abdulmunimjemal's picture
Add new SentenceTransformer model
27cc66a verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:40000
  - loss:TripletLoss
base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
widget:
  - source_sentence: ልጆች በመዝናኛ መናፈሻ ውስጥ ፊኛ ይጋልባሉ።
    sentences:
      - በጉዞ ላይ ያሉ ሰዎች
      - ፓርኩ ባዶ ነበር
      - መነጽር ያለባት ሴት ማይክሮፎን ውስጥ እየዘፈነች.
  - source_sentence: በላዩ ላይ ካለው ህንፃ አጠገብ ያሉት ሦስት ሰዎች ቆመው ነበር.
    sentences:
      - አንዳንድ ልጆች በመዝናኛ መናፈሻ ቦታ ፊኛ ግልቢያ ላይ ናቸው።
      - ሰዎች ውጭ ናቸው.
      - ሰዎች ቦውሊንግ ናቸው።
  - source_sentence: ሰው እየሮጠ ነው።
    sentences:
      - እግሩ ላይ ጫማ ሳይኖረው የሚሮጥ ሰው።
      - ፎቶ ለመነሳት በትልቅ ድንጋይ ላይ የተቀመጠ ሰው።
      - ጎዳና ላይ የሚሮጥ ወጣት።
  - source_sentence: ሐምራዊ ልብስ ከነጭ ሐምራዊ ልብስ ጋር አንድ ሰው እጁን በሌላ ሰው በግንባታው ላይ ከፍ አደረገ.
    sentences:
      - ነጭ ልብስ የለበሰ ሰው እጁን በሌላው ሰው ግንባሩ ላይ አደረገ።
      - >-
        ባለብዙ ልብስ እና ቀይ ብርጭቆ ያላቸው ወጣት ሴት አንድ ወጣት ሴት እየተመለከተች እያለ የተወሰነ የእጅ ቦታን
        ያስተካክላል.
      - አንድ ቄስ በእምነቱ ላይ ብቻውን እያሰላሰለ ነው።
  - source_sentence: ሰዎች ተቀምጠዋል
    sentences:
      - ሁለት ሰዎች አንድ ልብ በምድር ውስጥ ከተቀመጠባቸው ጥቂት እግሮች ጥቂት መሬት ተቀምጠዋል.
      - ሰዎች እየተራመዱ ሲሆን አንድ ወንድ ጭንቅላቱን ወደ ግራ ዞሯል.
      - አንድ ሰው በበረዶ መንሸራተቻ መናፈሻ ውስጥ ካለው መወጣጫ ላይ ብስክሌቱን እየዘለለ ነው።
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-xlm-r-multilingual-v1
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: amharic xlmr nli dev
          type: amharic-xlmr-nli-dev
        metrics:
          - type: cosine_accuracy
            value: 0.815
            name: Cosine Accuracy
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: amharic xlmr finetuned dev
          type: amharic-xlmr-finetuned-dev
        metrics:
          - type: cosine_accuracy
            value: 0.8575
            name: Cosine Accuracy

SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-xlm-r-multilingual-v1 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("abdulmunimjemal/amharic-xlmr-finetuned")
# Run inference
sentences = [
    'ሰዎች ተቀምጠዋል',
    'ሁለት ሰዎች አንድ ልብ በምድር ውስጥ ከተቀመጠባቸው ጥቂት እግሮች ጥቂት መሬት ተቀምጠዋል.',
    'ሰዎች እየተራመዱ ሲሆን አንድ ወንድ ጭንቅላቱን ወደ ግራ ዞሯል.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

  • Datasets: amharic-xlmr-nli-dev and amharic-xlmr-finetuned-dev
  • Evaluated with TripletEvaluator
Metric amharic-xlmr-nli-dev amharic-xlmr-finetuned-dev
cosine_accuracy 0.815 0.8575

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 40,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 6.5 tokens
    • max: 7 tokens
    • min: 10 tokens
    • mean: 24.81 tokens
    • max: 63 tokens
    • min: 18 tokens
    • mean: 26.34 tokens
    • max: 38 tokens
  • Samples:
    anchor positive negative
    ሰውየው ውጭ ነው. በቤቶች በተከበበችው የኪሳ ፓርክ ውስጥ ረዥም ፀጉር ያለው አንድ ሰው የመንሸራተቻ ሰሌዳ ነው. በወንድ ወንበር ላይ በወንድ ወንበር ላይ በመዝገቢያ ወረቀት ላይ በመዝጋት ላይ ይተኛል.
    ሰውየው ውጭ ነው። ረጅም ፀጉር ያለው ሰው በቤቶች በተከበበ የበረዶ መንሸራተቻ ፓርክ ውስጥ በስኬትቦርዲንግ ላይ ነው። በቀን ውስጥ አንድ ሰው በአንድ ክፍል ውስጥ የእጅ መቆንጠጫ ይሠራል.
    ሰውየው ውጭ ነው. በቤቶች በተከበበችው የኪሳ ፓርክ ውስጥ ረዥም ፀጉር ያለው አንድ ሰው የመንሸራተቻ ሰሌዳ ነው. ባለሙያ የለበሰ ሰው ከኮንሶል ፊት ለፊት ተቀምጧል።
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 5
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 40,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 13.91 tokens
    • max: 56 tokens
    • min: 5 tokens
    • mean: 20.28 tokens
    • max: 67 tokens
    • min: 5 tokens
    • mean: 21.07 tokens
    • max: 55 tokens
  • Samples:
    anchor positive negative
    ቡናማ ውሻ እየሮጠ እና እየተመለከተ ነው. ቡናማ ውሻ ወደ ሰማይ እያየ ይሮጣል. ከዛፉ ስር አንድ ቡናማ ውሻ ይዞ ይገኛል.
    በወርቃማ ቀለም ያለው ቀለም ያለው ቆዳዎች በሣር ውስጥ. ውሻ በሳሩ ውስጥ ነው. ውሻ ውጭ እየተጣደፈ ነው.
    ቡናማ ውሻ ከቤት ውጭ እየተጫወተ ነው. አንድ እንስሳ ውጭ ነው. ቡናማ ውሻ በኩሽና ውስጥ እየበላ ነው.
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • gradient_accumulation_steps: 2
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss amharic-xlmr-nli-dev_cosine_accuracy amharic-xlmr-finetuned-dev_cosine_accuracy
0 0 - - 0.6432 -
0.05 100 4.6673 4.3076 0.8492 -
0.1 200 4.1006 3.6344 0.821 -
0.15 300 3.843 4.1666 0.7652 -
0.2 400 4.0508 3.8094 0.815 -
0.25 500 3.9858 - - 0.8237
0.2 100 4.15 - - -
0.4 200 4.1811 - - -
0.6 300 4.3359 - - -
0.8 400 4.382 - - -
1.0 500 3.6309 3.5175 - 0.858
1.198 600 4.1283 - - -
1.3980 700 4.0372 - - -
1.5980 800 4.2113 - - -
1.798 900 4.059 - - -
1.998 1000 3.4594 3.5366 - 0.8565
2.196 1100 4.0407 - - -
2.396 1200 3.9531 - - -
2.596 1300 4.1321 - - -
2.7960 1400 3.9537 - - -
2.996 1500 3.4291 3.5476 - 0.8575

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}