Rename model to generate.py
Browse files- generate.py +181 -0
- model +0 -0
generate.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
from typing import List, Optional
|
6 |
+
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
# Load model and tokenizer
|
12 |
+
def load_model_and_tokenizer(model_name: str) -> tuple:
|
13 |
+
"""
|
14 |
+
Load the pre-trained model and tokenizer.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
model_name (str): Name or path of the pre-trained model.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
tuple: (model, tokenizer)
|
21 |
+
"""
|
22 |
+
logger.info(f"Loading model: {model_name}...")
|
23 |
+
try:
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name,
|
27 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
28 |
+
)
|
29 |
+
logger.info("Model and tokenizer loaded successfully.")
|
30 |
+
return model, tokenizer
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Error loading model: {e}")
|
33 |
+
raise
|
34 |
+
|
35 |
+
# Generate text
|
36 |
+
def generate_text(
|
37 |
+
model,
|
38 |
+
tokenizer,
|
39 |
+
prompt: str,
|
40 |
+
max_length: int = 100,
|
41 |
+
temperature: float = 1.0,
|
42 |
+
top_k: int = 50,
|
43 |
+
top_p: float = 0.95,
|
44 |
+
) -> str:
|
45 |
+
"""
|
46 |
+
Generate text based on the given prompt.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
model: Pre-trained language model.
|
50 |
+
tokenizer: Tokenizer for the model.
|
51 |
+
prompt (str): Input prompt for text generation.
|
52 |
+
max_length (int): Maximum length of the generated text.
|
53 |
+
temperature (float): Sampling temperature (higher = more random).
|
54 |
+
top_k (int): Top-k sampling (0 = no sampling).
|
55 |
+
top_p (float): Top-p (nucleus) sampling (1.0 = no sampling).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
str: Generated text.
|
59 |
+
"""
|
60 |
+
try:
|
61 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
62 |
+
if torch.cuda.is_available():
|
63 |
+
inputs = {key: value.to("cuda") for key, value in inputs.items()}
|
64 |
+
model.to("cuda")
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = model.generate(
|
68 |
+
inputs.input_ids,
|
69 |
+
max_length=max_length,
|
70 |
+
temperature=temperature,
|
71 |
+
top_k=top_k,
|
72 |
+
top_p=top_p,
|
73 |
+
do_sample=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
logger.info("Text generation completed successfully.")
|
78 |
+
return generated_text
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Error generating text: {e}")
|
81 |
+
raise
|
82 |
+
|
83 |
+
# Save generated text to a file
|
84 |
+
def save_to_file(text: str, filename: str) -> None:
|
85 |
+
"""
|
86 |
+
Save the generated text to a file.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
text (str): Generated text.
|
90 |
+
filename (str): Name of the output file.
|
91 |
+
"""
|
92 |
+
try:
|
93 |
+
with open(filename, "w") as file:
|
94 |
+
file.write(text)
|
95 |
+
logger.info(f"Generated text saved to {filename}.")
|
96 |
+
except Exception as e:
|
97 |
+
logger.error(f"Error saving to file: {e}")
|
98 |
+
raise
|
99 |
+
|
100 |
+
# Main function
|
101 |
+
def main():
|
102 |
+
# Parse command-line arguments
|
103 |
+
parser = argparse.ArgumentParser(
|
104 |
+
description="Generate text using a pre-trained language model.",
|
105 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--model",
|
109 |
+
type=str,
|
110 |
+
default="mistralai/Mistral-8x7B",
|
111 |
+
help="Name or path of the pre-trained model.",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--prompt",
|
115 |
+
type=str,
|
116 |
+
required=True,
|
117 |
+
help="Input prompt for text generation.",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--max_length",
|
121 |
+
type=int,
|
122 |
+
default=100,
|
123 |
+
help="Maximum length of the generated text.",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--temperature",
|
127 |
+
type=float,
|
128 |
+
default=1.0,
|
129 |
+
help="Sampling temperature (higher = more random).",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--top_k",
|
133 |
+
type=int,
|
134 |
+
default=50,
|
135 |
+
help="Top-k sampling (0 = no sampling).",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--top_p",
|
139 |
+
type=float,
|
140 |
+
default=0.95,
|
141 |
+
help="Top-p (nucleus) sampling (1.0 = no sampling).",
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--output_file",
|
145 |
+
type=str,
|
146 |
+
help="File to save the generated text.",
|
147 |
+
)
|
148 |
+
args = parser.parse_args()
|
149 |
+
|
150 |
+
# Load model and tokenizer
|
151 |
+
try:
|
152 |
+
model, tokenizer = load_model_and_tokenizer(args.model)
|
153 |
+
except Exception as e:
|
154 |
+
logger.error(f"Failed to load model: {e}")
|
155 |
+
return
|
156 |
+
|
157 |
+
# Generate text
|
158 |
+
try:
|
159 |
+
logger.info("Generating text...")
|
160 |
+
generated_text = generate_text(
|
161 |
+
model,
|
162 |
+
tokenizer,
|
163 |
+
args.prompt,
|
164 |
+
max_length=args.max_length,
|
165 |
+
temperature=args.temperature,
|
166 |
+
top_k=args.top_k,
|
167 |
+
top_p=args.top_p,
|
168 |
+
)
|
169 |
+
|
170 |
+
# Print the generated text
|
171 |
+
print("\nGenerated Text:")
|
172 |
+
print(generated_text)
|
173 |
+
|
174 |
+
# Save to file if specified
|
175 |
+
if args.output_file:
|
176 |
+
save_to_file(generated_text, args.output_file)
|
177 |
+
except Exception as e:
|
178 |
+
logger.error(f"Failed to generate text: {e}")
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
main()
|
model
DELETED
File without changes
|