metadata
language:
- multilingual
- ar
- zh
- cs
- da
- nl
- en
- fi
- fr
- de
- he
- hu
- it
- ja
- ko
- 'no'
- pl
- pt
- ru
- es
- sv
- th
- tr
- uk
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- code
- mlx
- mlx-my-repo
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
base_model: microsoft/Phi-4-mini-instruct
alexgusevski/Phi-4-mini-instruct-mlx-fp16
The Model alexgusevski/Phi-4-mini-instruct-mlx-fp16 was converted to MLX format from microsoft/Phi-4-mini-instruct using mlx-lm version 0.21.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("alexgusevski/Phi-4-mini-instruct-mlx-fp16")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)