metadata
{}
Deployment:
build_commands: []
external_package_dirs: []
model_metadata: {}
model_name: fp8-baseten/example-Meta-Llama-3-70B-InstructForSequenceClassification
python_version: py39
requirements: []
resources:
accelerator: H100:1
cpu: "1"
memory: 64Gi
use_gpu: true
secrets:
hf_access_token: set token in baseten workspace
system_packages: []
trt_llm:
build:
base_model: encoder
# automatically infered from config[max_position_embeddings]
max_seq_len: 42
# max_batch_size per dynamic batch, recommended to stay at 32
max_batch_size: 32
# max num tokens per dynamic batch, strongly recommended to keep this number
max_num_tokens: 16384
checkpoint_repository:
source: HF
repo: "baseten/example-Meta-Llama-3-70B-InstructForSequenceClassification"
revision: "main" # hf revision hash
# `fp8` or `no_quant` (=fp16) are allowed.
quantization_type: fp8
num_builder_gpus: 4
Usage:
import requests
import os
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Skywork/Skywork-Reward-Llama-3.1-8B-v0.2")
prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?"
# Positive example, gets high score 0.999 or raw around inv_sig(0.999) ~ 13
response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples."
# negative example, gets low score ~0.001 or raw around inv_sig(0.001) ~ -9
response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples."
# predict api: {
# "inputs": "What is Deep Learning?", # str, may be formatted with chat template.
# "raw_scores": false, # with or without sigmoid activation
# "truncate": false,
# "truncation_direction": "right"
# }
for assistant_response in [response1, response2]:
# Feel free to parallelize this, requests will be batched in the backend.
conv = [{"role": "user", "content": prompt}, {"role": "assistant", "content": assistant_response}]
conv_formatted = tokenizer.apply_chat_template(conv, tokenize=False)
input_json = dict(inputs=conv_formatted, raw_scores=True)
resp = requests.post(
"https://model-xxxxxx.api.baseten.co/environments/production/sync/predict",
headers={"Authorization": f"Api-Key {os.environ['BASETEN_API_KEY']}"},
json=input_json,
)
print(resp.json())
# prints
# [{'score': 13.714337, 'label': 'LABEL_0'}]
# [{'score': -9.353895, 'label': 'LABEL_0'}]
Reproduce this model:
#!/usr/bin/env python
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
LlamaForSequenceClassification,
)
# install torch, transformers, accelerate
def main():
# Define the input and output repository names.
input_model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
split_2 = input_model_id.split("/")[1]
output_model_id = f"baseten/example-{split_2}ForSequenceClassification"
# Load the original configuration.
# (If needed, add trust_remote_code=True for custom implementations.)
config = AutoConfig.from_pretrained(input_model_id)
# Update the config for a sequence classification task with 10 labels.
num_labels = 30
config.num_labels = num_labels
config.id2label = {i: f"token activation {i}" for i in range(num_labels)}
config.label2id = {f"token activation {i}": i for i in range(num_labels)}
# Download the tokenizer from the original model.
tokenizer = AutoTokenizer.from_pretrained(input_model_id)
# Load the original causal LM model.
lm_model = AutoModelForCausalLM.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
config.architectures = ["LlamaForSequenceClassification"]
del lm_model.model
print("loaded lm model")
# Initialize the sequence classification model.
# NOTE: We are using the built-in LlamaForSequenceClassification,
# which uses a `.score` attribute as the output head.
seq_cls_model = LlamaForSequenceClassification.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
# --- Initialize the Classification Head ---
# Here we re-use the first 10 rows from the original LM head
# (i.e. rows 0 to 9) to initialize the new classification head.
with torch.no_grad():
# lm_model.lm_head.weight has shape [vocab_size, hidden_size]
# We take the first 10 rows to form a [10, hidden_size] weight matrix.
seq_cls_model.score.weight.copy_(lm_model.lm_head.weight.data[:num_labels, :])
if lm_model.lm_head.bias is not None:
seq_cls_model.score.bias.copy_(lm_model.lm_head.bias.data[:num_labels])
# Optionally, save the new model locally.
# save_directory = f"./{output_model_id.replace('/','_')}"
# seq_cls_model.save_pretrained(save_directory)
# tokenizer.save_pretrained(save_directory)
# Push the new model and tokenizer to the Hub.
# (Ensure you are authenticated with Hugging Face Hub via `huggingface-cli login`.)
tokenizer.push_to_hub(output_model_id)
seq_cls_model.push_to_hub(output_model_id)
print(f"New model pushed to the Hub: {output_model_id}")
if __name__ == "__main__":
main()