cheaptrix commited on
Commit
bcda4f8
·
verified ·
1 Parent(s): c7d1c57

Create README_OLD.md

Browse files
Files changed (1) hide show
  1. README_OLD.md +69 -0
README_OLD.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google-t5/t5-small
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: MTSUFall2024SoftwareEngineering
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # MTSUFall2024SoftwareEngineering
18
+
19
+ This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.0628
22
+ - Rouge1: 0.2406
23
+ - Rouge2: 0.187
24
+ - Rougel: 0.2337
25
+ - Rougelsum: 0.2336
26
+ - Gen Len: 18.9969
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 14
47
+ - eval_batch_size: 14
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 4
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
58
+ | 2.8688 | 1.0 | 748 | 2.1863 | 0.2392 | 0.1855 | 0.232 | 0.2319 | 18.9985 |
59
+ | 2.4032 | 2.0 | 1496 | 2.1045 | 0.2387 | 0.1869 | 0.232 | 0.232 | 18.9973 |
60
+ | 2.3034 | 3.0 | 2244 | 2.0720 | 0.239 | 0.1869 | 0.2324 | 0.2323 | 18.9969 |
61
+ | 2.2666 | 4.0 | 2992 | 2.0628 | 0.2406 | 0.187 | 0.2337 | 0.2336 | 18.9969 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.44.2
67
+ - Pytorch 2.4.0+cu121
68
+ - Datasets 3.0.0
69
+ - Tokenizers 0.19.1