danhtran2mind commited on
Commit
869c037
·
verified ·
1 Parent(s): 74357e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -73
README.md CHANGED
@@ -5,122 +5,201 @@ language:
5
  - en
6
  pipeline_tag: image-to-image
7
  ---
 
8
 
 
 
 
 
 
 
9
 
10
- ## Metrics
11
- PSNR
12
- - Validation set: 21.70
13
 
14
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- ### Download Model
 
 
 
 
 
 
 
 
 
17
  ```bash
18
- git clone https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape
 
19
  ```
 
 
20
  ```bash
21
- cd autoencoder-grayscale2color-landscape
22
- git lfs pull
23
  ```
24
- ### Import Libraries
 
 
 
 
 
 
 
25
  ```python
26
  from PIL import Image
27
  import os
28
  import numpy as np
29
  import tensorflow as tf
30
  import requests
31
- from skimage.color import lab2rgb
32
  import matplotlib.pyplot as plt
 
33
  from models.auto_encoder_gray2color import SpatialAttention
34
  ```
35
- ### Load Model file
 
 
 
36
  ```python
37
- # Load the saved model once at startup
38
  load_model_path = "./ckpts/best_model.h5"
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  print(f"Loading model from {load_model_path}...")
41
  loaded_autoencoder = tf.keras.models.load_model(
42
- load_model_path,
43
- custom_objects={'SpatialAttention': SpatialAttention}
44
  )
 
45
  ```
46
 
47
- ### Define Functions
 
 
48
  ```python
49
  def process_image(input_img):
50
- # Store original input dimensions
 
51
  original_width, original_height = input_img.size
 
 
 
 
 
52
 
53
- # Convert PIL Image to grayscale and resize to model input size
54
- img = input_img.convert("L") # Convert to grayscale (single channel)
55
- img = img.resize((WIDTH, HEIGHT)) # Resize to 512x512 for model
56
- img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize to [0, 1]
57
- img_array = img_array[None, ..., 0:1] # Add batch dimension, shape: (1, 512, 512, 1)
58
-
59
- # Run inference (assuming loaded_autoencoder predicts a*b* channels)
60
- output_array = loaded_autoencoder.predict(img_array) # Shape: (1, 512, 512, 2) for a*b*
61
- print("output_array shape: ", output_array.shape)
62
-
63
- # Extract L* (grayscale input) and a*b* (model output)
64
- L_channel = img_array[0, :, :, 0] * 100.0 # Denormalize L* to [0, 100]
65
- ab_channels = output_array[0] * 128.0 # Denormalize a*b* to [-128, 128]
66
-
67
- # Combine L*, a*, b* into a 3-channel L*a*b* image
68
- lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) # Shape: (512, 512, 3)
69
-
70
- # Convert L*a*b* to RGB
71
- rgb_array = lab2rgb(lab_image) # Convert to RGB, output in [0, 1]
72
- rgb_array = np.clip(rgb_array, 0, 1) * 255.0 # Scale to [0, 255]
73
- rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") # Create RGB PIL image
74
-
75
- # Resize output image to match input image resolution
76
- rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS)
77
-
78
- return rgb_image
79
-
80
- def process_and_plot_images(input_path):
81
- # Read input image
82
- input_img = Image.open(input_path)
83
 
84
- # Process the image (placeholder for your process_image function)
85
- output_img = process_image(input_img)
 
 
86
 
87
- # Save output image to output.jpg
88
- output_img.save("output.jpg")
 
89
 
 
 
 
 
 
 
 
 
 
90
  return input_img, output_img
91
 
92
- def plot_in_out_images(input_img, output_img):
93
- # Create a figure with two subplots for input and output images
94
- plt.figure(figsize=(17, 8), dpi=300) # Set DPI to 300
95
 
96
- # Plot input image
97
  plt.subplot(1, 2, 1)
98
- plt.imshow(input_img, cmap='gray')
99
- plt.title("Input Image")
100
- plt.axis('off') # Hide axes for cleaner display
101
 
102
- # Plot output image
103
  plt.subplot(1, 2, 2)
104
- plt.imshow(output_img, cmap='gray')
105
- plt.title("Output Image")
106
- plt.axis('off') # Hide axes for cleaner display
107
 
108
- # Save the figure as output.jpg with 300 DPI
109
- plt.savefig("output.jpg", dpi=300, bbox_inches='tight')
110
-
111
- # Show the plot
112
  plt.show()
113
  ```
114
- ### Inference
 
 
 
115
  ```python
116
- # Example usage
117
  WIDTH, HEIGHT = 512, 512
118
- # Replace 'input_image.jpg' with the path to your image
119
- image_path = "<input_image.jpg>"
120
- input_img, output_img = process_and_plot_images(image_path)
121
 
122
- plot_in_out_images(input_img, output_img)
 
 
123
  ```
124
 
125
- ### Example Output
126
- ![Plot Image](./examples/model_output.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - en
6
  pipeline_tag: image-to-image
7
  ---
8
+ # Autoencoder Grayscale2Color Landscape 🛡️
9
 
10
+ [![huggingface-hub](https://img.shields.io/badge/huggingface--hub-orange.svg?logo=huggingface)](https://huggingface.co/docs/hub)
11
+ [![Pillow](https://img.shields.io/badge/Pillow-%2300A1D6.svg)](https://pypi.org/project/pillow/)
12
+ [![numpy](https://img.shields.io/badge/numpy-%23013243.svg?logo=numpy)](https://numpy.org/)
13
+ [![tensorflow](https://img.shields.io/badge/tensorflow-%23FF6F00.svg?logo=tensorflow)](https://www.tensorflow.org/)
14
+ [![gradio](https://img.shields.io/badge/gradio-yellow.svg?logo=gradio)](https://gradio.app/)
15
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
16
 
17
+ ## Introduction
18
+ Transform grayscale landscape images into vibrant, full-color visuals with this autoencoder model. Built from scratch, this project leverages deep learning to predict color channels (a*b* in L*a*b* color space) from grayscale inputs, delivering impressive results with a sleek, minimalist design. 🌄
 
19
 
20
+ ## Key Features
21
+ - 📸 Converts grayscale landscape images to vivid RGB.
22
+ - 🧠 Custom autoencoder with spatial attention for enhanced detail.
23
+ - ⚡ Optimized for high-quality inference at 512x512 resolution.
24
+ - 📊 Achieves a PSNR of 21.70 on the validation set.
25
+
26
+ ## Notebook
27
+ Explore the implementation in our Jupyter notebook:
28
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch/blob/main/notebooks/autoencoder-grayscale-to-color-landscape.ipynb)
29
+ [![Open in SageMaker](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch/blob/main/notebooks/autoencoder-grayscale-to-color-landscape.ipynb)
30
+ [![Open in Deepnote](https://deepnote.com/buttons/launch-in-deepnote-small.svg)](https://deepnote.com/launch?url=https://github.com/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch/blob/main/notebooks/autoencoder-grayscale-to-color-landscape.ipynb)
31
+ [![JupyterLab](https://img.shields.io/badge/Launch-JupyterLab-orange?logo=Jupyter)](https://mybinder.org/v2/gh/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch/main?filepath=autoencoder-grayscale-to-color-landscape.ipynb)
32
+ [![View on GitHub](https://img.shields.io/badge/View%20on-GitHub-181717?logo=github)](https://github.com/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch/blob/main/notebooks/autoencoder-grayscale-to-color-landscape.ipynb)
33
+
34
+ ## Dataset
35
+ Details about the dataset are available in the [README Dataset](./dataset/README.md). 📂
36
+
37
+ ## From Scratch Model
38
+ Custom-built autoencoder with a spatial attention mechanism, trained **FROM SCRATCH** to predict a*b* color channels from grayscale (L*) inputs. 🧩
39
 
40
+ ## Demonstration
41
+ Experience the brilliance of our cutting-edge technology! Transform grayscale landscapes into vibrant colors with our interactive demo.
42
+
43
+ [![HuggingFace Space](https://img.shields.io/badge/%F0%9F%A4%97-HuggingFace%20Space-blue)](https://huggingface.co/spaces/danhtran2mind/autoencoder-grayscale2color-landscape)
44
+
45
+ ![App Interface](./examples/gradio_app.png)
46
+
47
+ ## Installation
48
+
49
+ ### Step 1: Clone the Repository
50
  ```bash
51
+ git clone https://github.com/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch
52
+ cd /autoencoder-grayscale2color-landscape-from-scratch
53
  ```
54
+
55
+ ### Step 2: Install Dependencies
56
  ```bash
57
+ pip install -r requirements.txt
 
58
  ```
59
+
60
+ ## Usage
61
+
62
+ Follow these steps to colorize images programmatically using Python.
63
+
64
+ ### 1. Import Required Libraries
65
+ Install and import the necessary libraries for image processing and model inference.
66
+
67
  ```python
68
  from PIL import Image
69
  import os
70
  import numpy as np
71
  import tensorflow as tf
72
  import requests
 
73
  import matplotlib.pyplot as plt
74
+ from skimage.color import lab2rgb
75
  from models.auto_encoder_gray2color import SpatialAttention
76
  ```
77
+
78
+ ### 2. Load the Pre-trained Model
79
+ Download and load the autoencoder model from a remote source if it’s not already available locally.
80
+
81
  ```python
 
82
  load_model_path = "./ckpts/best_model.h5"
83
+ os.makedirs(os.path.dirname(load_model_path), exist_ok=True)
84
+
85
+ if not os.path.exists(load_model_path):
86
+ url = "https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/resolve/main/ckpts/best_model.h5"
87
+ print(f"Downloading model from {url}...")
88
+ with requests.get(url, stream=True) as response:
89
+ response.raise_for_status()
90
+ with open(load_model_path, "wb") as f:
91
+ for chunk in response.iter_content(chunk_size=8192):
92
+ f.write(chunk)
93
+ print("Model downloaded successfully.")
94
 
95
  print(f"Loading model from {load_model_path}...")
96
  loaded_autoencoder = tf.keras.models.load_model(
97
+ load_model_path, custom_objects={"SpatialAttention": SpatialAttention}
 
98
  )
99
+ print("Model loaded successfully.")
100
  ```
101
 
102
+ ### 3. Define Image Processing Functions
103
+ These functions handle image preprocessing, colorization, and visualization.
104
+
105
  ```python
106
  def process_image(input_img):
107
+ """Convert a grayscale image to color using the autoencoder."""
108
+ # Store original dimensions
109
  original_width, original_height = input_img.size
110
+
111
+ # Preprocess: Convert to grayscale, resize, and normalize
112
+ img = input_img.convert("L").resize((512, 512))
113
+ img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0
114
+ img_array = img_array[None, ..., 0:1] # Add batch dimension
115
 
116
+ # Predict color channels
117
+ output_array = loaded_autoencoder.predict(img_array)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
+ # Reconstruct LAB image
120
+ L_channel = img_array[0, :, :, 0] * 100.0 # Scale L channel
121
+ ab_channels = output_array[0] * 128.0 # Scale ab channels
122
+ lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1)
123
 
124
+ # Convert to RGB and clip values
125
+ rgb_array = lab2rgb(lab_image)
126
+ rgb_array = np.clip(rgb_array, 0, 1) * 255.0
127
 
128
+ # Create and resize output image
129
+ rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB")
130
+ return rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS)
131
+
132
+ def process_and_save_image(image_path):
133
+ """Process an image and save the colorized result."""
134
+ input_img = Image.open(image_path)
135
+ output_img = process_image(input_img)
136
+ output_img.save("output.jpg")
137
  return input_img, output_img
138
 
139
+ def plot_images(input_img, output_img):
140
+ """Display input and output images side by side."""
141
+ plt.figure(figsize=(17, 8), dpi=300)
142
 
143
+ # Plot input grayscale image
144
  plt.subplot(1, 2, 1)
145
+ plt.imshow(input_img, cmap="gray")
146
+ plt.title("Input Grayscale Image")
147
+ plt.axis("off")
148
 
149
+ # Plot output colorized image
150
  plt.subplot(1, 2, 2)
151
+ plt.imshow(output_img)
152
+ plt.title("Colorized Output Image")
153
+ plt.axis("off")
154
 
155
+ # Save and display the plot
156
+ plt.savefig("output.jpg", dpi=300, bbox_inches="tight")
 
 
157
  plt.show()
158
  ```
159
+
160
+ ### 4. Perform Inference
161
+ Run the colorization process on a sample image.
162
+
163
  ```python
164
+ # Set image dimensions and path
165
  WIDTH, HEIGHT = 512, 512
166
+ image_path = "<path_to_input_image.jpg>" # Replace with your image path
 
 
167
 
168
+ # Process and visualize the image
169
+ input_img, output_img = process_and_save_image(image_path)
170
+ plot_images(input_img, output_img)
171
  ```
172
 
173
+ ### 5. Example Output
174
+ The output will be a side-by-side comparison of the input grayscale image and the colorized result, saved as `output.jpg`. For a sample result, see the example below:
175
+ ![Output Image](./examples/model_output.png)
176
+
177
+ ## Training Hyperparameters
178
+ - **Resolution**: 512x512 pixels
179
+ - **Color Space**: L*a*b*
180
+ - **Custom Layer**: SpatialAttention
181
+ - **Model File**: `best_model.h5`
182
+ - **Epochs**: 100
183
+
184
+ ## Callbacks
185
+ - **Early Stopping**: Monitors `val_loss`, patience of 20 epochs, restores best weights.
186
+ - **ReduceLROnPlateau**: Monitors `val_loss`, reduces learning rate by 50% after 5 epochs, minimum learning rate of 1e-6.
187
+ - **BackupAndRestore**: Saves checkpoints to `./ckpts/backup`.
188
+ -
189
+ ## Metrics
190
+ - **PSNR (Validation)**: 21.70 📈
191
+
192
+ ## Environment
193
+ - Python 3.11.11
194
+ - Libraies
195
+ ```
196
+ numpy==1.26.4
197
+ tensorflow==2.18.0
198
+ opencv-python==4.11.0.86
199
+ scikit-image==0.25.2
200
+ matplotlib==3.7.2
201
+ scikit-image==0.25.2
202
+ ```
203
+
204
+ ## Contact
205
+ For questions or issues, reach out via the [GitHub Issues](https://github.com/danhtran2mind/autoencoder-grayscale2color-landscape-from-scratch/issues) tab. 🚀