ayaat commited on
Commit
91f2e8d
·
verified ·
1 Parent(s): 2f89802

mpnet-base-all-mqp-binary

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2437
8
+ - loss:CoSENTLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: I am having troubles and confusing moments with my body and I am
12
+ scared I may be pregnant by my research online and I really want some advice ?
13
+ sentences:
14
+ - 'Does Acyclovir cause ulcers when it is prescribed for genital herpes? '
15
+ - The confusing symptoms and online research points towards me being pregnant. Can
16
+ I get a professional advice?
17
+ - Do bariatric surgeries like gastric sleeve or Roux-en-Y surgery actually work
18
+ in the long term?
19
+ - source_sentence: It started with a headache the next day came dizziness when I move
20
+ my eyes, soreness behind my eyes, 102 fever, slight cough. Help!
21
+ sentences:
22
+ - I had a headache and this was followe by dizziness on moving the eyes, soreness
23
+ behind my eyes, high grade fever (102) and slight cough. Can you help me?
24
+ - What are the signs of ovulation?
25
+ - Why does it hurt when I shave my face? Can I do something else for it besides
26
+ shaving in the direction of the hair growth?
27
+ - source_sentence: How low can hemoglobin go before you need a transfusion?
28
+ sentences:
29
+ - 'I heard banana is rich in potassium. I am having diarrhea and can I take banana. '
30
+ - At what Hemoglobin levels, is a blood transfusion recommended?
31
+ - What are the symptoms of eye cancer?
32
+ - source_sentence: I'm 5 weeks pregnant and this morning had brownish spotting, my
33
+ gyn said this is normal and ita was due to implantation, should I be worried?
34
+ sentences:
35
+ - I have abdominal cramps, spotting, nause and fatigue. I am on oral contraceptive
36
+ pills. I take them regularly. My pregnancy test is negative. I dont believe it
37
+ is implantation as I am not pregnant. Could it be withdrawal bleeding or do I
38
+ have an STD?
39
+ - 'What''s best for a 1 year old, breast milk or bottle milk? '
40
+ - I am 40, and I've had a breast lump in my right breast for about 4 years now.
41
+ Could it be cancer?
42
+ - source_sentence: My bm aren't solid but not quite loose. Looks more like for lack
43
+ of better word "shredded" the why is this?
44
+ sentences:
45
+ - I have been taking treatment for anxiety and depression. I was given a new medication
46
+ and have experienced heart flutters, can this medication cause it?
47
+ - You might think I'm a bit paranoid but could you please help me with the five
48
+ most common emergency surgeries in american teen girls?
49
+ - What causes stringy and shredded stools?
50
+ pipeline_tag: sentence-similarity
51
+ library_name: sentence-transformers
52
+ ---
53
+
54
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
55
+
56
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
57
+
58
+ ## Model Details
59
+
60
+ ### Model Description
61
+ - **Model Type:** Sentence Transformer
62
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
63
+ - **Maximum Sequence Length:** 384 tokens
64
+ - **Output Dimensionality:** 768 dimensions
65
+ - **Similarity Function:** Cosine Similarity
66
+ <!-- - **Training Dataset:** Unknown -->
67
+ <!-- - **Language:** Unknown -->
68
+ <!-- - **License:** Unknown -->
69
+
70
+ ### Model Sources
71
+
72
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
73
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
74
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
75
+
76
+ ### Full Model Architecture
77
+
78
+ ```
79
+ SentenceTransformer(
80
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
81
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
82
+ (2): Normalize()
83
+ )
84
+ ```
85
+
86
+ ## Usage
87
+
88
+ ### Direct Usage (Sentence Transformers)
89
+
90
+ First install the Sentence Transformers library:
91
+
92
+ ```bash
93
+ pip install -U sentence-transformers
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+ ```python
98
+ from sentence_transformers import SentenceTransformer
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SentenceTransformer("mpnet-base-all-mqp-binary")
102
+ # Run inference
103
+ sentences = [
104
+ 'My bm aren\'t solid but not quite loose. Looks more like for lack of better word "shredded" the why is this?',
105
+ 'What causes stringy and shredded stools?',
106
+ 'I have been taking treatment for anxiety and depression. I was given a new medication and have experienced heart flutters, can this medication cause it?',
107
+ ]
108
+ embeddings = model.encode(sentences)
109
+ print(embeddings.shape)
110
+ # [3, 768]
111
+
112
+ # Get the similarity scores for the embeddings
113
+ similarities = model.similarity(embeddings, embeddings)
114
+ print(similarities.shape)
115
+ # [3, 3]
116
+ ```
117
+
118
+ <!--
119
+ ### Direct Usage (Transformers)
120
+
121
+ <details><summary>Click to see the direct usage in Transformers</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Downstream Usage (Sentence Transformers)
128
+
129
+ You can finetune this model on your own dataset.
130
+
131
+ <details><summary>Click to expand</summary>
132
+
133
+ </details>
134
+ -->
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ <!--
143
+ ## Bias, Risks and Limitations
144
+
145
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
146
+ -->
147
+
148
+ <!--
149
+ ### Recommendations
150
+
151
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
152
+ -->
153
+
154
+ ## Training Details
155
+
156
+ ### Training Dataset
157
+
158
+ #### Unnamed Dataset
159
+
160
+
161
+ * Size: 2,437 training samples
162
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
163
+ * Approximate statistics based on the first 1000 samples:
164
+ | | text1 | text2 | label |
165
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
166
+ | type | string | string | int |
167
+ | details | <ul><li>min: 7 tokens</li><li>mean: 26.53 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 28.18 tokens</li><li>max: 119 tokens</li></ul> | <ul><li>0: ~49.00%</li><li>1: ~51.00%</li></ul> |
168
+ * Samples:
169
+ | text1 | text2 | label |
170
+ |:-------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------|
171
+ | <code>I discovered I get this weakness in my hand whenever I try to snap my fingers, slight pain runs across elbow and wrist?</code> | <code>When I try to snap my fingers there is weakness and pain across elbow and wrist? May I know what are the causes?</code> | <code>1</code> |
172
+ | <code>If a mother has celiac should the daughter be tested?</code> | <code>What is Celiac disease?</code> | <code>0</code> |
173
+ | <code>Hi im 18 and I would like to know what I would use or take to get taller?</code> | <code>Can growth hormone taken in minimal quantities increase height after 21 years in a male?</code> | <code>0</code> |
174
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
175
+ ```json
176
+ {
177
+ "scale": 20.0,
178
+ "similarity_fct": "pairwise_cos_sim"
179
+ }
180
+ ```
181
+
182
+ ### Evaluation Dataset
183
+
184
+ #### Unnamed Dataset
185
+
186
+
187
+ * Size: 610 evaluation samples
188
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
189
+ * Approximate statistics based on the first 610 samples:
190
+ | | text1 | text2 | label |
191
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
192
+ | type | string | string | int |
193
+ | details | <ul><li>min: 8 tokens</li><li>mean: 27.56 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.88 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>0: ~48.85%</li><li>1: ~51.15%</li></ul> |
194
+ * Samples:
195
+ | text1 | text2 | label |
196
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
197
+ | <code>Okay so i'm on bc and I have had sex (it hurts) i'm bleeding brown and my vagina hurts almost itchy but it hurts?</code> | <code>I noticed a brown discharge and itching in my vaginal area to the point that it hurts. I am also on birth control and have sexual intercourse. What do you think is causing this?</code> | <code>1</code> |
198
+ | <code>I've had body aches, blocked stuffy nose, headaches, pressure in my face and throat tightness and it feels dry for 6 months is it a bad cold?</code> | <code>For the last 6 months, I've noticed symptoms like body aches, stuffy nose, headaches, pressure sensation in the face, throat tightness and feels dry. Can a cold last this long or should I be looking for something else?</code> | <code>1</code> |
199
+ | <code>Is there any way to stop my period for a little while without a prescription?</code> | <code>Are there any natural ways to stop my period without having to visit a local doctor?</code> | <code>1</code> |
200
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
201
+ ```json
202
+ {
203
+ "scale": 20.0,
204
+ "similarity_fct": "pairwise_cos_sim"
205
+ }
206
+ ```
207
+
208
+ ### Training Hyperparameters
209
+ #### Non-Default Hyperparameters
210
+
211
+ - `eval_strategy`: steps
212
+ - `per_device_train_batch_size`: 16
213
+ - `per_device_eval_batch_size`: 16
214
+ - `num_train_epochs`: 10
215
+ - `warmup_ratio`: 0.1
216
+ - `fp16`: True
217
+ - `batch_sampler`: no_duplicates
218
+
219
+ #### All Hyperparameters
220
+ <details><summary>Click to expand</summary>
221
+
222
+ - `overwrite_output_dir`: False
223
+ - `do_predict`: False
224
+ - `eval_strategy`: steps
225
+ - `prediction_loss_only`: True
226
+ - `per_device_train_batch_size`: 16
227
+ - `per_device_eval_batch_size`: 16
228
+ - `per_gpu_train_batch_size`: None
229
+ - `per_gpu_eval_batch_size`: None
230
+ - `gradient_accumulation_steps`: 1
231
+ - `eval_accumulation_steps`: None
232
+ - `torch_empty_cache_steps`: None
233
+ - `learning_rate`: 5e-05
234
+ - `weight_decay`: 0.0
235
+ - `adam_beta1`: 0.9
236
+ - `adam_beta2`: 0.999
237
+ - `adam_epsilon`: 1e-08
238
+ - `max_grad_norm`: 1.0
239
+ - `num_train_epochs`: 10
240
+ - `max_steps`: -1
241
+ - `lr_scheduler_type`: linear
242
+ - `lr_scheduler_kwargs`: {}
243
+ - `warmup_ratio`: 0.1
244
+ - `warmup_steps`: 0
245
+ - `log_level`: passive
246
+ - `log_level_replica`: warning
247
+ - `log_on_each_node`: True
248
+ - `logging_nan_inf_filter`: True
249
+ - `save_safetensors`: True
250
+ - `save_on_each_node`: False
251
+ - `save_only_model`: False
252
+ - `restore_callback_states_from_checkpoint`: False
253
+ - `no_cuda`: False
254
+ - `use_cpu`: False
255
+ - `use_mps_device`: False
256
+ - `seed`: 42
257
+ - `data_seed`: None
258
+ - `jit_mode_eval`: False
259
+ - `use_ipex`: False
260
+ - `bf16`: False
261
+ - `fp16`: True
262
+ - `fp16_opt_level`: O1
263
+ - `half_precision_backend`: auto
264
+ - `bf16_full_eval`: False
265
+ - `fp16_full_eval`: False
266
+ - `tf32`: None
267
+ - `local_rank`: 0
268
+ - `ddp_backend`: None
269
+ - `tpu_num_cores`: None
270
+ - `tpu_metrics_debug`: False
271
+ - `debug`: []
272
+ - `dataloader_drop_last`: False
273
+ - `dataloader_num_workers`: 0
274
+ - `dataloader_prefetch_factor`: None
275
+ - `past_index`: -1
276
+ - `disable_tqdm`: False
277
+ - `remove_unused_columns`: True
278
+ - `label_names`: None
279
+ - `load_best_model_at_end`: False
280
+ - `ignore_data_skip`: False
281
+ - `fsdp`: []
282
+ - `fsdp_min_num_params`: 0
283
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
284
+ - `fsdp_transformer_layer_cls_to_wrap`: None
285
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
286
+ - `deepspeed`: None
287
+ - `label_smoothing_factor`: 0.0
288
+ - `optim`: adamw_torch
289
+ - `optim_args`: None
290
+ - `adafactor`: False
291
+ - `group_by_length`: False
292
+ - `length_column_name`: length
293
+ - `ddp_find_unused_parameters`: None
294
+ - `ddp_bucket_cap_mb`: None
295
+ - `ddp_broadcast_buffers`: False
296
+ - `dataloader_pin_memory`: True
297
+ - `dataloader_persistent_workers`: False
298
+ - `skip_memory_metrics`: True
299
+ - `use_legacy_prediction_loop`: False
300
+ - `push_to_hub`: False
301
+ - `resume_from_checkpoint`: None
302
+ - `hub_model_id`: None
303
+ - `hub_strategy`: every_save
304
+ - `hub_private_repo`: None
305
+ - `hub_always_push`: False
306
+ - `gradient_checkpointing`: False
307
+ - `gradient_checkpointing_kwargs`: None
308
+ - `include_inputs_for_metrics`: False
309
+ - `include_for_metrics`: []
310
+ - `eval_do_concat_batches`: True
311
+ - `fp16_backend`: auto
312
+ - `push_to_hub_model_id`: None
313
+ - `push_to_hub_organization`: None
314
+ - `mp_parameters`:
315
+ - `auto_find_batch_size`: False
316
+ - `full_determinism`: False
317
+ - `torchdynamo`: None
318
+ - `ray_scope`: last
319
+ - `ddp_timeout`: 1800
320
+ - `torch_compile`: False
321
+ - `torch_compile_backend`: None
322
+ - `torch_compile_mode`: None
323
+ - `dispatch_batches`: None
324
+ - `split_batches`: None
325
+ - `include_tokens_per_second`: False
326
+ - `include_num_input_tokens_seen`: False
327
+ - `neftune_noise_alpha`: None
328
+ - `optim_target_modules`: None
329
+ - `batch_eval_metrics`: False
330
+ - `eval_on_start`: False
331
+ - `use_liger_kernel`: False
332
+ - `eval_use_gather_object`: False
333
+ - `average_tokens_across_devices`: False
334
+ - `prompts`: None
335
+ - `batch_sampler`: no_duplicates
336
+ - `multi_dataset_batch_sampler`: proportional
337
+
338
+ </details>
339
+
340
+ ### Training Logs
341
+ | Epoch | Step | Training Loss | Validation Loss |
342
+ |:------:|:----:|:-------------:|:---------------:|
343
+ | 0.6536 | 100 | 2.8785 | 2.6264 |
344
+ | 1.3072 | 200 | 2.4602 | 2.8035 |
345
+ | 1.9608 | 300 | 0.9681 | 3.4420 |
346
+ | 2.6144 | 400 | 0.4578 | 4.1960 |
347
+ | 3.2680 | 500 | 0.1123 | 4.3254 |
348
+ | 3.9216 | 600 | 0.0155 | 4.8884 |
349
+ | 4.5752 | 700 | 0.0026 | 5.0455 |
350
+ | 5.2288 | 800 | 0.0022 | 5.0907 |
351
+ | 5.8824 | 900 | 0.0003 | 5.0952 |
352
+ | 6.5359 | 1000 | 0.0001 | 5.1793 |
353
+ | 7.1895 | 1100 | 0.0001 | 5.2393 |
354
+ | 7.8431 | 1200 | 0.0001 | 5.2619 |
355
+ | 8.4967 | 1300 | 0.0001 | 5.2712 |
356
+ | 9.1503 | 1400 | 0.0001 | 5.2953 |
357
+ | 9.8039 | 1500 | 0.0001 | 5.3024 |
358
+
359
+
360
+ ### Framework Versions
361
+ - Python: 3.11.11
362
+ - Sentence Transformers: 3.3.1
363
+ - Transformers: 4.47.1
364
+ - PyTorch: 2.6.0+cu124
365
+ - Accelerate: 1.2.1
366
+ - Datasets: 3.2.0
367
+ - Tokenizers: 0.21.0
368
+
369
+ ## Citation
370
+
371
+ ### BibTeX
372
+
373
+ #### Sentence Transformers
374
+ ```bibtex
375
+ @inproceedings{reimers-2019-sentence-bert,
376
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
377
+ author = "Reimers, Nils and Gurevych, Iryna",
378
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
379
+ month = "11",
380
+ year = "2019",
381
+ publisher = "Association for Computational Linguistics",
382
+ url = "https://arxiv.org/abs/1908.10084",
383
+ }
384
+ ```
385
+
386
+ #### CoSENTLoss
387
+ ```bibtex
388
+ @online{kexuefm-8847,
389
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
390
+ author={Su Jianlin},
391
+ year={2022},
392
+ month={Jan},
393
+ url={https://kexue.fm/archives/8847},
394
+ }
395
+ ```
396
+
397
+ <!--
398
+ ## Glossary
399
+
400
+ *Clearly define terms in order to be accessible across audiences.*
401
+ -->
402
+
403
+ <!--
404
+ ## Model Card Authors
405
+
406
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
407
+ -->
408
+
409
+ <!--
410
+ ## Model Card Contact
411
+
412
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
413
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:452f253684a6847a5e50c2733b3e3b9a72797f0cbc70b79c9d330e1768623e64
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Feb06_07-47-26_90c6fdffb148/events.out.tfevents.1738828333.90c6fdffb148.277.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3f022b5b0c5fd7ff5230dab1bfa69dcc0d3725886cbe50c9250e4aecf83a852
3
+ size 12004
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07542f0b6a3e153f0a8a3f66a362727b285a2c81b7dd298986e0d0257589f0c9
3
+ size 5624
vocab.txt ADDED
The diff for this file is too large to render. See raw diff