dinov2-base-fare4 / README.md
chs20's picture
Upload model
aaf4ae2 verified
---
base_model:
- facebook/dinov2-base
library_name: transformers
license: mit
tags:
- dino
- vision
---
[[Paper]](https://openreview.net/forum?id=e3scLKNiNg&noteId=e3scLKNiNg) [[GitHub]](https://github.com/fra31/perceptual-metrics)
Robust perceptual metric, based on DINO model `facebook/dinov2-base`.
Adversarially fine-tuned with FARE ([Schlarmann et al. (2024)](https://arxiv.org/abs/2402.12336)) on ImageNet with infinity-norm and radius 4/255.
## Usage
```python
preprocessor = transforms.Compose([
transforms.Resize(256, interpolation=3),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
model = AutoModel.from_pretrained("ch20/dinov2-base-fare4")
```
## Citation
If you find this model useful, please consider citing our papers:
```bibtex
@inproceedings{croce2024adversarially,
title={Adversarially Robust CLIP Models Can Induce Better (Robust) Perceptual Metrics},
author={Croce, Francesco and Schlarmann, Christian and Singh, Naman Deep and Hein, Matthias},
year={2025},
booktitle={{SaTML}}
}
```
```bibtex
@inproceedings{schlarmann2024robustclip,
title={Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language
Models},
author={Schlarmann, Christian and Singh, Naman Deep and Croce, Francesco and Hein, Matthias},
year={2024},
booktitle={{ICML}}
}
```