Upload pipeline.py with huggingface_hub
Browse files- pipeline.py +38 -0
pipeline.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from typing import List
|
| 7 |
+
|
| 8 |
+
class GreggRecognitionPipeline:
|
| 9 |
+
def __init__(self, model_path="pytorch_model.bin"):
|
| 10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
self.transform = transforms.Compose([
|
| 12 |
+
transforms.Resize((256, 256)),
|
| 13 |
+
transforms.Grayscale(num_output_channels=1),
|
| 14 |
+
transforms.ToTensor(),
|
| 15 |
+
])
|
| 16 |
+
# Load model here - implement based on your model structure
|
| 17 |
+
|
| 18 |
+
def __call__(self, images):
|
| 19 |
+
"""Process images and return text predictions"""
|
| 20 |
+
if not isinstance(images, list):
|
| 21 |
+
images = [images]
|
| 22 |
+
|
| 23 |
+
results = []
|
| 24 |
+
for image in images:
|
| 25 |
+
if isinstance(image, str):
|
| 26 |
+
image = Image.open(image)
|
| 27 |
+
|
| 28 |
+
# Preprocess image
|
| 29 |
+
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
| 30 |
+
|
| 31 |
+
# Generate text (implement based on your model)
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
# This is a placeholder - replace with your actual inference
|
| 34 |
+
predicted_text = "sample_text"
|
| 35 |
+
|
| 36 |
+
results.append({"generated_text": predicted_text})
|
| 37 |
+
|
| 38 |
+
return results if len(results) > 1 else results[0]
|