import torch | |
import torch.nn as nn | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from typing import List | |
class GreggRecognitionPipeline: | |
def __init__(self, model_path="pytorch_model.bin"): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.transform = transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.Grayscale(num_output_channels=1), | |
transforms.ToTensor(), | |
]) | |
# Load model here - implement based on your model structure | |
def __call__(self, images): | |
"""Process images and return text predictions""" | |
if not isinstance(images, list): | |
images = [images] | |
results = [] | |
for image in images: | |
if isinstance(image, str): | |
image = Image.open(image) | |
# Preprocess image | |
image_tensor = self.transform(image).unsqueeze(0).to(self.device) | |
# Generate text (implement based on your model) | |
with torch.no_grad(): | |
# This is a placeholder - replace with your actual inference | |
predicted_text = "sample_text" | |
results.append({"generated_text": predicted_text}) | |
return results if len(results) > 1 else results[0] | |