metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:40000
- loss:TripletLoss
base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
widget:
- source_sentence: ልጆች በመዝናኛ መናፈሻ ውስጥ ፊኛ ይጋልባሉ።
sentences:
- በጉዞ ላይ ያሉ ሰዎች
- ፓርኩ ባዶ ነበር
- መነጽር ያለባት ሴት ማይክሮፎን ውስጥ እየዘፈነች.
- source_sentence: በላዩ ላይ ካለው ህንፃ አጠገብ ያሉት ሦስት ሰዎች ቆመው ነበር.
sentences:
- አንዳንድ ልጆች በመዝናኛ መናፈሻ ቦታ ፊኛ ግልቢያ ላይ ናቸው።
- ሰዎች ውጭ ናቸው.
- ሰዎች ቦውሊንግ ናቸው።
- source_sentence: ሰው እየሮጠ ነው።
sentences:
- እግሩ ላይ ጫማ ሳይኖረው የሚሮጥ ሰው።
- ፎቶ ለመነሳት በትልቅ ድንጋይ ላይ የተቀመጠ ሰው።
- ጎዳና ላይ የሚሮጥ ወጣት።
- source_sentence: ሐምራዊ ልብስ ከነጭ ሐምራዊ ልብስ ጋር አንድ ሰው እጁን በሌላ ሰው በግንባታው ላይ ከፍ አደረገ.
sentences:
- ነጭ ልብስ የለበሰ ሰው እጁን በሌላው ሰው ግንባሩ ላይ አደረገ።
- >-
ባለብዙ ልብስ እና ቀይ ብርጭቆ ያላቸው ወጣት ሴት አንድ ወጣት ሴት እየተመለከተች እያለ የተወሰነ የእጅ ቦታን
ያስተካክላል.
- አንድ ቄስ በእምነቱ ላይ ብቻውን እያሰላሰለ ነው።
- source_sentence: ሰዎች ተቀምጠዋል
sentences:
- ሁለት ሰዎች አንድ ልብ በምድር ውስጥ ከተቀመጠባቸው ጥቂት እግሮች ጥቂት መሬት ተቀምጠዋል.
- ሰዎች እየተራመዱ ሲሆን አንድ ወንድ ጭንቅላቱን ወደ ግራ ዞሯል.
- አንድ ሰው በበረዶ መንሸራተቻ መናፈሻ ውስጥ ካለው መወጣጫ ላይ ብስክሌቱን እየዘለለ ነው።
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-xlm-r-multilingual-v1
results:
- task:
type: triplet
name: Triplet
dataset:
name: amharic xlmr nli dev
type: amharic-xlmr-nli-dev
metrics:
- type: cosine_accuracy
value: 0.815
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: amharic xlmr finetuned dev
type: amharic-xlmr-finetuned-dev
metrics:
- type: cosine_accuracy
value: 0.8575
name: Cosine Accuracy
SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-xlm-r-multilingual-v1 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("abdulmunimjemal/amharic-xlmr-finetuned")
# Run inference
sentences = [
'ሰዎች ተቀምጠዋል',
'ሁለት ሰዎች አንድ ልብ በምድር ውስጥ ከተቀመጠባቸው ጥቂት እግሮች ጥቂት መሬት ተቀምጠዋል.',
'ሰዎች እየተራመዱ ሲሆን አንድ ወንድ ጭንቅላቱን ወደ ግራ ዞሯል.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
amharic-xlmr-nli-dev
andamharic-xlmr-finetuned-dev
- Evaluated with
TripletEvaluator
Metric | amharic-xlmr-nli-dev | amharic-xlmr-finetuned-dev |
---|---|---|
cosine_accuracy | 0.815 | 0.8575 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 40,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 6.5 tokens
- max: 7 tokens
- min: 10 tokens
- mean: 24.81 tokens
- max: 63 tokens
- min: 18 tokens
- mean: 26.34 tokens
- max: 38 tokens
- Samples:
anchor positive negative ሰውየው ውጭ ነው.
በቤቶች በተከበበችው የኪሳ ፓርክ ውስጥ ረዥም ፀጉር ያለው አንድ ሰው የመንሸራተቻ ሰሌዳ ነው.
በወንድ ወንበር ላይ በወንድ ወንበር ላይ በመዝገቢያ ወረቀት ላይ በመዝጋት ላይ ይተኛል.
ሰውየው ውጭ ነው።
ረጅም ፀጉር ያለው ሰው በቤቶች በተከበበ የበረዶ መንሸራተቻ ፓርክ ውስጥ በስኬትቦርዲንግ ላይ ነው።
በቀን ውስጥ አንድ ሰው በአንድ ክፍል ውስጥ የእጅ መቆንጠጫ ይሠራል.
ሰውየው ውጭ ነው.
በቤቶች በተከበበችው የኪሳ ፓርክ ውስጥ ረዥም ፀጉር ያለው አንድ ሰው የመንሸራተቻ ሰሌዳ ነው.
ባለሙያ የለበሰ ሰው ከኮንሶል ፊት ለፊት ተቀምጧል።
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 5 }
Evaluation Dataset
csv
- Dataset: csv
- Size: 40,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 13.91 tokens
- max: 56 tokens
- min: 5 tokens
- mean: 20.28 tokens
- max: 67 tokens
- min: 5 tokens
- mean: 21.07 tokens
- max: 55 tokens
- Samples:
anchor positive negative ቡናማ ውሻ እየሮጠ እና እየተመለከተ ነው.
ቡናማ ውሻ ወደ ሰማይ እያየ ይሮጣል.
ከዛፉ ስር አንድ ቡናማ ውሻ ይዞ ይገኛል.
በወርቃማ ቀለም ያለው ቀለም ያለው ቆዳዎች በሣር ውስጥ.
ውሻ በሳሩ ውስጥ ነው.
ውሻ ውጭ እየተጣደፈ ነው.
ቡናማ ውሻ ከቤት ውጭ እየተጫወተ ነው.
አንድ እንስሳ ውጭ ነው.
ቡናማ ውሻ በኩሽና ውስጥ እየበላ ነው.
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32gradient_accumulation_steps
: 2learning_rate
: 1e-05weight_decay
: 0.01warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | amharic-xlmr-nli-dev_cosine_accuracy | amharic-xlmr-finetuned-dev_cosine_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6432 | - |
0.05 | 100 | 4.6673 | 4.3076 | 0.8492 | - |
0.1 | 200 | 4.1006 | 3.6344 | 0.821 | - |
0.15 | 300 | 3.843 | 4.1666 | 0.7652 | - |
0.2 | 400 | 4.0508 | 3.8094 | 0.815 | - |
0.25 | 500 | 3.9858 | - | - | 0.8237 |
0.2 | 100 | 4.15 | - | - | - |
0.4 | 200 | 4.1811 | - | - | - |
0.6 | 300 | 4.3359 | - | - | - |
0.8 | 400 | 4.382 | - | - | - |
1.0 | 500 | 3.6309 | 3.5175 | - | 0.858 |
1.198 | 600 | 4.1283 | - | - | - |
1.3980 | 700 | 4.0372 | - | - | - |
1.5980 | 800 | 4.2113 | - | - | - |
1.798 | 900 | 4.059 | - | - | - |
1.998 | 1000 | 3.4594 | 3.5366 | - | 0.8565 |
2.196 | 1100 | 4.0407 | - | - | - |
2.396 | 1200 | 3.9531 | - | - | - |
2.596 | 1300 | 4.1321 | - | - | - |
2.7960 | 1400 | 3.9537 | - | - | - |
2.996 | 1500 | 3.4291 | 3.5476 | - | 0.8575 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}