File size: 5,165 Bytes
eb813a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import argparse
import logging
from typing import List, Optional
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Load model and tokenizer
def load_model_and_tokenizer(model_name: str) -> tuple:
"""
Load the pre-trained model and tokenizer.
Args:
model_name (str): Name or path of the pre-trained model.
Returns:
tuple: (model, tokenizer)
"""
logger.info(f"Loading model: {model_name}...")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
)
logger.info("Model and tokenizer loaded successfully.")
return model, tokenizer
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
# Generate text
def generate_text(
model,
tokenizer,
prompt: str,
max_length: int = 100,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 0.95,
) -> str:
"""
Generate text based on the given prompt.
Args:
model: Pre-trained language model.
tokenizer: Tokenizer for the model.
prompt (str): Input prompt for text generation.
max_length (int): Maximum length of the generated text.
temperature (float): Sampling temperature (higher = more random).
top_k (int): Top-k sampling (0 = no sampling).
top_p (float): Top-p (nucleus) sampling (1.0 = no sampling).
Returns:
str: Generated text.
"""
try:
inputs = tokenizer(prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {key: value.to("cuda") for key, value in inputs.items()}
model.to("cuda")
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info("Text generation completed successfully.")
return generated_text
except Exception as e:
logger.error(f"Error generating text: {e}")
raise
# Save generated text to a file
def save_to_file(text: str, filename: str) -> None:
"""
Save the generated text to a file.
Args:
text (str): Generated text.
filename (str): Name of the output file.
"""
try:
with open(filename, "w") as file:
file.write(text)
logger.info(f"Generated text saved to {filename}.")
except Exception as e:
logger.error(f"Error saving to file: {e}")
raise
# Main function
def main():
# Parse command-line arguments
parser = argparse.ArgumentParser(
description="Generate text using a pre-trained language model.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--model",
type=str,
default="mistralai/Mistral-8x7B",
help="Name or path of the pre-trained model.",
)
parser.add_argument(
"--prompt",
type=str,
required=True,
help="Input prompt for text generation.",
)
parser.add_argument(
"--max_length",
type=int,
default=100,
help="Maximum length of the generated text.",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="Sampling temperature (higher = more random).",
)
parser.add_argument(
"--top_k",
type=int,
default=50,
help="Top-k sampling (0 = no sampling).",
)
parser.add_argument(
"--top_p",
type=float,
default=0.95,
help="Top-p (nucleus) sampling (1.0 = no sampling).",
)
parser.add_argument(
"--output_file",
type=str,
help="File to save the generated text.",
)
args = parser.parse_args()
# Load model and tokenizer
try:
model, tokenizer = load_model_and_tokenizer(args.model)
except Exception as e:
logger.error(f"Failed to load model: {e}")
return
# Generate text
try:
logger.info("Generating text...")
generated_text = generate_text(
model,
tokenizer,
args.prompt,
max_length=args.max_length,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
)
# Print the generated text
print("\nGenerated Text:")
print(generated_text)
# Save to file if specified
if args.output_file:
save_to_file(generated_text, args.output_file)
except Exception as e:
logger.error(f"Failed to generate text: {e}")
if __name__ == "__main__":
main() |