|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: msi-resnet-18 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6217151244059268 |
|
- name: F1 |
|
type: f1 |
|
value: 0.5152478617168957 |
|
- name: Precision |
|
type: precision |
|
value: 0.5801734570391287 |
|
- name: Recall |
|
type: recall |
|
value: 0.4633910592025775 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# msi-resnet-18 |
|
|
|
This model was trained from scratch on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6730 |
|
- Accuracy: 0.6217 |
|
- F1: 0.5152 |
|
- Precision: 0.5802 |
|
- Recall: 0.4634 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5705 | 1.0 | 2015 | 0.6879 | 0.5897 | 0.4460 | 0.5384 | 0.3807 | |
|
| 0.5309 | 2.0 | 4031 | 0.6788 | 0.6091 | 0.4859 | 0.5657 | 0.4258 | |
|
| 0.5263 | 3.0 | 6047 | 0.7020 | 0.6036 | 0.4322 | 0.5709 | 0.3477 | |
|
| 0.496 | 4.0 | 8060 | 0.6730 | 0.6217 | 0.5152 | 0.5802 | 0.4634 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|