RefalMachine's picture
Upload folder using huggingface_hub
2f6dc51 verified
metadata
library_name: transformers
base_model: t-tech/T-lite-it-1.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: T-lite-it-1.0-pseudo-base
    results: []

t-lite_part1-2_lr1e4_wsd_bs128

This model is a fine-tuned version of t-tech/T-lite-it-1.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3980
  • Accuracy: 0.6669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • seed: 42
  • distributed_type: multi-GPU
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: warmup_stable_decay
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 0.5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0001 1 1.4751 0.6606
1.5071 0.0354 500 1.4113 0.6647
1.5003 0.0709 1000 1.4080 0.6649
1.4959 0.1063 1500 1.4063 0.6654
1.5019 0.1418 2000 1.4054 0.6655
1.4891 0.1772 2500 1.4047 0.6656
1.4916 0.2126 3000 1.4040 0.6657
1.496 0.2481 3500 1.4034 0.6657
1.495 0.2835 4000 1.4032 0.6657
1.4934 0.3189 4500 1.4030 0.6658
1.4849 0.3544 5000 1.4029 0.6660
1.4833 0.3898 5500 1.4024 0.6661
1.4909 0.4253 6000 1.4023 0.6661
1.4923 0.4607 6500 1.4000 0.6665
1.4965 0.4961 7000 1.3979 0.6669

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
  • Datasets 2.18.0
  • Tokenizers 0.20.3