danhtran2mind commited on
Commit
70e8f53
·
verified ·
1 Parent(s): 413e633

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -1
README.md CHANGED
@@ -9,4 +9,95 @@ pipeline_tag: image-to-image
9
 
10
  ## Metrics
11
  PSNR
12
- - Validation set: 21.70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  ## Metrics
11
  PSNR
12
+ - Validation set: 21.70
13
+
14
+ ## Usage
15
+
16
+ ### Download Model
17
+ ```bash
18
+ git clone https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape
19
+ ```
20
+ ```bash
21
+ cd autoencoder-grayscale2color-landscape
22
+ git lfs pull
23
+ ```
24
+ ### Import Libraries
25
+ ```bash
26
+ from PIL import Image
27
+ import os
28
+ import numpy as np
29
+ import tensorflow as tf
30
+ import requests
31
+ from skimage.color import lab2rgb
32
+
33
+ from models.auto_encoder_gray2color import SpatialAttention
34
+
35
+ ```
36
+ ### Load Model file
37
+ ```bash
38
+ # Load the saved model once at startup
39
+ load_model_path = "./ckpts/best_model.h5"
40
+
41
+ print(f"Loading model from {load_model_path}...")
42
+ loaded_autoencoder = tf.keras.models.load_model(
43
+ load_model_path,
44
+ custom_objects={'SpatialAttention': SpatialAttention}
45
+ )
46
+ ```
47
+
48
+ ### Inferenc Step
49
+ ```python
50
+ # Assuming process_image function is defined as provided
51
+ # and required imports (tensorflow, skimage.color for lab2rgb) are available
52
+
53
+ def display_images_pil(input_path):
54
+ # Read input image
55
+ input_img = Image.open(input_path)
56
+
57
+ # Process the image using the provided function
58
+ output_img = process_image(input_img)
59
+
60
+ # Display input image
61
+ input_img.show(title="Input Image")
62
+
63
+ # Display output image
64
+ output_img.show(title="Output Image")
65
+
66
+ def process_image(input_img):
67
+ # Store original input dimensions
68
+ original_width, original_height = input_img.size
69
+
70
+ # Convert PIL Image to grayscale and resize to model input size
71
+ img = input_img.convert("L") # Convert to grayscale (single channel)
72
+ img = img.resize((WIDTH, HEIGHT)) # Resize to 512x512 for model
73
+ img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize to [0, 1]
74
+ img_array = img_array[None, ..., 0:1] # Add batch dimension, shape: (1, 512, 512, 1)
75
+
76
+ # Run inference (assuming loaded_autoencoder predicts a*b* channels)
77
+ output_array = loaded_autoencoder.predict(img_array) # Shape: (1, 512, 512, 2) for a*b*
78
+ print("output_array shape: ", output_array.shape)
79
+
80
+ # Extract L* (grayscale input) and a*b* (model output)
81
+ L_channel = img_array[0, :, :, 0] * 100.0 # Denormalize L* to [0, 100]
82
+ ab_channels = output_array[0] * 128.0 # Denormalize a*b* to [-128, 128]
83
+
84
+ # Combine L*, a*, b* into a 3-channel L*a*b* image
85
+ lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) # Shape: (512, 512, 3)
86
+
87
+ # Convert L*a*b* to RGB
88
+ rgb_array = lab2rgb(lab_image) # Convert to RGB, output in [0, 1]
89
+ rgb_array = np.clip(rgb_array, 0, 1) * 255.0 # Scale to [0, 255]
90
+ rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") # Create RGB PIL image
91
+
92
+ # Resize output image to match input image resolution
93
+ rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS)
94
+
95
+ return rgb_image
96
+
97
+
98
+ # Example usage
99
+ if __name__ == "__main__":
100
+ # Replace 'input_image.jpg' with the path to your image
101
+ image_path = "<input_image.jpg>"
102
+ display_images_pil(image_path)
103
+ ```