RichardErkhov's picture
uploaded readme
a8bb308 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
OpenMath2-Llama3.1-70B - GGUF
- Model creator: https://huggingface.co/nvidia/
- Original model: https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [OpenMath2-Llama3.1-70B.Q2_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q2_K.gguf) | Q2_K | 24.56GB |
| [OpenMath2-Llama3.1-70B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_XS.gguf) | IQ3_XS | 27.29GB |
| [OpenMath2-Llama3.1-70B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_S.gguf) | IQ3_S | 28.79GB |
| [OpenMath2-Llama3.1-70B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_S.gguf) | Q3_K_S | 28.79GB |
| [OpenMath2-Llama3.1-70B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_M.gguf) | IQ3_M | 29.74GB |
| [OpenMath2-Llama3.1-70B.Q3_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K.gguf) | Q3_K | 31.91GB |
| [OpenMath2-Llama3.1-70B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_M.gguf) | Q3_K_M | 31.91GB |
| [OpenMath2-Llama3.1-70B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_L.gguf) | Q3_K_L | 34.59GB |
| [OpenMath2-Llama3.1-70B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ4_XS.gguf) | IQ4_XS | 35.64GB |
| [OpenMath2-Llama3.1-70B.Q4_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q4_0.gguf) | Q4_0 | 37.22GB |
| [OpenMath2-Llama3.1-70B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | IQ4_NL | 37.58GB |
| [OpenMath2-Llama3.1-70B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K_S | 37.58GB |
| [OpenMath2-Llama3.1-70B.Q4_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K | 39.6GB |
| [OpenMath2-Llama3.1-70B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K_M | 39.6GB |
| [OpenMath2-Llama3.1-70B.Q4_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_1 | 41.27GB |
| [OpenMath2-Llama3.1-70B.Q5_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_0 | 45.32GB |
| [OpenMath2-Llama3.1-70B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K_S | 45.32GB |
| [OpenMath2-Llama3.1-70B.Q5_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K | 46.52GB |
| [OpenMath2-Llama3.1-70B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K_M | 46.52GB |
| [OpenMath2-Llama3.1-70B.Q5_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_1 | 49.36GB |
| [OpenMath2-Llama3.1-70B.Q6_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q6_K | 53.91GB |
| [OpenMath2-Llama3.1-70B.Q8_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q8_0 | 69.83GB |
Original model description:
---
license: llama3.1
base_model:
- meta-llama/Llama-3.1-70B
datasets:
- nvidia/OpenMathInstruct-2
language:
- en
tags:
- nvidia
- math
library_name: transformers
---
# OpenMath2-Llama3.1-70B
OpenMath2-Llama3.1-70B is obtained by finetuning [Llama3.1-70B-Base](https://huggingface.co/meta-llama/Llama-3.1-70B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).
The model outperforms [Llama3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) on [MATH](https://github.com/hendrycks/math) by 3.9%.
| Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
|:---|:---:|:---:|:---:|:---:|:---:|
| Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
| OpenMath2-Llama3.1-8B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
| + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
| Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
| **OpenMath2-Llama3.1-70B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
| + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |
The pipeline we used to produce the data and models is fully open-sourced!
- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
See our [paper](https://arxiv.org/abs/2410.01560) to learn more details!
# How to use the models?
Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens).
Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain.
We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is
an example of how to do it through transformers api:
```python
import transformers
import torch
model_id = "nvidia/OpenMath2-Llama3.1-70B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{
"role": "user",
"content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" +
"What is the minimum value of $a^2+6a-7$?"},
]
outputs = pipeline(
messages,
max_new_tokens=4096,
)
print(outputs[0]["generated_text"][-1]['content'])
```
# Reproducing our results
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
## Citation
If you find our work useful, please consider citing us!
```bibtex
@article{toshniwal2024openmath2,
title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
year = {2024},
journal = {arXiv preprint arXiv:2410.01560}
}
```
## Terms of use
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)