|
--- |
|
license: mit |
|
base_model: indobenchmark/indobart |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: bdc2024-indobart-gpt-aug |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bdc2024-indobart-gpt-aug |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobart](https://huggingface.co/indobenchmark/indobart) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4480 |
|
- Accuracy: 0.9273 |
|
- Balanced Accuracy: 0.8560 |
|
- Precision: 0.9296 |
|
- Recall: 0.9273 |
|
- F1: 0.9205 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 483 | 0.7053 | 0.7820 | 0.5122 | 0.7407 | 0.7820 | 0.7499 | |
|
| 0.8051 | 2.0 | 966 | 0.5075 | 0.8757 | 0.6954 | 0.8779 | 0.8757 | 0.8622 | |
|
| 0.4597 | 3.0 | 1449 | 0.4041 | 0.9197 | 0.8361 | 0.9198 | 0.9197 | 0.9122 | |
|
| 0.2475 | 4.0 | 1932 | 0.4224 | 0.9254 | 0.8626 | 0.9255 | 0.9254 | 0.9202 | |
|
| 0.1303 | 5.0 | 2415 | 0.4438 | 0.9273 | 0.8559 | 0.9295 | 0.9273 | 0.9214 | |
|
| 0.0771 | 6.0 | 2898 | 0.4480 | 0.9273 | 0.8560 | 0.9296 | 0.9273 | 0.9205 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.13.3 |
|
|