File size: 5,165 Bytes
eb813a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import argparse
import logging
from typing import List, Optional

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Load model and tokenizer
def load_model_and_tokenizer(model_name: str) -> tuple:
    """
    Load the pre-trained model and tokenizer.

    Args:
        model_name (str): Name or path of the pre-trained model.

    Returns:
        tuple: (model, tokenizer)
    """
    logger.info(f"Loading model: {model_name}...")
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        )
        logger.info("Model and tokenizer loaded successfully.")
        return model, tokenizer
    except Exception as e:
        logger.error(f"Error loading model: {e}")
        raise

# Generate text
def generate_text(
    model,
    tokenizer,
    prompt: str,
    max_length: int = 100,
    temperature: float = 1.0,
    top_k: int = 50,
    top_p: float = 0.95,
) -> str:
    """
    Generate text based on the given prompt.

    Args:
        model: Pre-trained language model.
        tokenizer: Tokenizer for the model.
        prompt (str): Input prompt for text generation.
        max_length (int): Maximum length of the generated text.
        temperature (float): Sampling temperature (higher = more random).
        top_k (int): Top-k sampling (0 = no sampling).
        top_p (float): Top-p (nucleus) sampling (1.0 = no sampling).

    Returns:
        str: Generated text.
    """
    try:
        inputs = tokenizer(prompt, return_tensors="pt")
        if torch.cuda.is_available():
            inputs = {key: value.to("cuda") for key, value in inputs.items()}
            model.to("cuda")

        with torch.no_grad():
            outputs = model.generate(
                inputs.input_ids,
                max_length=max_length,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                do_sample=True,
            )

        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        logger.info("Text generation completed successfully.")
        return generated_text
    except Exception as e:
        logger.error(f"Error generating text: {e}")
        raise

# Save generated text to a file
def save_to_file(text: str, filename: str) -> None:
    """
    Save the generated text to a file.

    Args:
        text (str): Generated text.
        filename (str): Name of the output file.
    """
    try:
        with open(filename, "w") as file:
            file.write(text)
        logger.info(f"Generated text saved to {filename}.")
    except Exception as e:
        logger.error(f"Error saving to file: {e}")
        raise

# Main function
def main():
    # Parse command-line arguments
    parser = argparse.ArgumentParser(
        description="Generate text using a pre-trained language model.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument(
        "--model",
        type=str,
        default="mistralai/Mistral-8x7B",
        help="Name or path of the pre-trained model.",
    )
    parser.add_argument(
        "--prompt",
        type=str,
        required=True,
        help="Input prompt for text generation.",
    )
    parser.add_argument(
        "--max_length",
        type=int,
        default=100,
        help="Maximum length of the generated text.",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=1.0,
        help="Sampling temperature (higher = more random).",
    )
    parser.add_argument(
        "--top_k",
        type=int,
        default=50,
        help="Top-k sampling (0 = no sampling).",
    )
    parser.add_argument(
        "--top_p",
        type=float,
        default=0.95,
        help="Top-p (nucleus) sampling (1.0 = no sampling).",
    )
    parser.add_argument(
        "--output_file",
        type=str,
        help="File to save the generated text.",
    )
    args = parser.parse_args()

    # Load model and tokenizer
    try:
        model, tokenizer = load_model_and_tokenizer(args.model)
    except Exception as e:
        logger.error(f"Failed to load model: {e}")
        return

    # Generate text
    try:
        logger.info("Generating text...")
        generated_text = generate_text(
            model,
            tokenizer,
            args.prompt,
            max_length=args.max_length,
            temperature=args.temperature,
            top_k=args.top_k,
            top_p=args.top_p,
        )

        # Print the generated text
        print("\nGenerated Text:")
        print(generated_text)

        # Save to file if specified
        if args.output_file:
            save_to_file(generated_text, args.output_file)
    except Exception as e:
        logger.error(f"Failed to generate text: {e}")

if __name__ == "__main__":
    main()