|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: my_custom2_model |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9166666666666666 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_custom2_model |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4030 |
|
- Accuracy: 0.9167 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.1798 | 1.0 | 6 | 0.4439 | 0.75 | |
|
| 0.2051 | 2.0 | 12 | 0.5505 | 0.5833 | |
|
| 0.1612 | 3.0 | 18 | 0.1884 | 0.9167 | |
|
| 0.2032 | 4.0 | 24 | 0.2759 | 0.9167 | |
|
| 0.1803 | 5.0 | 30 | 0.5196 | 0.8333 | |
|
| 0.0478 | 6.0 | 36 | 0.3214 | 0.9167 | |
|
| 0.1159 | 7.0 | 42 | 0.3311 | 0.9167 | |
|
| 0.031 | 8.0 | 48 | 0.6261 | 0.8333 | |
|
| 0.0263 | 9.0 | 54 | 0.3536 | 0.9167 | |
|
| 0.2505 | 10.0 | 60 | 0.3637 | 0.9167 | |
|
| 0.018 | 11.0 | 66 | 0.3721 | 0.9167 | |
|
| 0.0167 | 12.0 | 72 | 0.6487 | 0.8333 | |
|
| 0.0154 | 13.0 | 78 | 0.7422 | 0.8333 | |
|
| 0.0144 | 14.0 | 84 | 0.7221 | 0.8333 | |
|
| 0.0129 | 15.0 | 90 | 0.5876 | 0.8333 | |
|
| 0.0123 | 16.0 | 96 | 0.4041 | 0.9167 | |
|
| 0.0118 | 17.0 | 102 | 0.4000 | 0.9167 | |
|
| 0.0115 | 18.0 | 108 | 0.4015 | 0.9167 | |
|
| 0.0112 | 19.0 | 114 | 0.4025 | 0.9167 | |
|
| 0.011 | 20.0 | 120 | 0.4030 | 0.9167 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.50.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.1 |
|
|