
autoevaluator
HF staff
Add evaluation results on the sentiment config and validation split of tweet_eval
df87aeb
language: en | |
datasets: | |
- tweet_eval | |
widget: | |
- text: Covid cases are increasing fast! | |
model-index: | |
- name: cardiffnlp/twitter-roberta-base-sentiment-latest | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: tweet_eval | |
type: tweet_eval | |
config: sentiment | |
split: validation | |
metrics: | |
- type: accuracy | |
value: 0.7715 | |
name: Accuracy | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzEyZDhlYTA4ZTYwYTg0ZWIwZDlmYzIyYWQ3YjY4NGQ1ZjVjYzJjODk2Mjc4YWRiNjU2NzhmMmJmNDUzNTIxMiIsInZlcnNpb24iOjF9.75SSI8U0ZlfehMx7Zh6LotmSB_Zp9taCnKCi23SVVHghX--eM0jy6OWtqf4IWxkEwb6yoTNxcyoOw_Av6UNTCg | |
- type: f1 | |
value: 0.7606415252231301 | |
name: F1 Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWIxYzJhNjgxNTM5ZTRjNDJmNTU2NGFlOWE2ZjViODk3NWJkMzA0YTMyYmUzNjdhM2RjNzhkYTViMDRjNDcyZiIsInZlcnNpb24iOjF9.wIjAJNlzzk-M8tsigytlLRYy0uQDGo3Qy1F7afmk5b1XrGnAy1E4Mw-JHDtbZ2uYZiPx0grbOOxL-yT_4DCSCg | |
- type: f1 | |
value: 0.7715000000000001 | |
name: F1 Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVhZDA4ZWM3YzgzYjVlOTk2ODkxNzQzNjBjMjBlMmZiM2QwN2QyYTVjMDUxNWU3ZTQ2MGZhNGIxYTY3NGI0ZSIsInZlcnNpb24iOjF9.-VYy5OLXwpaoiD4HR7wBjmV5izt2yTXvRbp93cs7jPvPEij7rkidjd-HpVaHMvIOLoTjxnKozFf0pmNQF06WBg | |
- type: f1 | |
value: 0.7732314418938615 | |
name: F1 Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmRmNjUyMjU3ZTljYmViMWRiNDMzODE4YTU3ZjU2YzQ3MDQyZGRhYjBmYzU0Yjk0Yjk3MzVmYjNjM2U5YzFjZCIsInZlcnNpb24iOjF9.BguI5gGX0H4P8LNTAayaBxv7rUYqvepCyKo9rOIsEXsTVN9N-J9IfjUGjptpKJBpOXEi_MGFLV6H7IJUyhdbDA | |
- type: precision | |
value: 0.7508336175429541 | |
name: Precision Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzM2NDNlZGE2ZDNmYmMyZTU0OWYzOGYwYzM1NWE1YzIzNjBkZjA0NzkxYjY1ZWI4OTM5NWVkZTZkNjgzZTQ1MSIsInZlcnNpb24iOjF9.3YBiMV0HMcEtr4lFDe4BFhTkyfL0EL6Xk3V9ICNOtOMdNgDChRMnphsYh6WaUILJNA0qlmHzh7h_RpciLwMDBw | |
- type: precision | |
value: 0.7715 | |
name: Precision Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDk5NDk0OGFlNTI1NDhkMTY3NWZmYmYwODBiY2M2YmI0YjkxOWJmYWZiZTViNWQ3ZDk2Mjk3OTNiMDMxMmEwMiIsInZlcnNpb24iOjF9._Zk6Kwarj5Jv_rLX9fp-Np6qwUZwyQ7dD-ylnCJtXEm-ZkarYemTLZqjq_1nWATD3vQcYoHlXD0RFOzYQxSaCw | |
- type: precision | |
value: 0.7782372190165424 | |
name: Precision Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI5YzIwODcwYjUwMTY1MDVjNThlMGUxMWUzMTQ5MGE5Nzk5ZmZlNTM1ZTQzYjJhNTFkYzkyYzQzOTUwZGRkNiIsInZlcnNpb24iOjF9.OoGtZoogQHq49Vh_MZMO4yASGembVB1xDE216tT_JQGV3zh0_IRdJ9eztxXOn3Hx8qxrQwSEwzKZKp3gj4l3Dw | |
- type: recall | |
value: 0.7762803886221606 | |
name: Recall Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGI5YTI4OWI5ZGVkOWUyYzc3NzI1M2I1MWUzN2JmOGQ3ODlmN2MwMDI0MmI0ZjkxZWZjNDZjOTNkODg4ZmFlNCIsInZlcnNpb24iOjF9.fkdes7mIwaxI_8AVJuahiZoRq0MZzzMsjDddn8trtxi37fHCMEX86hf__Kmbs5AxrgtkJA3fd4H5iKcEaq1MBA | |
- type: recall | |
value: 0.7715 | |
name: Recall Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDkwZTQzNzhiNzgyODU1YTVjYzFiMTg4ZGZiYjg5ZTBlYTNkNWM5MWMyZTFkMjQyZDA0OGU3ODUwNzQ0MzNiNiIsInZlcnNpb24iOjF9.JtK5c3OOO9ryDKsddzAykHcj8nF-LvA96oF3MPTqB8FtyWuWQEBJAMhID-xhCgGTfEtD-n_LggDBeww1AZQOBg | |
- type: recall | |
value: 0.7715 | |
name: Recall Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzc5OTY0NWYxNDM5ZDEyMDM2ZDdlYjQ0YWIwMzU2YTQ0YTBjMmE3NGEzOGIzNmY5ODEwNzQ3M2YyOWY3NDVkMCIsInZlcnNpb24iOjF9.gpw2NXq5Z6zj4JXXBDkETnY6dQxKDBLyQP3nGaKeRhTA_sQ7zud0xDiKKSJa8dckE4tSS6fjW-9xoAyvlxFxAw | |
- type: loss | |
value: 0.525364875793457 | |
name: loss | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmVhNTE5MThiNTMxMzZlOThiNWFhOGYzYjBkZjUzZjUwYWM5NGIxZjc1ZjIzMGRjZmIzZmVhNDAxZjVjNGUyZSIsInZlcnNpb24iOjF9.W3vo0Hdh0tL8kfWDGUjtYj6AUJCt8xYaW6WEiICUPhLVeRaUab_rwSGLiEQ5Sy1ccnOC38gEzZvrPlxs0VDlDg | |
# Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022) | |
This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. | |
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. | |
- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). | |
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms). | |
<b>Labels</b>: | |
0 -> Negative; | |
1 -> Neutral; | |
2 -> Positive | |
This sentiment analysis model has been integrated into [TweetNLP](https://github.com/cardiffnlp/tweetnlp). You can access the demo [here](https://tweetnlp.org). | |
## Example Pipeline | |
```python | |
from transformers import pipeline | |
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) | |
sentiment_task("Covid cases are increasing fast!") | |
``` | |
``` | |
[{'label': 'Negative', 'score': 0.7236}] | |
``` | |
## Full classification example | |
```python | |
from transformers import AutoModelForSequenceClassification | |
from transformers import TFAutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
config = AutoConfig.from_pretrained(MODEL) | |
# PT | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
#model.save_pretrained(MODEL) | |
text = "Covid cases are increasing fast!" | |
text = preprocess(text) | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
# # TF | |
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) | |
# model.save_pretrained(MODEL) | |
# text = "Covid cases are increasing fast!" | |
# encoded_input = tokenizer(text, return_tensors='tf') | |
# output = model(encoded_input) | |
# scores = output[0][0].numpy() | |
# scores = softmax(scores) | |
# Print labels and scores | |
ranking = np.argsort(scores) | |
ranking = ranking[::-1] | |
for i in range(scores.shape[0]): | |
l = config.id2label[ranking[i]] | |
s = scores[ranking[i]] | |
print(f"{i+1}) {l} {np.round(float(s), 4)}") | |
``` | |
Output: | |
``` | |
1) Negative 0.7236 | |
2) Neutral 0.2287 | |
3) Positive 0.0477 | |
``` |