SystemAdmin123's picture
End of training
300dd0a verified
|
raw
history blame
4.21 kB
metadata
library_name: transformers
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - argilla/databricks-dolly-15k-curated-en
model-index:
  - name: tiny-random-LlamaForCausalLM
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
batch_size: 64
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
  path: argilla/databricks-dolly-15k-curated-en
  type:
    field_input: original-instruction
    field_instruction: original-instruction
    field_output: original-response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 40
flash_attention: true
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 5000
micro_batch_size: 32
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/tmp/tiny-random-LlamaForCausalLM
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: true
save_steps: 20
save_total_limit: 2
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
torch_dtype: bf16
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05

tiny-random-LlamaForCausalLM

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set:

  • Loss: 9.1944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss
No log 0.0769 1 10.3764
10.3522 3.0769 40 10.3366
10.1177 6.1538 80 10.0885
9.8887 9.2308 120 9.8677
9.688 12.3077 160 9.6724
9.5151 15.3846 200 9.5050
9.3725 18.4615 240 9.3687
9.2678 21.5385 280 9.2734
9.2101 24.6154 320 9.2205
9.186 27.6923 360 9.2018
9.18 30.7692 400 9.1964
9.1787 33.8462 440 9.1945
9.1768 36.9231 480 9.1941
9.1775 40.0 520 9.1938
9.1784 43.0769 560 9.1949
9.1762 46.1538 600 9.1944

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0