Saugat20021's picture
End of training
07218f3 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - lord-reso/inbrowser-proctor-dataset
metrics:
  - wer
model-index:
  - name: Whisper-Small-Inbrowser-Proctor
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Inbrowser Procotor Dataset
          type: lord-reso/inbrowser-proctor-dataset
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 16.948072634597004

Whisper-Small-Inbrowser-Proctor

This model is a fine-tuned version of openai/whisper-small on the Inbrowser Procotor Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3093
  • Wer: 16.9481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • training_steps: 250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2855 0.4545 25 0.4320 24.4186
0.1728 0.9091 50 0.3271 17.4896
0.0925 1.3636 75 0.3101 14.5428
0.1021 1.8182 100 0.3059 16.8366
0.054 2.2727 125 0.3039 15.1641
0.083 2.7273 150 0.3050 14.6703
0.0355 3.1818 175 0.3055 14.7818
0.0502 3.6364 200 0.3074 15.6897
0.0287 4.0909 225 0.3089 17.0596
0.0347 4.5455 250 0.3093 16.9481

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0