--- {} --- Deployment: ```yaml build_commands: [] external_package_dirs: [] model_metadata: {} model_name: fp8-baseten/example-Meta-Llama-3-70B-InstructForSequenceClassification python_version: py39 requirements: [] resources: accelerator: H100:1 cpu: "1" memory: 64Gi use_gpu: true secrets: hf_access_token: set token in baseten workspace system_packages: [] trt_llm: build: base_model: encoder # automatically infered from config[max_position_embeddings] max_seq_len: 42 # max_batch_size per dynamic batch, recommended to stay at 32 max_batch_size: 32 # max num tokens per dynamic batch, strongly recommended to keep this number max_num_tokens: 16384 checkpoint_repository: source: HF repo: "baseten/example-Meta-Llama-3-70B-InstructForSequenceClassification" revision: "main" # hf revision hash # `fp8` or `no_quant` (=fp16) are allowed. quantization_type: fp8 num_builder_gpus: 4 ``` Usage: ```python import requests import os from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Skywork/Skywork-Reward-Llama-3.1-8B-v0.2") prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?" # Positive example, gets high score 0.999 or raw around inv_sig(0.999) ~ 13 response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples." # negative example, gets low score ~0.001 or raw around inv_sig(0.001) ~ -9 response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples." # predict api: { # "inputs": "What is Deep Learning?", # str, may be formatted with chat template. # "raw_scores": false, # with or without sigmoid activation # "truncate": false, # "truncation_direction": "right" # } for assistant_response in [response1, response2]: # Feel free to parallelize this, requests will be batched in the backend. conv = [{"role": "user", "content": prompt}, {"role": "assistant", "content": assistant_response}] conv_formatted = tokenizer.apply_chat_template(conv, tokenize=False) input_json = dict(inputs=conv_formatted, raw_scores=True) resp = requests.post( "https://model-xxxxxx.api.baseten.co/environments/production/sync/predict", headers={"Authorization": f"Api-Key {os.environ['BASETEN_API_KEY']}"}, json=input_json, ) print(resp.json()) # prints # [{'score': 13.714337, 'label': 'LABEL_0'}] # [{'score': -9.353895, 'label': 'LABEL_0'}] ``` Reproduce this model: ```python #!/usr/bin/env python import torch from transformers import ( AutoConfig, AutoTokenizer, AutoModelForCausalLM, LlamaForSequenceClassification, ) # install torch, transformers, accelerate def main(): # Define the input and output repository names. input_model_id = "meta-llama/Meta-Llama-3-70B-Instruct" split_2 = input_model_id.split("/")[1] output_model_id = f"baseten/example-{split_2}ForSequenceClassification" # Load the original configuration. # (If needed, add trust_remote_code=True for custom implementations.) config = AutoConfig.from_pretrained(input_model_id) # Update the config for a sequence classification task with 10 labels. num_labels = 30 config.num_labels = num_labels config.id2label = {i: f"token activation {i}" for i in range(num_labels)} config.label2id = {f"token activation {i}": i for i in range(num_labels)} # Download the tokenizer from the original model. tokenizer = AutoTokenizer.from_pretrained(input_model_id) # Load the original causal LM model. lm_model = AutoModelForCausalLM.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True) config.architectures = ["LlamaForSequenceClassification"] del lm_model.model print("loaded lm model") # Initialize the sequence classification model. # NOTE: We are using the built-in LlamaForSequenceClassification, # which uses a `.score` attribute as the output head. seq_cls_model = LlamaForSequenceClassification.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True) # --- Initialize the Classification Head --- # Here we re-use the first 10 rows from the original LM head # (i.e. rows 0 to 9) to initialize the new classification head. with torch.no_grad(): # lm_model.lm_head.weight has shape [vocab_size, hidden_size] # We take the first 10 rows to form a [10, hidden_size] weight matrix. seq_cls_model.score.weight.copy_(lm_model.lm_head.weight.data[:num_labels, :]) if lm_model.lm_head.bias is not None: seq_cls_model.score.bias.copy_(lm_model.lm_head.bias.data[:num_labels]) # Optionally, save the new model locally. # save_directory = f"./{output_model_id.replace('/','_')}" # seq_cls_model.save_pretrained(save_directory) # tokenizer.save_pretrained(save_directory) # Push the new model and tokenizer to the Hub. # (Ensure you are authenticated with Hugging Face Hub via `huggingface-cli login`.) tokenizer.push_to_hub(output_model_id) seq_cls_model.push_to_hub(output_model_id) print(f"New model pushed to the Hub: {output_model_id}") if __name__ == "__main__": main() ```