|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: MTSUFall2024SoftwareEngineering |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MTSUFall2024SoftwareEngineering |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0628 |
|
- Rouge1: 0.2406 |
|
- Rouge2: 0.187 |
|
- Rougel: 0.2337 |
|
- Rougelsum: 0.2336 |
|
- Gen Len: 18.9969 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 14 |
|
- eval_batch_size: 14 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.8688 | 1.0 | 748 | 2.1863 | 0.2392 | 0.1855 | 0.232 | 0.2319 | 18.9985 | |
|
| 2.4032 | 2.0 | 1496 | 2.1045 | 0.2387 | 0.1869 | 0.232 | 0.232 | 18.9973 | |
|
| 2.3034 | 3.0 | 2244 | 2.0720 | 0.239 | 0.1869 | 0.2324 | 0.2323 | 18.9969 | |
|
| 2.2666 | 4.0 | 2992 | 2.0628 | 0.2406 | 0.187 | 0.2337 | 0.2336 | 18.9969 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|