File size: 7,606 Bytes
a8bb308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
OpenMath2-Llama3.1-70B - GGUF
- Model creator: https://huggingface.co/nvidia/
- Original model: https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [OpenMath2-Llama3.1-70B.Q2_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q2_K.gguf) | Q2_K | 24.56GB |
| [OpenMath2-Llama3.1-70B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_XS.gguf) | IQ3_XS | 27.29GB |
| [OpenMath2-Llama3.1-70B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_S.gguf) | IQ3_S | 28.79GB |
| [OpenMath2-Llama3.1-70B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_S.gguf) | Q3_K_S | 28.79GB |
| [OpenMath2-Llama3.1-70B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ3_M.gguf) | IQ3_M | 29.74GB |
| [OpenMath2-Llama3.1-70B.Q3_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K.gguf) | Q3_K | 31.91GB |
| [OpenMath2-Llama3.1-70B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_M.gguf) | Q3_K_M | 31.91GB |
| [OpenMath2-Llama3.1-70B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q3_K_L.gguf) | Q3_K_L | 34.59GB |
| [OpenMath2-Llama3.1-70B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.IQ4_XS.gguf) | IQ4_XS | 35.64GB |
| [OpenMath2-Llama3.1-70B.Q4_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/blob/main/OpenMath2-Llama3.1-70B.Q4_0.gguf) | Q4_0 | 37.22GB |
| [OpenMath2-Llama3.1-70B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | IQ4_NL | 37.58GB |
| [OpenMath2-Llama3.1-70B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K_S | 37.58GB |
| [OpenMath2-Llama3.1-70B.Q4_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K | 39.6GB |
| [OpenMath2-Llama3.1-70B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_K_M | 39.6GB |
| [OpenMath2-Llama3.1-70B.Q4_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q4_1 | 41.27GB |
| [OpenMath2-Llama3.1-70B.Q5_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_0 | 45.32GB |
| [OpenMath2-Llama3.1-70B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K_S | 45.32GB |
| [OpenMath2-Llama3.1-70B.Q5_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K | 46.52GB |
| [OpenMath2-Llama3.1-70B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_K_M | 46.52GB |
| [OpenMath2-Llama3.1-70B.Q5_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q5_1 | 49.36GB |
| [OpenMath2-Llama3.1-70B.Q6_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q6_K | 53.91GB |
| [OpenMath2-Llama3.1-70B.Q8_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath2-Llama3.1-70B-gguf/tree/main/) | Q8_0 | 69.83GB |
Original model description:
---
license: llama3.1
base_model:
- meta-llama/Llama-3.1-70B
datasets:
- nvidia/OpenMathInstruct-2
language:
- en
tags:
- nvidia
- math
library_name: transformers
---
# OpenMath2-Llama3.1-70B
OpenMath2-Llama3.1-70B is obtained by finetuning [Llama3.1-70B-Base](https://huggingface.co/meta-llama/Llama-3.1-70B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).
The model outperforms [Llama3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) on [MATH](https://github.com/hendrycks/math) by 3.9%.
| Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
|:---|:---:|:---:|:---:|:---:|:---:|
| Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
| OpenMath2-Llama3.1-8B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
| + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
| Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
| **OpenMath2-Llama3.1-70B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
| + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |
The pipeline we used to produce the data and models is fully open-sourced!
- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
See our [paper](https://arxiv.org/abs/2410.01560) to learn more details!
# How to use the models?
Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens).
Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain.
We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is
an example of how to do it through transformers api:
```python
import transformers
import torch
model_id = "nvidia/OpenMath2-Llama3.1-70B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{
"role": "user",
"content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" +
"What is the minimum value of $a^2+6a-7$?"},
]
outputs = pipeline(
messages,
max_new_tokens=4096,
)
print(outputs[0]["generated_text"][-1]['content'])
```
# Reproducing our results
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
## Citation
If you find our work useful, please consider citing us!
```bibtex
@article{toshniwal2024openmath2,
title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
year = {2024},
journal = {arXiv preprint arXiv:2410.01560}
}
```
## Terms of use
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
|