RayenLLM's picture
End of training
edf22eb verified
metadata
library_name: transformers
base_model: microsoft/codebert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
model-index:
  - name: Vulnerability_Detection_Using_CodeBERT
    results: []

Vulnerability_Detection_Using_CodeBERT

This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0740
  • Accuracy: 1.0
  • Auc: 1.0
  • Precision: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc Precision
0.2971 1.0 26 0.1815 0.925 1.0 0.81
0.2407 2.0 52 0.1349 0.981 1.0 0.944
0.2619 3.0 78 0.1668 0.887 1.0 0.739
0.2207 4.0 104 0.1081 1.0 1.0 1.0
0.1543 5.0 130 0.1037 0.981 1.0 1.0
0.1428 6.0 156 0.0974 0.981 1.0 0.944
0.1598 7.0 182 0.0916 0.981 1.0 1.0
0.1324 8.0 208 0.1024 0.981 1.0 0.944
0.1445 9.0 234 0.0726 1.0 1.0 1.0
0.1287 10.0 260 0.0740 1.0 1.0 1.0

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1