File size: 1,328 Bytes
874638f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language:
- multilingual
- ar
- zh
- cs
- da
- nl
- en
- fi
- fr
- de
- he
- hu
- it
- ja
- ko
- 'no'
- pl
- pt
- ru
- es
- sv
- th
- tr
- uk
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- code
- mlx
- mlx-my-repo
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
base_model: microsoft/Phi-4-mini-instruct
---
# alexgusevski/Phi-4-mini-instruct-mlx-fp16
The Model [alexgusevski/Phi-4-mini-instruct-mlx-fp16](https://huggingface.co/alexgusevski/Phi-4-mini-instruct-mlx-fp16) was converted to MLX format from [microsoft/Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) using mlx-lm version **0.21.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("alexgusevski/Phi-4-mini-instruct-mlx-fp16")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|