distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9257
  • Accuracy: {'accuracy': 0.904}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5634 {'accuracy': 0.834}
0.4354 2.0 500 0.5962 {'accuracy': 0.847}
0.4354 3.0 750 0.6723 {'accuracy': 0.85}
0.2263 4.0 1000 0.5873 {'accuracy': 0.893}
0.2263 5.0 1250 0.8506 {'accuracy': 0.886}
0.083 6.0 1500 0.7863 {'accuracy': 0.899}
0.083 7.0 1750 0.9194 {'accuracy': 0.894}
0.0196 8.0 2000 0.8792 {'accuracy': 0.904}
0.0196 9.0 2250 0.8943 {'accuracy': 0.906}
0.0045 10.0 2500 0.9257 {'accuracy': 0.904}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Moiz2517/distilbert-base-uncased-lora-text-classification

Adapter
(260)
this model