File size: 19,773 Bytes
91f2e8d
 
 
 
 
 
 
7a698c7
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a698c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a698c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a698c7
91f2e8d
 
7a698c7
 
 
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a698c7
91f2e8d
 
7a698c7
 
 
91f2e8d
 
 
 
 
 
 
 
 
d8ab02d
91f2e8d
 
d8ab02d
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ab02d
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ab02d
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a698c7
 
 
 
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a698c7
91f2e8d
7a698c7
 
 
 
 
 
 
 
 
91f2e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2437
- loss:ContrastiveLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: I am having troubles and confusing moments with my body and I am
    scared I may be pregnant by my research online and I really want some advice ?
  sentences:
  - 'Does Acyclovir cause ulcers when it is prescribed for genital herpes? '
  - The confusing symptoms and online research points towards me being pregnant. Can
    I get a professional advice?
  - Do bariatric surgeries like gastric sleeve or Roux-en-Y surgery actually work
    in the long term?
- source_sentence: It started with a headache the next day came dizziness when I move
    my eyes, soreness behind my eyes, 102 fever, slight cough. Help!
  sentences:
  - I had a headache and this was followe by dizziness on moving the eyes, soreness
    behind my eyes, high grade fever (102) and slight cough. Can you help me?
  - What are the signs of ovulation?
  - Why does it hurt when I shave my face? Can I do something else for it besides
    shaving in the direction of the hair growth?
- source_sentence: How low can hemoglobin go before you need a transfusion?
  sentences:
  - 'I heard banana is rich in potassium. I am having diarrhea and can I take banana. '
  - At what Hemoglobin levels, is a blood transfusion recommended?
  - What are the symptoms of eye cancer?
- source_sentence: I'm 5 weeks pregnant and this morning had brownish spotting, my
    gyn said this is normal and ita was due to implantation, should I be worried?
  sentences:
  - I have abdominal cramps, spotting, nause and fatigue. I am on oral contraceptive
    pills. I take them regularly. My pregnancy test is negative. I dont believe it
    is implantation as I am not pregnant. Could it be withdrawal bleeding or do I
    have an STD?
  - 'What''s best for a 1 year old, breast milk or bottle milk? '
  - I am 40, and I've had a breast lump in my right breast for about 4 years now.
    Could it be cancer?
- source_sentence: My bm aren't solid but not quite loose. Looks more like for lack
    of better word "shredded" the why is this?
  sentences:
  - I have been taking treatment for anxiety and depression. I was given a new medication
    and have experienced heart flutters, can this medication cause it?
  - You might think I'm a bit paranoid but could you please help me with the five
    most common emergency surgeries in american teen girls?
  - What causes stringy and shredded stools?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: all mqp test
      type: all-mqp-test
    metrics:
    - type: cosine_accuracy
      value: 0.8786885245901639
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7678120136260986
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.8796147672552167
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7446306943893433
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.8810289389067524
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8782051282051282
      name: Cosine Recall
    - type: cosine_ap
      value: 0.9474266832530879
      name: Cosine Ap
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mpnet-base-all-mqp-binary")
# Run inference
sentences = [
    'My bm aren\'t solid but not quite loose. Looks more like for lack of better word "shredded" the why is this?',
    'What causes stringy and shredded stools?',
    'I have been taking treatment for anxiety and depression. I was given a new medication and have experienced heart flutters, can this medication cause it?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Dataset: `all-mqp-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.8787     |
| cosine_accuracy_threshold | 0.7678     |
| cosine_f1                 | 0.8796     |
| cosine_f1_threshold       | 0.7446     |
| cosine_precision          | 0.881      |
| cosine_recall             | 0.8782     |
| **cosine_ap**             | **0.9474** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,437 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                             | text2                                                                              | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                             | int                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 26.53 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 28.18 tokens</li><li>max: 119 tokens</li></ul> | <ul><li>0: ~49.00%</li><li>1: ~51.00%</li></ul> |
* Samples:
  | text1                                                                                                                                | text2                                                                                                                         | label          |
  |:-------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>I discovered I get this weakness in my hand whenever I try to snap my fingers, slight pain runs across elbow and wrist?</code> | <code>When I try to snap my fingers there is weakness and pain across elbow and wrist? May I know what are the causes?</code> | <code>1</code> |
  | <code>If a mother has celiac should the daughter be tested?</code>                                                                   | <code>What is Celiac disease?</code>                                                                                          | <code>0</code> |
  | <code>Hi im 18 and I would like to know what I would use or take to get taller?</code>                                               | <code>Can growth hormone taken in minimal quantities increase height after 21 years in a male?</code>                         | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 610 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 610 samples:
  |         | text1                                                                             | text2                                                                             | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.56 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.88 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>0: ~48.85%</li><li>1: ~51.15%</li></ul> |
* Samples:
  | text1                                                                                                                                                      | text2                                                                                                                                                                                                                                   | label          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Okay so i'm on bc and I have had sex (it hurts) i'm bleeding brown and my vagina hurts almost itchy but it hurts?</code>                             | <code>I noticed a brown discharge and itching in my vaginal area to the point that it hurts. I am also on birth control and have sexual intercourse. What do you think is causing this?</code>                                          | <code>1</code> |
  | <code>I've had body aches, blocked stuffy nose, headaches, pressure in my face and throat tightness and it feels dry for 6 months is it a bad cold?</code> | <code>For the last 6 months, I've noticed symptoms like body aches, stuffy nose, headaches, pressure sensation in the face, throat tightness and feels dry. Can a cold last this long or should I be looking for something else?</code> | <code>1</code> |
  | <code>Is there any way to stop my period for a little while without a prescription?</code>                                                                 | <code>Are there any natural ways to stop my period without having to visit a local doctor?</code>                                                                                                                                       | <code>1</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `push_to_hub`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | all-mqp-test_cosine_ap |
|:------:|:----:|:-------------:|:---------------:|:----------------------:|
| 0.6536 | 100  | 0.0137        | 0.0135          | -                      |
| 1.0    | 153  | -             | -               | 0.9474                 |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->