|
--- |
|
base_model: |
|
- apple/DiffuCoder-7B-Base |
|
tags: |
|
- code |
|
- text-diffusion-model |
|
- diffusion large language model |
|
license: unknown |
|
--- |
|
### DiffuCoder-7B-Instruct |
|
|
|
The DiffuCoder-7B-Instruct model builds on the DiffuCoder-7B-Base checkpoint with instruction-tuning to better follow code-related prompts. |
|
|
|
- Training recipe: with a newly introduced pad token, we train this model with fixed length conditionally on [OpenCoder-SFT](https://huggingface.co/datasets/OpenCoder-LLM/opc-sft-stage2) data for 5 epochs. |
|
|
|
- Benchmarks: Demonstrates stronger instruction-following capabilities than the Base model. |
|
|
|
|
|
#### More details and usage examples: |
|
|
|
- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639) |
|
|
|
- GitHub: https://github.com/apple/ml-diffucoder |
|
|
|
``` |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model_path = "apple/DiffuCoder-7B-Instruct" |
|
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
model = model.to("cuda").eval() |
|
|
|
query = "Write a function to find the shared elements from the given two lists." |
|
prompt = f"""<|im_start|>system |
|
You are a helpful assistant.<|im_end|> |
|
<|im_start|>user |
|
{query.strip()} |
|
<|im_end|> |
|
<|im_start|>assistant |
|
""" ## following the template of qwen; you can also use apply_chat_template function |
|
|
|
TOKEN_PER_STEP = 1 # diffusion timesteps * TOKEN_PER_STEP = total new tokens |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs.input_ids.to(device="cuda") |
|
attention_mask = inputs.attention_mask.to(device="cuda") |
|
|
|
output = model.diffusion_generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_new_tokens=256, |
|
output_history=True, |
|
return_dict_in_generate=True, |
|
steps=256//TOKEN_PER_STEP, |
|
temperature=0.3, |
|
top_p=0.95, |
|
alg="entropy", |
|
alg_temp=0., |
|
) |
|
generations = [ |
|
tokenizer.decode(g[len(p) :].tolist()) |
|
for p, g in zip(input_ids, output.sequences) |
|
] |
|
|
|
print(generations[0].split('<|dlm_pad|>')[0]) |
|
``` |
|
|
|
#### Acknowledgement |
|
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils. |
|
|