--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: my_custom2_model results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9166666666666666 --- # my_custom2_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4030 - Accuracy: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1798 | 1.0 | 6 | 0.4439 | 0.75 | | 0.2051 | 2.0 | 12 | 0.5505 | 0.5833 | | 0.1612 | 3.0 | 18 | 0.1884 | 0.9167 | | 0.2032 | 4.0 | 24 | 0.2759 | 0.9167 | | 0.1803 | 5.0 | 30 | 0.5196 | 0.8333 | | 0.0478 | 6.0 | 36 | 0.3214 | 0.9167 | | 0.1159 | 7.0 | 42 | 0.3311 | 0.9167 | | 0.031 | 8.0 | 48 | 0.6261 | 0.8333 | | 0.0263 | 9.0 | 54 | 0.3536 | 0.9167 | | 0.2505 | 10.0 | 60 | 0.3637 | 0.9167 | | 0.018 | 11.0 | 66 | 0.3721 | 0.9167 | | 0.0167 | 12.0 | 72 | 0.6487 | 0.8333 | | 0.0154 | 13.0 | 78 | 0.7422 | 0.8333 | | 0.0144 | 14.0 | 84 | 0.7221 | 0.8333 | | 0.0129 | 15.0 | 90 | 0.5876 | 0.8333 | | 0.0123 | 16.0 | 96 | 0.4041 | 0.9167 | | 0.0118 | 17.0 | 102 | 0.4000 | 0.9167 | | 0.0115 | 18.0 | 108 | 0.4015 | 0.9167 | | 0.0112 | 19.0 | 114 | 0.4025 | 0.9167 | | 0.011 | 20.0 | 120 | 0.4030 | 0.9167 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1