File size: 6,975 Bytes
3f3ed66
f6e0c90
f8f8214
 
df87aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f3ed66
 
 
25a9e24
3f3ed66
25a9e24
 
3f3ed66
1941b34
 
3f3ed66
 
 
 
 
 
25a9e24
 
3f3ed66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
language: en
datasets:
- tweet_eval
widget:
- text: Covid cases are increasing fast!
model-index:
- name: cardiffnlp/twitter-roberta-base-sentiment-latest
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: tweet_eval
      type: tweet_eval
      config: sentiment
      split: validation
    metrics:
    - type: accuracy
      value: 0.7715
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzEyZDhlYTA4ZTYwYTg0ZWIwZDlmYzIyYWQ3YjY4NGQ1ZjVjYzJjODk2Mjc4YWRiNjU2NzhmMmJmNDUzNTIxMiIsInZlcnNpb24iOjF9.75SSI8U0ZlfehMx7Zh6LotmSB_Zp9taCnKCi23SVVHghX--eM0jy6OWtqf4IWxkEwb6yoTNxcyoOw_Av6UNTCg
    - type: f1
      value: 0.7606415252231301
      name: F1 Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWIxYzJhNjgxNTM5ZTRjNDJmNTU2NGFlOWE2ZjViODk3NWJkMzA0YTMyYmUzNjdhM2RjNzhkYTViMDRjNDcyZiIsInZlcnNpb24iOjF9.wIjAJNlzzk-M8tsigytlLRYy0uQDGo3Qy1F7afmk5b1XrGnAy1E4Mw-JHDtbZ2uYZiPx0grbOOxL-yT_4DCSCg
    - type: f1
      value: 0.7715000000000001
      name: F1 Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVhZDA4ZWM3YzgzYjVlOTk2ODkxNzQzNjBjMjBlMmZiM2QwN2QyYTVjMDUxNWU3ZTQ2MGZhNGIxYTY3NGI0ZSIsInZlcnNpb24iOjF9.-VYy5OLXwpaoiD4HR7wBjmV5izt2yTXvRbp93cs7jPvPEij7rkidjd-HpVaHMvIOLoTjxnKozFf0pmNQF06WBg
    - type: f1
      value: 0.7732314418938615
      name: F1 Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmRmNjUyMjU3ZTljYmViMWRiNDMzODE4YTU3ZjU2YzQ3MDQyZGRhYjBmYzU0Yjk0Yjk3MzVmYjNjM2U5YzFjZCIsInZlcnNpb24iOjF9.BguI5gGX0H4P8LNTAayaBxv7rUYqvepCyKo9rOIsEXsTVN9N-J9IfjUGjptpKJBpOXEi_MGFLV6H7IJUyhdbDA
    - type: precision
      value: 0.7508336175429541
      name: Precision Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzM2NDNlZGE2ZDNmYmMyZTU0OWYzOGYwYzM1NWE1YzIzNjBkZjA0NzkxYjY1ZWI4OTM5NWVkZTZkNjgzZTQ1MSIsInZlcnNpb24iOjF9.3YBiMV0HMcEtr4lFDe4BFhTkyfL0EL6Xk3V9ICNOtOMdNgDChRMnphsYh6WaUILJNA0qlmHzh7h_RpciLwMDBw
    - type: precision
      value: 0.7715
      name: Precision Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDk5NDk0OGFlNTI1NDhkMTY3NWZmYmYwODBiY2M2YmI0YjkxOWJmYWZiZTViNWQ3ZDk2Mjk3OTNiMDMxMmEwMiIsInZlcnNpb24iOjF9._Zk6Kwarj5Jv_rLX9fp-Np6qwUZwyQ7dD-ylnCJtXEm-ZkarYemTLZqjq_1nWATD3vQcYoHlXD0RFOzYQxSaCw
    - type: precision
      value: 0.7782372190165424
      name: Precision Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI5YzIwODcwYjUwMTY1MDVjNThlMGUxMWUzMTQ5MGE5Nzk5ZmZlNTM1ZTQzYjJhNTFkYzkyYzQzOTUwZGRkNiIsInZlcnNpb24iOjF9.OoGtZoogQHq49Vh_MZMO4yASGembVB1xDE216tT_JQGV3zh0_IRdJ9eztxXOn3Hx8qxrQwSEwzKZKp3gj4l3Dw
    - type: recall
      value: 0.7762803886221606
      name: Recall Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGI5YTI4OWI5ZGVkOWUyYzc3NzI1M2I1MWUzN2JmOGQ3ODlmN2MwMDI0MmI0ZjkxZWZjNDZjOTNkODg4ZmFlNCIsInZlcnNpb24iOjF9.fkdes7mIwaxI_8AVJuahiZoRq0MZzzMsjDddn8trtxi37fHCMEX86hf__Kmbs5AxrgtkJA3fd4H5iKcEaq1MBA
    - type: recall
      value: 0.7715
      name: Recall Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDkwZTQzNzhiNzgyODU1YTVjYzFiMTg4ZGZiYjg5ZTBlYTNkNWM5MWMyZTFkMjQyZDA0OGU3ODUwNzQ0MzNiNiIsInZlcnNpb24iOjF9.JtK5c3OOO9ryDKsddzAykHcj8nF-LvA96oF3MPTqB8FtyWuWQEBJAMhID-xhCgGTfEtD-n_LggDBeww1AZQOBg
    - type: recall
      value: 0.7715
      name: Recall Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzc5OTY0NWYxNDM5ZDEyMDM2ZDdlYjQ0YWIwMzU2YTQ0YTBjMmE3NGEzOGIzNmY5ODEwNzQ3M2YyOWY3NDVkMCIsInZlcnNpb24iOjF9.gpw2NXq5Z6zj4JXXBDkETnY6dQxKDBLyQP3nGaKeRhTA_sQ7zud0xDiKKSJa8dckE4tSS6fjW-9xoAyvlxFxAw
    - type: loss
      value: 0.525364875793457
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmVhNTE5MThiNTMxMzZlOThiNWFhOGYzYjBkZjUzZjUwYWM5NGIxZjc1ZjIzMGRjZmIzZmVhNDAxZjVjNGUyZSIsInZlcnNpb24iOjF9.W3vo0Hdh0tL8kfWDGUjtYj6AUJCt8xYaW6WEiICUPhLVeRaUab_rwSGLiEQ5Sy1ccnOC38gEzZvrPlxs0VDlDg
---


# Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022)

This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. 
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. 

- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). 
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).

<b>Labels</b>: 
0 -> Negative;
1 -> Neutral;
2 -> Positive

This sentiment analysis model has been integrated into [TweetNLP](https://github.com/cardiffnlp/tweetnlp). You can access the demo [here](https://tweetnlp.org).

## Example Pipeline
```python
from transformers import pipeline
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Covid cases are increasing fast!")
```
```
[{'label': 'Negative', 'score': 0.7236}]
```

## Full classification example

```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
#model.save_pretrained(MODEL)
text = "Covid cases are increasing fast!"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Covid cases are increasing fast!"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")
```

Output: 

```
1) Negative 0.7236
2) Neutral 0.2287
3) Positive 0.0477
```