in> x} \<union> \<Union>{eval_word w h|w. w \<in> y}" by blast also have "... = (x \<Colon> h) \<union> (y \<Colon> h)" by (simp add: module_def) finally show ?thesis . qed lemma mod_distr: "x \<Colon> (h \<union> g) = (x \<Colon> h) \<union> (x \<Colon> g)" proof - have "x \<Colon> (h \<union> g) = \<Union>{eval_word w (h \<union> g)|w. w \<in> x}" by (simp add: module_def) also have "... = \<Union>{eval_word w h \<union> eval_word w g|w. w \<in> x}" by (simp add: eval_word_def) blast also have "... = \<Union>{eval_word w h|w. w \<in> x} \<union> \<Union>{eval_word w g|w. w \<in> x}" by blast also have "... = (x \<Colon> h) \<union> (x \<Colon> g)" by (simp add: module_def) finally show ?thesis . qed lemma mod_isol: "x \<subseteq> y \<Longrightarrow> x \<Colon> p \<subseteq> y \<Colon> p" by (auto simp add: module_def) lemma mod_isor: "p \<subseteq> q \<Longrightarrow> x \<Colon> p \<subseteq> x \<Colon> q" by (metis mod_distr subset_Un_eq) lemma mod_continuous: "\<Union>X \<Colon> p = \<Union>{x \<Colon> p|x. x \<in> X}" by (simp add: module_def) blast lemma mod_continuous_var: "\<Union>{f x|x. P x} \<Colon> p = \<Union>{f x \<Colon> p|x. P x}" by (simp add: mod_continuous) blast definition mod_test :: "('a set) \<Rightarrow> 'a act lan" ("_?" [101] 100) where "p? \<equiv> {[Act (\<lambda>x. {x} \<inter> p)]}" lemma mod_test: "p? \<Colon> q = p \<inter> q" by (auto simp add: module_def mod_test_def) lemma test_true: "q \<subseteq> p \<Longrightarrow> p? \<Colon> q = q" by (metis Int_absorb1 mod_test) lemma test_false: "q \<subseteq> -p \<Longrightarrow> p? \<Colon> q = {}" by (metis Int_commute disjoint_eq_subset_Compl mod_test) lemma l_prod_distr: "(X \<union> Y) \<cdot> Z = X \<cdot> Z \<union> Y \<cdot> Z" by (insert l_prod_inf_distr[of "{X, Y}" Z]) auto lemma l_prod_distl: "X \<cdot> (Y \<union> Z) = X \<cdot> Y \<union> X \<cdot> Z" by (insert l_prod_inf_distl[of "X" "{Y, Z}"]) auto no_notation Transitive_Closure.trancl ("(_\<^sup>+)" [1000] 999) definition l_plus :: "'a lan \<Rightarrow> 'a lan" ("_\<^sup>+" [101] 100) where "X\<^sup>+ = X\<cdot>X\<^sup>*" lemma l_plus_unfold: "X\<^sup>+ = X \<union> X\<^sup>+" sorry lemma "q \<subseteq> p \<Longrightarrow> (p?)\<^sup>+\<cdot>x \<Colon> q = (x \<Colon> q) \<union> ((p?)\<^sup>+\<cdot>x \<Colon> q)" by (smt l_plus_unfold l_prod_distr mod_distl mod_mult test_true) lemma "(p?)\<^sup>+\<cdot>x \<Colon> q = (x \<Colon> q \<inter> p) \<union> ((p?)\<^sup>+\<cdot>x \<Colon> q)" by (metis inf.commute l_plus_unfold mod_distl mod_distr mod_mult mod_test) lemma "q \<subseteq> p \<Longrightarrow> (p?)\<^sup>+\<cdot>x \<Colon> q = (x \<Colon> q)" nitpick lemma "p?\<cdot>x \<Colon> q = x\<cdot>q" lemma "q \<subseteq> -p \<Longrightarrow> p? \<Colon> q = {}" by (metis Int_commute disjoint_eq_subset_Compl mod_test) lemma image_InL [simp]: "map \<langle>id,id\<rangle> ` op # (InL x) ` X = op # x ` map \<langle>id,id\<rangle> ` X" by (auto simp add: image_def) lemma image_InR [simp]: "map \<langle>id,id\<rangle> ` op # (InR x) ` X = op # x ` map \<langle>id,id\<rangle> ` X" by (auto simp add: image_def) lemma image_singleton: "op # x ` X = {[x]} \<cdot> X" by (auto simp add: image_def l_prod_def complex_product_def) lemma tshuffle_await_cons: "q \<subseteq> - p \<Longrightarrow> map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # ys) \<sha> (x # xs)) \<Colon> q = op # x ` (map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # ys) \<sha> xs)) \<Colon> q" apply (subst tshuffle_ind) apply (simp add: mod_distl) apply (simp add: image_singleton mod_mult) apply (subst module_def) back apply (subgoal_tac "q \<inter> p = {}") apply simp by blast definition to_rel :: "('a \<Rightarrow> 'a set) \<Rightarrow> 'a rel" where "to_rel f = {(x, y)|x y. y \<in> f x}" definition to_fun :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" where "to_fun R x = {y. (x, y) \<in> R}" lemma rel_fun_inv [simp]: "to_rel (to_fun R) = R" by (auto simp add: to_fun_def to_rel_def) lemma fun_rel_inv [simp]: "to_fun (to_rel f) = f" by (auto simp add: to_fun_def to_rel_def) lemma [simp]: "to_fun {} = (\<lambda>x. {})" apply (rule ext) by (simp add: to_fun_def) definition \<iota> :: "'a act lan \<Rightarrow> 'a rel" where "\<iota> X = \<Union>{to_rel (runAct x)|x. x \<in> symbols X}" definition \<rho> :: "'a rel \<Rightarrow> 'a act lan" where "\<rho> R = pow_inv {Act (to_fun S)|S. S \<subseteq> R}" lemma \<iota>_iso: "X \<subseteq> Y \<Longrightarrow> \<iota> X \<subseteq> \<iota> Y" apply (simp add: \<iota>_def symbols_def) by blast lemma \<rho>_iso: "X \<subseteq> Y \<Longrightarrow> \<rho> X \<subseteq> \<rho> Y" apply (simp add: \<rho>_def) apply (rule pow_inv_iso) by blast lemma [simp]: "symbols (pow_inv Z) = Z" proof - { fix x assume "x \<in> Z" hence "[x] \<in> pow_inv Z" by (metis pow_inv.pinv_cons pow_inv.pinv_empty) hence "x \<in> symbols (pow_inv Z)" by (metis symbol_cons) } moreover have "symbols (pow_inv Z) \<subseteq> Z" proof (auto simp add: symbols_def) fix x xs assume "xs \<in> pow_inv Z" and "x \<in> set xs" thus "x \<in> Z" by (induct xs rule: pow_inv.induct) auto qed ultimately show ?thesis by auto qed lemma [simp]: "\<Union>{to_rel (runAct xa)|xa. \<exists>S. xa = Act (to_fun S) \<and> S \<subseteq> x} = \<Union>{S|S. S \<subseteq> x}" apply (rule arg_cong) back apply auto apply (rule_tac x = "Act (to_fun xa)" in exI) apply simp apply (rule_tac x = "xa" in exI) by auto lemma \<iota>_\<rho>_eq: "\<iota> (\<rho> x) = x" by (simp add: \<iota>_def \<rho>_def, auto) lemma \<rho>_\<iota>_eq: "x \<subseteq> \<rho> (\<iota> x)" apply (simp add: \<iota>_def \<rho>_def) apply (rule order_trans[of _ "pow_inv (symbols x)"]) apply (metis inv_sym_extensive) apply (rule pow_inv_iso) apply auto apply (rule_tac x = "to_rel (runAct xa)" in exI) by auto lemma galois_connection: "\<iota> x \<subseteq> y \<longleftrightarrow> x \<subseteq> \<rho> y" apply default apply (metis \<rho>_\<iota>_eq \<rho>_iso subset_trans) by (metis \<iota>_\<rho>_eq \<iota>_iso) definition "preserves b \<equiv> {(\<sigma>,\<sigma>'). \<sigma> \<in> b \<longrightarrow> \<sigma>' \<in> b}" lemma \<iota>_tl: "\<iota> {x # xs} \<subseteq> preserves p \<Longrightarrow> \<iota> {xs} \<subseteq> preserves p" by (auto simp add: preserves_def \<iota>_def symbols_def) lemma \<iota>_hd: "\<iota> {x # xs} \<subseteq> preserves p \<Longrightarrow> \<iota> {[x]} \<subseteq> preserves p" by (auto simp add: preserves_def \<iota>_def symbols_def) lemma \<iota>_member: "\<iota> x \<subseteq> preserves p \<Longrightarrow> xw \<in> x \<Longrightarrow> \<iota> {xw} \<subseteq> preserves p" by (auto simp add: preserves_def \<iota>_def symbols_def Sup_le_iff) lemma \<iota>_singleton_preserves: "\<iota> {[x]} \<subseteq> preserves p \<longleftrightarrow> (\<forall>q. q \<subseteq> p \<longrightarrow> {[x]} \<Colon> q \<subseteq> p)" by (auto simp add: preserves_def module_def \<iota>_def symbols_def to_rel_def) lemma tshuffle_await_append: "\<iota> {xs} \<subseteq> preserves (- p) \<Longrightarrow> q \<subseteq> -p \<Longrightarrow> map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> (xs @ ys)) \<Colon> q = op @ xs ` (map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> ys)) \<Colon> q" proof (induct xs arbitrary: q) case Nil show ?case by simp next case (Cons x xs) assume ih: "\<And>q. \<iota> {xs} \<subseteq> preserves (- p) \<Longrightarrow> q \<subseteq> - p \<Longrightarrow> map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> (xs @ ys)) \<Colon> q = op @ xs ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> ys) \<Colon> q" and x_xs_preserves_not_p: "\<iota> {x # xs} \<subseteq> preserves (- p)" and not_p: "q \<subseteq> - p" hence not_p': "{[x]} \<Colon> q \<subseteq> -p" by (metis (hide_lams, no_types) \<iota>_hd \<iota>_singleton_preserves) have "map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> ((x # xs) @ ys)) \<Colon> q = map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> (x # xs @ ys)) \<Colon> q" by simp also have "... = op # x ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> (xs @ ys)) \<Colon> q" by (simp only: tshuffle_await_cons[OF not_p]) also have "... = map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> (xs @ ys)) \<Colon> ({[x]} \<Colon> q)" by (simp only: image_singleton mod_mult) also have "... = op @ xs ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> ys) \<Colon> ({[x]} \<Colon> q)" by (simp only: ih[OF \<iota>_tl[OF x_xs_preserves_not_p] not_p']) also have "... = op # x ` op @ xs ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> ys) \<Colon> q" by (simp only: mod_mult[symmetric] image_singleton[symmetric]) also have "... = op @ (x # xs) ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zs) \<sha> ys) \<Colon> q" by (simp only: image_compose[symmetric] o_def append.simps) finally show ?case . qed lemma set_comp_3_eq: "(\<And>x y z. Q x y z \<Longrightarrow> P x y z = P' x y z) \<Longrightarrow> {P x y z|x y z. Q x y z} = {P' x y z|x y z. Q x y z}" by auto metis+ lemma helper: "\<Union>{{xw} \<cdot> P y z|y xw z. Q y z \<and> xw \<in> x \<and> Q y z} = \<Union>{x \<cdot> P y z|y z. Q y z}" by (auto simp add: l_prod_def complex_product_def) lemma image_append: "op @ xs ` X = {xs} \<cdot> X" by (auto simp add: l_prod_def complex_product_def) lemma await_par: assumes x_preserves_not_p: "\<iota> x \<subseteq> preserves (- p)" and not_p: "q \<subseteq> -p" shows "p?\<cdot>z \<parallel> x\<cdot>y \<Colon> q = x\<cdot>(p?\<cdot>z \<parallel> y) \<Colon> q" proof - have "p?\<cdot>z \<parallel> x\<cdot>y \<Colon> q = \<Union>{map \<langle>id,id\<rangle> ` (pzw \<sha> xyw)|pzw xyw. pzw \<in> p? \<cdot> z \<and> xyw \<in> x \<cdot> y} \<Colon> q" by (simp add: shuffle_def) also have "... = \<Union>{map \<langle>id,id\<rangle> ` (pzw \<sha> xyw) \<Colon> q|pzw xyw. pzw \<in> p? \<cdot> z \<and> xyw \<in> x \<cdot> y}" by (subst mod_continuous) blast also have "... = \<Union>{map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zw) \<sha> (xw @ yw)) \<Colon> q|zw xw yw. zw \<in> z \<and> xw \<in> x \<and> yw \<in> y}" by (simp add: l_prod_def complex_product_def mod_test_def, rule arg_cong, blast) also have "... = \<Union>{op @ xw ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zw) \<sha> yw) \<Colon> q|zw xw yw. zw \<in> z \<and> xw \<in> x \<and> yw \<in> y}" apply (rule arg_cong) back apply (rule set_comp_3_eq) apply (subst tshuffle_await_append) apply (metis \<iota>_member x_preserves_not_p) apply (metis not_p) by simp also have "... = \<Union>{op @ xw ` map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zw) \<sha> yw)|zw xw yw. zw \<in> z \<and> xw \<in> x \<and> yw \<in> y} \<Colon> q" by (subst mod_continuous) blast also have "... = \<Union>{{xw} \<cdot> map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zw) \<sha> yw)|zw xw yw. zw \<in> z \<and> xw \<in> x \<and> yw \<in> y} \<Colon> q" by (simp only: image_append) also have "... = \<Union>{x \<cdot> map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zw) \<sha> yw)|zw yw. zw \<in> z \<and> yw \<in> y} \<Colon> q" by (rule arg_cong, auto simp add: l_prod_def complex_product_def) also have "... = x \<cdot> \<Union>{map \<langle>id,id\<rangle> ` ((Act (\<lambda>x. {x} \<inter> p) # zw) \<sha> yw)|zw yw. zw \<in> z \<and> yw \<in> y} \<Colon> q" by (subst l_prod_inf_distl, rule arg_cong, blast) also have "... = x \<cdot> \<Union>{map \<langle>id,id\<rangle> ` (pzw \<sha> yw)|pzw yw. pzw \<in> p? \<cdot> z \<and> yw \<in> y} \<Colon> q" by (simp add: l_prod_def complex_product_def mod_test_def, rule arg_cong, blast) also have "... = x\<cdot>(p?\<cdot>z \<parallel> y) \<Colon> q" by (simp add: shuffle_def) finally show ?thesis . qed (* primrec splittings_ind :: "'a list \<Rightarrow> 'a list \<Rightarrow> ('a list \<times> 'a list) set" where "splittings_ind ys [] = {(ys, [])}" | "splittings_ind ys (x#xs) = {(ys, x#xs)} \<union> (splittings_ind (ys @ [x]) xs)" definition splittings where "splittings xs = {(ys,zs). ys @ zs = xs}" definition add_first where "add_first xs X = (\<lambda>x. (xs @ fst x, snd x)) ` X" lemma afs: "add_first ws (splittings xs) = {(ws @ ys,zs)|ys zs. ys @ zs = xs}" by (auto simp add: add_first_def splittings_def image_def) lemma l1: "splittings_ind ys xs = add_first ys (splittings xs)" apply (simp add: afs) apply (induct xs arbitrary: ys) apply simp apply auto apply (metis Cons_eq_append_conv) by (metis (hide_lams, no_types) append_eq_Cons_conv) lemma [simp]: "add_first [] (splittings xs) = splittings xs" by (simp add: splittings_def add_first_def) lemma l2: "splittings_ind [] xs = splittings xs" by (insert l1[of "[]"], simp) *) type_synonym mem = "nat \<Rightarrow> nat option" datatype atoms = Assign nat nat | Pred "mem set" primrec atoms_interp :: "atoms \<Rightarrow> mem act" where "atoms_interp (Assign x v) = Act (\<lambda>mem. {\<lambda>y. if x = y then Some v else mem y})" | "atoms_interp (Pred p) = Act (\<lambda>mem. if mem \<in> p then {mem} else {})" definition domain :: "mem \<Rightarrow> nat set" where "domain f \<equiv> {x. f x \<noteq> None}" definition disjoint :: "mem \<Rightarrow> mem \<Rightarrow> bool" where "disjoint f g \<equiv> domain f \<inter> domain g = {}" definition merge :: "mem \<Rightarrow> mem \<Rightarrow> mem" where "merge \<sigma> \<sigma>' = (\<lambda>v. if \<sigma> v = None then \<sigma>' v else \<sigma> v)" definition sep_conj :: "mem set \<Rightarrow> mem set \<Rightarrow> mem set" (infixr "**" 45) where "p ** q \<equiv> {\<sigma>''. \<exists>\<sigma> \<sigma>'. disjoint \<sigma> \<sigma>' \<and> \<sigma>'' = merge \<sigma> \<sigma>' \<and> \<sigma> \<in> p \<and> \<sigma>' \<in> q}" definition quintuple :: "'b rel \<Rightarrow> 'b rel \<Rightarrow> ('a \<Rightarrow> 'b act) \<Rightarrow> 'b set \<Rightarrow> ('a, 'b) stmt \<Rightarrow> 'b set \<Rightarrow> bool" ("_, _ \<turnstile>\<^bsub>_\<^esub> \<lbrace>_\<rbrace> _ \<lbrace>_\<rbrace>" [20,20,0,20,20,20] 100) where "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> \<equiv> (\<rho> r \<parallel> semantics \<Gamma> c \<Colon> p \<subseteq> q) \<and> (\<iota> (semantics \<Gamma> c) \<subseteq> g)" definition stable :: "'b rel \<Rightarrow> 'b set \<Rightarrow> bool" where "stable r p \<equiv> \<rho> r \<Colon> p \<subseteq> p" lemma SKIP: "stable r p \<Longrightarrow> r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> Skip \<lbrace>p\<rbrace>" by (simp add: quintuple_def \<iota>_def symbols_def stable_def) lemma inv_exchange: "\<rho> r \<parallel> x \<cdot> y = (\<rho> r \<parallel> x) \<cdot> (\<rho> r \<parallel> y)" sorry lemma inv_join: "\<iota>(x \<parallel> y) = \<iota> x \<union> \<iota> y" sorry lemma SEQ: assumes "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> C1 \<lbrace>q\<rbrace>" and "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>q\<rbrace> C2 \<lbrace>s\<rbrace>" shows "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> C1; C2 \<lbrace>s\<rbrace>" using assms apply (simp add: quintuple_def inv_exchange mod_mult) apply (intro conjI) apply (metis mod_isor order_trans) by (metis Un_upper2 \<iota>_iso empty_subsetI inv_join shuffle_zerol subset_antisym) lemma rely_dup: "\<rho> r = \<rho> r \<parallel> \<rho> r" by (metis (full_types) \<iota>_\<rho>_eq empty_subsetI galois_connection inv_join inv_shuffle inv_sym_extensive shuffle_zeror sup_top_left top_unique) lemma shuffle_isor: "X \<subseteq> Y \<Longrightarrow> Z \<parallel> X \<subseteq> Z \<parallel> Y" by (metis shuffle_comm shuffle_iso) lemma PAR: assumes "g1 \<subseteq> r2" and "r1, g1 \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p1\<rbrace> C1 \<lbrace>q1\<rbrace>" and "g2 \<subseteq> r1" and "r2, g2 \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p2\<rbrace> C2 \<lbrace>q2\<rbrace>" shows "(r1 \<inter> r2), (g1 \<union> g2) \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p1 \<inter> p2\<rbrace> Par C1 C2 \<lbrace>q1 \<inter> q2\<rbrace>" proof (simp add: quintuple_def, intro conjI) let ?c1 = "semantics \<Gamma> C1" let ?c2 = "semantics \<Gamma> C2" have "\<rho> (r1 \<inter> r2) \<parallel> (?c1 \<parallel> ?c2) \<Colon> p1 \<inter> p2 = (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<Colon> p1 \<inter> p2" by (smt rely_dup shuffle_assoc shuffle_comm) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<Colon> p1" by (metis Int_lower1 mod_isor) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> \<rho> (\<iota> ?c2)) \<Colon> p1" by (intro mod_isol shuffle_isor) (metis \<rho>_\<iota>_eq) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> \<rho> g2) \<Colon> p1" by (intro mod_isol shuffle_isor) (metis \<rho>_iso assms(4) quintuple_def) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<parallel> \<rho> (r1 \<inter> r2) \<Colon> p1" by (intro mod_isol shuffle_isor) (metis empty_subsetI galois_connection inf_absorb2 inv_join le_inf_iff shuffle_zeror sup_ge1) also have "... \<subseteq> (\<rho> r1 \<parallel> ?c1) \<parallel> \<rho> r1 \<Colon> p1" by (metis \<iota>_\<rho>_eq galois_connection inf_le1 mod_isol rely_dup shuffle_assoc shuffle_comm shuffle_iso) also have "... = \<rho> r1 \<parallel> ?c1 \<Colon> p1" by (metis rely_dup shuffle_assoc shuffle_comm) also have "... \<subseteq> q1" by (metis assms(2) quintuple_def) finally show "\<rho> (r1 \<inter> r2) \<parallel> (semantics \<Gamma> C1 \<parallel> semantics \<Gamma> C2) \<Colon> p1 \<inter> p2 \<subseteq> q1" . have "\<rho> (r1 \<inter> r2) \<parallel> (?c1 \<parallel> ?c2) \<Colon> p1 \<inter> p2 = \<rho> (r1 \<inter> r2) \<parallel> (?c2 \<parallel> ?c1) \<Colon> p1 \<inter> p2" by (metis shuffle_comm) also have "... = (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<Colon> p1 \<inter> p2" by (smt rely_dup shuffle_assoc shuffle_comm) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> ?c1) \<Colon> p2" by (metis Int_lower2 mod_isor) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> \<rho> (\<iota> ?c1)) \<Colon> p2" by (intro mod_isol shuffle_isor) (metis \<rho>_\<iota>_eq) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<parallel> (\<rho> (r1 \<inter> r2) \<parallel> \<rho> g1) \<Colon> p2" by (intro mod_isol shuffle_isor) (metis \<rho>_iso assms(2) quintuple_def) also have "... \<subseteq> (\<rho> (r1 \<inter> r2) \<parallel> ?c2) \<parallel> \<rho> (r1 \<inter> r2) \<Colon> p2" by (intro mod_isol shuffle_isor) (metis empty_subsetI galois_connection inf_absorb2 inv_join shuffle_zeror sup_inf_absorb) also have "... \<subseteq> (\<rho> r2 \<parallel> ?c2) \<parallel> \<rho> r2 \<Colon> p2" by (metis \<rho>_iso inf_le2 mod_isol rely_dup shuffle_assoc shuffle_comm shuffle_iso) also have "... = \<rho> r2 \<parallel> ?c2 \<Colon> p2" by (metis rely_dup shuffle_assoc shuffle_comm) also have "... \<subseteq> q2" by (metis assms(4) quintuple_def) finally show "\<rho> (r1 \<inter> r2) \<parallel> (semantics \<Gamma> C1 \<parallel> semantics \<Gamma> C2) \<Colon> p1 \<inter> p2 \<subseteq> q2" . show "\<iota> (?c1 \<parallel> ?c2) \<subseteq> g1 \<union> g2" by (metis assms(2) assms(4) inv_join quintuple_def sup_mono) qed lemma CHOICE: assumes "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> C1 \<lbrace>q\<rbrace>" and "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> C2 \<lbrace>q\<rbrace>" shows "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> Choice C1 C2 \<lbrace>q\<rbrace>" using assms apply (simp add: quintuple_def) apply (intro conjI) apply (metis le_sup_iff mod_distl shuffle_distl) by (metis galois_connection le_sup_iff) definition Await :: "mem set \<Rightarrow> (atoms, mem) stmt \<Rightarrow> (atoms, mem) stmt" where "Await b C = Seq (Atom (Pred b)) C" lemma helper2: "x \<subseteq> y \<Longrightarrow> y \<union> z \<subseteq> w \<Longrightarrow> x \<union> z \<subseteq> w" by (metis le_sup_iff order_trans) lemma helper3: "x \<subseteq> y \<Longrightarrow> x \<union> y \<subseteq> y" by (metis le_sup_iff order_refl) lemma test: "{(\<sigma>, \<sigma>'). \<sigma>' \<in> runAct a \<sigma>} \<subseteq> {(\<sigma>, \<sigma>'). \<sigma> \<in> p \<longrightarrow> \<sigma>' \<in> p} \<Longrightarrow> \<sigma> \<in> p \<longrightarrow> runAct a \<sigma> \<subseteq> p" by auto lemma test_comm: "\<iota> {[x]} \<subseteq> preserves p \<Longrightarrow> {[Act (\<lambda>x. {x} \<inter> p)]} \<cdot> {[x]} \<Colon> q \<subseteq> {[x]} \<cdot> {[Act (\<lambda>x. {x} \<inter> p)]} \<Colon> q" by (auto simp add: l_prod_def complex_product_def module_def preserves_def \<iota>_def symbols_def to_rel_def) lemma tshuffle_left_leq: "{[x]} \<cdot> map \<langle>id,id\<rangle> ` (xs \<sha> ys) \<subseteq> map \<langle>id,id\<rangle> ` ((x # xs) \<sha> ys)" apply (induct ys) apply (simp add: l_prod_def complex_product_def) apply (simp only: tshuffle_ind image_Un image_InL) apply (simp only: image_singleton) by (metis Un_upper1) lemma tshuffle_right_leq: "{[y]} \<cdot> map \<langle>id,id\<rangle> ` (xs \<sha> ys) \<subseteq> map \<langle>id,id\<rangle> ` (xs \<sha> (y # ys))" by (metis (hide_lams, no_types) tshuffle_left_leq tshuffle_words_comm) lemma mod_isol_var: "z \<subseteq> y \<Longrightarrow> x \<Colon> p \<subseteq> z \<Colon> p \<Longrightarrow> x \<Colon> p \<subseteq> y \<Colon> p" by (metis mod_isol subset_trans) lemma preserve_test_tshuffle: "\<iota> {xs} \<subseteq> preserves p \<Longrightarrow> map \<langle>id,id\<rangle> ` (xs \<sha> (Act (\<lambda>x. {x} \<inter> p) # ys)) \<Colon> q = {[Act (\<lambda>x. {x} \<inter> p)]} \<cdot> map \<langle>id,id\<rangle> ` (xs \<sha> ys) \<Colon> q" apply default defer apply (rule mod_isol) apply (rule tshuffle_right_leq) proof (induct xs arbitrary: q) case Nil show ?case by (simp add: l_prod_def complex_product_def) next case (Cons x xs) assume "\<And>q. \<iota> {xs} \<subseteq> preserves p \<Longrightarrow> map \<langle>id,id\<rangle> ` (xs \<sha> (Act (\<lambda>x. {x} \<inter> p) # ys)) \<Colon> q \<subseteq> {[Act (\<lambda>x. {x} \<inter> p)]} \<cdot> map \<langle>id,id\<rangle> ` (xs \<sha> ys) \<Colon> q" and x_xs_preserves_p: "\<iota> {x # xs} \<subseteq> preserves p" note ih = this(1)[OF \<iota>_tl[OF this(2)]] show ?case apply (simp only: tshuffle_ind image_Un image_InL image_InR mod_distl) apply (simp only: image_singleton) apply (subst mod_mult) apply (rule helper2[OF ih]) apply (subst mod_mult[symmetric]) apply (rule helper3) apply (subst l_prod_assoc[symmetric]) apply (rule mod_isol_var[OF l_prod_isor[OF tshuffle_left_leq]]) apply (subst l_prod_assoc[symmetric]) apply (subst mod_mult) apply (subst mod_mult) back apply (rule mod_isor) apply (subst mod_mult) apply (subst test_comm[OF q_satisfies_p \<iota>_hd[OF x_xs_preserves_p]]) apply (subst mod_mult[symmetric]) apply (subst l_prod_assoc) apply (rule mod_isol) apply (rule l_prod_isor) by (rule tshuffle_left_leq) qed *) lemma preserve_test: assumes "r \<subseteq> preserves s" and "q \<subseteq> p" shows "(\<rho> r \<parallel> p? \<cdot> x) \<Colon> q = p? \<cdot> (\<rho> r \<parallel> x) \<Colon> q" sorry lemma AWAIT1: "r \<subseteq> preserves s \<Longrightarrow> p \<subseteq> s \<Longrightarrow> r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>s\<rbrace> C \<lbrace>q\<rbrace> \<Longrightarrow> r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> Await s C \<lbrace>q\<rbrace>" sorry lemma AWAIT: assumes "g1 \<subseteq> r2" and "r1, g1 \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p1 \<inter> t\<rbrace> C1 \<lbrace>q1\<rbrace>" and "g2 \<subseteq> r1" and "r2, g2 \<inter> preserves t \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p2\<rbrace> C2 \<lbrace>t \<inter> q2\<rbrace>" shows "(r1 \<inter> r2), (g1 \<union> g2) \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p1 \<inter> p2\<rbrace> Par (Await t C1) C2 \<lbrace>q1 \<inter> q2\<rbrace>" apply (rule PAR) sorry lemma Sup_image_le_iff: "(\<Union>{f x|x. P x} \<subseteq> Y) \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> f x \<subseteq> Y)" by blast lemma mod_forall: "X \<Colon> p \<subseteq> q \<longleftrightarrow> (\<forall>x\<in>X. {x} \<Colon> p \<subseteq> q)" by (auto simp add: module_def) lemma pow_inv_singleton: "x \<in> X \<Longrightarrow> [x] \<in> pow_inv X" by (metis pow_inv.pinv_cons pow_inv.pinv_empty) lemma stable_forall: "stable r p \<longleftrightarrow> (\<forall>xs\<in>(pow_inv {Act (to_fun S) |S. S \<subseteq> r}). {xs} \<Colon> p \<subseteq> p)" apply (simp add: stable_def \<rho>_def) apply (subst mod_forall) by simp lemma singleton_stable: "stable r p \<Longrightarrow> x \<in> {Act (to_fun S) |S. S \<subseteq> r} \<Longrightarrow> {[x]} \<Colon> p \<subseteq> p" apply (simp only: stable_forall \<rho>_def) apply (drule pow_inv_singleton) by auto lemma mod_cons: "op # x ` X \<Colon> p = {[x]} \<cdot> X \<Colon> p" by (simp add: image_def complex_product_def l_prod_def, rule arg_cong, blast) lemma [simp]: "map \<langle>id,id\<rangle> ` op # (InL x) ` X = op # x ` map \<langle>id,id\<rangle> ` X" by (auto simp add: image_def) lemma mod_cons_var: "{x # xs} \<Colon> p = {[x]} \<cdot> {xs} \<Colon> p" by (auto simp add: l_prod_def complex_product_def) lemma ATOM: assumes atom: "\<forall>\<sigma>\<in>p. runAct (\<Gamma> a) \<sigma> \<subseteq> q" and p_stable: "stable r p" and q_stable: "stable r q" shows "r, {(\<sigma>,\<sigma>'). \<sigma>' \<in> runAct (\<Gamma> a) \<sigma>} \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> Atom a \<lbrace>q\<rbrace>" proof - from assms have atom': "({[\<Gamma> a]} \<Colon> p) \<subseteq> q" by (auto simp add: module_def) { fix xs assume "xs \<in> pow_inv {Act (to_fun S) |S. S \<subseteq> r}" hence "map \<langle>id,id\<rangle> ` (xs \<sha> [\<Gamma> a]) \<Colon> p \<subseteq> q" proof (induct xs, simp add: atom') fix x and xs assume x_set: "x \<in> {Act (to_fun S) |S. S \<subseteq> r}" and xs_set: "xs \<in> pow_inv {Act (to_fun S) |S. S \<subseteq> r}" and ih: "map \<langle>id,id\<rangle> ` (xs \<sha> [\<Gamma> a]) \<Colon> p \<subseteq> q" have "{[x]} \<Colon> p \<subseteq> p" by (rule singleton_stable[OF p_stable x_set]) hence x_first: "op # x ` map \<langle>id,id\<rangle> ` (xs \<sha> [\<Gamma> a]) \<Colon> p \<subseteq> q" by (simp add: mod_cons mod_mult) (metis (hide_lams, no_types) ih mod_isor subset_trans) have "x # xs \<in> pow_inv {Act (to_fun S) |S. S \<subseteq> r}" by (smt pow_inv.pinv_cons x_set xs_set) hence "{x#xs} \<Colon> q \<subseteq> q" by (metis \<rho>_def mod_forall q_stable stable_def) from x_first and this show "map \<langle>id,id\<rangle> ` ((x # xs) \<sha> [\<Gamma> a]) \<Colon> p \<subseteq> q" apply (simp only: tshuffle_ind image_Un mod_distl, simp, subst mod_cons_var, subst mod_mult) by (metis atom' mod_isor subset_trans) qed } thus "r, {(\<sigma>,\<sigma>'). \<sigma>' \<in> runAct (\<Gamma> a) \<sigma>} \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> Atom a \<lbrace>q\<rbrace>" apply (simp add: quintuple_def) apply (intro conjI) apply (insert p_stable) defer apply (simp add: to_rel_def \<iota>_def symbols_def) apply (simp add: stable_def) apply (simp add: \<rho>_def shuffle_def) apply (subst mod_continuous_var) apply (subst Sup_image_le_iff) by auto qed lemma WEAKEN: "r' \<subseteq> r \<Longrightarrow> g \<subseteq> g' \<Longrightarrow> p' \<subseteq> p \<Longrightarrow> q \<subseteq> q' \<Longrightarrow> r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> C \<lbrace>q\<rbrace> \<Longrightarrow> r', g' \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p'\<rbrace> C \<lbrace>q'\<rbrace>" apply (simp add: quintuple_def) by (metis \<rho>_iso mod_isol mod_isor order_trans shuffle_iso) lemmas WEAKEN_RELY = WEAKEN[OF _ subset_refl subset_refl subset_refl] and STRENGTHEN_GUAR = WEAKEN[OF subset_refl _ subset_refl subset_refl] and WEAKEN_PRE = WEAKEN[OF subset_refl subset_refl _ subset_refl] and STRENGTHEN_POST = WEAKEN[OF subset_refl subset_refl subset_refl _] lemma ATOM_VAR: assumes atom: "\<forall>\<sigma>\<in>p. runAct (\<Gamma> a) \<sigma> \<subseteq> q" and p_stable: "stable r p" and q_stable: "stable r q" and guar: "{(\<sigma>,\<sigma>'). \<sigma>' \<in> runAct (\<Gamma> a) \<sigma>} \<subseteq> g" shows "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p\<rbrace> Atom a \<lbrace>q\<rbrace>" apply (rule STRENGTHEN_GUAR[OF guar]) apply (rule ATOM) apply (metis atom) apply (metis p_stable) by (metis q_stable) abbreviation quintuple' :: "mem rel \<Rightarrow> mem rel \<Rightarrow> mem set \<Rightarrow> (atoms, mem) stmt \<Rightarrow> mem set \<Rightarrow> bool" ("_, _ \<turnstile>// \<lbrace>_\<rbrace>// _// \<lbrace>_\<rbrace>" [20,20,20,20,20] 100) where "r, g \<turnstile> \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> \<equiv> r, g \<turnstile>\<^bsub>atoms_interp\<^esub> \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>" definition maps_to :: "nat \<Rightarrow> nat \<Rightarrow> mem set" (infix "\<mapsto>" 95) where "v \<mapsto> n \<equiv> {\<sigma>. \<sigma> v = Some n}" definition maps_to_any :: "nat \<Rightarrow> mem set" ("_ \<mapsto> -" [96] 95) where "v \<mapsto> - = {\<sigma>. \<exists>n. \<sigma> v = Some n}" abbreviation assignment :: "nat \<Rightarrow> nat \<Rightarrow> (atoms, mem) stmt" (infix ":=" 95) where "assignment v n \<equiv> Atom (Assign v n)" abbreviation Test :: "mem set \<Rightarrow> (atoms, mem) stmt" where "Test t \<equiv> Atom (Pred t)" lemma [simp]: "semantics atoms_interp (Test t) \<Colon> h = h \<inter> t" by (auto simp add: module_def) definition Await :: "mem set \<Rightarrow> (atoms, mem) stmt \<Rightarrow> (atoms, mem) stmt" where "Await b C = Seq (Test b) C" definition "unchanged V \<equiv> {(\<sigma>,\<sigma>'). \<forall>v\<in>V. \<sigma> v = \<sigma>' v}" definition "preserves b \<equiv> {(\<sigma>,\<sigma>'). \<sigma> \<in> b \<longrightarrow> \<sigma>' \<in> b}" lemma AWAIT: assumes "\<exists>C11 C12 C13." shows "r, g \<turnstile> \<lbrace>p\<rbrace> Par C1 (Await b C2) \<lbrace>q1 \<inter> q2\<rbrace>" lemma ASSIGN: shows "unchanged {v}, {(\<sigma>,\<sigma>'). \<sigma>' v = Some n \<and> (\<forall>v'. v' \<noteq> v \<longrightarrow> \<sigma> v' = \<sigma>' v')} \<turnstile> \<lbrace>v \<mapsto> -\<rbrace> v := n \<lbrace>v \<mapsto> n\<rbrace>" sorry abbreviation K :: "bool \<Rightarrow> 'a set" where "K t \<equiv> {s. t}" lemma disj1: "(x \<mapsto> - ** y \<mapsto> -) = (K (x \<noteq> y) \<inter> x \<mapsto> - ** K (x \<noteq> y) \<inter> y \<mapsto> -)" by (auto simp add: sep_conj_def maps_to_any_def disjoint_def domain_def) lemma empty_mod: "x \<Colon> {} = {}" by (simp add: module_def eval_word_def) lemma CONST: "(p' \<Longrightarrow> r, g \<turnstile> \<lbrace>p\<rbrace> C1 \<lbrace>q\<rbrace>) \<Longrightarrow> r, g \<turnstile> \<lbrace>K p' \<inter> p\<rbrace> C1 \<lbrace>q\<rbrace>" apply (simp add: quintuple_def empty_mod) by (metis Un_empty_left empty_subsetI galois_connection inv_join shuffle_zerol subset_empty) lemma "x \<mapsto> n \<subseteq> x \<mapsto> -" by (auto simp add: maps_to_def maps_to_any_def) lemma empty_rely1: "\<rho> {} \<Colon> p \<subseteq> p" proof (auto simp add: \<rho>_def module_def eval_word_def) fix w x \<sigma> assume "w \<in> pow_inv {Act (\<lambda>x. {})}" and "x \<in> runAct (listsum w) \<sigma>" and "\<sigma> \<in> p" thus "x \<in> p" by (induct w rule: pow_inv.induct) (simp_all add: zero_act_def plus_act_def) qed lemma empty_rely2: "p \<subseteq> \<rho> {} \<Colon> p" apply (simp add: \<rho>_def module_def eval_word_def) apply auto apply (rule_tac x = p in exI) apply (intro conjI) apply auto apply (rule_tac x = "[]" in exI) by (auto simp add: zero_act_def) lemma empty_rely [simp]: "\<rho> {} \<Colon> p = p" by (metis empty_rely1 empty_rely2 subset_antisym) lemma "{}, UNIV \<turnstile> \<lbrace>x \<mapsto> n\<rbrace> Skip \<lbrace>x \<mapsto> -\<rbrace>" by (auto simp add: quintuple_def maps_to_any_def maps_to_def) datatype ('a, 'b) rg_block = RGPar "('a, 'b) stmt" "('a, 'b) rg_block" | RGEnd "('a, 'b) stmt" definition rg_block :: "'b rel \<Rightarrow> ('a, 'b) stmt \<Rightarrow> 'b rel \<Rightarrow> ('a, 'b) rg_block \<Rightarrow> ('a, 'b) rg_block" ("// RELY _// DO _// GUAR _; _" [31,31,31,30] 30) where "RELY r DO C GUAR g; prog \<equiv> RGPar C prog" definition rg_block_end :: "'b rel \<Rightarrow> ('a, 'b) stmt \<Rightarrow> 'b rel \<Rightarrow> ('a, 'b) rg_block" ("// RELY _// DO _// GUAR _//COEND" [31,31,31] 30) where "RELY r DO C GUAR g COEND \<equiv> RGEnd C" primrec cobegin :: "('a, 'b) rg_block \<Rightarrow> ('a, 'b) stmt" ("COBEGIN _" [30] 30) where "cobegin (RGPar c rg) = Par c (cobegin rg)" | "cobegin (RGEnd c) = c" abbreviation triple' :: "mem set \<Rightarrow> (atoms, mem) stmt \<Rightarrow> mem set \<Rightarrow> bool" ("\<lbrace>_\<rbrace>// _// \<lbrace>_\<rbrace>" [20,20,20] 100) where "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> \<equiv> {}, UNIV \<turnstile>\<^bsub>atoms_interp\<^esub> \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>" lemma COBEGIN: assumes "r1, g1 \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p1\<rbrace> C1 \<lbrace>q1\<rbrace>" and "r2, g2 \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p2\<rbrace> C2 \<lbrace>q2\<rbrace>" and "g1 \<subseteq> r2" and "g2 \<subseteq> r1" and "r \<subseteq> r1 \<inter> r2" and "g1 \<union> g2 \<subseteq> g" shows "r, g \<turnstile>\<^bsub>\<Gamma>\<^esub> \<lbrace>p1 \<inter> p2\<rbrace> COBEGIN RELY r1 DO C1 GUAR g1; RELY r2 DO C2 GUAR g2 COEND \<lbrace>q1 \<inter> q2\<rbrace>" apply (rule WEAKEN[OF assms(5) assms(6) subset_refl subset_refl]) using assms by (auto simp add: rg_block_def rg_block_end_def intro: PAR) definition PAR_ASSIGN :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (atoms, mem) stmt" ("_, _ := _, _" [96,96,96,96] 95) where "PAR_ASSIGN x y n m \<equiv> COBEGIN RELY unchanged {x} DO x := n GUAR unchanged (- {x}); RELY unchanged {y} DO y := m GUAR unchanged (- {y}) COEND" lemma PAR_ASSIGN: "x \<noteq> y \<Longrightarrow> unchanged {x, y}, unchanged (- {x, y}) \<turnstile> \<lbrace>x \<mapsto> - \<inter> y \<mapsto> -\<rbrace> x, y := n, m \<lbrace>x \<mapsto> n \<inter> y \<mapsto> m\<rbrace>" apply (simp add: PAR_ASSIGN_def) apply (rule COBEGIN) apply (rule WEAKEN[OF _ _ subset_refl subset_refl]) prefer 3 apply (rule ASSIGN) prefer 3 apply (rule WEAKEN[OF _ _ subset_refl subset_refl]) prefer 3 apply (rule ASSIGN) by (auto simp add: unchanged_def) lemma PAR_ASSIGN: "x \<noteq> y \<Longrightarrow> {}, UNIV \<turnstile> \<lbrace>x \<mapsto> - \<inter> y \<mapsto> -\<rbrace> Par (x := n) (y := m) \<lbrace>x \<mapsto> n \<inter> y \<mapsto> m\<rbrace>" apply (rule STRENGTHEN_GUAR[of "unchanged (- {x}) \<union> unchanged (- {y})"]) apply simp apply (rule WEAKEN_RELY[of _ "unchanged (- {y}) \<inter> unchanged (- {x})"]) apply simp apply (rule PAR) apply simp apply (rule WEAKEN[OF _ _ subset_refl subset_refl]) prefer 3 apply (rule ASSIGN) apply (force simp add: unchanged_def)+ apply (rule WEAKEN[OF _ _ subset_refl subset_refl]) prefer 3 apply (rule ASSIGN) by (force simp add: unchanged_def)+ end
%!TEX root = ../main.tex \chapter{Nocturnal Xylem} \section{Linear Regression} \lipsum[1-5] \section{Accumulation of Bayesian Gravity} \lipsum[1-4]
example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := begin apply iff.intro, intro h, cases h.right with hq hr, show (p ∧ q) ∨ (p ∧ r), { left, split, exact h.left, assumption }, show (p ∧ q) ∨ (p ∧ r), { right, split, exact h.left, assumption }, intro h, cases h with hpq hpr, show p ∧ (q ∨ r), { cases hpq, split, assumption, left, assumption }, show p ∧ (q ∨ r), { cases hpr, split, assumption, right, assumption } end
### A Pluto.jl notebook ### # v0.14.4 using Markdown using InteractiveUtils # ╔═║ 12bae146-12e7-4a78-afac-f5c2d6b86b66 begin using PlutoUI PlutoUI.TableOfContents(aside=true) end # ╔═║ 7be5652e-3e5a-4199-a099-40f2da28053c using LinearAlgebra, Arpack, LinearMaps, SparseArrays # ╔═║ 4b63c1d9-f043-448f-9e05-911f52d4227d begin using Random Random.seed!(421) n=100 A=Matrix(Symmetric(rand(n,n))) # Or: A = rand(5,5) |> t -> t + t' x=rand(n) k=10 end # ╔═║ f647d0dd-1fe4-42cf-b55c-38baa12f2db8 md""" # Symmetric Eigenvalue Decomposition - Lanczos Method If the matrix $A$ is large and sparse and/or if only some eigenvalues and their eigenvectors are desired, iterative methods are the methods of choice. For example, the power method can be useful to compute the eigenvalue with the largest modulus. The basic operation in the power method is matrix-vector multiplication, and this can be performed very fast if $A$ is sparse. Moreover, $A$ need not be stored in the computer -- the input for the algorithm can be just a function which, given some vector $x$, returns the product $Ax$. An _improved_ version of the power method, which efficiently computes some eigenvalues (either largest in modulus or near some target value $\mu$) and the corresponding eigenvectors, is the Lanczos method. For more details, see [I. Slapničar, Symmetric Matrix Eigenvalue Techniques, pp. 55.1-55.25](https://www.routledge.com/Handbook-of-Linear-Algebra/Hogben/p/book/9781138199897) and the references therein. __Prerequisites__ The reader should be familiar with concepts of eigenvalues and eigenvectors, related perturbation theory, and algorithms. __Competences__ The reader should be able to recognise matrices which warrant use uf Lanczos method, to apply the method and to assess the accuracy of the solution. """ # ╔═║ d5f270bd-94c1-4da6-a8e6-a53337488020 md""" # Lanczos method $A$ is a real symmetric matrix of order $n$. ## Definitions Given a nonzero vector $x$ and an index $k<n$, the __Krylov matrix__ is defined as $$ K_k=\begin{bmatrix} x & Ax & A^2 x &\cdots & A^{k-1}x \end{bmatrix}.$$ __Krilov subspace__ is the subspace spanned by the columns of $K_k$. ## Facts 1. The Lanczos method is based on the following observation. If $K_k=XR$ is the $QR$ factorization of the matrix $K_k$, then the $k\times k$ matrix $T=X^T A X$ is tridiagonal. The matrices $X$ and $T$ can be computed by using only matrix-vector products in $O(kn)$ operations. 2. Let $T=Q\Lambda Q^T$ be the EVD of $T$. Then $\lambda_i$ approximate well some of the largest and smallest eigenvalues of $A$, and the columns of the matrix $U=XQ$ approximate the corresponding eigenvectors. 3. As $k$ increases, the largest (smallest) eigenvalues of the matrix $T_{1:k,1:k}$ converge towards some of the largest (smallest) eigenvalues of $A$ (due to the Cauchy interlace property). The algorithm can be redesigned to compute only largest or smallest eigenvalues. Also, by using shift and invert strategy, the method can be used to compute eigenvalues near some specified value. In order to obtain better approximations, $k$ should be greater than the number of required eigenvalues. On the other side, in order to obtain better accuracy and efficacy, $k$ should be as small as possible. 4. The last computed element, $\mu=T_{k+1,k}$, provides information about accuracy: $$ \begin{aligned} \|AU-U\Lambda\|_2&=\mu, \\ \|AU_{:,i}-\lambda_i U_{:,i}\|_2&=\mu |Q_{ki}|, \quad i=1,\ldots,k. \end{aligned}$$ Further, there are $k$ eigenvalues $\tilde\lambda_1,\ldots,\tilde\lambda_k$ of $A$ such that $|\lambda_i-\tilde\lambda_i|\leq \mu$, and for the corresponding eigenvectors, we have $$\sin2\Theta(U_{:,i},\tilde U_{:,i}) \leq \frac{2\mu}{\min_{j\neq i} |\lambda_i-\tilde \lambda_j|}.$$ 5. In practical implementations, $\mu$ is usually used to determine the index $k$. 6. The Lanczos method has inherent numerical instability in the floating-point arithmetic: since the Krylov vectors are, in fact, generated by the power method, they converge towards an eigenvector of $A$. Thus, as $k$ increases, the Krylov vectors become more and more parallel, and the recursion in the function `Lanczos()` becomes numerically unstable and the computed columns of $X$ cease to be sufficiently orthogonal. This affects both the convergence and the accuracy of the algorithm. For example, several eigenvalues of $T$ may converge towards a simple eigenvalue of $A$ (the, so called, __ghost eigenvalues__). 7. The loss of orthogonality is dealt with by using the __full reorthogonalization__ procedure: in each step, the new ${\bf z}$ is orthogonalized against all previous columns of $X$, that is, in function `Lanczos()`, the formula ``` z=z-Tr.dv[i]*X[:,i]-Tr.ev[i-1]*X[:,i-1] ``` is replaced by ``` z=z-sum(dot(z,Tr.dv[i])*X[:,i]-Tr.ev[i-1]*X[:,i-1] ``` To obtain better orthogonality, the latter formula is usually executed twice. The full reorthogonalization raises the operation count to $O(k^2n)$. 8. The __selective reorthogonalization__ is the procedure in which the current $z$ is orthogonalized against some selected columns of $X$, in order to attain sufficient numerical stability and not increase the operation count too much. The details are very subtle and can be found in the references. 9. The Lanczos method is usually used for sparse matrices. Sparse matrix $A$ is stored in the sparse format in which only values and indices of nonzero elements are stored. The number of operations required to multiply some vector by $A$ is also proportional to the number of nonzero elements. 10. The function `eigs()` implements Lanczos method real for symmetric matrices and more general Arnoldi method for general matrices. """ # ╔═║ 97e0dbf8-b9be-4503-af5d-4cf6e86311eb function Lanczos(A::Array{T}, x::Vector{T}, k::Int) where T n=size(A,1) X=Array{T}(undef,n,k) dv=Array{T}(undef,k) ev=Array{T}(undef,k-1) X[:,1]=x/norm(x) for i=1:k-1 z=A*X[:,i] dv[i]=X[:,i]β‹…z # Three-term recursion if i==1 z=z-dv[i]*X[:,i] else # z=z-dv[i]*X[:,i]-ev[i-1]*X[:,i-1] # Full reorthogonalization - once or even twice z=z-sum([(zβ‹…X[:,j])*X[:,j] for j=1:i]) z=z-sum([(zβ‹…X[:,j])*X[:,j] for j=1:i]) end ΞΌ=norm(z) if ΞΌ==0 Tr=SymTridiagonal(dv[1:i-1],ev[1:i-2]) return eigvals(Tr), X[:,1:i-1]*eigvecs(Tr), X[:,1:i-1], ΞΌ else ev[i]=ΞΌ X[:,i+1]=z/ΞΌ end end # Last step z=A*X[:,end] dv[end]=X[:,end]β‹…z z=z-dv[end]*X[:,end]-ev[end]*X[:,end-1] ΞΌ=norm(z) Tr=SymTridiagonal(dv,ev) eigvals(Tr), X*eigvecs(Tr), X, ΞΌ end # ╔═║ 219ce78b-8bd3-4df3-93df-c08fad30e33f Ξ»,U,X,ΞΌ=Lanczos(A,x,10) # ╔═║ 1ef82905-e422-4644-ad00-26c448cb0e3a # Orthogonality of X norm(X'*X-I) # ╔═║ 595b22a5-4456-41fb-b4d6-861833bc6d47 # Tridiagonalization X'*A*X # ╔═║ b2e762d4-650c-4846-ae30-32614b516fe3 # Residual norm(A*U-U*Diagonal(Ξ»)), ΞΌ # ╔═║ bd2b8d59-0525-4db5-99cd-e2f98f735eda U'*A*U # ╔═║ 6791903f-0cf7-4bbc-adfb-ff9e80b373dc # Orthogonality of U norm(U'*U-I) # ╔═║ 218a2a21-e391-4a90-a96a-71bbb0d2f895 # Full eigenvalue decomposition Ξ»eigen,Ueigen=eigen(A); # ╔═║ e23c1bc6-c4d8-4c5d-9a83-2b00c5d93b25 # ?eigs # ╔═║ fc00c272-d66f-42be-9964-7a934b32015c # Lanczos method from Arpack.jl Ξ»eigs,Ueigs=eigs(A; nev=k, which=:LM, ritzvec=true, v0=x) # ╔═║ 91eec1a8-413c-4960-bb52-8da2435e9e4a [Ξ» Ξ»eigs Ξ»eigen[sortperm(abs.(Ξ»eigen),rev=true)[1:k]] ] # ╔═║ aa20cf19-2bc8-4831-ae26-fb883614c63f md""" We see that `eigs()` computes `k` eigenvalues with largest modulus. What eigenvalues did `Lanczos()` compute? """ # ╔═║ 9ce7a012-723d-4184-8ef3-00f468e61281 for i=1:k println(minimum(abs,Ξ»eigen.-Ξ»[i])) end # ╔═║ ed7d1400-e6d9-44e2-a633-7f6b3df74272 md""" Conslusion is that the naive implementation of Lanczos is not enough. However, it is fine, when all eigenvalues are computed. Why? """ # ╔═║ d2f31110-5587-4dd3-a5cf-cc3e046e1ee0 Ξ»all,Uall,Xall,ΞΌall=Lanczos(A,x,100) # ╔═║ 04763c96-3a2b-4092-8969-99c18cc8fd54 # Residual and relative errors norm(A*Uall-Uall*Diagonal(Ξ»all)), norm((Ξ»eigen-Ξ»all)./Ξ»eigen) # ╔═║ 95ef94d2-129f-4dbb-b705-9a2c8660e22e md""" # Operator version We can use Lanczos method with operator which, given vector `x`, returns the product `A*x`. We use the function `LinearMap()` from the package [LinearMaps.jl](https://github.com/Jutho/LinearMaps.jl) """ # ╔═║ b8716ffe-8405-4018-bdb9-29c8cd2243dc # ?LinearMap # ╔═║ 3bd1283d-91fa-4fdd-bcf8-946ac83b848c # Operator from the matrix C=LinearMap(A) # ╔═║ 0f8596c1-ee32-4b0d-b13b-d36fb611c99e begin Ξ»C,UC=eigs(C; nev=k, which=:LM, ritzvec=true, v0=x) Ξ»eigs-Ξ»C end # ╔═║ 05cd7b4e-18cf-485c-8113-4855f22ac8a0 md""" Here is an example of `LinearMap()` with the function. """ # ╔═║ a8aeb3ce-5a67-48c7-9c15-8cc11e7ec39b f(x)=A*x # ╔═║ 86bcfb51-6508-4644-ab3d-ee5d9675e1d6 D=LinearMap(f,n,issymmetric=true) # ╔═║ 5c08501f-010a-4d17-96b7-e339b0299262 begin Ξ»D,UD=eigs(D, nev=k, which=:LM, ritzvec=true, v0=x) Ξ»eigs-Ξ»D end # ╔═║ 8a8d59cb-0a69-412e-948e-8110f04419fe md""" # Sparse matrices """ # ╔═║ f63b3be6-f5d4-49c7-b8c7-a03826f21ad4 # ?sprand # ╔═║ 7beaf848-ad66-47ff-9411-b4ea94476f38 # Generate a sparse symmetric matrix C₁=sprand(n,n,0.05) |> t -> t+t' # ╔═║ d468bf54-54ad-4f07-87d7-ce3d666471aa issymmetric(C₁) # ╔═║ 0f9a4d39-c00c-44b2-8831-eeca1b34e79c eigs(C₁; nev=k, which=:LM, ritzvec=true, v0=x) # ╔═║ a2384a29-511e-43b5-831d-b5b9c2e85ef0 # ╔═║ Cell order: # β•Ÿβ”€12bae146-12e7-4a78-afac-f5c2d6b86b66 # β•Ÿβ”€f647d0dd-1fe4-42cf-b55c-38baa12f2db8 # β•Ÿβ”€d5f270bd-94c1-4da6-a8e6-a53337488020 # ╠═7be5652e-3e5a-4199-a099-40f2da28053c # ╠═97e0dbf8-b9be-4503-af5d-4cf6e86311eb # ╠═4b63c1d9-f043-448f-9e05-911f52d4227d # ╠═219ce78b-8bd3-4df3-93df-c08fad30e33f # ╠═1ef82905-e422-4644-ad00-26c448cb0e3a # ╠═595b22a5-4456-41fb-b4d6-861833bc6d47 # ╠═b2e762d4-650c-4846-ae30-32614b516fe3 # ╠═bd2b8d59-0525-4db5-99cd-e2f98f735eda # ╠═6791903f-0cf7-4bbc-adfb-ff9e80b373dc # ╠═218a2a21-e391-4a90-a96a-71bbb0d2f895 # ╠═e23c1bc6-c4d8-4c5d-9a83-2b00c5d93b25 # ╠═fc00c272-d66f-42be-9964-7a934b32015c # ╠═91eec1a8-413c-4960-bb52-8da2435e9e4a # β•Ÿβ”€aa20cf19-2bc8-4831-ae26-fb883614c63f # ╠═9ce7a012-723d-4184-8ef3-00f468e61281 # β•Ÿβ”€ed7d1400-e6d9-44e2-a633-7f6b3df74272 # ╠═d2f31110-5587-4dd3-a5cf-cc3e046e1ee0 # ╠═04763c96-3a2b-4092-8969-99c18cc8fd54 # β•Ÿβ”€95ef94d2-129f-4dbb-b705-9a2c8660e22e # ╠═b8716ffe-8405-4018-bdb9-29c8cd2243dc # ╠═3bd1283d-91fa-4fdd-bcf8-946ac83b848c # ╠═0f8596c1-ee32-4b0d-b13b-d36fb611c99e # β•Ÿβ”€05cd7b4e-18cf-485c-8113-4855f22ac8a0 # ╠═a8aeb3ce-5a67-48c7-9c15-8cc11e7ec39b # ╠═86bcfb51-6508-4644-ab3d-ee5d9675e1d6 # ╠═5c08501f-010a-4d17-96b7-e339b0299262 # β•Ÿβ”€8a8d59cb-0a69-412e-948e-8110f04419fe # ╠═f63b3be6-f5d4-49c7-b8c7-a03826f21ad4 # ╠═7beaf848-ad66-47ff-9411-b4ea94476f38 # ╠═d468bf54-54ad-4f07-87d7-ce3d666471aa # ╠═0f9a4d39-c00c-44b2-8831-eeca1b34e79c # ╠═a2384a29-511e-43b5-831d-b5b9c2e85ef0
If two maps $f$ and $g$ are homotopic, then the image of $f$ is a subset of the codomain of $g$.
lemma eventually_at_le: "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a \<le> d \<longrightarrow> P x)" for a :: "'a::metric_space"
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Johan Commelin, Bhavik Mehta ! This file was ported from Lean 3 source module category_theory.comma ! leanprover-community/mathlib commit 8a318021995877a44630c898d0b2bc376fceef3b ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.CategoryTheory.Isomorphism import Mathbin.CategoryTheory.Functor.Category import Mathbin.CategoryTheory.EqToHom /-! # Comma categories > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. A comma category is a construction in category theory, which builds a category out of two functors with a common codomain. Specifically, for functors `L : A β₯€ T` and `R : B β₯€ T`, an object in `comma L R` is a morphism `hom : L.obj left ⟢ R.obj right` for some objects `left : A` and `right : B`, and a morphism in `comma L R` between `hom : L.obj left ⟢ R.obj right` and `hom' : L.obj left' ⟢ R.obj right'` is a commutative square ``` L.obj left ⟢ L.obj left' | | hom | | hom' ↓ ↓ R.obj right ⟢ R.obj right', ``` where the top and bottom morphism come from morphisms `left ⟢ left'` and `right ⟢ right'`, respectively. ## Main definitions * `comma L R`: the comma category of the functors `L` and `R`. * `over X`: the over category of the object `X` (developed in `over.lean`). * `under X`: the under category of the object `X` (also developed in `over.lean`). * `arrow T`: the arrow category of the category `T` (developed in `arrow.lean`). ## References * <https://ncatlab.org/nlab/show/comma+category> ## Tags comma, slice, coslice, over, under, arrow -/ namespace CategoryTheory -- declare the `v`'s first; see `category_theory.category` for an explanation universe v₁ vβ‚‚ v₃ vβ‚„ vβ‚… u₁ uβ‚‚ u₃ uβ‚„ uβ‚… variable {A : Type u₁} [Category.{v₁} A] variable {B : Type uβ‚‚} [Category.{vβ‚‚} B] variable {T : Type u₃} [Category.{v₃} T] #print CategoryTheory.Comma /- /-- The objects of the comma category are triples of an object `left : A`, an object `right : B` and a morphism `hom : L.obj left ⟢ R.obj right`. -/ structure Comma (L : A β₯€ T) (R : B β₯€ T) : Type max u₁ uβ‚‚ v₃ where left : A right : B Hom : L.obj left ⟢ R.obj right #align category_theory.comma CategoryTheory.Comma -/ #print CategoryTheory.Comma.inhabited /- -- Satisfying the inhabited linter instance Comma.inhabited [Inhabited T] : Inhabited (Comma (𝟭 T) (𝟭 T)) where default := { left := default right := default Hom := πŸ™ default } #align category_theory.comma.inhabited CategoryTheory.Comma.inhabited -/ variable {L : A β₯€ T} {R : B β₯€ T} #print CategoryTheory.CommaMorphism /- /-- A morphism between two objects in the comma category is a commutative square connecting the morphisms coming from the two objects using morphisms in the image of the functors `L` and `R`. -/ @[ext] structure CommaMorphism (X Y : Comma L R) where left : X.left ⟢ Y.left right : X.right ⟢ Y.right w' : L.map left ≫ Y.Hom = X.Hom ≫ R.map right := by obviously #align category_theory.comma_morphism CategoryTheory.CommaMorphism -/ #print CategoryTheory.CommaMorphism.inhabited /- -- Satisfying the inhabited linter instance CommaMorphism.inhabited [Inhabited (Comma L R)] : Inhabited (CommaMorphism (default : Comma L R) default) := βŸ¨βŸ¨πŸ™ _, πŸ™ _⟩⟩ #align category_theory.comma_morphism.inhabited CategoryTheory.CommaMorphism.inhabited -/ restate_axiom comma_morphism.w' attribute [simp, reassoc.1] comma_morphism.w #print CategoryTheory.commaCategory /- instance commaCategory : Category (Comma L R) where Hom := CommaMorphism id X := { left := πŸ™ X.left right := πŸ™ X.right } comp X Y Z f g := { left := f.left ≫ g.left right := f.right ≫ g.right } #align category_theory.comma_category CategoryTheory.commaCategory -/ namespace Comma section variable {X Y Z : Comma L R} {f : X ⟢ Y} {g : Y ⟢ Z} #print CategoryTheory.Comma.id_left /- @[simp] theorem id_left : (πŸ™ X : CommaMorphism X X).left = πŸ™ X.left := rfl #align category_theory.comma.id_left CategoryTheory.Comma.id_left -/ #print CategoryTheory.Comma.id_right /- @[simp] theorem id_right : (πŸ™ X : CommaMorphism X X).right = πŸ™ X.right := rfl #align category_theory.comma.id_right CategoryTheory.Comma.id_right -/ #print CategoryTheory.Comma.comp_left /- @[simp] theorem comp_left : (f ≫ g).left = f.left ≫ g.left := rfl #align category_theory.comma.comp_left CategoryTheory.Comma.comp_left -/ #print CategoryTheory.Comma.comp_right /- @[simp] theorem comp_right : (f ≫ g).right = f.right ≫ g.right := rfl #align category_theory.comma.comp_right CategoryTheory.Comma.comp_right -/ end variable (L) (R) #print CategoryTheory.Comma.fst /- /-- The functor sending an object `X` in the comma category to `X.left`. -/ @[simps] def fst : Comma L R β₯€ A where obj X := X.left map _ _ f := f.left #align category_theory.comma.fst CategoryTheory.Comma.fst -/ #print CategoryTheory.Comma.snd /- /-- The functor sending an object `X` in the comma category to `X.right`. -/ @[simps] def snd : Comma L R β₯€ B where obj X := X.right map _ _ f := f.right #align category_theory.comma.snd CategoryTheory.Comma.snd -/ #print CategoryTheory.Comma.natTrans /- /-- We can interpret the commutative square constituting a morphism in the comma category as a natural transformation between the functors `fst β‹™ L` and `snd β‹™ R` from the comma category to `T`, where the components are given by the morphism that constitutes an object of the comma category. -/ @[simps] def natTrans : fst L R β‹™ L ⟢ snd L R β‹™ R where app X := X.Hom #align category_theory.comma.nat_trans CategoryTheory.Comma.natTrans -/ #print CategoryTheory.Comma.eqToHom_left /- @[simp] theorem eqToHom_left (X Y : Comma L R) (H : X = Y) : CommaMorphism.left (eqToHom H) = eqToHom (by cases H rfl) := by cases H rfl #align category_theory.comma.eq_to_hom_left CategoryTheory.Comma.eqToHom_left -/ #print CategoryTheory.Comma.eqToHom_right /- @[simp] theorem eqToHom_right (X Y : Comma L R) (H : X = Y) : CommaMorphism.right (eqToHom H) = eqToHom (by cases H rfl) := by cases H rfl #align category_theory.comma.eq_to_hom_right CategoryTheory.Comma.eqToHom_right -/ section variable {L₁ Lβ‚‚ L₃ : A β₯€ T} {R₁ Rβ‚‚ R₃ : B β₯€ T} /- warning: category_theory.comma.iso_mk -> CategoryTheory.Comma.isoMk is a dubious translation: lean 3 declaration is forall {A : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u4} A] {B : Type.{u5}} [_inst_2 : CategoryTheory.Category.{u2, u5} B] {T : Type.{u6}} [_inst_3 : CategoryTheory.Category.{u3, u6} T] {L₁ : CategoryTheory.Functor.{u1, u3, u4, u6} A _inst_1 T _inst_3} {R₁ : CategoryTheory.Functor.{u2, u3, u5, u6} B _inst_2 T _inst_3} {X : CategoryTheory.Comma.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁} {Y : CategoryTheory.Comma.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁} (l : CategoryTheory.Iso.{u1, u4} A _inst_1 (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (r : CategoryTheory.Iso.{u2, u5} B _inst_2 (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)), (Eq.{succ u3} (Quiver.Hom.{succ u3, u6} T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.obj.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁ (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (CategoryTheory.Functor.obj.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁ (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y))) (CategoryTheory.CategoryStruct.comp.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3) (CategoryTheory.Functor.obj.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁ (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (CategoryTheory.Functor.obj.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁ (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (CategoryTheory.Functor.obj.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁ (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (CategoryTheory.Functor.map.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁ (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) (CategoryTheory.Iso.hom.{u1, u4} A _inst_1 (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) l)) (CategoryTheory.Comma.hom.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (CategoryTheory.CategoryStruct.comp.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3) (CategoryTheory.Functor.obj.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁ (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (CategoryTheory.Functor.obj.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁ (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (CategoryTheory.Functor.obj.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁ (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (CategoryTheory.Comma.hom.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Functor.map.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁ (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) (CategoryTheory.Iso.hom.{u2, u5} B _inst_2 (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) r)))) -> (CategoryTheory.Iso.{max u1 u2, max u4 u5 u3} (CategoryTheory.Comma.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁) (CategoryTheory.commaCategory.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁) X Y) but is expected to have type forall {A : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u4} A] {B : Type.{u5}} [_inst_2 : CategoryTheory.Category.{u2, u5} B] {T : Type.{u6}} [_inst_3 : CategoryTheory.Category.{u3, u6} T] {L₁ : CategoryTheory.Functor.{u1, u3, u4, u6} A _inst_1 T _inst_3} {R₁ : CategoryTheory.Functor.{u2, u3, u5, u6} B _inst_2 T _inst_3} {X : CategoryTheory.Comma.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁} {Y : CategoryTheory.Comma.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁} (l : CategoryTheory.Iso.{u1, u4} A _inst_1 (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (r : CategoryTheory.Iso.{u2, u5} B _inst_2 (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)), (Eq.{succ u3} (Quiver.Hom.{succ u3, u6} T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (Prefunctor.obj.{succ u1, succ u3, u4, u6} A (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} A (CategoryTheory.Category.toCategoryStruct.{u1, u4} A _inst_1)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (Prefunctor.obj.{succ u2, succ u3, u5, u6} B (CategoryTheory.CategoryStruct.toQuiver.{u2, u5} B (CategoryTheory.Category.toCategoryStruct.{u2, u5} B _inst_2)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y))) (CategoryTheory.CategoryStruct.comp.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3) (Prefunctor.obj.{succ u1, succ u3, u4, u6} A (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} A (CategoryTheory.Category.toCategoryStruct.{u1, u4} A _inst_1)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (Prefunctor.obj.{succ u1, succ u3, u4, u6} A (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} A (CategoryTheory.Category.toCategoryStruct.{u1, u4} A _inst_1)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (Prefunctor.obj.{succ u2, succ u3, u5, u6} B (CategoryTheory.CategoryStruct.toQuiver.{u2, u5} B (CategoryTheory.Category.toCategoryStruct.{u2, u5} B _inst_2)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (Prefunctor.map.{succ u1, succ u3, u4, u6} A (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} A (CategoryTheory.Category.toCategoryStruct.{u1, u4} A _inst_1)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) (CategoryTheory.Iso.hom.{u1, u4} A _inst_1 (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) l)) (CategoryTheory.Comma.hom.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (CategoryTheory.CategoryStruct.comp.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3) (Prefunctor.obj.{succ u1, succ u3, u4, u6} A (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} A (CategoryTheory.Category.toCategoryStruct.{u1, u4} A _inst_1)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u1, u3, u4, u6} A _inst_1 T _inst_3 L₁) (CategoryTheory.Comma.left.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (Prefunctor.obj.{succ u2, succ u3, u5, u6} B (CategoryTheory.CategoryStruct.toQuiver.{u2, u5} B (CategoryTheory.Category.toCategoryStruct.{u2, u5} B _inst_2)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X)) (Prefunctor.obj.{succ u2, succ u3, u5, u6} B (CategoryTheory.CategoryStruct.toQuiver.{u2, u5} B (CategoryTheory.Category.toCategoryStruct.{u2, u5} B _inst_2)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y)) (CategoryTheory.Comma.hom.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (Prefunctor.map.{succ u2, succ u3, u5, u6} B (CategoryTheory.CategoryStruct.toQuiver.{u2, u5} B (CategoryTheory.Category.toCategoryStruct.{u2, u5} B _inst_2)) T (CategoryTheory.CategoryStruct.toQuiver.{u3, u6} T (CategoryTheory.Category.toCategoryStruct.{u3, u6} T _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u5, u6} B _inst_2 T _inst_3 R₁) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) (CategoryTheory.Iso.hom.{u2, u5} B _inst_2 (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ X) (CategoryTheory.Comma.right.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁ Y) r)))) -> (CategoryTheory.Iso.{max u1 u2, max (max u4 u5) u3} (CategoryTheory.Comma.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁) (CategoryTheory.commaCategory.{u1, u2, u3, u4, u5, u6} A _inst_1 B _inst_2 T _inst_3 L₁ R₁) X Y) Case conversion may be inaccurate. Consider using '#align category_theory.comma.iso_mk CategoryTheory.Comma.isoMkβ‚“'. -/ /-- Construct an isomorphism in the comma category given isomorphisms of the objects whose forward directions give a commutative square. -/ @[simps] def isoMk {X Y : Comma L₁ R₁} (l : X.left β‰… Y.left) (r : X.right β‰… Y.right) (h : L₁.map l.Hom ≫ Y.Hom = X.Hom ≫ R₁.map r.Hom) : X β‰… Y where Hom := { left := l.Hom right := r.Hom } inv := { left := l.inv right := r.inv w' := by rw [← L₁.map_iso_inv l, iso.inv_comp_eq, L₁.map_iso_hom, reassoc_of h, ← R₁.map_comp] simp } #align category_theory.comma.iso_mk CategoryTheory.Comma.isoMk #print CategoryTheory.Comma.mapLeft /- /-- A natural transformation `L₁ ⟢ Lβ‚‚` induces a functor `comma Lβ‚‚ R β₯€ comma L₁ R`. -/ @[simps] def mapLeft (l : L₁ ⟢ Lβ‚‚) : Comma Lβ‚‚ R β₯€ Comma L₁ R where obj X := { left := X.left right := X.right Hom := l.app X.left ≫ X.Hom } map X Y f := { left := f.left right := f.right } #align category_theory.comma.map_left CategoryTheory.Comma.mapLeft -/ #print CategoryTheory.Comma.mapLeftId /- /-- The functor `comma L R β₯€ comma L R` induced by the identity natural transformation on `L` is naturally isomorphic to the identity functor. -/ @[simps] def mapLeftId : mapLeft R (πŸ™ L) β‰… 𝟭 _ where Hom := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } inv := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } #align category_theory.comma.map_left_id CategoryTheory.Comma.mapLeftId -/ #print CategoryTheory.Comma.mapLeftComp /- /-- The functor `comma L₁ R β₯€ comma L₃ R` induced by the composition of two natural transformations `l : L₁ ⟢ Lβ‚‚` and `l' : Lβ‚‚ ⟢ L₃` is naturally isomorphic to the composition of the two functors induced by these natural transformations. -/ @[simps] def mapLeftComp (l : L₁ ⟢ Lβ‚‚) (l' : Lβ‚‚ ⟢ L₃) : mapLeft R (l ≫ l') β‰… mapLeft R l' β‹™ mapLeft R l where Hom := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } inv := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } #align category_theory.comma.map_left_comp CategoryTheory.Comma.mapLeftComp -/ #print CategoryTheory.Comma.mapRight /- /-- A natural transformation `R₁ ⟢ Rβ‚‚` induces a functor `comma L R₁ β₯€ comma L Rβ‚‚`. -/ @[simps] def mapRight (r : R₁ ⟢ Rβ‚‚) : Comma L R₁ β₯€ Comma L Rβ‚‚ where obj X := { left := X.left right := X.right Hom := X.Hom ≫ r.app X.right } map X Y f := { left := f.left right := f.right } #align category_theory.comma.map_right CategoryTheory.Comma.mapRight -/ #print CategoryTheory.Comma.mapRightId /- /-- The functor `comma L R β₯€ comma L R` induced by the identity natural transformation on `R` is naturally isomorphic to the identity functor. -/ @[simps] def mapRightId : mapRight L (πŸ™ R) β‰… 𝟭 _ where Hom := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } inv := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } #align category_theory.comma.map_right_id CategoryTheory.Comma.mapRightId -/ #print CategoryTheory.Comma.mapRightComp /- /-- The functor `comma L R₁ β₯€ comma L R₃` induced by the composition of the natural transformations `r : R₁ ⟢ Rβ‚‚` and `r' : Rβ‚‚ ⟢ R₃` is naturally isomorphic to the composition of the functors induced by these natural transformations. -/ @[simps] def mapRightComp (r : R₁ ⟢ Rβ‚‚) (r' : Rβ‚‚ ⟢ R₃) : mapRight L (r ≫ r') β‰… mapRight L r β‹™ mapRight L r' where Hom := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } inv := { app := fun X => { left := πŸ™ _ right := πŸ™ _ } } #align category_theory.comma.map_right_comp CategoryTheory.Comma.mapRightComp -/ end section variable {C : Type uβ‚„} [Category.{vβ‚„} C] {D : Type uβ‚…} [Category.{vβ‚…} D] #print CategoryTheory.Comma.preLeft /- /-- The functor `(F β‹™ L, R) β₯€ (L, R)` -/ @[simps] def preLeft (F : C β₯€ A) (L : A β₯€ T) (R : B β₯€ T) : Comma (F β‹™ L) R β₯€ Comma L R where obj X := { left := F.obj X.left right := X.right Hom := X.Hom } map X Y f := { left := F.map f.left right := f.right w' := by simpa using f.w } #align category_theory.comma.pre_left CategoryTheory.Comma.preLeft -/ #print CategoryTheory.Comma.preRight /- /-- The functor `(F β‹™ L, R) β₯€ (L, R)` -/ @[simps] def preRight (L : A β₯€ T) (F : C β₯€ B) (R : B β₯€ T) : Comma L (F β‹™ R) β₯€ Comma L R where obj X := { left := X.left right := F.obj X.right Hom := X.Hom } map X Y f := { left := f.left right := F.map f.right w' := by simp } #align category_theory.comma.pre_right CategoryTheory.Comma.preRight -/ #print CategoryTheory.Comma.post /- /-- The functor `(L, R) β₯€ (L β‹™ F, R β‹™ F)` -/ @[simps] def post (L : A β₯€ T) (R : B β₯€ T) (F : T β₯€ C) : Comma L R β₯€ Comma (L β‹™ F) (R β‹™ F) where obj X := { left := X.left right := X.right Hom := F.map X.Hom } map X Y f := { left := f.left right := f.right w' := by simp only [functor.comp_map, ← F.map_comp, f.w] } #align category_theory.comma.post CategoryTheory.Comma.post -/ end end Comma end CategoryTheory
import numpy as np from astropy.time import Time DAY_MICRO_SEC = 86400000000. def uniq2orderipix(uniq): """ convert a HEALPix pixel coded as a NUNIQ number to a (norder, ipix) tuple """ order = (np.log2(uniq // np.uint8(4))) // np.uint8(2) order = order.astype(np.uint8) ipix = uniq - np.uint64(4) * (np.uint64(4) ** np.uint64(order)) return order, ipix.astype(np.uint64) def times_to_microseconds(times): """ Convert a `astropy.time.Time` into an array of integer microseconds since JD=0, keeping the microsecond resolution required for `~mocpy.tmoc.TimeMOC`. Parameters ---------- times : `astropy.time.Time` Astropy observation times Returns ------- times_microseconds : `np.array` """ times_jd = np.asarray(times.jd, dtype=np.uint64) times_us = np.asarray((times - Time(times_jd, format='jd', scale='tdb')).jd * DAY_MICRO_SEC, dtype=np.uint64) return times_jd * np.uint64(DAY_MICRO_SEC) + times_us def microseconds_to_times(times_microseconds): """ Convert an array of integer microseconds since JD=0, to an array of `astropy.time.Time`. Parameters ---------- times_microseconds : `np.array` Returns ------- times : `astropy.time.Time` """ jd1 = np.asarray(times_microseconds // DAY_MICRO_SEC, dtype=np.float64) jd2 = np.asarray((times_microseconds - jd1 * DAY_MICRO_SEC) / DAY_MICRO_SEC, dtype=np.float64) return Time(val=jd1, val2=jd2, format='jd', scale='tdb')
#pragma once #include <xul/std/istring_less.hpp> #include <boost/intrusive_ptr.hpp> #include <string> namespace xul { template <typename T> class element_storage_traits : public element_traits<T> { public: typedef T storage_type; typedef typename element_traits<T>::accessor_type accessor_type; typedef typename element_traits<T>::const_accessor_type const_accessor_type; static accessor_type get_accessor(T val) { return val; } static const_accessor_type get_const_accessor(T val) { return val; } static T store(T v) { return v; } }; template <typename ObjectT> class element_storage_traits<ObjectT *> : public element_traits<ObjectT*> { public: typedef boost::intrusive_ptr<ObjectT> storage_type; typedef typename element_traits<ObjectT*>::accessor_type accessor_type; typedef typename element_traits<ObjectT*>::const_accessor_type const_accessor_type; static accessor_type get_accessor(const boost::intrusive_ptr<ObjectT>& val) { return val.get(); } static const_accessor_type get_const_accessor(const boost::intrusive_ptr<const ObjectT>& val) { return val.get(); } static storage_type store(ObjectT* s) { return storage_type(s); } }; template <> class element_storage_traits<const char*> : public element_traits<const char*> { public: typedef std::string storage_type; typedef element_traits<const char*>::accessor_type accessor_type; typedef element_traits<const char*>::const_accessor_type const_accessor_type; static accessor_type get_accessor(const std::string& val) { return val.c_str(); } static const_accessor_type get_const_accessor(const std::string& val) { return val.c_str(); } static std::string store(const char* s) { return std::string(s); } }; template <typename T> class key_element_storage_traits { public: typedef T accessor_type; typedef T const_accessor_type; typedef T input_type; typedef T storage_type; typedef std::less<T> comparer_type; static accessor_type get_accessor(T val) { return val; } static const_accessor_type get_const_accessor(T val) { return val; } static T store(T v) { return v; } }; template <> class key_element_storage_traits<const char*> : public element_storage_traits<const char*> { public: typedef std::less<std::string> comparer_type; }; class istring_key_element_storage_traits : public element_storage_traits<const char*> { public: typedef istring_less<std::string> comparer_type; }; }
[STATEMENT] lemma rtrancl_O_push: "S\<^sup>* O R \<subseteq> R O S\<^sup>*" [PROOF STATE] proof (prove) goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] proof- [PROOF STATE] proof (state) goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] { [PROOF STATE] proof (state) goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] fix n [PROOF STATE] proof (state) goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] have "\<And>s t. (s,t) \<in> S ^^ n O R \<Longrightarrow> (s,t) \<in> R O S\<^sup>*" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] proof(induct n) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] case (Suc n) [PROOF STATE] proof (state) this: (?s, ?t) \<in> S ^^ n O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* (s, t) \<in> S ^^ Suc n O R goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] then [PROOF STATE] proof (chain) picking this: (?s, ?t) \<in> S ^^ n O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* (s, t) \<in> S ^^ Suc n O R [PROOF STEP] obtain u where "(s,u) \<in> S" "(u,t) \<in> R O S\<^sup>*" [PROOF STATE] proof (prove) using this: (?s, ?t) \<in> S ^^ n O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* (s, t) \<in> S ^^ Suc n O R goal (1 subgoal): 1. (\<And>u. \<lbrakk>(s, u) \<in> S; (u, t) \<in> R O S\<^sup>*\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] unfolding relpow_Suc [PROOF STATE] proof (prove) using this: (?s, ?t) \<in> S ^^ n O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* (s, t) \<in> (S O S ^^ n) O R goal (1 subgoal): 1. (\<And>u. \<lbrakk>(s, u) \<in> S; (u, t) \<in> R O S\<^sup>*\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: (s, u) \<in> S (u, t) \<in> R O S\<^sup>* goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] then [PROOF STATE] proof (chain) picking this: (s, u) \<in> S (u, t) \<in> R O S\<^sup>* [PROOF STEP] have "(s,t) \<in> S O R O S\<^sup>*" [PROOF STATE] proof (prove) using this: (s, u) \<in> S (u, t) \<in> R O S\<^sup>* goal (1 subgoal): 1. (s, t) \<in> S O R O S\<^sup>* [PROOF STEP] by auto [PROOF STATE] proof (state) this: (s, t) \<in> S O R O S\<^sup>* goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] also [PROOF STATE] proof (state) this: (s, t) \<in> S O R O S\<^sup>* goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] have "... \<subseteq> R O S\<^sup>* O S\<^sup>*" [PROOF STATE] proof (prove) goal (1 subgoal): 1. S O R O S\<^sup>* \<subseteq> R O S\<^sup>* O S\<^sup>* [PROOF STEP] using push [PROOF STATE] proof (prove) using this: S O R \<subseteq> R O S\<^sup>* goal (1 subgoal): 1. S O R O S\<^sup>* \<subseteq> R O S\<^sup>* O S\<^sup>* [PROOF STEP] by blast [PROOF STATE] proof (state) this: S O R O S\<^sup>* \<subseteq> R O S\<^sup>* O S\<^sup>* goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] also [PROOF STATE] proof (state) this: S O R O S\<^sup>* \<subseteq> R O S\<^sup>* O S\<^sup>* goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] have "... \<subseteq> R O S\<^sup>*" [PROOF STATE] proof (prove) goal (1 subgoal): 1. R O S\<^sup>* O S\<^sup>* \<subseteq> R O S\<^sup>* [PROOF STEP] by auto [PROOF STATE] proof (state) this: R O S\<^sup>* O S\<^sup>* \<subseteq> R O S\<^sup>* goal (2 subgoals): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* 2. \<And>n s t. \<lbrakk>\<And>s t. (s, t) \<in> S ^^ n O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>*; (s, t) \<in> S ^^ Suc n O R\<rbrakk> \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: (s, t) \<in> R O S\<^sup>* [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: (s, t) \<in> R O S\<^sup>* goal (1 subgoal): 1. (s, t) \<in> R O S\<^sup>* [PROOF STEP] . [PROOF STATE] proof (state) this: (s, t) \<in> R O S\<^sup>* goal (1 subgoal): 1. \<And>s t. (s, t) \<in> S ^^ 0 O R \<Longrightarrow> (s, t) \<in> R O S\<^sup>* [PROOF STEP] qed auto [PROOF STATE] proof (state) this: (?s, ?t) \<in> S ^^ n O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] } [PROOF STATE] proof (state) this: (?s, ?t) \<in> S ^^ ?n3 O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] thus ?thesis [PROOF STATE] proof (prove) using this: (?s, ?t) \<in> S ^^ ?n3 O R \<Longrightarrow> (?s, ?t) \<in> R O S\<^sup>* goal (1 subgoal): 1. S\<^sup>* O R \<subseteq> R O S\<^sup>* [PROOF STEP] by blast [PROOF STATE] proof (state) this: S\<^sup>* O R \<subseteq> R O S\<^sup>* goal: No subgoals! [PROOF STEP] qed
[STATEMENT] lemma \<Sigma>_incr_upper: "\<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] have "{l..<l+1} = {l}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. {l..<l + 1} = {l} [PROOF STEP] by auto [PROOF STATE] proof (state) this: {l..<l + 1} = {l} goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: {l..<l + 1} = {l} [PROOF STEP] have "\<Sigma> f l (l + 1) = f (of_int l)" [PROOF STATE] proof (prove) using this: {l..<l + 1} = {l} goal (1 subgoal): 1. \<Sigma> f l (l + 1) = f (of_int l) [PROOF STEP] by (simp add: \<Sigma>_def) [PROOF STATE] proof (state) this: \<Sigma> f l (l + 1) = f (of_int l) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<Sigma> f l (l + 1) = f (of_int l) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] have "\<Sigma> f j (l + 1) = \<Sigma> f j l + \<Sigma> f l (l + 1)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + \<Sigma> f l (l + 1) [PROOF STEP] by (simp add: \<Sigma>_concat) [PROOF STATE] proof (state) this: \<Sigma> f j (l + 1) = \<Sigma> f j l + \<Sigma> f l (l + 1) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: \<Sigma> f l (l + 1) = f (of_int l) \<Sigma> f j (l + 1) = \<Sigma> f j l + \<Sigma> f l (l + 1) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: \<Sigma> f l (l + 1) = f (of_int l) \<Sigma> f j (l + 1) = \<Sigma> f j l + \<Sigma> f l (l + 1) goal (1 subgoal): 1. \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<Sigma> f j (l + 1) = \<Sigma> f j l + f (of_int l) goal: No subgoals! [PROOF STEP] qed
module Rationals isFactorInt : Integer -> Integer -> Type --Needed for defining Integer division isFactorInt m n = (k : Integer ** (m * k = n)) divides : (m: Integer) -> (n: Integer) -> (k: Integer ** (m * k = n)) -> Integer divides m n k = (fst k) Pair : Type Pair = (Integer, Integer) Eucl: (a: Nat) -> (b: Nat) -> (Nat, Nat) --Euclidean algorithm implemented by Chinmaya Eucl Z b = (0,0) Eucl (S k) b = case (lte (S (S k)) b) of False => (S(fst(Eucl (minus (S k) b) b)), snd(Eucl (minus (S k) b) b)) True => (0, S k) gcdab : Nat -> Nat -> Nat -- Produces the GCD of two numbers. This will be useful to produce the simplified form of a rational number. gcdab b Z = b gcdab a b = gcdab b (snd (Eucl a b)) data NotZero : Integer -> Type where --Proof that a number is not zero, needed to construct Q OneNotZero : NotZero 1 NegativeNotZero : ( n: Integer ) -> NotZero n -> NotZero (-n) PositiveNotZero : ( m: Integer ) -> LTE 1 (fromIntegerNat m) -> NotZero m make_rational : (p: Nat) -> (q: Integer) -> NotZero q -> Pair make_rational p q x = (toIntegerNat(p), q) InclusionMap : (n : Nat) -> Pair --Includes the naturals in Q InclusionMap n = make_rational n 1 OneNotZero AddRationals : (x: Pair) -> NotZero (snd x) -> (y: Pair) -> NotZero (snd y) -> Pair AddRationals x a y b = ((fst x)*(snd y) + (snd x)*(fst y), (snd x)*(snd y)) MultiplyRationals : (x: Pair) -> NotZero (snd x) -> (y: Pair) -> NotZero (snd y) -> Pair MultiplyRationals x a y b =((fst x)*(fst y), (snd x)*(snd y)) MultInverse : (x: Pair) -> NotZero (fst x) -> NotZero (snd x) -> Pair MultInverse x y z = ((snd x), (fst x)) AddInverse : (x: Pair) -> NotZero (snd x) -> Pair AddInverse x a = (-(fst x), (snd x)) Subtraction : (x: Pair) -> NotZero (snd x) -> (y: Pair) -> NotZero (snd y) -> Pair Subtraction x a y b = AddRationals x a (AddInverse y b) b Division : (x: Pair) -> NotZero (snd x) -> (y: Pair) -> NotZero (fst y) -> NotZero (snd y) -> Pair Division x a y b c = MultiplyRationals x a (MultInverse y b c) b --SimplifyRational : (x: Pair) -> NotZero (snd x) -> Pair --SimplifyRational x a = (divides (gcdab fromIntegerNat((fst x)) fromIntegerNat((snd x))) ___ (fst x), divides (gcdab fromIntegerNat((fst x)) fromIntegerNat((snd x)) __ (snd x)) --Above, I will need to supply a proof that the GCD divides the two numbers. Then, the function defined above will produce the rational in simplified form.
function voxels = carveall( voxels, cameras ) %CARVEALL carve away voxels using all cameras % % VOXELS = CARVEALL(VOXELS, CAMERAS) simple calls CARVE for each of the % cameras specified % Copyright 2005-2009 The MathWorks, Inc. % $Revision: 1.0 $ $Date: 2006/06/30 00:00:00 $ for ii=1:numel(cameras); voxels = carve(voxels,cameras(ii)); end
\documentclass{subfile} \begin{document} \section{BrNO}\label{sec:brmo} \begin{problem}[$2018$, problem $9$] Let $n\geq2$ be an integer. Prove the inequality \begin{align*} \dfrac{1}{2!}+\ldots+\dfrac{2^{n-2}}{n!} & \leq\dfrac{3}{2} \end{align*} \end{problem} \begin{problem}[$2015$, Day $2$, problem $1$] Find all real number $x\geq-1$ such that the inequality \begin{align*} \dfrac{a_{1}+x}{2}\cdots\dfrac{a_{n}+x}{2} & \leq \dfrac{a_{1}\cdots a_{n}+x}{2} \end{align*} holds for all positive integer $n\geq2$ and for all real numbers $a_{1},\ldots,a_{n}\geq1$. \end{problem} \begin{problem}[$2014$ Final Round] Find all values $\lambda$ such that the inequality \begin{align*} \dfrac{a+b}{2} & \geq\lambda\sqrt{ab}+(1-\lambda)\sqrt{\dfrac{a^{2}+b^{2}}{2}} \end{align*} \end{problem} \begin{problem}[$2014$ Final Round] Prove that for all positive real numbers $x$ and $y$, \begin{align*} \dfrac{1}{x+y+1}-\dfrac{1}{(x+1)(y+1)} & < \dfrac{1}{11} \end{align*} \end{problem} \begin{problem}[$2014$ Test $2$] Let $a,b,c$ be positive real numbers such that \begin{align*} ab+bc+ca & \geq a+b+c \end{align*} Prove that \begin{align*} (a+b+c)(ab+bc+ca)+3abc & \geq 4(ab+bc+ca) \end{align*} \end{problem} \begin{problem}[$2014$ Test $4$] Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that \begin{align*} \dfrac{a^{2}}{(b+c)^{3}}+\dfrac{b^{2}}{(c+a)^{3}}+\dfrac{c^{3}}{(a+b)^{3}} & \geq \dfrac{9}{8} \end{align*} \end{problem} \begin{problem}[$2014$ Test $6$] Let $a,b,c$ be real numbers in the interval $(0,2)$ such that $a+b+c=ab+bc+ca$. Prove that \begin{align*} \dfrac{a^{2}}{a^{2}-a+1}+\dfrac{b^{2}}{b^{2}-b+1}+\dfrac{c^{2}}{c^{2}-c+1} & \leq3 \end{align*} \end{problem} \begin{problem}[$2013$ Test $3$] Let $n\geq3$ be an integer and $x_{1},\ldots,x_{n}$ be positive real numbers such that $x_{1}\cdots x_{n}=1$. Prove that \begin{align*} \dfrac{x_{1}^{8}}{(x_{1}^{4}+x_{2}^{4})x_{2}}+\dfrac{x_{n}^{8}}{(x_{n}^{4}+x_{1}^{4})x_{1}} & \geq\dfrac{n}{2} \end{align*} \end{problem} \begin{problem}[$2013$ Test $7$] Given positive real numbers $a,b,c$ such that \begin{align*} \dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca} & = 1 \end{align*} Prove that \begin{align*} \dfrac{a^{2}+b^{2}+c^{2}+ab+bc+ca-3}{5} & \geq \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a} \end{align*} \end{problem} \begin{problem}[$2012$ Test $1$] Let $a,b,c$ be real numbers such that $0<a<b<c$. Prove that \begin{align*} a^{20}b^{12}+b^{20}c^{12}+c^{20}a^{12} & < b^{20}a^{12}+c^{20}b^{12}+b^{20}a^{12} \end{align*} \end{problem} \begin{problem}[$2011$ Round $3$] Let $a,b,x,y$ be positive real numbers such that \begin{align*} ab & \geq xa+yb \end{align*} Prove that \begin{align*} \sqrt{a+b} & \geq\sqrt{x}+\sqrt{y} \end{align*} \end{problem} \begin{problem}[$2011$ Round $3$] Let $a,b,c,k,l$ and $m$ be positive real numbers such that \begin{align*} abc & \geq ka+lb+mc \end{align*} Prove that \begin{align*} a+b+c & \geq \sqrt{3}(\sqrt{k}+\sqrt{l}+\sqrt{m}) \end{align*} \end{problem} \begin{problem}[$2011$ Final Round] Let $a,b,c$ be positive real numbers such that \begin{align*} a^{2}+b^{2}+c^{2} & = 3 \end{align*} Prove that \begin{align*} a+b+c & \geq ab+bc+ca \end{align*} \end{problem} \begin{problem}[$2011$ Test $5$] Let $a,b,c$ be positive real numbers such that \begin{align*} \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} & = 1+\dfrac{1}{6}\left(\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\right) \end{align*} Prove that \begin{align*} \dfrac{a^{3}bc}{b+c}+\dfrac{b^{3}ca}{c+a}+\dfrac{c^{3}ab}{a+b} & \geq \dfrac{1}{6}(ab+bc+ca)^{2} \end{align*} \end{problem} \begin{problem}[$2010$ Final Round] Prove that \begin{align*} \dfrac{a^{2}}{a+b}+\dfrac{b^{2}}{b+c} & \geq \dfrac{3a+2b-c}{4} \end{align*} for all positive real numbers $a,b$ and $c$. \end{problem} \begin{problem}[$2010$ Test $1$] Given non-negative real numbers $a,b$ and $c$ such that $a+b+c=1$. Prove that \begin{align*} \left(a^{2}+b^{2}+c^{2}\right)^{2}+6abc & \geq ab+bc+ca \end{align*} \end{problem} \begin{problem}[$2010$ Test $7$] Prove that all positive real numbers $x,y$ and $z$ satisfy the inequality \begin{align*} x^{y}+y^{z}+z^{x} & > 1 \end{align*} \end{problem} \begin{problem}[$2010$ Test $8$] Let $a,b,c$ be positive real numbers such that $abc=1$. Prove that \begin{align*} \dfrac{a}{b(a+b)}+\dfrac{b}{c(b+c)}+\dfrac{c}{a(c+a)} & \geq \dfrac{3}{2} \end{align*} \end{problem} \begin{problem}[$2009$ Selection and Training Session] Let $a,b$ and $c$ be positive real numbers. Prove that \begin{align*} \dfrac{1}{(a+b)b}+\dfrac{1}{(b+c)c}+\dfrac{1}{(c+a)c} & \geq \dfrac{9}{2(ab+bc+ca)} \end{align*} \end{problem} \begin{problem}[$2008$, Day $2$, problem $1$] Let $x_{1},\ldots,x_{n}$ be non-negative real numbers. Prove that \begin{align*} \dfrac{x_{1}(2x_{1}-x_{2}-x_{3})}{x_{2}+x_{3}}+\ldots+\dfrac{x_{n}(2x_{n}-x_{1}-x_{2})}{x_{1}+x_{2}} & \geq0 \end{align*} \end{problem} \begin{problem}[$2002$] For any positive integers $a$ and $b$, prove that \begin{align*} |a\sqrt{2}-b| & > \dfrac{1}{2(a+b)} \end{align*} \end{problem} \begin{problem}[$2002$] Given positive real numbers $a,b,c$ and $d$. Prove that \begin{align*} \sqrt{(a+c)^{2}+(b+d)^{2}} & \leq \sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\leq \sqrt{(a+c)^{2}+(b+d)^{2}}+\dfrac{2|ad-bc|}{\sqrt{(a+c)^{2}+(b+d)^{2}}} \end{align*} \end{problem} \end{document}
State Before: Ξ± : Type u_1 Ξ² : Type ?u.12733 inst✝ : EDist Ξ± x y : Ξ± s t : Set Ξ± d : ℝβ‰₯0∞ ⊒ einfsep s < d ↔ βˆƒ x x_1 y x_2 _h, edist x y < d State After: no goals Tactic: simp_rw [einfsep, iInf_lt_iff]