ayaat's picture
mpnet-base-all-mqp-binary
7a698c7 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2437
- loss:ContrastiveLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: I am having troubles and confusing moments with my body and I am
scared I may be pregnant by my research online and I really want some advice ?
sentences:
- 'Does Acyclovir cause ulcers when it is prescribed for genital herpes? '
- The confusing symptoms and online research points towards me being pregnant. Can
I get a professional advice?
- Do bariatric surgeries like gastric sleeve or Roux-en-Y surgery actually work
in the long term?
- source_sentence: It started with a headache the next day came dizziness when I move
my eyes, soreness behind my eyes, 102 fever, slight cough. Help!
sentences:
- I had a headache and this was followe by dizziness on moving the eyes, soreness
behind my eyes, high grade fever (102) and slight cough. Can you help me?
- What are the signs of ovulation?
- Why does it hurt when I shave my face? Can I do something else for it besides
shaving in the direction of the hair growth?
- source_sentence: How low can hemoglobin go before you need a transfusion?
sentences:
- 'I heard banana is rich in potassium. I am having diarrhea and can I take banana. '
- At what Hemoglobin levels, is a blood transfusion recommended?
- What are the symptoms of eye cancer?
- source_sentence: I'm 5 weeks pregnant and this morning had brownish spotting, my
gyn said this is normal and ita was due to implantation, should I be worried?
sentences:
- I have abdominal cramps, spotting, nause and fatigue. I am on oral contraceptive
pills. I take them regularly. My pregnancy test is negative. I dont believe it
is implantation as I am not pregnant. Could it be withdrawal bleeding or do I
have an STD?
- 'What''s best for a 1 year old, breast milk or bottle milk? '
- I am 40, and I've had a breast lump in my right breast for about 4 years now.
Could it be cancer?
- source_sentence: My bm aren't solid but not quite loose. Looks more like for lack
of better word "shredded" the why is this?
sentences:
- I have been taking treatment for anxiety and depression. I was given a new medication
and have experienced heart flutters, can this medication cause it?
- You might think I'm a bit paranoid but could you please help me with the five
most common emergency surgeries in american teen girls?
- What causes stringy and shredded stools?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: all mqp test
type: all-mqp-test
metrics:
- type: cosine_accuracy
value: 0.8786885245901639
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7678120136260986
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8796147672552167
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7446306943893433
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8810289389067524
name: Cosine Precision
- type: cosine_recall
value: 0.8782051282051282
name: Cosine Recall
- type: cosine_ap
value: 0.9474266832530879
name: Cosine Ap
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mpnet-base-all-mqp-binary")
# Run inference
sentences = [
'My bm aren\'t solid but not quite loose. Looks more like for lack of better word "shredded" the why is this?',
'What causes stringy and shredded stools?',
'I have been taking treatment for anxiety and depression. I was given a new medication and have experienced heart flutters, can this medication cause it?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `all-mqp-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.8787 |
| cosine_accuracy_threshold | 0.7678 |
| cosine_f1 | 0.8796 |
| cosine_f1_threshold | 0.7446 |
| cosine_precision | 0.881 |
| cosine_recall | 0.8782 |
| **cosine_ap** | **0.9474** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,437 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 26.53 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 28.18 tokens</li><li>max: 119 tokens</li></ul> | <ul><li>0: ~49.00%</li><li>1: ~51.00%</li></ul> |
* Samples:
| text1 | text2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>I discovered I get this weakness in my hand whenever I try to snap my fingers, slight pain runs across elbow and wrist?</code> | <code>When I try to snap my fingers there is weakness and pain across elbow and wrist? May I know what are the causes?</code> | <code>1</code> |
| <code>If a mother has celiac should the daughter be tested?</code> | <code>What is Celiac disease?</code> | <code>0</code> |
| <code>Hi im 18 and I would like to know what I would use or take to get taller?</code> | <code>Can growth hormone taken in minimal quantities increase height after 21 years in a male?</code> | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 610 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 610 samples:
| | text1 | text2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.56 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.88 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>0: ~48.85%</li><li>1: ~51.15%</li></ul> |
* Samples:
| text1 | text2 | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Okay so i'm on bc and I have had sex (it hurts) i'm bleeding brown and my vagina hurts almost itchy but it hurts?</code> | <code>I noticed a brown discharge and itching in my vaginal area to the point that it hurts. I am also on birth control and have sexual intercourse. What do you think is causing this?</code> | <code>1</code> |
| <code>I've had body aches, blocked stuffy nose, headaches, pressure in my face and throat tightness and it feels dry for 6 months is it a bad cold?</code> | <code>For the last 6 months, I've noticed symptoms like body aches, stuffy nose, headaches, pressure sensation in the face, throat tightness and feels dry. Can a cold last this long or should I be looking for something else?</code> | <code>1</code> |
| <code>Is there any way to stop my period for a little while without a prescription?</code> | <code>Are there any natural ways to stop my period without having to visit a local doctor?</code> | <code>1</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `push_to_hub`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | all-mqp-test_cosine_ap |
|:------:|:----:|:-------------:|:---------------:|:----------------------:|
| 0.6536 | 100 | 0.0137 | 0.0135 | - |
| 1.0 | 153 | - | - | 0.9474 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->