import torch import torch.nn as nn from PIL import Image import torchvision.transforms as transforms from typing import List class GreggRecognitionPipeline: def __init__(self, model_path="pytorch_model.bin"): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), ]) # Load model here - implement based on your model structure def __call__(self, images): """Process images and return text predictions""" if not isinstance(images, list): images = [images] results = [] for image in images: if isinstance(image, str): image = Image.open(image) # Preprocess image image_tensor = self.transform(image).unsqueeze(0).to(self.device) # Generate text (implement based on your model) with torch.no_grad(): # This is a placeholder - replace with your actual inference predicted_text = "sample_text" results.append({"generated_text": predicted_text}) return results if len(results) > 1 else results[0]