Whisper-Small-Inbrowser-Proctor

This model is a fine-tuned version of openai/whisper-small on the Inbrowser Procotor Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3093
  • Wer: 16.9481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • training_steps: 250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2855 0.4545 25 0.4320 24.4186
0.1728 0.9091 50 0.3271 17.4896
0.0925 1.3636 75 0.3101 14.5428
0.1021 1.8182 100 0.3059 16.8366
0.054 2.2727 125 0.3039 15.1641
0.083 2.7273 150 0.3050 14.6703
0.0355 3.1818 175 0.3055 14.7818
0.0502 3.6364 200 0.3074 15.6897
0.0287 4.0909 225 0.3089 17.0596
0.0347 4.5455 250 0.3093 16.9481

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Saugat20021/whisper-small-inbrowser-proctor

Finetuned
(2266)
this model

Dataset used to train Saugat20021/whisper-small-inbrowser-proctor

Evaluation results