Moiz2517's picture
Moiz2517/distilbert-base-uncased-lora-text-classification-sentiment
be36a04 verified
---
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9257
- Accuracy: {'accuracy': 0.904}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log | 1.0 | 250 | 0.5634 | {'accuracy': 0.834} |
| 0.4354 | 2.0 | 500 | 0.5962 | {'accuracy': 0.847} |
| 0.4354 | 3.0 | 750 | 0.6723 | {'accuracy': 0.85} |
| 0.2263 | 4.0 | 1000 | 0.5873 | {'accuracy': 0.893} |
| 0.2263 | 5.0 | 1250 | 0.8506 | {'accuracy': 0.886} |
| 0.083 | 6.0 | 1500 | 0.7863 | {'accuracy': 0.899} |
| 0.083 | 7.0 | 1750 | 0.9194 | {'accuracy': 0.894} |
| 0.0196 | 8.0 | 2000 | 0.8792 | {'accuracy': 0.904} |
| 0.0196 | 9.0 | 2250 | 0.8943 | {'accuracy': 0.906} |
| 0.0045 | 10.0 | 2500 | 0.9257 | {'accuracy': 0.904} |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0