--- library_name: transformers base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - precision model-index: - name: Vulnerability_Detection_Using_CodeBERT results: [] --- # Vulnerability_Detection_Using_CodeBERT This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0740 - Accuracy: 1.0 - Auc: 1.0 - Precision: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:| | 0.2971 | 1.0 | 26 | 0.1815 | 0.925 | 1.0 | 0.81 | | 0.2407 | 2.0 | 52 | 0.1349 | 0.981 | 1.0 | 0.944 | | 0.2619 | 3.0 | 78 | 0.1668 | 0.887 | 1.0 | 0.739 | | 0.2207 | 4.0 | 104 | 0.1081 | 1.0 | 1.0 | 1.0 | | 0.1543 | 5.0 | 130 | 0.1037 | 0.981 | 1.0 | 1.0 | | 0.1428 | 6.0 | 156 | 0.0974 | 0.981 | 1.0 | 0.944 | | 0.1598 | 7.0 | 182 | 0.0916 | 0.981 | 1.0 | 1.0 | | 0.1324 | 8.0 | 208 | 0.1024 | 0.981 | 1.0 | 0.944 | | 0.1445 | 9.0 | 234 | 0.0726 | 1.0 | 1.0 | 1.0 | | 0.1287 | 10.0 | 260 | 0.0740 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1