File size: 7,606 Bytes
a8bb308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


OpenMath2-Llama3.1-70B - GGUF
- Model creator: https://huggingface.co/nvidia/
- Original model: https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [OpenMath2-Llama3.1-70B.Q2_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q2_K.gguf) | Q2_K | 24.56GB |
| [OpenMath2-Llama3.1-70B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_XS.gguf) | IQ3_XS | 27.29GB |
| [OpenMath2-Llama3.1-70B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_S.gguf) | IQ3_S | 28.79GB |
| [OpenMath2-Llama3.1-70B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_S.gguf) | Q3_K_S | 28.79GB |
| [OpenMath2-Llama3.1-70B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_M.gguf) | IQ3_M | 29.74GB |
| [OpenMath2-Llama3.1-70B.Q3_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K.gguf) | Q3_K | 31.91GB |
| [OpenMath2-Llama3.1-70B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_M.gguf) | Q3_K_M | 31.91GB |
| [OpenMath2-Llama3.1-70B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_L.gguf) | Q3_K_L | 34.59GB |
| [OpenMath2-Llama3.1-70B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ4_XS.gguf) | IQ4_XS | 35.64GB |
| [OpenMath2-Llama3.1-70B.Q4_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q4_0.gguf) | Q4_0 | 37.22GB |
| [OpenMath2-Llama3.1-70B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | IQ4_NL | 37.58GB |
| [OpenMath2-Llama3.1-70B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K_S | 37.58GB |
| [OpenMath2-Llama3.1-70B.Q4_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K | 39.6GB |
| [OpenMath2-Llama3.1-70B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K_M | 39.6GB |
| [OpenMath2-Llama3.1-70B.Q4_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_1 | 41.27GB |
| [OpenMath2-Llama3.1-70B.Q5_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_0 | 45.32GB |
| [OpenMath2-Llama3.1-70B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K_S | 45.32GB |
| [OpenMath2-Llama3.1-70B.Q5_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K | 46.52GB |
| [OpenMath2-Llama3.1-70B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K_M | 46.52GB |
| [OpenMath2-Llama3.1-70B.Q5_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_1 | 49.36GB |
| [OpenMath2-Llama3.1-70B.Q6_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q6_K | 53.91GB |
| [OpenMath2-Llama3.1-70B.Q8_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q8_0 | 69.83GB |




Original model description:
---
license: llama3.1
base_model:
- meta-llama/Llama-3.1-70B
datasets:
- nvidia/OpenMathInstruct-2
language:
- en
tags:
- nvidia
- math
library_name: transformers
---

# OpenMath2-Llama3.1-70B

OpenMath2-Llama3.1-70B is obtained by finetuning [Llama3.1-70B-Base](https://huggingface.co/meta-llama/Llama-3.1-70B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).

The model outperforms [Llama3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) on [MATH](https://github.com/hendrycks/math) by 3.9%. 



| Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
|:---|:---:|:---:|:---:|:---:|:---:|
| Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
| OpenMath2-Llama3.1-8B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
| + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
| Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
| **OpenMath2-Llama3.1-70B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
| + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |

The pipeline we used to produce the data and models is fully open-sourced!

- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)

See our [paper](https://arxiv.org/abs/2410.01560) to learn more details!

# How to use the models?

Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens). 
Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain. 

We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is
an example of how to do it through transformers api:

```python
import transformers
import torch

model_id = "nvidia/OpenMath2-Llama3.1-70B"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {
        "role": "user", 
        "content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" + 
        "What is the minimum value of $a^2+6a-7$?"},
]

outputs = pipeline(
    messages,
    max_new_tokens=4096,
)
print(outputs[0]["generated_text"][-1]['content'])
```

# Reproducing our results

We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.

## Citation

If you find our work useful, please consider citing us!

```bibtex
@article{toshniwal2024openmath2,
  title   = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
  author  = {Shubham Toshniwal and Wei Du and Ivan Moshkov and  Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
  year    = {2024},
  journal = {arXiv preprint arXiv:2410.01560}
}
```

## Terms of use

By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)