File size: 7,285 Bytes
8a6c301
 
 
 
 
 
 
869c037
8a6c301
869c037
 
 
 
 
 
8a6c301
869c037
 
70e8f53
869c037
 
 
 
 
 
 
 
12e1d9e
 
869c037
 
 
 
 
 
70e8f53
869c037
 
 
 
 
 
 
 
 
 
70e8f53
12e1d9e
 
 
70e8f53
869c037
 
70e8f53
869c037
70e8f53
869c037
 
 
 
 
 
 
 
56d5114
70e8f53
 
 
 
 
56d5114
869c037
70e8f53
 
869c037
 
 
 
56d5114
70e8f53
869c037
 
70e8f53
 
869c037
70e8f53
869c037
70e8f53
 
869c037
 
 
70e8f53
 
869c037
 
70e8f53
869c037
 
 
 
 
70e8f53
869c037
 
56d5114
869c037
 
 
 
56d5114
869c037
 
 
56d5114
869c037
 
 
 
 
 
 
 
 
56d5114
70e8f53
869c037
 
 
56d5114
869c037
56d5114
869c037
 
 
56d5114
869c037
56d5114
869c037
 
 
56d5114
869c037
 
56d5114
 
869c037
 
 
 
56d5114
869c037
56d5114
869c037
56d5114
869c037
 
 
56d5114
 
869c037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e1d9e
869c037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e1d9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
library_name: keras
license: mit
language:
- en
pipeline_tag: image-to-image
---
# Autoencoder Grayscale2Color Landscape πŸ›‘οΈ

[![huggingface-hub](https://img.shields.io/badge/huggingface--hub-orange.svg?logo=huggingface)](https://huggingface.co/docs/hub)
[![Pillow](https://img.shields.io/badge/Pillow-%2300A1D6.svg)](https://pypi.org/project/pillow/)
[![numpy](https://img.shields.io/badge/numpy-%23013243.svg?logo=numpy)](https://numpy.org/)
[![tensorflow](https://img.shields.io/badge/tensorflow-%23FF6F00.svg?logo=tensorflow)](https://www.tensorflow.org/)
[![gradio](https://img.shields.io/badge/gradio-yellow.svg?logo=gradio)](https://gradio.app/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

## Introduction
Transform grayscale landscape images into vibrant, full-color visuals with this autoencoder model. Built from scratch, this project leverages deep learning to predict color channels (a*b* in L*a*b* color space) from grayscale inputs, delivering impressive results with a sleek, minimalist design. πŸŒ„

## Key Features
- πŸ“Έ Converts grayscale landscape images to vivid RGB.
- 🧠 Custom autoencoder with spatial attention for enhanced detail.
- ⚑ Optimized for high-quality inference at 512x512 resolution.
- πŸ“Š Achieves a PSNR of 21.70 on the validation set.

## Notebook
Explore the implementation in our Jupyter notebook:  
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/#fileId=https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/blob/main/notebooks/autoencoder-grayscale-to-color-landscape.ipynb)
[![View on HuggingFace](https://img.shields.io/badge/View%20on-HuggingFace-181717?logo=huggingface)](https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/blob/main/notebooks/autoencoder-grayscale-to-color-landscape.ipynb)

## Dataset
Details about the dataset are available in the [README Dataset](./dataset/README.md). πŸ“‚

## From Scratch Model
Custom-built autoencoder with a spatial attention mechanism, trained **FROM SCRATCH** to predict a*b* color channels from grayscale (L*) inputs. 🧩

## Demonstration
Experience the brilliance of our cutting-edge technology! Transform grayscale landscapes into vibrant colors with our interactive demo.

[![HuggingFace Space](https://img.shields.io/badge/%F0%9F%A4%97-HuggingFace%20Space-blue)](https://huggingface.co/spaces/danhtran2mind/autoencoder-grayscale2color-landscape)

![App Interface](./examples/gradio_app.png)

## Installation

### Step 1: Clone the Repository
```bash
git clone https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape
cd ./autoencoder-grayscale2color-landscape
git lfs pull
```

### Step 2: Install Dependencies
```bash
pip install -r requirements.txt
```

## Usage

Follow these steps to colorize images programmatically using Python.

### 1. Import Required Libraries
Install and import the necessary libraries for image processing and model inference.

```python
from PIL import Image
import os
import numpy as np
import tensorflow as tf
import requests
import matplotlib.pyplot as plt
from skimage.color import lab2rgb
from models.auto_encoder_gray2color import SpatialAttention
```

### 2. Load the Pre-trained Model
Download and load the autoencoder model from a remote source if it’s not already available locally.

```python
load_model_path = "./ckpts/best_model.h5"
os.makedirs(os.path.dirname(load_model_path), exist_ok=True)

print(f"Loading model from {load_model_path}...")
loaded_autoencoder = tf.keras.models.load_model(
    load_model_path, custom_objects={"SpatialAttention": SpatialAttention}
)
print("Model loaded successfully.")
```

### 3. Define Image Processing Functions
These functions handle image preprocessing, colorization, and visualization.

```python
def process_image(input_img):
    """Convert a grayscale image to color using the autoencoder."""
    # Store original dimensions
    original_width, original_height = input_img.size
    
    # Preprocess: Convert to grayscale, resize, and normalize
    img = input_img.convert("L").resize((512, 512))
    img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0
    img_array = img_array[None, ..., 0:1]  # Add batch dimension

    # Predict color channels
    output_array = loaded_autoencoder.predict(img_array)
    
    # Reconstruct LAB image
    L_channel = img_array[0, :, :, 0] * 100.0  # Scale L channel
    ab_channels = output_array[0] * 128.0      # Scale ab channels
    lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1)
    
    # Convert to RGB and clip values
    rgb_array = lab2rgb(lab_image)
    rgb_array = np.clip(rgb_array, 0, 1) * 255.0
    
    # Create and resize output image
    rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB")
    return rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS)

def process_and_save_image(image_path):
    """Process an image and save the colorized result."""
    input_img = Image.open(image_path)
    output_img = process_image(input_img)
    output_img.save("output.jpg")
    return input_img, output_img

def plot_images(input_img, output_img):
    """Display input and output images side by side."""
    plt.figure(figsize=(17, 8), dpi=300)
    
    # Plot input grayscale image
    plt.subplot(1, 2, 1)
    plt.imshow(input_img, cmap="gray")
    plt.title("Input Grayscale Image")
    plt.axis("off")
    
    # Plot output colorized image
    plt.subplot(1, 2, 2)
    plt.imshow(output_img)
    plt.title("Colorized Output Image")
    plt.axis("off")
    
    # Save and display the plot
    plt.savefig("output.jpg", dpi=300, bbox_inches="tight")
    plt.show()
```

### 4. Perform Inference
Run the colorization process on a sample image.

```python
# Set image dimensions and path
WIDTH, HEIGHT = 512, 512
image_path = "<path_to_input_image.jpg>"  # Replace with your image path

# Process and visualize the image
input_img, output_img = process_and_save_image(image_path)
plot_images(input_img, output_img)
```

### 5. Example Output
The output will be a side-by-side comparison of the input grayscale image and the colorized result, saved as `output.jpg`. For a sample result, see the example below:
![Output Image](./examples/model_output.png)

## Training Hyperparameters
- **Resolution**: 512x512 pixels
- **Color Space**: L*a*b*
- **Custom Layer**: SpatialAttention
- **Model File**: `best_model.h5`
- **Epochs**: 100

## Callbacks
- **Early Stopping**: Monitors `val_loss`, patience of 20 epochs, restores best weights.
- **ReduceLROnPlateau**: Monitors `val_loss`, reduces learning rate by 50% after 5 epochs, minimum learning rate of 1e-6.
- **BackupAndRestore**: Saves checkpoints to `./ckpts/backup`.

## Metrics
- **PSNR (Validation)**: 21.70 πŸ“ˆ

## Environment
- Python 3.11.11
- Libraies
    ```
    numpy==1.26.4
    tensorflow==2.18.0
    opencv-python==4.11.0.86
    scikit-image==0.25.2
    matplotlib==3.7.2
    scikit-image==0.25.2
    ```

## Contact
For questions or issues, reach out via the [HuggingFace Community](https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/discussions) tab. πŸš€