End of training
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
axolotl version: `0.6.0`
|
21 |
```yaml
|
22 |
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
|
23 |
-
batch_size:
|
24 |
bf16: true
|
25 |
chat_template: tokenizer_default_fallback_alpaca
|
26 |
datasets:
|
@@ -36,26 +36,26 @@ datasets:
|
|
36 |
system_prompt: ''
|
37 |
device_map: auto
|
38 |
eval_sample_packing: false
|
39 |
-
eval_steps:
|
40 |
flash_attention: true
|
41 |
-
|
42 |
group_by_length: true
|
43 |
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
|
44 |
hub_strategy: checkpoint
|
45 |
learning_rate: 0.0002
|
46 |
logging_steps: 10
|
47 |
lr_scheduler: cosine
|
48 |
-
max_steps:
|
49 |
-
micro_batch_size:
|
50 |
model_type: AutoModelForCausalLM
|
51 |
num_epochs: 100
|
52 |
optimizer: adamw_bnb_8bit
|
53 |
-
output_dir: /root/.sn56/axolotl/
|
54 |
pad_to_sequence_len: true
|
55 |
resize_token_embeddings_to_32x: false
|
56 |
-
sample_packing:
|
57 |
-
save_steps:
|
58 |
-
save_total_limit:
|
59 |
sequence_len: 2048
|
60 |
tokenizer_type: LlamaTokenizerFast
|
61 |
torch_dtype: bf16
|
@@ -77,7 +77,7 @@ warmup_ratio: 0.05
|
|
77 |
|
78 |
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
|
79 |
It achieves the following results on the evaluation set:
|
80 |
-
- Loss:
|
81 |
|
82 |
## Model description
|
83 |
|
@@ -97,36 +97,43 @@ More information needed
|
|
97 |
|
98 |
The following hyperparameters were used during training:
|
99 |
- learning_rate: 0.0002
|
100 |
-
- train_batch_size:
|
101 |
-
- eval_batch_size:
|
102 |
- seed: 42
|
|
|
|
|
|
|
|
|
103 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
104 |
- lr_scheduler_type: cosine
|
105 |
-
- lr_scheduler_warmup_steps:
|
106 |
-
- training_steps:
|
107 |
|
108 |
### Training results
|
109 |
|
110 |
-
| Training Loss | Epoch
|
111 |
-
|
112 |
-
| No log | 0.
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
122 |
-
|
|
123 |
-
|
|
124 |
-
|
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
### Framework versions
|
128 |
|
129 |
- Transformers 4.48.1
|
130 |
-
- Pytorch 2.
|
131 |
- Datasets 3.2.0
|
132 |
- Tokenizers 0.21.0
|
|
|
20 |
axolotl version: `0.6.0`
|
21 |
```yaml
|
22 |
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
|
23 |
+
batch_size: 64
|
24 |
bf16: true
|
25 |
chat_template: tokenizer_default_fallback_alpaca
|
26 |
datasets:
|
|
|
36 |
system_prompt: ''
|
37 |
device_map: auto
|
38 |
eval_sample_packing: false
|
39 |
+
eval_steps: 40
|
40 |
flash_attention: true
|
41 |
+
gradient_checkpointing: true
|
42 |
group_by_length: true
|
43 |
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
|
44 |
hub_strategy: checkpoint
|
45 |
learning_rate: 0.0002
|
46 |
logging_steps: 10
|
47 |
lr_scheduler: cosine
|
48 |
+
max_steps: 5000
|
49 |
+
micro_batch_size: 32
|
50 |
model_type: AutoModelForCausalLM
|
51 |
num_epochs: 100
|
52 |
optimizer: adamw_bnb_8bit
|
53 |
+
output_dir: /root/.sn56/axolotl/tmp/tiny-random-LlamaForCausalLM
|
54 |
pad_to_sequence_len: true
|
55 |
resize_token_embeddings_to_32x: false
|
56 |
+
sample_packing: true
|
57 |
+
save_steps: 20
|
58 |
+
save_total_limit: 2
|
59 |
sequence_len: 2048
|
60 |
tokenizer_type: LlamaTokenizerFast
|
61 |
torch_dtype: bf16
|
|
|
77 |
|
78 |
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
|
79 |
It achieves the following results on the evaluation set:
|
80 |
+
- Loss: 9.1944
|
81 |
|
82 |
## Model description
|
83 |
|
|
|
97 |
|
98 |
The following hyperparameters were used during training:
|
99 |
- learning_rate: 0.0002
|
100 |
+
- train_batch_size: 32
|
101 |
+
- eval_batch_size: 32
|
102 |
- seed: 42
|
103 |
+
- distributed_type: multi-GPU
|
104 |
+
- num_devices: 2
|
105 |
+
- total_train_batch_size: 64
|
106 |
+
- total_eval_batch_size: 64
|
107 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
108 |
- lr_scheduler_type: cosine
|
109 |
+
- lr_scheduler_warmup_steps: 30
|
110 |
+
- training_steps: 600
|
111 |
|
112 |
### Training results
|
113 |
|
114 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
115 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
116 |
+
| No log | 0.0769 | 1 | 10.3764 |
|
117 |
+
| 10.3522 | 3.0769 | 40 | 10.3366 |
|
118 |
+
| 10.1177 | 6.1538 | 80 | 10.0885 |
|
119 |
+
| 9.8887 | 9.2308 | 120 | 9.8677 |
|
120 |
+
| 9.688 | 12.3077 | 160 | 9.6724 |
|
121 |
+
| 9.5151 | 15.3846 | 200 | 9.5050 |
|
122 |
+
| 9.3725 | 18.4615 | 240 | 9.3687 |
|
123 |
+
| 9.2678 | 21.5385 | 280 | 9.2734 |
|
124 |
+
| 9.2101 | 24.6154 | 320 | 9.2205 |
|
125 |
+
| 9.186 | 27.6923 | 360 | 9.2018 |
|
126 |
+
| 9.18 | 30.7692 | 400 | 9.1964 |
|
127 |
+
| 9.1787 | 33.8462 | 440 | 9.1945 |
|
128 |
+
| 9.1768 | 36.9231 | 480 | 9.1941 |
|
129 |
+
| 9.1775 | 40.0 | 520 | 9.1938 |
|
130 |
+
| 9.1784 | 43.0769 | 560 | 9.1949 |
|
131 |
+
| 9.1762 | 46.1538 | 600 | 9.1944 |
|
132 |
|
133 |
|
134 |
### Framework versions
|
135 |
|
136 |
- Transformers 4.48.1
|
137 |
+
- Pytorch 2.5.1+cu124
|
138 |
- Datasets 3.2.0
|
139 |
- Tokenizers 0.21.0
|