|
--- |
|
library_name: transformers |
|
base_model: t-tech/T-lite-it-1.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: T-lite-it-1.0-pseudo-base |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t-lite_part1-2_lr1e4_wsd_bs128 |
|
|
|
This model is a fine-tuned version of [t-tech/T-lite-it-1.0](https://huggingface.co/t-tech/T-lite-it-1.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3980 |
|
- Accuracy: 0.6669 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 |
|
- lr_scheduler_type: warmup_stable_decay |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 0.5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| No log | 0.0001 | 1 | 1.4751 | 0.6606 | |
|
| 1.5071 | 0.0354 | 500 | 1.4113 | 0.6647 | |
|
| 1.5003 | 0.0709 | 1000 | 1.4080 | 0.6649 | |
|
| 1.4959 | 0.1063 | 1500 | 1.4063 | 0.6654 | |
|
| 1.5019 | 0.1418 | 2000 | 1.4054 | 0.6655 | |
|
| 1.4891 | 0.1772 | 2500 | 1.4047 | 0.6656 | |
|
| 1.4916 | 0.2126 | 3000 | 1.4040 | 0.6657 | |
|
| 1.496 | 0.2481 | 3500 | 1.4034 | 0.6657 | |
|
| 1.495 | 0.2835 | 4000 | 1.4032 | 0.6657 | |
|
| 1.4934 | 0.3189 | 4500 | 1.4030 | 0.6658 | |
|
| 1.4849 | 0.3544 | 5000 | 1.4029 | 0.6660 | |
|
| 1.4833 | 0.3898 | 5500 | 1.4024 | 0.6661 | |
|
| 1.4909 | 0.4253 | 6000 | 1.4023 | 0.6661 | |
|
| 1.4923 | 0.4607 | 6500 | 1.4000 | 0.6665 | |
|
| 1.4965 | 0.4961 | 7000 | 1.3979 | 0.6669 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.20.3 |
|
|