File size: 2,192 Bytes
7fa5162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
base_model: indobenchmark/indobart
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bdc2024-indobart-gpt-aug
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bdc2024-indobart-gpt-aug

This model is a fine-tuned version of [indobenchmark/indobart](https://huggingface.co/indobenchmark/indobart) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4480
- Accuracy: 0.9273
- Balanced Accuracy: 0.8560
- Precision: 0.9296
- Recall: 0.9273
- F1: 0.9205

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:|
| No log        | 1.0   | 483  | 0.7053          | 0.7820   | 0.5122            | 0.7407    | 0.7820 | 0.7499 |
| 0.8051        | 2.0   | 966  | 0.5075          | 0.8757   | 0.6954            | 0.8779    | 0.8757 | 0.8622 |
| 0.4597        | 3.0   | 1449 | 0.4041          | 0.9197   | 0.8361            | 0.9198    | 0.9197 | 0.9122 |
| 0.2475        | 4.0   | 1932 | 0.4224          | 0.9254   | 0.8626            | 0.9255    | 0.9254 | 0.9202 |
| 0.1303        | 5.0   | 2415 | 0.4438          | 0.9273   | 0.8559            | 0.9295    | 0.9273 | 0.9214 |
| 0.0771        | 6.0   | 2898 | 0.4480          | 0.9273   | 0.8560            | 0.9296    | 0.9273 | 0.9205 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.13.3