|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import argparse |
|
import logging |
|
from typing import List, Optional |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def load_model_and_tokenizer(model_name: str) -> tuple: |
|
""" |
|
Load the pre-trained model and tokenizer. |
|
|
|
Args: |
|
model_name (str): Name or path of the pre-trained model. |
|
|
|
Returns: |
|
tuple: (model, tokenizer) |
|
""" |
|
logger.info(f"Loading model: {model_name}...") |
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
) |
|
logger.info("Model and tokenizer loaded successfully.") |
|
return model, tokenizer |
|
except Exception as e: |
|
logger.error(f"Error loading model: {e}") |
|
raise |
|
|
|
|
|
def generate_text( |
|
model, |
|
tokenizer, |
|
prompt: str, |
|
max_length: int = 100, |
|
temperature: float = 1.0, |
|
top_k: int = 50, |
|
top_p: float = 0.95, |
|
) -> str: |
|
""" |
|
Generate text based on the given prompt. |
|
|
|
Args: |
|
model: Pre-trained language model. |
|
tokenizer: Tokenizer for the model. |
|
prompt (str): Input prompt for text generation. |
|
max_length (int): Maximum length of the generated text. |
|
temperature (float): Sampling temperature (higher = more random). |
|
top_k (int): Top-k sampling (0 = no sampling). |
|
top_p (float): Top-p (nucleus) sampling (1.0 = no sampling). |
|
|
|
Returns: |
|
str: Generated text. |
|
""" |
|
try: |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
if torch.cuda.is_available(): |
|
inputs = {key: value.to("cuda") for key, value in inputs.items()} |
|
model.to("cuda") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_length=max_length, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
do_sample=True, |
|
) |
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
logger.info("Text generation completed successfully.") |
|
return generated_text |
|
except Exception as e: |
|
logger.error(f"Error generating text: {e}") |
|
raise |
|
|
|
|
|
def save_to_file(text: str, filename: str) -> None: |
|
""" |
|
Save the generated text to a file. |
|
|
|
Args: |
|
text (str): Generated text. |
|
filename (str): Name of the output file. |
|
""" |
|
try: |
|
with open(filename, "w") as file: |
|
file.write(text) |
|
logger.info(f"Generated text saved to {filename}.") |
|
except Exception as e: |
|
logger.error(f"Error saving to file: {e}") |
|
raise |
|
|
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser( |
|
description="Generate text using a pre-trained language model.", |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
|
) |
|
parser.add_argument( |
|
"--model", |
|
type=str, |
|
default="mistralai/Mistral-8x7B", |
|
help="Name or path of the pre-trained model.", |
|
) |
|
parser.add_argument( |
|
"--prompt", |
|
type=str, |
|
required=True, |
|
help="Input prompt for text generation.", |
|
) |
|
parser.add_argument( |
|
"--max_length", |
|
type=int, |
|
default=100, |
|
help="Maximum length of the generated text.", |
|
) |
|
parser.add_argument( |
|
"--temperature", |
|
type=float, |
|
default=1.0, |
|
help="Sampling temperature (higher = more random).", |
|
) |
|
parser.add_argument( |
|
"--top_k", |
|
type=int, |
|
default=50, |
|
help="Top-k sampling (0 = no sampling).", |
|
) |
|
parser.add_argument( |
|
"--top_p", |
|
type=float, |
|
default=0.95, |
|
help="Top-p (nucleus) sampling (1.0 = no sampling).", |
|
) |
|
parser.add_argument( |
|
"--output_file", |
|
type=str, |
|
help="File to save the generated text.", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
try: |
|
model, tokenizer = load_model_and_tokenizer(args.model) |
|
except Exception as e: |
|
logger.error(f"Failed to load model: {e}") |
|
return |
|
|
|
|
|
try: |
|
logger.info("Generating text...") |
|
generated_text = generate_text( |
|
model, |
|
tokenizer, |
|
args.prompt, |
|
max_length=args.max_length, |
|
temperature=args.temperature, |
|
top_k=args.top_k, |
|
top_p=args.top_p, |
|
) |
|
|
|
|
|
print("\nGenerated Text:") |
|
print(generated_text) |
|
|
|
|
|
if args.output_file: |
|
save_to_file(generated_text, args.output_file) |
|
except Exception as e: |
|
logger.error(f"Failed to generate text: {e}") |
|
|
|
if __name__ == "__main__": |
|
main() |