abdulmunimjemal commited on
Commit
27cc66a
·
verified ·
1 Parent(s): 447f9da

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:40000
8
+ - loss:TripletLoss
9
+ base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
10
+ widget:
11
+ - source_sentence: ልጆች በመዝናኛ መናፈሻ ውስጥ ፊኛ ይጋልባሉ።
12
+ sentences:
13
+ - በጉዞ ላይ ያሉ ሰዎች
14
+ - ፓርኩ ባዶ ነበር
15
+ - መነጽር ያለባት ሴት ማይክሮፎን ውስጥ እየዘፈነች.
16
+ - source_sentence: በላዩ ላይ ካለው ህንፃ አጠገብ ያሉት ሦስት ሰዎች ቆመው ነበር.
17
+ sentences:
18
+ - አንዳንድ ልጆች በመዝናኛ መናፈሻ ቦታ ፊኛ ግልቢያ ላይ ናቸው።
19
+ - ሰዎች ውጭ ናቸው.
20
+ - ሰዎች ቦውሊንግ ናቸው።
21
+ - source_sentence: ሰው እየሮጠ ነው።
22
+ sentences:
23
+ - እግሩ ላይ ጫማ ሳይኖረው የሚሮጥ ሰው።
24
+ - ፎቶ ለመነሳት በትልቅ ድንጋይ ላይ የተቀመጠ ሰው።
25
+ - ጎዳና ላይ የሚሮጥ ወጣት።
26
+ - source_sentence: ሐምራዊ ልብስ ከነጭ ሐምራዊ ልብስ ጋር አንድ ሰው እጁን በሌላ ሰው በግንባታው ላይ ከፍ አደረገ.
27
+ sentences:
28
+ - ነጭ ልብስ የለበሰ ሰው እጁን በሌላው ሰው ግንባሩ ላይ አደረገ።
29
+ - ባለብዙ ልብስ እና ቀይ ብርጭቆ ያላቸው ወጣት ሴት አንድ ወጣት ሴት እየተመለከተች እያለ የተወሰነ የእጅ ቦታን ያስተካክላል.
30
+ - አንድ ቄስ በእምነቱ ላይ ብቻውን እያሰላሰለ ነው።
31
+ - source_sentence: ሰዎች ተቀምጠዋል
32
+ sentences:
33
+ - ሁለት ሰዎች አንድ ልብ በምድር ውስጥ ከተቀመጠባቸው ጥቂት እግሮች ጥቂት መሬት ተቀምጠዋል.
34
+ - ሰዎች እየተራመዱ ሲሆን አንድ ወንድ ጭንቅላቱን ወደ ግራ ዞሯል.
35
+ - አንድ ሰው በበረዶ መንሸራተቻ መናፈሻ ውስጥ ካለው መወጣጫ ላይ ብስክሌቱን እየዘለለ ነው።
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy
40
+ model-index:
41
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
42
+ results:
43
+ - task:
44
+ type: triplet
45
+ name: Triplet
46
+ dataset:
47
+ name: amharic xlmr nli dev
48
+ type: amharic-xlmr-nli-dev
49
+ metrics:
50
+ - type: cosine_accuracy
51
+ value: 0.815
52
+ name: Cosine Accuracy
53
+ - task:
54
+ type: triplet
55
+ name: Triplet
56
+ dataset:
57
+ name: amharic xlmr finetuned dev
58
+ type: amharic-xlmr-finetuned-dev
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.8575
62
+ name: Cosine Accuracy
63
+ ---
64
+
65
+ # SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
66
+
67
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
68
+
69
+ ## Model Details
70
+
71
+ ### Model Description
72
+ - **Model Type:** Sentence Transformer
73
+ - **Base model:** [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1) <!-- at revision 000e995b707ecea1b901208915ff3533783ec13d -->
74
+ - **Maximum Sequence Length:** 128 tokens
75
+ - **Output Dimensionality:** 768 dimensions
76
+ - **Similarity Function:** Cosine Similarity
77
+ - **Training Dataset:**
78
+ - csv
79
+ <!-- - **Language:** Unknown -->
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
85
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
86
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
87
+
88
+ ### Full Model Architecture
89
+
90
+ ```
91
+ SentenceTransformer(
92
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
93
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
94
+ )
95
+ ```
96
+
97
+ ## Usage
98
+
99
+ ### Direct Usage (Sentence Transformers)
100
+
101
+ First install the Sentence Transformers library:
102
+
103
+ ```bash
104
+ pip install -U sentence-transformers
105
+ ```
106
+
107
+ Then you can load this model and run inference.
108
+ ```python
109
+ from sentence_transformers import SentenceTransformer
110
+
111
+ # Download from the 🤗 Hub
112
+ model = SentenceTransformer("abdulmunimjemal/amharic-xlmr-finetuned")
113
+ # Run inference
114
+ sentences = [
115
+ 'ሰዎች ተቀምጠዋል',
116
+ 'ሁለት ሰዎች አንድ ልብ በምድር ውስጥ ከተቀመጠባቸው ጥቂት እግሮች ጥቂት መሬት ተቀምጠዋል.',
117
+ 'ሰዎች እየተራመዱ ሲሆን አንድ ወንድ ጭንቅላቱን ወደ ግራ ዞሯል.',
118
+ ]
119
+ embeddings = model.encode(sentences)
120
+ print(embeddings.shape)
121
+ # [3, 768]
122
+
123
+ # Get the similarity scores for the embeddings
124
+ similarities = model.similarity(embeddings, embeddings)
125
+ print(similarities.shape)
126
+ # [3, 3]
127
+ ```
128
+
129
+ <!--
130
+ ### Direct Usage (Transformers)
131
+
132
+ <details><summary>Click to see the direct usage in Transformers</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Downstream Usage (Sentence Transformers)
139
+
140
+ You can finetune this model on your own dataset.
141
+
142
+ <details><summary>Click to expand</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Out-of-Scope Use
149
+
150
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
151
+ -->
152
+
153
+ ## Evaluation
154
+
155
+ ### Metrics
156
+
157
+ #### Triplet
158
+
159
+ * Datasets: `amharic-xlmr-nli-dev` and `amharic-xlmr-finetuned-dev`
160
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
161
+
162
+ | Metric | amharic-xlmr-nli-dev | amharic-xlmr-finetuned-dev |
163
+ |:--------------------|:---------------------|:---------------------------|
164
+ | **cosine_accuracy** | **0.815** | **0.8575** |
165
+
166
+ <!--
167
+ ## Bias, Risks and Limitations
168
+
169
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
170
+ -->
171
+
172
+ <!--
173
+ ### Recommendations
174
+
175
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
176
+ -->
177
+
178
+ ## Training Details
179
+
180
+ ### Training Dataset
181
+
182
+ #### csv
183
+
184
+ * Dataset: csv
185
+ * Size: 40,000 training samples
186
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
187
+ * Approximate statistics based on the first 1000 samples:
188
+ | | anchor | positive | negative |
189
+ |:--------|:-------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
190
+ | type | string | string | string |
191
+ | details | <ul><li>min: 6 tokens</li><li>mean: 6.5 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.81 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 26.34 tokens</li><li>max: 38 tokens</li></ul> |
192
+ * Samples:
193
+ | anchor | positive | negative |
194
+ |:-------------------------|:----------------------------------------------------------------------------|:---------------------------------------------------------------------|
195
+ | <code>ሰውየው ውጭ ነው.</code> | <code>በቤቶች በተከበበችው የኪሳ ፓርክ ውስጥ ረዥም ፀጉር ያለው አንድ ሰው የመንሸራተቻ ሰሌዳ ነው.</code> | <code>በወንድ ወንበር ላይ በወንድ ወንበር ላይ በመዝገቢያ ወረቀት ላይ በመዝጋት ላይ ይተኛል.</code> |
196
+ | <code>ሰውየው ውጭ ነው።</code> | <code>ረጅም ፀጉር ያለው ሰው በቤቶች በተከበበ የበረዶ መንሸራተቻ ፓርክ ውስጥ በስኬትቦርዲንግ ላይ ነው።</code> | <code>በቀን ውስጥ አንድ ሰው በአንድ ክፍል ውስጥ የእጅ መቆንጠጫ ይሠራል.</code> |
197
+ | <code>ሰውየው ውጭ ነው.</code> | <code>በቤቶች በተከበበችው የኪሳ ፓርክ ውስጥ ረዥም ፀጉር ያለው አንድ ሰው የመንሸራተቻ ሰሌዳ ነው.</code> | <code>ባለሙያ የለበሰ ሰው ከኮንሶል ፊት ለፊት ተቀምጧል።</code> |
198
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
199
+ ```json
200
+ {
201
+ "distance_metric": "TripletDistanceMetric.COSINE",
202
+ "triplet_margin": 5
203
+ }
204
+ ```
205
+
206
+ ### Evaluation Dataset
207
+
208
+ #### csv
209
+
210
+ * Dataset: csv
211
+ * Size: 40,000 evaluation samples
212
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
213
+ * Approximate statistics based on the first 1000 samples:
214
+ | | anchor | positive | negative |
215
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
216
+ | type | string | string | string |
217
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.91 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.28 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 21.07 tokens</li><li>max: 55 tokens</li></ul> |
218
+ * Samples:
219
+ | anchor | positive | negative |
220
+ |:-------------------------------------------------|:-------------------------------------|:----------------------------------------|
221
+ | <code>ቡናማ ውሻ እየሮጠ እና እየተመለከተ ነው.</code> | <code>ቡናማ ውሻ ወደ ሰማይ እያየ ይሮጣል.</code> | <code>ከዛፉ ስር አንድ ቡናማ ውሻ ይዞ ይገኛል.</code> |
222
+ | <code>በወርቃማ ቀለም ያለው ቀለም ያለው ቆዳዎች በሣር ውስጥ.</code> | <code>ውሻ በሳሩ ውስጥ ነው.</code> | <code>ውሻ ውጭ እየተጣደፈ ነው.</code> |
223
+ | <code>ቡናማ ውሻ ከቤት ውጭ እየተጫወተ ነው.</code> | <code>አንድ እንስሳ ውጭ ነው.</code> | <code>ቡናማ ውሻ በኩሽና ውስጥ እየበላ ነው.</code> |
224
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
225
+ ```json
226
+ {
227
+ "distance_metric": "TripletDistanceMetric.COSINE",
228
+ "triplet_margin": 5
229
+ }
230
+ ```
231
+
232
+ ### Training Hyperparameters
233
+ #### Non-Default Hyperparameters
234
+
235
+ - `eval_strategy`: steps
236
+ - `per_device_train_batch_size`: 32
237
+ - `gradient_accumulation_steps`: 2
238
+ - `learning_rate`: 1e-05
239
+ - `weight_decay`: 0.01
240
+ - `warmup_ratio`: 0.1
241
+ - `batch_sampler`: no_duplicates
242
+
243
+ #### All Hyperparameters
244
+ <details><summary>Click to expand</summary>
245
+
246
+ - `overwrite_output_dir`: False
247
+ - `do_predict`: False
248
+ - `eval_strategy`: steps
249
+ - `prediction_loss_only`: True
250
+ - `per_device_train_batch_size`: 32
251
+ - `per_device_eval_batch_size`: 8
252
+ - `per_gpu_train_batch_size`: None
253
+ - `per_gpu_eval_batch_size`: None
254
+ - `gradient_accumulation_steps`: 2
255
+ - `eval_accumulation_steps`: None
256
+ - `torch_empty_cache_steps`: None
257
+ - `learning_rate`: 1e-05
258
+ - `weight_decay`: 0.01
259
+ - `adam_beta1`: 0.9
260
+ - `adam_beta2`: 0.999
261
+ - `adam_epsilon`: 1e-08
262
+ - `max_grad_norm`: 1.0
263
+ - `num_train_epochs`: 3
264
+ - `max_steps`: -1
265
+ - `lr_scheduler_type`: linear
266
+ - `lr_scheduler_kwargs`: {}
267
+ - `warmup_ratio`: 0.1
268
+ - `warmup_steps`: 0
269
+ - `log_level`: passive
270
+ - `log_level_replica`: warning
271
+ - `log_on_each_node`: True
272
+ - `logging_nan_inf_filter`: True
273
+ - `save_safetensors`: True
274
+ - `save_on_each_node`: False
275
+ - `save_only_model`: False
276
+ - `restore_callback_states_from_checkpoint`: False
277
+ - `no_cuda`: False
278
+ - `use_cpu`: False
279
+ - `use_mps_device`: False
280
+ - `seed`: 42
281
+ - `data_seed`: None
282
+ - `jit_mode_eval`: False
283
+ - `use_ipex`: False
284
+ - `bf16`: False
285
+ - `fp16`: False
286
+ - `fp16_opt_level`: O1
287
+ - `half_precision_backend`: auto
288
+ - `bf16_full_eval`: False
289
+ - `fp16_full_eval`: False
290
+ - `tf32`: None
291
+ - `local_rank`: 0
292
+ - `ddp_backend`: None
293
+ - `tpu_num_cores`: None
294
+ - `tpu_metrics_debug`: False
295
+ - `debug`: []
296
+ - `dataloader_drop_last`: False
297
+ - `dataloader_num_workers`: 0
298
+ - `dataloader_prefetch_factor`: None
299
+ - `past_index`: -1
300
+ - `disable_tqdm`: False
301
+ - `remove_unused_columns`: True
302
+ - `label_names`: None
303
+ - `load_best_model_at_end`: False
304
+ - `ignore_data_skip`: False
305
+ - `fsdp`: []
306
+ - `fsdp_min_num_params`: 0
307
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
308
+ - `fsdp_transformer_layer_cls_to_wrap`: None
309
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
310
+ - `deepspeed`: None
311
+ - `label_smoothing_factor`: 0.0
312
+ - `optim`: adamw_torch
313
+ - `optim_args`: None
314
+ - `adafactor`: False
315
+ - `group_by_length`: False
316
+ - `length_column_name`: length
317
+ - `ddp_find_unused_parameters`: None
318
+ - `ddp_bucket_cap_mb`: None
319
+ - `ddp_broadcast_buffers`: False
320
+ - `dataloader_pin_memory`: True
321
+ - `dataloader_persistent_workers`: False
322
+ - `skip_memory_metrics`: True
323
+ - `use_legacy_prediction_loop`: False
324
+ - `push_to_hub`: False
325
+ - `resume_from_checkpoint`: None
326
+ - `hub_model_id`: None
327
+ - `hub_strategy`: every_save
328
+ - `hub_private_repo`: None
329
+ - `hub_always_push`: False
330
+ - `gradient_checkpointing`: False
331
+ - `gradient_checkpointing_kwargs`: None
332
+ - `include_inputs_for_metrics`: False
333
+ - `include_for_metrics`: []
334
+ - `eval_do_concat_batches`: True
335
+ - `fp16_backend`: auto
336
+ - `push_to_hub_model_id`: None
337
+ - `push_to_hub_organization`: None
338
+ - `mp_parameters`:
339
+ - `auto_find_batch_size`: False
340
+ - `full_determinism`: False
341
+ - `torchdynamo`: None
342
+ - `ray_scope`: last
343
+ - `ddp_timeout`: 1800
344
+ - `torch_compile`: False
345
+ - `torch_compile_backend`: None
346
+ - `torch_compile_mode`: None
347
+ - `dispatch_batches`: None
348
+ - `split_batches`: None
349
+ - `include_tokens_per_second`: False
350
+ - `include_num_input_tokens_seen`: False
351
+ - `neftune_noise_alpha`: None
352
+ - `optim_target_modules`: None
353
+ - `batch_eval_metrics`: False
354
+ - `eval_on_start`: False
355
+ - `use_liger_kernel`: False
356
+ - `eval_use_gather_object`: False
357
+ - `average_tokens_across_devices`: False
358
+ - `prompts`: None
359
+ - `batch_sampler`: no_duplicates
360
+ - `multi_dataset_batch_sampler`: proportional
361
+
362
+ </details>
363
+
364
+ ### Training Logs
365
+ | Epoch | Step | Training Loss | Validation Loss | amharic-xlmr-nli-dev_cosine_accuracy | amharic-xlmr-finetuned-dev_cosine_accuracy |
366
+ |:------:|:----:|:-------------:|:---------------:|:------------------------------------:|:------------------------------------------:|
367
+ | 0 | 0 | - | - | 0.6432 | - |
368
+ | 0.05 | 100 | 4.6673 | 4.3076 | 0.8492 | - |
369
+ | 0.1 | 200 | 4.1006 | 3.6344 | 0.821 | - |
370
+ | 0.15 | 300 | 3.843 | 4.1666 | 0.7652 | - |
371
+ | 0.2 | 400 | 4.0508 | 3.8094 | 0.815 | - |
372
+ | 0.25 | 500 | 3.9858 | - | - | 0.8237 |
373
+ | 0.2 | 100 | 4.15 | - | - | - |
374
+ | 0.4 | 200 | 4.1811 | - | - | - |
375
+ | 0.6 | 300 | 4.3359 | - | - | - |
376
+ | 0.8 | 400 | 4.382 | - | - | - |
377
+ | 1.0 | 500 | 3.6309 | 3.5175 | - | 0.858 |
378
+ | 1.198 | 600 | 4.1283 | - | - | - |
379
+ | 1.3980 | 700 | 4.0372 | - | - | - |
380
+ | 1.5980 | 800 | 4.2113 | - | - | - |
381
+ | 1.798 | 900 | 4.059 | - | - | - |
382
+ | 1.998 | 1000 | 3.4594 | 3.5366 | - | 0.8565 |
383
+ | 2.196 | 1100 | 4.0407 | - | - | - |
384
+ | 2.396 | 1200 | 3.9531 | - | - | - |
385
+ | 2.596 | 1300 | 4.1321 | - | - | - |
386
+ | 2.7960 | 1400 | 3.9537 | - | - | - |
387
+ | 2.996 | 1500 | 3.4291 | 3.5476 | - | 0.8575 |
388
+
389
+
390
+ ### Framework Versions
391
+ - Python: 3.11.11
392
+ - Sentence Transformers: 3.3.1
393
+ - Transformers: 4.47.1
394
+ - PyTorch: 2.5.1+cu121
395
+ - Accelerate: 1.2.1
396
+ - Datasets: 3.2.0
397
+ - Tokenizers: 0.21.0
398
+
399
+ ## Citation
400
+
401
+ ### BibTeX
402
+
403
+ #### Sentence Transformers
404
+ ```bibtex
405
+ @inproceedings{reimers-2019-sentence-bert,
406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
407
+ author = "Reimers, Nils and Gurevych, Iryna",
408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
409
+ month = "11",
410
+ year = "2019",
411
+ publisher = "Association for Computational Linguistics",
412
+ url = "https://arxiv.org/abs/1908.10084",
413
+ }
414
+ ```
415
+
416
+ #### TripletLoss
417
+ ```bibtex
418
+ @misc{hermans2017defense,
419
+ title={In Defense of the Triplet Loss for Person Re-Identification},
420
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
421
+ year={2017},
422
+ eprint={1703.07737},
423
+ archivePrefix={arXiv},
424
+ primaryClass={cs.CV}
425
+ }
426
+ ```
427
+
428
+ <!--
429
+ ## Glossary
430
+
431
+ *Clearly define terms in order to be accessible across audiences.*
432
+ -->
433
+
434
+ <!--
435
+ ## Model Card Authors
436
+
437
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
438
+ -->
439
+
440
+ <!--
441
+ ## Model Card Contact
442
+
443
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
444
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-xlm-r-multilingual-v1",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.47.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71d21e62b555602201b38e16f08424013e338319e27b07cd7f1f737867f19e50
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ccb33b55c4d157419a2105d6e033f7514c2baa6306471c56b86ab02787613
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 128,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "sp_model_kwargs": {},
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "unk_token": "<unk>"
57
+ }