File size: 2,291 Bytes
28efb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b61c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28efb4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model:
- apple/DiffuCoder-7B-Base
tags:
- code
- text-diffusion-model
- diffusion large language model
license: unknown
---
### DiffuCoder-7B-Instruct 

The DiffuCoder-7B-Instruct model builds on the DiffuCoder-7B-Base checkpoint with instruction-tuning to better follow code-related prompts.

- Training recipe: with a newly introduced pad token, we train this model with fixed length conditionally on [OpenCoder-SFT](https://huggingface.co/datasets/OpenCoder-LLM/opc-sft-stage2) data for 5 epochs.

- Benchmarks: Demonstrates stronger instruction-following capabilities than the Base model.


#### More details and usage examples:

- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639)

- GitHub: https://github.com/apple/ml-diffucoder

```
import torch
from transformers import AutoModel, AutoTokenizer

model_path = "apple/DiffuCoder-7B-Instruct"
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to("cuda").eval()

query = "Write a function to find the shared elements from the given two lists."
prompt = f"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{query.strip()}
<|im_end|>
<|im_start|>assistant
""" ## following the template of qwen; you can also use apply_chat_template function

TOKEN_PER_STEP = 1 # diffusion timesteps * TOKEN_PER_STEP = total new tokens

inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device="cuda")
attention_mask = inputs.attention_mask.to(device="cuda")

output = model.diffusion_generate(
    input_ids,
    attention_mask=attention_mask,
    max_new_tokens=256,
    output_history=True,
    return_dict_in_generate=True,
    steps=256//TOKEN_PER_STEP,
    temperature=0.3,
    top_p=0.95,
    alg="entropy",
    alg_temp=0.,
)
generations = [
    tokenizer.decode(g[len(p) :].tolist())
    for p, g in zip(input_ids, output.sequences)
]

print(generations[0].split('<|dlm_pad|>')[0])
```

#### Acknowledgement
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.