aaa12963337 commited on
Commit
95d95d9
·
1 Parent(s): 22abddf

End of training

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - imagefolder
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: msi-resnet-18
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: validation
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.6217151244059268
27
+ - name: F1
28
+ type: f1
29
+ value: 0.5152478617168957
30
+ - name: Precision
31
+ type: precision
32
+ value: 0.5801734570391287
33
+ - name: Recall
34
+ type: recall
35
+ value: 0.4633910592025775
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # msi-resnet-18
42
+
43
+ This model was trained from scratch on the imagefolder dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.6730
46
+ - Accuracy: 0.6217
47
+ - F1: 0.5152
48
+ - Precision: 0.5802
49
+ - Recall: 0.4634
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 1e-06
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - gradient_accumulation_steps: 4
73
+ - total_train_batch_size: 64
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_ratio: 0.1
77
+ - num_epochs: 4
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
82
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
83
+ | 0.5705 | 1.0 | 2015 | 0.6879 | 0.5897 | 0.4460 | 0.5384 | 0.3807 |
84
+ | 0.5309 | 2.0 | 4031 | 0.6788 | 0.6091 | 0.4859 | 0.5657 | 0.4258 |
85
+ | 0.5263 | 3.0 | 6047 | 0.7020 | 0.6036 | 0.4322 | 0.5709 | 0.3477 |
86
+ | 0.496 | 4.0 | 8060 | 0.6730 | 0.6217 | 0.5152 | 0.5802 | 0.4634 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.35.2
92
+ - Pytorch 2.0.1+cu118
93
+ - Datasets 2.15.0
94
+ - Tokenizers 0.15.0