--- base_model: - facebook/dinov2-base library_name: transformers license: mit tags: - dino - vision --- [[Paper]](https://openreview.net/forum?id=e3scLKNiNg¬eId=e3scLKNiNg) [[GitHub]](https://github.com/fra31/perceptual-metrics) Robust perceptual metric, based on DINO model `facebook/dinov2-base`. Adversarially fine-tuned with FARE ([Schlarmann et al. (2024)](https://arxiv.org/abs/2402.12336)) on ImageNet with infinity-norm and radius 4/255. ## Usage ```python preprocessor = transforms.Compose([ transforms.Resize(256, interpolation=3), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) model = AutoModel.from_pretrained("ch20/dinov2-base-fare4") ``` ## Citation If you find this model useful, please consider citing our papers: ```bibtex @inproceedings{croce2024adversarially, title={Adversarially Robust CLIP Models Can Induce Better (Robust) Perceptual Metrics}, author={Croce, Francesco and Schlarmann, Christian and Singh, Naman Deep and Hein, Matthias}, year={2025}, booktitle={{SaTML}} } ``` ```bibtex @inproceedings{schlarmann2024robustclip, title={Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models}, author={Schlarmann, Christian and Singh, Naman Deep and Croce, Francesco and Hein, Matthias}, year={2024}, booktitle={{ICML}} } ```